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ABSTRACT 

Conditions for dynamic thermal similarity of a small-scale building 

(scaled in both spatial and temporal dimensions) with its full-scale counter­

part (fully sized and evolving in real time) are derived. The conditions 

ensure proper scaling of conductive, radiative, and convective transport of 

thermal energy. The restrictions imposed by these conditions are discussed 

and exemplified with a small-scale model in a Xenon atmosphere at standard 

temperature and pressure and one in a sulfur hexafluoride atmosphere at an 

elevated temperature and standard pressure. It is shown that it is possible 

to co~struct models having small physical sizes and accelerated temporal data 

rates for the exact analog simulation of the thermal performance of buildings. 
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SYMBOL LIST 

Symbol Meaning Eguation where first used 
-~ 
~ 

a Scaling variable, alia (2.24) 

'~ c Spe,cific heat (2.1) 

g Acceleration of gravity (2.7) 

k Thermal conductivity (2.1) 

kB Boltzmann constant (0.3) 

1 Scaling variable, LI/L (2.23) 

n Scaling variable, vl/v (2.24) 
. Scaling variable, NI IN - (2.37) n 

p Scaling variable, P~/Po (2.26) 

t Scaling variable, T~/To (2.22) 

y Proportion of two-component wall (E. 3) 
-+- Velocity field (C.l) v 

C Heat capacity per unit volume (2.12) 

E Radi ant energy fl ux (B.1) 

G Incident radiant flux (B.3) 

Gr Grashoff number (-2.7) 

H Heat rate from a point source (2.36) 
-+-

(0.10) H Conductive heat flux 

J Net rad i ant fl ux . (B.3) 
-. 

J o 1 Thermal fluxes (E.7) , 
L Characteristic length (2.2) 

M Mean molar mass (2.8) 
. 
N Infiltration rate (2.37) 

.. iii .. 



SYMBOL LIST (continued) 

Symbol Meaning Eguation where first used 

P Pressure (2.19) 

Pr Prandtl number (2.6) ... 

Pxy Fluid stress tensor (D.1) 

R Thermal resistivity (E.4 ) 

S Solar flux (2.33) 

T Temperature (2.5) 

f1T Amplitude of temperature variation (2.7) 

u Wall U-value, k/l (2.12) 

a Thermal diffusivity (2.1) 

y Scaling variable, 1 1/ P cp pCp (3.7) 

15 Scaling variable, f1T 1 /f1T (2.22) 

e:- Emittance of surface (2.4) 

Tl Scaling variable, W/H (2.36) 

K Scaling variable, kl/k (2.24) 

lJ Dynami c shear vi scos ity (C.2) 

\I Kinematic shear viscosity (206) 

p Mass per unit volume (2.1) 

C1 Scaling variable, SI/S (2034) 

T Scaling variable, TI/T (3.1) w w --
Tw,f Characteristic time (2.12) 

w Angular frequency (L7) 

X Thermal response factor (E. 7) 

1; Bu 1 k vi scos ity (C.2) 
-;v~ 
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SYMBOL LIST (continued) 

Subscri~ts 

w 

f 

s 

0 

p 

i 

Subscri~ts 

Meaning 

Wall 

Fl uid 

Gas property under standard conditions 

Average value 

Constant pressure 

Layer index in wall 

prime: small-scale model 

no prime: full-scale model 
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1. I nt roduct ion 

There are three quantitative methods for learning about the thermal 

performance of a building or other complex structure. They are 

1. Build the building and then observe its actual performance. 

2. Perform a numerical simulation of the performance of the building on 

a computer. 

3. Build a small-scale model 6f the. building, observe its performance, 

and scale the results up to full-scale size. 

The first method is not generally practical since it may be excessively 

costly and require long periods of time with corrections both difficult and 

expensive to incorporate. The second method is of questionable reliability 

due to the many uncontrolled approximations that underlie any such numerical 

simulation. The third method has not been fully exploited; this paper is 

devoted to developing this method into a useful research and design tool. 

Small-scale models of buildings have been used by architects to simulate 

the visual aspects and spatial relations of a proposed design for many years. 

However, such models have not been used extensively to simulate the thermal 

performance of the building. Some early work along this line was done in 

Australia after World War 11.1 In these studies, one-third and one-ninth 

scale models were used to study the effect of thermal mass on the diurnal 

temperature swing of a building. Studies on a one-quarter scale model of a 

cubic room have also been reported. 2 In both of these studies it was argued 

that since radiative (see Appendix B) and convective (see Appendix C) energy 

transport are independent of scale, then conductive transport (see Appendix A) 

also should not depend on scale. Thus the U-values of the walls should not be 

changed. This can be achieved by either not scaling the thickness of the wall 

or by using materials of low thermal conductivity. The first method violates 
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the 3-dimensional nature of the scaling; the second method is difficult to 

enact due to the limited range of properties of available materials. 

Furthermore, convective energy transport is independent of scale only in the 

domain of fully developed turbulent flow. 6 This may be marginally true for 

the full-scale buildings (which are characterized by Grashof numbers -1010), 

but is probably not true of the small-scale model. Furthermore, there was no 

temporal scaling in these studies because the small-scale model evolved in 

real time or only steady-state phenomena were investigated. Thus, the full 

potential of spatial and temporal scaling was not exploited. 

The NASA space program provided further impetus for studying small-scale 

models. Here, the objective ~as to understand the thermal behavior of a 

spacecraft in an extraterrestial environment. The early work is reviewed by 

Vickers3; Shanon4 has reported a study that is close to the spirit of the 

present work. He reports a fair agreement in a study of a one-quarter scale 

model having cylindrical symmetry. 

A study having the same objective as the present work has been reported 

by Thompson, Han, and Azer. 5 They studied a one-eighth scale model of a 

four-bedroom town house that had been treated in full scale at the National 

Bureau of Standards. They report results that are within 10% of the 

temperature of the full-scale model. However, it is difficult to assess the 

validity of their use of forced rather free convection and their neglect of 

radiative energy transport in the operation and analysis of this model. 

Furthermore, since they have chosen to validate their methods on a complex 

structure, one cannot tell whether their 10% agreement is fortuitous or 

fundamental. 

In the studies cited above, energy transport by convection is para­

meterized by semiempirical film coefficients or Nusselt numbers. We use 
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the more fundamental description contained in the Navier-Stokes equations and 

require that the small-scale model give a similarity solution to the 

full-scale building. We also allow the modification of a broader range of 

parameters such as the composition of" the atmosphere, its temperature and 

pressure, etc., in order to achieve this simil arity. In further contrast to 

these previous works, we include the temperature and pressure dependence of 

the transport coefficients of the gas (see Appendix D) in our scaling 

equations. 

In summary, the past work on thermal models of buildings does not 

properly account for the interconnections between the properties of materials 

and spatial and temporal scaling while allowing all three thermal energy 

transfer mechanisms to fully participate. 

The three processes of thermal energy transport, conduction, radiation, 

and convection, are of roughly equal importance in a typical building. This 

can be seen from the fact that radiation and convection contribute about 

equally to wall/film coefficients and the~e film coefficients are large 

compared to typical wall conductances. The fil ms, of course, are exposed to 

small er temperature differences than are the wall s. Thus, any dynami call y 

similar scale model must scale all the three transport processes properly. 

We address this scaling in Sec. 2, where we derive a set of six scaling 

rel at ions that ensure that the small-scal e model will be dynami call y simil ar 

to the full-scale building. We have placed the technical details associated 

with this section in a series of appendices. Thus, conduction, radiation, and 

convection are treated in Appendices A, B, and C respectively and the mean-

free-path expressions for the transport coefficients of a gas are discussed 

in Appendix D. The implementation of the scaling relations is discussed in 

Sec. 3. There we show by examples that interesting results can be obtained 
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using a Xenon atmosphere at room temperature and pressure or an SF6 atmos­

phere at elevated temperature and standard pressure. However, we have not 

fully explored the possibility of using mixtures of gases. The discussion is 

given at two different levels. At the first level, we assume that heat 

conduction in the walls is one-dimensional, i.e., only in the direction 

perpendicular to the wall; at the second level we require full three­

dimensional similarity. The assumption of one-dimensional heat conduction is 

used in every known numerical simulation and it is a virture of our formula­

tion that we can build models with or without this assumption. We conclude 

with a discussion of some areas of future investigation in Sec. 4. Appendix E 

is devoted to the detailed design considerations of full- and small-scale 

boxes the thermal performances of which can be compared and used as a test of 

our scaling relations. 

2. Scaling 

We seek the definition of a small-scale model of a room or building that 

will be used to' simulate the thermal performance of the full-sized version. 

The motiviations for such a search are twofold. First, since the scale model 

is assumed to be smaller than full size, construction will involve less 

material and the model will he more amenable to modification as measurements 

proceed. Second, shorter time scales are associated with smaller physical 

scales, resulting in a faster rate of data acquisition. The models we discuss 

in this section share both of these advantages. 

The methods we use are common to classical hydrodynamics--we look for 

similarity solutions of the equations describing the system. The physical 

properties (such as length, temperature, pressure) in a similarity solution 

are related to those of the real solution by simple scale factors. Thus, if 
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we can find a similarity solution for the basic equations, we can build a 

small-scale model based on it and then determine the properties of the 

full-scale model by a simple scaling of the observed properties of the model. 

The equations that we need to study are those describing thermal energy 

transport in an enclosed region. The mechanisms of energy transport are 

conduction, radiation, and convection; the equations describing these 

mechanisms are presented in detail in the appendices. Similarity solutions to 

these equations are obtained by changing the values of the characteristic 

parameters describing the system in such a way that the physical properties 

are scaled as described above. There are a total Of ten such parameters for 

the systems that we are considering and, as an introduction to what follows, 

we will now revjew them. 

We consider a volume that is bounded by walls and filled with a 

fluid--liquid or gas. In the real world, these would be a room or a building; 

in the similarity solution it would be a small-scale model of the room or 

building. Quantities pertaining to the walls will be given a subscript Ow" 

and those pertaining to the fluid an Of". There are two length scales in such 

a system (see Fig. 2.1): 

1. Lf which characterizes the size of the interior volume and 

determines the fluid motions. 

2. Lw which characterizes the thickness of the walls and plays a role 

in conductive energy transport. 

(The introduction of these two lengths should not be taken to imply that 

we are treating a simple cubic volume having uniform walls. The geometry of 

the full-scale system can be arbitrarily complex with all volume-determining 

lengths taken equal to scale-invariant constants times Lf and all wall 
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thickness-determining lengths equal to scale-invariant constants times Lw.) 

There are two characteristic temperatures: 

3. To' the average temperature, 

4. ~T, the amplitude of the temperature variation about To. 

·With a gas as a fluid medium the pressure becomes an important parameter: 

5. P, the pressure. 

There are three material properties of the fluid: 

6. Vf' the kinematic viscosity of the fluid, 

7. af' the thermal diffusivity of the fluid, 

8. kf' the thermal conductivity of the fluid. 

There are also two material properties of the walls: 

9. aw, the thermal diffusivity of the wall, 

10. kw' the thermal conductivity of the wall. 

Thus, there is a total of 10 parameters. We have chosen to list thermal 

diffusivities rather than heat capacities per unit volume, pCp' where p is 

the mass density and cp is the specific heat. The relationship between them 

is 

a = (2.1) 

At certain points it will be more convenient to use pCp rather than a as a 

parameter. No assumption about homogeneity of the walls is made by choosing 

these parameters, for it is assumed that all these internal characteristics 

will be scaled in the same way as the parameters listed above (see Appendix 

A). 

: 
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We now turn to the equations of energy transport and derive a set of 

relations between the parameters of the real-world solution and those of the 

similarity solution. We will assume that the fluid medium is a gas which is 

not too dense so that we can use the properties of an ideal gas. We treat 

energy transport by conduction in the walls, by radiation, and by conduction 

and convection in the fluid, in that order. 

The details of heat conduction in the walls are presented in Appendix A 

(also see Ref. 6). There we show that a wall is characterized by a derived 

time-scale TW = LwCw/Uw (where LwCw is the heat capacity per unit 

area of the wall and Uw is the U-value of the wall, i.e., kw/Lw for a 

uniform wall), a length scale Lw (where Lw is the thickness of the wall), 

and a dimensionless parameter kfLw/kwLf which relates the heat fluxes 

in the fluid and the wall at their interface. In addition, for strict 

three-dimensional scaling of the heat conduction, the value of Lw/Lf must 

be held fixed. This last requirement need not be satisfied if one 

approximates the heat flow in the walls as being one-dimensional as is done in 

numerical simulations. Thus, consideration of heat conduction in the walls 

introduces two scaling requirements: 

1. Constant ratio of wall and fluid U-values 

(2.2) 

2. Constant ratio of wall and fluid-length scales for strict 

three-dimensional scaling 

Lw 
L
f 

= constant (2.3) 
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In addition, the walls introduce a characteristic time TW which must be 

compared to another characteristic time of the system in order to develop a 

scaling requirement. 

Radiative transport of energy is treated in detail in Appendix B (also 

see Ref. 6). There we show that this mode of transport is characterized by 

the emittances of the surfaces of the walls, a set of geometrical factors, and 

the temperatures of the surfaces. For typical materials, the values of the 

emittances are close to one for radiation in the infrared. We therefore 

assume that they are unchanged by the scaling. The geometrical factors are 

dimensionless and scale-invariant. This leaves only the temperatures to be 

scaled. The net radiative flux from a given surface will be proportional to 

the difference in the fourth powers of typical temperatures. For small 

temperature differences, this becomes 

net radi at ive fl ux - (2.4) 

where E is the emittance, a = 5.67xlO-8 w/m2 K4 is the Steffan-Boltzmann 

constant, To is the average temperature, and ~T is a typical temperature 

difference. We obtain a scaling condition by requiring that the ratio of this 

flux to a typical conductive flux, kw/Lw ~T, be held constant: 

3. Constant ratio of radiative flux to conductive flux 

E a T3 L 
o w 

= constant (2.5) 

Energy transport in the fluid is treated in detail in Appendix C (see 

also Ref. 6). There we use the Navier-Stokes equation and the Boussinesq 

approximation to describe the fluid motion and the ideal gas equation of state 

to give the pressure in terms of the density and temperature. The resulting 

:: 
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equations are scale-invariant if the Prandtl number Pr and the Grashof number 

Gr are held fixed where 

\If 
Pr - , 

where \If is the kinematic viscosity of the fluid and 

is the thermal diffusivity of the fluid, and 

(2.6) 

(2.7) 

where g ;s the acceleration of gravity, To is the average temperature, and 

~T is the amplitude of the fluctuating part of the temperature. The 

approximations made impose the additional requirements 

(2.8) 

and 

« 1 (2.9) 

for their validity, where M is the mean molar mass and R is the gas constant. 

These numbers have the values 10-3 and 10-15 for air so that these 

conditions are easily satisfied. The boundary conditions on the velocity are 

scale-invariant, and those on the temperature have been discussed above, see 

(2.2) and (2.3). Thus, the scaling requirements imposed by the fluid motion 

are 
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4. Pr = constant (2.10) 

5. Gr = constant (2.11) 

in addition to the two weak conditions (2.8) and (2.9) above. For air, 

Pr - 0.7, and in typical building environments Gr - 1010. This value of the 

Grashof number implies6 that the convection will span both laminar and 

turbulent regimes and convective film coefficients will not have any simple 

dependence on the characteristic parameters. 

The Prandtl number is equal to the ratio of the characteristic times for 

the diffusion of momentum and thermal energy in the fluid; holding Pr constant 

ensures that they maintain the same relation to each other. The walls provide 

a third characteristic time 'w = LwCw/Uw which also must scale in the 

same way that If scales. We therefore have the final scaling requirement 

6. 
lW = constant 
If 

We will now rewrite and summarize the derived scaling requirements. 

(2.12) 

Adopting the notation that a parameter with a prime on it refers to the 

small-scale model solution while one with no prime refers to the full-scale 

solution, the scaling requirements can be written as 

1. ~] [::] [~J t~:fj = 1 (2.13) 

2. [~] [~! j = 1 (2.14) 

s 
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3. ~J [~r [~J [~:J = 1 , (2.15) 

4. [~J [:;] = 1 , (2.16) 

5. [¥rr] [~:] [¢r [:;f = 1 (2.17) 

6. [~r [~~r ~] [::] = 1 (2.18) 

The second and fourth requirements in this list have special status since they 

are relatively weak conditions. The second one ensures that heat conduction 

will scale in the strict three-dimensional sense rather than an approximate 

one-dimensional scaling. However, since the approximation of one-dimensional 

heat conduction is believed to be fairly accurate, the performance of the 

model should be insensitive to violations of this condition. The fourth 

condition ensures that the Prandtl number of the fluid remains fixed. 

However, for gases, the Prandtl number depends essentially on the number of 

degrees of freedom per gas molecule that are thermally excited and has a very 

limited range of values (-0.7 to-I). Thus, if we confine our model to gases 

having diatomic molecules,then this condition will be automatically 

satisfied and, if we use monatomic or triatomic gases, it will be only weakly 

violated. Mixtures of gases can be made with the proper value of Pr. 
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The fluid transport coefficients in (2.l3) - (2.l8) depend upon the 

average temperature To but, in the Roussinesq approximation, not on the 

fluctuating part of the temperature ~T; they also depend on the average 

pressure Po. We use mean-free-path arguments, which are described in 

Appendix D, to obtain the following expressions: 

kf 
= ks [~:J'2 

af = as [~:r2 [::J 
where the subscript s refers to standard conditions such as STP. These 

expressions assume that the specific heat of the gas is independent of 

temperature. That is, no additional molecular degrees of freedom are 

(2.l9) 

(2.20) 

(2.21) 

thermalized as the temperature is raised. Substitution of (2.l9) - (2.2l) 

into (2.l3) - (2.l8) exhibits explicitly all the temperature and pressure 

dependence of the scaling relations. 

Before proceeding, it is useful to define a set of dimensionless scaling 

variables. They are: 

Two temperature scaling variables 

I 

5 - ~T /~T 

(2.22) 
I 

t - TiT 0 

:: 
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Two length scaling variables 

(2.23) 

1 f - Lf/Lf 

Three fluid-property scaling variables 

ns - Vi Iv s s 

as - a~/as (2.24) 

K - k~/ks s 

Two wall-property scaling variables 

aw - alIa 
W W 

(2.25) 

One pressure scaling variable 

(2.26) 

Thus, there is a total of ten scaling variables since we have assumed that the 

emittances are unchanged in scaling. 

We substitute the expressions for the transport coefficients (2.19) -

(2.21) into the scaling relations (2.13) - (2.18) and write them in terms of 

the scaling variables (2.22) - (2.26) to obtain 



1. 

2. 

3. 

4. 

5. 

6. 

t 1/2 1 -1 1K K- 1 = 1 
f wsw 

1 1-1 = 1 
f w 

-1 
K w = 

-1 
as ns = 1 

1 , 

t 4 ~-1 -2 1-3 2 = 1 p f ns 
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(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

These are the desired scaling relations--six conditions on ten parameters. 

This leaves much freedom to search for a practical implementation of the 

relations, which is the subject of the next section. 

Before closing this section, however, we briefly discuss the scaling of 

heat sources. In particular, we consider how the solar flux, a point source 

of heat, and the infiltration of air scale. The solar flux S is energy per 

unit time and area. The relevant energy is the heat capacity of the system 

times the change in temperature. The heat capacity, which for simplicity is 

assumed to be all in the walls, is CwLf2Lw and the temperature change 

is 6T. The unit of time scales as TW and the unit of area is proportional 

to Lf2. We then have 

(2.33) 
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This last form is just Uw~T which shows that the solar flux must scale in 

the same way as the conductive flux in the wall. We define the solar-flux 

variable as 

and then 

a = SI/S 

a = o K 1-1 = 
w w 

(2.34) 

(2.35) 

where we have used a result from the next section, (3.9), to express' a in 

terms of temperature variables. The heat rate H for a pOint-source heater in 

the room will scale as Lf 2S and therefore, if n ~ HI/H, then 

n = o K 1-1 12 = 
w w f (2.36) 

Infiltration rates must also be scaled. For thermal modeling, infiltration 

can be thought of as a heat source (or sink) delivering heat at a rate equal 

to the heat capacity per unit volume of the fluid (PCp)f, times the volume 

of the fluid Lf 3, times the inside-to-outside temperature difference -~T, 
. 

times the rate of infiltration in fluid-volume changes per unit time N. 

The ratio of these heat rates for full- and small-scale models is then 

Yflf3 0n , where n = NI/N. Equating this to the last form of (2.36) 

yields 

~ (see (3.7) for y) for the scaling of infiltration rates. 

(2.37) 
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y 

........ r--cL w 

----¥-~~----~----------_+----------------~~+_--~x 

XBL 8110-1453 

Fig. 2.1. Cross section through a typical room. The constants, a, b, c, eeo 

are scale invariant numbers which define the geometry of the room. 
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3. Implementation of the Scaling Relations 

We have already noted that the second and fourth scaling relations, 

(2.28) and (2.30), have special status. The second one is relatively 

unimportant and the fourth one is relatively easy to satisfy. Therefore, 

throughout this section, we assume that (2.30) is satisfied and use it to 

eliminate the parameter ns in favor of as. In the first part of this 

section, we also assume that (2.28) has been relaxed and we can scale fluid 

and wall lengths independently. Later in the section, we will consider the 

implications of (2.28). Our method involves rewriting the scaling relations 

in forms that reveal the material properties needed to achieve practical 

scaling and then substitute the values of specific material properties to see 

how much scaling can be accomplished with available materials. 

Our discussion is facilitated by the introduction of one more parameter 

and the relation that defines it. The parameter is the ratio of a 

chanacteristic time of the model to that of the real-world model. We take the 

ratio of the wall times and define 

7. T (3.1) 

This parameter is important from a practical point of view since T-1 will 

indicate how much faster the small-scale model performs as compared to the 

full-scale system. 

The scaling relations are rather complex and the constraints that they 

impose are most easily visualized if they are written in several forms. In 

this first discussion, we relax the second relation, lf = lw, and elimi­

nate ns using the fourth relation, ns = as. There are ten remaining 

variables, including T, and five relations, including (3.1). One must then 

make a choice of dependent and independent variahles. The variables 0, t, p, 
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lf, and lw are a natural choice for dependent variables since they are 

arbitrarily (within limits) and independently adjustable by the modeler. 

The values of the variables as' KS' aw' and Kw are constrained by the 

materials available and therefore are a natural choice for independent 

variables. For a start, we also choose T as an independent variable since it 

would be nice to be able to specify the data rate for the model. With this 

choice of variables, Eqs. (2.27), (2.29), (2.31), (2.32), and (3.1) become 

7. 1 = 1/2 ( -2)1/2 
T a K K 

W W W W 
, (3.2) 

1. lf = 5/12 ( -2)5/12 
T a K K 

W W s (3.3) 

6. p = -1/12 ( -2)-13/12 
T a K 

W w 
-2 

(as KS ) (3.4) 

3. t = T 
-1/6 (a K- 2)-1/6 

w w (3.5) 

5. <5 = T 
-7/4 ( -2)1/4 aw KW KS (3.6) 

When written in this from, the equations show the important role played 

by the combination of parameters (a K-2) for the fluid or the wall. We 

write this combination in a more palpable form by introducing the ratio of 

heat capacities per unit volume 

(3.7) 

for the fluid·or the wall. We then have (aK-2) = (YK)-l. The second 

important point that these equations make is that lf and lw obey curiously 

different scaling laws. This difference provided the motivation for relaxing 

the second scaling relation, lf = lw' in this first discussion. 
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Further progress in understanding these equations can be made by 

using (3.5) to eliminate awKw-2 = (YwKw)-l in favor of t. This 

choice is motivated by practical considerations that restrict the range of t 

to roughly 1 < t < 2, while YwKw is less severely restricted. We then 

have 

3. 

7. 

1. 

6. 

5. 

Yw KW = L t 6 

lw = t- 3 K 
w 

lf = t-5/ 2 K 
s , 

p = L t 13/ 2 (y K )-1 
s s 

~ -2 -3/2 
\J = L t K 

S 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The last two equations suggest which gas properties one shOuld look for. We 

hope that L is a small number. Therefore, since <5 is proportional tOL-2 in 

(3.12) which is large, we want a small KS to keep <5 to a reasonable value. 

At the same time we don't want Ys KS to be small since then p would be 

large. Thus, we want a gas that has a small thermal conductivity and a large 

heat capacity per unit volume. Such a gas is uncommon because thermal 

conductivity is proportional to heat capacity. We sh6uld be looking for a gas 

having massive molecules with large collision cross sections which would 

supptess its transport properties (see Appendix n). This kind of compromise 

between p and <5 is exemplified by the numbers given in Table 3.1. There, we 

list the values of p and <5 for the noble gases with the choice L = 1/24 and 

t = 2. We see that p is an increasing function of atomic number while <5 is a 

decreaSing function. 
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As a final form of the relations, we change the status of T to that of a 

dependent variable and p to an independent one using (3.11). We then have 

6. 

5. 

3. 

= -2 -1 p-2 t23/2 o Ys KS 

Y K = P t-1/ 2 Ys KS ww 

(3.13) 

(3.14) 

(3.15) 

These equations emphasize the antagonistic nature of the requirements of small 

T and not too large O. One promising possibility is that of working at room 

temperature and pressure, p = t = 1. We specialize the equations to this case 

and give the numbers resulting from choosing Xe as the gas: 

T = Ys KS = 0.15 (Xe) 

0 = , -2 -1 
Ys KS = 9.4 (Xe ). 

Yw KW = Ys K = s 0.15 (Xe) 

lw = K w = ? (Xe) 

lf = K = 0.21 (Xe) s 

This gives a factor of 6.6 speed up, a 4.6-fold reduction in Lf, and a 

scaling of Lw that is unspecified. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The fact that lw is not specified in the above example suggests that it 

may be easy to satisfy the second scaling condition, lf = lw, which we 

have ignored up to now. Equating (3.9) and (3.10) shows that this condition 

will be satisfied if 

K = t 1/ 2 
K w s (3.21) 
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However, this may be difficult to achieve in practice because we seek a gas 

having small KS and t 1/ 2 cannot be large. Thus, (3.21) implies that we 

use materials having small KW' KW = 0.21 and yw = 0.70 in the above 

example, and such materials may not exist. Nevertheless, full three-

dimensional similarity is sufficiently important, both in the context of the 

above discussion, and in the broader context of a volume made up of several 

rooms having interior walls and doorways, that a search for such materials 

should be made. 

We conclude this section by presenting our scaling relations in their 

most useful form and giving some more examples. We write the scaled para-

meters in terms of fluid parameters and pressure and temperature on the 

assumption that wall parameters can be adjusted by making composite walls. 

We then have the wall parameters given by 

K 
W 

= K t 1/2 
s 

the length scaling with lw = lf = 1 and 

1 = K t-5/ 2 
s 

and the time scale 

(3.22 ) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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The values of the coefficients in these equations are given in Table 3.2 

for the following choices of gases: SF6, S02, Ar, Xe. Note that these 

numbers are much more uncertain than the two significant figures given. For 

example, the values of the thermal conductivity of air at 0 °C given in Refs. 

9, 11, and 12 rounded off to two significant figures are 24, 25, and 23 x 

10-3 w/m K respectively. Nevertheless, one can see that these four gases 

span a large range of possibilities. In order to emphasize this ,point, in 

Table 3.3 we present the values of 1, 0 and T for these four gases for p = 1 

or 10 and t = 1 or 2. In practice, tables such as this should be searched for 

small values of 1 and T that are associated with not-too-large values of 0, 

e.g., 0 < 10. Thus, SF6 with p = 10 and t = 2 looks like good possibility. 

However, SF6 has an infrared vibrational band at 347 cm-1 which is at an 

energy equivalent to 516K. Thus, the requirement that the gas in the scale 

model be optically thin to the predominant thermal radiation probably imposes 

the requirement that t < 1.5 for SF6. Nevertheless, SF6 is a good 

candi date and any compet i ng gas must pass all the tests presented in the 

preceeding discussion. 
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Table 3.1. Values of p and o for the noble gases calculated from Eqs. (3.11) 
and (3.12) with T-:::: lj24~and t :::: 2. 

Gas He Ne Ar Kr Xe 

p 0.245 2.84 7.81 14.6 25.3 

0 1170 381 139 74.1 42.8 

Table 3.2. Values of the coefficients in Eqs~ (3.22) - (3.26) for several 
gases. 

Gas -2 -1 K Ys Ys K YsKs S s 

SF10 
6 0.55 3.3 0.17 1.8 

SO 9 
2 0.36 1.4 1.4 0.50 

Ar11 0.68 0.70 3.0 0.48 

Xe ll 0.21 0.70 9.7 0.15 
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Table 3.3. Values of 1, 0, and T derived from Eqs. (3.22) - (3.26). 

Gas p t 1 0 T 

5F6 1 1 0.55 0.17 1.8 

10 1 0.55 0.0017 18 

1 2 0.10 497 0.020 

10 2 0.10 4.97 0.20 

502 1 1 0.36 1.4 0.51 

10 1 0.36 0.014 5.1 

1 2 0.064 4,100 0.0056 

10 2 0.064 41 0.056 

Ar 1 1 0.68 3.0 0.48 

10 1 0.68 0.030 4.8 

1 2 0.12 8,700 0.0053 

10 2 0.12 87 0.053 

Xe 1 1 0.21 9.4 0.15 

10 1 0.21 0.094 1.5 

1 2 0.038 27,000 0.0017 

10 2 0.038 270 0.017 
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4. Concl usi on 

We have derived a set of six scaling conditions on the ten scaling 

variables that characterize a scale-model building. These conditions, based 

upon spatial and temporal scaling, allow a rich variety of possibilities which 

have not yet been fully explored. We discuss below three areas that need 

further study: (1) the use of gas mixtures; (2) the proper wall materials; 

and (3) the validity of the Boussinesq approximation used to describe free 

convection. 

The use of a mixture of gases for an atmosphere may allow additional 

freedom in meeting the requirements of scaling. The desirable properties of 

such a mixture are: (a) the Prandtl number must be the same as that of air 

( 0.72); (b) the thermal conductivity should be low and the heat capacity per 

unit volume high for proper scaling; and (c) the gases should not have any 

absorption bands in the infrared as they would impede radiative transport. 

In order to have full three-dimensional scaling, the walls of the scale 

model must be made of materials of moderate heat capacity per unit volume and 

low thermal conductivity. These goals may be achieved by a combination of 

good design and the use of exotic materials. However, this is an area for 

future study. See Appendix E for one solution to this problem. 

The validity of the Boussinesq approximation in studies of free 

convection is taken more or less as an article of faith. A quantitative 

justification of its use in this particular context would place this study on 

firmer ground. This is a questi.on for which there is already a large 

literature. 
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Appendix A. Energy Transport by Conduction in Walls 

The sole mechanism of energy transport through the solid walls of a 

building is conduction. There is also transport by conduction in the fluid 

medium but there it plays a secondary role to convective transport. In thi s 

appendix we consider conductive transport in the walls. 

The conduction of heat is described by the heat equation (see Ref. 6). 

(A.I) 

where p is the mass density, cp the specific heat, and k the thermal 

conductivity of the wall, all of which may depend upon position in an 

inhomogeneous medium. The temperature distribution of the wall Tw(r,t) is 

determined by (A.I) plus boundary and initial conditions. The transients that 

are excited by the initial conditions are of no interest since they die out 

quickly. Thus, we need only consider (A.I) plus boundary conditions. Note 

that (A.I) is just the statement of local conservation of thermal energy. 

For, p cp is the heat capacity per unit volume and therefore the left-hand 

side of (A.I) is the time-derivative of thermal energy density p cp Tw' 

The right-hand side is minus the divergence of the thermal energy current 
-+ 

-k 'iJ Tw' 

We assume that a given wall can be represented by N layers having 

constant properties. Eq. (A.I) for the ith layer then becomes 

aT. 
(pcp) i at' = k. 'iJ2 T. , , 

and the boundary conditions become: 

continuity of the temperature 

(A.2) 

(A.3) 
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and continuity of the current 

(A.4) 

at the interfaces between the layers. The unit vector n is the normal to the 

interface in (A.4). We can include the external boundary conditions if we 

interpret i = 0 or N+l to be the fluid f in (A.3) and (A.4). For the 

discussion of this appendix, the fluid temperature Tf is assumed to be 

given. 

We denote the thickness of the ith layer by Li and define the total 

thickness of the wall 

N 
L L. 

i=1 ' 

the average heat capacity per unit vol ume 

1 N 
C - Lw L (p cp) i L. w i=1 

, 

and the effective static thermal resistance 

N L. 
= L ' 

i=1 k.j 

(A.5) 

(A.6) 

The static properties of the wall are completely determined by Lw and kw. 

The dynamic properties will also depend upon Cw and the dimensionless 

internal parameters Li/Lw, (p Cp)i/Cw, and ki/kw. In our 

search for similarity solutions, we assume that these dimensionless internal 

parameters are fixed and we vary Lw, Cw, and kw. This may be easier to 

do on paper than in practice. 
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We now rewrite Eqs. (A.2) - (A.4) in a form appropriate for scaling. 

Since temperature carries its own dimensions, there is nothing to be gained by 

reseal ing it. • -+ -+ -+ We choose Lw as our unlt of length, rw = r/Lw' Vw = 
-+ 

Lw v, and write (A.2) as 

aT. 
1 

at" = 
k. 2 , v T. 
kw w , 

where we have introduced the characteristic time of the wall 

T 
W 

and the effective thermal diffusivity of the wall 

(A.8) 

(A.9) 

(A.I0) 

which is strictly a material property. Eqs. (A.3) are unchanged and, for i=l, 

... , N-l, Eqs. (A.4) become 

[~:J (A.ll) 

For i = 0 or N, Eqs. (A.3) and (A.4) invol ve an interface between the wall and 

the fl uid. Forexampl e, setting i = 0, we have Tf = To = Tl and 

We assume that the fluid volume has a characteristic length Lf so that 
-+ -+ -+ -+ 
rf = r/Lf and vf = LfV. Equation (A.12) then becomes 

A simiJar expression is obtained for i = N. 

n · V T w 1 

(A.12) 

(A.13) 
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Apart from the internal wall parameters that are assumed to be held 

constant during scaling, the above equations involve the characteristic time 

for the wall TW (A.9) and the parameter kfLw/kwLf in (A.13), both of 

which may change during scaling. These are the only scaling variables if one 

assumes, as in numerical simulations, that the heat conduction is one-

dimensional in the direction perpendicular to the wall surface. If one 

requires exact three-dimensional scaling, then the ratio Lw/Lf is also a 

scaling variable. This variable enters through the specification of the 

boundary conditions such as (A.13). This is best demonstrated by an example. 

Consider a square wall surface of dimensions Lf x Lf which crosses the 

x-axis at the point x = Lf/2 and ;s oriented perpendicular to the x-axis. 

The surface is the set of points satisfying: x = Lf/2, Lf/2 < y, 

Z < Lf/2. 
~ If we translate these conditions into conditions on rf, the 

argument of Tf in (A.13), we have: xf = 1/2, -1/2 < Yf, zf < 1/2. 

This is independent of scale. However, if we translate these conditions into 

conditions on rw, the argument of Tl in (A.13), we have: 

which is not independent of scale unless we hold Lw/Lf fixed during the 

scaling. The condition Xw = Lf/2Lw does not break the scaling since it 

can be removed by a translation of coordinates. Thus, Lw/Lf only enters 
, 

in the transverse y- and z- directions and holding it constant is necessary 

for exact three-dimensional scaling. However, if we assume that the heat con- : 

duction is one-dimensional, then the temperatures in (A.13) are independent of 

y and z, and Lw/Lf can be varied without violating scaling requirements. 



-31- . 

We argue that the condition Lw/Lf = constant is a relatively 

unimportant scaling condition. This condition ensures that transverse heat 

conduction scales properly. However, if transverse heat conduction is a 10% 

effect, then we will not make large errors if this condition is violated. 
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Appendix B. Energy Transport by Radiation 

We assume that the walls of the enclosure radiate as gray bodies. 

They radiate energy as 

E = E a T4 

where E is the total power radiated per unit area, the emittance E is about 

one for typical materials radiating in the infrared, and a = 5.67 x 10-8 

w/m2 k4 is the Stefan-Boltzmann constant. We also assume that the fluid 

medium is transparent so that radiation transports energy from and to the 

interior surfaces only. The power radiated from an element of area d2rl 

of surface 1 and incident upon an element of area d2r2 of surface 2 is 

given by (See Ref. 6) 

" " where El is given by (B.l) for surface 1, nl and n2 are the 

inward-pointing normals of the two surfaces, rij = ri-rj is the vector 

from poi nt rj on surf ace j to poi nt ti on surface i. 

(B.2) 

In addition to radiating energy, the surfaces will also reflect it. The 

power leaving surface i per unit area will be 

J. , = 4 (1 - E.) G. + E. a T. , , , , , (B.3) 

where Gi is the incident flux of radiant energy and we have used the 

gray-body assumption to write the reflectance of the ith surface as l-Ele 

The geometry of the system is simplified if we assume that all surfaces 

are flat. We then obtain the incident fluxes Gi from the set of equations 
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G. = L F .. J. 
1 jt:l lJ J 

/ 

where the Fij are geometrical factors obtained from (B.2) 

F .. 
lJ 

I (nl·r .. ) (n.·r .. ) 
= 1T J lJ 4 J Jl 

r .. 
lJ 

2 d r. 
J 

(B.4) 

(B.S) 

This treatment assumes that the surfaces chosen are small enough so that each 

one has a constant temperature and radiative environment. Substitution of 

(B.4) and (B.3) yields a set of equations for the radiosities Jio 

The net rate of energy loss from surface i is the difference between what 

goes out and what comes in, 

J. - G. 
1 1 

4 = G.[o T. - G.] 
111 

The parameters that figure in the ahove discussion are the emittances 

£i, the geometrical factors Fij, and the temperatures Ti. We assume 

that the emittances are not changed by the scaling since they are close to one 

for most materials radiating in the infrared. The geometrical factors are 

dimensionless and scale-invariant by definition. The temperatures are the 

only variables that can be changed by scaling. 

The solution of Eqs. (R.3) and (~.4) will yield net fluxes that are 

proportional to differences in the fourth power of temperature or, assuming 

small temperature differences, we have 

net radi at i ve f1 ux - 4 £ 0 T~ 6T , 

where To is the average temperature and 6T is a typical temperature 

difference. For scaling, this flux must be compared to other fluxes of 

energy. 

(B.6) 
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Appendix C. Energy Transport by Conduction and Convection in the Fluid 

The fluid motions are described in the hydrodynamic approximation of the 

Navier-Stokes equations (see Ref. 6). This approximation is valid as long as 

the fluid properties change insignificantly over a molecular mean-free-path 

(< one micron for a gas at standard conditions) and during a molecular mean­

free-time (< 10-9 sec for a gas at standard conditions). These conditions 

are well satisfied in the situations that we are concerned with. A further 

approximation to these equations--the Boussinesq approximation 7--is used to 

describe free convection. This approximation can he crudely described as one 

that takes buoyancy forces into account only to leading order. The validity 

of this approximation is hard to quantify. In practice, however, it has 

proven to be a useful guide in studies of convection, and we will assume that 

it is a satisfactory representation of our system. 

The equations resulting from these approximations are written in a 

dimensionless, scale-invariant form which involves certain dimensionless 

groups of parameters such as the Prandtl number and the Grashof number. These 

numbers must he held constant during scaling so that dynamic similarity is 

maintained; this requirement imposes scaling conditions on the parameters. 

The Navier-Stokes equations are statements of local conservation of mass, 

momentum, and energy. The state of the fluid is described by the mass density 

P, the velocity v, and the temperature T which are all functions of position; 

and time t. Conservation of mass is expressed by the continuity equation 

~ + V c (p~) = 0 at (C.1) 
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Conservation of momentum is expressed by. 

(C.2) 

where P is the pressure, ~ is the gravitational acceleration, and ~ and ~ are 

viscosities. This equation is a disguised version of the statement: time 

derivative of the momentum density plus divergence of the momentum current 

equals zero. The final conservation of energy equation is 

where cp is the specific heat and k is thermal conductivity of the fluid (we 

suppress the subscript "f" in this appendix whenever our meaning is 

unambiguous.). The left-hand side plus the first term on the right-hand side 

describe convective and conductive transport of thermal energy. The remaining 

two terms ~n the right-hand side describe the dissipation of fluid kinetic 

energy into thermal energy. In the first of these latter two terms, the 

indices a and B are summed over the three components of the respective 

vectors. Equations (C.I) - (C.3) are five equations in the five unknowns--p, 
~ 

v, and T plus the additional variable--the pressure P. They are completed by 

an equation of state for the fluid: P = P(p,T). We will use the ideal gas 

equation of state 

_ R 
P - M pT , (C.4) 

for the systems we treat. Here, R is the gas constant and M is the mean molar 

mass of the gas. The transport coefficients are discussed in Appendix D. 
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These equations must be supplemented by boundary conditions. 

The appropriate ones for free convection in an enclosed volume are 

+ v = 0 , (C.S) 

, (C.6) 

, (C.7) 

at the surfaces. Here, TI is the temperature of the innermost surface of 

the wall, kl its thermal conductivity, and n its unit normal (see Eq. 

(A.12)). The first of these is the standard no-slip boundary condition of 

viscous hydrodynamics. The last two impose continuity of temperature and heat 

flux at the surfaces. 

We first consider the static isothermal solution to Eqs. (C.I) - (C.7). 

This is given by 

p o( z) T To 
+ 

0 P = = v = (C.8) 

where Z is taken in the vert i cal di rect ion and 

p o( z) 0 Mg ) = Po exp (--rr- z , 
0 

(C.9) 

with Poo equal to the constant density of the gas at the floor z = O. The 

scale height of the atmosphere RTo/Mg has the approximate value of 8 km for 

ai r at standard temperature. Thus for most purposes, Po can be treated as a 

constant over distances less than tens of meters; quantitatively, Po can be 

treated as a constant if 

I , (C.IO) 

where Lf is the characteristic length scale of the fluid volume. 



-37-

In order to estimate the magnitudes of the various terms in the 

Navier-Stokes equations and to write them in a scale-invariant form, we 

consider the various units we can form from the constants that appear in 

them. We have already introduced a unit of length Lf -- the characteristic 

size of the fluid' v(Tl-t..i1ne~ We have two ch<nces for a unit of time 

- v or TI -f - where 
Cl 

v =.H 
P 

is the kinematic viscosity (or better--the momentum diffusivity) and Cl = 

k/pcp is the thermal diffusivity. The ratio of these two time scales is the 

Prandtl number 

v Pr -
Cl 

(C.ll) 

For most gases Pr ranges between 0.7 and 1, and there is no reason to choose 

one time scale over the other--we choose Tf as our unit of time. However, 

for dynamic similarity we must require that momentum and heat diffuse with 

equal relative rapidity, which leads to the scaling requirement: Pr = 

constant. With these units of length and time, we have v/Lf as our unit of 

speed. We will use Po as a weakly variable unit of density. In spite of 

the fact that these are "natural" units, they turn out to have values that are 

not well suited for the problem at hand. If we consider air at STP, then v = 

1.5 x 10-5 m2/s and, if we take Lf = 5 m, then Tf = 460 hours and the 

unit of velocity is v/Lf = 3 x 10-6 m/sec. Thus, in these units, we can 

expect dimensionless times to be small and dimensionless velocities to be· 

large. For air, the density is given by Poo = 1.3 kg/m3• 
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We write the density and velocity in the system of units just described 

as 

(C.12) 

v(r,t) , (C.13) 

where Po is given by (C.g) and 

• (C.14) 

In addition, we write the temperature as 

(C. IS) 

where To is the average temperature and ~T is the amplitude of the 

fluctuating part of the temperature. Substituting these expressions into 

(C.I) - (C.3) and using the ideal gas equation of state (C.4) for the pressure 

yields the equations 

ap _.t!L -
Lf~ z + V f • 

-+ (C.16) ( pv) = 0 atf RTo 

where ryf = Lfry , 

- 2 
+ ~T r) VfP + ~T V T] + - RToLf 

~+ + v + - [(1 (v· f) v = Gr T z -
M} at f To p To f 

(C.Il) 
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where we have defined the Grashof number as 

(C.18) 

with g the magnitude of the gravitational acceleration and z a unit vector in 

the vertical direction. For air at 300 K, we have 

which indicates that the flow is in the transition region between laminar and 

turbulent, 109 < Gr < 1011 •. The temperature equation is 

r; 2 ;t +2 
+ (- -~) (vf·v) 

)J , 

(C.19) 

where the Prandtl number Pr was introduced in (C.ll). 

We now perform some drastic approximations to simplify the form of the 

equations. We first note that the second term in (C.16) is proportional to 

the small parameter Mg/RTo Lf, (C.lO), and we ignore it. The buoyancy 

forces have been taken into account in the term proportional to Gr in (C.Il). 

Therefore, to lowest order, we can set p = 1 and (C.16) becomes 

(C.20) 
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or incompressible flow. All terms in (C.17) and (C.18) that are proportional --+-+ -+-to Vf·v or vfP now can be dropped. The term in (C.17) proportional to 
-+ -
vfT represents the acceleration of the gas due to its own thermal expansion. 

This is known to be a small effect, so this term is dropped. The dissipation 

term in (C.19) is multiplied by the constant l)?/lf-2cp~T the value of··· 

which is 1.8 x 10-15 for air with Lf = 5m and ~T = 5°C, so we drop this 

term. Equations (C.l7) and (C.19) then become 

av - - -- v2; -+- V -+- Gr Tz + at f 
+ (v· f}v = f , (C.21) 

~+ - - 1 v2 T (veVf}T = atf Pr f (Ce22) 

These equations are scale-invariant if Gr and Pr are held fixed and the 

approximations (C.10) an~ 

« 1 (C.23) 

remain valid. These approximations are easily satisfied. 

The boundary condition on the velocity (C.5) is independent of scale. 

The boundary conditions on the temperature (C.6) and (C.7) have been discussed 

in Appendix A, see Eq. (A.12). 
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Appendix D. Mean-free-Path Transport Coefficients 

Mean-free-path expressions are discussed in Ref. 8. Here we present the 

results needed for our treatment of the scaling laws. We do not use the 

subscript f in this appendix. 

The viscosity of a fluid expresses its ability to exert shear forces and 

is defi ned by 

p = xy 

where Pxy is xy-component of the fluid stress tensor, which is the 

transverse force per unit area or the transverse momentum flux, ~ is the 

viscosity, and Vy is the y-component of the fluid velocity. 

(D.1) 

Mean-free-path arguments for the value of ~ are based upon kinetic theory 

and the assumption that, on the average, the molecules of the fluid have 

properties characteristic of the location of their last collision. This leads 

to the expression 

(D.2) 

where ~~ is a constant (-0.3 - 0.4), p is the mass density of the fl uid, v 

is the average speed of the molecules, and 1 is the mean-free-path between 

molecular collisions. Simple kinetic theory arguments give 

(0.3) 

where kB is the Boltzmann constant, T is the absolute temperature, and m is 

the molecular mass. Furthermore, the mean-free-path is given by 

1 
1 (D.4) --n O'c 
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where n is the number density of molecules and ac is their total collision· 

cross section. 

The kinematic viscosity is defined by 

v :: lJ./p • (0.5) 

Putting the above expressions together yields 

(0.6) 

The ide~ gas equation of state gives n as a function of P and T 

n = P 

9' (0.7) 

and then we have 

(0.8) 

where the subscript s refers to some set of standard conditions. This is the 

expression used in (2.19). From (0.6), we expect that 

v 
S 

1 

This can be used as a guide in selecting gases. 

The thermal conductivity k of a fluid is defined by 

-+-
where H is the heat flux. Mean-free-path arguments yield the expression 

(0.9) 

(0.10) 

(0.11) 
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for molecules with no thermally excited internal degrees of freedom. In this 

expression, ~k is a constant (-5/2) and Cvt is the contribution of the 

translation degrees of freedom of the molecule to the specific heat at 

constant volume. If the specific heat has a contribution from internal 

degrees of freedom cvi then 

We have assumed that the specific heat is independent of temperature. For 

simpl icity we will use (0.11) rather than (0.12) in what follows. The 

quantity PCvt is the heat capacity per unit volume of the gas; for an ideal 

gas, this is 3/2 nkB. Putting this into (0.11) and using (0.3) and (0.4) 

gives 

where again 

k = ks [i J 1/2 

k -s 
1 

This is the expression used in (2.20). 

The thermal diffusivity is defined by 

a = 

c.. We assume that pCp = 5/2 nkB in accordance with the discussion of PCvt 

above. Then, using (0.7) for n, we have 

(0.13) 

(0.14) 

(0.15) 
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a = [
LJ3/2 [P sJ as T p. 

s 
{D.16} 

This is the expression used in {2.21}. 

Equation {D.14} is an important guide in a search for gases that have low 

thermal conduct i vity and are therefore des i rabl e for use in scal i ng. It 

states that we should seek a gas the molecules of which are massive and which 

have a large collision cross section. 
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Appendix E. Doghouse Modeling 

The results described in detail in Sec. 3 can be tested by comparing the 

thermal performance of a small-scale structure with that of a full-scale one. 

Such a test is discussed in this appendix. For simplicity, we have chosen a 

cubic box having six identical sides--a doghouse--as our structure. One 

vertical side of the box is covered with electrical heaters in order to simu­

late the incidence of solar energy. We present below the design considera­

tions, instrumentation, mode of operation, and data analysis for modeling such 

a structure. This exercise illustrates what must be done to model a realistic 

structure as well as serving as a test of our scaling relations. Throughout 

this appendix we will use the mean-free-path expressions for the transport 

coefficients derived in Appendix D. However, more accurate design parameters 

will be obtained if semi-empirical fits to the observed values of these 

coefficients are used. This technique will be reported in a subsequent paper. 

The results of Sec. 3 plus considerations of cost, ease of handling, 

etc., suggest that SF6 be used as the atmosphere in the small-scale model. 

This choice dictates the parameters to be used in Eqs. (3.22) - (3.26) for 

scaling variables. These are given in Table 3.2. 

The next design choice is that of the operating pressure and temperature 

of the small-scale model. Here, considerations of time scale and temperature 

swing are dominant. The time scale for the small-scale model is given by 

T = 1.85 p t- 13/ 2 (E.1 ) 

, for an SF6 atmosphere. Since we want a small value of T, this suggests that 

we work at low pressure and/or high temperature. However, the amplitude of 

the temperature swing is given by 



-46-

o = 0.161 p-2 t 23/ 2 (E.2) 

and keeping this number reasonable puts limits on the values of p and t. We 

choose 0 = 10 as a practical maximum value of 0 thus relating p to t through 

(E.2). Cost considerations limit the value of p to the neighborhood of one, 

0.75 < p < 1.25. In ~hat follows, we choose p = 1. However, p might be 

changed slightly in the field in order to fine-tune the system. Equation 

(E.2) then yields t = 1.43 or Tol = 146°C (295°F). 

The parameters for the walls are determined by Eqs. (3.22) and (3.23) 

plus the above choices. We have KW = 0.661 and Yw = 2.34. In Table E.1 

we list the values of the thermal conductivity and heat capacity per unit 

volume for various materials. No two materials in this table have the 

proper ratios KW and Yw. We solve this problem by making each wall out of 

two different materials. This will result in walls that have the proper 

static properties but have dynamic properties that are not matched. We hope 

that the mismatch is small. This hope can be checked quantitatively once the 

design parameters are chosen. 

In accordance with the preceding discussion, we seek two two-material 

walls, made from the materials listed in Table E.1, the thermal conductivities 

and heat capacities of which have the given ratios K and y (we drop the 

subscript "W"). We denote the materials in the full-scale wall by 1 and 2 

with thicknesses proportional to y and 1-y respectively, (see Fig. E.1). We 

denote the materials in the small-scale wall by 11 and 21 with thicknesses 

proportional to yl and 1-y l respectively. The thermal resistivity and heat 

capacity per unit volume of the full-scale wall are given by 

C = Y C1 + (l-y) C2 

R = Y R1 + (l-y) R2 

(E.3) 

(E.4) 

; 
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and those of the small-scale wall by , 

C' = y' C' + (I-y') C' 1 2 (E.5) 

R' = y' Ri + (I-y') R2 (E.6) 

In these equations, we have used resistivities R = I/k rather than conducti-

vities since they are additive, as are the heat capacities. If we use C' = Y 

C and R' = R/K, then Eqs. (E.3) - (E.6) are a two-by-two system of linear 

equations for y and y' in terms of y, K, and the material parameters. These 

equations can be solved and if y and y' lie in the physical range between zero 

and one, then we have an acceptable combination of materials. More than 

50,000 combinations of materials can be chosen from the list in Table E.I, and 

many of them pass the test. A more efficient method of choosing materials is 

the graphical method, which we now describe. 

If we take Eqs. (E.3) and (E.4) and plot C as a function of R then we see 

that these equations are just a parametric representation of the straight line 

segment from the pOint (RI' CI ) to the point (R2, ( 2) on the C vs. R 

plane. Any point on this line segment is a possible value of Rand C. On the 

other hand, if we take Eqs. (E.5) and (E.6) and use C' = y C and R' = R/K, 

then we see that it represents a straight line segment between the point 

(KRI', CI'/y) and the point (KR2', C2'/y) on the C vs. R plane. An 

acceptable combination of materials is represented by an intersection of these 

two line segments. Thus, in the graphical method, one plots the two sets of 

points (Ri' Ci ) and (KRi , Ci/y), where i ranges over the materials of 

Table E.I. One joins the pairs of points in each set with straight lines and 

looks for intersections between the lines of the two sets. Most of this 

. procedure can be carried out by eye and it leads to a rapid identification of 
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acceptable combinations of materials. This method has the further advantage 

that near-miss combinations of materials can also be easily identified. 

The graphical method has been used to select plywood as the single 

component of the walls of the full-scale model. The walls of the small-scale 

model are 34% corkboard and 66% NEMA G-IO. This leads to the values k = 0.674 

and y = 2.26, which is a near miss. However, uncertainties in material 

parameters more than mask the discrepancy. 

The dynamic response of the two walls will be different due to their 

different internal structure. We can quantify this difference by considering 

the response of the wall to an applied temperature with a harmonic dependence 

upon time. We construct the wall in a symmetric fashion with two sheets of 

material I on the outside, each having a proportional thickness y/2, and one 

sheet of material 2 on the inside having a proportional thickness 1-y, (see 

Fig. E.1). A temperature variation To e- iwt is applied to the right-hand 

side while the temperature is held constant on the left-hand side. The heat 

flux on the left-hand side is given by 

k -iwt J o 
w 

To = - L Xo e (E. 7) 

and that on the right-hand side by 

J I 
kw 

To 
-iwt = - LXI e (E.8) 

The factor kw/L in these expressions is just the wall U-value; Xo and 

xl are dimensionless, frequency-dependent response factors normalized to one 

at zero frequency. Solving the heat equation yields the following expressions 

for the XiS: 
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For a single-material wall 

Xo = sinh K 
K (E.9 ) 

Xl = K coth K (E.lO) 

where K2 = -iWTw and TW = CwLw2/kw. 

For the three-layer, two-material, wall 

(E.11) 

where 

!l = sinh X2 

(E .13) 

and Xl = Kly, X2 = K2(1~y) with Kj 2 = -iWTW(Cj/Cw)(kw/kj 

and Cw and kw are given by (E.3) and (E.4). These expressions are 

compared in Table E.2 for various values of WTw for the one- and 

two-material walls described above. Note that scaling implies that the 

comparison should be made at equal values of WTw• From this table we see 

that there is fairly good agreement between the response factors over a wide 

range of WT W• It is clear from this table that case II (corkboard on the 

outside) is a better approximation to case I (single material) than case III 
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(corkboard on the inside). Thus, the walls of the full-scale box should be 

plywood of thickness Lw; the walls of the small-scale box should be a 

layer of NEMA G-I0 of thickness 0.66 Lw' with a layer of corkboard on 

each side of thickness 0.17 Lw'. Scaling then implies that Lw' = tLw 

with t = 0.225. Note that we are using full three~dimensional scaling so that 

Lf' = tLf • The overall size of the boxes and the thicknesses of their 

walls are determined by Lf and Lw--these are free parameters which can be 

chosen to simplify the construction of the boxes. 

The time scale for the full-scale plywood box is given by 

hrs 

The time scale for the small-scale model is TW' = TTW with T = 0.179 for 

our choice of parameters. Tests of scaling for time-dependent phenomena 

should be run at frequencies such that 

WT = 0, 1, 10 w 

(E.14) 

(LIS) 

Note that for WTW = 1 and a 5 cm-thick wall we have a period of 27 hours. 

While the tests might best be run at a single frequency it is probably just as 

good to use a square-wave power input the fundamental frequency of which 

satisfies (E.15). 

The power level for the full-scale model is dictated by its total heat 

capacity and the desired rate of temperature change. The six-sided plywood 

cube has a total heat capacity 
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For a rate of temperature change T, the total pOwer should be 

{E.16} 

All of this heat will not go into the walls, but this expression will still 

yiel-d an-estimate of the tota+power needed. The total power in the 

small-scale model scales as p1tot = 0 t 3 12 Ptot with 0 t 3 12 ~ 

1.5 for our choice of parameters. Thus, both of these power levels 

are ~ell below 1 kw for a reasonable choice of sizes and are therefore 

easily manageable. 

Both full- and small-scale models should be instrumented so that the 

temperature distributions throughout their volumes can be compared. This must 

be done in the least intrusive fashion possible. We envision a 3x3x3 array 

of thermistors sensing the temperature throughout each volume. If these 

temperatures are sampled at a frequency ten times that of the power input 

we have 270 data points per model. Good statistics can then be built up by 

signal-averaging techniques. In this way, a digestible amount of good quality 

data can be generated. 
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T=o 

/12y L w 

X B L 8110- 1452 

Fig. E.l. Structure of two-material, three-layer wall. 

Material 1 is split into two symmetrical layers about one layer of • 

material 2. Dimensions are given as fractions of the total width 

Lw· 
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Table E.1. Thermal conductivities and heat capacities per unit volume for 
selected materials. 

Materi al 

Gypsum board 
Fiberglass insulation 
Plywood 
Paper 
Asphalt shingle 
White pi ne 
Fiberboard 
Corkboard 
Styrofoam 
Nylon-6 
Concrete 
Aluminum (6061) 
Copper (OFHC) 
Lead (common) 
NEMA G-10 
Epoxy (unfi 11 ed) 
Teflon 
Kapton 
Steel (C1015) 
Graphite 
Hard rubber 

k [W ] mr 

0.170 
0.0397 
0.138 
0.100 
0.145 
0.120 
0.0580 
0.0400 
0.0300 
0.290 
0.420 

171 
391 
33.9 
0.294 
0.350 
0.240 
0.170 

47.0 
150 

0.121 

C [kJ ] 
7K 

872 
29.5 

866 
1240 
979 

1260 
602 
376 
252 

1920 
1350 
2610 
3430 
1480 
2772 
2180 
2310 
1550 
3450 
2810 
1900 



Table E.2. Amplitudes and phases of the response factors xo and xl for three wall structures. 

Case 
WT w 

0.01 

0.1 

1 

10 

100 
~---.-

Case I: single-material wall. Cases II and III: two-material wall (34% corkboard, 66% 
NEMA G10) in three symmetrical layers (see Fiq. E.1). Case II has corkboard on the outside 
and Case II NEMA G10 on the outside. 

I II ., I I I 

Xo Xl Xo xl Xo Ii xl 
" 
i 

" 

( 1. 00, o. 00 ) (1. 00, o. 00) (1.00, 0.00) ( 1. 00, o. 00) (1. 00 , O. 00) (1.00, 0.00) 

(1.00, 0.02) (1.00,-0.03) (1.00, 0.02) (1.00,-0.03) (1. 00, O. 01 ) (1.00 ,-0.04) 

(0.99, 0.17) (1.07,-0.31) (0.98, 0.24) (1.08,-0.23) (1.00, 0.06) (1.10,-0.41) 

(0.67, 1.44) (3.15,-0.81) (0.43, 1.46) (2.07,-0.31) (0.96, 0.58) 
,1 

(4.60,-1.19) 

(0.02, 0.00) (l0.00,-0.79) (0.02,-2.04) (2.84,-0.48) (0.16,-2.34 f (22.64,-0.79) 
---- ~-.- -- - -------- --- ------ - -------

\-~ n "f..;.") ---. 

I 
c.n 
~ 
I 
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