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Using Deep-Learning Representations of Complex Natural Stimuli as Input to 

Psychological Models of Classification 
 

 Craig A. Sanders (craasand@indiana.edu)  

Robert M. Nosofsky (nosofsky@indiana.edu) 
Department of Psychological and Brain Sciences, Indiana University 

 1101 E. Tenth Street, Bloomington, IN., 47405 USA 

 

Abstract 

Tests of formal models of human categorization have 
traditionally been restricted to artificial categories because 
deriving psychological representations for large numbers of 
natural stimuli has been an intractable task. We show that deep 
learning may be used to solve this problem. We train an 
ensemble of convolutional neural networks (CNNs) to produce 
the multidimensional scaling (MDS) coordinates of images of 
rocks. We then show that not only are the CNNs able to predict 
the MDS coordinates of a held-out test set of rocks, but that the 
CNN-derived representations can be used in combination with 
a formal psychological model to predict human categorization 
behavior on a completely new set of rocks. 

Keywords: deep learning; multidimensional scaling; 
categorization; psychological representations 

Introduction 

Numerous sophisticated formal models of human category 

learning and representation have been proposed in the field 

of cognitive science (for a comprehensive review, see Pothos 

and Wills, 2011). However, almost all rigorous quantitative 

tests of such models have been in highly simplified domains 

involving artificial category structures tested in laboratory 

experiments. In recent work, Nosofsky, Sanders and 

McDaniel (2018; see also Nosofsky, et al., 2017a) scaled up 

the application of such models by testing their ability to 

account for learning and generalization of rock classifications 

in the geologic sciences. Rock categories provide good 

examples of complex, high-dimensional category structures 

found in the natural world, so provide an intriguing and 

challenging test of the candidate models in the field. 

   Nosofsky et al.’s (2018) study focused on a well-known 

exemplar model of classification known as the generalized 

context model (GCM; Nosofsky, 1986). According to the 

GCM, people represent categories by storing individual 

exemplars of the categories in memory, and classify objects 

based on their similarity to the stored exemplars. 

   To apply the GCM, one needs to specify the 

multidimensional feature space in which the to-be-classified 

objects are embedded. In numerous past tests of the model, 

the derivation of the feature space was straightforward, 

because the objects used in the artificial category-learning 

experiments were simple stimuli composed of a small 

number of highly salient dimensions (e.g., geometric forms 

varying in shape, color, angle, and so forth). In a real-world 

category domain such as rocks, however, the derivation of the 

feature space becomes a highly ambitious task. The stimuli 

that compose such categories vary along a very large number 

of dimensions, many of which may be difficult to discern. 

   Thus, as a prerequisite to testing the exemplar model in the 

rock-classification domain, Nosofsky et al. (2017a) and 

Nosofsky, Sanders, Meagher and Douglas (2017b) engaged 

in extensive similarity-scaling studies of the rock stimuli. In 

these studies, observers provided similarity judgments 

among pairs of items drawn from a set composed of 360 rock 

pictures (10 categories of each of the broad divisions of 

igneous, metamorphic and sedimentary rocks, with 12 

samples of each of the categories). Multidimensional scaling 

(MDS) (Shepard, 1980) was then used to model the similarity 

judgments to derive the rock feature space. In brief, in MDS, 

each object is represented as a point in a multidimensional 

space, with similarity presumed to be a decreasing function 

of distance in the space. A virtue of the MDS technique is that 

beyond summarizing large sets of similarity-judgment data, 

one can inspect the derived space to determine the 

psychological dimensions that compose the objects.   

   In the case of the MDS analysis of the rocks, the results 

were remarkably straightforward: An 8-dimensional solution 

provided a good account of the similarity structure of the 360 

rock tokens that composed the 30 rock categories, and the 

derived dimensions could be interpreted in terms of:  

lightness/darkness of color, average grain size, shininess, 

roughness/smoothness, organization, chromaticity, hue, and 

shape-related components. Displays of the derived MDS 

solution are provided in the website (https://osf.io/w64fv/) 

associated with Nosofsky et al.’s (2017b) study. Perhaps 

most important, when used in combination with the MDS 

solution, the GCM was able to achieve good first-order 

quantitative predictions of rock-classification learning and 

generalization across a variety of conditions in which the 

nature of the training exemplars was manipulated (for details, 

see Nosofsky et al., 2018; for related work in the domain of 

semantic classification, see, e.g., Storms et al., 2000).   

   Despite its virtues, the MDS approach also has some 

limitations. One limitation is a practical one:  In situations 

involving the scaling of large numbers of stimuli, deriving 

MDS solutions from similarity-judgment data requires the 

collection of a prohibitive amount of empirical data—for 

example, there are over 100,000 cells in the 360x360 

similarity-judgment matrix used in Nosofsky et al.’s (2017b) 

study. If the goal is to position even larger numbers of stimuli 

in the high-dimensional feature space using these techniques, 

then the traditional approach becomes intractable. 

   Thus, in the present work our goal was to begin to test 

automated methods for deriving the natural-category feature 

space.  Our key idea involves a novel integration in which 

MDS methods are combined with the use of deep learning 
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convolutional neural networks (CNNs; e.g., Lecun et al., 

2015). As is well known, CNNs have been used successfully 

to predict the classification of natural images from large data 

bases. In a typical CNN architecture, elementary visual inputs 

are converted to higher-order features via connections to a 

series of hidden convolutional layers and pooling layers, 

which then feed into fully connected layers and a final output 

layer that generates the classification responses. Recent 

research has shown that unlike classic computer vision 

algorithms, CNNs can be used to predict human category and 

typicality judgments regarding visual stimuli (e.g., Lake et 

al., 2015).  Other work has advanced the idea that the deep 

features extracted after training the networks to predict visual 

categories can serve as candidates for the psychological 

feature-representations of the stimuli. Those deep-level 

features can then be used to predict human similarity 

judgments (Peterson et al., 2017; see also Rumelhart & Todd, 

1993) or used as input to psychological models of 

classification (Battleday, Peterson, & Griffiths, 2017). 

   Despite these preliminary successes, the extent to which 

CNNs truly capture the detailed nature of human 

classification learning remains unknown. Thus, in the present 

work, we adopt an approach that is complementary to the past 

applications. Rather than training CNNs to classify objects 

into categories, we instead train them to predict the 

dimension values of individual exemplars derived from 

traditional MDS methods. Once the CNN is trained in this 

manner, new stimuli can be presented to the CNN and it can 

be used to automatically produce the coordinate values of the 

stimuli in the multidimensional psychological feature space. 

Thus, an unlimited number of stimuli from complex 

naturalistic domains can be scaled in this manner. The 

derived coordinate values can then be used in combination 

with formal models such as the GCM to predict 

categorization. In the remainder of this article, we explain the 

proposed procedure in depth, and present preliminary tests of 

the approach in the domain of rock classification.  

Deep Learning Procedure 

The basic plan of action for our deep learning procedure was 

to train CNNs to take images of rocks as input and yield their 

psychological representations as output. In this section we 

describe the specific data set, CNN architecture, and training 

procedure that we used. All procedures described in this 

section were implemented using the Keras Python package 

and Tensorflow (Abadi et al., 2016).  

Data Set  

We used Nosofsky et al.’s (2017b) data set to train our CNNs. 

To reiterate, this data set consists of 360 images of rocks 

belonging to 30 different categories along with each rock’s 8-

dimensionsal MDS coordinates. While the naïve approach 

would be to train and evaluate each network using all 360 

images, CNNs may have millions of trainable parameters, 

and thus are prone to overfitting to noise and failing to 

generalize to new data. Therefore, we needed a means to 

compare the CNNs’ generalization performance and not just 

their training performance. To this end, we split the data into 

three separate sets: a training set, a validation set, and a test 

set. CNNs were trained to minimize error on the training set, 

and each network’s error on the validation set was computed 

to find the CNNs with the best generalization performance. 

Finally, these networks’ error on the test set was computed to 

avoid overfitting to the validation set and to gain an unbiased 

estimate of their ability to generalize to completely new data. 

The training set was formed by randomly sampling 6 of the 

12 rock tokens in each category, and the remaining tokens 

were evenly split between the validation and test sets. 

Therefore, there were 180 images in the training set, and 90 

images in both the validation and test sets. 

CNN Architecture 

Our rocks data set is quite small for a deep-learning data set. 

By comparison, deep CNNs are often trained to perform 

image classification on the ILSVRC data set, which consists 

of over one-million images belonging to 1000 different 

categories (Russakovsky et al., 2015). Networks trained on 

such large data sets are able to learn much more robust and 

complex features than those trained on smaller data sets. 

Therefore, instead of training our CNNs from scratch, we 

used pre-trained networks as a starting point, a procedure 

known as transfer learning (Yosinski, et al., 2014).  

   We downloaded an implementation of ResNet50 (He, 

Zhang, Ren, & Sun, 2016) that was pre-trained to perform 

image classification on the ILSVRC data set (other popular 

network architectures were also considered but were found to 

not perform as well). To adapt this network for our own 

purposes, we removed its topmost layers and replaced them 

with a new set of untrained layers so that we could take 

advantage of the low-level features trained on big data, while 

still being able to learn high-level features relevant to our 

specific task. More specifically, we kept each layer up to the 

final pooling layer, and then used global average pooling to 

convert the activation of the pooling layer into a vector that 

could be used as input into a series of fully-connected layers. 

For each of these layers, dropout (Srivastava, et al., 2014) and 

batch normalization (Ioffe & Szegedy, 2015) were used to 

improve generalization and accelerate learning. The dropout 

rate was set to 0.5, and the batch normalization parameters 

were left at their default values. Rectified linear units (ReLU; 

Nair & Hinton, 2010) were used as the activation functions. 

These layers fed into a final output layer consisting of 8 linear 

units corresponding to the 8 MDS dimensions. 

Training Procedure 

The objective function we sought to minimize was the mean 

squared error (MSE) between the network’s output and the 

MDS coordinates of the rocks in the training set. To 

artificially increase the size of the training set we performed 

data augmentation: training images were randomly flipped, 

rotated, cropped, and stretched/shrunk every time they were 

presented to the network. 

   Training took place in two steps. During the first step we 

kept the parameters of the pre-trained CNN fixed and only 

1026



trained the parameters of the newly-added fully-connected 

layers. Kingma and Ba’s (2014) “Adam” was used as the 

optimization algorithm for this step. All of Adam’s 

parameters were left at their default values except for the 

learning rate. The model was trained until validation error 

stopped decreasing for at least 20 epochs, or for a maximum 

of 500 epochs. During the second step, all of the network’s 

parameters were trained. Because the parameters in the early 

layers were expected to already be close to their optimal 

values, stochastic gradient descent with a low learning rate 

and high momentum (0.0001 and 0.9, respectively) was 

chosen as the optimization algorithm. The network was 

trained for 500 epochs in this step, but only the weights from 

the epoch with the lowest validation error were saved.  

   We repeated this training procedure several times, each 

time using different values of hyperparameters (free 

parameters not learned by the network), with the goal being 

to find the hyperparameter values that yielded the lowest 

validation error. We optimized the following hyper-

parameters: the number of hidden layers added to the base 

CNN, the number of units in each hidden layer, the training 

batch size, and the initial learning rate. The optimal values 

were found to be 2, 256, 90, and 10-2.22, respectively. 

  Networks with the same architectures and hyperparameters 

may converge to different minima in the error space if their 

parameters are initialized to different random values, and it 

has been shown that combining the outputs of multiple 

networks usually yields better results than using any 

individual network (Hansen & Salamon, 1990). Therefore, 

after finding the optimal hyperparameter values, we repeated 

our training procedure 9 more times to produce an ensemble 

of 10 CNNs. Final predictions were produced by averaging 

the output of all 10 networks.  

   This ensemble achieved MSE=1.298 and R2=0.780 on the 

validation set. While promising, this is likely an overestimate 

of true generalization performance because the ensemble was 

fit to the validation set. Therefore, in the next section we 

consider the ensemble’s performance on the test set to get an 

unbiased estimate of its generalization ability. 

Generalization Performance 

Figure 1 plots the actual MDS values of the rocks from the 

test set against the values predicted by the ensemble of CNNs, 

as well as the correlations between the MDS values and CNN 

predictions. To be clear, none of the networks’ parameters or 

hyperparameters were manipulated to decrease error on the 

test set, so these are true predictions of unseen data. As can 

be seen, the correlation between the ensemble’s predictions 

and the actual MDS values is very high for most of the 

dimensions. The CNNs perform the best on the lightness and 

chromaticity dimensions, which is unsurprising given that 

these dimensions reflect low-level color information. It is 

also probably unsurprising that the CNNs perform less well 

on the “shape” dimension, since Nosofsky et al. (2017b) were 

not able to develop a clear interpretation of this dimension 

and speculated that it is actually an amalgamation of several 

underlying psychological dimensions. What may be 

surprising is that the CNNs perform almost as poorly on the 

roughness dimension as the shape dimension, even though 

the former seems to have a clearer interpretation. Inspection 

of the rocks the CNNs mis-predict reveals that there are 

several rocks located on the smooth side of the MDS space 

that actually have bumpy or wavy textures that appear 

rougher than their MDS coordinates would suggest. This 

indicates that there may be noise in Nosofsky et al.’s (2017b) 

MDS solution, a point to which we return in the General 

Discussion. 

   Overall, the ensemble of CNNs yields MSE=1.355 and 

R2=0.767 on the test set. The fact that the ensemble accounts 

for over 75% of the variance in both the validation and the 

test sets provides converging evidence that deep learning 

networks can be trained to automatically extract 

psychological representations from previously unseen 

images. Now that we have demonstrated that the CNNs are 

Figure 1: Scatterplot of MDS-derived dimensions against CNN predictions. r values indicate Pearson correlation coefficients. 
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capable of extracting MDS coordinates of novel stimuli, we 

turn to our next goal of using these representations to predict 

human categorization behavior. 

Using Deep Learning-Derived Representations 

to Predict Human Categorization Behavior 

In this section we describe a category learning experiment we 

conducted to test whether the CNN-derived representations 

could be used to predict human categorization behavior. We 

could not use images from the training or validation sets as 

stimuli in this experiment, because those images would not 

allow us to test how well the representations learned by the 

CNNs generalize to new rocks. We could have used the 

images from the test set, but we decided to do something 

more ambitious: we collected a completely new set of rocks. 

This approach allowed us to test whether the CNNs could 

predict human categorization using rocks that were not even 

in the same MDS solution that the networks were trained on. 

Method 

Participants The participants were 133 members of the 

Indiana University Bloomington community. Participants 

were compensated $10 with a possible $2 bonus for scoring 

at least 60% correct during the test phase of the experiment. 

Ultimately 8 participants were not able to achieve this 

criterion, and their data were excluded from further analyses. 

 

Stimuli The stimuli were 120 images of rocks belonging to 

the same 30 categories used by Nosofsky et al. (2017b), 

although none of the individual images were repeated. Some 

of these new images were obtained through web searches, 

while others were photographs of rocks we took ourselves. 

Photoshopping procedures were used to remove backgrounds 

and idiosyncratic markings such as text labels from the 

images. Half of the images in each category were used as 

training items, and the other half were used as test items.  

 

Procedure Each participant was randomly assigned to one of 

3 conditions: igneous, metamorphic, or mixed. Participants in 

the igneous condition and metamorphic conditions were 

tasked with learning the 10 categories of igneous and 

metamorphic rocks, respectively, while participants in the 

mixed condition were presented with a mixture of igneous, 

metamorphic, and sedimentary categories (see Figure 3 for 

the specific categories used in each condition). 

   The experiment was divided into a training phase and a test 

phase. The training phase consisted of 6 blocks of trials. On 

each trial, participants were asked to categorize a single 

training item using the keyboard, and they were given 

feedback after entering their answer. Each training item was 

presented twice every block in random order. The test phase 

consisted of 4 blocks of trials. In this phase, each training and 

test item was presented once every block in random order, 

and no feedback was given for the test items. To keep 

participants engaged in the task, feedback was given for each 

training item once in the first two test blocks and once in the 

second two test blocks.  

Model fitting 

We fit a low-parameter version of the GCM to the 

categorization data, using the CNN-derived representations 

as input. For brevity we will refer to this model as GCM-

CNN. In this model, the probability that item i is categorized 

into category J is found by summing the similarity of i to all 

exemplars of category J and then dividing by the summed 

similarity of i to all exemplars of all categories: 

 

𝑃(𝐽|𝑖) = (∑ 𝑠𝑖𝑗𝑗∈𝐽 )/ ∑ (∑ 𝑠𝑖𝑘𝑘∈𝐾 )𝐾  

 

where sij is the similarity between item i and exemplar j.  This 

similarity is given by                                             

 

𝑠𝑖𝑗 = {
𝑒−𝑐𝑏𝑑𝑖𝑗 , if 𝑖 and 𝑗 belong to different categories

𝑒−𝑐𝑤𝑑𝑖𝑗 , if 𝑖 and 𝑗 belong to the same category
 

 

where dij is the CNN-derived Euclidean distance between 

item i and item j, and cb and cw are free parameters that 

determine the rate at which similarity declines with distance. 

Here, we allow different similarity gradients for between- and 

within-category comparisons because many categories of 

rocks have distinctive features that are not captured by the 

MDS representations but may nonetheless cause increased 

within-category similarity or decreased between-category 

similarity. For example, pumice can easily be recognized by 

its holey texture, but the presence of holes is not one of the 

MDS dimensions. 

   We fitted GCM-CNN to the categorization data by first 

calculating the proportion of correct categorization decisions 

in the test phase for all training items and all test items in each 

condition and each category of rock, averaged across all 

participants. We then searched for parameter values that 

minimized the MSE between the empirical observations and 

the model’s predictions. We leave the modeling of individual 

participants and the time course of category learning during 

the training phase as topics for future research. 

Results 

Figure 2 displays the mean proportion of correct 

categorization decisions during the test phase as a function of 

condition and item type (training or test items). Inspection of 

this figure reveals that participants in all 3 conditions 

correctly categorized the training items nearly 100% of the 

time, indicating that errors on the test items were not simply 

due to failing to learn the training items. The figure also 

indicates that the categories in the mixed condition were 

somewhat easier to learn than those in the other conditions—

test items in the mixed condition were correctly categorized 

nearly 80% of the time, while they were correctly categorized 

only about 60% of the time in the other conditions (chance 

performance is 10%). Most importantly, though, the figure 

shows GCM-CNN is able to quantitatively predict these 

patterns, achieving an MSE of 0.0005 and an R2 of 0.97. The 

model does an excellent job of describing human 

categorization behavior at this coarse level of analysis. 
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Figure 2: Mean proportion correct in the test phase as a 

function of condition and item type (training or test).  

Bar heights = observed data, error bars = 95% confidence 

intervals, dots = GCM-CNN predictions 

 

   Figure 3 presents a more fine-grained view of the data. This 

figure displays the mean proportion of correct categorization 

decisions for the test items as a function of condition and the 

individual categories of rocks (performance on the training 

items was near ceiling for every category). Inspection of this 

figure reveals that within each condition the categories varied 

in difficulty, and, generally speaking, GCM-CNN was able 

to predict which categories would be easy or hard. There are 

some notable exceptions, however. For instance, GCM-CNN 

under-predicts performance for pumice in both the igneous 

and mixed conditions. It seems that even with the inclusion 

of the cw parameter, the model was not able to capture 

pumice’s high amount of within-category similarity. 

Although our use of the cw parameter provided a means of 

improving the shortcomings of the MDS representation, it 

may be necessary to train the CNNs to predict idiosyncratic 

features such as holes to fully capture human categorization 

behavior. Alternatively, it may be necessary to build prior 

knowledge into the model; some participants may have 

already been familiar with pumice stones because they are 

commonly used as exfoliants.  

 

    
 

Figure 3: Mean proportion correct for test items as a 

function of condition and category of rock. Bar heights = 

observed data, error bars = 95% confidence intervals, 

dots = GCM-CNN predictions. 

 

   Inspection of Figure 3 also reveals performance differences 

for the same categories in different conditions. For example, 

performance for diorite was much higher in the mixed 

condition than in the igneous condition (likely because it 

could not be confused for the visually-similar granite in the 

mixed condition), and this pattern was correctly predicted by 

GCM-CNN. The model also correctly predicted that 

performance for anthracite was lower in the mixed condition 

than the metamorphic condition, likely because it was 

confused for obsidian—another category of dark, shiny 

rocks—in the mixed condition. However, GCM-CNN seems 

to have over-estimated the extent to which obsidian would be 

confused for anthracite, as it predicted a greater difference in 

performance for obsidian across the igneous and mixed 

conditions than was actually observed. Again, training the 

CNNs to predict more dimensions (obsidian can be 

distinguished from anthracite by its scalloped surfaces) or 

incorporating prior knowledge (obsidian is often referenced 

in popular culture) may lead to better predictions. 

   While GCM-CNN makes some mis-predictions regarding 

a few specific categories of rocks, we nonetheless find these 

results impressive overall, especially considering that only 2 

free parameters were used, and the stimulus representations 

were machine-generated without any human input.  

General Discussion 

   In this article we have shown that deep learning networks 

can not only learn psychological representations of complex 

natural stimuli, but that they can predict the representations 

of completely novel stimuli, and these representations can be 

used in combination with formal psychological models to 

predict human categorization behavior. These results provide 

promise that time- and resource-intensive MDS studies could 

be automated in the future, making possible more large-scale 

studies using natural stimuli. The results reported here should 

be regarded as a proof of concept and not as the absolute best 

results that our procedure could produce. For example, 

increasing the size of the dataset used for training is likely to 

improve the generalization power of the network. Likewise, 

it is almost certainly the case that more sophisticated versions 

of the CNNs and GCM could provide even more accurate 

predictions of the rocks’ MDS coordinates and the human 

categorization data. 

   Perhaps even more importantly, future research will also 

explore ways to improve the MDS representations that serve 

as the training data for the CNNs. As alluded to earlier, there 

is likely noise in Nosofsky et al.’s (2017b) MDS solution 

because many entries in the 360x360 similarity matrix used 

to derive it were based on relatively few observations. 

Nosofsky et al. (2017b) outline several directions that might 

be pursued to develop still more accurate and comprehensive 

similarity-scaling solutions for the rock stimuli. 

As noted in our introduction, our current proposal is meant 

to complement other recent approaches that have used CNNs 

to derive feature-space representations for naturalistic 

stimuli. The idea in these other approaches has been to use 

CNNs to directly predict classification or similarity data and 
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then to use the representations learned by intermediate layers 

as candidates for the psychological representations of the 

stimuli. Our alternative proposal that we illustrated here was 

motivated by our concern that the extent to which the CNNs 

serve as adequate psychological models of human perception 

and learning remains unknown, whereas cognitive process 

models such as the GCM have undergone decades of testing. 

A fruitful direction of future research will involve systematic 

comparisons between these alternative approaches. Indeed, 

we believe it is important to test more systematically the 

utility of CNNs as models of human category learning and to 

compare their performance against GCM and other 

psychological models. The most successful models might 

then be retained and could be useful for guiding the search 

for effective methods of teaching categories. For example, 

simulation of the models could allow for an automated search 

of which training examples people should be shown to 

optimize their category learning and generalization (e.g., 

Khajah et al., 2014; Markant & Gureckis, 2014; Mathy & 

Feldman, 2016; Nosofsky et al., 2018; Patil et al., 2014). 
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