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O C E A N O G R A P H Y

Mixotrophic growth of a ubiquitous marine diatom
Manish Kumar1, Juan D. Tibocha-Bonilla2, Zoltán Füssy3, Chloe Lieng1, Sarah M. Schwenck4,  
Alice V. Levesque4, Mahmoud M. Al-Bassam1, Anurag Passi1, Maxwell Neal5, Cristal Zuniga1,  
Farrah Kaiyom1, Josh L. Espinoza6, Hyungyu Lim5, Shawn W. Polson7,8, Lisa Zeigler Allen4,6, 
Karsten Zengler1,5,9,10*

Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Un-
derstanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in 
global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, 
an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 rep-
resents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. 
With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. 
Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium’s metabolism in situ. 
Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority 
of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our 
findings highlight C. closterium’s metabolic flexibility and its potential role in global carbon cycling.

INTRODUCTION
Diatoms are unicellular photosynthetic microscopic eukaryotes 
ubiquitous in freshwater and marine environments. These microal-
gae are responsible for around one-fifth of Earth’s carbon fixation 
(1) and account for about 25% of global oxygen release per year (2). 
Diatoms represent the most diverse group of phytoplankton, includ-
ing nearly 200,000 different species (3). They have a distinct capabil-
ity to generate porous silica cell walls surrounding the cells known 
as frustules (4). In addition, diatoms can accumulate high amounts 
of lipids for energy storage, making them potential candidates for 
generating commercially valuable products, such as biofuels and 
bioactives (5).

Marine plankton, including diatoms, uses a diverse array of nu-
tritional strategies, encompassing photoautotrophy, heterotrophy, 
and mixotrophy. While some species exclusively harness CO2 in the 
presence of light (photoautotrophy), others sustain themselves sole-
ly on organic material (heterotrophy). However, recent literature 
indicates that many plankton members can adeptly engage in both 
phototrophic and heterotrophic modes concurrently (i.e., mixotrophy) 
(6). Mixotrophic capabilities provide a crucial advantage for marine 
plankton, enhancing their resilience amid fluctuating food webs in 
the ocean, thus highlighting the pivotal role of this trophic strategy 
(7). It was suggested that mixotrophy contributes to an  ~35% 
increase of carbon flux to larger organisms, exerting a substantial 

influence on the global carbon cycle. Given the widespread distri-
bution of diatoms in the oceans, unraveling their trophic strategies 
can deepen our understanding of their contribution to oceanic 
food webs and their broader impact on Earth’s biogeochemical 
processes.

Despite its low abundance (8), Cylindrotheca closterium, a mero-
planktonic species, thrives in sunlit water columns across the globe 
as well as on benthic sediments (9). The ability of C. closterium for 
adapting to drastically varying environmental conditions and its 
ubiquitous distribution in the global oceans makes it a model dia-
tom for filling knowledge gaps in diatom biology. Despite its impor-
tance for global nutrient cycling, the metabolic capabilities of 
C. closterium are not fully understood. Moreover, the metabolic 
strategies enabling this diatom to thrive in different but nutrition-
ally distinct marine environments are currently unknown.

One of the vital computational tools for comprehending metabolic 
variations under different environmental conditions are genome-
scale metabolic models (GEMs). A GEM contains a curated knowl-
edge base, including detailed genome annotations, gene products, 
all known biochemical reactions in an organism, and physiological 
functions. GEMs of organisms from every domain of life, from mi-
croorganisms to humans, have been successfully applied to explore 
their metabolisms, to identify targets for metabolic engineering 
(10), to study variations in flux distribution through the metabolic 
network in different growth environments (11), to contextualize 
omics data, to elucidate strain-specific metabolic differences (12), 
and to study interactions in microbial communities (13–15). After 
our team reconstructed the first GEM of a diatom (Phaeodactylum 
tricornutum) in 2016 (16), models are now available for two other 
diatoms, Fragilariopsis cylindrus (17) and Thalassiosira pseudonana 
(18, 19).

Here, we reconstructed and manually curated a GEM of an envi-
ronmental strain of C. closterium (iMK1961) to explore this diatom’s 
yet uncharacterized metabolic capabilities. Model-predicted fluxes 
were validated using experimental measurements under a broad 
range of growth conditions, including photoautotrophic, heterotro-
phic, and mixotrophic conditions. Photoautotrophic conditions 
were maintained by supplying light and CO2 to the cells, whereas 
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under heterotrophic conditions, cells were cultivated in darkness 
without CO2 but with an organic carbon source. During mixotro-
phy, cells had access to light and CO2, as well as an organic carbon 
source simultaneously. To determine C. closterium’s role in different 
marine environments, we compared global ocean transcriptomics 
datasets (20–22) with the model predictions and revealed distinct 
metabolic responses of C. closterium to elevated nutrient concentra-
tions in different parts of the ocean. Our framework demonstrated 
that in most ocean samples, C. closterium grows mixotrophically 
rather than photoautotrophically, shedding light on different strate-
gies of this diatom to thrive under different nutritional conditions 
and providing insights in its ubiquitous abundance in the global 
oceans. Our findings also indicate that interactions between 
C. closterium and marine bacteria may contribute to its prevalent 
mixotrophic growth in open oceans.

RESULTS
Reconstruction of genome-scale metabolic network of 
C. closterium
While it is currently challenging to derive detailed knowledge about 
in  situ metabolism from omics data alone, contextualization of 
omics data using GEMs has been an efficient tool to provide mecha-
nistic understanding of microorganisms in pure cultures and simple 
communities (13, 15, 23). Here, we used a metabolic reconstruction 
pipeline (Fig. 1A) to reconstruct a draft metabolic network based on 
the annotated genome of C. closterium to shine light on its metabo-
lism in situ. A functionally annotated genome was obtained from an 
environmental strain of C. closterium isolated from estuary samples 
collected at the Tijuana River Estuary (TJRE) outflow in San Diego 
County (CA, USA). The RAVEN and COBRApy/COBRA Toolboxes 
were used to reconstruct and refine the draft metabolic network (see 

A B D

C

Fig. 1. Metabolic network reconstruction and features of iMK1961. (A) Reconstruction pipeline of the GEM of C. clostridium (see Supplementary Text and Materials and 
Methods). (B) Features of iMK1961. The donut chart represents the proportions of the gene (cyan blue) and non-gene–associated reactions (light cyan blue) in iMK1961. 
The bar plot illustrates the number of genes, metabolites, and reactions in iMK1961. (C) Distribution of reactions among different functional categories. These categories 
are defined on the basis of KEGG pathways. Reaction distribution shows that lipid metabolism constitutes the largest portion of the total reactions in the network. 
(D) Reaction distribution per compartment. Among the seven compartments, the cytosol contains most of the reactions.
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Materials and Methods) (24–26). We identified reactions associated 
with metabolic genes in the genome of C. closterium based on homology 
between protein sequences of C. closterium and genomes of template 
organisms, namely P. tricornutum (16) and Chlamydomonas reinhardtii 
(27). Functionally annotated genes of C. closterium, which did not 
return any hit against template genes, were checked for assigned 
Enzyme Commission (EC) numbers. Next, we drew associated reac-
tions from manually curated models in the BiGG database (28). This 
step expanded the reconstruction by 581 reactions, 684 metabolites, 
and 389 genes. These reactions were distributed among several sub-
systems, primarily including membrane lipid metabolism, purine 
metabolism, glycerophospholipid metabolism, cofactor, and pros-
thetic group biosynthesis, cell wall biosynthesis, nucleotide salvage 
pathway, nucleotides, fatty acid metabolism, oxidative phosphoryla-
tion, pyrimidine metabolism, alternate carbon metabolism, and 
pyruvate metabolism (table S12). Before incorporating these addi-
tional reactions into the reconstruction, each was manually checked 
and standardized using BiGG abbreviations (28, 29). All reactions 
in the reconstruction were localized in seven subcellular compart-
ments (cytosol, chloroplast, the extracellular space, mitochondria, 
periplasm, peroxisome/glyoxysome, and thylakoid) (table S13). To 
predict the subcellular localization of proteins, we deployed a previ-
ously published pipeline (see Materials and Methods) (15).

Information associated with each reaction, such as reaction di-
rectionality, charge and mass balances, and gene-protein-reactions 
(GPRs), was manually verified and corrected where needed using 
resources such as genome annotation, relevant literature, and reac-
tion and protein databases (see Materials and Methods). The growth 
medium that was used to grow C. closterium in the laboratory was 
used to constrain the model during filling the gaps in the metabolic 
network of the draft reconstruction by adding a minimal set of reac-
tions to enable the production of all biomass precursors and to con-
nect the metabolites, which were causing dead ends in the network 
(tables S3 to S5). Further, gap-filling linked media nutrients (carbon 
and nitrogen) to the metabolic network using previously published 
data for C. closterium (see Materials and Methods). During this ex-
ercise, 65 additional reactions, mostly exchange and transport reac-
tions, were added to the model (table S6).

Features of the GEM (iMK1961) for C. closterium
The model iMK1961 encompasses 1961 genes (representing around 
10% of all functionally annotated C. closterium genes), 6718 reac-
tions, and 3559 metabolites distributed across seven compartments. 
Features of iMK1961 are summarized in Fig.  1 (B to D) and ta-
bles  S13 to S15. The model includes 6050 reactions (90% of total 
reactions) based on genome annotations, as well as 668 reactions 
(10% of total reactions) without genetic evidence (i.e., orphan reac-
tions). However, these orphan reactions are essential for the biosyn-
thesis of biomass precursors (Fig. 1B). All reactions in iMK1961 are 
categorized within 208 subsystems (table  S13), and these subsys-
tems are associated with 17 pathways (Fig. 1C). Among these path-
ways, lipid metabolism and amino acid metabolism include 75% of 
the total reactions, and the remaining 25% reactions are distributed 
among transport, carbohydrate metabolism, cofactors and vitamins 
metabolism, nucleotide metabolism, energy metabolism, exchange, 
glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and me-
tabolism of terpenoids and polyketides, glycan biosynthesis and me-
tabolism, pentose phosphate pathway, xenobiotics biodegradation 
and metabolism, nitrogen metabolism, and the urea cycle (Fig. 1C). 

The largest number of reactions is localized in the cytosol (68%), 
followed by the chloroplast (12%), mitochondria (9%), extracellular 
space (5%), periplasm (3%), peroxisome/glyoxysome (2%), and thy-
lakoid (1%) (Fig. 1D).

To date, four diatom GEMs have been published. Two GEMs 
(iTps1432 and iThaps987) (18, 19) have been developed for 
T. pseudonana, and two separate GEMs have been reconstructed for 
P. tricornutum (iLB1027) (16) and F. cylindrus (iML830) (fig.  S1) 
(17). By comparing iMK1961 with other diatom GEMs based on the 
distribution of reactions among different pathways, iMK1961 com-
prises a notably higher number of reactions in lipid metabolism, 
transport, amino acid metabolism, carbohydrate metabolism, me-
tabolism of cofactors and vitamins, nucleotide metabolism, and en-
ergy metabolism (Fig.  2). These additional reactions in iMK1961 
aided the accurate prediction of phenotypic traits under a broad 
range of growth conditions (see section “Model validation”).

Model validation
To validate the prediction capability of iMK1961, we simulated in 
silico growth and phenotypes under several different growth con-
ditions, including growth in the light and dark, different nutrients, 
and nutrient-limiting conditions. The model predictions were 
compared with experimental measurements collected from previ-
ous studies as well as those generated during this study (Fig. 3A 
and table S7). Growth of C. closterium under various trophic con-
ditions was assessed experimentally on the basis of cell count or 
density or chlorophyll concentrations over time. We predicted the 
growth of C. closterium on the consumption of a broad range of 
nutrients as sole sources of carbon, nitrogen, phosphorus, and sul-
fur. This analysis suggested that the model can grow on 81 carbon, 
43 nitrogen, 11 phosphorus, and 6 sulfur sources tested (table S7). 
Model predictions were compared with experimental biomass 
measurements based on 14 carbon and 15 nitrogen sources. In 
silico results have been confirmed experimentally with 100% ac-
curacy (Fig.  3A). Under photoautotrophic (CO2  +  light) condi-
tions, our predictions on CO2 and 15 nitrogen source assimilation 
were found to be consistent with experimental measurements. 
Similarly, the model predicted growth on 13 carbon and 15 nitro-
gen sources under heterotrophic (dark + organic carbon source) 
and mixotrophic (CO2  +  light + organic carbon source) condi-
tions. These predictions were all confirmed experimentally (under 
at least one trophic condition).

Furthermore, we examined the accuracy of the model predic-
tions by comparing in silico and experimental growth rates. As 
shown in Fig. 3B and table S8, GEM predictions agreed well with 
experimental results under one heterotrophic (dark) and three pho-
toautotrophic growth conditions [control (light), low nitrogen, and 
low silicon] (see Materials and Methods and table S9). The experi-
mental growth rates used in this analysis were exclusively deter-
mined as cell counts over time during.

Model predictions were rigorously validated through comparisons 
with experimental measurements gathered from previous studies as 
well as data generated during the course of this investigation. This 
comprehensive approach ensured the robustness and reliability of 
the model’s outputs, enhancing confidence in its predictive capabili-
ties. By leveraging a combination of historical and newly acquired 
data, the study achieved a thorough evaluation of the model’s per-
formance, affirming its utility for understanding and forecasting 
complex ecological dynamics.
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Fig. 2. Comparison of iMK1961 with previously published diatom GEMs. (A) Comparative representation of genes, metabolites, and reactions in different diatom 
GEMs. C. closterium (iMK1961) and F. cylindrus GEM (iML830) include the highest and lowest number of reactions and metabolites. Apart from this plot, iThaps987 was not 
considered in this analysis because of its inconsistent reaction and metabolite identifiers. (B) The Multiple Correspondence Analysis (MCA) scatter plot shows dissimilari-
ties between different diatom GEMs in terms of reactions and metabolites [n = 8803 (iMK1961), n = 7660 (iTps1432), n = 5909 (iLB1027_lipid), and n = 3005 (iML830)]. The 
scatter plot illustrates the first two components, which explained 61.85 and 22.70% of the variances. We compared the entire metabolic content (reactions and metabo-
lites) of iMK1961 with previously published diatom GEMs using MCA (80). iMK1961 and iTps1432 (T. pseudonana) are placed closer to each other as they exclusively share 
1274 reactions and 389 metabolites. F. cylindrus (iML830) is distinct from the other three GEMs because this model comprises the lowest number of reactions and me-
tabolites. iMK1961 has 906 unique reactions and 429 unique metabolites, which are not present in any previous diatom models. These unique reactions are mostly dis-
tributed in pathways related to transport, lipid metabolism, amino acid metabolism, carbohydrate metabolism, cofactors and vitamins metabolism, nucleotide 
metabolism, energy metabolism, TCA cycle, and glycolysis/gluconeogenesis (fig. S2). (C) Venn diagrams represent the distinct and shared reactions and metabolites 
among different diatom GEMs. C. closterium GEM (iMK1961) includes the highest number of unique reactions and metabolites. It exclusively shared the maximum number 
of reactions with iTps1432 followed by iLB1027_lipid and iML830. (D) Comparison between diatom GEMs based on reaction distribution among different pathways. Reac-
tions were defined in 10 functional categories based on KEGG metabolic pathways.

A B

Fig. 3. Validation of iMK1961. (A) Heatmap represents experimentally confirmed predictions of metabolic phenotypes on various nutrient conditions composed of dif-
ferent carbon, nitrogen sources in photoautotrophic and heterotrophic, and mixotrophic conditions. Nitrate was used as a nitrogen source to stimulate growth in all three 
trophic conditions on different carbon sources. Similarly, to stimulate growth on different nitrogen sources, CO2, succinate, and CO2 + succinate were used in photoauto-
trophic, heterotrophic, and mixotrophic conditions, respectively. White cells in the heatmap represent no growth data available based on the definition of photoautotro-
phy, heterotrophy, and mixotrophy. (B) Comparison between in silico and experimental growth rates. Experimental data were used to constrain the inputs of the model. 
The biomass-producing reaction was used as an objective function during each simulation.
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Metabolic capabilities reveal flexibility in the  
C. closterium metabolism
We deployed the model iMK1961 to gain insights into the ubiquitous 
abundance of C. closterium in different marine environments by 
studying its metabolic response to variation in nutrient concentra-
tions. For this, we compared model predictions with transcriptomics 
data generated in the laboratory (30) and obtained from global ocean 
sampling (21). The optimized general parallel sampler (optGpSampler) 
(31) was used to predict all feasible fluxes through each reaction in the 
metabolic network under different nutrient conditions. We used pub-
licly available microbiome and environmental data [Tara Oceans 
(21)] and selected six nutrient-related environmental factors (CO2, 
HCO3, NO2, NO2  +  NO3, PO4, and Si) to simulate metabolic flux 
through each reaction under each nutrient condition. The samples in 
this dataset were divided into two categories based on low and high 
values of environmental factors, defined by comparing the measure-
ment of each factor with its average value among different samples 
(table S10). Next, we constrained the model using these low and high 
values for each environmental factor (see Materials and Methods and 
table S11). This practice enabled us to mimic the nutritional condi-
tions in the marine environment and simulate the response of 
C. closterium to varying nutrients. The subsystem-level differential 

flux distributions through the metabolic network were estimated un-
der low and elevated concentrations of all six inorganic nutrients. The 
resulting flux distributions were used to classify the subsystems that 
carried increased and decreased fluxes on elevated nutrients com-
pared to fluxes under the low concentration of nutrients (Fig. 4A and 
fig. S3). We also identified common and unique subsystems with dif-
ferential fluxes by comparing flux distributions under different nutri-
tional conditions. On average, we found 87 subsystems that carried 
differential fluxes under six nutritional conditions that represent 
about 42% of the total number of subsystems present in the model 
(table S16). On the basis of pairwise comparisons, two pairs (i.e., CO2 
and HCO3 and NO2 + NO3 and NO2) shared more differential fluxes 
carrying subsystems compared to any other pairs (tables  S17 and 
S18). Comparing flux distributions between all six conditions, only 
eight shared subsystems were found carrying differential fluxes, which 
indicated distinct metabolic responses of C. closterium to different 
growth environments (fig. S4).

Model-predicted flux distributions revealed that certain subsystems 
with increased fluxes were commonly found when the concentration 
of different carbon and nitrogen sources was elevated. For exam-
ple, elevated levels of CO2 and HCO3 increased the activity of sub-
systems for photosynthesis, central carbon metabolism (including 

A

B

Fig. 4. Model predicted differential metabolic fluxes under elevated concentrations of nutrients. (A) Heatmap represents differential flux-carrying subsystems 
under elevated CO2, HCO3, NO2, NO2 + NO3, PO4, and Si conditions. It shows subsystems separately with increased and decreased fluxes due to change in nutrient 
uptake fluxes from low to high levels. The numbers in parentheses denote the number of differential flux-carrying subsystems for each nutrient. The details of altered 
subsystems under varying growth conditions can be seen in table S19. We compared the metabolic flux distributions through the network when the model was 
simulated using the low and high concentrations of nutrients. Low and high uptake fluxes of nutrients to the model were used to mimic the low and high concentra-
tions that were obtained from metadata of Tara Oceans global ocean microbiome data (table S11). The low and high concentrations of nutrients were defined by 
comparing with average concentration values for each nutrient (see Materials and Methods). (B) This Venn diagram represents shared and unique subsystems of 
C. closterium with increased flux distributions under the elevated concentration of CO2 and HCO3. The shared and unique subsystems in other pairs of conditions can 
be seen in figs. S5 to S7 and tables S17 and S18.
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pentose phosphate pathway), and starch and sucrose metabolism 
(Fig.  4B). Similarly, elevated levels of nitrogen sources, such as 
NO2 + NO3 and NO2, reduced the activity of subsystems for nucleo-
tide metabolism and lipid biosynthesis (including fatty acid biosyn-
thesis and galactoglycerolipid metabolism) (fig. S7).

Comparison of environmental gene expression data with 
GEM predictions unravels C. closterium’s metabolic 
responses to distinct marine environments
Previously, it was observed that quantitative correlation between pre-
dicted metabolic fluxes and gene expression is key to unraveling vari-
ations in metabolism due to altered growth conditions (6). To gain 
knowledge about the functional role of C. closterium in various ma-
rine environments, we compared model-predicted reaction/subsystems 
fluxes (described in the previous section) with gene expression data 
for C. closterium obtained from global ocean sampling [Tara Oceans 
(21, 32)]. We found that 50 ± 7% of differential flux–carrying subsys-
tems had associated genes that were differentially expressed (fig. S8). 
Similar to the approach used for analyzing differential fluxes, differen-
tially expressed genes were determined by comparing read counts for 
individual genes between two groups of samples. These groups were 
divided on the basis of low and high values of six environmental fac-
tors: CO2, HCO3, NO2, NO2 + NO3, PO4, and Si (see Materials and 
Methods). The highest number (n = 39) of subsystems that had dif-
ferentially expressed genes and differential flux reactions were found 
under elevated PO4 and the lowest number (n  =  22) for elevated 
HCO3 levels. Agreement between differential flux and gene expres-
sion occurred in at least 12 highly expressed and 7 lowly expressed 
subsystems in one growth condition (Fig. 5A). For example, under 
elevated CO2 concentrations, reactions involved in photosynthesis 
and central carbon metabolism (involving glycolysis, Entner-
Doudoroff pathway, TCA cycle, and the pentose phosphate pathway) 
and amino acid metabolism (involving arginine and proline metabo-
lism, aspartate and glutamate metabolism, and cysteine and methio-
nine metabolism) carried increased fluxes, which is consistent with 
environmental transcriptomic data, illustrating that high CO2 con-
centrations promotes up-regulation of photosynthesis and central 
carbon metabolism–related genes (Fig. 5B). To investigate how these 
up-regulated subsystems affect the entire carbon flow, we analyzed 
flux distributions. Our analysis postulated that elevated CO2 levels 
lead to an increase in growth rate and increased carbohydrate and 
lipid content. These predictions were in agreement with experimental 
observations performed under elevated CO2 concentrations (Fig. 5C) 
(33). Both model-predicted fluxes and expression data suggested that 
several reactions in glycolysis, such as fructose-bisphosphate aldolase, 
glyceraldehyde-3-phosphate dehydrogenase, pyruvate dehydroge-
nase, pyruvate kinase, and triose-phosphate isomerase were up-
regulated because of elevated CO2 levels (table  S20). These 
observations were corroborated by recent studies in other dia-
toms (33, 34).

Previously, it has been demonstrated that HCO3 transporters 
play an important role in maintaining uptake of HCO3 into cells 
under CO2-limiting conditions (35). As expected, we noticed that 
the subsystems involved in photosynthesis and central carbon me-
tabolism involving TCA cycle, pentose phosphate pathway, and 
amino acid metabolisms such as alanine, aspartate and glutamate 
metabolism, arginine and proline metabolism, and cysteine and me-
thionine metabolism, were all up-regulated under elevated HCO3 
(fig. S9).

Under high nitrogen conditions (NO2 + NO3), the model predicted 
that subsystems associated with lipid biosynthesis [triacylglycerol 
(TAG) biosynthesis and fatty acid biosynthesis] carried decreased 
fluxes under elevated nitrogen conditions. The genes associated with 
these subsystems were transcriptionally down-regulated. This is consis-
tent with previous studies, which demonstrated that low nitrogen stim-
ulates lipid biosynthesis in various microalgae including P. tricornutum 
(36, 37), Scenedesmus acuminatus (38), T. pseudonana (39, 40), 
C. reinhardtii (41), Haematococcus pluvialis, and Nannochloropsis sp. 
(42). Our model indicates that under high nitrogen conditions, the 
diatom redirects more flux toward specific metabolic pathways, 
including carbon metabolism (glycolysis/gluconeogenesis, pentose 
phosphate pathway, fructose and mannose metabolism, and starch 
and sucrose metabolism), amino acid metabolism (valine, leucine, and 
isoleucine biosynthesis, glutathione metabolism, and arginine and 
proline metabolism), the urea cycle, and triacylglycerolipid degrada-
tion, compared to lipid biosynthesis.

There have been conflicting reports about the effect of phos-
phate on lipid (TAG) biosynthesis in green algae. For example, 
TAG biosynthesis and accumulation in C. reinhardtii have been 
reported for limiting phosphate (43) as well as for elevated phos-
phate concentrations (44). Here, we demonstrate on the basis of 
model-predicted fluxes that higher phosphate concentration is 
associated with decreased activity of TAG biosynthesis in 
C. closterium. Our data were corroborated by the low expression of 
genes involved in this subsystem from low-phosphate samples 
(fig. S12). Moreover, a higher activity of chlorophyll biosynthesis 
(photosynthesis) was noticed because of an increased concentra-
tion of phosphate. Similar metabolic behavior was observed in the 
algae Scenedesmus obliquus and Microcystis aeruginosa grown un-
der high phosphate concentration (45). Furthermore, our analysis 
suggested that high Si levels affected lipid biosynthesis (including 
TAG and fatty acid biosynthesis) negatively (fig. S13). Previously, 
it was postulated that Si starvation promotes an increase in the ac-
cumulation of lipids in diatoms, such as P. tricornutum, Nitzschia sp., 
Thalassiosira weissflogii, and Cyclotella cryptica (46–48). Overall, 
the data highlight the ability of iMK1961 to accurately predict the 
metabolic responses of C. closterium to a variety of changing envi-
ronmental conditions.

Widespread mixotrophic growth of C. closterium in the 
marine environment
Along with other protists, diatoms play a crucial role in the flow of 
carbon from surface water columns to marine sediments (1). Vari-
ous diatoms have been identified to be exclusively photoautotrophs, 
while others can be solely heterotrophs (49); yet, other diatoms have 
been reported to have the ability to perform a combination of pho-
totrophic and heterotrophic metabolism simultaneously, referred to 
as mixotrophy (CO2 +  light + organic carbon source) (6, 50, 51). 
While mixotrophy has been demonstrated for only a few diatoms in 
the laboratory (52, 53), no studies currently exist to our knowledge 
that explore this distinct metabolism of diatoms in their natural en-
vironment. A mixotrophic lifestyle could provide clear advantage to 
planktonic microorganisms, but knowledge about its existence and 
abundance is currently lacking (54). Unraveling the various trophic 
modes of diatoms in the environment can contribute to our 
understanding of carbon flow in the oceans and provide insights 
into the role of diatom metabolism on global carbon cycling. We 
thus compared iMK1961 predictions and Tara Oceans global 



Kumar et al., Sci. Adv. 10, eado2623 (2024)     17 July 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 16

metatranscriptomics data to reveal the trophic strategies of C. closterium 
in marine environments (see Materials and Methods).

We simulated growth of C. closterium under photoautotrophic, 
heterotrophic, and mixotrophic conditions to investigate its meta-
bolic versatility (table S9). Predicted flux distribution data were 
compared to examine the differences in growth and CO2 fixation 

under different nutrient conditions (Fig. 6, A and B) and identified 
the unique set of active reactions under each trophic condition 
(table S21 and figs. S14 to S16). Flux data suggested 34 and 47% 
higher growth in mixotrophy compared to photoautotrophy and 
heterotrophy, respectively [P value <0.01 (Wilcoxon rank sum/
Mann-Whitney U test)]. Under mixotrophic growth CO2 fixation 

B

A C

Fig. 5. Intersection between differential model–predicted fluxes and gene expressions. (A) Bar plot represents subsystems that carry differential (increased or decreased) 
fluxes and are associated with differentially expressed genes under elevated concentrations of nutrients, such as CO2, HCO3, NO2, NO2 + NO3, PO4, and Si. (B) As an example, 
under elevated CO2, 27 subsystems illustrated differential metabolic fluxes and differentially expressed genes. This bar plot represents the number of reactions involved in 
these subsystems. Affected subsystems under additional conditions are shown in figs. S9 to S13. (C) Model-predicted storage of TAG and carbohydrate in terms of accumula-
tion fluxes of TAG and β-1,3 glucans (i.e., monomers of chrysolaminarin), respectively, under low and high CO2. Each box plot denotes all allowable possible fluxes that were 
estimated using a sampling method (31) while simulating the model (see Materials and Methods). Significance (P value <0.001) was computed using two-side Student’s t test.
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decreased by 25% compared to photoautotrophy as a fraction of 
C. closterium’s carbon requirement was fulfilled by assimilation of 
organic carbon. Further, transcription levels of genes associated 
with condition-specific active reactions were checked using meta-
transcriptomics data. The overlap between condition-specific active 
reactions and their associated expressed genes in a given sample was 
used to assign C. closterium’s metabolism in this sample (i.e., photo-
autotrophy, heterotrophy, or mixotrophy). Of a total of 146 Tara 
Oceans samples, 83 samples contained an overlap between nonzero 
fluxes of condition-specific reactions and expressions of associated 
genes. The results indicated that in the majority of samples (71%) 
C. closterium was exclusively growing mixotrophically (Fig. 6, C and 
D). Our results imply that mixotrophic growth of C. closterium is 

much more common than previously thought. In addition, 21% of 
samples indicated solely photoautotrophic growth, while only 8% 
revealed heterotrophic growth of C. closterium. We thus examined 
environmental factors associated with photoautotrophy, heterotro-
phy, and mixotrophy in C. closterium comparing metadata for ocean 
samples with varying compositions of nutrients and other environ-
mental factors (e.g., temperature and depth). Samples associated 
with photoautotrophy and mixotrophy were not differentiated on 
the basis of measurements of any environmental factor. However, 
low concentrations of CO2/HCO3/PAR (photosynthetically active 
radiation) correlated with 50% of samples in which C. closterium 
grows heterotrophically (fig. S17). The lack of a clear correlation be-
tween physicochemical parameters and trophic mode could hint at 

A

C

B

D

E

Fig. 6. Trophic modes of C. closterium in marine environments. (A) Predicted and experimental growth rate of C. closterium under photoautotrophic, heterotrophic, 
and mixotrophic conditions. Extracellular succinate was used as an organic carbon source to stimulate growth under heterotrophic and mixotrophic conditions. Box plots 
represent all feasible biomass flux values that were determined by simulating iMK1961 using a uniform random sampling method (31) (see Materials and Methods) and 
experimentally measured growth rates. To simulate growth under trophic conditions, the model was constrained using experimentally measured uptake fluxes table S9. 
(B) CO2 fixation in C. closterium during photoautotrophy, heterotrophy, and mixotrophy. CO2 fixation was represented in terms of the uptake flux of CO2 while simulating 
the growth in different conditions. (C) The predicted flux distributions and metatranscriptomics data helped to identify trophic modes of C. closterium in the Tara Oceans 
samples. Bar plots represent the number of samples where solely photoautotrophic, heterotrophic, or mixotrophic growth of C. closterium was detected. Unique sets of 
active reactions, which overlapped with expressed genes in transcriptomics data for each trophic mode, were used to categorize samples in three different modes (table S21 
and figs. S14 to S16). (D) The global distribution of various trophic modes of C. closterium was identified using iMK1961 and metatranscriptomics data from Tara Oceans 
samples. Dot size represents the predicted growth rate of C. closterium under the corresponding trophic condition. (E) To identify significantly differentially abundant 
marine prokaryotes between different trophic modes, linear discriminant analysis (LDA) effect size (79) was deployed on Tara Oceans metagenomic data. Bar plot repre-
sents 10 most differentially abundant prokaryotes in each trophic mode [P value <0.05 (Kruskal-Wallis test and pairwise Wilcoxon test); LDA score (log10) > 2.0] (see Mate-
rials and Methods). A complete list of differentially abundant prokaryotes can be seen in table S26.
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the effect of microbe-microbe interactions on the metabolism of 
C. closterium. We have previously shown that environmental pa-
rameters but also single gene mutations alter the metabolism and 
interaction of phototrophic microbes with other organisms (15, 16). 
Moreover, earlier studies have identified certain bacterial taxa, such 
as Alpha-, Beta-, and Gammaproteobacteria, as well as Bacteroidetes, 
which potentially engage in interactions with diatoms (55). However, 
these interactions have been primarily observed with a limited number 
of genera, notably Roseobacter, Sulfitobacter, and Flavobacterium. 
We hypothesized that microbe-microbe interaction may be the driver 
behind C. closterium’s widespread mixotrophy and thus investigated 
whether trophic modes are associated with certain bacteria. We 
identified profoundly different populations of marine bacteria that 
were associated with C. closterium’s photoautotrophic, heterotro-
phic, or mixotrophic growth (Fig. 6E and table S26).

Gammaproteobacteria and Flavobacteria were more abundant 
in the top 10 differentially abundant bacteria associated with 
mixotrophy and heterotrophy compared to photoautotrophy (52). 
Gammaproteobacteria were previously reported to be associated 
with a mixotrophic lifestyle of diatoms (52). Flavobacteria have been 
previously isolated from hadal water and are known to contain large 
numbers of carbohydrate-active enzymes (56). Phycisphaerae, an-
other group of bacteria with a profuse content of carbohydrate-
active enzymes (57, 58), were present when C. closterium was 
growing mixotrophically (table S26). The association of C. closterium 
with Phycisphaerae and Flavobacteria of the NS5 and NS9 marine 
groups (59, 60) hints at a specific connection and could suggest a 
potential role of these bacteria in providing organic carbon for the 
diatom. In addition, C. closterium’s higher growth rates under mixo-
trophic conditions and the abundance of specific bacteria in these 
samples suggest that microbe-microbe interactions and, to a lesser 
extent, environmental factors could directly benefit the diatom and 
provide an ecological advantage.

DISCUSSION
How abundant mixotrophic growth is in the ocean and what role it 
has on global carbon cycling is currently not known. Unraveling the 
different trophic modes of phytoplankton in situ could provide an 
intimate understanding of global carbon cycling and insights into 
marine food webs (52). Exploring the trophic mode of ubiquitous 
diatoms, such as C. closterium, can contribute to estimate the mag-
nitude of marine mixotrophy. While the trophic modes of a few dia-
toms were recently investigated under controlled laboratory settings 
(50), it is currently challenging to extrapolate these findings to ac-
tual activity in situ (6). Here, we introduce a method that deploys 
genome-scale metabolic modeling (61) and environmental metage-
nomics and metatranscriptomics to quantitatively unravel varia-
tions in the metabolism of the ubiquitous diatom C. closterium 
in situ. This approach successfully identifies whether inorganic car-
bon (photoautotrophic) or organic carbon (heterotrophic) is used 
for growth singly or concurrently (i.e., mixotrophy) and, further-
more, allows quantifying activities for each mode.

A GEM, iMK1961, of C. closterium has been reconstructed using 
the annotated genome of this diatom (Fig.  1; see Materials and 
Methods). iMK1961 represents the largest GEM for a diatom to date 
(Fig. 2 and fig. S18), containing 764 to 4553 more reactions com-
pared to previous diatom GEMs (Fig. 2A) (16–19), accounting for 
C. closterium’s large genome among these diatoms (figs. S1 and S19). 

The rigorous reconstruction process allowed capturing a detailed 
metabolic network that can be used as a reference/template model 
for other model reconstructions of yet unexplored diatoms to inves-
tigate the metabolic diversity of diatoms (62).

Diatoms benefit from vast metabolic flexibility that allows them 
to grow in dramatically distinct environments, making them one of 
the most ecologically successful photosynthetic eukaryotes in the 
ocean (51). We predicted the growth of C. closterium under a broad 
range of growth environments including photoautotrophic, hetero-
trophic, and mixotrophic conditions using various carbon, nitro-
gen, phosphorus, and sulfur sources (Fig. 3A and table S7). High 
levels of agreement between model predictions and experimental 
measurements indicate that the model accurately represents the 
metabolic complexities of C. closterium and can elucidate survival 
strategies in different conditions (Fig.  3B and table  S8). iMK1961 
integrates multiple layers of biological data to understand the im-
pact of perturbations on individual reactions and complex pathways 
and to determine consequences of different environmental condi-
tions (Figs. 4 and 5).

By comparing Tara Oceans global ocean metatranscriptomics 
data (20, 21) with the model predictions, we revealed that mixotro-
phic growth in C. closterium is more prevalent in marine environ-
ments compared to photoautotrophic and heterotrophic growth 
(Fig. 6C). Considering the fact that C. closterium is widely distrib-
uted in global oceans (63), these results suggest that mixotrophy is 
widespread in the oceans (Fig. 6D). Although there is limited infor-
mation available on the physiology of mixotrophs in the marine en-
vironment (6), mixotrophy has been postulated as advantageous for 
phytoplankton to survive in environments with changing nutrient 
availability (64). We correlated different trophic conditions with 
environmental parameters obtained by the Tara Oceans project 
(20, 21) to establish a link between physicochemical and biological 
factors and C. closterium‘s metabolism. However, the lack of correla-
tion between physicochemical parameters and trophic modes sug-
gests that microbe-microbe interactions may be the driver behind 
C. closterium’s mixotrophy. Certain bacteria, including species be-
longing to the classes Gammaproteobacteria and Phycisphaerae, 
were associated with mixotrophy, while Flavobacteria species were 
more abundant in samples of heterotrophic growth (Fig. 6E). This 
association hints at a potential role for certain bacteria in providing 
organic carbon for the diatom.

Heterotrophic growth has been reported not only for benthic 
[C. cryptica (65)] and meromictic diatoms (C. closterium) but also 
for diatoms that are commonly found in the open ocean, such as 
Nitzschia alba (66), suggesting that the ability to use organic mole-
cules is not restricted to benthic diatoms. Since diatoms gain a clear 
growth advantage by using fixed carbon (Fig. 6), this lifestyle (mixo-
trophic as well as heterotrophic) could potentially be widespread 
among planktonic diatoms, contributing to their environmental 
success and their role as dominant members of global phytoplank-
ton (3). While this work shines light on the role of C. closterium’s 
metabolism in the global ocean, more research is needed to explore 
how mixotrophy affect primary and secondary production in the 
oceans and what factors, such as other microorganisms, contribute 
and thus drive global carbon and nutrient cycles. Future investiga-
tions including a diverse set of ocean diatoms will help to delineate 
the effect of mixotrophy on diatom metabolism. In addition, these 
studies will reveal how various bacteria interact with diatoms, thus 
contributing to global carbon cycling. Collectively, our approach 
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provides a framework to elucidate variations in trophic strategies of 
diatoms in the environment. In summary, we present a comprehen-
sive metabolic model of the diatom C. closterium. Phenotypic and 
transcriptomic data–guided model predictions provided a frame-
work to reveal the metabolic capabilities of C. closterium to survive 
in different growth conditions. This study demonstrated how the 
metabolic model and transcriptomics data can help us to under-
stand the variations in metabolic activities of a diatom in elevated 
concentrations of nutrients in natural settings. The metabolic model 
presented in this study provides diverse and comprehensive cover-
age of a diatom’s metabolic network that can be seamlessly used as a 
template/reference model for generating metabolic reconstructions 
of additional diatoms. Thus, we expect this framework to be extend-
ed for the exploration of the metabolic capabilities of other diatoms. 
Along with fast-growing global ocean meta-omics data, we are con-
fident that metabolic models will be a valuable tool to assist this type 
of holistic analysis. We envision this approach to aid big data analyt-
ics and to benefit the investigation of marine ecosystems and their 
response to changing environmental conditions (64).

MATERIALS AND METHODS
Functional genome annotation and subcellular localization 
of proteins
A functionally annotated genome of C. closterium TJRE Ct-21 was 
obtained from an environmental isolate. Briefly, Sediment was col-
lected at the TJRE outflow in San Diego County (CA, USA) from 
0- to 3-cm depth and stored at 4°C. In a 250-ml flask, 2 g of sediment 
was mixed with 50 ml of F/2 medium (supplemented with 880 μM 
NaNO3, 36 μM NaH2PO4, and 100 μM Na2SiO3) and incubated with 
14:10 light:dark [150 microeinstein (μE) m−2 s−1] at 18°C for 3 days. 
Single cells of Cylindrotheca were individually picked using an in-
verted microscope (Olympus) coupled to a micromanipulator and 
transferred into 2  ml of F/2 medium for incubation in the same 
conditions.

High molecular weight DNA was extracted using cetyltrimethyl 
ammonium bromide (CTAB)-chloroform:isoamyl alcohol. A con-
tinuous long read (10- to 20-kb insert) genomic library for PacBio 
sequencing was constructed with the SMRTbell Templar prep kit 
(Pacific Biosciences) and sequenced on five SMRT cells on the 
PacBio Sequel platform at the University of Delaware Sequencing 
and Genotyping Center at the Delaware Biotechnology Institute. 
PacBio sequencing produced 1,242,306 reads that were cleaned, 
trimmed, and assembled using HGAP 4 Pipeline (PB SMRTportal 
ver 5.0.1.9585) using Falcon assembler with default options except: 
aggressive, expected genome size 150 Mb, seed coverage 30. The as-
sembly generated 233 polished contigs, with a maximum contig 
length of 4.96 Mb, N50 contig length of 3.10 Mb, and a %GC of 
46.82. Gene annotation was performed using MAKER (ver. 2.31.0) 
with three iterative gene model training rounds using Augustus 
(v. 3.2.3).

To predict the subcellular localization for proteins, we deployed 
a previously published pipeline (16). We used this pipeline with the 
recently updated version of SignalP 4.0 v-4.1 along with other tools 
such as HECTAR, Mitoprot v-1.101, predictNLS v-1.0.20, and Tar-
getP v-1.1 (Supplementary Text). Protein sequences of C. closterium 
were used as input for this pipeline. The default parameters of all 
tools were used for processing protein sequences and assigning the 
compartments to each protein.

Draft reconstruction
To build a draft reconstruction, previously published metabolic net-
works of two photosynthetic organisms, namely P. tricornutum 
(iLB1027_lipid) (16) and C. reinhardtii (iRC1080) (27), were used as 
templates or reaction databases. Both template models were ob-
tained from BiGG models (28). A draft reconstruction was built on 
the basis of homology between protein sequences of C. closterium 
and template organisms using best bidirectional BLAST hits (BBH) 
in the RAVEN Toolbox (24). On the basis of BBH, the reactions as-
sociated with homologous proteins were added to the reconstruc-
tion from template models. The draft reconstruction was analyzed 
using the COBRApy and COBRA Toolbox and curated manually to 
validate present information in the model and incorporate any 
missing information (25, 26). Apart from the C. closterium genome 
annotation and BiGG database (28), we also used more resources 
such as relevant literature (table S1), KEGG, modelSEED, MetaCyc, 
UniProt, BRENDA, IntEnz, TPDB, and TransportDB (Supplemen-
tary Text). MetaNetX was used to map reaction and metabolites 
identifiers from other databases to BiGG abbreviations (29). More 
reactions were added to the reconstruction from the BiGG database 
based on EC numbers associated with C. closterium proteins, which 
did not match any homologous protein in template genomes. All 
duplicate reactions and metabolites, which were included in the 
reconstruction because of different abbreviations for the same 
reactions, were removed at this stage.

Biomass composition
The biomass objective function (BOF) or biomass-producing reac-
tion contains the biomass precursors that are produced within the 
metabolic network of the organism. Simulating a GEM using BOF 
allows us to predict the flux of biomass-producing reaction, which is 
considered as a proxy of growth rates on the given substrate con-
sumption rates. The biomass-producing reaction is balanced for 
producing 1 g of biomass. This reaction in iMK1961 was recon-
structed on the basis of the biomass precursors used in a previously 
published diatom model (16). In addition, we incorporated biosilica 
into the biomass-producing reaction of the model. The stoichiomet-
ric coefficients of this reaction were normalized using experimen-
tally measured elemental ratios between carbon, nitrogen, and 
silicon (67). Furthermore, we used a previously published method 
that leveraged protein and DNA sequences from the C. closterium 
genome to further refine the representation of amino acids and nu-
cleic acids within the biomass reaction (68). The biomass-producing 
reaction in iMK1961 contains metabolites that include amino acids, 
energy molecules, frustule components, lipids, nucleotides, and pig-
ments (table S2). The model contains two biomass reactions: (i) rep-
resenting growth in the presence of light (photoautotrophic or 
mixotrophic conditions) and (ii) a biomass reaction representing 
growth in the dark (heterotrophic conditions). Biomass reaction for 
dark conditions does not include the biosynthesis of pigments such 
as chlorophyll a, chlorophyll c1, and chlorophyll c2, TAGs, and 
chrysolaminarin, as previously reported (69).

Gap-filling
Because of incomplete genome annotations and different growth re-
quirements, GEMs often contain gaps in the metabolic network. In 
the first step, the gaps between disconnected metabolites in the net-
work were filled by a semiautomatic method by adding relevant re-
actions to the model from reaction databases such as KEGG. In the 
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second step, we filled gaps in the model using a set of minimum re-
actions from the BiGG models (28) to enable the production of all 
biomass precursors using the media nutrients from laboratory ex-
periments (tables S3 and S5). In the third step, on the basis of ex-
perimentally confirmed phenotypic capabilities of C. closterium, 
iMK1961 was gap-filled by adding missing pathways/reactions in 
the network to enable the related metabolic functions. In this step, 
mostly, these gap-filling reactions include transporters and ex-
change reactions (table  S6). At the end of the gap-filling process, 
models contained some exogenous genes (genes from reference/
template organisms’ model), which were either replaced by homolo-
gous genes in C. closterium genomes or removed from the model 
during the curation process. The reactions, which were added dur-
ing gap-filling, were analyzed using flux balance analysis (FBA) 
and reactions, which were not active in any simulations and not 
associated with C. closterium genes, were removed from the model.

The curation processes
GPR associations in the model were verified on the basis of gene 
annotations and protein sequences using BLAST. We assigned at 
least one subsystem to each reaction based on the KEGG pathway 
database. A modeling-specific subsystem, namely extracellular 
space having exchange reactions, was added to enable the uptake of 
medium metabolites and secretion of metabolic products. All reac-
tions were balanced for mass and charge. Reaction reversibility was 
refined on the basis of published manually curated metabolic mod-
els (28). On the basis of quality control steps defined in Thiele et al. 
(61), we ensured that reconstruction was not able to generate ATP, 
NADPH, and NADH without the uptake of any substrates. Next, we 
refined exogenous genes present in GPRs by searching their homo-
logs in C. closterium genomes using BLAST with a threshold of ⩽ 10−6 
E value, ⩾ 40% identity, and ⩾ 80% alignment length. For trans-
porter annotation and curation processes, mainly genome annotations 
(https://zenodo.org/doi/10.5281/zenodo.11053410 and https://github.
com/manishsaini16/cylindrotheca-model/tree/main/Protein_
sequences) and transport homology with a template diatom were 
used. Further, the annotations of transporters in the model were 
validated using BLAST against the Transporter Classification 
Database of each transporter. We further verified transporter infor-
mation using other databases, such as UniProt, MetaCyc, and 
KEGG. Some intracellular transporters between different compart-
ments were included into the model for resolving blocked pathways 
and to enable the synthesis of biomass precursors in known growth 
conditions. When experimental observations revealed C. closterium’s 
ability to catabolize certain substrates, we included the transporters 
for such substrates in the model, even in the absence of genetic evi-
dence. While we curated transporters to the best of our knowledge, 
we are aware of existing challenges for annotating transporters and 
determining their specificity (70). Furthermore, we conducted a 
quality assessment using the Memote test suite (fig. S20) (71).

Model simulations
FBA was deployed to simulate GEMs by optimizing a predefined 
objective function in specified environmental constraints. The basic 
fundamentals of FBA have been defined previously (72). In the pres-
ent work, a biomass-producing reaction was used as an objective 
function for simulating the model. All simulations were performed 
using the COBRA Toolbox and COBRApy with Gurobi Optimizer 
version 7.0.2 (Gurobi Optimization Inc., Houston, Texas) as a linear 

programming solver in MATLAB R2018a (The MathWorks Inc., 
Natick, MA) and Python 3.7.6, respectively. The uptake flux of 
media nutrients were constrained by experimentally determined 
measurements in FBA analysis.

The uptake rates of nutrients were calculated using the follow-
ing expression, which used the slope of the consumption profile 
of experimentally measured nutrients during the exponential 
growth phase

where ΔC represents the change in nutrient concentration (milli-
mole) over a specific time interval (Δt). Δt represents the time inter-
val over which the nutrient concentration is measured. V represents 
the volume of the bacterial culture. The calculated uptake rates were 
then converted to fluxes (mmol/gDW·h) using the biomass dry 
weight (gDW) and used these fluxes as constraints in the model for 
condition-specific simulations.

Cell culture
In our study, control cultures were cultivated in F/2 nutrient media 
comprising 55 μM NaH2PO4, 100 μM Na2SiO3, and 880 μM NO3, 
supplemented with Aquil salts (73), without the addition of seawater. 
These cultures underwent incubation under a constant light inten-
sity of 150 μE m−2 s−1 at 18°C, with filtered, aerated air through-
out the experimental assays. Upon reaching mid-exponential phase 
(approximately 4 × 106 cells ml−1), cells were harvested via centrifu-
gation (10 min at 3000g), followed by washing in the same media, a 
process repeated three times. The cells were subsequently resus-
pended in media tailored to each control and treatment and grown 
in triplicate cultures. The experimental conditions were as follows: 
Control: replete F/2 media (as described above) + light exposure 
(photoautotrophy); dark + succinate: replete F/2 media + dark con-
ditions + succinate supplementation (heterotrophy); light + succi-
nate: replete F/2 media + light + succinate supplementation 
(mixotrophy); low NO3: F/2 media with reduced nitrogen content 
(16.45 mg/liter NaNO3), representing 5% of the original nitrate con-
centration in F/2 media; low Si: F/2 media with reduced silicon con-
tent (10 μM Na2SiO3·9H2O), representing 10% of the original silica 
concentration in F/2 media. Dark conditions were maintained by 
covering the culture flasks with foil.

Sampling was conducted at five distinct time points (0, 24, 48, 
72, and 96 hours), and subsamples were used for cell count and 
NO3 measurement. Cell counting was conducted using flow cytom-
etry, while NO3 concentrations were determined using the Nitrite/
Nitrate Assay Kit (Sigma-Aldrich) following the provided protocol. 
One-milliliter aliquot of culture sample was centrifuged at 5000g for 
3 min and resuspended in 1-ml sterile 1× phosphate-buffered saline 
for counting. Ten microliters 10X SYBR green was added to the 
sample for detection by flow cytometry and incubated in the dark 
for 20 min at 37°C. Thirty microliters of AccuCount fluorescent par-
ticles (ACFP-70-10; Spherotech) was added to the samples for quan-
tification. Samples were processed on an SH800 cell sorter (Sony 
Biotechnology) using a 130-μm chip with the threshold set on FL1 
at 43% and gain settings as FSC = 3, BSC = 20.5%, and FL4 = 35%. 
C. closterium cells were gated from the background on an FL1-FL4 
density plot. Final cell counts per microliter calculations were per-
formed following the manufacturer’s instructions of the AccuCount 
counting beads.

ΔC

Δt
× V

https://zenodo.org/doi/10.5281/zenodo.11053410
https://github.com/manishsaini16/cylindrotheca-model/tree/main/Protein_sequences
https://github.com/manishsaini16/cylindrotheca-model/tree/main/Protein_sequences
https://github.com/manishsaini16/cylindrotheca-model/tree/main/Protein_sequences
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Model validation
To ensure the accuracy of our model predictions across different 
growth conditions, we conducted tests on a wide range of carbon, 
nitrogen, phosphorus, and sulfur sources. To select the sources 
for this analysis, we considered the available carbon-, nitrogen-, 
phosphorus-, and sulfur-containing metabolites within the model. The 
transporters for these sources were determined either through ge-
nome annotations or by homology comparison with a template dia-
tom (P. tricornutum). In cases where information regarding the 
transporter for a specific source was unavailable, we excluded that 
particular metabolite from the analysis. To validate our findings, we 
compared model-predicted growth and no-growth outcomes across 
various carbon and nitrogen sources with experimental data col-
lected from both literature sources on C. closterium and our own 
experimental results (see table  S7). When evaluating growth data 
sourced from existing literature, we adopted a criterion wherein 
growth of C. closterium on specific carbon or nitrogen substrates 
was deemed credible if the authors had quantified it in terms of ei-
ther cell counts or chlorophyll measurements. For experimental 
data generated in the course of our study, growth was affirmed when 
there was a notable increase in cell counts exceeding fourfold within 
a span of 5 days. In addition, we used physiological data collected 
under four different conditions—control (light), dark, low nitrogen, 
and low silicon—to further verify our model’s predicted growth 
rates. For simulation with iMK1961, we broke down all components 
of the growth medium into individual metabolites (table  S9) and 
used their uptake rates as input for our GEM. Nutrient uptake rates 
were then converted to mmol/gDW·h, which is the standard unit for 
all fluxes in our model. We set the biomass reaction as the objective 
function for our simulations.

Global oceans metatranscriptomics data analysis
Metatranscriptomic reads from the Tara Oceans expedition (ENA 
project PRJEB402), pico-, nano-, and microplankton size fractions 
were mapped onto the repeat-masked (RepeatMasker v4.0.7; www.
repeatmasker.org) C. closterium TJRE Ct-21 genome assembly using 
the splicing-aware read mapper HISAT2 v2.1.0 (74), followed by 
SAMtools v1.8 sorting (75) and filtering by an in-house script to 
remove secondary or low-quality reads and reads consisting of more 
than ~70% nucleotide repeats using a higher-order Markov model 
entropy filter [adapted from Caballero et al. (76)]. Read counts to 
individual gene models were determined using BEDTools v2.30.0 
(77), normalized to library size and gene length (rpkm) and averaged 
across all biosamples available for a given station and water layer.

Differentially expressed genes
Samples were divided into two categories based on the low and high 
values of environmental factors that included CO2, HCO3, NO2, 
NO2 + NO3, PO4, and Si (table S10). Low and high values of each 
environmental factor were defined by comparing with average val-
ues. The average count data were used to estimate the fold change 
and log2 transformation of fold changes between these two different 
groups of samples allowed to categorize the genes in up-regulated 
and down-regulated groups.

Sampling of feasible model-predicted fluxes and calculating 
differential fluxes
optGpSampler (31) on COBRApy platform was used to determine 
the distribution of all feasible fluxes of each reaction in the model 

under all environmental conditions. This method allowed us to 
uniformly sample the constrained solution space of the model to 
evaluate the full range of metabolic capabilities of genome-scale 
networks. The model was first constrained using low and high up-
take fluxes (mmol/gDW·h) of each targeted nutrient. Six nutri-
tional conditions, such as CO2, HCO3, NO2, NO2 + NO3, PO4, and 
Si, were tested. Except for one targeted nutrient, the constraints for 
uptake fluxes of all other nutrients were kept the same in both 
simulations using low and high uptake fluxes of targeted nutrients. 
Low uptakes of these nutrients were used from experimentally 
measured uptake rates of nutrients, and two times of these uptake 
rates were used to constrain the model with high uptake fluxes of 
the nutrients. The constraints of uptake fluxes in all growth condi-
tions can be seen in table S11. All uniform random sampling was 
conducted with a step size of 100 for 5000 points. The fold changes 
and log2 transformation of fold changes between mean values of 
sampling fluxes of subsystems under low and elevated concentra-
tions of targeted nutrient was determined. All negative values of 
log-transformed fold changes were considered as decreased fluxes, 
and all positive values were considered as increased fluxes. In ad-
dition, these data were filtered by using a minimal fold-change 
threshold of 0.2 between mean values of sampling fluxes of subsys-
tems (78). Collectively, the fluxes that showed either an increase or 
decrease were categorized as differential fluxes. Differential fluxes 
can also be defined as

Fluxlow and Fluxhigh represent fluxes predicted using low and high 
uptake rates of the nutrients, respectively. Subsystems with a nega-
tive value of Fluxdiff were considered as down-regulated, indicating 
decreased fluxes, and subsystems with a positive flux value were re-
garded as up-regulated, indicating increased fluxes due to higher 
uptake of the nutrients.

Similarly, the sampling method was used to predict the meta-
bolic fluxes for carbohydrate and TAG storage (Fig. 5C), and growth 
and CO2 fixation (Fig. 6, A and B) under different growth condi-
tions such as low and high concentration of nutrients, and trophic 
modes like photoautotrophy, heterotrophy, and mixotrophy. Wilcoxon 
rank sum/Mann-Whitney U test was used to compare the reaction 
fluxes between different conditions. The differences with P values 
less than 0.01 (i.e., false discovery rate less than 1%) were considered 
as significant differences.

Analysis of trophic strategies of C. closterium in 
marine environments
During this analysis, iMK1961 was used to generate flux distribu-
tions under photoautotrophic (CO2 + light), heterotrophic (dark + 
organic carbon source), and mixotrophic (CO2 + light + organic 
carbon source) conditions. To simulate the growth of C. closterium 
under these three trophic conditions (table S9). For maintaining 
photoautotrophic conditions, the uptake flux of light and CO2 was 
provided to the model without any organic carbon in the media. 
Extracellular succinate was used as an organic carbon to maintain 
heterotrophic growth without light and CO2 in the media. For 
mixotrophic growth, the model was simulated using media includ-
ing light, CO2, and succinate. Wilcoxon rank sum/Mann-Whitney 
U test was used to compare the growth rates between three 

Fluxdiff = log2

(

fluxhigh

fluxlow

)

http://www.repeatmasker.org
http://www.repeatmasker.org
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trophic conditions. The differences with P values less than 0.01 
(i.e., false discovery rate less than 1%) were considered as sig-
nificant differences. The reaction fluxes under all three condi-
tions were compared to identify the unique set of active reactions 
for each condition (tables  S22 to S24). Three sets of condition-
specific reactions were found under photoautotrophy, heterotro-
phy, and mixotrophy, respectively. The active reactions were 
defined as reactions that carry nonzero fluxes. Transcript counts of 
genes associated with these unique reactions were extracted from 
Tara Oceans metatranscriptomics data, and the average of tran-
script counts for each gene among all samples was compared with 
fluxes condition-specific reactions. This practice allowed us to fil-
ter the list of these reactions by screening out the reactions that 
carried nonzero flux, but their associated genes were not found 
expressed in global oceans (table S21 and figs. S14 to S16). After 
this filtering step, the remaining 22, 22, and 44 condition-specific 
reactions were used to identify photoautotrophy, heterotrophy, 
and mixotrophy of C. closterium, respectively, in each Tara 
Oceans sample. For example, if one or more photoautotrophy-
specific reactions and their associated genes were found active in a 
sample, then this sample was defined under the category of photo-
autotrophy. The activity of a reaction and genes were defined by 
nonzero flux and expression values, respectively.

Statistical analysis of Tara oceans metagenomic data
Metagenomic data of Tara Oceans samples (20, 21) associated with 
photoautotrophy, heterotrophy, and mixotrophy of C. closterium 
(Fig.  6C) were analyzed using linear discriminant analysis (LDA) 
effect size (LEfSe) algorithm (79). The abundance data were ob-
tained from Salazar et  al. (20) and used as input for LEfSe. This 
analysis helped us to identify significantly differentially abundant 
marine prokaryotes between three trophic modes. The differences 
with P values less than 0.05 (i.e., false discovery rate less than 5%) 
using Kruskal-Wallis test and pairwise Wilcoxon test and logarith-
mic LDA score more than 2.0 were considered significant differ-
ences (Fig. 6E and table S26).
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