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A high-throughput framework for lattice
dynamics

Check for updates

Zhuoying Zhu1,6, Junsoo Park1,2,6, Hrushikesh Sahasrabuddhe1, Alex M. Ganose 1,3, Rees Chang 1,4,
John W. Lawson5 & Anubhav Jain 1

We develop an automated high-throughput workflow for calculating lattice dynamical properties from
first principles including those dictated by anharmonicity. The pipeline automatically computes
interatomic force constants (IFCs) up to4thorder fromperturbed training supercells, anduses the IFCs
to calculate lattice thermal conductivity, coefficient of thermal expansion, and vibrational free energy
and entropy. It performs phonon renormalization for dynamically unstable compounds to obtain real
effective phonon spectra at finite temperatures and calculates the associated free energy corrections.
The methods and parameters are chosen to balance computational efficiency and result accuracy,
assessed through convergence testing and comparisons with experimental measurements.
Deployment of this workflow at a large scale would facilitate materials discovery efforts toward
functionalities including thermoelectrics, contactmaterials, ferroelectrics, aerospace components, as
well as general phase diagram construction.

Owing to its fundamental nature, properties derived from lattice
dynamics are consequential for many functional applications, such as
thermoelectrics1, contact materials, ferroelectrics2, shape-memory
alloys3,4, and all areas where phase diagram is of important considera-
tion. In particular, lattice dynamics can describe5,6 key macroscopic
thermal properties such as lattice thermal conductivity, thermal expan-
sion coefficient, and phase stability at finite temperatures. Despite its
practical utility, lattice dynamics has long been a difficult problem to
computationally describe with enough accuracy and efficiency combined
so as to be implemented in high-throughput. A general high-throughput
workflow for lattice dynamics is essential to advancematerials engineering
on multiple fronts. In particular, such a framework could be used to
establish thermal properties in materials databases such as the Materials
Project (MP)7, AFLOW8, and OQMD9, clearing novel, data-driven paths
to materials innovation.

In practice, one of the most accurate routes to theoretically describing
lattice vibration at the level of density-functional theory (DFT) is ab initio
molecular dynamics (AIMD). Correction for quantumnuclearmotionmay
further be done using path-integral molecular dynamics10,11. Due to the
immense computational cost of running AIMD, however, it is unwieldy to
be applied in high-throughput for a large-scale coverage of the material
space. Molecular dynamics using machine-learned force fields have
emerged in the past few years and have demonstrated near-AIMDaccuracy

on several occasions12,13. However, force field training itself still requires a
considerable amount of ab initio calculations (at least hundreds of trajectory
structures)14.

Amuchmore cost-effectiveway to describe lattice dynamics is in terms
of interatomic force constants (IFCs). They are defined within the Taylor
expansion of the total energy with respect to atomic displacements (u),
whose derivative yields interatomic forces (Fa

i ) of atom a (at its equilibrium
site) in direction i as:
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where Φ represents interatomic force constants (IFCs) within a cluster of
atoms (e.g., a, b) in their respective Cartesian displacement directions
(e.g., i, j).

The second-order IFCs describe pairwise interactions and thus define
harmonic phonons. These can be easily obtained using the now widely
known methods such as density functional perturbation theory (DFPT)15

and the finite-displacement method16 at minimal to moderate computa-
tional expense. Macroscopic thermal properties such as the vibrational free
energy, entropy, and heat capacity at the harmonic level can then be derived
directly from the theory of phonons. Anharmonic IFCs of third-and-higher
order serve as perturbation to the harmonic phonons. They are directly
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related to other critical thermal properties such as thermal expansion,
thermal conductivity, and dynamical phase stabilization and provide cor-
rections to the harmonic free energy. In contrast to the second-order IFCs,
the direct calculation of anharmonic IFCs has long been formidable.
Usually, DFPT is applied only for second order and could be done for third
order17, but is essentially infeasible beyond this due to the 2n+ 1 theoremof
the linear response theory that requires second-or-higher-order derivatives
of electronic wave functions18. As for finite-displacement, the combinatorial
explosion of tensor elements inΦd (d ≥ 3) with increasing order of IFCs and
growing numerical errors severely hampers its application to the anhar-
monic terms. The finite-displacement approach has been taken for third-
order IFCs19, but this is inadequate for fourth-order IFC. Utilizing poly-
nomial machine learning potentials can reduce the computational costs by
one order of magnitude compared with the conventional finite-
displacement approach for lattice thermal conductivity calculations, as
demonstrated recently by Togo et al.20. A high efficiency even at the third-
order level is the preferred guarantee for a truly wide-scale deployment to
small and large systems.

Alternatives for resolving the challenge of calculating anharmonic IFCs
have emerged in the past decade. Sampling IFCs using high-information-
density configurations can make the anharmonic simulations more
achievable at a reasonable expense. This procedure is crucial for the sub-
sequent analysis of the thermodynamic properties of materials. Available
packages include CSLD21, ALAMODE22, TDEP23,24 and HiPhive25. Mathe-
matically, these aim to extract IFCs by minimizing k F�AΦk2 subject to
physically inspired constraints, where A is the sensing matrix containing
the elements of the atomic displacements constructed from sampled con-
figurations and F is a vector of forces on all atoms from the configurations.
This approach in principle allows for a one-shot fitting of Φ up to any
desiredorderwith relatively few training sets.Minimizationalgorithmsused
range from ordinary least-squares to sparse-recovery methods such as L1
regularization. The emergence of efficient methods for anharmonic IFCs
and the subsequent development of tools for using anharmonic IFCs to
compute macroscopic thermal properties have paved the road for high-
throughput computing. Nevertheless, several practical challenges related to
automation remain, which we address in this paper.

Here we present an automated workflow designed to (i) provide a
bridge between atomic quantum simulations at 0 K and macroscopic
thermal properties at finite temperatures, (ii) help to realize large-scale
automated anharmonic phonon calculations, and (iii) serve as a user-
friendly pipeline with benchmarked input parameters. This comprehensive
lattice dynamics workflow calculates beyond harmonic phonon properties
of interest, including lattice thermal conductivity (LTC), coefficient of
thermal expansion (CTE), finite-temperature phonon dispersions, and
vibrational free energy at finite temperatures. It uses a suite of software
packages and is optimized with suitable input parameters (e.g., supercell
size, cutoff radius for fitting IFCs, etc) that balance accuracy and compu-
tational costs. Some immediatepotential applications of the results are for (i)
high-throughput calculations of thermoelectric figure of merit (zT), using
combined anharmonic phonons and electron scatteringproperties obtained
from the recent development of AMSET26, (ii) phase transitions of meta-
stable materials at finite temperatures, and (iii) searching for negative
thermal expansion (NTE) materials.

We illustrate input parameter benchmarking, output accuracy eva-
luation, and performance speedup estimate of the workflow and showcase
temperature-dependent thermal properties for selected metastable materi-
als. To aid reproducibility, we present the specific parameters used in our
workflow after systematic benchmarking, e.g., the selected fittingmethod of
rfe and convergence supercell of ~20 Å. More detailed descriptions of
embedded parameters are given in Tables 1 and 2. Our proposed workflow
can achieve high accuracy for downstream results, including (i) an R2 > 0.9
in thermal expansion coefficient and lattice thermal conductivity across
more than 30materials and (ii) phase transition temperatureswith less than
<10% error, after considering temperature-dependent free energy correc-
tions. Notably, our approach requires 2-3 orders of magnitude less

computational time compared with the finite-displacement method, mak-
ing the widescale calculations of accurate thermal properties tractable.
Finally, implementation of our proposed workflow in the open source
package of atomate27 makes it straightforward to perform these calculations
without dedicated user tweaking of HiPhive fitting and DFT parameters,
allowing for the approach to be automated.A comprehensive plan for future
improvements in computational efficiency and accuracy is outlined in the
Discussion section.

Results
Overview of high-throughput framework
The lattice dynamics workflow (Fig. 1) involves accurate force constants
fitting and thermal property calculations. Themain steps andpackages used
for each step are given as follows:

Step 1: A stringent structure optimization of the initial primitive cell and
self-consistent field (SCF) force calculations in small-displaced super-
cells. All DFT calculations are performed by the Vienna ab initio
simulation package (VASP)28–30, although in principle any other DFT
package could be used.
Step 2: The harmonic and anharmonic force constantsfitting (IFCfitting
performed by the HiPhive25 code). We select the HiPhive package for
IFCs fitting due to its seamless Python-integrability and flexibility of
fitting methods.
Step 3: Renormalization step (if applicable) to obtain the stable effective
phonons at finite temperatures. Harmonic and anharmonic thermal
properties are calculated by Phonopy16 and Phono3py31, respectively.

Table 1 | The cutoff radii for 2nd, 3rd and 4th order of force
constants fitting used in the workflow according to the mean
elemental period number of a compound

Fitting cutoffs (Å) for nth order of force constants

Elemental period
number

n = 2 n = 3 n = 4

1 5/5.25/5.5 3/3.2/3.4 2.5/2.65

2 6/6.5/7 3.5/3.9/4.3 3/3.3/3.6

3 7/7.75/8.5 4.5/5.1/5.6 3.5/3.95/4.4

4 8/9/10 5.5/6.25/7 4/4.6/5.2

5 9/10.25/11.5 6/6.9/7.9 4.5/ 5.25

6 10/11.5/13 6.5/7.6/8.8 5/5.9

7 10.6 7/8.3/9.6 5.6/6.5

According to themean elemental period number of the compound, up to 27 sets of cutoffs are used
for IFC fitting and the best fit that leads to the lowest RMSE will be selected for the following
procedures.

Table 2 | The key parameters implemented in the workflow

Step Parameter
category

Default values in the workflow Related
procedure

1 ENCUT 600 eV VASP

1 Functional PBEsol VASP

1/2 Perturbing
method

FixedDisp:[1-3-8-10] (in the unit
of picometer)

VASP/HiPhive

1/2 Configs per disp nsites/2 (cubic system); nsites/

2×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48=ðNsymmÞ

q
(non-cubic

system)

VASP/HiPhive

1/2 Supercell size 20 ± 2 Å, number of atoms > 150 VASP/HiPhive

2 Fitting method Recursive Feature
Elimination (RFE)

HiPhive

2 Cutoff radii see Table 1 HiPhive

nsites: number of atoms in a primitive cell.
Nsymm: number of space group symmetry operations.
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Step 4: Lattice thermal conductivity from the Boltzmann transport
equation calculated by ShengBTE32,33 or Phono3py34.
The overall workflow is written within the open source package of

atomate27, which works in conjunction with the Fireworks35 package for job
submission and management. Common structure generations and trans-
formations are handled by pymatgen36 and ASE37 codes. Atomate stream-
lines the creation of standardworkflows for variousmaterial propertieswith
minimal input, usually only a crystal structure. The atomate package has
been used in many downstream materials science studies to reproduce
various types of simulations on users’ systems of interest. Some of the
capabilities added through the integration with atomate include:
• automated job submission and coordination at computing facilities
• job metadata storage in database
• simulation output parsing and storage in database
• job error recovery
• file I/O between simulations

Initial candidate structures are retrieved from the MP database7.

Parameters benchmarking
We note that the overall workflow requires the selection of a multitude of
input parameters. Such parameters are typically adjustedmanually, which is
infeasible for high-throughput calculations. Here, we provide a concise
summary of the most critical parameters of our workflow with bench-
marking,with the goal of enabling automatic selectionof optimal inputs and
ensuring consistency across large-scale calculations.

Functional. It is essential to obtain precise lattice parameters for accurate
phonon calculations. In the workflow, all DFT calculations are performed
using Perdew-Burke-Ernzerhof revised for solids (PBEsol)38 exchange-
correlation functional and projector-augmented wave pseudopotentials
(PAW)39,40. PBEsol is selected over PBE because the latter tends to over-
estimate lattice parameters38. Furthermore, from the recent work by Ning
et al., the PBE functional is shown to underestimate the phonon frequencies
in their testing cases of GaAs, Fe, NiO41. The r2SCAN functional is also a
viable option, but it is not set as the default due to computational costs.
According to the extensive benchmarking by Kingsbury et al.42, meta-GGA

(generalized gradient approximation) functionals such as r2SCAN are
usually 2-4 times more expensive than GGA functionals such as PBE and
PBEsol.

Supercell size. Large supercells can describe higher degrees of disorder,
allow larger cluster sampling cutoffs, and reduce errors due to the peri-
odic boundary condition, but at the expense of higher computational
costs. The upper bound of the cutoff radius (the largest interaction dis-
tance of any order IFC) is capped by the supercell size. In theory, accuracy
should improve as the cutoff radii for IFC fitting and supercell sizes
increase because a larger number of IFC components canmore physically
describe lattice dynamics (barring overfitting). For instance, Eriksson
et al.25 showed that the phononmodes ofmonolayerMoS2 are converging
when the second-order cutoff radius is larger than 9 Å, requiring a
supercell lattice of at least 18 Å. However, larger supercells incur greater
CPU and memory requirements.

To optimize the supercell size selection, we compared the root-mean-
square-error (RMSE) of IFC fitting and the computational costs (VASP
runtime) for 9 cubic structures including body-centered cubic (Ba, Ca, Sr),
zincblende (GaAs, GaP, BP) and rocksalt (NaCl, MgO, BaO) in 3 supercell
sizes (Fig. S2) and averaged the results for each size (Fig. 2a). For the
consistency of the computational cost evaluation, we run all DFT calcula-
tions using 4 Cori-KNL nodes on NERSC (Intel Xeon Phi 7250 Processor:
68 cores@1.4GHz, 96GBDDR4, 16GBMCDRAMmemory per node). The
HiPhive step duration for different fitting methods (Fig. 2b) was done on 1
NERSC Perlmutter CPUnode (2x AMDEPYC 7713Milan CPUs: 64 cores
per CPU@2.0GHz, and 512GB DDR4 memory).

We found that a lattice vector of around 20 Å is the optimal choice
combining high accuracy and relatively low costs (average RMSE of 7.0
meV/Å and VASP runtime of 10.4 node hours). Utilizing a larger supercell
of 24Å yields amodestly reduced average RMSE (6.4meV/Å) but comes at
more than 2 times increase in computational demands comparedwith 20Å.
In a smaller supercell (~16Å), the averaged RMSE increases marginally by
3.2meV/Å, but crucially, certainmaterials (BaO,GaP, andGaAs) exhibit an
over 30%RMSE increase.The individualRMSEandVASP runtime for each
structure is presented in Supplementary Information Fig. S2. This incon-
sistency, coupled with unconverged anharmonic properties, especially for

Fig. 1 | Overview of the lattice dynamics workflow.
Preparatory steps and required manual inputs are
colored in yellow. Note that bulk modulus as the
input can either be retrieved from the Materials
Project database or obtained from DFT calculations
using the previously implemented workflow in
atomate60. The core steps of the workflow are
colored in fog blue. Decision points are colored in
orange. Quantities of interest stored in the database
are colored in ocean green. Other quantities (inter-
mediate data or targeting results), which are not
stored in the database, are colored in magenta.
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BP andBaOas shown in Fig. S11(c, d), renders 16Å an inadequate supercell
lattice for reliable results. Thus, to strike a balance between accuracy and
computational efficiency, a carefully benchmarked supercell size (lattice
vectors 20 ± 2 Å and a minimum of 150 atoms per supercell) has been
adopted in our workflow. It should be noted that, for low-symmetry lattices
that are particularly obtuse or acute, we perform a Lenstra-Lenstra-Lovasz43

lattice basis reduction to obtain a better set of orthogonal lattice vectors as
the initial input structure.

Cutoff radius. Selecting the cutoff radius (maximum interaction distance
between atoms in a cluster space) for different orders of IFC is critical for
quality fitting. The number of IFC components grows combinatorially
with cutoffs, which can be especially limiting for higher-order IFCs, even
with implemented symmetry and sum rules constraints in HiPhive.25,44.
This again requires a trade-off of accuracy and computational feasibility
at the high-throughput level. If too large cutoffs are used, not only does
computational demand quickly increase to an undesirable level, but the
accuracy may also decrease due to parameter-equation imbalance by
underfitting. If cutoffs are too small, on the other hand, lattice dynamics
may not be captured to a sufficient level of physical accuracy.

To balance these considerations, we implemented an automatic cutoff
generator based on the input structure’smean elemental period. Table 1 lists
the cutoff values for 2nd, 3rd, and 4th order, corresponding to the mean
elemental period number (abbreviated as the period number in Table 1,

ranging from 1 to 7). A compound’s mean elemental period is calculated
according to each element’s period number and the chemical stoichiometry.
For a given compound, we explore 2 to 3 cutoff options in each order,
resulting in (up to) 27 cutoff sets for [2nd, 3rd, 4th] IFCs fitting. All valid
cutoff sets are calculated via HiPhive process; the best-fit is subsequently
employed for the rest procedures of the workflow. The RMSE convergence
test for 9 cubic systems (see Fig. S1 and S3) shows our cutoff generator leads
to convergedfitting results. Furthermore, the choiceof a second-order cutoff
significantly impacts the convergence of RMSE, restricted by supercell sizes.
Effective coordination of supercell size and cutoff parameters is essential for
achievingRMSEconvergence.Taking cubicGaAsas an example (Fig. S1), in
4 × 4× 4 supercell (16Å lattice), the RMSE fluctuates at ~ 20meV/Å among
27 sets of cutoffs before converging to 10meV/Å in 5 × 5 × 5 supercell (20Å
lattice).

IFC Fitting Approach. We compare IFC fitting methods primarily
focusing on three criteria: the error (RMSE), the cost (HiPhive runtime),
and the convergence (% Converged). We applied each set of cutoffs for
the same suite of 9 cubic structures as in Fig. 2a in a 20 Å lattice and
measured the time of the HiPhive fitting. If it can not be finished within
our wall time (2 hours here, which should be rather sufficient based on
our experience), this single fitting is regarded as unconverged, and we
compute the ratio of converged HiPhive fitting operations among 9
(materials) × 27 (cutoff sets) total runs for each fitting approach. From
our benchmarking results depicted in Fig. 2b, least squares (LS) is the
fastest method but it suffers from low accuracy and high uncertainty,
evidenced by a high RMSE and large error range. This is unsurprising
since IFC matrix is known to be sparse and near-sighted, and least-
squares cannot favor sparse recovery21. All other methods are capable of
favoring sparse recovery and offer obviously better RMSE than the least-
squares. Among them, we find that 26% of the cases using the elastic net
regularization and 14% of the cases using the least absolute shrinkage and
selection operator (LASSO) fail to converge, which are substantial pro-
portions. Recursive feature elimination (RFE) shows very similar RMSE
and speed to LASSO (see Table S3) but with essentially 100% con-
vergence. Automatic relevance determination regression (ARDR) has a
bit higher RMSE than RFE. All things considered, we select RFE as the
default IFC fittingmethod in the workflow (see Table 2), but the usermay
override this default with anothermethod facilitated by our integration of
importing methods from Scikit-learn45. We note that the use of RFE has
also been recommended by the HiPhive developers46.

There also exist multiple modes of IFC fitting in terms of the order in
which they are fitted and to what displacements. Themost prevalent practice
is fitting all IFC orders in a single shot, but one could fit them separately, e.g.
harmonic-first then anharmonic, or sequentially by order, using the same or
separate training sets for each. Fitting all IFCs in one shot using all training
configurations soundsmost straightforward, and ideally, forces of the correct
order would perfectly distribute to IFC parameters of their corresponding
orders. In practice, however, the inevitably imperfect training set and fitting
errors cannotguarantee this toadesirable extent. Fittingharmonic IFCsusing
large displaced training structures is problematic and lacks physical justifi-
cation. Harmonicity is predominantly present in the region of small dis-
placements, while anharmonicity becomes significant at larger
displacements. Numerically, large atomic displacements in fitting harmonic
IFCs at 0 K could fictitiously attribute what in reality are anharmonic con-
tributions to harmonic IFC description, as has been observed by a recent
systematic study of thismatter47. As such, we decide tofit harmonic IFCs first
to forces in the small-displacement set, and then fit anharmonic IFCs to the
residual forces from the large-displacement set with the harmonic forces
subtracted out. This decision of separate order, separate-training-set fitting
affects our subsequent decision of the supercell perturbing method.

Perturbingmethods. A significant advantage of the method used in our
workflow lies in employing the high-information-density configurations
(displacing each atom in a supercell), resulting in reduced computational

 

 
 b 

a 

Fig. 2 | Supercell size and fittingmethods benchmarking in terms of accuracy and
computational costs. a The averaged RMSE (marked in blue squares) and VASP
runtime (marked in purple squares) of 9 cubic structures at different supercell sizes
(16, 20, 24 Å). The lines show the trend of RMSE and runtime as supercell size
increases. The averaged numbers of atoms in supercells across the 9 cubic structures
are 120 (16 Å), 229 (20 Å), and 388 (24 Å), respectively. b The averaged RMSE
(marked in blue squares), HiPhive runtime (marked in purple squares), and the ratio
of converged fittings (% converged, marked in orange squares) across various fitting
methods for the same benchmark suite of 9 cubic structures. Here ARDR, EN,
LASSO, LS, OMP, RFE, and RIDGE in fitting method represent Automatic Rele-
vance Determination Regression, ElasticNet regularization, Least Absolute
Shrinkage and Selection Operator, Least Squares, Orthogonal Matching Pursuit,
Recursive Feature Elimination and Ridge regression, respectively.

https://doi.org/10.1038/s41524-024-01437-w Article

npj Computational Materials |          (2024) 10:258 4

www.nature.com/npjcompumats


costs, particularly in terms of VASP runtime. Therefore, themethod used
to perturb the structure becomes crucial. We explored two approaches:
the Monte Carlo (MC) Rattle method25 and the standard Fixed Dis-
placement (FixedDisp) method.

TheMC-rattle method, as implemented in HiPhive, generates realistic
random atomic displacements with a Monte Carlo step to avoid unrealis-
tically small interatomic distances which may lead to large repulsive forces.
Initially, we explored thismethod due to its capability to produce physically
representative displacement patterns. However, we opted against its con-
tinued use for twoprimary reasons: (i) The difficulty of separating small and
large displacement sets for the aforementioned separate fitting of harmonic
and anharmonic IFCs and (ii) the reliance onmaterial-dependent empirical
amplitude for rattling. For (ii), we need to introduce a second scheme of
tuning the standard deviation forMC rattle to ensure acceptable outputs as
shown in Fig. S10, but this is difficult to automate. We note that the pre-
dicted thermal properties, including lattice thermal conductivity, are found
highly sensitive to these rattling settings (see Fig. S13b for further details).
Therefore, we have since opted to perturb supercells with consistent and
fixed displacements regardless of material type.

The Fixed Displacement method, as implied by its name, generates
displacements of a fixed, predetermined magnitude in random directions
for each atom in a given supercell. This approach allows for a distinct
separation for harmonic force constant extraction across different structure
configurations. We designate displacements of ≤ 0.05 Å for harmonic IFC
fitting and > 0.05 Å as anharmonic fitting. We benchmarked two sets of
Fixed Displacements: (i) [0.01 Å, 0.03 Å, 0.1 Å, 0.3 Å] (labeled as [1-3-10-
30] in the unit of picometer), and (ii) [0.01Å, 0.03Å, 0.08Å, 0.1Å] (labeled
as [1-3-8-10]) (see Fig. S9) by comparing their RMSE from fitting and
calculated CTE. The set of [0.01 Å, 0.03 Å, 0.08 Å, 0.1 Å] demonstrates
significantly lower RMSE and more accurate CTE compared with experi-
mental data. Consequently, we choose this set as the default displacements
for perturbing structures and multiply the configuration number based on
the primitive cell size and structure symmetry as discussed in the next
session. It is worth noting that the default setting we suggested here [0.01Å,
0.03Å, 0.08Å, 0.1Å] is not the universally optimal perturbing distances for
all materials. For strongly anharmonic materials, such as cubic ZrO2

48, β-
GeTe49, BCC Zr50 (as shown in Fig. 7), larger displacements up to 0.5Å are
necessary to avoid large RMSE in IFC fitting and unreliable anharmonic
properties caused by insufficient small-displaced training dataset.

Number of configurations. To ensure parameter-equation balance for
fitting accuracy, it is imperative to generate a sufficient number of
training configurations for DFT force calculations. Lower-symmetry
crystals generate more symmetry-independent IFC parameters and
necessitate a more extensive sampling of atomic configurations to
accurately describe IFC-governing phonon behaviors and vibrational
properties, especially when handling anharmonicity. Our determination
of configurations is based on two aspects: (i) Symmetry factor, which is set
to 1 for the cubic system.Other crystal systems use the factor expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48=Nsymm

q
, where Nsymm is the number of point group symmetry

operations and 48 is the highest symmetry operation number forOhpoint
group, (ii) Site factor, which is set as the number of atoms in a primitive
cell divided by 2. We multiply the two factors and round it to the nearest
integer as the configuration number for each displacement. The default
set of displacements are [0.01 Å, 0.03 Å, 0.08 Å, 0.1 Å], which we have
discussed above. With this setting for the number of configurations, the
calculated outputs (CTE and LTC) demonstrate a high level of accuracy
(R2 > 0.9 compared with experimental values, see details in Coefficient of
Thermal Expansion, and Lattice Thermal Conductivity sections). We
note that usually, a handful ( < 10) of perturbed structures prove adequate
for extracting higher-order force constants in simple cubic systems such
as rocksalt and zincblende (Fig. S12 and Table S4).

Evaluation of phonon density of states
Harmonic phonon dispersion and density of states (DOS) has become
routine and readily available to use in many software packages51 such as
Phonopy16. We evaluate the harmonic phonon DOS computed from our
workflow, comparing it with phonon-db developed by Togo et al. (available
in the Materials Data Repository52). The assessment is carried out utilizing
the Pearson coefficient as a quantitative measure of spectral similarity. As
part of the pre-processing procedure, the y-axis values of phononDOSwere
scaled by the total area of DOS (normalization) for the unit cell basis.
Notably, the direct comparison (labeled as unshifted in Fig. 3c) across 14
materials (BP, GaP, AlAs, AlSb, ZnTe, ZnSe, CdSe, CdTe, BeTe, GeTe, InP,
MgO, NaCl, KCl) exhibits a modest correlation in the DOS plots obtained
by ourworkflowand from the phonon-db. TheDOS curves look similar but
with an obvious major peak shift (Fig. S7). To determine the origin of the
observed x-shift in the highest peaks, we compared all inputs provided in
phonon-db. The root cause of the observed shift appears to be the

Fig. 3 | Accuracy benchmarking of phonon density of states and the non-analytic
term corrected phonon dispersion of NaCl. a, b The phonon DOS of BP com-
puted from our workflow and data from phonon-db52 before any x-axis shifting
(unshifted) and after aligning the highest peak (with x-shift). c The boxplot of
Pearson coefficients shows the enhanced phonon DOS similarity after align-
ment (with x-shift) from 14 materials labeled in e. d Ionic crystal NaCl needs a

combination of non-analytic correction (NAC) and long-range correction
(LRC) to replicate the phonon dispersion computed by Phonopy (with NAC
term). e The heatmap of Pearson coefficients among 14 materials (BP, GaP,
AlAs, AlSb, ZnTe, ZnSe, CdSe, CdTe, BeTe, GeTe, InP, MgO, NaCl, KCl). All
DOS plots are given in Fig. S7 and S8.
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underestimation of lattice parameters in phonon-db, coupled with sub-
stantially lower energy cutoff values (ENCUT) for structure relaxation. In
contrast, our workflow adopted a consistent ENCUT of 600 eV (as listed in
Table 2), promoting enhanced accuracy and convergence. The volume
difference of the relaxed structures due to thedifference in choice ofENCUT
is plotted in Fig. S6. The consequential adjustment in the x-shift (better
alignment as shown in Fig. S8) improves the averaged Pearson coefficients,
rising from 0.41 to 0.82 for the evaluated 14 materials (Fig. 3c, e).

In ionic or polar solids, long-range Coulomb interactions lead to a
significant separation between the longitudinal optical (LO) and transverse
optical (TO) phononmodes at and near the zone center ( q!! 0), leading
to LO-TO splitting near the Γ point. To accurately represent the phonon
dispersion in such systems, a non-analytic correction (NAC) term should be
included, which accounts for themacroscopic electric field generated by the
relative displacements of charged ions.

Within Phonopy, the NAC term is typically integrated into the cal-
culation of the dynamical matrix by specifying the Born effective charges
(Z�

i;αβ) and the electronic part of the static dielectric tensor (ϵ1αβ)
53.

However, the direct application of the NAC term in the HiPhive fitting can
not fully address the long-range Coulomb interactions arising from the
macroscopic electricfield. It showsdiscernible oscillations inphononmodes
at the Γ point, as illustrated in Fig. S5b when applying the NAC only. To
rectify this, it is crucial to exclude the long-range force contributions of 2nd-
order force constants, akin to themethod implemented in CSLD54, followed
by a refitting of the short-range force constants. Subsequently, the long-
range contributions are reincorporated into the short-range IFCs and the
overall IFCs yield a precise phonon dispersion with this long-range cor-
rection (LRC). Fig. 3d demonstrates the congruence of the harmonic pho-
non dispersion derived from HiPhive (with NAC and LRC) and that from
Phonopy (with NAC) in NaCl. For less ionic (more covalent) crystals, the
influence of theNAC term ismarginal, as evidenced inBP (see Fig. S5a).We
offer users the ability to enable the NAC-LRC correction feature in the
workflow if they want to prevent LO-TO splitting in harmonic phonon
dispersions. By default, this setting is turned off to conserve computational
time due to its negligible impact on anharmonic properties such as CTE
and LTC.

Coefficient of thermal expansion
The coefficient of thermal expansion describes the change of lattice
parameter (linear CTE) or volume (volumetric CTE) as a function of

temperature. The measurement of thermal expansion coefficients is
pivotal in understanding the thermomechanical properties of materials in
applications ranging from metal and alloys in aerospace to electronic
components55. While the experimental approach for CTE measurements
can be employed using either an absolute method or relative techniques
regarding a reference material56, theoretical studies have traditionally
relied on the quasi-harmonic approximation (QHA)57–59.

In this workflow, we compute the thermal expansion coefficient
using the Grüneisen parameter through the associated Phono3py31

routine (seeMethods for more details). Quantities including 3rd-order
IFCs, heat capacity, and bulk modulus are required to calculate the
Grüneisen parameter and subsequently the linear CTE. Only the bulk
modulus is retrieved from the MP database or determined from a
separate workflow60 while other intermediate data are obtained from
this workflow. In Fig. 4, the calculated CTE for more than 30 materials
covering Zincblende, Rocksalt, and Wurtzite crystal systems are
compared with the experimental CTE (see detailed values in Supple-
mentary Information Table S5). The data are presented in log-log scale
to effectively capture the wide range of evaluated materials’ CTE,
spanning from 10−6 to 10−4 K−1. The coefficient of determination (R2)
from linear regression among 35 materials’ raw data (not log-log scale)
is 0.91, indicating our computed CTE from the workflow is in excellent
agreement with the experimental data.

Lattice thermal conductivity
We calculate lattice thermal conductivities in the reciprocal space using
Boltzmann transport formalism and perturbation theory to phonon-
phonon scattering22,61. We limit ourselves to three-phonon scattering for
two reasons. First, the four-phonon scattering calculation is too demanding
to be carried out at a large scale54,61, which is our ultimate objective. Second,
three-phonon scattering is sufficiently accurate in most cases62, and even
when its accuracy becomes insufficient, e.g. for highly anharmonicmaterials
with very low LTC and strong 4th-order interaction, it is still sufficient for
predicting qualitatively very low LTC for those materials47. These materials,
not many in the grand scheme of things, can be subject to deeper, targeted
studies involving four-phonon scattering once identified.

Here, we present a comprehensive analysis of LTC for 29 binaries
and ternaries (mostly overlapped with the materials in the CTE section,
the difference is due to the availability of experimental data for parti-
cular structures). As noted earlier, we found the thermal conductivity
calculation is very sensitive to the supercell size: a smaller-than-
recommended supercell (e.g., 16 ± 2 Å) can lead to an incorrect pre-
diction of LTC (see Fig. S11).We store the 2nd and 3rd orders of IFCs in
the proper formats for subsequent use in either ShengBTE or Phono3py
for LTC calculations. The default choice is using ShengBTE since
Phono3py34 tends to slightly underestimate the LTC as compared to
ShengBTE from our tests (Fig. S13a, S14a) and requires more compu-
tational time (Fig. S14b). However, for certain cases such as hexagonal
Wurtzite materials in Fig. 5, in which a locally adaptive broadening
algorithm in ShengBTE can not ensure convergence, we used Phono3py
(tetrahedronmethod implemented for the Brillouin zone integration) to
perform the LTC calculations in the workflow.

Figure 5 andTable S6 demonstrate our calculated thermal conductivity
in this workflow is in remarkable agreement with the experimental values
(R2 = 0.98 for LTC data). The benchmarking results for both CTE and LTC
as downstream outputs validate the accuracy of the anharmonic force
constants produced in our workflow using the selected parameters.

Speedup Estimation
We benchmark the speedup of our workflow relative to the conventional
finite-displacement method (configurations generated by Phono3py) by
comparing the consumed node hours of DFT calculations. The primary
focus is on the vastly reduced VASP runtime due to the reduced number of
displaced-supercell configurations for quality results. Extra time is required
for the IFC fitting and LTC calculations, even though theDFTprocess takes

Fig. 4 | Comparison between the calculated linear coefficient of thermal expan-
sion (CTE) and the experimental values at 300 K. The evaluated materials are
among various crystal types including: Zincblende (GaAs, GaP, GaSb, BP, InAs,
InSb, InP, ZnTe, ZnSe, ZnS, AlAs, AlSb, CdTe, CdSe), Rocksalt (MgO, BaO, CaO,
SrO, KCl, KBr, NaCl, NaBr), Wurtzite (h-ZnO, h-CdS, h-BeO, h-GaN, h-AlN) and
others (Al, Zn, Ca, Li2O, Rb2O, BaSnO3, BaRuO3, CaMg2Sb2). For anisotropic solids,
such asWurtzites, CTE(∥) (to c-axis) is used for the plot. Table S5 lists more detailed
data onCTE. R2 = 0.91 from the linear regression fitting here among all thematerials.
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up the majority of time (85%) in the workflow as shown in Fig. S14c. This
assessmentwas conducted across a range of binary and ternary compounds,
encompassing all seven distinct crystal systems. The conventional finite-
displacement method requires many more configurations than we need in
this workflow.We averaged five random samples (by Phono3py) and three
configurations (by our workflow) to estimate the total VASP runtime. All
the VASP calculations were done under the same supercomputer system
setting (4 Cori-KNL nodes on NERSC, detailed node info: Intel Xeon Phi
7250Processor: 68 cores@1.4GHz, 96GBDDR4, 16GBMCDRAMmemory
per node) tomaintain consistency. The runtime, number of configurations,
and supercell size are given in Table S4.Ourworkflow requires 2-3 orders of
magnitude less computational time compared with the finite-displacement
method as shown in Fig. 6, which finally makes widescale calculation of
anharmonic thermal property calculations attainable.

Finite-temperature phonons
Although the 0Kphonons reasonably describe the lattice dynamics ofmany
materials, they break down for materials with imaginary frequencies
(unstable phonon modes). Such dynamical instability occurs when the
harmonic potential is inverted in certain vibrational directions. Materials
with dynamical instability can onlymanifest in practice if the temperature is
high enough to increase atomic displacements beyond the inverted har-
monic region, at which point the system can be stabilized by anharmonic
potentials. This high-temperature lattice dynamics can yield effective har-
monic phonons that are fully real to the indication of dynamical stability. In
this workflow, we adopt a renormalization procedure63 using 4th-order
anharmonic force constants to efficiently implement finite-temperature
phonon calculations. This method’s advantage lies in not requiring any
additionalDFT calculations beyond those for the initial fitting for harmonic
and anharmonic force constants. A detailed explanation of the renormali-
zation step is provided in the Methods section.

We benchmark the effect of renormalization for threematerials: ZrO2,
GeTe, and Zr. The tetragonal-to-cubic transition of ZrO2 occurs at a very
high temperature of 2650 K64,65, and the harmonic phonon dispersion of
cubic ZrO2 at 0 K shows severe instability with very negative imaginary
modes as shown in Fig. 7b. Aswe increase the renormalization temperature,
we find the imaginary phononmodes at the X point turning real at 2500 K,
which is very close to the experimental transition temperature of 2650 K.
However, as we discuss in more detail later, phonons becoming real is a
necessary but not sufficient condition for the phase’s manifestation. In
GeTe, a semiconductor that exhibits a reversible phase transition between a
rhombohedral and cubic structure, our results indicate the imaginarymodes
of the cubic phase at theΓpoint vanishing around400K.However, the cubic
phase does not manifest experimentally until 650 ± 100 K66. In BCC Zr, we
find the imaginary modes around the N point becoming real at around 700
K, but the experimentalHCP-to-BCCphase transition temperature ismuch
higher at around 1135 K67. For a phase to manifest, it must not only be
dynamically stable (real phonons) but also have the lowest free energy
among all competing phases. This is investigated in the next section.

Free energy and phase transition
For a phase to be the most stable and thus manifest experimentally, it must
be bothdynamically stable and shouldhave a lower free energy thanall other
competing phases. Fig. 8 shows that our workflow can describe phase
transition rather well with renormalized phonons and vibrational free
energy.

Upon heating, Zr undergoes HCP-to-BCC phase transition at
approximately 1135K67. By the quasi-harmonic free energy of temperature-
dependent (TD) phonons (FQHA) only, the HCP phase yields lower free
energy than the BCC phase from 0 K to 1500 K(ΔF always positive), failing
to predict theHCP-to-BCCphase transition entirely.Once anharmonic free
energy correction (Fanh) is applied (seeMethods for details), the differential
free energies (ΔF) of Zr can cross zero at around 1100 K (Fig. 8a),
demonstrating a very accurate prediction for phase transition temperature.
Since Zr is a metal, we separately calculated and included electronic free
energy in plotting Fig. 8a, which is computed as

Fe ¼ �kBT
Z

D f logðf Þ þ ð1� f Þlog ð1� f Þ� �
dE ð2Þ

where f(E) is the Fermi-Dirac distribution andD(E) is the electronic density
of states calculated using the tetrahedronmethod68. Electronic free energy is
not a part of the workflow, however.

In the case of ZrO2 also, FQHA alone fails to describe the tetragonal-to-
cubic phase transition at all. The tetragonal phase always has a lower free
energy than the cubic phase without any correction. If Fanh is accounted for,
then the cubic phase has lower free energy than the tetragonal phase when it
becomes dynamically stable between 2000 K and 2500 K. (see Fig. 8b). This
is an intriguing outcome because a similar but more methodical study of
ZrO2 entirely within the self-consistent phonon theory did not predict the

100x s
peedup

1000x speedup

Fig. 6 | Performance speedup via estimated VASP runtime (in node hours) using
this workflow compared with the conventional finite-displacement method for
3rd-order anharmonic IFCs extraction. The testing structures are binaries and
ternaries in seven crystal systems (cubic, hexagonal, trigonal, tetragonal, orthor-
hombic, monoclinic, and triclinic). The VASP runtime is the dominant portion of
workflow runtime (85% of the total time) based on our tests as shown in Fig. S14c.
Supercell configurations for the finite-displacement method are generated by Pho-
no3py package (usually ≥ 1000 configurations). The estimated runtime is calculated
by multiplying the configuration number and the averaged static calculations from
3–5 random configurations. More details are given in Table S4.

Fig. 5 | Comparison between the calculated lattice thermal conductivity (LTC)
and the experimental values at 300 K. The evaluated materials are among various
crystal types including Zincblende (GaAs, GaP, GaSb, BP, InAs, InSb, InP, ZnTe,
ZnSe, ZnS, AlAs, AlSb, CdTe, CdSe), Rocksalt (MgO, BaO, CaO, SrO, KCl, NaCl,
NaBr), Wurtzite (h-ZnO, h-CdS, h-BeO, h-GaN, h-AlN) and Others (Li2O,
CaMg2Sb2, Cu3VS4). Table S6 lists more detailed data on LTC. R2 = 0.98 from the
linear regression fitting here among all the materials.
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transition with the tetragonal phase always having a lower free energy than
the cubic phase69. Its main differences from our study are themethod of TD
phonon generation and the application of an additional, higher-order free
energy correction. The discrepancy between the two results is a testament
that the temperature of phase transition, and whether or not it occurs, is
sensitive to even relatively small uncertainties in energy (DFT, harmonic, or
anharmonic).

In Fig. 8c, our free energy calculation with anharmonic correction
predicts the rhombohedral-to-cubic transition temperature of GeTe at
around 430 K, which is lower than reported value (650 K). QHA alone
appears to provide a better prediction of 520K even though it is a lower level
of theory. Here too at work is the high sensitivity of phase transition tem-
perature to small variations in energy. The free energy difference between
the two phases ismarginal, at less than 4meV/atom from 300K to 600 K. A
tiny uncertainty in the computed energy values of ground state DFT energy
or harmonic/anharmonic contribution to vibrational energy would dis-
proportionately swing the critical temperature prediction. It should be
highlighted that spontaneous anisotropy is a common feature in cubic IV-
VI materials like GeTe70, which could account for the observed shallow
energy differences. Enhancing the prediction accuracy for GeTe would
require more precise techniques for calculating both the vibrational free
energy and the ground state total energy.

Discussion
Phonon anharmonicity can provide solutions to many aspects of funda-
mental problems such as the thermal properties,mechanical properties, and
phase transitionbehavior in crystals. The emerginghybridmachine learning
and DFT-based tools like the HiPhive package make high-order force
constants extraction accessible with acceptable computational costs.

However, any model with abundant parameters faces the dilemma of pre-
diction accuracy and the consumed time of determining and benchmarking
parameters for specific systems.Here,we incorporate all necessary steps into
a smooth pipeline with pre-tested parameters from evaluations in diverse
materials and demonstrated accuracy against experimental measurements.
The ultimate goal of thiswork is to produce the same level of accurate results
as direct calculations from Phonopy (harmonic phonons) and Phono3py
(anharmonic properties) butwithmuch less computational expense and at a
large scale.

Next, we point out aspects of the workflow that can benefit from
further computational efficiency or accuracy of property calculation in the
near future.While theworkflow in its current form serves as a goodfirst step
as evidenced by its performance across the ~ 30 compounds tested, more
complex crystal structures will require additional testing.

The first set of improvements would come with the upcoming release
of atomate2, a newer version of atomate (where this workflow is currently
implemented) under development. In the atomate2 framework, the
dynamic workflow that incorporates intermediate results and allows for
post-submission updating is more feasible71. Ideally, the process of adding
training supercells and fitting force constants should be iterative, aiming to
reduce computational time while ensuring quality convergence. The
training set can be augmented over multiple fitting trials until a desired
accuracy is met. For example, atomate2 facilitates scaling the number of
additional training structures and the order of anharmonic fitting based on
harmonic fitting outcomes, allowing for dynamic and iterative addition of
training structures until a desired numerical accuracy is met. Another sig-
nificant advantage of atomate2 is its flexibility in swapping the DFT cal-
culator for a surrogate model, such as a machine-learning (ML) model.
This allows for running workflows with ML frameworks like MACE72,

Fig. 7 | Finite-temperature phonon dispersions of
ZrO2, GeTe and Zr in different phases after
renormalizations. a, b tetragonal and cubic ZrO2,
c, d rhombohedral and cubic GeTe, e, f HCP and
BCCZr. The dash lines labeled asDFT are harmonic
phonon dispersions before renormalization. The
temperatures at which we perform renormalizations
are indicated in the legend. To keep the plot clean
and uncluttered, only a subset of the renormaliza-
tion temperatures is displayed here.
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M3GNet73, CHGNet74, or other machine-learning force fields (MLFFs)
supported by atomate2 without any modifications to the workflow. As
universal MLFFs improve in accuracy, they become increasingly viable for
use in this context. We note that this should also ease the transition of the
workflow to other DFT packages such as ABINIT75.

The second set of improvements could comeby adoptingmore reliable
physical methods to implement anharmonic free energy correction. At the
level of perturbation theory, explicit forms of free energy correction due to
3rd-order anharmonicity have been implemented and used in the
literature76–79. This would serve as a higher-order free energy correction to
what is currently implemented in this workflow. At a different level, a
method implementing thermodynamic integration (TI) using only IFCs
with no need for molecular dynamics has demonstrated capability for
accurate prediction of anharmonic free energy and phase transition across
strongly anharmonic materials from shape-memory alloys to the materials
presented in this paper80. Thismethod uses about 3 ~ 4 orders ofmagnitude
less computation time than TI performed with AIMD. If properly imple-
mented, TI by design offers a complete description of anharmonic free
energy whether or not a system is dynamically unstable by accounting for
the actual potential difference between a temperature-dependent harmonic
potential and the actual potential (or an approximation thereof). Though it
would add to the computational expense beyond the essentially instanta-
neously calculable correction formula we adopt here, its computational
demand is still within high-throughput applicability.

We anticipate our workflow would accelerate inorganic compounds
phase transition studies, for example, the polymorphic transitions in
BaTiO3

81,82, SrTiO3
83, CsPbI3

84 and ZrS2
85 by eliminating or reducing the

need for ab initio molecular dynamics. Our implemented renormalization
scheme relies solely on 0 K force calculations to generate temperature-
dependent displaced configurations. Additionally, the workflow provides
valuableCTE insights for thinfilm, andmaybeused in the future to facilitate
the selection of substrate/film combinations that minimize CTEmismatch.
It might also be applied to screen compounds with negative CTE values,
such as MZrF6 (M=Ca,Mg,Sr)86, ZrW2O8

87, silicon clathrate frameworks88,
LnFe(CN)6 (Ln = Y, La)89. For LTC calculations, our workflow boosts both
accuracy and efficiency compared with previous models or methods90–93. In
the future, our plan is to extend our investigated systems to more complex
materials such as ZrCuSiAs and CsAg7S4

94.
In summary, we have developed a workflow that can efficiently extract

high-order anharmonic IFCs and compute thermal properties within an
automated pipeline with the input of merely the crystal structure and bulk
modulus (for which other atomate routines exist60). Parameters are eval-
uated to optimize throughput and accuracy. The benchmarked parameters,
as shown in SupplementaryTables S5 andS6, accurately capture third-order
anharmonic properties across various materials. For the comparison
between experimental and calculated CTE, R2 values of 0.84, 0.89, and 0.91
were achieved for metals, semiconductors, and insulators, respectively,
demonstratinghigh accuracy. Similarly, for LTC,R2 values of 0.97 formetals
and semiconductors, and 0.98 for insulators, highlight strong predictive
capability. The computational costs primarily depend on crystal symmetry
and primitive cell size, which affects the number of configurations needed
for force constant fitting. For dynamically unstable materials, in which the
harmonic approximation is not capable of computing thermal properties,
we adopt a renormalization procedure to incorporate the temperature effect
and stabilize the high-temperature phase. The phase transition tempera-
tures after considering temperature-dependent free energy corrections
achieve less than 10% error. Notably, our workflow attains the goal of 2-3
orders of magnitude speedup compared with the conventional finite-
displacementmethod for 3rd-order IFC calculations. The emergence of this
workflow makes high-throughput calculations accessible for general lattice
dynamicproperties.Wewill continue to improveourprotocols basedon the
practice of large-scale computation for variousmaterials and new emerging
tools, and hope that thismethod facilitates the practical application of lattice
dynamics workflows in both theoretical and applied studies of materials
properties.

Fig. 8 | Vibrational free energy differentials (ΔF) determine phase transition tem-
peratures for Zr, ZrO2 andGeTe. aHCP-to-BCC phase transition in Zr, b tetragonal-to-
cubicphase transition inZrO2, c rhombohedral-to-cubicphase transition inGeTe.Theblue
lines represent free energiescalculatedusing thequasi-harmonicapproximation,denotedas
ΔF(QHA), whereas the green lines correspond to free energies that include an additional
anharmonic correction, indicated as ΔF(QHA+anh). The experimental phase transition
temperatures (Expt. Tc) aremarked inmagenta squares.We separate all temperatures into
three regions depending on whether the phonon modes are imaginary or not. Tempera-
tures are categorized into three distinct zones based on the phononmodes, as illustrated in
Fig. 7. The “imaginary zone” encompasses the temperature rangewherephononmodes are
imaginary. Conversely, the “real zone” refers towhere phononmodes are entirely real. The
region between the highest imaginary-mode temperature and the lowest real-mode tem-
perature isdefinedas the“transitionzone”here. In thiszone, the imaginarymodesgradually
vanish and become real. Thewidth of this “transition zone” is determined by the interval of
renormalization temperatures.Here the“transitionzone” isnarrower than inFig.7 sincewe
only show a subset of the renormalization temperatures in Fig. 7.
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Methods
Grüneisen parameter and thermal expansion
Grüneisen parameter is a dimensionless quantity measuring the degree of
phonon frequency shift with changes in volume. It is described by the
following equation:

γλqðVÞ ¼ � V
ωλqðVÞ

∂ωλqðVÞ
∂V

; ð3Þ

where ω is the phonon frequency at wave vector q andmode index λ. We
adopt Phono3py31 routine to obtain the mode Grüneisen parameters.
Phono3py calculates the derivative of phonon frequency with respect to
unit cell volume by computing the derivative of the dynamicalmatrixwith
3rd-order IFCs and gain mode-Grüneisen parameters. Then a tensor of
mode Grüneisen parameters is averaged based on their contributions to
heat capacity to obtain the total Grüneisen parameter (also called the
mean Grüneisen parameter) at each temperature according to the
equation below:

γ ¼
P

λqγλqcλqP
λqcλq

ð4Þ

Here, cλq is the contribution of each mode and wavevector to the constant-
volume heat capacity.

The linear thermal expansion coefficient (α) describes how the
dimensions of amaterial change as a function of temperature. For isotropic
solids, volumetric thermal expansion β=3α. The volumetric thermal
expansion can be directly computed from the total Grüneisen parameter
using the following equation:

β ¼ γCv

VK
; ð5Þ

whereCv is heat capacity, primitive cell volume isV and bulk modulus isK.
The only parameter that is not computable in the present workflow is K.
However,MPalready has elastic properties includingK computed formany
materials, and the atomate workflow for this is available60 for materials
without pre-computed K.

Lattice thermal conductivity
Lattice thermal conductivity is calculated within the unified Peierls-and-
Wigner framework of Boltzmann transport, defined as95

κlat ¼
_2

kBT
2VNq

X
q

X
λλ0

vλq � vλ0q
ωλq þ ωλ0q

2

ωλqnλqðnλq þ 1Þ þ ωλ0qnλ0q nλ0q þ 1
� �

4ðωλq � ωλ0qÞ2 þ τ�1
λq þ τ�1

λ0q

� �2 τ�1
λq þ τ�1

λ0q

� �

ð6Þ

where ω is the phonon frequency, v is the group velocity, τ−1 is the scat-
tering rate, and n is the phonon occupation for phonon modes λ and λ0.
The diagonal part, λ ¼ λ0, denotes the Peierls termdescribing particle-like
transport that reduces to the usual Boltzmann transport formulation,
while the off-diagonal part, λ≠λ0, denotes theWigner term describing the
coherent tunneling between distinct phonon modes. The Wigner
contribution increases relative to the Peierl contribution as modes
become closer in energy and their broadening due to scattering increases
such that they significantly overlap. As such, the Wigner term manifests
substantially in materials with very soft phonons and heavy anharmonic
scattering, e.g. CsPbBr3

95, Cu12Sb3S13
96, and increasingly so at higher

temperatures. Eq. (6) is evaluated using FourPhonon-ShengBTE32,33 with
in-house modification to incorporate the Wigner contribution (see Code
Availability for details). Anharmonic scattering is limited to three-phonon
processes arising from third-order IFCs as this is known to yield accurate
κlat for most materials.

Finite-temperature lattice dynamics
Phonon renormalization. Harmonic phonons that are directly calcu-
lated usingDFT-basedmethods at 0 K are effectivelymodified at higher
temperatures as atomic displacements reach beyond the harmonic
region. Most prominent of such an effect is the stabilization of other-
wise dynamically unstable materials at 0 K (imaginary phonon fre-
quencies), which may lead to phase transitions. This not only has a
direct consequence for functionalities such as ferroelectricity and
shape memory, but also affects the analysis of other thermal properties
derived from phonons including lattice thermal conductivity. Several
available methods can calculate effective TD phonons. SCAILD (Self-
consistent ab initio Lattice Dynamics) iteratively updates harmonic
frequencies via temperature-dependent, normal-mode displacements
of atoms97,98. QSCAILD (Quantum SCAILD) improves upon it by using
the so-called quantum covariance of atomic displacements accounting
for quantum motion to sample atomic configurations99,100, and use
these to obtain effective harmonic IFC. SSCHA (Stochastic Self-
consistent Harmonic Approximation) finds IFCs that minimize har-
monic free energy at a given temperature101. TDEP (Temperature
Dependent Effective Potential) uses AIMD simulations for sampling
temperature-dependent configurations, followed by fitting effective
IFCs23,102,103. Though these represent accurate and reliable approaches,
all of them by their standard protocol invoke DFT calculations after
every iteration of ensemble generation to compute energies and forces.
For high-throughput deployment, a higher computational efficiency is
essential.

The approach we adopt most closely follows the method of
Refs. 63,104. Similar to some of the other methods listed above, config-
urations are statistically sampled from a Gaussian probability distribution
defined by the quantum covariance of atomic displacements. Quantum
covariance of a given pair of atoms a and b in their respective Cartesian
directions i and j99:

Σab;ij ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MaMb

p X
λ

êλai
2nλ þ 1

ωλ

ê�λbj; ð7Þ

where ê are phonon eigenvectors, and the temperature dependence enters
through phonon mode population nλ given by Bose-Einstein distribution.
Once a temperature-dependent ensemble of configurations is sampled, we
in effect use IFCs and not DFT to predict their forces. Specifically, by
collecting the sampled configurations into a newdisplacementmatrixAðTÞ
matching the clusters present in the IFCs, we use the anharmonic IFCs to
expediently predict anharmonic forces in those configurations via
F ¼ AðTÞΦ. We then obtain effective temperature-dependent harmonic
IFCs,ΦTD

2 , that describe the computed forces. These amount to calculating63

ΦTD
2 ¼ Φ2 þA�1

2 ðTÞ
X
d ≥ 4

AdðTÞΦd; ð8Þ

where the subscript denotes the order and, as A2 is usually not a square
matrix, A�1

2 is the Moore-Penrose pseudoinverse. As ΦTD
2 and AðTÞ are

interdependent, Eqs. (7) and (8) are iterated until the free energy converges
to a desired threshold determined by temperature. This only involves
diagonalization of the dynamical matrix constructed from ΦTD

2 , between
two iterations, to obtain ω and ê.

Because dynamical instabilities involve double-well potentials that are
stabilized by fourth-order anharmonicity, it is critical to accurately obtain
Φ4 at minimum for the successful execution of the process. This iterative
convergence routine is merged with the HiPhive codebase, where it resides
under the Renormalization class. The primary advantages of this approach
are the efficiency of statistical sampling of thermal ensemble via quantum
covariance and the direct determination of ΦTD

2 by known IFCs without
invoking DFT.
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Thermal expansion. Thus far, for renormalization, volume expansion is
not taken into account. If renormalization predicts completely real
phonons at some temperature (Tr), the Grüneisen parameters and the
coefficients of thermal expansion (CTE) are calculated straight from
third-order IFCs. Once CTE values are accrued at multiple temperatures
where phonon is real, the linear thermal expansion fraction at a given T*

can be computed by numerically integrating

ΔL
L0

� �
T�

¼
Z T�

αðTÞdT: ð9Þ

Note that anisotropy in thermal expansion is accounted for through the
anisotropy of CTE denoted as α. Because we do not perform renor-
malization at sparse temperature points, and noting that CTE is gen-
erally not very sensitive to temperature (in other words, close to being
constant), we expand the lattice by ΔL ≈ α(T)T at each temperature,
and redo renormalization from the solution obtained at V = V0. This
second renormalization process tends to converge after much fewer
iterations since the initial solution would already be quite close to the
true solution, except that V ≠ V0 by only a small difference. The con-
verged results with respect to thermal expansion are the final results at
a given T*.

Anharmonic Free Energy Correction. In the harmonic phonon theory,
vibrational free energy and entropy respectively are

F ¼ 1
Nq

X
λq

1
2
ωλq þ kBT � log 1� exp

ωλq

kBT

� �	 

; ð10Þ

S ¼ 1
Nq

X
λq

1
T

ωλq

exp
�ωλq

kBT

� �
� 1

� kB � log 1� exp
ωλq

kBT

� �	 

: ð11Þ

These are the equations implemented in Phonopy, and can be used to
describe harmonic properties of any real phonon spectrum, including
volume-dependent phonon spectrum representing the effects of
thermal expansion. However, when phonon frequencies themselves
become explicitly temperature-dependent, ω → ω(T), Eq. (10) is no
longer an accurate description of vibrational free energy, and must be
corrected.

One way of correcting F comes from observing that, even with ω(T),
entropy retains itsmicroscopicdefinitionofEq. (11), but thenEq. (10) violates
the fundamental thermodynamic relation S ¼ � ∂F

∂T

� �
V . Instead, the new

relation in S ¼ � ∂Fh
∂T

� �
V
þ 1

2
∂ωðTÞ
∂T coth ωðTÞ

2kBT

� �
. In order to obey the funda-

mental relation, free energy must pick up a correction term105,106, namely

Fanh ¼ � 1
2

X
λq

ðωλqðTÞ � ωλq;hÞ nλqðTÞ þ
1
2

� �
; ð12Þ

where the subscript “h” indicates the original harmonic term. In strict terms,
Eq. (12) is only applicable as is when ωλq,h, the original harmonic fre-
quencies at 0 K, are all real. To use it still in the presence of imaginaryωλq,h,
one could set those imaginary frequencies to 0 and sum over the frequency
shift on the real axis. The self-consistent phonon theory, a many-body
perturbation theory, provides the explicit correction due to 4th-order
interaction (the so-called “loop” correction)77,105,

Fanh ¼ � 1
4

X
λq

ðω2
λqðTÞ �Cyω2

λq;hCÞ
ωλqðTÞ

nλqðTÞ þ
1
2

� �
; ð13Þ

whereC is the unitary transformation matrix between the TD and bare
harmonic eigenvectors. Eq. (13) can be directly applied even for ima-
ginary ωλq,h. Eqs. (12) and (13) are identical when C ¼ I and

ωλqðTÞ ¼ ∣ωλq;h∣, and Eq. (13) tends to one-half of Eq. (12) as ωλq(T)
increases. Refer to Fig. S15 for a graphical comparison. Both corrections
are implemented in the workflow, but the free energy results shown in
this paper use Eq. (13).

When the potential becomes increasingly anharmonic, however, both
Eqs. (12) and (13) become increasingly insufficient accounts of anharmonic
free energy. Eq. (12) can only trace out real frequency shifts, as mentioned,
and Eq. (13) is based on the lowest-order perturbation theory. The cor-
rection due to 3rd-order interaction ("bubble") would serve as the next-
order correction to the latter, but this is more complicated to compute76,78

and still incomplete for very strongly anharmonic materials69.

Data availability
The raw data for thermal conductivity and renormalization calculations are
available in Zenodo (https://doi.org/10.5281/zenodo.10810590).

Code availability
The code for our lattice dynamics workflow is available at https://
github.com/hackingmaterials/atomate. Related in-house modifica-
tions for renormalization and Wigner contribution for thermal con-
ductivity are accessible at https://gitlab.com/jsyony37/hiphive and
https://github.com/FourPhonon/FourPhonon, respectively.
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