
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Tracking people and their poses

Permalink
https://escholarship.org/uc/item/3vg6z9cz

Author
Park, Dennis

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vg6z9cz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Tracking people and their poses

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Dennis Illyoung Park

Dissertation Committee:
Professor Deva Ramanan, Chair

Professor Charless C. Fowlkes
Professor Alexandar Ihler

2014

c© 2014 Dennis Illyoung Park

To my grandma

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Overview 1

2 Multiresolution models for object detection 6
2.1 Introduction . 6
2.2 Related work . 8
2.3 Multiresolution Models . 9

2.3.1 Fixed-resolution models . 9
2.3.2 Multiple fixed-resolution models . 10
2.3.3 Multiscale multiresolution models . 11
2.3.4 Multiresolution part models . 11
2.3.5 Latent multiresolution part models 14

2.4 Multiresolution contextual models . 15
2.5 Experimental results . 18

2.5.1 Benchmark results . 18
2.5.2 Diagnostic experiments . 20

2.6 Conclusion . 23

3 Exploring weak stabilization for motion feature extraction 24
3.1 Introduction . 24
3.2 Related Work . 27
3.3 Approach . 28

3.3.1 Stabilizing videos . 29
3.3.2 Motion features . 31

3.4 Experimental results . 34
3.4.1 Pedestrian detection . 36

iii

3.4.2 Part detection . 40
3.5 Conclusion . 43

4 N-best maximal decoders for part models 45
4.1 Introduction . 45
4.2 Related work . 49
4.3 Best and next-best configurations . 50
4.4 N-best decoding . 52
4.5 N-best maximal decoding . 52
4.6 Efficient implementation . 55
4.7 Analysis of approximation . 58
4.8 N-best tracking results . 59

5 Exploiting synthetic video frames for pose estimation 65
5.1 Motivation . 65
5.2 Related work . 68
5.3 Synthesis engine . 69

5.3.1 Pixel synthesis . 71
5.3.2 Pose synthesis . 74
5.3.3 Low resolution rendering . 75

5.4 Inference . 77
5.5 Experimental results . 77
5.6 Conclusion . 83
5.7 Summary of thesis . 83

Bibliography 84

iv

LIST OF FIGURES

Page

1.1 Human detection and pose estimation . 2
1.2 Detecting small people is hard but important. 3
1.3 Adding temporal connectivity introduce loops in the graphical model. 4
1.4 Naive N-best algorithm versus N-best maximal algorithm 5

2.1 Example test image of Caltech Pedestrian dataset; wide range of scales . . . 7
2.2 Finding large-scale instances with various templates 12
2.3 Comparing with baseline approahes on the example test image (Fig.2.1) . . . 17
2.4 Results on Caltech Pedestrian Benchmark 19
2.5 Visualization of baselines and MR model . 20
2.6 Results of diagnostic experiments using per-scale validation data 21
2.7 Effect of perspective context features . 22

3.1 Illustration of various types of video stabilization 25
3.2 Stabilization using coarse-scale LK flows . 30
3.3 Example temporal frame differences using unstablized/weakly stablized frames 32
3.4 Results for various parameter sweeps on Caltech Pedestrian dataset 35
3.5 Benchmark results on Caltech Pedestrian benchmark 39
3.6 Examples of pedestrian detection using our motion features; Caltech Pedes-

trian Benchmark . 41
3.7 Examples of pose estimation using our motion features; MindsEye dataset . 42

4.1 Motiavation for N-best algorithms in estimating poses 47
4.2 Why do methods based on simple max-marginal table not work? 51
4.3 Visualization of the iterative N-best decoder 53
4.4 Illustration of the first three iterations of our N-best algorithm using a two-

part model . 56
4.5 Evaluation of the quality and speed of approximation 58
4.6 Four videos used for evaluation . 61
4.7 Top 20 poses returned by our N-best algorithm in Lola video 62
4.8 Visualization of tracking using baselines and our algorithm 63
4.9 Average PCP of tracks derived from 300 candidates for baselines and our

algorithm . 63
4.10 PCPs and track score versus the number of hypothesis. 64

v

5.1 Philosophy of Overfit the video! . 66
5.2 Illustrative overview of the synthesis process 70
5.3 Illustrative overview of pixel synthesis . 72
5.4 Polygonal upper body shape models . 74
5.5 Various modalities of poses that our pose synthesis engine produces 75
5.6 Low resolution color space as a solution for synthesis artifacts and intractable

size of train data . 75
5.7 Average PCP versus image features . 78
5.8 Average PCP versus resolution of features and size of training data 79
5.9 Comparing our approach with baselines . 81
5.10 Visualization of pose estimation . 82

vi

LIST OF TABLES

Page

3.1 Results of pose estimation using our motion features on MindsEye dataset . 44

vii

ACKNOWLEDGMENTS

I am most thankful to my advisor, Deva Ramanan. I have been extremely fortunate to
learn invaluable wisdom in all aspects of research; how to program, how to talk and write,
how to prioritize, and mostly importantly, how to think. He is the most intelligent person
I have ever met. He is patient enough to tolerate my slow-paced learning. He resurrected
my motivation to resume research by proposing bright blueprint, whenever I was struggling
with unexpected results in research experiments.

Thanks to Charless Fowlkes for sharing his keen insight. He clarifies the essence of the
problem, and pinpoints crucial missing pieces in my research projects. Thanks to Alex Ihler
for introducing me to machine learning through his class and providing me with opportunities
to talk in seminars.

Thanks to Piotr Dollár and Larry Zitnick for the great mentoring during the summer intern-
ship at MSR and their valuable advice in pursuing research career.

Thanks to all (ex-)members of Computer Vision group at UCI; Xiangxin, Sam, Yi, Chai-
tanya, Hamed, Mohsen, Raul, Golnaz, Carl, Bailey, James, Phuc, Maryam, Songfan, Greg,
and Julian. They made my life as a gradute student full of joy and laughter.

Thanks to all my friends, near and far, who I cannot name one-by-one. Thanks to my
brother, George, and his wife, Nari. Occasional meetups with them made me feel like home.

Thanks to my parents. They always trust and support me with no condition. And thanks
to Yoonnyoung, my wife, for everything.

viii

CURRICULUM VITAE

Dennis Illyoung Park

Doctor of Philosophy in Computer Science 2014
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2009
University of California, Irvine Irvine, CA

Bachelor of Science in Physics 2007
Seoul National University Seoul, S.Korea

ix

ABSTRACT OF THE DISSERTATION

Tracking people and their poses

By

Dennis Illyoung Park

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Deva Ramanan, Chair

Automatically tracking people and their body poses in unconstrained videos is a core prob-

lem of computer vision. It serves as a foundation for high-level reasoning such as activity

recognition and human computer interaction. We consider two standard tracking tasks;

tracking a human as its encapsulating bounding box or as an articulating body (poses).

Each task has its own challenge. The accuracy of tracking bounding boxes has been signifi-

cantly improved for the past decade, but detecting small people remain challenging simply

due to the lack of signals. The accuracy of tracking poses is noticeably lower, especially

the one of tracking arms, mainly due to the fundamental difficulty of detecting indisticntive

parts.

The algorithms for solving these problems are based on methodology of machine learning.

A common pipeline is to project raw images to an invariant feature space, train a classifier

(or regressor), and infer bounding boxes or poses from the trained model.

In this thesis, we aim to improve the accuracy in both tasks by proposing novel features,

inference algorithms, and training schemes. In terms of tracking bounding boxes, we focus on

multiresolution features and motion features that are aimed to robustly detect small people.

In terms of tracking poses, we focus on combinatorial inference on part models and highly

x

tuned appearance models.

We demonstrate our approaches using standard datasets and benchmarks of pedestrian de-

tection and human pose estimation. Especially, our pedestrian detectors mark the top per-

formance in Caltech Pedestrian Detection Benchmark among more than a dozen of recently

developed detectors. We also achieve impressive performance in (upper body) pose estima-

tion datasets.

xi

Chapter 1

Overview

One of the core functions of a practical AI agent is the one to understand people in imagery.

Out of all visual elements that a robot would encounter in the real world, perhaps humans

are of more interest than anything else. We would expect the agent to effortlessly perform

the task of identifying people, recognizing their activities and emotion, and interacting with

them.

The basis of any type of such understanding is the ability to track people in unconstrained

videos. The simplest type of tracking is to track a human as a blob by, for example, as-

signing a rectangular bounding (optionally with an ID) that tightly encapsulates a potential

human (Fig.1.1). This minimal information already spawn high-impact applications, such

as pedestrian detection systems in the automotive industry.

A more useful type of tracking is to track her pose, which is often represented by a set of 2D

body joint coordinates, such as knees or elbows (Fig.1.1). Tracks of poses themselves serve

as a succinct cues for higher level understanding such as activity recognition; humans can

easily tell a “running” person from a “walking” one just by looking at a stickman animation.

1

Figure 1.1: Human detection and pose estimation. The simplest type of understanding
human in imagery is to detect human as a blob. A standard representation is a rectangular
bounding box encapsulating the body (left). A higher level understanding is based on pose
estimation, which is typically represented by 2D coordinates of body joints (right).

Many methods for tracking people in videos, whether as blobs or as poses, are based on

static detectors that are independently applied to each frame of the video. The detectors

are typically designed to score an image patch of human (or human pose) higher than the

one of non-human (or incorrect pose). Training accurate static detectors has been a central

research topic in computer vision for the past decade. Especially, vision researchers have

seen impressive improvements in accuracy of as-a-blob human detector. Recently, the ac-

curacy approach the level that one could consider, in order to report back a track, simply

concatenating the detections from frames.

However, it remains challenging to detect small people, say, 50-pixel-tall or shorter pedestri-

ans, while this task bears equivalent practical importance comparing with detecting larger

instances (Fig.1.2). For instance, self-driving cars need to find small people so that they

have enough time to stop before impact. Military surveillance cameras monitoring a large

open area become much more useful, if they can identify remote intruders.

In the first part of this thesis, we focus on multi-resolution features and motion features

mainly targeted to detect small people. Specifically, in Chapter 2, we introduce multi-

resolution models that adapt their complexity to the scale of candidates. The key obser-

vation is that scale-invariant model, which is grounded on fixed-size templates, always fails

2

(b) (a)
(c)(d)

Figure 1.2: Detecting small people. In a scenario of high-speed autonomous car with rigorous
standard for safety, detecting all people in this scene is equally important. In the following
two chapters, we introduce multi-resolution features and motion features that are especially
useful in detecting small instances such as (c, d).

in detecting instances in some range of scales. Our models act like a low-resolution rigid

template capturing coarse contours of body given a small candidate, a high-resolution part

model capturing detailed appearance and deformation given a large candidate. This work

was published in European Conference of Computer Vision, 2010 [67]. In Chapter 3, we in-

troduce novel motion features that capture unique articulation motion of given object class;

for example, walking motion of pedestrian. The key observation is that, using coarse-scale

optical flows, one can stabilize a sequence of 5-10 frames so that only the unique articulation

motion pattern remains. The final motion features is based on simple temporal differenc-

ing of stabilized frames. This work was published in Conference on Computer Vision and

Pattern Recognition, 2013 [69].

When it comes to tracking poses, the strategy of concatenating the detections from frames

is less popular, since state-of-the-art pose detectors are much less reliable than as-a-blob

detectors. The fundamental difficulty is that local appearance of parts is less distinctive than

the appearance as a whole body; a patch of a lower arm looks quite similar to numerous

sorts of rectangular objects. One possibility is to model spatial structures – hands must be

found in a certain distance from elbows –, but those model are still inaccurate.

3

time

Figure 1.3: Adding temporal connectivity (dotted) to tree-structued spatial models (solid)
introduce loops in the graphical model.

In terms of modeling, a natural extension is to model temporal structures as well; a hand

must be found in a certain distance from an elbow, and at the same time in the vicinity of the

same hand in the previous frame. But this causes a problem in inference: with connectivity in

both spatial domain and temporal domain, the underlying graphical model becomes loopy

(Fig.1.3). To avoid intractable computation involved with loopy models, an alternative

method was suggested: apply a static spatial model to each of the frame to extract multiple

candidates, and then use a temporal model to exhaustively search an optimal path (typically

using dynamic programming). This approach is called tracking-by-detection framework.

In Chapter 4, we address the problem of extracting multiple candidate poses from a part

model in tracking-by-detection framework. The rule of thumb is to generate a small number

of high-scoring and diverse pose candidates. The problem of inferring a ranked list from

graphical models have been widely explored in speech recognition community under the title

of N-best algorithms. Naively applying those algorithms in any vision problem, however,

returns a list with no diversity: the second best pose will be a pixel-shifted version of the

best pose (Fig.1.4). We propose N-best maximal decoders that incorporate non-maxima

suppression cues in the existing N-best algorithms, and that therefore guarantee a well-

defined form of diversity in the list. This work was published in International Conference

on Computer Vision, 2011, [66].

4

N-best maximal decoders for part models

Dennis Park Deva Ramanan
UC Irvine

{iypark,dramanan}@ics.uci.edu

Abstract

We describe a method for generating N-best configura-
tions from part-based models, ensuring that they do not
overlap according to some user-provided definition of over-
lap. We extend previous N-best algorithms from the speech
community to incorporate non-maximal suppression cues,
such that pixel-shifted copies of a single configuration are
not returned. We use approximate algorithms that per-
form nearly identical to their exact counterparts, but are
orders of magnitude faster. Our approach outperforms
standard methods for generating multiple object configura-
tions in an image. We use our method to generate multiple
pose hypotheses for the problem of human pose estimation
from video sequences. We present quantitative results that
demonstrate that our framework significantly improves the
accuracy of a state-of-the-art pose estimation algorithm.

We address the task of generating multiple candidate ob-
ject configurations in an image or video, within the frame-
work of part-based models. Such a task is relevant if mul-
tiple instances of an object are present, or if one wishes to
resolve ambiguous candidate configurations using higher-
level knowledge (e.g., temporal context from neighboring
frames). We take inspiration from the speech community
and advocate the use of N-best algorithms for generating a
set of N high-scoring candidates.

Though N-best algorithms are popular in speech, they
have not been widely used in vision due to the fact
that second-best configurations will typically be one-pixel
shifted versions of the best. Crucially, one needs to enforce
some form of non-maximum suppression (NMS) during the
decoding process to ensure that near-identical configura-
tions will not be returned. We describe novel and efficient
appproximate N-best algorithms that return a set of putative
configurations that are

1. high-scoring, in that they score above some user-
defined threshold

2. diverse, in the sense that they do not overlap according
to a user-defined criteria.

Figure 1. In order to localize articulated objects in cluttered scenes,
one will need to reason about multiple pose hypotheses. In the
above image in the top left, we show a true pose in the top mid-
dle. We show other hypotheses that may also score highly given a
reasonable object model. We argue that the correct pose should be
extracted from higher level contextual reasoning involving nearby
objects, occlusion reasoning, etc. We describe novel dynamic pro-
gramming algorithms for part-based models that can return such
diverse, but high-scoring pose hypotheses from an image.

We demonstrate these algorithms for the problem of
tracking people in video sequences. We use a recent state-
of-the-art part model [21] to generate multiple pose hy-
potheses for each frame, and compare our approach to a
variety of baselines including standard NMS and sampling
algorithms. We then stitch candidates together to yield a fi-
nal track, demonstrating that our pose hypotheses produce
significantly more accurate tracks.

Formulation: Let us write z for a configuration of part
locations, and S(z) for its associated score. As in past
work [5, 2], we use a simple greedy algorithm for instantiat-
ing multiple configurations: Search over the exponentially-
large space of configurations z for the maximally scor-
ing configuration, instantiate it, remove all configurations
which overlap, and repeat. The process is repeated until the
score for the next-best configuration is below a threshold or

1

N-best maximal decoders for part models

Dennis Park Deva Ramanan
UC Irvine

{iypark,dramanan}@ics.uci.edu

Abstract

We describe a method for generating N-best configura-
tions from part-based models, ensuring that they do not
overlap according to some user-provided definition of over-
lap. We extend previous N-best algorithms from the speech
community to incorporate non-maximal suppression cues,
such that pixel-shifted copies of a single configuration are
not returned. We use approximate algorithms that per-
form nearly identical to their exact counterparts, but are
orders of magnitude faster. Our approach outperforms
standard methods for generating multiple object configura-
tions in an image. We use our method to generate multiple
pose hypotheses for the problem of human pose estimation
from video sequences. We present quantitative results that
demonstrate that our framework significantly improves the
accuracy of a state-of-the-art pose estimation algorithm.

We address the task of generating multiple candidate ob-
ject configurations in an image or video, within the frame-
work of part-based models. Such a task is relevant if mul-
tiple instances of an object are present, or if one wishes to
resolve ambiguous candidate configurations using higher-
level knowledge (e.g., temporal context from neighboring
frames). We take inspiration from the speech community
and advocate the use of N-best algorithms for generating a
set of N high-scoring candidates.

Though N-best algorithms are popular in speech, they
have not been widely used in vision due to the fact
that second-best configurations will typically be one-pixel
shifted versions of the best. Crucially, one needs to enforce
some form of non-maximum suppression (NMS) during the
decoding process to ensure that near-identical configura-
tions will not be returned. We describe novel and efficient
appproximate N-best algorithms that return a set of putative
configurations that are

1. high-scoring, in that they score above some user-
defined threshold

2. diverse, in the sense that they do not overlap according
to a user-defined criteria.

Figure 1. In order to localize articulated objects in cluttered scenes,
one will need to reason about multiple pose hypotheses. In the
above image in the top left, we show a true pose in the top mid-
dle. We show other hypotheses that may also score highly given a
reasonable object model. We argue that the correct pose should be
extracted from higher level contextual reasoning involving nearby
objects, occlusion reasoning, etc. We describe novel dynamic pro-
gramming algorithms for part-based models that can return such
diverse, but high-scoring pose hypotheses from an image.

We demonstrate these algorithms for the problem of
tracking people in video sequences. We use a recent state-
of-the-art part model [21] to generate multiple pose hy-
potheses for each frame, and compare our approach to a
variety of baselines including standard NMS and sampling
algorithms. We then stitch candidates together to yield a fi-
nal track, demonstrating that our pose hypotheses produce
significantly more accurate tracks.

Formulation: Let us write z for a configuration of part
locations, and S(z) for its associated score. As in past
work [5, 2], we use a simple greedy algorithm for instantiat-
ing multiple configurations: Search over the exponentially-
large space of configurations z for the maximally scor-
ing configuration, instantiate it, remove all configurations
which overlap, and repeat. The process is repeated until the
score for the next-best configuration is below a threshold or

1

Figure 1.4: Naively applying existing N-best algorithm results in near-identical copies of
the MAP estimate pose (left). In Chapter 4, we introduce N-best maximal decoders that
produce diverse N-best poses (right).

,

Although there exists huge potential in properly modeling spatial and temporal structures,

it seems also possible to circumvent solving these hard problems by training a highly-tuned

appearance model. A generic pose detector is designed to accurately predict poses of a person

with arbitrary appearance presented in an arbitrary background. Instead, in Chapter 5, we

propose to use a highly-tuned appearance models that make use of the consistency presented

throughout the video: one’s clothes, skin color, body shape, as well as background scene

remain mostly unchanged. We show that, given a synthetic custom training dataset for the

particular video, we can greatly simplify the pose estimation model; as simple as using raw

pixel values of the entire scene to find the nearest-neighbor from the test frame! We conclude

the thesis with a short discussion.

5

Chapter 2

Multiresolution models for object

detection

2.1 Introduction

Objects appear at a continuous range of scales in unconstrained photographs of the world.

This constitutes a significant mode of intra-class variability in detection problems. The dom-

inant perspective in the recognition community is that one should strive for scale-invariant

representations, e.g., by computing features with respect to an appropriately adapted coor-

dinate frame, as in SIFT or scanning window detectors. While this is conceptually elegant,

it ignores the fact that finite sensor resolution poses an undeniable limit to scale-invariance.

Recognizing a 3-pixel tall object is fundamentally harder than recognizing a 300-pixel object

or a 3000-pixel object.

This is perhaps most readily apparent in common demonstrations of the importance of

context in recognition (e.g., [43]). For example, the same local patch of pixels may be

identified as a car or phone depending on whether the surroundings look like a street scene

6

Figure 2.1: An example test image in Caltech Pedestrian dataset and its ground truth
annotations. The detection results of baselines and our algorithm on this image are shown
in Fig 3. Note that people appear at a wide range of scales.

or a person in an office. However, such demonstrations always involve a low-resolution,

heavily-blurred image of the object in question. Given enough resolution, one should be

able to recognize a toy-car held up to someone’s ear despite the improbable context. This

suggests that scene context itself should also be entered into detection in a scale-variant

fashion with contextual cues only being used to increase the accuracy of recognizing small

instances, where local image evidence is uninformative.

In this paper we propose that models for object detection should have a multiresolution

structure which utilizes features ranging from detailed high-resolution parts, to whole object

templates, to scene context cues. Furthermore, we treat these features in a scale depen-

dent manner, so that high-resolution features are not used when detecting low-resolution

instances.

We examine the interplay of resolution and context in the domain of pedestrian detection

for autonomous vehicle navigation. Much of the recent successful work is based on template

detection. We begin by asking a simple question - what should the size of the template be?

On one hand, we want a small template that can detect small people, important for provid-

ing time for a vehicle to react. On the other hand, we want a large template that can exploit

7

detailed features (of say, faces) to increase accuracy. Such questions are complicated by the

fact a simple rigid template is not likely to accurately model both extremes, and that con-

textual cues should perhaps be overridden by high-confidence, large-scale detections. Using

a well-known pedestrian benchmark [22], we demonstrate that contextual multiresolution

models provide a significant improvement over the collective recent history of pedestrian

models (as surveyed in [22]).

2.2 Related work

There is storied tradition of advocating scale-invariance in visual recognition, from scale-

invariant feature detectors [55, 56, 61] to scale-invariant object representations [35, 24].

Unfortunately, such scale-invariant representations don’t leverage additional pixel resolution

for detecting large-scale instances.

Another family of representations deal with multiscale models that compute features at

multiple scales. Such models are typically not multiresolution in that they do not adapt

in complexity to the size of a putative detection. Examples include multiscale edge models

[59] and object representations based on multiscale wavelets [65, 77]. Our approach is most

similar to the multiscale part model of [33] that defines both a low-resolution root template

and high-resolution part filters. We extend the publically-available code to encode adaptive

multiresolution models that act as rigid templates when scoring small-scale instances and

flexible part-based models when scoring large-scale instances.

There is a quite large literature on pedestrian detection, dating back to the early scanning-

window classifers of [65, 37, 13]. We refer the reader to the recent surveys [22, 27] for an

overview of contemporary approaches. Recent work has focused on models for handling

pose variation [62, 33, 87, 94, 54], reducing complexity of learning [58, 78], and multicue

8

combination [96, 40]. Due to its practical importance, more recent trend is to evaluate

pedestrian detection in terms of both accuracy and running time [8], [19]. To the best of our

knowledge, there has been no previous work on multiresolution representations of pedestrians

before our work. Our work triggered attention to multiresolution, and was followed by [98].

2.3 Multiresolution Models

We will describe a family of multiresolution template models of increasing complexity. To

establish notation, we begin with a description of a simple fixed-resolution template.

2.3.1 Fixed-resolution models

Let x denote an image window and Φ(x) denote its extracted features - say, histogram of

oriented gradient (HOG) features [13]. Following an established line of work on scanning-

window linear classifiers [34, 13], we label x as a pedestrian if

f(x) > 0 where f(x) = w · Φ(x) (2.1)

Such representations are trained with positive and negative examples of pedestrian windows

– formally, a set of pairs (xi, yi) where yi ∈ {−1, 1}. Popular training algorithms include

SVMs [34, 13] and boosting [18, 75]. In our work, we will train w using a linear SVM:

w∗ = arg min
w

1

2
w · w + C

∑

i

max(0, 1− yiw · Φ(xi)) (2.2)

One hidden assumption in such formalisms is that both the training and test data xi is

assumed to be scaled to a canonical size. For example, in Dalal and Triggs’ [13] well-known

detector, all training and test windows are scaled to be of size 128× 64 pixels. The detector

9

is used to find larger instances of pedestrians by scaling down in the image, implemented

through an image pyramid. Formally speaking, the detector cannot be used to find instances

smaller than 128× 64. In practice, a common heuristic is to upsample smaller windows via

interpolation, but this introduces artifacts which hurt performance [33, 22].

In this paper, we define a feature representation Φ(x) that directly processes windows of

varying size, allowing one to extract additional features (and hence build a more accurate

model) when x is a large-size window.

2.3.2 Multiple fixed-resolution models

Arguably the simplest method of dealing with windows of varying sizes is to build a separate

model for each size. Assume that every window x arrives with a bit s that specifies whether

it is “small” or “large”. One can still write two templates as a single classifier f(x, s) =

w · Φ(x, s) where:

Φ(x, s) =




φ0(x)

1

0

0




if s = 0 and Φ(x, s) =




0

0

φ1(x)

1




if s = 1 (2.3)

Here, φ0(x) and φ1(x) represent two different feature representations extracted at two dif-

ferent scale windows - say for example, 50-pixel and 100-pixel tall people. Given training

data triples (xi, si, yi) one could learn a single w that minimizes training error in (2.2) where

Φ(xi) is replaced by Φ(xi, si).

It is straightforward to show that (2.2) reduces to independent SVM problems given the

above multiresolution feature. It is equivalent to partitioning the dataset into small and

10

large instances and training on each independently. This poses a problem since the detector

scores for small and large detections need to be comparable. For example, one might expect

that small-scale instances are harder to detect, and so such scores would generally be weaker

than their large-scale counterparts. Comparable scores are essential to allow for proper

non-max suppression between scales, contextual reasoning [17] and for ROC benchmark

evaluation.

2.3.3 Multiscale multiresolution models

One mechanism of integrating two fixed-scale models is to also compute φ0(x) for windows

with s = 1. In other words, we can always resize a 100-pixel windows to 50-pixels and

compute the resulting small-scale feature. This allows the large-resolution model to be

multiscale in that features are computed multiple resolutions:

Φ(x, s) =




φ0(x)

1

0

0




if s = 0 and Φ(x, s) =




φ0(x)

0

φ1(x)

1




if s = 1 (2.4)

Note that because the coarse-scale features φ0(x) are shared across both representations, the

training problem no longer reduces to learning separate SVMs. In this case, distinct bias

terms make scores for large and small instances comparable.

2.3.4 Multiresolution part models

One limitation of the above approach is that both small and large-scale models are encoded

with a rigid template. Low-level descriptors such as HOG are invariant to small scale image

11

Figure 2.2: Finding large-scale instances. One might use a low-resolution template (shown
on the left). Alternatively, to exploit the extra resolution of large-scale instances, one might
define a high-resolution template (middle). Edges capturing the boundary of the body and
head are blurred out due to variation in the postures of pedestrians in the training data. A
more successful approach is to explicitly model the deformation with a part model (shown
on the right), which learns sharper part templates.

deformation due to the local spatial binning of gradient values. However, this binning occurs

at a fixed-size neighborhood (in our case, a neighborhood of 4×4 pixels). On the other hand,

object deformations (such as the articulation of a pedestrian) occur at a scale relative to the

size of the instance. This means that a HOG descriptor is likely invariant to the pose

deformations of a 50-pixel pedestrian, but not a 100-pixel tall pedestrian.

To model pose variations at larger scales, we augment our large-scale model with a latent

parameter capturing pose variation. Following the work of [33], we add a latent parameter

z that specifies the location of a collection of parts. Given the z, we define φ1(x, z) to be a

vector of vectorized-HOG features extracted at the given part locations, appended with the

part offsets themselves. This allows the corresponding parameters from w to encode part

templates and part deformation parameters that penalize/favor certain part deformations

over others.

12

Φ(x, s, z) =




φ0(x)

1

0

0




if s = 0 and Φ(x, s, z) =




φ0(x)

0

φ1(x, z)

1




if s = 1 (2.5)

The final classifier searches over latent values f(x, s) = maxz w · Φ(x, s, z):

f(x, s) =





w0 · φ0(x) + b0 if s = 0

w0 · φo(x) + maxz w1 · φ1(x, z) + b1 if s = 1
(2.6)

When scoring small instances, the above reduces to a standard linear template. When scoring

large instances, the above requires a search over all part deformations, for the configuration

that yields the maximum score. As in [33], we assume parts are independently positioned

given a root location, equivalent to the standard “star” model assumptions in part-based

models. This allows us to use dynamic programming to efficiently compute the max:

max
z
w1 · φ1(x, z) = max

z

∑

j

wj · φ(x, zj) +
∑

j,k∈E
wjk · φ(zj, zk) (2.7)

where zj is the location of part j, wj is the template for part j, wjk is a deformation model

(spring) between part j and k, and E defines the edge structure in the star graph. We write

φ(x, zj) for the HOG feature extracted from location zj and φ(zj, zk) for the squared relative

offset between part j and k. Given training data triples (xi, si, yi), w can be trained with a

latent SVM using the coordinate descent procedure outlined in [33] or the convex-concave

procedure described in [104]. We use the publically-available coordinate descent code [1].

13

2.3.5 Latent multiresolution part models

One limitation of the above model is that training data is still specified in terms of a fixed,

discrete size si - all instances are either 50 or 100 pixels tall. Given a training window of

arbitrary height xi, one might resize it to 50 or 100 pixels by quantization. The correct

quantization may be ambiguous for datasets such as PASCAL where many images of people

are truncated to head and shoulder shots [30] – here a small bounding box may be better

described with a truncated, high-resolution model. When the training data xi is given as set

of bounding box coordinates, [33] shows that one can significantly improve performance by

estimating a latent location and scale of a “hidden” bounding box that sufficiently overlaps

the given ground-truth bounding box.

We augment this procedure to also estimate the “hidden resolution” si of a training instance

xi. Training examples that are large will not have any low-resolution (e.g., 50-pixel tall)

bounding boxes that overlap the given ground-truth coordinates. In these cases, the reso-

lution is fixed to si = 1 and is no longer latent. Similarly, training instances that are very

small will not have any high-resolution bounding boxes with sufficient overlap. However,

there will be a collection of training instances of “intermediate” size that could be processed

as low or high-resolution instances. The values of si will be treated as latent and estimated

through the latent SVM framework: starting with a random initialization of latent si and

zi values, (1) a model/weight-vector w is trained through convex optimization, and (2) the

model is used to relabel an example xi with a latent resolution state si and part location zi

that produces the best score.

Relationship to mixture models: It is relevant to compare our model to the mixture

models described in [34]. One might view our multiresolution model as a mixture of two

models. However, there are a number of important differences from [34]. Firstly, our compo-

nents share many parameters, while those in [34] do not share any. For example, we use both

14

low and high resolution instances to learn a low-res “root” template, while [34] only uses

high-resolution instances. Secondly, the mixture component variable si is treated differently

in our framework. At test time, this variable is not latent because we know the size of a

putative window that is being scored. At train time, the variable is treated as latent for a

subset of training instances whose resolution is ambiguous.

Extensions: Though we have described two-layer multi-resolution models, extensions to

hierarchical models of three or more layers in straightforward. For example, the head part of

a pedestrian may be composed of an eye, nose, and mouth parts. One would expect such a

model to be even more accurate. Note that such a model is still efficient to score because the

edge structure E is now a tree rather than a star model, which is still amenable to dynamic

programming. Training a single resolution hierarchical part model poses a difficulty since it

cannot exploit the many training and testing instances where the details, e.g., of the eyes

and nose, are not resolvable. Our multiresolution formalism provides a framework to manage

this complexity during both training and testing.

2.4 Multiresolution contextual models

We now augment our analysis of resolution to consider the effects of contextual reasoning.

Our hypothesis, to be borne out by experiment, is that context plays a stronger role in

detecting small-scale instances. Toward that end, we add a simple but effective contextual

feature for pedestrian detection - ground plane estimation. Hoeim et. al. [43] clearly espouse

the benefit of ground plane estimation for validating the observed locations and scales of

putative detections. One approach would be to treat the ground plane as a latent variable

to be estimated for each frame or video. We take a simpler approach and assume that the

training and test data are collected in similar conditions, and so apply a ground-plane model

learned from the training data at test time. We begin with the following assumptions:

15

1. The camera is aligned with the ground plane

2. Pedestrians have roughly the same height

3. Pedestrians are supported by a ground plane

Given the above and a standard perspective projection model, it is straightforward to show

that there exists a linear relationship between the projected height of a detection (h) and

the y-location of the lower edge of its bounding box in the image (y):

h = ay + b (2.8)

Features: One reasonable contextual feature is to penalize the score of a detection in

proportion to the squared deviation from the model:

(h− (ay + b))2 = wp · φp(x) where φp(x) =

[
h2 y2 hy h y 1

]T
(2.9)

where we have assumed the image features x include the location and height of the image

window, and where model parameters wp implicitly encode both the parameters of the ground

plane and the amount to penalize detections which deviate from the ground plane model.

Our intuition says that low-resolution models should strongly penalize deviations because

the local template will generate false positives due to its limited resolution. Alternately, the

high-resolution model should not strongly penalize deviations because the local template is

more accurate and the assumptions do not always hold (people are not all the same height).

We investigate these possibilities experimentally using different encodings of our contextual

features, including augmenting Φ(x, z, s) with a single set of perspective features φp(x) used

across both low and high resolution models, or a separate set of features for each resolution

(φ0
p(x) and φ1

p(x)).

16

missed detections
missed

detections

Low−resolution model

Multiresolution model

High−resolution model

Figure 2.3: On the left, we show the result of our low-resolution rigid-template baseline.
One can see it fails to detect large instances. On the right, we show detections of our
high-resolution, part-based baseline, which fails to find small instances. On the bottom,
we show detections of our multiresolution model that is able to detect both large and small
instances. The threshold of each model is set to yield the same rate of FPPI of 1.2.

17

2.5 Experimental results

Implementation: We implemented our final context-augmented multiresolution model

through fairly straightforward modification to the online multiscale part-based code [1]. In

both the benchmark and diagnostic evaluation, we compare to the original code as a baseline.

The contextual model decribed in the following results use scale-specific contextual features

(φ0
p(x) and φ1

p(x)), which we found slightly outperformed a single-scale contextual feature

(though this is examined further in Sec.2.5.2).

2.5.1 Benchmark results

We submitted our system for evaluation on the Caltech Pedestrian Benchmark [22]. The

benchmark curators scored our system using a battery of 11 experiments on a held-out

testset, designed to analyze performance in different regimes depending on object scales,

aspect ratios, and levels of occlusion (Fig. 2.4). The results are impressive - our system

outperforms all previously-reported methods, across the entire range of FPPI (false positives

per image) rates, in 10 out of 11 experiments. The sole experiment for which we do not win is

the far-scale experiment, in which all detectors essentially fail. Even given our multiresolution

model, finding extremely small objects is a fundamentally difficult problem because there is

little information that can be extracted in such instances.

Our results are particularly impressive for the near-scale experiment, where we halve the

previous-best miss rate at 1 FPPI [21]. Previous approaches, including the multiscale part-

based model of [34], use fixed-resolution detectors that tend to be tuned for the small-scale

regime so as to correctly fire on the set of small instances in this dataset. Our multiresolu-

tion model leverages the additional pixels available in large instances to significantly boost

performance.

18

Figure 2.4: Benchmark results. From the upper left graph in clockwise direction, we show
the results for reasonable, near, far and medium experiments, evaluated on test instances with
various heights (h > 30, h > 80, h < 30, and 30 < h < 80 and h < 30, respectively). Our
context-augmented multiresolution model, labeled as MultiresC, significantly outperforms
all previous systems in 10 out of the 11 benchmark experiments (all but the ’far’ experiment’).

19

Low−resolution High−resolution Multiresolution

Figure 2.5: On the left, we visualize our low-resolution rigid-template. In the middle, we
visualize the high-resolution part-based template of [33] trained on Caltech pedestrians. Note
the root templates look different, as only a small portion of the training data (of high enough
resolution) is used to train the part-model. On the right, we visualize the multiresolution
model. Note that the root component looks similar to the low-resolution model. Also note
that the parts overall have weaker weights. This suggests that much of the overall score of
the multiresolution model is given by the root score. However, it is still able to detect both
small and large instances as shown in our results.

2.5.2 Diagnostic experiments

To further analyze the performance of our system, we construct a set of diagnostic experi-

ments by splitting up the publically-available Caltech Pedestrian training data into a disjoint

set of training and validation videos. We defined this split pseudo-randomly, ensuring that

similar numbers of people appeared in both sets. We compare to a high-resolution baseline

(equivalent to the original part-based code [1]) and a low-resolution baseline (equivalent to

a root-only model [13]), and a version of our multiresolution model without context. We

visualize our baseline models in Fig. 2.5. All methods are trained and evaluated on the

exact same data. To better interpret results, we threw out instances that were very small (

< 30 pixels in height) or abnormal in aspect ratio (i.e. h/w > 5), as we view the latter as

an artifact of annotating video by interpolation.

Overall: Overall, our multiresolution model outperforms baseline models. Our contextual

model provides a small but noticeable improvement, reducing the missed detection rate from

20

Figure 2.6: Results of diagnostic experiments. We compare results to fixed resolution base-
lines, where “LR” is a low-resolution rigid template and “HR” is a high-resolution part-based
model. On the left, we show results evaluated on the full set of test instances from validation
data. In the middle, we show results for large-instance (> 90 pixels). On the right, we
show the results on small-instances (< 90 pixels). The “LR” template performs well on small
instances, while the “HR” template performs well on large instances. Our multiresolution
“MR” model exploits the best of both, in the appropriate regimes. Our context-augmented
model “MR+C” provides a small improvement overall, but a noticable improvement when
detecting small instances at a higher FPPI rate.

43% to 40%. We shall see that the majority of this improvement comes from detecting small-

scale instances. Somewhat surprisingly, we see that a simple rigid template outperform a

more sophisticated part model - 52% MD compared to 59%. One can attribute this to the

fact that the part-based model has a fixed resolution of 88 pixels (selected through cross-

validation), and so cannot detect any instances which are smaller. This significantly hurts

performance as more than 80% of instances fall in this small category. However, one may

suspect that the part-model should perform better when evaluating results on test instances

that are 88 pixels or taller.

Detecting large instances: When evaluating on large instances (> 90 pixels in height),

our multiresolution model performs similarly to the high-resolution part-based model. Both

of these models provide a stark improvement over a low-resolution rigid template. We also

see that perspective context provides no observable improvement. One might argue that

this is due to a weak contextual feature, but we next show that it does provide a strong

21

−3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

log
10

 FPPI

m
is

s
ra

te

MR/FPPI Overall

LR+C (0.47)

LR (0.52)

y

h

80 160 240 320 400 480

480

400

320

240

160

80 −10

−8

−6

−4

−2

0

Figure 2.7: We show the effectiveness of our perspective features on low-resolution models.
Overall performance increases from 51% MD to 46% MD. We visualize our perspective
features on the right. We plot the distribution of h and y (bounding box height and image-
y locations) in the ground truth data, and plot the score wp · φp(x) as a function h and y.
We also display the distribution of ground truth (visualized with a point cloud) along with
its linear fit. We see that the learned contextual features penalize detections whose heights
and image-y locations are not consistent with the ground plane.

improvement for small scale detections.

Detecting small instances: When evaluating on small instances (< 90 pixels in height),

we see that the part-based model performs quite poorly, as it is unable to detect the majority

of test instances which are small. Our multiresolution model performs slightly worse than

a low-resolution model (61% compared to 59%). Perspective features provide a noticeable

improvement for our multiresolution model, increasing performance from 61% MD to 58%.

Context features: To verify that our contextual features are indeed reasonable, we analyze

the benefit of our contextual features on a low-resolution model. We see a noticeable reduc-

tion in the MD rate from 51% to 46%, suggesting our contextual features are indeed fairly

effective. Their effect is diminished in our multiresolution model because the part-based

model is able to better score large-scale instances, reducing the need for score adjustment

using context.

22

2.6 Conclusion

We describe a simple but effective framework for merging different object representations,

tuned for different scale-regimes, into a single coherent multi-resolution model. Our model

exploits the intuition that large instances should be easier to score, implying that one should

adapt representations at the instance-level. We also demonstrate that context should be

similarly adapted at the instance-level. Smaller objects are more difficult to recognize, and it

is under this regime that one should expect to see the largest gains from contextual reasoning.

We demonstrate impressive results on the difficult but practical problem of finding large and

small pedestrians from a moving vehicle.

23

Chapter 3

Exploring weak stabilization for

motion feature extraction

3.1 Introduction

The previous chapter dicussed multiresolution methods for finding small people. In this

chapter, we will explore an alternate cue for finding small instances of people - visual motion.

Most approaches for visual recognition focus on the static-image setting; indeed, a common

method for detecting objects in video is to run an image-based detector on each frame.

Significant progress has been made in static-image object detection over the past few years,

in large part due to the improvement of low-level features coupled with classifiers such

as SVMs [14] and boosting [89]. In this chapter, we explore the motion counterpart for

pedestrian detection in video. We show that one can exploit simple motion features to

significantly increase detection accuracy with little additional computation.

Image motion observed in videos is the result of several sources, Figure 3.1. We classify

24

Figure 3.1: Illustration of various types of video stabilization: (a) no stabilization, (b) camera
motion stabilization, (c) object-centric motion stabilization, (d) camera and object-centric
motion stabilization, and (e) full stabilization of camera, object-centric, and part-centric
motion. We posit that for detecting articulated objects such as people the majority of useful
motion information is contained in part-centric motion. We therefore attempt to stabilize
both camera and object-centric motion, as in (d).

image motion into three types using a stationary world coordinate frame and a moving object

coordinate frame. Camera-centric motion is the movement of the camera with respect to

the world. Object-centric motion is the movement of the object centroid with respect to

the world. Finally, part-centric motion is the movement of object parts with respect to the

object. These three types of motion provide different cues for recognition.

Prior work makes different assumptions about which motion types are useful versus nuisance

factors. A simple approach is to directly compute image motion features on raw video.

In this case, the observed image motion contains camera-, object-, and part-centric motion.

Methods that define motion features using optical flow or spacetime gradients often take this

route [92]. One can partly remove camera motion by looking at differences of flow [15]. A

more direct approach is to simply compute motion features on a stationary camera, such as

[90]. Such motion features encode both object- and part-centric motion. The large body of

25

techniques that rely on background subtraction take this approach [71]. When the camera

is moving, one may try to register frames using a homography or egomotion estimation

[42, 46], which removes some camera-centric motion but can be challenging for dynamic

scenes or those with complex 3D geometry. Finally, other techniques compute optical flow

in an object-centric coordinate frame [25]; Figure 3.1(c) shows that such an approach actually

encodes both camera- and part-centric motion.

In this chapter, we posit (and verify by experiment) that the majority of useful motion

information for detecting articulated objects such as people is contained in part-centric

motion. As shown in Figure 3.1, there are numerous types of video stabilization. To allow the

temporal features to easily extract part-centric motion information, we attempt to stabilize

both camera and object-centric motion, Figure 3.1(d). We accomplish this by using coarse-

scale optical flow to align a sequence of image frames. Weak stabilization using coarse-scale

flow has the benefit of aligning large objects such as the background or a person’s body

without removing detailed motion such as an object’s parts, Figure 3.1(d,e). While artifacts

may exists around large flow discontinuities, we demonstrate that coarse-scale flow is robust

in practice.

We use temporal difference features to capture the part-centric motion that remains after

weak stabilization. While features based on fine-scale optical flow [25, 15] may be extracted

from the stabilized frames, fine-scale flow is notoriously difficult to extract for small parts

such as arms [9]. We demonstrate that when sampled at the proper temporal intervals, simple

temporal difference features are an effective alternative capable of achieving state-of-the-art

results.

We perform a thorough evaluation of motion features for people detection in video. We

focus on detecting pedestrians in moving cameras [23] as well as pose estimation from static

cameras [2]. We demonstrate significant improvements from integrating our motion features

into three distinct approaches: rigid SVM detectors defined on HOG features [14], articulated

26

part models defined on HOG features [34, 101], and boosted detectors defined on channel

features [21]. Notably, we report a five-fold reduction in false positives at fixed detection

rates on the Caltech Pedestrian Benchmark, a significant improvement over prior art.

Finally, we perform an exhaustive sweep over various parameter settings of our model to

analyze what aspects are important. We find it crucial to (1) compute optical-flow at the

right level of coarseness to provide camera and object-centric stabilization, (2) compute

difference features over long time scales (because motion over pairs of successive frames may

be too subtle to measure) and (3) normalize motion features appropriately for use with linear

SVMs.

3.2 Related Work

Optical-flow-based features: A popular strategy for video-based recognition is to extend

static image features into the temporal domain through use of optical flow. Examples include

spatially blurred flow fields [25] or histograms of optical flow vectors [15, 91]. In particular,

Dalal et al. explored flow-augmented versions of their HOG descriptor [15] termed histograms

of flow (HOF). Although HOF performed well for classification, Dalal’s thesis admitted that

it under-performed a HOG template when evaluated for detection [12]. Walk et al. [91]

proposed a number of modifications to the HOF features that resulted in modest gains

in detection performance. Recognizing the difficulty of accurate fine-scale flow estimation

(aperture problem, singularities, etc.), [80] proposed directly comparing motion fields without

explicit computation of flows.

Temporal-difference features: Temporal differencing, or temporal gradient features, date

back to the early work of [3]. Since two-frame differencing might be too weak to produce a

signal for slow-moving objects, [11, 48] describe approaches for multi-frame differencing. A

27

related and popular approach is histograms of spacetime gradients [105, 51]. For stationary

cameras, temporal difference features can be computed on background models, yielding

background-subtraction masks [71]. Our approach can be seen as a combination of optical-

flow and temporal differencing as we compute differences on spacetime windows that are

weakly-stabilized with coarse optical flow.

Action classification: Many of the above motion features have been explored in the context

of action classification [20, 51]. In particular, [92] performs a thorough evaluation of motion

descriptors, discovering that histograms of flow perform well. For our setting of detecting

low resolution objects in videos, traditional flow fails because small movements are difficult

to estimate reliably. While effective for behavior classification, space-time interest points

have not proven useful for object detection.

Tracking: An alternate use of temporal information to improve detection reliability is

to explicitly track objects. For example, detection may be improved by tracking repeated

detections [4]. Most trackers tend to define motion models on static image features, although

exceptions do exist [31]. Impressive results have also been shown on a system wide integration

of detectors [28, 95, 41]. Such approaches are orthogonal to ours as we aim to improve the

quality of the detections themselves through use of more informative image features.

3.3 Approach

In this section, we describe our basic approach to motion feature extraction. We begin by

discussing basic notation and static features. We then describe our approach to weakly-

stabilizing video frames and our resulting motion features. Results are provided in the

following section.

28

Notation: Let It denotes the t-th frame of a given video and It denote an image patch

from It. The spatial extent of It in the frame is implicitly defined by the detection task.

For pedestrian detection, It is a fixed-size 32× 64 pixel patch. To detect people at different

scales we use an efficiently computed image pyramid [19].

Static features: In addition to the motion features introduced below, we use one of two sets

of static features densely computed on the current frame. Our first set of static features are

the channel features described in [21]. As in [21], our channels include color (3 channels),

gradient magnitude (1 channel) and gradient quantized by orientation (6 channels). Our

second type of static features is the commonly used Histogram of Oriented Gradients (HOG)

descriptor [14]. Specifically, we compute histograms of gradients using 9 orientations on an

8× 16 grid of 4× 4 cells.

3.3.1 Stabilizing videos

Our goal is to compute motion features based on part-centric motion, such as the movement

of a person’s limbs. This requires weakly stabilizing image frames to remove both camera

and object-centric motion while preserving the part-centric motion. We accomplish this by

using coarse-scale optical flow to align a sequence of frames.

We estimate optical flow using the approach of Lucas-Kanade [57] but applied in a somewhat

non-standard manner. Lucas-Kanade proposed a differential approach to flow estimation

that is commonly implemented hierarchically. A window radius σ controls the scale of the

flow. Typically, σ must be large enough to provide reliable local flow estimate but small

enough to capture fine motions. Instead, coarse flow can be computed using a large radius

σ. This offers dual advantages: the flow estimates are both more reliable and faster to

compute.

29

(a) Raw (b) σ=4 (c) σ=32

Figure 2: Stabilization using coarse-scale LK flows. We
show temporally distant 3-frame sequences stabilized onto
the last frame (bottom row). The red box in each frame is
the location of the person in the last frame. (a) In the raw
video, the person shifts from left to right due to camera and
object motion. (b) Using fine-scale LK flows, the overall
body is stabilized onto the last frame at the cost of distortion
in body parts (most visible at the heads and legs of the top
row). (c) Using coarse-scale LK flows the warped images
are aligned in terms of the overall body location while still
preserving clear motions of body parts.

tation (6 channels). Our second type of static features is the
commonly used Histogram of Oriented Gradients (HOG)
descriptor [7]. Specifically, we compute histograms of gra-
dients using 9 orientations on an 8 × 16 grid of 4 × 4 cells.

3.1. Stabilizing videos

Our goal is to compute motion features based on part-
centric motion, such as the movement of a person’s limbs.
This requires weakly stabilizing image frames to remove
both camera and object-centric motion while preserving the
part-centric motion. We accomplish this by using coarse-
scale optical flow to align a sequence of frames.

We estimate optical flow using the approach of Lucas-
Kanade [22] but applied in a somewhat non-standard man-
ner. Lucas-Kanade proposed a differential approach to flow

Figure 3: Example temporal frame differences using unsta-
bilized and weakly stabilized frames spaced one frame apart
(m = 1) and 8 frames apart (m = 8). When m = 1 there
exists minimal temporal information. With larger frame
spans (m = 8) temporal differences appear. However,
weak stabilization is needed to remove non-informative dif-
ferences resulting from camera and object motion.

estimation that is commonly implemented hierarchically. A
window radius σ controls the scale of the flow. Typically, σ
must be large enough to provide reliable local flow estimate
but small enough to capture fine motions. Instead, coarse
flow can be computed using a large radius σ. This offers
dual advantages: the flow estimates are both more reliable
and faster to compute.

We compute Lucas-Kanade flows with σ typically rang-
ing from 8 to 32 pixels (16 × 16 to 64 × 64 windows). We
denote the computed flow field from frame It to frame It−1

as Wt,t−1. It−1,t is frame It−1 warped to frame It using
the flow field Wt,t−1. We write an image patch from the
warped image as It−1,t. In practice, we find Wt,t−1 sta-
bilizes the majority of motion due to camera and object-
centric motion, as shown in Figure 2. Computing the coarse
flows is fast (no need to compute flow at finest scale) and
fairly robust (due to the large σ).

When stabilizing across multiple frames, we compute
the global motion Wt,t−n by progressively warping and
summing pairwise flow fields. We found this to work bet-
ter in practice than computing the potentially large flow di-
rectly between frames It and It−n.

Figure 3.2: Stabilization using coarse-scale LK flows. We show temporally distant 3-frame
sequences stabilized onto the last frame (bottom row). The red box in each frame is the
location of the person in the last frame. (a) In the raw video, the person shifts from left to
right due to camera and object motion. (b) Using fine-scale LK flows, the overall body is
stabilized onto the last frame at the cost of distortion in body parts (most visible at the heads
and legs of the top row). (c) Using coarse-scale LK flows the warped images are aligned in
terms of the overall body location while still preserving clear motions of body parts.

30

We compute Lucas-Kanade flows with σ typically ranging from 8 to 32 pixels (16 × 16 to

64× 64 windows). We denote the computed flow field from frame It to frame It−1 as Wt,t−1.

It−1,t is frame It−1 warped to frame It using the flow field Wt,t−1. We write an image patch

from the warped image as It−1,t. In practice, we find Wt,t−1 stabilizes the majority of motion

due to camera and object-centric motion, as shown in Figure 3.2. Computing the coarse

flows is fast (no need to compute flow at finest scale) and fairly robust (due to the large σ).

When stabilizing across multiple frames, we compute the global motion Wt,t−n by progres-

sively warping and summing pairwise flow fields. We found this to work better in practice

than computing the potentially large flow directly between frames It and It−n.

3.3.2 Motion features

Given (weakly) stabilized image frames, we propose the use of simple temporal differencing or

temporal gradient features. We now describe the numerous variants that we experimentally

evaluate. The temporal gradient is defined as the difference between two frames,

Dσ = It − It−1,t, (3.1)

where σ is the scale of the computed flow. Because σ is tuned to be roughly the size of an

object, we expect the temporal gradient to contain useful cues about nonrigid object motion

that are helpful for detection, as in Figure 3.3. We denote temporal gradient on unstabilized

frames as DUS:

DUS = It − It−1 (3.2)

Using multiple frames: We previously defined the difference features over pairs of frames.

In many instances, the amount of motion observed between subsequent frames may be quite

small, especially with slow moving objects. Consider Figure 3.2; it is hard to see the difference

31

Figure 3.3: Example temporal frame differences using unstabilized and weakly stabilized
frames spaced one frame apart (m = 1) and 8 frames apart (m = 8). When m = 1 there
exists minimal temporal information. With larger frame spans (m = 8) temporal differ-
ences appear. However, weak stabilization is needed to remove non-informative differences
resulting from camera and object motion.

32

in poses between temporally adjacent frames. We alleviate this by considering multiple

frames, or frames spaced further apart. Next, we define a family of multi-frame approaches.

First, we consider the simple approach of computing multiple frame differences between the

current frame and k = n/m other frames spaced apart temporally by m frames from t−m

to t− n. We refer to m as the frame skip and n as the frame span.

Dσ
0 (n,m) =




It − It−1m,t
It − It−2m,t

...

It − It−km,t




(3.3)

Using this notation, Dσ in Equation (3.1) computed from only two neighboring frames is

equivalent to Dσ
0 (1, 1).

Another approach is to compute the set of differences between neighboring frames within a

multiframe set,

Dσ
1 (n,m) =




It − It−m,t
It−m,t − It−2m,t

...

It−(n−m),t − It−n,t




(3.4)

Finally, we may also compute the difference between the mean frame Mt and the neighboring

frames,

Dσ
M(n,m) =




Mt − It−0m,t
Mt − It−1m,t

...

Mt − It−km,t



, (3.5)

where Mt = 1
k+1

∑k
i=0 It−im,t

33

Rectified features: Previously, we defined our temporal difference features using the signed

temporal gradient. Several other possibilities also exist for encoding the temporal differences,

such as using the absolute value of the temporal gradient or using rectified gradients. Rec-

tified gradients compute two features for each pixel’s temporal gradient dt corresponding

to max(0, dt) and max(0,−dt). The motivation for this is that the sign of the gradient

might provide additional information for detection (e.g. people often have darker hair color

or clothing than the background).

Feature pooling: To add a small amount of spatial invariance, all of our features are pooled

over a c× c sized rectangular window. In all our experiments our pooling size is 4× 4. The

pooling is the same as for the static features.

Feature normalization: The contrast between a person to be detected and the background

may vary due to lighting, background texture or clothing. This affects both static and

temporal difference features. Static features such as HOG [14] account for this using feature

normalization. We follow a similar approach, but extended to spatio-temporal blocks. After

pooling our difference features over c× c neighborhoods, we construct overlapping s× s× t

blocks of cells with spatial extent s = 2 and temporal extent t = 2 (analogous to R-HOG, but

extended in time). We then L1 normalize each block feature (which we found to outperform

L2 normalization). To improve performance, we found it important to clip the computed

L1 norm of each block to have a maximum value of .05. Finally, following the approach of

[34], we use the average of eight normalized values (computed from overlapping spacetime

blocks) as the final feature.

3.4 Experimental results

In this section, we present a thorough evaluation of the family of features described above. We

evaluate our results on two datasets, the Caltech Pedestrian dataset [23] and the MindsEye

34

Figure 3.4: Results for various parameter sweeps on the Caltech pedestrian dataset. These
include (a) adjusting the flow scale σ vs. the frame skip m, (b) other forms of stabilization,
(c) frame skip m vs. frame span n, (d) various types of reference frames for computing
D(m,n), (e) different types of rectification for utilizing the color channels, and (f) boosting
vs. SVM results with and without normalization. The best results, D16

0 (8, 4), are achieved
using σ = 16, m = 4, n = 8, the current frame as reference, and the signed temporal
differences of the luminance channel. The SVM classifier outperforms the boosting classifier
when normalization is used. Normalization has no effect on the boosting classifier.

35

dataset [2]. We begin by exploring the feature parameter space on the task of pedestrian

detection using a boosting classifier [21]. For the use of linear SVM [14] classifiers we show

that normalizing features is crucial. With the optimal setting, state-of-the-art results are

shown using boosting and linear classifiers. We conclude our experimental results by showing

promising results on the challenging task of part detection using the MindsEye dataset [2].

3.4.1 Pedestrian detection

In this section, we explore various parameter settings on the Caltech Pedestrian dataset [23],

which consists of 10 hours of real-world video footage from a car-mounted camera. The full

dataset contains over 350,000 pedestrian detections. As is recommended practice [23], we

train and evaluate using every 30th frame and a smaller “reasonable” subset of bounding

boxes containing pedestrians 50 pixels or taller and with limited occlusion. For boosted

classifiers, we average results over 20 trials with different random seeds to increase their

statistical significance.

We measure accuracy using the standard log-average miss rate for the detections [23], which

is computed by averaging the miss rate at nine false positives per image (FPPI) rates evenly

spaced between 10−2 to 100. A detection is labeled as correct if the area of overlap is greater

than 50%.

We implement several baselines. The result of Dollár et al. [21], as reported in [23], is a

56% log-average miss rate using only static features and trained on the INRIA dataset [14].

Retraining on the Caltech training set reduced this error to 51%, which is close to the best

reported results. By shrinking the model size from 128×64 to 64×32 and excluding occluded

pedestrians from the training set we were able to reduce this rate to 45%. Likewise, using

code from [34] we trained a HOG-SVM detector [14]. Again excluding occluded pedestrians,

using a reduced model size, and shrinking the default HOG cell size to 4 × 4 pixels, we

36

achieve 46% miss rate. Our baselines slightly outperform the best reported results on the

Caltech dataset.

We now describe experiments testing each parameter. We perform our sweeps using boosting

and the 10 static channel features described in Section 3.3. We explore each parameter

sequentially while holding the others constant. For reference, we also always show the

performance of our static detector. Lastly, we combine the optimal temporal features found

for boosting with the static HOG features for use by linear SVMs. For the sweeps in Fig. 3.4

we used a slightly simplified evaluation criterion, resulting in minor differences from our final

numbers reported in Fig. 3.5 (generated using the official evaluation code available from [23]).

Optical flow scale vs. frame skip: We first explore the space of two parameters; the scale

of LK flows, σ, and the skip between two frames used to compute the temporal difference, m,

see Fig. 3.4(a). For these experiments, we only use two frames, with the span n equal to m.

We use D0, where the first frame is the reference frame when computing differences. Observe

that there exists a coherent relationship between miss rates and these two parameters. When

the pair of frames are temporally nearby, stabilization plays a smaller role, since objects are

relatively well aligned even without stabilization. As we increase the skip m between the

pair of frames, stabilization becomes critical. We fix σ = 16 for all remaining experiments.

Ideally, the optical flow scale should roughly cover an object, and so would be defined relative

to the size of the candidate window being evaluated. For simplicity, we implemented a fixed

scale in our experiments, which still worked well because our datasets tend to contain objects

at a single scale. Moreover, Fig. 3.4(a) shows stable performance over two octaves in scale

space, indicating that precise scale selection may not be necessary in general.

Other forms of stabilization: In addition, we explored global 2D transformations for

stabilizing videos including translation, similarity, and projective transformations. Our sta-

bilization outperforms these considerably, see Fig. 3.4(b).

37

Multiframe: Given a fixed scale σ = 16, we now examine the question of the optimal

multiframe span n, skip m, and reference frame. Certain combinations are not possible

(m > n) and so cannot be evaluated. We find that a large span n = 8 and small skip value

m = 1 performs best, although a larger skip m = 4 also does well, see Fig. 3.4(c). Given

the reduction in computational complexity of D(8, 4) over D(8, 1), we fix n = 8 and m = 4.

Using these settings, we find using the current frame, It, as the reference achieves the best

result, see Fig. 3.4(d). This yields the final multiframe motion feature of D0(n = 8,m = 4).

Rectification: We examine various strategies for feature rectification in Fig. 3.4(e), using

three temporal differences across the LUV color channels. The “Max” scheme uses the

maximum temporal difference across the 3 channels, while the “Lum” scheme just uses the

luminance (L) channel. “Rect” refers to rectified features that are created by appending the

absolute value of the positive and negative components of the difference feature D0(8, 4).

“Abs” refers to simply taking the absolute value of the difference feature, while “Signed”

refers to keeping the original signed feature. We see in Fig. 3.4(e) that the signed luminance

feature outperforms all the other variants.

Normalization: We evaluate the impact of feature normalization in Fig. 3.4(f). The nor-

malization has minimal effect on the performance of the boosting classifier, presumably

because boosting classifiers can train more flexible decision boundaries that perform im-

plicit normalization. However, explicit normalization appears vital for linear SVMs. Similar

finding have been shown for static features such as HOG [14].

Previous work: In Fig. 3.5 we compare with previous work including ‘MultiFtr+Motion’

[91] (which uses motion features) and ‘MultiresC’ [68] (which uses static features trained on

the same data as [23]). Our models considerably outperform prior work, achieving a five-

fold reduction in false positives. Both boosting and SVM classifiers perform well, each being

optimal for different ranges of FPPI. Fig. 3.6 shows several examples of detections using

our approach compared to using static features alone. Several false detections are removed

38

10
−3

10
−2

10
−1

10
0

10
1

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

95% VJ

91% Shapelet

86% PoseInv

80% LatSvm−V1

74% FtrMine

73% HikSvm

68% HOG

68% MultiFtr

68% HogLbp

63% LatSvm−V2

62% Pls

60% FeatSynth

57% FPDW

56% ChnFtrs

54% Crosstalk

51% MultiFtr+Motion

48% MultiResC

37% SDtBoost

36% SDtSVM

Figure 3.5: Comparison of log-average miss rate vs. False Positives Per Image (FPPI) between
our approaches and previous methods on Caltech [23]. Our new temporal features lead to a
significant improvement across all FPPI rates.

39

around the car’s boundary as temporal features remove the ambiguities. Temporal features

can also help discover missed detections, such as the pedestrian riding a bicycle in the second

row.

3.4.2 Part detection

The MindsEye video dataset [2] is a large collection containing hundreds of hours of video

capturing everyday outdoor human interactions for military surveillance scenarios. It is one

of the largest available datasets for multi-person pose estimation and multi-person action

recognition (Fig. 3.7). Though scripted, it is a challenging testbed for video analysis. We have

annotated human poses in a collection of 7 video clips with each 30-100 seconds in duration.

The annotated frames are evenly split into training and testing, and used to evaluate the

ability of our motion features to perform human pose estimation in video sequences.

Baseline articulated part model: We describe our baseline articulated part model [101],

and show how to extend it to incorporate our motion features. Let li = (xi, yi) be the pixel

location of part i. Given an image I, we score a collection of part locations l = {li}

score(I, l) =
∑

i

wi · φ(I, li) + ws · spatial(l) (3.6)

where φ(I, li) is a HOG descriptor extracted from pixel location li in image I. The first term

in (3.6) is an appearance model that computes the local score of placing filter wi at location

li using an inner-product. The second term is a shape prior that favors particular spatial

arrangements of parts over others. From our perspective, we can be agnostic to its form

so long as it is linearly parametrized and there exist tractable algorithms for computing

the best scoring configuration max scorel(I, l). [101] describes efficient dynamic program-

ming algorithms for inference, as well as efficient quadratic programming solvers for learning

parameters {wi, ws} given labeled training data.

40

Figure 3.6: In the each row, we compare the results of two models; one trained only with
static features (left), and the other trained with both static and our motion features (right).
Note that our motion features help detect instances that are considered hard due to abnormal
pose (biking) or occlusion, and significantly reduce false positives.

41

Figure 3.7: Pose estimation on MindsEye test images. We show estimates from the pose
model of [101] trained using our motion features. It outperforms static features, especially
for instances with large motion, e.g. playing with a ball. The last row shows failure cases.

42

Features HOG HOG+Motion
Head 71.50% 76.00%

Upper arms 65.00% 68.25%
Lower arms 35.25% 39.25%
Upper legs 62.50% 65.50%
Lower legs 60.75% 61.75%

Overall 57.07% 59.93%

Table 3.1: Augmenting an articulated part model with our motion features produces con-
sistently better part localizations. The gain from static features are not as dramatic as the
result on Caltech, since other challenges, such as self-occlusion, inter-person occlusion, and
a wider variety of poses, plays a role. Each body part (e.g., upper arm) contains 2 keypoints
and is evaluated using standard criteria [101]. “Overall” refers to the average across all
keypoints, making sure there is no double-counting.

Motion features: For our experiments, we simply augment the appearance descriptor to

include both HOG and our motion feature:

φ(I, li) =



HOG[I, li]

D0(8, 4)[I, li]


 (3.7)

The above formulation allows us to easily incorporate our motion features into the existing

pipeline at both test-time and train-time. Since the people in the MindsEye dataset are

significantly larger, we increased σ to 50.

Evaluation: We augmented the publicly-available code of [101] to use our motion features.

We trained both a static-image pose detector and motion-augmented pose detector using

the exact same training data, and present results in Fig. 3.7 and Table 3.1. For upper body

parts, we see a large improvement in part localization accuracy (as measured by the fraction

of times a predicted joint sufficiently overlaps the ground-truth). Overall accuracy across

all joints increases from 57% to 60%, which is a reasonable improvement given the difficulty

of the data. Multiple people often interact and occlude each other, making pose estimation

and motion extraction difficult.

43

3.5 Conclusion

We described a family of temporal features utilizing weakly stabilized video frames. Weak

stabilization enables our detectors to easily extract part-centric information by removing

most camera- and object-centric motion. We experimentally show that simple temporal

differences extracted across large time-spans are capable of producing state-of-the-art results

on the challenging Caltech Pedestrian dataset. Finally, we show our features generalize to

detecting individual body parts, as well as pedestrians.

44

Chapter 4

N-best maximal decoders for part

models

4.1 Introduction

The initial chapters of the thesis discussed people detection, with a focus on small instances.

For the remainder of our the thesis, we switch our focus to the pose estimation problem, with

a focus on video footage. As previously shown in Fig.1.3, combining temporal constraints

(such as a hand must be the vicinity of the same hand in the previous frame) with spa-

tial constraints (a hand must lie near an elbow) causes well-known difficulties in inference.

Tacking-by-detection is a common alternative approach that independently applies a static

spatial model to each of the frame. In this chapter, we describe a method that goes one step

further and extracts multiple pose candidates per frame, but then uses a temporal model

to stitch together candidates with consistent dynamics (in a sense, tracking-by-detection and

stitching.

Most of this chapter will consider the general problem of generating multiple candidate

45

object configurations in an image or video, within the framework of part-based models. We

conclude the chapter (Sec. 4.8) by describing a tracking system that uses these candidates

for articulated tracking. Though our motivating application is tracking, multiple candidate

instances are generally useful strategy for resolving ambiguous image data using any form

of higher-level contextual knowledge (beit temporal or otherwise). Indeed, we take our

inspiration from the speech community for such an inference strategy and advocate the use

of N-best algorithms for generating a set of N high-scoring candidates.

Though N-best algorithms are popular in speech, they have not been used in vision due to

the fact that second-best configurations will typically be one-pixel shifted versions of the

best. Crucially, one needs to enforce some form of non-maximum suppression (NMS) during

the decoding process to ensure that near-identical configurations will not be returned. We

describe novel and efficient appproximate N-best algorithms that return a set of putative

configurations that are

1. high-scoring, in that they score above some user-defined threshold

2. diverse, in the sense that they do not overlap according to a user-defined criteria.

We demonstrate these algorithms for the problem of tracking people in video sequences.

We use a recent state-of-the-art part model [100] to generate multiple pose hypotheses for

each frame, and compare our approach to a variety of baselines including standard NMS and

sampling algorithms. We then stitch candidates together to yield a final track, demonstrating

that our pose hypotheses produce significantly more accurate tracks.

Formulation: Let us write z for a configuration of part locations, and S(z) for its asso-

ciated score. As in past work [17, 6], we use a simple greedy algorithm for instantiating

multiple configurations: Search over the exponentially-large space of configurations z for the

maximally scoring configuration, instantiate it, remove all configurations which overlap, and

46

Figure 4.1: In order to localize articulated objects in cluttered scenes, one will need to
reason about multiple pose hypotheses. In the above image in the top left, we show a true
pose in the top middle. We show other hypotheses that may also score highly given a
reasonable object model. We argue that the correct pose should be extracted from higher
level contextual reasoning involving nearby objects, occlusion reasoning, etc. We describe
novel dynamic programming algorithms for part-based models that can return such diverse,
but high-scoring pose hypotheses from an image.

47

repeat. The process is repeated until the score for the next-best configuration is below a

threshold or N configurations have been instantiated. A naive implementation of such an

algorithm would take exponential time. If the score S(z) is decomposable, one can apply a

standard N -best algorithm that sequentially returns configurations [63, 102] until N non-

overlapping poses are returned. We describe an approximate algorithm that is orders of

magnitude faster (but near identical in performance) by exploiting decomposable notions of

overlap.

Common approaches: It is not clear how to define overlap for configurations of multiple

parts. One simple approach is to define overlap using a single “root” part; this is the approach

taken in most part-models [34]. For example, one may define two human pose configurations

to overlap if the root torsos overlap. This is unsatisfactory because we may still wish to

consider poses with identical torsos, but different arms or legs (see Fig.4.1). Part models

often make such errors due to self-occlusion or cluttered backgrounds, and one would ideally

like to resolve these mistakes using higher-level reasoning (using say, temporal context).

Another possibility may be to generate segmentation masks for two configurations, and then

define overlap in terms of pixel overlap. However, such an approach ignores the natural

semantics of body pose; consider an image of a upright person and someone performing a

handstand. They may have large pixel overlap but are semantically quite different.

Our approach: We examine multiple definitions of overlap, but begin with a simple one:

two poses overlap if all parts overlap. Under this definition, two poses that overlap for all

but one part are still considered “different”. This allows us to explicitly reason about poses

that differ only by the location of a single part (e.g., the left hand). Under this definition

and similar variants, one can compute the N-best maximal configurations by analyzing the

max-marginal of each part. Specifically, we describe an N -best algorithm whose cost is N

times the cost of computing the single-best configuration with dynamic programming. Our

algorithm is approximate in that it exactly solves the formulation above only under certain

48

conditions (which we describe), but we empirically demonstrate that it consistently produces

high-quality solutions.

After discussing related work, we build the basic machinery for our N-best algorithm by

reviewing algorithms for computing the best-configuration and max-marginals (Sec.4.3) in a

tree-structured object model. We review an existing N-best algorithm in 4.4, and present our

N-best maximal decoder in Sec.4.5. We present implementation issues in Sec.4.6, and eval-

uate the quality of our algorithm compared to a brute-force approach in Sec.4.7. We finally

present experimental results in Sec.4.8 for video-based body pose estimation, demonstrating

the superiority of our algorithm compared to standard approaches in vision.

4.2 Related work

N-best inference algorithms have been developed for chain-structured hidden markov models

[64, 84], tree-structured graphical models [63], context-free grammars [44], and loopy models

[102]. Though such approaches have proven effective in domains such as speech and bioinfor-

matics, they are uncommon in vision because they tend to return pixel-shifted copies of the

best configuration. We introduce N-best maximal algorithms that address these limitations

by ensuring that returned configurations are non-overlapping.

Vision researchers often use sampling-based algorithms to generate multiple hypotheses for

subsequent refinement. Data-driven MCMC [86] is a popular inference algorithm in this vain,

which successful application to the task of body pose estimation [53, 82]. Tree-structured

models have also been shown be to effective proposal distributions for evaluating non-tree

scoring functions [32, 10]. We explicitly compare our method to such approaches, and show

we tend to consistently generate better results. This is because our method, unlike sampling-

based approaches, provides explicit control of the quality and diversity of generated hypothe-

49

ses.

We illustrate our N-best algorithm for the task of tracking by stitching together N-best

hypotheses from frames of a video. Such tracking-by-detection approaches are attractive

because they can avoid drift and recover from errors [4, 73, 85, 38]. Exemplar-based detectors

generate multiple hypotheses by finding locally maximal template responses with a coarse-

scale search over poses and locations [38, 85]. These maximal responses can be refined by

a local gradient search [16]. Our N-best algorithms combine these two steps by directly

search over an exponentially large of configurations, using a user-defined notion of overlap

to generate locally-maximal responses.

4.3 Best and next-best configurations

We write zi for the location of part i and z = {z1, . . . , zK} for a configuration of K parts.

We write z ∈ Z, where Z is the exponentially-large set of possible configurations. We score

a configuration as:

S(z) =
∑

i∈V
φ(zi) +

∑

ij∈E
ψ(zi, zj) (4.1)

where φ(zi) is a local part score, ψ(zi, zj) is a pairwise deformation model, often interpreted as

a spring, and G = (V,E) is a graph that defines relational constraints between certain pairs

of parts. It is well-known that when G is a tree, one can compute Best(Z) = maxz∈Z S(z)

with efficient one-pass dynamic programming (DP) routines that pass messages from the leaf

parts to the root part[32]. By backtracking from the highest-scoring root location, one can

construct the associated configuration Best∗(Z) = arg maxz∈Z S(z).

We define a marginal score of part i at location zi = j to be the best scoring configuration

50

b1

a1
a2

b2

Figure 4.2: A single max-marginal table does not suffice for N-best decoding. From left
to right, we show top three poses which differ by either the knee location (a1, a2) or foot
location (b1, b2). Let’s say the second pose was found by backtracking from the foot max-
marginal at location b2. The third pose will never be found by backtracking from any entry
of the original max-marginal table. This necessitates the need for constructing constrained
partitions of the configuration space.

given that part i lies at j:

mZ(i, j) = max
z∈Z:zi=j

S(z) (4.2)

Standard one-pass DP already computes marginal scores for the root; these are scores which

are thresholded (and possibly non-maximum suppressed) to compute a sparse set of detec-

tions in [32, 34]. To generate marginal scores for all parts, one could repeat this procedure

K times, letting each part take its turn as the root. It turns out that many of the messages

across these K instances are identical, and they can be implemented in an effcient two-pass

DP algorithm (e.g., max-marginal inference on trees).

[102] makes the observation that the highest-entry in the max-marginal table corresponds to

Best(Z), while the second-highest entry must correspond to the next-best configuration in

Z. We similarly write NextBest(Z) and NextBest∗(Z) for score and configuration variables

of the next-best configuration. One might think that the third-best pose can be found by

the third-highest entry in the table, but this is not true - see Fig.4.2. This observation is the

foundation behind the iterative N-best algorithm presented in the next section.

51

4.4 N-best decoding

We now describe the N-best algorithm of [102] which iteratively returns configurations or-

dered by score. For convenience, we refer to configurations as poses. One can use this

algorithm to perform N-best maximal decoding by repeatedly generating poses until N non-

overlapping ones are returned (for any definition of overlap). As we show in Sec.4.7, this

“brute-force” approach is slow because most returned poses will be overlapping. We describe

an extension in the next section which is orders of magnitude faster for decomposable notions

of overlap.

The algorithm works by iteratively partitioning Z into N sets, such that the best pose for

each set is one of the N -best. Initialize the first set to be the entire set of configurations

Z1 = Z, and compute the best pose c1 = Best∗(Z1). Iterate the following for t = 2 : N :

1 (i′, j′, n′) = arg maxi,j,n<t NextBest(Zn)

2 ct = NextBest∗(Zn′)

3 Z ′ = {z : zi′ = j′}

4 Zt = Zn′ ∩ Z ′

5 Zn′ = Zn′ \ Z ′

The final set of N-best poses is {c1, . . . , cN}. We refer the reader to [102] for a detailed proof,

but provide a visualization of the algorithm in Fig.4.3.

4.5 N-best maximal decoding

We now show how one can modify the presented algorithm to directly return poses that are

diverse by exploiting decomposable notions of overlap. We define two poses z1, z2 ∈ Z as

52

c
n’

Z t
ct

modified Z n’

Next Best

Best

original Z n’

Figure 4.3: We visualize the iterative N-best decoder of [102], described in Sec.4.4. Assume
we are at the begining of iteration t = 4. We have already partitioned Z into 3 sets such
that the Best pose in each make up the best 3 poses (left). The 4th-best pose must lie in
some set Zn′ (because the partitioning covers Z) and must be equal to NextBest(Zn′) (by
the definition of NextBest). Lines 1 and 2 of the algorithm find this next best pose where
we write (i′, j′, n′) for the index of the max-marginal table entry and partition index where
it was found. Lines 3-5 further paritions Zn′ in two (middle) such that we now have a 4-set
partitioning such that the Best of each make up the top 4 poses (right).

overlapping if each part overlaps:

ov(z1, z2) =
∧

i

ovi(z
1
i , z

2
i) (4.3)

where ovi is a symmetric predicate for defining overlap of individual parts. One may define

two parts as overlapping if the area of their intersection exceeds 50% of the area of their

union - this is benchmark criteria used in PASCAL [29]. Alternatively, for articulated parts,

one may use the endpoint-error criteria common in pose estimation benchmarks [36]. In

pose-based action recognition, it may be important to reason about poses with different end

effector locations (e.g., hands and feet). We can do this with a part-specific overlap relation

ovi.

The following lemma states that one can find the next-best non-overlapping pose by exam-

ining the max-marginal table:

Lemma 4.1 Given a set of poses Z and their associated max-marginals mZ(i, j), the score

53

of the next-best pose that does not overlap Best(Z) is:

NextOvBest(Z) = max
i,j:¬ovi(ci,j)

mZ(i, j) (4.4)

Proof The next-best non-overlapping pose must contain at least one part i that does not

overlap ci. The max-marginal table allow us to enumerate each possible part and non-

overlapping location.

To use the partitioning approach of the previous algorithm, we need to add an additional

constraint to ensure that a partition is valid with respect to overlap:

Lemma 4.2 Let {Zn} be a partitioning of Z that satisfies the following condition.

¬ov(NextOvBest∗(Zn),Best∗(Zm)) ∀n,m (4.5)

We call such a partitioning non-overlapping. The score of the next-best configuration that

does not overlap any Best∗(Zn) is:

max
n

NextOvBest(Zn) (4.6)

Proof Because {Zn} partitions Z, the next-best configuration must lie in Zn′ for some n′.

If it is not NextBest(Z ′n), then there exists another higher-scoring configuration which does

not overlap any Best∗(Zn). This is a contradiction of Lemma 4.1.

We now can describe our N-best maximal decoder. Initialize Z1 and c1 as in Sec.4.4, and

iterate the following for t = 2 : N :

The N-best algorithm from Sec.4.4 is a special case of the above algorithm obtained by

defining a single-pixel overlap predicate ovi(z
1
i , z

2
i) ⇔ (z1i = z2i). The main differences

54

1 (i′, j′, n′) = arg maxi,j,n<t NextOvBest(Zn)

2 ct = NextOvBest∗(Zn′)

3 Z ′ = {z : ovi(zi′ , j
′) ∧ ¬ovi(zi′ , c

n′

i′)}
4 Zt = Zn′ ∩ Z ′
5 Zn′ = Zn′ \ Z ′

are two fold: the NextBest function is replaced by NextOvBest, and Step 3 is refined to

ensure that that z′n is sub-partitioned into two sets who’s Best poses do not overlap. If

the NextBest poses are also nonoverlapping, than one can invoke Lemma 4.2 to ensure that

at the next iteration, the algorithm will find the true next-best non-overlapping pose. If

not, the next iteration will return a pose that overlaps with one of the previously-returned

poses. In practice, we find that Lemma 4.2 holds the vast majority of iterations, implying

that our algorithm (usually) returns the optimal set of poses. We show a failure case in

Fig.4.4. In this case, one could simply ignore such invalid poses, and continue iterating until

N non-overlapping poses have been found. We present a further analysis of such errors in

Sec.4.7.

Hybrid decoder: We can turn the above algorithm into an optimal N-best decoder by

identifying the faulty sets that violate Lemma 4.2, and resorting to the brute-force N-best

algorithm from Sec.4.4 when refining those sets. This can be implemented by changing the

overlap function ovi to use single-pixel overlap when considering poses within such sets. In

Sec.4.7, we contrast the performance and speed of this hybrid algorithm versus the brute-

force and approximate algorithm.

4.6 Efficient implementation

Representing partitions: One needs an implicit representation for each partition Zn, since

one cannot directly enumerate such exponentially-large subsets. We represent each partition

with a set of quadruples {(i′, j′, cn′

i′ , y
′)} where y′ ∈ {0, 1} is a bit that specifies whether or

55

a2

b1

b2

a1

a3

b3

iteration 1 :

(a, a2, 1) = argmaxi,j,n∈{1}NextBest(Zn)

[a2 b2] = NextBest∗(Z1)

Z � = {z : ova(za, a2) ∩ ¬ova(za, a1)}
Z2 = Z1 ∩ Z �

Z1 = Z1 \ Z2

iteration 2 :

(b, b3, 1) = argmaxi,j,n∈{1,2}NextBest(Zn)

[a3 b3] = NextBest∗(Z1)

...

Iteration 1:�
a1 b1

�
= Best∗(Z)

Z1 : {}

Iteration 2:

(a, a2, 1) = argmax
i,j,n∈{1}

NextOvBest(Zn)

�
a2 b2

�
= NextOvBest∗(Z1)

Z2 : {(a, a2, a1, 1)}
Z1 : {(a, a2, a1, 0)}

Iteration 3:

(b, b3, 1) = argmax
i,j,n∈{1,2}

NextOvBest(Zn)

�
a3 b3

�
= NextOvBest∗(Z1)

Z3 : {(a, a2, a1, 0), (b, b3, b1, 1)}
...

Figure 4.4: We illustrate the first three iterations of our algorithm for a two-part (a and
b) model. On the left, we show part detections, and designate a region of overlap around
every detection with a circle. The second pose, (a2, b2), is obtained by backtracking from the
max-marginal entry a2. We partition Z into two sets such that (a1, b1) is the best pose in
Z1, and (a2, b2) is the best pose in Z2, where Z2 is the set of poses that overlap a2 but don’t
overlap a1 (the shaded region). We represent sets using quadruples, as explained in Sec.4.6.
Assume the next-best max-marginal entry is found in marginal location b3, in set Z1. It is
possible that the backtracked pose (a3, b3) might overlap (a2, b2), shown in red. We show in
Sec.4.7 that this is a rare occurence.

56

not part i overlaps region R, where R is the set of locations that overlap j and do not overlap

location cn
′

i′ (Fig.4.4). Each quadruple represents a constraint that is iteratively added as

the algorithm adds next-best configurations and partitions the set Zn′ from which they were

found.

Memory: As written, the above algorithm requires storing and searching over N max-

marginal tables at Step (1). We need to store only the best and next-best configuration for

each partition, together with the part index i′ and location j′ that triggered the next-best

configuration. Hence we can compute max-marginal tables in place: once we create a new

partition (in Step 4 and 5), we compute the best and next-best configurations for each. We

can then safely ignore its max-marginal table. This means each iteration of the algorithm

requires 2 max-marginal computations, making our overall N-best algorithm linear in N (as

in [102]).

Caching: We compute local part scores φ(zi) from (4.1) once, and reuse them to compute

max-marginals for any given partition. This can be done by temporarily invalidating part

scores for locations outside a partition, and running the two-pass max-marginal algorithm

from Section 4.3. If we assume the deformation model ψ(zi, zj) from (4.1) is bounded,

one can limit the amount of max-marginal computations that must be updated at each

iteration. Say, for example, that the head and leg part can be at most δ pixels apart. This

means that, if we add the constraint that heads must (not) overlap a particular location, we

need recompute max-marginals only for parts that lie within δ pixels of the head location.

This can be efficiently implemented by computing a distance transform over a small δ-radius

sub-window in an image, rather than the entire image.

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N

#
 i
te

ra
ti
o

n
(x

1
0

4
)

brute force

hybrid

approx.

Figure 4.5: Quality and speed of approximation. The curve on left shows the accuracy of the
our algorithm. We use top 90 non-overlapping poses of a reference image for evaluation. We
achieve high accuracy over the entire range of recall rate (AP = 85.4%). On right, we show
the number of iterations of each algorithm required to find N non-overlapping poses. Our
algorithm takes 87 iterations to generate 68 poses, while brute force and hybrid approaches
take about 50k and 15k iterations.

4.7 Analysis of approximation

We compare the accuracy and speed of the brute-force N-best maximal algorithm (Sec.4.4),

as well as our approximate and hybrid algorithm (Sec.4.5) on a random reference image.

As we run our iterative algorithm for t = 1 . . . N , we count the fraction of poses which are

present in the top t optimal results, scoring both the precision (the fraction of poses we return

that are optimal) and recall (the fraction of the optimal poses we return). We also compare

the speed of each algorithm by counting the iterations needed to obtain t non-overlapping

poses. Our approximate algorithm is faster than brute force and hybrid approaches by three

orders of magnitude, while generating almost the same result.

58

4.8 N-best tracking results

We demonstrate our algorithms by applying them to the problem of tracking people in video

sequences. We generate candidates from each frame of a video, and stitch them together

with dynamic programming. We use the recent articulated part-based model of [100], which

appears to be the current state-of-the-art system as evidenced by various pose-estimation

benchmarks. We demonstrate that, even given this high-accuracy detector, locally ambigu-

ous hypotheses can be refined by exploiting temporal context from neighboring frames.

Temporal context: Assume for frame t in a video, we generate N candidate poses. Let

kt ∈ {1, . . . N} be a pointer to a particular pose. We wish to maximize the score:

Score(k) =
∑

t

Local(kt) + αPairwise(kt, kt−1) (4.7)

where Local(kt) is the score of candidate pose kt computed by (4.1). We write Pairwise(kt, kt−1)

for an arbitrary pairwise term penalizing the difference of two configurations. In practice,

we simply use the (negative of the) total squared pixel difference between each joint in pose

kt−1 and pose kt. We also experimented by penalizing the change in appearance of parts, and

saw a minimal improvement in accuracy. The parameter α controls the trade-off between

the two terms, and was tuned manually. The above score can be optimized by standard

dynamic programming on a trellis graph.

Algorithms: We compare our approach of generating N -best candidates with several base-

line algorithms for generating N candidates. The simplest is noNMS, which perform

standard 1-pass dynamic programming, but then backtracks from the N top-scoring root

marginals to generate N candidates. As one might suspect, the N candidates tend to be

pixel-shifted versions of each other. We also consider rootNMS, which performs NMS on

the root scores to avoid returning pixel-shifted root locations. We applied noNMS to find a

59

very large set of candidates, and then post-processed them to find the best N configurations

that do not overlap according to definition (4.3); we denote this baseline as partNMS. Fi-

nally, we also compare to the sampling baseline advocated in [32, 10]. In particular, we use

the max-marginal sampling algorithm MMsampling of [10], which seems to be the current

state-of-the-art approach for generating multiple samples from a part model. The sampler

requires a temperature parameter that loosely controls the amount of diversity; we found

results were sensitive to this parameter and put forth considerable effort to tune it.

To illustrate the ability of our approach to handle user-defined overlap functions (4.3), we

compare two versions of our algorithm. We write Nbest(all) to denote an overlap function

which treats all parts equally, where two parts are defined as overlapping if their bounding

boxes intersect at all. We write Nbest(limb) to denote an overlap function that only

requires leaf parts (hands, heads, and feat) to be non-overlapping. This can be implemented

by defining ovi to be 1 for all non-leaf parts, regardless of their position zi.

Evaluation: We assembled a set of video sequences with varying degrees of clutter (Fig.4.6)

[73, 81]. We quantitatively evaluate our algorithms in two ways; we look at the overall track

score from (4.7), and we evaluate tracking accuracy using the now-standard Percentage

of Correct Parts (PCP) criteria introduced in [36]. To perform the latter, we manually

annotated ground-truth limb locations in these sequences. We will make these annotations

publicly available to spur further quantitative evaluation.

Analysis: We show qualitative results for various algorithms in Fig.4.7. We refer the reader

to the caption for detailed analysis, but note that our algorithm consistently produces more

diverse and higher quality hypothesis than standard approaches. We present PCP results in

Fig.4.9. We refer the reader to the caption for a detailed analysis, but our N-best algorithm

consistently outperforms all baseslines. In general, both our approach and sampling do much

better than the baseline NMS algorithms. We further analyze this behaviour in Fig.4.10, and

show that for small N , our approach clearly outperforms sampling because we are guaranteed

60

Figure 4.6: We use four video sequences for evaluation, used in previous work [73, 81]. From
left to right, we name them as Walking, Pitching, Lola1, and Lola2. They exhibit varying
degrees of clutter (including multiple people), camera movement, and body poses.

to report high-scoring configurations while a sampler is not.

Computation: We have implemented our algorithm with a subset of caching speedups

proposed in Sec.4.6. For small N < 10, our algorithm is similar in speed to the baselines

above. For large N , our linear dependance on N dominates the effect of our caching, making

our approach slower than the baselines. We are exploring alternate approximate algorithms

that further sacrifice some performance for speed.

Conclusion: We have described a general method for returning back N configurations from

a part model that do not overlap, according to some user-defined notion of overlap. We

show that our algorithm produces, both qualitatively and quantitatively, a strong set of

hypotheses that can be used for subsequent refinement using more complex, intractable ob-

jective functions. We believe our N-best formalism provides a practical and general approach

for minimizing such complex functions, similar to such inference strategies from the speech

recognition community. As suggested in Fig.4.10, there still remains a disconnect between

objective functions currently in use and overall accuracy, and so we are currently pursing

approaches for learning meaningful objective functions from data using N-best decoders.

61

Figure 4.7: We show the 20-best configurations returned by our N-best algorithm for a
frame in the Lola video. Note that each configuration contains at least one part that does
not overlap any other configuration. Since there exists arm-like clutter at the top of the
image, many of the top-scoring hypotheses consider various arm positions. Note that many
of these configurations share the same root; hence they would not returned from typical NMS-
based algorithms for generating multiple detections in an image. We show final configuration
selected by the DP tracker in red, which was the 19-th returned pose.

62

p
a
rt
N
M
S

M
M
S
a
m
p
li
n
g

N
b
e
st

Figure 4.8: Tracking result for the Walking sequence. partNMS tends to estimate wrong
head(first and third) frame, because it can only report a single configuration for the best
root part. MM sampling tends to report noisy samples with varying degrees of quality
due to its stochastic nature. Due to the looseness of the PCP scoring criteria, we found that
many of these configurations were scored as correct, though qualitatively they appeared to
be noisy. Nbest tends to generate reasonable looking results.

Algorithms walking pitching lola1 lola2
noNMS 0.825 0.762 0.505 0.445

rootNMS 0.815 0.741 0.455 0.390
partNMS 0.825 0.762 0.515 0.420
MMsmpl 0.930 0.800 0.645 0.440
Nbest(all) 0.940 0.800 0.635 0.495

Nbest(limb) 0.950 0.797 0.670 0.500

Figure 4.9: We compare average PCP of tracks derived from N=300 candidates for baselines
and our algorithm. Our approaches dominate all baselines, including the state-of-the-art
method of [10]. We further analyze the behaviour of all algorithms in Fig.4.10

.

63

Figure 10. On the left, we show PCP accuracy as a function of N , the number of generated hypotheses, for various algorithms. Most
algorithms tend to produce stable tracks for N > 100. We examine their behaviour over the first N < 50 generated hypotheses in the
middle. In general, we see that our n-best algorithm tends to produce accurate tracks, even for small N . Rather than scoring tracking
accuracy, we can score the ability of various algorithms to maximize the objective function from (7) (on the right). We see that our
algorithm consistently produces better scores than sampling, particular for small N . This makes sense since for N = 1, our algorithm
reports back the overall best configuration in a frame, while sampling algorithms may report back (in theory) any configuration. In general,
the disconnect between the right and middle plots suggest that algorithms that perform better at maximizing our objective function may
not produce better tracks. This indicates, that in addition to our focus of better inference algorithms, we still need better objective functions
to maximize.

[16] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking
of 3D human figures using 2D image motion. ECCV, pages
702–718, 2000. 6

[17] L. Sigal and M. Black. Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation. In CVPR,
volume 2, pages 2041–2048. IEEE, 2006. 2

[18] F. Soong and E. Huang. A tree-trellis based fast search for
finding the n-best sentence hypotheses in continuous speech
recognition. In icassp, pages 705–708. IEEE, 1991. 2

[19] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla. Model-

based hand tracking using a hierarchical bayesian filter.
IEEE PAMI, 28(9):1372–1384, 2006. 2

[20] Z. Tu and S. Zhu. Image segmentation by data-driven
Markov chain Monte Carlo. IEEE PAMI, pages 657–673,
2002. 2

[21] Y. Yang and D. Ramanan. Articulated Pose Estimation using
Flexible Mixtures of Parts. In CVPR, pages 1–8, 2011. 1, 5

[22] C. Yanover and Y. Weiss. Finding the M Most Probable Con-
figurations Using Loopy Belief Propagation. In NIPS, page
289. The MIT Press, 2004. 2, 3, 5

Figure 4.10: On the left, we show PCP accuracy as a function of N , the number of generated
hypotheses, for various algorithms. Most algorithms tend to produce stable tracks for N >
100. We examine their behaviour over the first N < 50 generated hypotheses in the middle.
In general, we see that our N-best algorithm tends to produce accurate tracks, even for small
N . Rather than scoring tracking accuracy, we can score the ability of various algorithms
to maximize the objective function from Eq.4.7 (on the right). We see that our algorithm
consistently produces better scores than sampling, particularly for small N . This makes
sense since for N = 1, our algorithm reports back the overall best configuration in a frame,
while sampling algorithms may report back (in theory) any configuration. In general, the
disconnect between the right and middle plots suggests that algorithms that perform better
at maximizing our objective function may not produce better tracks. This indicates, that in
addition to our focus of better inference algorithms, we still need better objective functions
to maximize.

64

Chapter 5

Exploiting synthetic video frames for

pose estimation

5.1 Motivation

In the previous chapter, we explored combinatorial N-best methods for exploiting temporal

constraints in articulated tracking. In this chapter, we explore the alternate dimension of

building better pose candidates through tuned appearance models.

Consider the problem of tracking human poses in a one-take video clip, say “Phoebe” in

“Friends” TV show. Intuitively, given the very first frame of the video, humans can immedi-

ately picture in mind what the other frames might look like; Phoebe, who was folding arms

in the first frame, may be reaching her arm to grab a cup or be answering the phone in the

other frames. In addition, the plate of salad might become empty; the ketchup bottle on the

table might be in her hand or moved to the other side of the table. What we don’t expect to

see in the future frames is that Phoebe suddenly change her skin color or becomes noticeably

fat, or that the background scene abruptly changed from a restaurant to a gym.

65

8

Fig. 6: A visualization of our model for K = 14 parts and T = 4 local mixtures, trained on the Parse dataset.
We show the local templates above, and the tree structure below, placing parts at their best-scoring location
relative to their parent. Though we visualize 4 trees, there exists TK ≈ 2e7 global combinations, obtained by
composing different part types together with different springs. The score associated with each combination
decomposes into a tree, and so is efficient to search over using dynamic programming (1).

Instead of manually annotating bounding boxes as
PASCAL Person Layout Challenge does, we generate
each of them as the tightest box that covers the set of
ground truth keypoints.

APK: In a real system, however, one will not have
access to annotated bounding boxes at test time, and
so must address the detection problem as well. One
can cleanly combine the two problems by thinking
of body parts (or rather joints) as objects to be de-
tected, and evaluate object detection accuracy with
a precision-recall curve [49]. As above, we deem a
candidate to be correct (true positive) if it lies within
α · max(h, w) of the ground-truth. We call this the
average precision of keypoints (APK). This evaluation
correctly penalizes both missed-detections and false-
positives. Note that correspondence between candi-
dates and ground-truth poses are established sepa-
rately for each keypoint, and so this only provides a
“marginal” view of keypoint detection accuracy. But
such marginal statistics are useful for understanding
which parts are more difficult than others. Finally,
APK requires all people to be labeled in a test im-
age, unlike PCP and PCK. We have produced such
annotations for Parse and Buffy, and will make them
public.

PCP vs PCK vs APK. We compare different eval-
uations for the Parse dataset in Fig. 5, using the
implementation of PCP in the Buffy toolkit. Because
APK is the most realistic and strictest evaluation, we
deem it the “gold standard”. By tweaking the non-
maximum suppression (NMS) strategy for our detec-
tor to return more candidate poses, we do worse at

APK but artificially do better at PCP (as implemented
in the Buffy toolkit). This behavior makes sense given
that false positives are not penalized by PCP, but
penalized by APK. We would like to produce a similar
curve comparing APK and PCK under different NMS
strategies, but recall that PCK is not affected by NMS
because ground-truth windows are given. Rather, we
select a arbitrary dimension of our model to evaluate
(such as the number of mixtures), and show a positive
correlation of PCK with APK. Because PCK is easier to
interpret and faster to evaluate than APK, we use PCK
to perform diagnostic experiments exploring different
aspects of our model in the next section.

7.3 Diagnostic experiments

We define a full-body skeleton for the Parse set, and
a upper-body skeleton for the Buffy set. To define a
fully labeled dataset of part locations and types, we
group parts into orientations based on their relative
location with respect to their parents (as described
in Section 6.1). We show clustering results in Fig. 3.
We use the derived type labels to construct a fully
supervised dataset, from which we learn flexible mix-
tures of parts. We show the full-body model learned
on the Parse dataset in Fig. 6. We set all parts to be
5 × 5 HOG cells in size. To visualize the model, we
show 4 trees generated by selecting one of the four
types of each part, and placing it at its maximum-
scoring position. Recall that each part type has its own
appearance template and spring encoding its relative
location with respect to its parent. This is because we

person detector
(tracker)

training settraining set

“phoebe” detector
(tracker)

Figure 5.1: Overfit the video! We propose to use synthetic video frames that emulate hypo-
thetical test frames as training data for performing recognition in video. Previous approaches
use as base models generic detectors trained using images in the wild (left). We show that,
by using training data customized to a particular video (right), one can achieve state-of-
the-art performance on challenging pose estimation problem even with simple models and
features.

66

On the other hand, the standard method to train a static pose detector as a basis for tracking

poses in videos is quite counter-intuitive. The base detector is a generic pose detector, which

is usually trained using images of arbitrary persons and background, as well as arbitrary

poses. This seems to be an overkill, since it makes the training strictly harder by forcing

the detector to recognize Obama’s pose in the White house even though the detector would

only see Phoebe in her living room.

In this chapter, we propose to train a highly-tuned appearance model to overfit the particular

video using a large set of synthetic training data, given an annotated first frame of the video.

We use a custom training data that emulate all possible future frames one expect in the given

video. Unlike training data for generic pose detectors, the dataset is invariant in, e.g., clothes,

body shapes, skin colors, or hair styles of people (Fig.5.1). There also exist large invariance in

background. In theory, one can generate a set of reasonable custom background by modeling

the scene and dynamic objects.

The most interesting mode of variation in the dataset is human pose. Therefore, our custom

data covers all kinematically possible upper body poses of given character. Given an anno-

tated first frame as a seed frame, we generate a large number of hypothetical test frames

with different poses, using standard image-based rendering algorithms. Other modes we

synthesize include locations and scale of humans, dynamic objects (e.g. cups, chairs) in the

scene, and a small degree of background translation.

It is also interesting to notice that the expected video frames in our imagination are only

in moderate detail: humans cannot predict how the wrinkle of right collar change when

the Phoebe raise her left hand. In fact, it is unrealistic to synthesize all possible frames

that are different in such fine detail, since the size of the dataset grows exponentially with

respect to the number of parameters in the synthesis engine. A simple solution is to render

low resolution frames. This allows us to synthesize only the frames that are distinct after

blurring.

67

To predict a pose, one can cast our custom training data to any sort of feature transformation

and learning algorithm to train a pose estimator. However, it is reasonable to expect the

learning must be greatly simplified, since the data effectively lives in a very small subspace

compared with images in the wild. We verify this idea by training pose estimators using

extremely simple features and non-parametric learning algorithms, such as raw pixel values

and nearest-neighbor regressors.

Overview of chapter After discussing related work in Sec.5.2, we describe our synthesis

engines in Sec.5.3. Pixel synthesis is the process of generating a synthetic frame given a

target pose and pose-annotated first frame; pose synthesis defines a set of target poses to

synthesize. In Sec.5.4, we describe a simple nearest-neighbor algorithm for estimating pose.

In Sec.5.5, we diagnose and evaluate our approach for the task of estimating upper body

pose using Friends dataset.

5.2 Related work

Visual tracking: The problem of visual tracking have been addressed in various settings of

inputs and initializations; first-frame labeled [103], online tracking [97], interactive tracking

[39], etc. Articulated tracking [39], [106], [76] recently gained attention. (See [83] for complete

discussion.) Especially, tracking with learned appearance models [73, 47] have proved to be

effective. Our work is closest to [49] in that they use labeled first frame to track articulation

of human body. Our work is also well aligned with [73], [106] in that they attempt to use

consistency existing throughout the video. But our work is unique in that we focus on

training data to exploit consistency without using temporal cues.

Layered shape models: Since the pioneering work of [93], layered shape model as a week

form of a 3D model has been widely accepted as a useful representation for image formation.

68

Our work is closely related to [99], where the authors introduce generative probabilistic

models that formulate layered models for object detection and segmentation.

Synthetic training data: There exists a steady body of work that has examined pose

estimation using (partially) synthetic training data. Perhaps the earliest example dates

back to [79], who use a large set of rendered poses for nearest-neighbor (pose) regression.

[52] generate synthetic rendering of real objects under synthetic backgrounds, using green-

screening. The recent work of [45] has generated a 3-million frame dataset of synthetic

images of 3D articulated models in real backgrounds. Our work differs in that we perform

“image-based rendering”, cutting and pasting existing images to yield novel ones. From

this perspective, our approach is most related to [72], who fit 3D articulated models to real

images, and generate synthetic renderings by slightly perturbing joint angles. However, in

our case, we do not need to synthesize appearance variations since we want to train a model

tuned for the appearance of a particular figure in the video.

5.3 Synthesis engine

At the heart of our approach is a simple 2D synthesis engine that artificially generates

hypothetical video frames, given the labeled first frame of the video. Unlike other synthesis-

based approaches which produce high-quality synthetic images ([72], [45]) our goal is to

produce a large set of reasonably photorealistic images which captures most of the variability

expected in the future frames. Most importantly it captures various poses, but also locations,

scale, camera movement, and other dynamic objects in the scene. The synthesis process

consists of two components: pixel synthesis and pose synthesis, which are discussed in the

following subsections. Fig. 5.2 summarizes the overall process.

69

labeled first frame

+

Figure 5.2: Synthesis overview. We assume the first frame of the video, as well as its pose
label, is available upon test time (top). We define a set of poses that represents all potential
poses in the video. (middle). We use an image-based rendering engine to warp the body
parts of the first frame into the target pose. We use the collection of rendered frames to
construct a custom ”Rachel” training data as shown in Fig. 5.1

Pose parameterization Each part p is represented by a 4-tuple: its orientation, foreshort-

ening ratio, and depth layer (θ, r, d). A pose P is defined by its root location in the image

coordinate, scale, and a collection of 9 upper body parts: left/right upper arms, lower arms,

hands; and torso, neck, face. That is, P = (x0, y0, s, (θ, r, d)1:N). When combined with

a Pictorial Structures (PS) model, this parameterization is readily converted to a skeleton

representation, (x1, y1, x2, y2)1:N , visualized in Fig. 5.2. The advantage of P is that it can

disambiguate the difference between “short arm” and “foreshortened long arm”.

Assumption As in [49] and [103], our synthesis process assumes that the first frame of the

video is given with a human annotation. The annotation is in the skeleton format shown in

Fig. 5.2, which require users to provide 9 body joint keypoint locations and their depth layers.

From this annotation, we derive the pose parameters P0 with a straightforward heuristic to

decide scales of parts.

70

5.3.1 Pixel synthesis

The pixel synthesis engine takes the labeled first frame, (I0,P0) and a target pose Pq as

input, and produces a synthetic video frame Iq. We illustrate this process in Fig. 5.3. It is

based on a 2.1D representation of image ([99], [93]), where each pixel is augmented by its

depth layer. To derive a part region from pose parameters (s, θ, r, d), we need to define a

kinematics model and a shape model.

Forward kinematics. Local pose parameters defined in P are relative to its parent part

(e.g. lower arm bent by 30 degree at elbow). Forward kinematics ([70], [60]) is a standard

way to recursively derive a global pose in image reference frame (e.g. lower arm aligned with

y-axis of image) from local pose parameters. Specifically, given P and a Pictorial Structures

(PS) model, we derive two global pose parameters for a part indexed by i; orientation angle

θgi and translation vector tgi . t
g
i is the location of joint (e.g. elbow for lower arm) in image

coordinate. For the time being, we ignore foreshortening effect.

θgi = θgpar(i) + θi (5.1)

tgi = tgpar(i) +R(θpar(i))li (5.2)

θgroot = θroot (5.3)

tgroot = (x0, y0) (5.4)

where par(i) is the part index of parent of i as defined in PS, and li is the location offset of

joint with respect to the joint of its parent (e.g. default location of elbow in the reference

frame of shoulder). In case that li aligns with the direction that foreshortening occurs, liri

is used as the offset.

71

labeled first frame

…

close

far

…

(b) (c)

query pose

…

(d)

synthetic frame

(a)

(e) (f)

Figure 5.3: Pixel synthesis. Our rendering engine is based on a 2.1D representations of
images. We first decompose the labeled first frame (a) into multiple layers according to
their depths (b). The unkown pixels due to occlusion (black region) is estimated using
standard hole-filling algorithms.(c). Given a target pose (d), we warp corresponding body
parts in (c) by rotating and/or rescaling (e). By overlaying each layer according to target
depth orders, we produce a synthetic frame (f).

72

As a result, we can convert P to a global pose paremeterization:

Pg = (s, (tg, θg, r, d)1:N) (5.5)

Shape model. A shape model takes (tg, θg, r) of a part and s, and return a part mask Mi.

Typically, Mi is represented by a polygonal contour that defines a shape ([5], [26], [49]). In

this chapter, we consider mean shape model obtained by averaging annotated contours of 5

different characters in the dataset (Fig.5.4).

The first step of pixel synthesis is to decompose the first frame into multiple layers that are

ordered according to its depth. Using the annotated pose and a shape model, we extract a

pixel region for each part M0
i . Each region is divided into two types of subregions: foreground

regions that actually compose the given part, and undetermined regions of which pixel values

are unknown due to occlusion by other parts. Most layers include undetermined regions. We

estimate the unknown pixel values using standard hole-filling algorithms such as texture

synthesis [7], linear interpolation, pixels from the symmetric part or the same part. We

denote R0
i as RGB pixel values of Mi after the hole-filling.

Given a target pose Pt (and therefore Pgt), we first derive a target mask for each part M t
i , and

generate corresponding RGB pixels Rt
i using R0

i . We use standard image-based rendering

techniques to find a local affine warp from M0
i to M t

i .

Finally, by overlaying layers according to the target depth assignments, we produce a syn-

thetic frame of the target pose. If parts have been ordered from front (i = 0) to back (i = N),

the final rendered image is generated as following:

I t = I0 where Ii = (1−M t
i)Ii+1 +M t

iR
t
i (5.6)

73

Figure 5.4: Upper body shape model. The 2D shape of each body part is a polygon param-
eterized by scale, orientation, and forshortening ratio, which are mostly represented by pose
skeletons (black).

5.3.2 Pose synthesis

In this section, we describe how we define a set of poses to synthesize. The general rule

is to synthesize all possible video frames one expects to see given the first frame of the

video. Ideally, we would synthesize all possible poses, locations and scales of the human, all

possible camera translations, and all possible dynamic scene elements. We make simplifying

assumptions that the video is stabilized, and that the central figure and interacting objects

are the only dynamic parts of the scene. It turns out that such assumptions hold for a large

amount of televised footage.

Specifically, we uniformly sample parameteres in P from the following domain:

x0 ∈ [xc − 0.2W,xc + 0.2W], y0 ∈ [yc − 0.1H, yc + 0.1H] (5.7)

θshld ∈ [0, π), θelb ∈ [0, 2π) (5.8)

r ∈ [0.2, 1], d ∈ D (5.9)

, where (W,H) is dimension of the video frame with its center at (xc, yc), θ are joint angles of

shoulders and elbows, and D is a small set of depth configurations from a frontal-viewpoint

(e.g. arms are always in front of torsos).

74

(a) (b) (c) (d)

Figure 5.5: Pose synthesis. The pose pool consists of diverse poses in different scales and
locations. It includes challenging cases, such as (from left to right) self-occlusion, interacting
parts, various scales, and truncation.

50
pi
x

s = 50

s = 16 s = 8 s = 4 s = 2

synthesis
artifacts

Figure 5.6: Low resolution color space. Typically, synthesized images are presented with
significant artifacts (top). In order to mitigate the effect, we render images in low resolution
space. Even with quite low resolution (s = 4), humans can reasonably estimate upper body
poses. The resolution s is represented by the length of full upper arm in pixels.

5.3.3 Low resolution rendering

An ideal synthesis engine needs to generate a training set with two computationally demand-

ing properties; (1) it needs to be photorealistic enough so that it matches well with the real

test images, and (2) it needs to be comprehensive enough to cover all expected test frames.

In order to enhance photorealism, one can add more parameters to the synthesis engine, e.g.

shearing parameters for out-of-plane rotation or parameters for face expression and detailed

clothing models. However, since each of those introduces another axis in the joint parameter

75

space, the number of images one need to synthesize grows exponentially.

One way to address both problems is to use low resolution training images. As shown in

Fig. 5.6, the artifacts from our simple warping methods and heuristics for resolving occlusion

is significantly reduced in low resolution space. Interestingly, humans still reasonably perform

pose estimation with a resolution as low as s = 4. We quantitatively show in Sec. 5.5 that

our recognition system exhibits similar perception.

Furthermore, one needs to synthesize only a small set of images that are distinct in appear-

ance in the low resolution space. Quantitatively, reducing resolution by a factor of R reduces

the number poses by a factor of R2K , where K is the number of parts. This means that

one may use lower sampling rates in pose synthesis described in Sec. 5.3.2. We show by

experiments in Sec. 5.5 how pose estimation accuracy correlates with the number of training

images, given various resolutions.

As a by-product of using low-resolution training images, one can significantly speed up

the synthesis process by directly rendering the images in the low-resolution space. This is

achieved in Sec. 5.3.1 by projecting the 2.1D layered model and labeled/queried poses to

smaller scales. In practice, synthesizing images of s = 16 in Fig.5.6 takes 0.04s, while s = 50

takes 0.28s in a 3.0GHz single-core desktop.

Synthesizing blur: Our layered synthesis engine produces crisp edges across layers, while

actual low-resolution images are quite blurred. We mimic this blur during our synthesis by

rendering at b times the target resolution, and then subsampling the rendered image with

antialiasing. Such a procedure actually improves performance in two ways. First, generated

image features appear more realistic. Second, we can now represent a larger family of poses,

specifically b2K more poses. Perhaps surprisingly, we show that one can still resolve such

“sub-pixel” pose configurations in a low-resolution image space.

76

5.4 Inference

Intuitively, given highly customized training data for a particular video, training an accu-

rate recognition machine may be greatly simplified. We verify this hypothesis by performing

upper body pose estimation using very simple image features and learning/inference algo-

rithms. As image features, we use (low-resolutional) raw pixel values of the entire frame in

perceptually uniform color spaces such as LUV or LAB. As a classifier, we use a nearest-

neighbor regressor. That is, for each test frame we independently find the training image

with the least L2 distance in given feature space, and report its pose (after converting to

skeleton format).

(I∗,P∗) = arg min
(I,P)

‖Φ(I)− Φ(Itest)‖2 (5.10)

It is widely accepted that the most crucial property of robust image features is their invari-

ance to affine deformation, luminance, albedo, etc. As a result, modern image features are

based on normalized edge-orientations ([13], [56]) or gabor-like filter responses ([74], [50]).

However, in the scenario of tracking where there exist large consistency in appearance, less

invariant features are likely to perform competitively. In Sec. 5.5, we compare pixel-value

features with edge-based features to demonstrate this idea.

5.5 Experimental results

Dataset We use Friends dataset [76] to investigate the effect of key parameters (resolution,

features, size of training data) and to compare our approach with state-of-the-arts. Of the

18 test clips in the dataset, we use only 13 containing frontal view of humans. These 13

clips are grouped and concatenated to form 5 longer videos, each of which contains a single

77

RGB HOG oHOG LAB LUV
40

50

60

70

80

90

100

Figure 5.7: Image features. We show how the choice of image feature affects the pose
estimation accuracy. Overall, with the exception of RGB, less invariant features performs
better than standard image features. Particularly, raw pixel values in perceptually uniform
color space such as LUV and LAB significantly outperform standard edge-based features
(HOG). Color-augmented HOG (oHOG, [88]) with no contrast normalization performs better
than HOG.

character and background scene. (5 takes are split into 13 clips in the dataset.) The length

of videos range from 50 to 120 frames. Background scenes are mostly stable, but there exists

mild motion due to movement of camera and/or objects. The target task is to accurately

predict joint locations of arms (elbows and wrists), which is known to be notoriously hard

compared with other body parts.

Evaluation In all diagnostic experiments, we use as a scalar evaluation metric, the percent-

age of correctly predicted joints with 25-pixel threshold in a normalized scale. This radius

roughly corresponds to the width of fist of given character. We consider 4 joints; two elbows

and wrists. When comparing with other approaches, we present the result with full range of

thresholds as in [106] and [76].

We first compare features of various degree of invariance (Fig.5.7). HOG has rich machin-

ery to generate invariant feature space, such as spatial and orientation pooling and contrast

normalization [13]. We attempted to alleviate its invariance by building 3-channel color his-

78

16 8 4 2
40

50

60

70

80

90

100

resolution

ac
cu

ra
cy

(a)

10
3

10
4

10
5

10
6

30

40

50

60

70

80

90

100

of train

ac
cu

ra
cy

2
4
8
16
ub

(b)

Figure 5.8: Low resolution color features and training data. In (a), we show the accuracy
of pose estimation with respect to the resolution of features. The number of training images
is fixed (∼280k). The x-values are scales represented by the length of full upper arm (See
Fig. 5.6). In (b), we plot performance as a function of the number of training images
(i.e sampling rate in pose space) for each resolution of LUV features. “ub” denotes an
upper bound obtained by reporting the training pose closest to the ground truth test pose,
measured in high-resolution image coordinates. This plot reveals that high accuracy (85%)
can be theoretically obtained with a small number of rendered training images (∼4k). The
“x” denotes the number of unique quantized poses that are resolvable at a fixed resolution
(only shown for s = 2 and s = 4). The additional accuracy one obtains for s = 2 reveals the
benefit of rendering “subpixel” poses, as discussed in Sec. 5.3.3.

79

tograms (inspired by OpponentSift in [88]) and removing contrast normalization (oHOG).

This modification yields 3% improvement in accuracy. We explored different sizes of spa-

tial/orientation bin, and report the best one.

We also evaluate the simplest and the least invariant type of features, pixel-value features.

Interestingly, these features work better than the best setting of HOG by significant margin

(with the exception of RGB color space). We found that using perceptually uniform color

space such as LUV or LAB is important, presumably because they were designed to make

L2 distance more meaningful.

The next question we answer is about the working resolution of color features and its interplay

between the number of training frames. Interestingly, as shown in Fig.5.8a, we achieve

competetive accuracy using quite low resolution (s = 4), and observe a sharp drop for s = 2.

This is consistent with visual inspection of the pixel data as well; it is quite hard for a human

to see structure at low resolutions (Fig.5.6).

In fact, the correlation between feature resolution and accuracy is more subtle, since the

accuracy also depends on the number of rendered poses (or the pose space sampling rate

mentioned in Sec.5.3.3). Intuitively, the number of visually distinguishable poses must de-

crease at low resolutions. This observation suggests that one may need to render only those

poses with unique quantized configurations at a given resolution. Fig5.8b shows that “sub-

pixel” pose configurations further improves accuracy. An upper-bound analysis reveals that

a small number of poses (∼ 4K) can potentially achieve a quite high accuracy (∼ 85%),

but this may require complex image matching function (capable of deforming images while

matching). Rather, our approach is to synthesize a set of deformations with consistent

depth-layering.

Lastly, we compare our approaches with the state-of-the-art on the Friends dataset. [76]

uses an ensemble of tree models, each of them rooted on one of the 6 parts and temporally

80

15 20 25 30 35 40
20

30

40

50

60

70

80

90

100

radius

P
C

P

Elbow

ours
Zuffi et al.
Sapp et al.

15 20 25 30 35 40
20

30

40

50

60

70

80

90

100

radius

P
C

P

Wrist

ours
Zuffi et al.
Sapp et al.

Figure 5.9: We compare our best result (LUV features, s = 5.7, ∼ 280k training frames) to
other two state-of-the-arts reported on Friends dataset, [76] and [106]. We outperform with
large margin (25% at 25-pixel threshold) in the task of predicting elbow locations (left).
We perform competetively in predicting wrist locations (right)

linked only through roots, to approximate underlying loopy spatiotemporal model. [106] uses

optical flows and learned 2D articulated shape models as means to exploit pixel informations

of adjacent frames and to propagate part assignments temporally. Both methods use optical

flows and designated off-the-shelf hand detector based on assumptions on skin colors.

Our nearest-neighbor regressor predicts elbow locations significantly better than other two

methods; 93.7% versus 73.2% and 74.2% at 25-pixel threshold. For wrist, our methods is less

accurate than [76] and [106]; 54.8% versus 69.9% and 59.8% at 25-pixel threshold (Fig.5.9).

Unlike other two methods, we independently estimate poses in each frame without using

temporal models or motion features. Plus, there is no extra effort for detecting hands.

One of the benefits of simplicity in features and learning algorithm is that visualizing and

understanding how the predictor works is straightforward (Fig.5.10). For instance, a common

mistake is that hands are often confused by background objects with similar color (failure

of explain-away model). In addition, our approach of using customized synthetic frames

facilitate further error analysis. For instance, one can attempt to copy the test frame using

the given synthesis engine to understand false positives.

81

HR LR

te
st

ne
ar
es
t

(a)

HR LR

te
st

ne
ar
es
t

(b)

HR LR

te
st

ne
ar
es
t

(c)

HR LR

te
st

ne
ar
es
t

(d)

Figure 5.10: Pose estimation. We independently estimate upper body pose in each test frame
by finding the nearest training frame in low-resolutional color spaces. Although simple, our
method is robust against (self) occlusion (a) and challenging interaction of parts (b). A
common mistake is due to confusing color in the background (c, d), which are also readily
confused by human in such low-resolution space.

82

5.6 Conclusion

In this chapter, we described an approach of using synthetic training dataset to train models

highly customized to the particular video. We show that, with simple image-based rendering

algorithms, one can generate reasonably photorealistic training data that captures important

modes of variation (human poses) of given video, while maintaining its invariants. We showed

that this custom training data greatly simplify learning and inference. We demonstrated our

approach on the challenging task of estimating upper body pose of humans in videos.

5.7 Summary of thesis

In this thesis, we discussed various methods for accurately tracking people and their poses.

We considered two types of tracking task; 1) tracking bounding boxes and 2) tracking poses.

For each of those tasks, we proposed methods for a) improving apperance models and b)

exploiting temporal cues. In terms of tracking bounding boxes, we proposed multiresolution

features and motion features that are useful in detecting small people. In terms of tracking

poses, we focused on combinatorial inference on part models and highly tuned appearance

models. We demonstrated our approaches using various datasets including public bench-

marks such as Caltech Pedesrian Detection Benchmark, MindsEye dataset, and Friends

dataset.

83

Bibliography

[1] http://people.cs.uchicago.edu/~pff/latent.

[2] Minds eye dataset. http://www.visint.org/index.html.

[3] C. Anderson, P. Burt, and G. Van Der Wal. Change detection and tracking using
pyramid transform techniques. In Proc. SPIE Conference on Intelligent Robots and
Computer Vision, pages 300–305, 1985.

[4] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-
detection-by-tracking. In CVPR, pages 1–8. IEEE, 2008.

[5] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection
and articulated pose estimation. In Proc. CVPR, volume 1, page 4, 2009.

[6] O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances
using hough transforms. In CVPR, pages 2233–2240. IEEE, 2010.

[7] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A ran-
domized correspondence algorithm for structural image editing. In ACM SIGGRAPH
2009 Papers, SIGGRAPH ’09, pages 24:1–24:11, New York, NY, USA, 2009. ACM.

[8] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool. Pedestrian detection at 100
frames per second. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2903–2910. IEEE, 2012.

[9] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in varia-
tional motion estimation. IEEE TPAMI, 33(3):500–513, 2011.

[10] P. Buehler, M. Everingham, D. Huttenlocher, and A. Zisserman. Long term arm and
hand tracking for continuous sign language TV broadcasts. In Proc. BMVC, 2008.

[11] R. Collins et al. A system for video surveillance and monitoring, volume 102. Carnegie
Mellon University, the Robotics Institute, 2000.

[12] N. Dalal. Finding people in images and videos. PhD thesis, Institut National Poly-
technique de Grenoble-INPG, 2006.

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, pages I: 886–893, 2005.

84

http://people.cs.uchicago.edu/~pff/latent
http://www.visint.org/index.html

[14] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR. IEEE, 2005.

[15] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of
flow and appearance. ECCV, pages 428–441, 2006.

[16] D. Demirdjian, L. Taycher, G. Shakhnarovich, K. Grauman, and T. Darrell. Avoiding
the ”streetlight effect”: Tracking by exploring likelihood modes. ICCV, 1:357–364,
2005.

[17] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models of multi-class object
layout. In ICCV, 2009.

[18] P. Dollar, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple component learning
for object detection. ECCV 2008, pages 211–224, 2008.

[19] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the west.
BMVC, 2010.

[20] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse
spatio-temporal features. In ICCV VS-PETS, 2005.

[21] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In BMVC,
2009.

[22] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2009.

[23] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation
of the state of the art. IEEE TPAMI, 34(4):743–761, 2012.

[24] G. Dorko and C. Schmid. Selection of scale-invariant parts for object class recognition.
In ICCV03. Citeseer, 2003.

[25] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In ICCV,
pages 726–733, 2003.

[26] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari. 2d articulated human
pose estimation and retrieval in (almost) unconstrained still images. International
Journal of Computer Vision, 99(2):190–214, 2012.

[27] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Survey and exper-
iments. IEEE PAMI, 31:2179–2195, 2009.

[28] A. Ess, B. Leibe, K. Schindler, and L. Van Gool. A mobile vision system for robust
multi-person tracking. In CVPR, 2008.

[29] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL
visual object classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

85

[30] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop, 2007.

[31] A. Fathi and G. Mori. Human pose estimation using motion exemplars. In ICCV,
pages 1–8, 2007.

[32] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV,
61(1):55–79, 2005.

[33] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multi-
scale, deformable part model. Computer Vision and Pattern Recognition, Anchorage,
USA, June, 2008.

[34] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part based models. IEEE PAMI, 99(1), 5555.

[35] R. Fergus, P. Perona, A. Zisserman, et al. Object class recognition by unsupervised
scale-invariant learning. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 2. Citeseer, 2003.

[36] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. In CVPR, June 2008.

[37] D. Gavrila. Pedestrian detection from a moving vehicle. ECCV, pages 37–49, 2000.

[38] D. Gavrila and V. Philomin. Real-time object detection for smart vehicles. In ICCV,
pages 87–93, 1999.

[39] D. M. Gavrila. The visual analysis of human movement: A survey. Computer vision
and image understanding, 73(1):82–98, 1999.

[40] D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from a
moving vehicle. International journal of computer vision, 73:41–59, 2007.

[41] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey of pedestrian detection
for advanced driver assistance systems. IEEE TPAMI, 32(7):1239–1258, 2010.

[42] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
Univ. Press, 2000.

[43] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective. International
Journal of Computer Vision, 80(1):3–15, 2008.

[44] L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology, pages 53–64. Association for Computational
Linguistics, 2005.

86

[45] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. Tech-
nical report, Institute of Mathematics of the Romanian Academy and University of
Bonn, September 2012.

[46] M. Irani, B. Rousso, and S. Peleg. Recovery of ego-motion using region alignment.
IEEE TPAMI, 1997.

[47] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online appearance models for
visual tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
25(10):1296–1311, 2003.

[48] M. Jones and D. Snow. Pedestrian detection using boosted features over many frames.
In ICPR, 2008.

[49] S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people: A parameterized model of
articulated image motion. In Automatic Face and Gesture Recognition, 1996., Pro-
ceedings of the Second International Conference on, pages 38–44. IEEE, 1996.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[51] I. Laptev and T. Lindeberg. Local descriptors for spatio-temporal recognition. Spatial
Coherence for Visual Motion Analysis, pages 91–103, 2006.

[52] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In CVPR, volume 2, pages II–97. IEEE, 2004.

[53] M. Lee and I. Cohen. Proposal maps driven mcmc for estimating human body pose in
static images. In CVPR, volume 2. IEEE, 2004.

[54] Z. Lin, G. Hua, and L. S. Davis. Multiple instance feature for robust part-based
object detection. In IEEE Conf. on Computer Vision and Pattern Recognition, pages
405–412, 2009.

[55] T. Lindeberg. Scale-space theory in computer vision. Springer, 1994.

[56] D. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[57] B. Lucas, T. Kanade, et al. An iterative image registration technique with an appli-
cation to stereo vision. In IJCAI, 1981.

[58] S. Maji, A. Berg, and J. Malik. Classification using intersection kernel SVMs is efficient.
In IEEE Conf. on Computer Vision and Pattern Recognition, 2008.

[59] S. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE
Transactions on pattern analysis and machine intelligence, 14(7):710–732, 1992.

87

[60] J. M. McCarthy. Introduction to theoretical kinematics. MIT press, 1990.

[61] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. In-
ternational Journal of Computer Vision, 60(1):63–86, 2004.

[62] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images
by components. IEEE PAMI, 23(4):349, 2001.

[63] D. Nilsson. An efficient algorithm for finding the M most probable configurationsin
probabilistic expert systems. Statistics and Computing, 8(2):159–173, 1998.

[64] D. Nilsson and J. Goldberger. Sequentially finding the N-best list in hidden Markov
models. In INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLI-
GENCE, volume 17, pages 1280–1285. Citeseer, 2001.

[65] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian detection
using wavelet templates. In IEEE CVPR, pages 193–199, 1997.

[66] D. Park and D. Ramanan. N-best maximal decoders for part models. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 2627–2634. IEEE, 2011.

[67] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection.
In Computer Vision–ECCV 2010, pages 241–254. Springer, 2010.

[68] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection.
ECCV, 2010.

[69] D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár. Exploring weak stabilization for
motion feature extraction. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 2882–2889. IEEE, 2013.

[70] R. P. Paul. Robot manipulators: mathematics, programming, and control: the computer
control of robot manipulators. Richard Paul, 1981.

[71] M. Piccardi. Background subtraction techniques: a review. In Systems, Man and
Cybernetics, volume 4, pages 3099–3104. IEEE, 2004.

[72] L. Pishchulin, A. Jain, M. Andriluka, T. Thormahlen, and B. Schiele. Articulated
people detection and pose estimation: Reshaping the future. In CVPR, pages 3178–
3185. IEEE, 2012.

[73] D. Ramanan, D. Forsyth, and A. Zisserman. Tracking people by learning their appear-
ance. IEEE PAMI, pages 65–81, 2007.

[74] X. Ren and D. Ramanan. Histograms of sparse codes for object detection. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3246–3253.
IEEE, 2013.

[75] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. In
Proc. CVPR, pages 1–8, 2007.

88

[76] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In
CVPR, 2011.

[77] H. Schneiderman and T. Kanade. A statistical method for 3D object detection applied
to faces and cars. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1. IEEE Computer Society; 1999, 2000.

[78] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Human detection using partial
least squares analysis. International Journal of Computer Vision, 2009.

[79] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-
sensitive hashing. In CVPR, pages 750–757. IEEE, 2003.

[80] E. Shechtman and M. Irani. Space-time behavior based correlation. In IEEE TPAMI,
2007.

[81] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking of 3D human figures using
2D image motion. ECCV, pages 702–718, 2000.

[82] L. Sigal and M. Black. Measure locally, reason globally: Occlusion-sensitive articulated
pose estimation. In CVPR, volume 2, pages 2041–2048. IEEE, 2006.

[83] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual
tracking: An experimental survey. 2013.

[84] F. Soong and E. Huang. A tree-trellis based fast search for finding the n-best sentence
hypotheses in continuous speech recognition. In icassp, pages 705–708. IEEE, 1991.

[85] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla. Model-based hand tracking
using a hierarchical bayesian filter. IEEE PAMI, 28(9):1372–1384, 2006.

[86] Z. Tu and S. Zhu. Image segmentation by data-driven Markov chain Monte Carlo.
IEEE PAMI, pages 657–673, 2002.

[87] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian
manifolds. IEEE PAMI, 30(10):1713–1727, 2008.

[88] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for object and
scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 32(9):1582–1596, Sept.
2010.

[89] P. Viola and M. Jones. Robust real-time face detection. IJCV, 57(2):137–154, 2004.

[90] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and
appearance. IJCV, 2005.

[91] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedes-
trian detection. In CVPR, pages 1030–1037. IEEE, 2010.

89

[92] H. Wang, M. Ullah, A. Klaser, I. Laptev, C. Schmid, et al. Evaluation of local spatio-
temporal features for action recognition. In BMVC, 2009.

[93] J. Y. Wang and E. H. Adelson. Representing moving images with layers. Image
Processing, IEEE Transactions on, 3(5):625–638, 1994.

[94] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human detector with partial occlusion
handling. International Journal of Computer Vision, 2009.

[95] C. Wojek, S. Walk, S. Roth, K. Schindler, and B. Schiele. Monocular visual scene
understanding: Understanding multi-object traffic scenes. IEEE TPAMI, 2012.

[96] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In IEEE
Conf. on Computer Vision and Pattern Recognition, 2009.

[97] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 2411–2418.
IEEE, 2013.

[98] J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li. Robust multi-resolution pedestrian
detection in traffic scenes. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 3033–3040. IEEE, 2013.

[99] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models for
image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 34(9):1731–1743, 2012.

[100] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts.
Computer Vision and Pattern Recognition, 2011.

[101] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts.
In CVPR, pages 1385–1392. IEEE, 2011.

[102] C. Yanover and Y. Weiss. Finding the M Most Probable Configurations Using Loopy
Belief Propagation. In NIPS, page 289. The MIT Press, 2004.

[103] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm computing surveys
(CSUR), 38(4):13, 2006.

[104] C. Yu and T. Joachims. Learning structural SVMs with latent variables. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM New York,
NY, USA, 2009.

[105] L. Zelnik-Manor and M. Irani. Event-based analysis of video. In CVPR, volume 2,
pages II–123. IEEE, 2001.

[106] S. Zuffi, J. Romero, C. Schmid, and M. J. Black. Estimating human pose with flowing
puppets. In IEEE International Conference on Computer Vision (ICCV), pages 3312–
3319, 2013.

90

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Overview
	Multiresolution models for object detection
	Introduction
	Related work
	Multiresolution Models
	Fixed-resolution models
	Multiple fixed-resolution models
	Multiscale multiresolution models
	Multiresolution part models
	Latent multiresolution part models

	Multiresolution contextual models
	Experimental results
	Benchmark results
	Diagnostic experiments

	Conclusion

	Exploring weak stabilization for motion feature extraction
	Introduction
	Related Work
	Approach
	Stabilizing videos
	Motion features

	Experimental results
	Pedestrian detection
	Part detection

	Conclusion

	N-best maximal decoders for part models
	Introduction
	Related work
	Best and next-best configurations
	N-best decoding
	N-best maximal decoding
	Efficient implementation
	Analysis of approximation
	N-best tracking results

	Exploiting synthetic video frames for pose estimation
	Motivation
	Related work
	Synthesis engine
	Pixel synthesis
	Pose synthesis
	Low resolution rendering

	Inference
	Experimental results
	Conclusion
	Summary of thesis

	Bibliography

