
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Performance and Power Prediction of Compute Accelerators Using Machine Learning

Permalink
https://escholarship.org/uc/item/3v80z6t6

Author
O'Neal, Kenneth

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3v80z6t6
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Performance and Power Prediction of Compute Accelerators Using Machine Learning

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Kenneth Norman Lee O’Neal

June 2018

Dissertation Committee:

Dr. Philip Brisk, Chairperson
Dr. Jiasi Chen
Dr. Rajiv Gupta
Dr. Daniel Wong

Copyright by
Kenneth Norman Lee O’Neal

2018

The Dissertation of Kenneth Norman Lee O’Neal is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGEMENTS
I would like to thank my graduate advisor Philip Brisk for recognizing my potential as an

undergraduate and taking what would normally be considered a high-risk student in under his wing.

Further, he has been a true mentor to me, helping me to critically evaluate, understand and integrate

cutting edge approaches into my daily tasks and research efforts, even when those research efforts

had no clear alignment with his own interests. He has been instrumental in facilitating my academic

and professional career. I would also like to thank him for his financial support via his many NSF

grants and awards. I would also like to thank my committee members Dr. Jiasi Chen, Dr. Rajiv

Gupta, and Dr. Daniel Wong for their patience, guidance and evaluation of my Ph.D. work.

Further, I would also like to thank the many co-workers and friends I’ve met and worked with

throughout my internships, who gave me opportunities and trusted me with ambitious projects.

These opportunities, their advice and training, and their professionalism have had profound impacts

on my research interests and helped to mature my approach to performing high-quality research in

a competitive and demanding field. These opportunities have been instrumental in shaping my

approach to research, my desire to continue performing research, and set me on a career path that

has the potential to be truly life changing. I would also like to specifically thank Strategical CAD

Labs (SCL) of Intel, namely Michael Kishinevsky and Emily Shriver for their early financial

support and for exposure to research fields that have inspired me greatly, as well as my first

manager Gary Snyder who was often my greatest supporter and a devoted friend in the work place.

Finally, I would also like to thank the reviewers, conferences and journals that acknowledged and

accepted for publication the research that this dissertation is based on. Lastly, I would like to thank

my parents and grandparents who’ve supported and encouraged me in all ways. Thank you for

always standing behind me and helping push me up the proverbial hill.

Riverside, CA May 2018

v

DEDICATION
I would like to dedicate this dissertation to my loving mother, Laura. Although you are unable to

witness me completing my Ph.D. and attend my commencement, I know you will be watching on

in spirit, and that you had the greatest confidence that this day would come. Thank you for being

my fiercest champion, my caretaker, and for convincing me that I always had more to offer the

world. Without a doubt your encouragement, your relentless belief in me, and your continual

reinforcement of the value of education during my early years of development, none of this would

have been possible.

vi

ABSTRACT OF THE DISSERTATION

Performance and Power Prediction of Compute Accelerators Using Machine Learning

by

Kenneth Norman Lee O’Neal

Doctor of Philosophy, Bourns College of Engineering in Computer Science
University of California, Riverside, June 2018

Dr. Philip Brisk, Chairperson

CPUs and dedicated accelerators (namely GPUs and FPGAs) continue to grow

increasingly large and complex to support todays demanding power and performance requirements.

Designers are tasked with evaluating the performance and power of or increasingly large design

spaces during pre-silicon design. Validating and evaluating the performance during the pre-silicon

stage catches performance and device issues in advance of fabrication. This reduces time-to-market

by reducing the bugs that must be found and fixed after manufacturing, after synthesizing an FPGA

accelerator using HLS tools.

CASs are integral to architectural design and are often the only tool at computer

architects’ disposal to evaluate workloads on architectural design points in advance of

manufacturing. To enable optimization of the architecture without the exorbitant cost of repeatedly

fabricating designs, a high-level of simulator precision is required. As such, the simulators are

compute intensive, limiting the number of simulations, and thus workloads or design points that

can be evaluated before manufacturing. Historically the computational cost of simulation is

absorbed, which slows down time to market and increases the cost of development.

vii

Machine Learning and statistical prediction models have emerged as viable tools to avoid

repeated cycle accurate simulations by accurately predicting the metrics generated by CASs. After

one-time model training, the predictive models can then be used in lieu of simulation. Here I will

present my research into the development of machine learning frameworks for GPU and FPGA

architectures, which leverage cross-architecture predictive statistical modeling to significantly

reduce the time required to evaluate workloads and architectural design points.

viii

CONTENTS
Acknowledgements ... iv

Dedication ... v

Contents ... viii

List of Figures ... xii

List of Tables ... xiv

List of Equations ... xvi

List of ABBREVIATIONS ... Error! Bookmark not defined.

 Introduction ... 1

1.1 Cross-Architecture Predictive Modeling ... 3

1.2 Training, Validation and Application of Predictive Models 5

 Cross-Generation GPU Prediction .. 8

2.1 HALWPE Modeling Framework .. 10

2.2 Intel GPU Architecture Description .. 14

2.2.1 Integrated GPU Architecture Differences ... 15

2.3 HALWPE Regression Models ... 19

2.3.1 Linear Regression Overview ... 20

2.3.2 Ordinary Least Squares ... 20

2.3.3 Non-Negative Least Squares ... 21

2.3.4 Feature Selection and Ranking.. 21

2.3.5 Linear Regularization via Lasso.. 22

2.3.6 Model Evaluation .. 22

2.3.7 Random Forest .. 24

2.4 HALWPE Simulator Based Models .. 25

2.4.1 HALWPE Framework Validation Scenarios .. 25

2.4.2 HALWPE Non-NNLS Models ... 26

2.4.3 HALWPE NNLS Models .. 29

2.4.4 HALWPE Driver Scalability Scenario .. 30

2.4.5 HALWPE Slice Scalability Scenario .. 31

ix

2.5 HALWPE Hardware-Assisted Models .. 32

2.5.1 GPU Profiling and Mitigating Variation ... 32

2.5.2 Prediction Scenarios .. 33

2.5.3 Non-NNLS Models ... 34

2.5.4 NNLS Models ... 36

2.5.5 Scenario6 Model Comparison ... 36

2.5.6 Inlier Ratio vs. Out-of-sample Error ... 38

2.5.7 Speedup ... 40

2.6 Feature Ranking .. 42

2.6.1 Broadwell GT2/GT3 ... 42

2.6.2 Skylake GT3 ... 44

2.6.3 Discussion ... 45

 Cross-Abstraction GPU Performance Estimation 47

3.1 Rasterization-Based Modeling Framework ... 49

3.1.1 The Graphics Workload Library ... 51

3.1.2 Model Training and Validation Flow .. 52

3.1.3 RastSim ... 53

3.1.4 GPUSim .. 54

3.2 Rasterization-based GPU Model ... 54

3.2.1 Unslice Architecture ... 55

3.2.2 Slice Architecture .. 56

3.3 Rasterization-Based Regression Modeling Framework .. 58

3.3.1 Regression Model Categories ... 59

3.3.2 Elastic-Net Regression Model... 60

3.3.3 Random Forest Regression Model .. 61

3.3.4 Model Evaluation .. 62

3.3.5 RF Parameter Optimization... 63

3.4 Rasterization-Based Model Results ... 63

3.4.1 Predictive Model Results .. 64

3.4.2 WCF Impact in RastSim ... 65

x

3.4.3 Relative Accuracy Preservation .. 66

3.4.4 Predictive Model Speedup .. 67

3.4.5 RF Feature Ranking .. 68

 Cross-Platform Prediction for FPGA High-Level Synthesis 72

4.1 HLSPredict Modeling Framework .. 74

4.2 FPGA Accelerator Design and Template .. 77

4.3 Regression Models .. 77

4.4 Experimental Methodology ... 79

4.4.1 Host CPU .. 80

4.4.2 Target HLS Derived FPGA Accelerator ... 81

4.4.3 Sub-trace Generation ... 82

4.5 Experimental Results ... 83

4.5.1 Predicting Default HLS Accelerator Cycles ... 83

4.5.2 Predicting Optimized HLS Accelerator Cycles .. 85

4.5.3 Predicting Default HLS Accelerator Power .. 85

4.5.4 Predicting Optimized HLS Accelerator Power ... 88

4.5.5 Random Forest Cycle Feature Ranking .. 89

4.5.6 Power Model Feature Ranking and Analysis .. 92

 Related Works ... 93

5.1 CPU models ... 94

5.1.1 Statistical Models for CPUs .. 94

5.1.2 Cross-Architecture Models for CPUs ... 96

5.2 GPU Models .. 98

5.2.1 Statistical Models for GPUs .. 99

5.2.2 Cross-Architecture Models for GPUs ... 100

5.3 Statistical Models for FPGAs .. 103

 Conclusion.. 108

6.1 Cross-Generation Concluding Remarks .. 108

6.2 Cross-Abstraction Concluding Remarks ... 108

6.3 Cross-Platform Concluding Remarks .. 109

xi

6.4 Future Work .. 110

6.5 Conclusion ... 112

References ... 113

xii

LIST OF FIGURES

Figure 1:1 Cross-Architecture Predictive Modeling Goal ... 2

Figure 1:2 The Generalized Framework Form .. 4

Figure 1:3 The General Model Ensemble Form .. 4

Figure 1:4 Generalized Model Training, Validation and Application Flow.............. 7

Figure 2:1 HALWPE Model Goal ... 9

Figure 2:2 HW/SW Co-Optimization .. 10

Figure 2:3 HALWPE Model Development Flow .. 11

Figure 2:4 HALWPE Model Training and Application .. 13

Figure 2:5 HALWPE Speedup between Broadwell and Skylake 18

Figure 2:6 HALWPE Regression Model Suite .. 19

Figure 2:7 10-Fold CV Example ... 24

Figure 2:8 IR20% Example .. 24

Figure 2:9 Scenario3 Non-NNLS Model Errors .. 27

Figure 2:10 Scenario3 NNLS Model Errors... 28

Figure 2:11 CPF Variability for one frame of Witcher 2. 33

Figure 2:12 Scenario6 Non-NNLS Model Errors .. 35

Figure 2:13 Scenario6 NNLS Model Errors... 37

Figure 2:14 Scenarios4-6 IRs at Various Thresholds .. 39

Figure 2:15 Scenarios4-6 HALWPE Computed Speedup ... 41

Figure 2:16 Model Training and Host Execution Time... 42

Figure 3:1 Rasterization-Based Model Goal ... 49

Figure 3:2 Example Design Usage of Rasterization Method 50

Figure 3:3 Rasterization Model Framework Details ... 52

Figure 3:4 Rasterization-Based Model Train and Application 53

Figure 3:5 Rasterizer Execution Flow ... 54

Figure 3:6 Intel Skylake GT3 Architecture ... 55

Figure 3:7 RastSim Unslice/Frontend ... 56

Figure 3:8 RastSim Slice Common ... 57

xiii

Figure 3:9 RastSim Sub-Slice and Backend .. 58

Figure 3:10 RastSim Model Creation Flow ... 59

Figure 3:11 RF Tree Count Impact on Eout. ... 63

Figure 3:12 RF Tree Count Impact on IR. .. 63

Figure 3:13 RastSim Best Model IR Percentages with WCF. 65

Figure 3:14 RastSim Best Model IR Percentages without WCF. 66

Figure 3:15 RastSim Relative Accuracy Preservation. .. 67

Figure 3:16 RastSim Based Modeling Speedup. ... 68

Figure 4:1 HLSPredict Model Goal... 73

Figure 4:2 Hybrid CPU/FPGA Compute Example. ... 73

Figure 4:3 HLSPredict Prediction Framework .. 74

Figure 4:4 HLSPredict Model Training and Application .. 76

Figure 4:5 HLSPredict Hybrid CPU-FPGA architectural template 77

Figure 4:6 HLSPredict Model Training and Application .. 78

Figure 4:7 HLSPredict Scenario1 Relative Error ... 84

Figure 4:8 HLSPredict Scenario1 IR ... 85

Figure 4:9 HLSPredict Scenario2 Relative Error ... 86

Figure 4:10 HLSPredict Scenario2 IR ... 87

xiv

LIST OF TABLES

Table 2:1 Graphics Workload Library... 12

Table 2:2 HALWPE’s Software Tool and Libraries ... 13

Table 2:3 HALWPE’s Evaluated Intel GPU Device Legend 15

Table 2:4 Scenario1-3 NNLS Model Results .. 29

Table 2:5 Scenario1-3 Non-NNLS Model Results .. 29

Table 2:6 Highest Accuracy Non-NNLS Models Scenario3D. 30

Table 2:7 Highest Accuracy NNLS Models Scenario3D. ... 30

Table 2:8 Highest Accuracy Non-NNLS Models Scenario3S. 31

Table 2:9 Highest Accuracy NNLS Models Scenario3S... 31

Table 2:10 Scenario4-6 Non-NNLS Model Results .. 34

Table 2:11 Scenario4-6 NNLS Model Results .. 36

Table 2:12 Scenario6 All Model Results Comparison ... 38

Table 2:13 Scenario4 Feature Ranking .. 43

Table 2:14 Scenario5 Feature Ranking .. 44

Table 2:15 Scenario6 Feature Ranking .. 46

Table 3:1 Graphical Workload Library ... 51

Table 3:2 RastSim 5 Best Performing Models .. 64

Table 3:3 RastSim 5 Best Performing Models .. 66

Table 3:4 RastSim Top 20 RF Ranked Features ... 69

Table 4:1 HLSPredict Workloads/Accelerators .. 75

Table 4:2 HLSPredict Prediction Scenarios Evaluated ... 80

Table 4:3 HLSPredict Scenario1 Model Comparison .. 84

Table 4:4 HLSPredict Scenario2 Model Comparison .. 86

Table 4:5 HLSPredict Scenario3 Model Comparison .. 87

Table 4:6 HLSPredict Scenario4 Model Comparison .. 88

Table 4:7 HLSPredict Scenario5 Model Comparison .. 88

Table 4:8 HLSPredict Scenario6 Model Comparison .. 88

Table 4:9 HLSPredict Scenario7 Model Comparison .. 88

xv

Table 4:10 HLSPredict Scenario8 Model Comparison .. 89

Table 4:11 HLSPredict Scenario1 RF Feature Ranking .. 89

Table 4:12 HLSPredict Scenario2 RF Feature Ranking .. 91

Table 4:13 HLSPredict Scenario3 RF Feature Ranking ... 91

Table 5:1 Comparison of statistical models for CPUs... 96

Table 5:2 Comparison of statistical models for GPUs. ... 101

Table 5:3 Comparison of statistical models for FPGAs. 103

xvi

LIST OF EQUATIONS

Equation 2:1 – Linear Regression Model Form .. 20

Equation 2:2 – Ordinary Least Squares RSS ... 21

Equation 2:3 – Non-Negative Least Squares RSS ... 21

Equation 2:4 – Lasso Regularization RSS ... 22

Equation 2:5 – Out-Of-Sample Error Calculation ... 23

Equation 2:6 – Average Relative Absolute Percentage Error 23

Equation 2:7 – Inlier Ratio Calculation ... 23

Equation 3:1 – Elastic-Net Regularization RSS .. 60

Equation 3:2 – RF Regression RSS ... 62

Equation 3:3 – RF Predictive Mean .. 62

1

 Introduction
As computer architecture grows increasingly complex, Cycle-Accurarte Simulators

(CAS) are rapidly becoming a bottleneck when designing and testing Central Processing Units

(CPUs) and Graphical Processing Units (GPUs). CPUs and GPUs must be designed and tested

before manufacturing, however in both academic and industrial CASs, the necessary run times are

untenable when attempting to evaluate numerous architecture design points, or workloads for a

chosen design point. CPU and GPU CAS [1] are used to estimate performance and power

consumption, to perform design space exploration (DSE), and to prototype and functionally verify

new architectures. CPU and GPU simulators also support co-optimization of hardware and software

(e.g., application programming interface -- API, firmware, and driver development). The industrial

counterparts of academic simulators must also perform Register Transfer Level (RTL) performance

validation, necessitating greater detail and higher accuracy, exacerbating the problem. In both

cases, designers must meet quality of service (QoS) requirements which dictate the requisite

performance and power consumption of the design under test. Typical software simulators execute

orders of magnitude slower than native execution on commercial hardware [2], too slow to meet

modern design productivity demands, despite efforts to raise the abstraction level [3], parallelize

the simulations [4], and leverage hardware assistance [5] to improve simulation speed.

The design and implementation of Field Programmable Gate Array (FPGA) accelerators

is difficult and time consuming, in no small part due to the complexity and tedium inherent to RTL

design. In addition to the difficulty of RTL design, the synthesis tools themselves have long run

times that are prohibitive for design tasks. High-Level Synthesis (HLS) tools [6, 7], can significantly

boost developer productivity compared to writing RTL. Software simulators are used by

commercial FPGA synthesis tools to obtain early estimates of design performance. Although FPGA

accelerators aren’t manufactured, design efforts are impeded by long simulation and synthesis

2

times. The developer must appropriately set design pragmas (pipelining, array partitioning, loop

unrolling), to optimize performance and throughput. Finding the right HLS parameter settings is a

complex problem, which entails some mechanism to evaluate the most promising design points that

have been uncovered. Although synthesizing, placing, and routing each design point to measure

the requisite metrics (cycle count, power usage, and utilization) to characterize the design points

performance by direct execution would be ideal, the amount of time required is infeasible.

Predictive modeling, and specifically cross-architecture predictive modeling has emerged

as one potential solution to this conundrum. Although less precise than cycle-accurate simulation,

predictive models can be trained, evaluated and applied faster, thereby increasing both the number

of design points that can be explored and the number of workloads evaluated per design point. This

shares some similarities to the introduction of statistical sampling into CASs [8, 9] where

simulation taime is reduced by identifying program phases and choosing phase representatives to

eliminate redundant simulation. in both cases, the productivity benefits that accrue from modifying

existing methodologies outweigh the resulting loss in accuracy. The goal of these predictive models

is to obtain performance estimates more rapidly than with CAS by extending fast executing host

platforms with predictive models, as show in Fig. 1:1.

Figure 1:1 Cross-Architecture Predictive Modeling Goal

3

1.1 Cross-Architecture Predictive Modeling

Generally, cross-architecture predictive modeling is the task of using one architecture,

represented as either a post-silicon commercially available device or as a simulator configured to

represent a device, as a platform to execute representative workloads and collect execution

statistics. These statistics will be used as features to train models that predict the metrics typically

output by the CAS and used to evaluate the design. Cross-architecture models, which exist for

CPUs, GPUs, and FPGAs can be further categorized into 3 groups.

- Cross-generation models: direct execution of workloads on an older generation of the

target design provides features used to predict the performance and/or power consumption

of the newer target within the same family, possibly at the pre-silicon stage of development,

where only a CAS is available as a performance validation mechanism.

- Cross-abstraction models: an abstracted, functional simulator host is configured to

represent the target design and used to provide features used to predict the performance

and/or power of the detailed CAS representation of the target design.

- Cross-platform models: features obtained from executing workloads on a host

architecture that significantly differs from the target design (e.g. a CPU) are used to predict

the performance of the target design (e.g. , a FPGA [10] or GPU [11, 12] accelerator).

In the remainder of this manuscript we present three frameworks, corresponding to these

three categories of cross-architecture modeling. We present the general form of the predictive

modeling framework below. Each framework will be similar, but the host and target platforms, the

workloads used to evaluate the approach, the feature collection techniques used, and the employed

ensemble of models trained and applied, will vary. We present the general form of the prediction

framework in Figure 1:2. We also present the categories of machine learning models leveraged by

each framework to train an ensemble of models below in Figure 1:3. A variant of each figure will

4

be re-presented in the following chapters, with the specifics of each framework detailed. Models

are from the following categories: Linear, regularized, and non-linear regression. The following

section presents the model training, evaluation and application methods used in all our frameworks.

Figure 1:2 The Generalized Framework Form

The general framework, where a host is used to collect metrics, a target used to provide example power/performance
values, and models trained and validated to perform the prediction.

Figure 1:3 The General Model Ensemble Form

This depicts the categories of models used in each iteration of our cross-architecture predictive modelling framework.
We construct linear, regularized and non-linear regression models employing feature selection and non-negative

guarantees to improve model accuracy and generalizability.

5

1.2 Training, Validation and Application of Predictive Models

In all instances, we are predicting one or more metrics related to performance and power

of architectural designs under test. The primary problem we are tasked with is learning from data

by constructing a model, known as model training, which in the case of supervised regression, has

learned by example. Training supervised regression models requires several key ingredients:

- A set of representative workloads (data points).

- A set of features, which can be reasonably collected from the representative data points

and contain meaningful information detailing the data points’ behavior or attributes.

- A corresponding target metric or set of target metrics that you wish to predict. You should

have at least one target metric for each data point.

For a model to be meaningful and work well on data not present in your training set, the

features collected should correlate well with the value attempting to be predicted. The collection of

all three ingredients constitutes what is commonly referred to as a training set. This training set will

be used by a set of statistical or machine learning techniques to learn relationships between the

features and target values for each data point to form a model. After assessing model accuracy, the

model cannot yet be used on additional data points, it must first be verified to work well in general,

on data not contained in the representative training set. This process is known as model validation.

Model validation can be performed in a variety of ways depending on the amount of

available data points, and target values for those data points available for model training. The

primary purpose of model validation is to verify that the model can be applied accurately to data

points not in your training sample. This is referred to as model generalizability. The average error

of the model when applied to the validation set is typically coined out-of-sample error (Eout). We

will use these terms extensively throughout the remaining chapters.

6

In a data rich scenario, validation is performed by creating a model validation set. This

validation data set consists of the same three primary ingredients as the model training data set, but

the data points are not those contained in the training set. This is typically selected by choosing at

random a percentage of data from all available data to withhold from model training. Although all

three ingredients are still required, the model validation step does not alter or perform additional

learning. Instead, the model is simply applied, and the collected target values are compared to the

model predictions to ensure the model is accurate.

In a data sparse scenario, wherein too few available data points are available to create

both a sufficiently representative training set and a holdout validation set, statistical methods are

instead applied to accurately estimate how the model would perform on unseen data. One of the

most popular and effective techniques employed is cross-validation (CV). Due to the relatively

small amount of target metrics and data points available for architectural modeling (due to slow

simulation times) we exclusively apply CV to evaluate our models error on unseen data.

Specifically, we perform 10-fold CV which has been shown to produce accurate estimates [13] of

Eout. After properly evaluating the performance of the model during model validation, the model

can then be applied.

Model application is where the benefit of model training and validation is realized. The

model can be used to provide estimates of the target for which it was trained with very little

overhead. In contrast to model training and validation, only two ingredients are now required: 1)

Additional workloads or data points that need to be evaluated and 2) features for those data points.

Example target metrics are no longer needed, as the model has already been verified, and the model

can be used in lieu of the target device that would normally generate those values, i.e. a CAS.

Model application can provide large speedups with very little impact on accuracy as we will

demonstrate. Figure 1:4

7

Figure 1:4 Generalized Model Training, Validation and Application Flow

This depicts the general form of the (a) model training, (b) model validation and (c) model application flow for each
model training in our framework iterations. Each model in the ensemble follows a similar procedure. In our case our

validation sets are created via 10-fold cross validation procedure.

While the preceding paragraphs present the generic form of model training, validation

and application little is presented in the way of how the models are formed. In lieu of defining and

presenting the relevant equations for model construction and model validation in the introduction,

we define and present the models where first used, and the refer to them accordingly in the

remainder of the manuscript.

The remainder of the manuscript is organized as follows: In chapter 2, we present our

cross-generation modeling approach for integrated GPUs executing 3D rendering DirectX

workloads to predict GPU performance. In Chapter 3 we present our cross-abstraction modeling

approach, which also predicts the performance of integrated GPUs executing DirectX workloads.

In Chapter 4, we present our cross-platform modeling approach which leverages CPU execution to

predict the performance and power of several FPGA accelerators designed using HLS. Chapter 5

presents a consolidated related works, largely based on our previously published cross-architecture

predictive modeling survey [14], omitting related works in each section. Chapter 6 concludes.

8

 Cross-Generation GPU Prediction
CAS times for highly-threaded processors, such as GPUs, are rapidly becoming

untenable. The situation is exacerbated in industry, where simulators serve a dual-purpose of

performance simulation and RTL performance validation. Cross-architecture predictive modeling

and specifically hardware-assisted cross-generation predictive statistical modeling can help to

overcome this conundrum when designing subsequent GPU devices in a larger family. What is

needed is a commercially available GPU, representing a current- or past-generation member of the

family, a simulator representing a future-generation GPU family member under development, and

a set of representative rendering workloads.

This chapter is based on a journal article "Hardware-Assisted Cross-Generation

Prediction of GPUs Under Design" [15] which extends "HALWPE: Hardware-Assisted Light

Weight Performance Estimation" [16], a methodology that uses fabricated silicon (host) GPUs to

predict the performance of future GPUs under development (target). Our experiments focus on

GPUs and treat the 7.5th generation integrated HD4600 GPU of the Intel Core i7-4790 processor as

a current-generation GPU (fabricated silicon) and predict the performance of three future-

generation GPUs: two 8th generation Broadwell GPUs and one 9th generation Skylake GPU. The

prediction is performed by configuring a CAS to model the newer generation GPUs, executing a

set of 3D render workloads on both the host GPU, to collect performance counter and software

metrics, and the CAS to collect target performance, cycles-per-frame— CPF, simultaneously. We

then train an ensemble of regression models to predict the CPF of each frame using the host metrics;

the models are then applied to new workloads. The goal is to speedup pre-silicon development tasks

like functional and performance verification of prototype architectures, perform hardware/software

co-optimization and more. Fig. 2:1 depicts the goal of our framework, and Fig. 2:2 depicts an

example pre-silicon hardware/software co-optimization task. HALWPE has several contributions:

9

- HALWPE’s novelty is accurately predicting GPU performance across three device

generations, spanning micro-architectural, software, parallelism and process

improvements. HALWPE achieves 7.45 %, 7.47 % and 8.91 % average out-of-sample-

error respectively.

- HALWPE uses hardware assistance to run ~30,000-45,000x faster than a GPU CAS.

- HALWPE predicts performance impacts from changes to vendor-provided drivers and

APIs (Fig. 2:2) on current and future generations of GPU.

- HALWPE predicts performance impacts caused by increasing available GPU parallelism

on the current and future generations of GPU.

- HALWPE ranks features to improve model inference and guide designers toward prime

microarchitectural and software candidates that warrant additional study.

Figure 2:1 HALWPE Model Goal

Modeling framework: a host Haswell GT2 GPU executes 3D DirectX9, 10, and 11 workloads. Performance counter
measurements obtained from the host GPU are used by predictive models to predict the performance of the GPU CAS

configured as newer GPU generation devices.

The remaining text is organized as follows: Section 2 details the modeling framework,

model building and application, and workload execution. Section 3 describes the Intel GPU

generations modeled and their relative differences. Section 4 details the regression model ensemble

10

employed by HALWPE. Section 5 details simulation-based model results when modifying the

driver and increasing available device parallelism. Section 6 details hardware-assisted, cross-

generational model results. Section 7 presents feature ranking and discussion, and finally Sections

8 and 9 present related works and our concluding remarks, respectively.

2.1 HALWPE Modeling Framework

We assume that at least one current-generation GPU is available in silicon, and that a

high-accuracy next-generation GPU simulator is available, along with representative workloads.

Fig. 2:3 illustrates the HALWPE model development flow. The Graphics Workload Library (GWL)

refers to our collection of benchmarks, listed in Table 2:1.

Figure 2:2 HW/SW Co-Optimization

GPU performance depends on the application, driver/API commands, and architecture.

The GWL contains rendering frames from 43 DirectX games and GPU benchmarking

tools spanning the version 9, 10, and 11 APIs. We collected multiple frames per application and

treat each as one workload. The one-frame-per-workload constraint is imposed by the GPU

simulator’s execution overhead, but longer traces can be executed as well. The GPU Simulator

models the GPU microarchitecture, memory subsystems, and a representation of Dynamic

Random-Access Memory (DRAM), all validated internally

11

Figure 2:3 HALWPE Model Development Flow

(1) Traces are collected and stored in the GWL. (2) Workloads execute on the current-generation GPU host, and next-
generation simulator. (3) Performance counter measurements and DirectX program metrics obtained from the host are

used to train a model to predict the CPF that the GPU simulator would report.

when configured to model post-silicon GPUs. No explicit memory model beyond the

memory subsystem and DRAM already present on the integrated GPU, leading to few related

counters. The GWL applications are assembled into a single training set; we apply 10-fold cross

validation to estimate out of sample error. We use three proprietary trace tools to collect single-

frame traces in two formats (GfxCapture), replay isolated traces (GfxPlayer), and collect

performance counters (GfxProfiler) [17], hardware queries [18], and DirectX program metrics [4–

11] on the Haswell host GPU.

The trace formats are HWTraces (DirectX commands) executed on our Haswell host GPU

[17], and SWTraces (native GPU commands) executed on our GPU simulator. To reduce profiling

overhead, we collect performance counters that can be read in one pass as detailed in the table on

page 13 of Ref. 1. Table 2:2 summarizes the software tools required to implement the HALWPE

framework.

12

Table 2:1 Graphics Workload Library

GWL: 26 DirectX Applications consisting of 364 rendered frames

13

The predictive models are programmed using R and other commercially available tools

to estimate GPU CPF. Power per frame and other metrics can also be predicted given the target

simulator provides a reference value, though feature rankings and selection may change. Model

training time is not included in the runtime comparison of HALWPE to cycle-accurate simulation,

as training time is amortized over repeated model usage.

Table 2:2 HALWPE’s Software Tool and Libraries

Figure 2:4 HALWPE Model Training and Application

Training (Top): Performance counter measurements and DirectX program metrics obtained from direct execution on
the GPU host are used to train a model to predict the performance of a GPU simulator configuration. Prediction

(Bottom): An application runs on the GPU host; the collected performance counter measurements and DirectX program
metrics are input to the performance model, which predicts the CPF that the GPU simulator would report.

14

In practice, models are trained on one set of workloads, and deployed on a disjoint second

set of workloads. Once a model has been trained it can be applied to any 3D rendering workload of

any length. However, validation of that prediction is limited to workload lengths that can be

reasonably executed on the CAS. Fig. 2:4 illustrates the model training and deployment (prediction)

workflows.

2.2 Intel GPU Architecture Description

HALPWE is validated using three generations of Intel integrated GPUs (see Table 2:3).

The host desktop personal computer (PC) has a 4-core, 8-thread Intel Core i7-4790k, 16 GB of

DDR3 @ 1666 MHz, an Intel HD 4600 Haswell GT2 GPU running at 1155 MHz, and a 2TB 7200

RPM hard disk. The Broadwell GT2, Broadwell GT3 and Skylake GT3 are later versions of this

GPU for which simulators are available. We include the performance differences between each

generation of GPU to highlight that HALWPE’s model suite can accurately generate cross-

generation performance estimates, even when the relative performance difference of the two

generations is large. In principle this method can be used on any GPU supporting the DirectX API

to produce the same metrics, and the devices hardware counters. Further, GPUs leveraging other

APIs, such as OpenGL can produce a set of metrics like the DirectX.

To create hardware-assisted model scenarios, we use simulator configurations that

execute a driver reflective of the GPU generation: version 1 (Haswell GT2), version 2 (Broadwell

GT2), and version 3 (Broadwell GT3, which we also use for Skylake GT3). In some situations,

compatibility issues between the architecture and driver caused trace execution to fail on the GPU

host and simulator. In Table 2:3, the Haswell GPU host can execute 300 of the available traces,

while simulators for the Broadwell GT2, GT3 and Skylake GT3 can execute 282, 364, and 364

traces respectively.

15

While Skylake and Broadwell GPUs are commercially available, we validate accuracy

using only CAS. Our goal is to mimic the GPU design process while employing commercially to

maximal data can be disclosed publicly, e.g. model features. This ensure validated simulator

configurations exist, while avoiding implementation work to target in-flight designs. For any host-

target prediction scenario, the number of traces that we use to build and evaluate the model is the

minimum number that both host and target have the capability to execute.

Table 2:3 HALWPE’s Evaluated Intel GPU Device Legend

2.2.1 Integrated GPU Architecture Differences

HALWPE’s novelty is accurately predicting GPU performance across multiple device

generations spanning micro-architectural, software, parallelism and process improvements. Intel’s

GPU render pipeline is organized into two logical groups: (1) the Unslice and (2) the Slice. The

Slice count of a GPU is a measure of available parallelism and contains three sub-elements. The

slice common holds fixed function (FF) caches, global slice units, the sub-slice, and L3 cache. Sub-

slices are organized into parallel groups each containing Execution Unit (EU) clusters and their

supporting thread dispatch (TD) units, samplers, instruction cache (IC), and peripherals. Section 7

provides relative performance comparisons between the host and target GPU representations. [12–

14].

We utilize three generations of Intel integrated GPU device; a Haswell GT2 single-slice

host (previous generation hardware), with 20 EUs per slice, two variants of Broadwell (single slice

GT2, and dual-slice GT3), with 24 EUs per slice and a dual-slice Skylake GT3 containing 24 EUs

per slice. The following section omits detailing individual units and their purpose, instead focusing

16

only on the differences between generations. Readers interested in a more detailed description of

the architectures should consult [12–14].

2.2.1.1 Haswell vs. Broadwell Architecture

Broadwell generation GPUs optimize the microarchitecture. Below we highlight key

areas where the Broadwell device has improved over the Haswell implementation.

Unslice: The CPU and GPU communication unit, the Graphics Translation Interface

(GTI) to lower level cache (LLC) bandwidth has improved, allowing 64-bit read and write rather

than 32-bit as in Haswell. The FF render pipeline has also been optimized on a per-unit basis,

resulting in improved pixel back end fill rate and improved Z/Hi-Z test performance.

Slice: Most notably, Broadwell has doubled 32-bit integer computational throughput, and

has added 16-bit floating point support. An increase in computational throughput derives from more

efficient global resource sharing (LLC) amongst slices, changing the total number of EUs per slice

and changing the number of sub-slices.

Slice Common: The L1 cache has an increased in overall size by increasing allocation

per slice, and the L3 cache has increased 33.33 % from 385 Kbytes to 576 Kbytes.

Sub-slice: By increasing the number of sub-slices to 3 and allocating 8 EUs per sub-slice

in Broadwell rather than maintaining two subs-slices with 10 EUs each, two sources of additional

throughput were added. First, the total number of EUs increased, and sampler contention has

decreased. In total Broadwell contains 120 % more EUs, and 150 % more sampler throughput than

a Haswell counterpart containing the same number of slices.

Comparing the performance of the Haswell and Broadwell generation devices we

measure a median performance difference of 66.43 %, an average of 317.74 % and a maximum

improvement >1000 %. The comparisons are between an actual GPU, the host Haswell generation

device, and a near CAS, our Broadwell generation target, the same GPUs used in Scenarios4-5.

17

2.2.1.2 Broadwell vs. Skylake Architecture

The recently released Intel Skylake generation GPUs make significant architectural

improvements to the Broadwell GPU architecture.

Unslice: At the platform level, the GTI latency has been reduced, and the command issue

ring buffer has also been improved. Further, DDR speed has increased from 1868 MT/s to 2133

MT/s. In total platform compute has improved 50 % from 768 GFLOPS to 1152 GFLOPS. Notable

improvements have also been made to the Fixed Function render pipeline, including to the Vertex

Shader (VS), the Geometry Shader (GS), the Hull Shader (HS), and the DS. Additional geometry

features have also been added such as Auto Strip detection and their employment in the Tessellation

stages of the FF pipeline. This serves to improve both bandwidth and cull rates by reducing the

number of redundant computations performed.

Slice: pixel back end fill rate has been further increased between 33 % and 100 %,

workload dependent. In addition, a new Multi-Sampling anti-aliasing (MSAA) mode has been

added, allowing for 16x MSAA, and performance improvements in the existing 2, 4 and 8x MSAA

modes.

Slice Common: Cache has been increased to 768 Kbytes, an additional 25 %, a total of

200 % over the Broadwell size cache. In addition to the increased memory, memory management

is optimized by performing render target compression, compressing memory before send to

increase bandwidth at each cache line. This results in 11 % increased cache line bandwidth.

Sub-slice: has been improved by adding explicit 16-bit and 32-bit floating point support.

EU/Sampler throughput and Z/Stencil and Pixel operation speed has increased 200 % by

performing individual pixel hashes on different slices. Shared virtual memory and cache coherency

have also been improved, resulting in better 3D computation. Atomic operations for 32-bit floats,

min, max, compare and exchange have also been added. TD has been further improved by allowing

18

smaller thread groups, providing finer granularity pre-emption to increase 3D compute

responsiveness. These architectural changes result in an additional increase of 24 % performance

on average, and 14.3 % median when comparing the Broadwell and Skylake generations.

Figure 2:5 HALWPE Speedup between Broadwell and Skylake

The speedup computed from CPF obtained on the Broadwell GT2/GT3 and Skylake GT3 (normalized to the CPF
attained by Haswell GT2) for 282 rendering frames. Frames 1-240 (top) and frames 241-282 (bottom) are shown on

two separate graphs due to the stark difference in CPF ranges.

Fig. 2:5 reports the speedup of the three target GPU architectures we predict (Broadwell

GT2/GT3, and Skylake GT3) normalized to the CPF attained by the Haswell GT2 host for 280

frames. The CPF difference between Skylake GT3 and Haswell GT2 varies from 3x to 112x. This

19

large variation in CPF speedup (and at times a decrease in the Broadwell GT2/GT3 cases) as

compared to the Haswell GT2 baseline cannot be captured by a constant multiplier to the baseline

performance; more complex predictive models are required.

2.3 HALWPE Regression Models

HALWPE includes twelve linear and one non-linear regression models, which are

presented in Fig. 2:6 We produce 10 least-squares variants; two the standard OLS and NNLS

approach, the remaining 8 are the combinations of employing 4 feature selection variants with each.

Feature selection is performed using a combination of forward stepwise selection, backward

stepwise selection and evaluation of the selected features using the Akaike Information Criterion

(AIC) [30] and the Bayesian Information Criterion (BIC) [31]. We also leverage the Lasso

regularization model, a non-negative Lasso and the non-linear Random Forest (RF) Model. We

choose the model that yields the smallest Eout as the most accurate.

Figure 2:6 HALWPE Regression Model Suite

The generated suite of 13 regression models. 10 OLS and NNLS variants, 2 Lasso regularization variants and one
non-linear RF model.

The choice to use multiple models is driven by the fact that the best model is data

dependent, and that each scenario exhibits different relationships between host features and target

CPF. The OLS and NNLS models are useful when the relationship is linear, and features are non-

20

correlated; using the AIC and BIC criteria to remove features can simplify the model and help to

avoid overfitting.

Linear regularization, shown in the middle, selects features during model construction,

by moving their coefficient closer to zero, helping reduce variance and noise on the prediction

curve and can improve model accuracy. RF models non-linear behavior, prevalent as the generation

gap between host and target grows. A larger gap may necessitate using new models such as Neural

Networks to maintain accuracy.

2.3.1 Linear Regression Overview

Let M be the number of workloads and X = [x1, x2, …, xN] be the set of features, i.e., the

values of the performance counters that we measure for each workload. A model is a function f that

computes a scalar predicted performance value, 𝑦ො= f(X). Under a linear model, f has the form:

𝑓(𝑋) = ෍ 𝑥௝𝛽௝

ே

௝ୀ௝
+ 𝛽଴

Equation 2:1 – Linear Regression Model Form
where β = {β1, β2, …, βN} is a coefficient vector that corresponds to the features, and β0 is

a bias term called the intercept, which serves as a model adjustment factor. The error associated

with the ith workload is yi – f(Xi), where yi is the empirically obtained CPF, and f(Xi) the predicted

CPF. Given training data, the generation of a coefficient vector is formulated as a constrained

optimization problem [32]. The model generation techniques employed by HALPWE differ in

terms of the optimization problem formulation and how it is refined by post-processing steps

(Fig. 2:6).

2.3.2 Ordinary Least Squares

Given a coefficient vector β, the aggregate error of the training data set is the Residual

Sum of Squares (RSS). Ordinary Least Squares (OLS) computes the coefficient vector β and

intercept β0 that minimizes RSS(β) [32].

21

𝑅𝑆𝑆(𝛽) =
ଵ

ே
∑ ||(𝑦௜ − 𝑓(𝑋௜))ଶெ

௜ୀଵ .

Equation 2:2 – Ordinary Least Squares RSS

2.3.3 Non-Negative Least Squares

OLS may produce models that estimate negative CPF values for certain data sets, which

is physically impossible. Non-Negative Least Squares (NNLS) [33] can be applied to ensure that

model estimates cannot be negative. NNLS implicitly removes certain features from model by

setting negative-valued coefficients to zero and distributing their impact amongst the remaining

positive values. NNLS may degrade model accuracy as it no longer minimizes RSS(β). NNLS is

equivalent to the quadratic programming problem of the form below:

𝑅𝑆𝑆(𝛽ேே௅ௌ) = 𝑎𝑟𝑔𝑚𝑖𝑛ఉ,ఉ଴ஹ଴

1

𝑁
෍ || ൫𝑦௜ − 𝑓(𝑋௜)൯ || ଶ

ଶ
ெ

௜ୀଵ

Equation 2:3 – Non-Negative Least Squares RSS

2.3.4 Feature Selection and Ranking

OLS and NNLS are full regression models that may use all input features. Feature

selection, which removes feature xj from the model by setting coefficient βj to zero, can improve

prediction accuracy by sacrificing bias to reduce variance, as well as interpretation: identifying a

subset of features that exhibits the strongest effect on model accuracy enhances understanding of

the underlying mechanisms [34].

We employ two stepwise feature selection methods [34]. Forward Stepwise Selection

iteratively and greedily build the feature subset by selecting coefficient pairs that achieve the

maximal incremental improvement to the model; the process terminates when adding more features

is no longer beneficial to model prediction accuracy. Backward Stepwise Selection is similar but

starts with a full regression model and iteratively removes one feature at a time. We apply AIC and

22

BIC as feature ranking criteria during stepwise selection. This provides us with four feature

selection methods: {Forward, Backward}×{AIC, BIC}, which can be applied to either OLS or

NNLS models.

For each model, we rank the selected features via p-value hypothesis testing [32] using a

threshold of 0.05 to quantify their impact on model accuracy (a smaller p-value indicates greater

significance). We report p-values for models that perform feature selection, omitting full regression

models. We do not rank features for NNLS models, because the NNLS process discards features

that break the assumption that model residuals follow a normal distribution.

2.3.5 Linear Regularization via Lasso

Lasso [35] is a linear regularization model that constructs a model while simultaneously

selecting features using an RSS penalty term [32]. Lasso penalizes features in a blanket fashion,

unlike step-wise selection, which is iterative. Lasso selects features via shrinkage, which reduces

“small enough” coefficients to zero, depending on the value of the regularization term coefficient.

We produce two variants of a Lasso, with and without the NNLS criterion. Below we present the

RSS computation for the Lasso Regularization model, which is closely related to the NNLS model.

𝑅𝑆𝑆(𝛽௅௔௦௦௢) = 𝑎𝑟𝑔𝑚𝑖𝑛ఉ,ఉ଴ஹ଴

1

𝑁
෍ || ൫𝑦௜ − 𝑓(𝑋௜)൯ || ଶ

ଶ
ெ

௜ୀଵ
+ 𝛼ଵ

்𝛽

Subject to 𝛼 > 0

Equation 2:4 – Lasso Regularization RSS

2.3.6 Model Evaluation

We use 10-fold CV [32] to estimate model generalizability, i.e., the models predictive

capability when applied to unseen data. An example is presented in Fig. 2:7. 10-fold CV randomly

partitions the training data (size M) into 10 sets of size M/10. One partition is retained as a validation

set; the remaining 9 train the model. This process repeats 10 times, with each partition used once

23

as the validation set. We compute the Mean Absolute relative Percentage Error (MAPE) for each

CV fold, and take the average to produce the Eout [13]:

Let 𝑓መ be the fitted module under evaluation. We define a function 𝑘: {1, … , 𝑀} → {1, … , 𝐾}, K =

10, to associate the index of feature Xi with its CV fold. We then define 𝑓መି௞(௜) to be the fitted

function computed with the kth CV fold removed. Eout is then computed as follows:

𝐸௢௨௧൫𝑓መ൯ =
100

𝑀
෍ ቤ

𝑦௜ − 𝑓መି௞(௜)(𝑋௜)

𝑦௜
ቤ

ெ

௜ୀଵ

Equation 2:5 – Out-Of-Sample Error Calculation

The Absolute Relative Percentage Error (APE) of a feature vector (trace) Xi is

𝐴𝑃𝐸(𝑋௜) = 100 ฬ
𝑦௜ − 𝑓(𝑋௜)

𝑦௜
ฬ

Equation 2:6 – Average Relative Absolute Percentage Error

We also evaluate models in terms of their inlier ratios (IR). Given a percentage threshold T, a trace

Xi is called an inlier if APE(Xi) ≤ T, and an outlier otherwise. Given T, the IR is the percentage of

traces that are inliers, i.e.:

𝐼ோ(𝑓, 𝑇) =
100

𝑀
|{𝑋௜|𝐴𝑃𝐸(𝑋௜) ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑀}|

Equation 2:7 – Inlier Ratio Calculation

Intuitively, the IR can be interpreted as a measure of variance in the model error. At a given

threshold, a model with a higher IR would seem less likely to produce an anomalous prediction

(outlier) on a new trace than a model with a lower IR, even if the latter model has a lower Eout.

We report 10 % and 20 % IRs for each model we produce and compare IRs across varying

thresholds for comparative analysis of the prediction scenarios. An example of IR at T=20% is

presented in Fig. 2:8.

24

Figure 2:7 10-Fold CV Example

Training data is partitioned into 10 equal sized folds, one-fold is treated as the validation set and the other 9 as a
training set. The model is trained repeatedly, selecting a new fold as the validation set each time. The error on the

validation sets is computed and then averaged to estimate the generalizability of the model onto unseen data.

Figure 2:8 IR20% Example

The IR is the percentage of data points that have less than T% error. T is 20% in this example.

2.3.7 Random Forest

RF regression is a non-linear supervised learning model where prediction is an aggregate

of individual predictions made by a set of regression trees. Due to space limitations, we omit

describing RF in detail; interested readers may consult Ref. [36] for detail. We construct our RF

using bootstrap aggregation (bagging), applying feature bagging to reduce correlation among

trees. We compute Eout using 10-fold CV, by averaging the out-of-bag error for each fold.

25

Regression trees and forests include all features by design. Although feature ranking via RSS error

is performed, we do not report any feature rankings produced by RF models. Chapter 3, wherein

RF regression is the most accurate provides further detail on the RF model building and evaluation

process and presents feature ranking results.

2.4 HALWPE Simulator Based Models

Although the focus of this work is hardware-assisted modeling, we first create simulation-

based models. This allowed us to build confidence in the cross-generational modeling approach

by evaluating the broader capability of the hardware-assisted technique.

Using simulation-based modeling is easier, as it removes the well-known difficulties

inherent to hardware-assisted modeling, such as limited architectural visibility, run-to-run noise

cycle count and performance counter variations. Simulation modeling also provides greater degree

control of the degree of difference between the generations of devices configured as host and target

during model building, allowing us to isolate and evaluate well known design time tests.

2.4.1 HALWPE Framework Validation Scenarios

We created 3 simulation-based prediction scenarios which were designed to be easy,

thereby enabling us to validate our modeling suite. We used the GPU simulator to collect

performance counters and to model the prediction target CPF. The simulator eliminates sources of

non-determinism that can affect hardware-assisted models (see Section 6).

Scenario1 (364 traces) configures the simulator as a 2-slice Broadwell GT3 and builds a

model to predict its own CPF.

Scenario2 (364 traces) configures the simulator as a 2-slice Skylake GT3 and builds a

model to predict its own CPF.

Scenario3 (364 traces) configures the GPU simulator as a 2-slice Broadwell GT3 running

a Broadwell-generation driver and builds a model to predict the performance a 2-slice Skylake GT3

26

running the same driver. Although both GPUs have 48 EUs, the evolution from Broadwell to

Skylake does include microarchitecture changes not reported in Table 2:2.

We generated 13 models for each scenario. For each model, we report the Eout, 10 % and

20 % IR, the number of selected features, and the number of available features; we also report the

APE for each workload.

Tables 2:4 and 2:5 respectively report the best-performing non-NNLS and NNLS models

that minimized the Eout for each of three scenarios listed above; Figs. 2:8 and 2:9 depict the

observed CPF, predicted CPF, and APE for each workload for the three models listed in Tables 4

and 5. For all three scenarios, the best non-NNLS models produced lower Eouts than the best NNLS

models.

2.4.2 HALWPE Non-NNLS Models

The three models reported in Table 2:4 exhibit very low Eouts; the RF model for Scenario3

had a slightly higher Eout than the OLS/Backward/AIC models for Scenario1 and Scenario2, which

is to be expected because it is a cross-generation prediction scenario, whereas Scenario1 and

Scenario2 are same-generation. All three models obtained 10 % IRs of more than 80 % and varied

slightly in terms of the number of selected features.

In Fig. 2:9, it is near-impossible to discern the difference between predicted and observed

CPF for most workloads with the naked eye, which reinforces the accuracy of these models.

27

Figure 2:9 Scenario3 Non-NNLS Model Errors

The observed CPF, predicted CPF, and per-workload APE for the best performing non-NNLS models of Scenario1 (a),
Scenario2 (b), and Scenario3 (c). Workloads are ordered from left-to-right in non-decreasing order of observed CPF.

28

Figure 2:10 Scenario3 NNLS Model Errors

The observed CPF, predicted CPF, and per-workload APE for the best performing NNLS models of Scenario1 (a),
Scenario2 (b), and Scenario3 (c). Workloads are ordered from left-to-right in non-decreasing order of observed CPF.

29

Table 2:4 Scenario1-3 NNLS Model Results

Table 2:5 Scenario1-3 Non-NNLS Model Results

The highest APEs are observed for workloads with the smallest CPFs on the left-hand

side of the graphs, which suggests that the three models are stable; slightly higher APEs for

workloads with large CPFs are observed for Scenario3’s RF model, which we attribute to the fact

that Scenario3 entails cross-generation prediction.

2.4.3 HALWPE NNLS Models

Comparing the non-NNLS models of Table 2:4 and Fig. 2:9, the NNLS models reported

in Table 2:5 and Fig. 2:10 have a higher Eout while selecting fewer counters as features; however,

when looking at Fig. 2:10 in detail, virtually all the visible increase in per-workload APE occurs

for the workloads with the smallest CPFs. The gap in predictive accuracy between NNLS and non-

NNLS models may not be as pronounced as one might interpret by considering Eout in isolation.

Scenario3’s NNLS/Backward/BIC model has lower APEs for large-CPF workloads than

Scenario3’s non-NNLS RF model, which has a lower overall out-of-sample error. Likewise,

Scenario3’s NNLS/Backward/BIC model has a lower 10 % IR than the non-NNLS RF model;

however, the outliers are clustered among workloads with the smallest CPFs. Similar, observations

hold for Scenario1 and Scenario2 as well.

30

2.4.4 HALWPE Driver Scalability Scenario

Scenario3D (364 traces) re-runs Scenario3, modifying the target simulator to produce new

validation data obtained used the same Skylake GT3 device, only now running the applications

with the Skylake GT3 driver instead of the Broadwell GT3 driver.

Updating the driver to increase application performance is a common optimization made by GPU

designers, and it is imperative that predictive models can accurately predict generational changes

in both the hardware and software stack. Scenario3D shows that the HALWPE regression suite

selects features and produces models that account for the performance difference caused by

updating the target platforms driver, producing accurate Eout estimates.

Table 2:6’s last row presents the best performing non-NNLS model for Scenario3D and

the first-row repeats Scenario3’s best model result from Table 2:4. Table 2:7’s last row presents

the best performing NNLS model, and the first row repeats the last row of Table 2:5. Most notably,

the out of sample error of the best performing NNLS model in Table 2:7 has decreased from 8.95

% to 7.40 % using the same features without retraining. The increased accuracy is a byproduct of

using a small number of traces, 32, for validation. The reduced frame count is unavoidable as both

driver versions were not compatible with all frames. This study demonstrates HALWPE’s

robustness when modeling driver generation updates.

Table 2:6 Highest Accuracy Non-NNLS Models Scenario3D.

Table 2:7 Highest Accuracy NNLS Models Scenario3D.

31

2.4.5 HALWPE Slice Scalability Scenario

Scenario3S (364 traces) re-runs Scenario3, modifying the training data to use a Broadwell

GT2 device to predict the original Skylake GT3 device. Modifying the training data approximates

a scenario in which the host platform is both a generation older and has half the available

parallelism of its target. It is likely that as new generations of GPU are developed and tested, their

slice count will continue to increase.

The model is applied without retraining to a validation set with 60 single frame

workloads, demonstrating HALWPE’s ability to identify features that accommodate CPF changes

due to slice scaling, obtaining high cross-generation prediction when the host has 200 % less

parallelism than the target.

Row 1 of Tables 2:8 and 2:9 re-report Scenario3 results, and Row 2 reports the results of

Scenario3S’s slice scaling study. Comparing Scenario3 and Scenario3S, the error increases 2.3 %,

resulting in an 11.5 % average error, but remains usable for pre-silicon performance estimation.

The increase in error due to slice scaling is also present in our hardware-assisted scenarios.

Table 2:8 Highest Accuracy Non-NNLS Models Scenario3S.

Table 2:9 Highest Accuracy NNLS Models Scenario3S.

32

2.5 HALWPE Hardware-Assisted Models

When profiling an application on commodity hardware, certain sources of non-determinism may

arise that simulators either do not model or can suppress. We discuss strategies to mitigate these

issues in detail before moving on to present the results of our hardware-assisted models.

2.5.1 GPU Profiling and Mitigating Variation

Referring to Fig. 2:3, HWTraces refers to a stream of DirectX GfxAPI commands that we

collect without firmware or driver modification using GfxCapture. HWTraces are repeatable,

platform-independent, and allow instrumentation of the host GPU and API. We attach GfxProfiler

directly to the device context [20], which is created along with its device when the GPU renders a

frame. The device creates resources and queries the GPU’s rendering capabilities, while the device

context comprises the GPU’s pipeline and resource states, which generate actual rendering

commands.

GfxProfiler collects three classes of features: performance counter measurements (via

HWTraces), profiled DirectX API commands (via HWTraces), and hardware queries (via the

device context) which leverage exposed parts of the API. An exemplary hardware query is

PSInvocations, the number of times the pixel shader (PS) invoked an EU while rendering.

Workload execution is performed using an unmodified operating system (OS; Windows

7) and driver. To reduce variability introduced by the OS, we suppress non-OS background

processes and run traces in full-screen mode. By leaving the OS and driver unmodified, we eschew

control of sleep states. By adjusting BIOS settings, we can disable deep sleep state RC6 and

suppress dynamic frequency scaling and Turbo Boost. The sources of variation that remain are

competing background tasks, which affect CPU-GPU communication latency, and access to shared

resources, and the sleep states that we cannot control.

33

We perform outlier detection and elimination to mitigate variation. We apply the Median

Absolute Deviation (MAD) test [37] to identify runs that exhibit abnormal behavior. We empirically

determined a threshold of ±7 MADs using 10 representative frames, executing each frame 100

times. During model construction and evaluation, we execute each frame 100 times on the host

GPU using GfxProfiler to collect features. We remove outliers, i.e., all runs whose CPF values are

outside of the ±7 MAD threshold. The CPF and feature values reported for the frame are averaged

across the inliers.

Fig. 2:11 reports the CPF of 100 executions of Witcher 2 Frame 769 normalized to the

smallest CPF that we observed. To avoid cold-start issues, we insert a generic “warmup” frame that

is executed but not profiled. Most of executions are within the MAD window, although some non-

negligible variation in CPF is clearly visible.

2.5.2 Prediction Scenarios

We present three hardware-assisted predictive models based on performance counter

measurements taken from a Haswell GT2 GPU, which provides 577 features. The results show that

HALWPE can perform accurate cross-generation CPF prediction.

Figure 2:11 CPF Variability for one frame of Witcher 2.

Witcher 2 Frame when executed 100 times; the first execution is removed due to cold start issues. Of the remaining 99
runs, 7 frames were identified as outliers and removed using the ±7 MAD approach.

34

Scenario4 (282 traces) uses a Haswell GT2 GPU host to predict the CPF of a simulated

Broadwell GT2 GPU.

Scenario5 (300 traces) uses the host to predict the CPF of a simulated Broadwell GT3

GPU.

Scenario6 (300 traces) uses the to predict the CPF of a simulated Skylake GT3 GPU.

Tables 2:10 and 2:11 respectively report the best-performing non-NNLS and NNLS

models that minimized the Eout for each of three scenarios listed above; Figs. 2:12 and 2:13 depict

the observed CPF, predicted CPF, and APE for each workload for the three models listed in Tables

2:10 and 2:11. For Scenario4 and Scenario5, OLS/Forward/BIC produced the lowest Eouts; for

Scenario6, the NNLS produced the lowest Eout.

2.5.3 Non-NNLS Models

 In Fig. 2:12, slight differences between predicted and observed CPF for the

OLS/Forward/BIC model for Scenario4 and Scenario5 can be seen by the naked eye; the differences

are more pronounced for Scenario6’s RF model, especially for workloads with higher CPFs. The

degradation in model quality is clear between scenarios.

The OLS/Forward/BIC models generated for Scenario4 and Scenario5, exhibited the

largest APEs are at the low-CPF end up the spectrum; in contrast, the RF model generated for

Scenario6 has a more uniform distribution of high APEs across the CPF spectrum. This is like the

distribution of APEs reported for the RF model in Fig. 2:9 for Scenario3.

Table 2:10 Scenario4-6 Non-NNLS Model Results

35

Figure 2:12 Scenario6 Non-NNLS Model Errors

The observed CPF, predicted CPF, and per-workload APE for the non-NNLS models summarized in Table 2:6. Workloads are
ordered from left-to-right in non-decreasing order of observed CPF.

36

2.5.4 NNLS Models

The NNLS models produced for Scenario4 and Scenario5 in Table 2:11 nearly double the

Eout produced by the non-NNLS models in Table 2:10, with large reductions in the 10 % IRs in

both cases. In the case of Scenario6, the NNLS model yielded an Eout of 8.91 %, which is slightly

worse than the 7.45 % and 7.47 % produced by the best non-NNLS models for Scenario4 and

Scenario5 in Table 2:10, but respectable given the challenges associated

with CPF prediction across two GPU generations; it’s 10 % IR was respectively 14.23 % and 12.77

% lower, which can be explained similarly.

Table 2:11 Scenario4-6 NNLS Model Results

This level of accuracy should be sufficient for use in early-stage DSE; however, designers must

understand that model accuracy will necessarily degrade as number of generations between the host

and prediction target increases. Scenario6 investigates this issue further.

2.5.5 Scenario6 Model Comparison

Table 2:12 reports the accuracy of all 13 HALWPE models for Scenario6. This study

serves to justify the need for an ensemble of models, by assessing the differences in model accuracy

in our most ambitious CPF prediction scenario, across two GPU generations. The Eout ranged from

8.91 % (NNLS) to more than 1000 % (four OLS variants); the four highly inaccurate OLS variants

likely overfit the training data. Employing an ensemble of models increases the likelihood that at

least one model does not overfit. Both RF (which is nonlinear) and Lasso (due to regularization)

are less likely than OLS and NNLS variants to overfit the training data; including them in

HALWPE’s ensemble increases the likelihood that at least one model is accurate. RF, Lasso, and

Lasso/NNLS did not overfit in any of our scenarios.

37

Figure 2:13 Scenario6 NNLS Model Errors

The observed CPF, predicted CPF, and per-workload APE for the NNLS models summarized in Table 2:6. Workloads are ordered
from left-to-right in non-decreasing order of observed CPF.

38

Among the remaining nine models in the highest Eout was 19.69 % (NNLS/step-

forward/BIC). As Tables 2:4-2:11 show, it is difficult to know a-priori which model (with or

without the NNLS guarantee) will yield the highest overall accuracy, which justifies the ensemble

approach. In Table 2:12, NNLS achieves the smallest Eout and is tied for third highest 10 % IR;

however, it selects the most features of the remaining nine linear models.

Table 2:12 Scenario6 All Model Results Comparison

2.5.6 Inlier Ratio vs. Out-of-sample Error

Scenarios exist in which a processor architect may prefer a predictive model that

maintains a higher IR within a given threshold to a model that minimizes Eout. Treating the IR as a

proxy for variance provides higher confidence in the fidelity of the model. Fig. 2:14 depicts the IRs

at eight thresholds for five models generated for Scenarios4-6. For each scenario, Fig. 2:14 includes

HALWPE’s OLS and NNLS variants that minimize Eout, its two regularization models (Lasso, and

Lasso/NNLS), and its non-linear model (RF).

39

Figure 2:14 Scenarios4-6 IRs at Various Thresholds

IRs at various error threshold for predictive models generated for Scenario6, Scenario7, and Scenario8. For each
scenario, the best-performing OLS and NNLS-variants are shown, along with Lasso, Lasso/NNLS, and RF.

40

For Scenario4 and Scenario5 OLS/Forward/BIC had the smallest Eout. For Scenario4 in

Fig. 2:14, OLS/Forward/BIC has the highest IR at error thresholds of 30 % or lower, except for the

1 % threshold where NNLS and Lasso/OLS are marginally higher.

For Scenario5 it has the highest IR at error thresholds of 20 % or below; in Scenario6,

NNLS had the smallest Eout and the highest IR for thresholds of 15 % and lower. These observations

reinforce the benefits of these three models: they exhibit low Eouts and high fidelity, so they can be

used with high confidence.

2.5.7 Speedup

Compared to CASs that are properly tuned, predictive models sacrifice accuracy to

provide computer architects with a rapid result. In the case of HALWPE, the execution time of the

model on a given workload entails executing the workload trace on the Haswell host GPU and then

applying the linear regression or RF model to the obtained features; in most cases, the latter is

negligible. Fig. 2:15 compares the execution time of HALWPE to the simulator configured as a

Broadwell GT2, Broadwell GT3, and Skylake GT3 GPU for the 282 common executable traces

(Table 2:3). On average, HALWPE achieved a speedup of 29,481x over the Broadwell GT2

simulator, 43,643x over the Broadwell GT3 simulator, and 44,214x over the Skylake GT3

simulator. From workload to workload, the speedups reported in Fig. 2:15 vary considerably; in a

few cases, the simulator executed a trace faster than the host GPU. Compared to CASs, predictive

models sacrifice accuracy to provide a rapid result.

.

41

Figure 2:15 Scenarios4-6 HALWPE Computed Speedup

HALWPE speedup over simulators for Broadwell GT2/GT3 and Skylake GT3 GPUs using 280 workloads common to
all three simulators (Table 2:3). Frames are ordered by increasing Skylake GT3 speedup. Average speedups were

29481x for Broadwell GT2, 43643x for Broadwell GT3, and 44214x for Skylake GT3.

The execution time of a model on a frame entails running the frame trace on the host GPU and then

generating model using the obtained features; in most cases, the latter is negligible.

Fig. 2:16 reports the time to train all 13 HALWPE models --excluding target simulation

time and host GPU execution time to render each frame once. In addition to rendering, host GPU

execution time includes overhead associated with loading the application, profiling, and streaming

API commands from the trace player. The longest model training and host GPU execution time

was ~2.5 hours for Scenario3. We rendered each frame 100 times, thus execution time is dominated

by the host GPU, not model training.

When comparing Haswell to Skylake the total performance increase is 820.79 % on

average, and 242 % on median. HALWPE can provide accurate models, which utilize a Haswell

generation GPU to predict the performance of a Skylake generation GPU, as demonstrated in

Scenario6.

42

Figure 2:16 Model Training and Host Execution Time

Model Training and Host Execution Times for Scenarios4-6.

2.6 Feature Ranking

This section reports the 10 highest ranked features from the models generated for

Scenario4, Scenario5, and Scenario6. We rank the features using the OLS/Forward/BIC model,

which was the best performing model for Scenario4 and Scenario5, and the third best for Scenario6.

In our system, 577 features are available (see Section 6). In the feature list tables presented in the

next two subsections, performance counters are yellow rows, DirectX metrics are blue rows, and

hardware queries are grey rows. All the features reported in these subsections have been publicly

disclosed [2–14].

2.6.1 Broadwell GT2/GT3

Tables 2:13 and 2:14 report the top-ten most influential features for the

OLS/Forward/BIC models produced for Scenario4 and Scenario5, ranked by p-values (Section 4.D).

These scenarios respectively target the Broadwell GT2 and GT3 GPU, where the latter has twice

as many slices/EUs.

In Table 2:13, the top-5 highest ranked features provide information about EU activity

relating to front-end render pipeline units. The top-2 features are EU active and stall times, which

43

holds consistent with the observation that the limited parallelism in a single-slice Broadwell GT2

GPU can impede performance. The 3rd through 5th highest ranking features report compute and

DS EU activity, which suggests that interactions between the two shaders and their EU occupations

should be analyzed. Notably, the presence of A19_CSEUStallTime suggests that limiting the

amount of time that the compute shader (CS) stalls the EU array could potentially improve overall

GPU throughput.

In Table 2:14, EU busy/stall cycles no longer fall within the top 10 ranked counters, which

reflect the increase in parallelism provided by GT3 GPUs. The two counters representing the DS

are ranked 8th and 10th, suggesting that they still influence performance, but that other subsystems

with higher-ranking features should be given priority for analysis. Again, A19_CSEUStallTime is

within the top-5 ranked features, which suggests that the process by which the CS stalls the EU

array still influences performance significantly.

Table 2:13 Scenario4 Feature Ranking

Top-10 Model Features Ranked by P-Value for the OLS/Forward/BIC Model of Scenario4.

44

The geometry shader now appears in the top-10 highest ranked features with the inclusion

of A22_GSThreadBusyTime, which suggests that as parallelism increases doubles Broadwell GT2

to GT3, additional front-end units start to influence performance.

2.6.2 Skylake GT3

Table 2:15 reports the 10 most influential features for the OLS/Forward/BIC model for

Scenario6 ranked by p-values. The top two features from Scenario5 (Table 2:14) remain in the top

ten for Scenario6. The highest-ranking feature in Table 2:15, the number of cycles not idle, is the

second feature in Table 2:14.

This suggests that the ability to provide the render engine with a steady supply of data

remains a critical indicator of performance; potential optimizations ensure that the GPU can

consume enough data to avoid idle states. In Fig. 2:5, we see that Broadwell GT3 and Skylake GT3

had similar CPF profiles, and that the gap in favor of Skylake 3 was small.

Table 2:14 Scenario5 Feature Ranking

Top-10 Model Features Ranked by P-Value for the OLS/Forward/BIC Model of Scenario5.

45

Table 2:15 suggests that Skylake GT3 CPF can be predicted foremost by back-end pixel-

based metrics corresponding to PS memory activity, PS invocations, and the render engine’s ability

to pre-emptively avoid pixel processing by killing pixels (A36_RSKillPixelCount); A40, which

counts render target writes also corresponds to the back-end. Compared to Table 2:14, the absence

of geometry and CS metrics suggests that changes to the Skylake GT3 front end may have removed

performance bottlenecks present in Broadwell GT3.

Table 2:15 also includes domain and HS metrics, which correspond to the first and last

stages of the DirectX tessellation pipeline. This suggests that tessellation has emerged as a prime

indicator for CPF for Skylake, and that it may be a suitable candidate for further optimization.

2.6.3 Discussion

This analysis shows how to interpret predictive models to obtain insights regarding which

features have the greatest predictive impact on CPF. A highly-ranked feature may hint that a

subsystem that could benefit from further architectural improvement; however, models are inexact,

and, for a given scenario, feature rankings may vary from model to model. Thus, feature ranking

can provide “hints” to understanding performance, not solutions These hints are symptoms, and

should not be misconstrued as having diagnostic abilities to validate the existence of the bottlenecks

or to identify root causes. Any hint provided by a model should be validated by further simulation

before being accepted as fact. Architects should use predictive models judiciously and

conservatively and should not misconstrue them as automated substitutes for existing

methodologies or human intelligence.

46

Table 2:15 Scenario6 Feature Ranking

Top-10 Model Features Ranked by P-Value for the OLS/Forward/BIC Model of Scenario6.

47

 Cross-Abstraction GPU Performance
Estimation

This chapter is based primarily on the contents of the “GPU Performance Estimation

using Software Rasterization and Machine Learning” [38]. The underlying observation of this work

is that GPU performance depends primarily on architectural innovations and advances in process

technology, both of which increase complexity and cost. This necessitates hardware-software co-

design, co-development, and co-validation prior to manufacturing. During the design and

development stages, GPU architects use pre-silicon detailed performance CASs to explore the

architectural design space. Functional simulators, which are faster, can aid development but cannot

provide detailed timing information and cannot characterize application performance. To reduce

simulation times and the time required to perform early-stage architectural DSE for GPUs, this

paper presents a cross-abstraction predictive statistical modeling framework that predicts the

performance of a pre-silicon GPU CAS using a functional GPU simulator. GPU architects can use

these predictions to explore the architectural design space while rapidly characterizing the

performance of far more workloads than would be possible using CAS alone.

The primary differences between this work and HALWPE as described in Chapter 2 are

that 1) This work is not cross-generational, and instead focuses on the same, possibly pre-silicon

GPU generation under design that the target CAS is configured to model. 2) This work does not

leverage previous generation hardware, or hardware assistance, instead replacing the host with a

highly-abstracted functional simulator, RastSim. 3) The functional simulator sacrifices speed when

compared to HALWPE but allows the explicit modeling and instrumentation of feature additions

exclusive to the new generation GPU, which HALWPE is incapable of modeling in its present

form.

48

This work focuses on Intel integrated GPUs, which are customized to accelerate graphics

and gaming workloads. The performance overhead of Intel’s proprietary simulator is prohibitive

for pre-silicon DSE, software performance validation, and analysis of architectural optimizations.

Hence, Intel’s GPU architects require a faster alternative, or must otherwise forego traditional

early-stage (pre-silicon) DSE that accounts for hardware enhancements in conjunction with

software evolution. Our proposed solution to this conundrum is a framework that trains predictive

regression models using a functional simulator that we modified to execute DirectX 3D rendering

workloads and extend with a workload characterization framework (WCF) to produce model

features. The models are trained to predict the performance of the GPU CAS that architects would

prefer to use during pre-silicon design. Using a predictive model is several orders of magnitude

faster than cycle-accurate simulation, while incurring an acceptable loss of accuracy. This increases

the rate at which automated design tools can evaluate new points in the GPU architectural design

space and increases the number of workloads that can tractably be used during for evaluation.

In addition to pre-silicon DSE, GPU hardware-software co-design tasks include: pre-

silicon driver conformance and performance validation, evaluation of new microarchitectural units

designed to accelerate latest generation API features, and performance evaluation of system level

integration of the GPUs. The predictive modeling framework introduced in this paper can

accelerate performance evaluation of many of these tasks as well. We further utilize the trained

models to rank the metrics produced by the functional simulation to determine their relative impact

on GPU performance, providing designers with intuition as to which micro-architectural

subsystems are likely performance bottlenecks. These counters provide architectural information

in the form of malleable and generic execution counts of API supported rendering tasks. This

information is different than can be obtained from counters in commercial GPUs.

49

We evaluate the models’ accuracy using a representative workload sample consisting of

369 frames collected from 24 DirectX 11 games and GPU benchmarking tools. Once a regression

model has been trained, it can be more generally applied to a larger set of workloads used for DSE.

Our best performing model, RF regression, achieves a respectable 14.34% average out-of-sample-

error, while running a minimum 40.7x, maximum 1197.7x and average 327.8x faster than the pre-

silicon CAS.

3.1 Rasterization-Based Modeling Framework

Fig. 3:1 depicts our pre-silicon predictive modeling framework goal; our evaluation

focuses on Intel GPU architectures (specifically, the Skylake generation) using 3D DirectX 11

rendering workloads. The software rasterizer (RastSim) is a functional simulator configured to

model the Skylake generation GPU architecture, to execute the workloads and is augmented to

provide program counter measurements. These measurements are input into a model that predicts

the performance that would be reported if we executed the workload on an internally validated

GPU CAS, titled GPUSim, configured to model the same architecture.

Figure 3:1 Rasterization-Based Model Goal

Modeling framework: a functional simulator executes 3D DirectX11 workloads. Performance counter measurements
obtained from the RastSim simulator are used by predictive models to predict the performance of the cycle-accurate

GPU simulator configured as newer GPU generation devices.

50

Both RastSim and GPUSim use vendor drivers to execute the rendering workloads. A

new model is trained for each point in the GPU architectural design space. GPUSim is only used

to collect the golden reference performance, which is used to train the model. Once the model has

been trained, the design point can be characterized on a much larger set of evaluation workloads.

Each evaluation workload executes on the functional simulator to collect performance counter

measurements, which are then input to the model, which predicts the execution time of the

workload at the current design point. Our results show that this is much faster than cycle accurate

simulation and provides performance estimates that the functional simulator cannot provide on its

own.

Fig. 3:2 shows that GPU performance ultimately depends on co-optimized hardware and

software. Predictive modeling enables designers to perform co-optimization in earlier stages of the

design process, allowing many more design points to be explored.

Figure 3:2 Example Design Usage of Rasterization Method

GPU Hardware and software co-optimization process being targeted for rapid performance estimation. Hardware and
software are co-optimized in lock-step fashion, requiring repeated simulation in a traditional design environment.

51

3.1.1 The Graphics Workload Library

The GWL contains 369 frames collected from 24 DirectX 11 games and GPU

benchmarking tools, as listed in Table 3:1. Although we collect multiple frames from each

application, we treat each frame as a single workload due to long per-frame cycle-accurate

simulation times. The GWL applications are input to the model training and validation process,

which uses 10-fold CV as discussed in Section 4.3.

Table 3:1 Graphical Workload Library

24 3D DirectX 11 workloads, and the number of frames used from each workload.

52

3.1.2 Model Training and Validation Flow

Fig. 3:3 illustrates our model training and prediction flow using GWL workloads. A

proprietary tool (GfxCapture) collects single-frame traces in two formats: (1) SWTraces, which

consist of DirectX API commands collected pre-driver, which execute on RastSim; and (2)

HWTraces, which consist of native GPU commands collected post-driver to execute on GPUSim.

A subsequent proprietary application, GfxPlayer, streams the traces to RastSim, which collects and

provides a set of performance counter measurements.

Figure 3:3 Rasterization Model Framework Details

Model training and validation requires workload execution on both RastSim and GPUSim.

Fig. 3:4 illustrates the modeling training and deployment (prediction) phases of Fig. 3:3.

GWL applications are assembled to form a training set. Performance counter measurements

provided by RastSim are used for model training. GPUSim executes the training workloads to

provide performance measurements in terms of CPF; these golden reference values are used to train

the model. We again use 10-fold CV [13] to estimate out-of-sample-error (Eout) to validate the

model. The model is used to predict the CPF of previously unseen workloads.

53

Figure 3:4 Rasterization-Based Model Train and Application

Model training (top) and prediction flow (bottom).

3.1.3 RastSim

RastSim is a proprietary extension to the OpenSWR [39] rasterizer, which is fully

integrated into the Mesa 3D Graphics Library and normally targets the OpenGL API. As shown in

Fig. 3:5, RastSim consists of two primary subsystems:

- the RastSim Command Interface and state tracker; and

- the Rasterization Core.

The Command Interface and state tracker are modified to ensure Intel GPU and DirectX API

conformance, and are implemented as the external interface and internal control of the Rasterization

Core, which executes functional simulation. The wrapper intercepts and issues commands from the

API and drivers, providing the same interface to the software execution stack as the GPU hardware

it replaces. It also maintains the necessary data structures to track render pipeline activity between

architectural units and maintains GPU state during workload execution. RastSim has been extended

with a WCF that has been integrated into Mesa3D as “archrast,” which instruments the

Rasterization Core and Command Interface to track render pipeline behavior, instruction counts,

and workload execution state.

54

Figure 3:5 Rasterizer Execution Flow

RastSim utilizes GPU drivers, GfxPlayer and the DirectX API to provide a behavioral simulation of the Intel GPU
DirectX pipeline to produce performance counters.

3.1.4 GPUSim

GPUSim is a proprietary CAS used for pre-silicon design studies. GPUSim models the

GPU microarchitecture, memory subsystems, and DRAM, and has been validated internally when

configured to model post-silicon GPUs. We use GPUSim to produce golden reference performance

estimates for model training. To avoid disclosure of propriety information, CPF estimates produced

by GPUSim are reported in normalized form.

3.2 Rasterization-based GPU Model

We configured RastSim and GPUSim to model a 2-slice Intel Skylake GPU (Fig. 3:6).

While Skylake GT3 GPUs are commercially available, we do not predict the performance of the

post-silicon device, because our objective is to mimic the GPU design process. Employing

commercially available silicon mitigates confidentiality concerns, as pre-silicon GPUs may include

features that cannot be disclosed publicly. Validated Skylake GT3 architectural models are

available, which eliminates the need to tune the functional simulator and WCF to match an ever-

evolving in-flight design.

55

Figure 3:6 Intel Skylake GT3 Architecture

The Intel Skylake GT3 Architecture uses two GPU slices.

3.2.1 Unslice Architecture

The Unslice is the GPU front-end, consisting of Global Asset (GA) and dedicated render

(Geom/FF) units. The GA units contain the GTI, which performs I/O, and the State Variable

Manager (SVM), which holds execution state variables. RastSim does not simulate the GA units,

replacing them with the Command Interface and State Tracker, which also provide a JIT-compiled

Blitter (BLT) for speed, and Graphics Arbiter (GAM) model. The Command Interface and State

Tracking Layer provide 8 counters, which measure draw, synchronization, and vertex count

metrics. RastSim natively produces 77 3D state tracking counters (SVM) and 27 pipeline control-

related counters (GAM).

56

The Geom/FF units accelerate DirectX features and programmable shader requirements.

The FF units interface with the Slice, utilizing caches and EU clusters to accelerate programmable

features and to create and dispatch threads. RastSim models only those units that directly execute

on geometry: the Input Assembler (IA), the CS, the Vertex Fetch (VF) and VS units. It also models

the three stages of DirectX 11 tessellation: the HS, Tesselator (TE), and DS units, along with the

GS, Clipper (CL) and the Stream Output Logic (SOL). The WCF provides 15 counters to track

these Unslice behaviors, as shown in Fig. 3:7.

Figure 3:7 RastSim Unslice/Frontend

RastSim Models a limited number of the front end and unsliced units present on the GPU. This depicts the main
components modeled.

3.2.2 Slice Architecture

Each slice is decomposed into three subgroups: (1) the Slice Common (Fig. 3:8) which

provides additional FF architectural units; (2) the Sub-Slice (Fig. 3:9) which contains 24 EUs and

supporting execution hardware; and (3) an L3 cache. RastSim models only the portions of the Slice

57

Common and Sub-Slice that are needed to provide functionally correct rendering. We target a 2-

slice Skylake GT3 GPU.

3.2.2.1 Slice Common and L3 Cache.

The Slice Common FF units support the front-end and Sub-Slice units; these include the

Windower (WM) which performs rasterization, the Hierarchical-Z (HIZ), and Intermediate-Z (IZ)

units, which perform Depth (Z) and stencil testing, and a host of caches used for differing portions

of the pipeline. As shown in Fig. 3:8, RastSim models only those components necessary to provide

functional equivalence at render output, omitting detailed modeling of the caches and HIZ and IZ

units. The WCF produces 28 counters that capture metrics relating to Alpha, Early-Z, and Early

Stencil tests.

Figure 3:8 RastSim Slice Common

Slice Common units modeled by RastSim. RastSim does not model caches, TD logic, or dedicated media units.

3.2.2.2 Sub-slice and EU clusters

The Sub-Slice and render pipeline back-end consist of an EU array, and supporting fixed

and shared function units, such as the sampler, EU IC, Local EU TD logic, Data Cluster (HDC),

render cache (DAPRC) a Pixel Shader dispatcher (PSD), and a Barycentric Calculator (BC). As

shown in Fig. 3:9, RastSim models programmable units such as the PSD, PS, and the BC, along

with late-stage Z- and stencil testing, blend shading, output results merging, and writes to the GPU

58

render target (Viewport); RastSim does not simulate TD and EU execution, nor model the IC, TDL,

HDC, or DAPRC. The WCF provides 18 counters to track PS behavior, depth/stencil tests, and

render target write metrics.

Figure 3:9 RastSim Sub-Slice and Backend

Subslice units and output stages modeled by the Rasterizer.

3.3 Rasterization-Based Regression Modeling Framework

We again employ a non-linear RF regression model [36] to estimate pre-silicon GPU

performance, which proved to be most accurate for the Rasterization based modeling approach.

Our model building procedure also produces and evaluates 14 linear regression models, which are

used as a baseline for comparison. When compared to the HALWPE estimation-based approach,

we have further added the Elastic-Net and Elastic-Net with NNLS models to account for L2

regularization effects in addition to the L1 regularization provided by Lasso. The choice to train an

ensemble of models is motivated by the fact that both the correlation between CPF and model

59

features and the degree of linearity between program counters and target CPF are unknown in

advance; moreover, it was not initially clear that RF would emerge as the most accurate model. Fig.

3:10 depicts the ensemble of models that were trained; readers unfamiliar with the underlying

statistical concepts described are encouraged to consult Ref. [32].

Figure 3:10 RastSim Model Creation Flow

14 linear models and one non-linear model is created for each model building task. Elastic-net is newly added.

3.3.1 Regression Model Categories

We generate 14 linear regression models, and one non-linear model that are placed into

5 modeling categories: Category 1, OLS, and Category 2, NNLS contain 10 models, 5 from each

category. Category 1 includes the full regression OLS and category 2 the full NNLS model. The

remaining 8 models perform feature selection utilizing forward (Fwd) and backward (Bwd)

stepwise selection. We apply the AIC [1] and the BIC [26] to the stepwise methods, yielding 4

models: {Fwd, Bwd}×{AIC, BIC}, which are applied to OLS and NNLS. Category 3,

Regularization and Category 4, Regularization-NNLS each contain 2 models. Category 3 contains

60

the Lasso [35] and Elastic-Net [40], which perform feature selection during model building.

Category 4 augments the Lasso and Elastic-net models with the NNLS requirement. Category 5

contains our one non-linear model, RF [7], which turned out to be the most accurate model that we

generated. For this reason, the discussion that follows emphasizes RF.

In the RastSim based iteration of the modelling framework, the input to each model is a

set of program counters (a feature vector) collected from RastSim, X = [x1, x2, …, xN]. We produce

M feature vectors, from M workloads. Each model produces a set of M outputs, the responses, in

the form of CPF, one for each workload. Each of the models’ input data sets, consists of the same

369 workloads, containing 105 independent variables provided by RastSim natively, and an

additional 69 program counters delivered by the RastSim workload characterizer.

3.3.2 Elastic-Net Regression Model

Of those models presented and discussed in Chapter 2 section 3 only the Elastic-Net is

newly added. Lasso and OLS are not optimized to identify correlated features. We introduce

Elastic-net to perform correlated feature selection. Elastic-net chooses a representative feature to

include from a larger group of correlated features, removing the others to improve model accuracy

and avoid redundant features. Elastic-Net is a hybrid method that bridges traditional Ridge

Regression [41] and Lasso to perform pairwise feature correlation aware feature selection [40].

RSS(𝛽ா௟௔௦௧௜௖ିே௘௧) = 𝑎𝑟𝑔𝑚𝑖𝑛ఉ,ఉ଴ஹ଴
ଵ

ே
∑ || ൫𝑦௜ − 𝑓(𝑋௜)൯ || ଶ

ଶெ
௜ୀଵ + 𝛼ଵ

்𝛽

Subject to:

෍൫𝛼𝛽௝
ଶ + (1 − 𝛼)|𝛽௝|൯

ே

௝ୀଵ

< 𝑇

Equation 3:1 – Elastic-Net Regularization RSS

61

T is the penalty term in (4), and the parameter α ∈ [0,1] serves as a correlation sensitivity

knob. Setting α = 1 assumes maximum correlation (ridge), and α = 0 assumes none (lasso). We use

α=0.5.

3.3.3 Random Forest Regression Model

As previously discussed in Chapter 2 section 3, RF is a non-linear model ensemble

regression method. In this section, we discuss our most accurate model, the RF model building

process, and how the final prediction is arrived at from the underlying forest of decision trees. RF

is consistently the most accurate model for RF is an ensemble method, which aggregates the

predictions of a collection of regression trees [42]. RF is based on the observation that regression

trees exhibit high-variance and low bias when grown sufficiently deep. Prior work has shown that

bootstrap sampling [32] of training data can effectively minimize correlation between the

regression trees comprising the forest; averaging the predicted CPF produced by the trees further

reduces variance while maintaining low bias.

An RF model is created by creating n trees, each of which is grown on a bootstrap sampled

data set D. Tree growth is achieved by a recursive process which randomly selects M variables

from the original set of features, with replacement. Sampling with replacement is the process of

replacing the originally sampled variables with the new variables chosen in subsequent sampling

steps. This means that variables are not held out of subsequent rounds, ensuring that: (1) each

variable is equally likely to be chosen during each round; and (2) the covariance between sets of

sampled variables is 0, i.e. each sample is independent of the others. Utilizing the M variables

chosen by sampling with replacement as candidates, we select the prime candidate to perform a

split.

A split is performed by observing each variable mi ∈ M, and determining the range of

observable values in D. For each variable and range, we then choose the best value within that

62

range and treat it as a binary splitting point S, which is represented by a node in a tree. After

selecting S, two daughter nodes (left, right) are created and assigned the parent node S, whereby

each data point in D that has value ≤ S is assigned to the left sub-tree, Dleft, and the remaining

assigned to the right, subtree, Dright. The value S chosen as the split point is chosen by computing

the RSS Error for all response variables at all split values considered. The value chosen for splitting

is the one that minimizes RSS error.

For RF regression, RSS is computed as follows [43]:

𝑅𝑆𝑆(𝑅𝐹𝑆𝑝𝑙𝑖𝑡) = ෍ (y୧ − y୐)ଶ
ห஽೗೐೑೟ห

௜ୀ଴
+ ෍ (y୧ − yୖ)ଶ

ห஽ೝ೔೒೓೟ห

௜ୀ଴

Equation 3:2 – RF Regression RSS

where yi is the current CPF prediction of workload i ∈ Dleft/right, yL is the average true CPF value for

all workloads i ∈ Dleft, and yR is the average true CPF value for all workloads i ∈ Dright

After growing all n trees, we form an ensemble 𝑅𝐹 = ⋃ 𝑇௝
௡
௝ୀଵ . The CPF prediction of workload mi

can then be computed by computing the mean of each tree’s CPF prediction for mi as follows:

𝑅𝐹(𝑚௜) =
1

𝑛
෍ 𝑇௝(𝑚௜)

௡

௝ୀଵ

Equation 3:3 – RF Predictive Mean

where Tj(mi) is the predicted CPF of Tj when applied to the RastSim performance counters obtained

from simulation of workload mi.

3.3.4 Model Evaluation

We again use 10-fold cross validation [13] to report the Eout, the mean absolute percentage

error averaged over all ten folds, as our primary measure for model accuracy. We also evaluate

models in terms of their IRs. We report 10 % and 20 % IRs for each model we produce and compare

IRs across varying thresholds for comparative analysis of the prediction scenarios.

63

3.3.5 RF Parameter Optimization

RF has several parameters that must be chosen to reduce prediction error. Typically, RF

works well with relatively little tuning. We utilize the RandomForest package from CRAN [21],

and the default parameter settings, excluding the number of trees (n). We repeatedly fit RF models

with n = 2i, 1 < i < 10, trees, and select the value of n that minimizes Eout.

Figure 3:11 RF Tree Count Impact on Eout.

Quantifying the impact of the number of trees in the RF model on Eout; lower values are better.

Figure 3:12 RF Tree Count Impact on IR.

Quantifying the impact of the number of trees in the RF model on IR at varying thresholds; higher values are better.

3.4 Rasterization-Based Model Results

We configured RastSim and GPUSim to model a Skylake GT3 GPU operating at 1155

MHz (GPUSim). Performance counter readings for the GWL workloads (Table 3:1) produced by

64

RastSim were used to train and validate the 15 regression models, as discussed in the preceding

section. We produce two sets of results:

The 5 best performing models obtained using the performance counters that we added to

RastSim through the WCF (Table 3:2), including the IR at various thresholds (Fig. 3:14). The 5

performing models trained exclusively using performance counters originally available in RastSim

(Table 3:3), including the IR at various thresholds (Fig. 3:15).

3.4.1 Predictive Model Results

Table 3:2 clearly indicates that RF is the best performing model, achieving an Eout of

14.34%, a 5.75% improvement over the second-best model, the Elastic-net; this error rate is

sufficiently low for use in early-stage DSE; GPUSim is still required for detailed performance

characterization and post-silicon performance validation.

Fig. 3:13 reports the IRs at 8 different threshold values 𝑻 ∈

 {𝟓𝟎%, 𝟒𝟎%, 𝟑𝟎%, 𝟐𝟎%, 𝟏𝟓%, 𝟏𝟎%, 𝟓%, 𝟏%}. RF and Elastic-net achieve the highest IRs at each

data point, with RF retaining a minor advantage at all threshold values other than 20%, where

Elastic-net is 0.58% higher. These results indicate that RF is without question the best performing

model.

Table 3:2 RastSim 5 Best Performing Models

Comparison of the best model errors from each category using the RastSim workload characterization extensions.

65

Figure 3:13 RastSim Best Model IR Percentages with WCF.

Skylake Inlier rates at various error thresholds using the RastSim workload characterization extensions.

3.4.2 WCF Impact in RastSim

Table 3:3 and Fig. 3:14 report the results of a similar experiment performed using only

the performance counters available natively in RastSim, prior to the introduction of the WCF which

introduced many additional counters. The best performing model, once again, is RF, although its

Eout jumps to 52.34% (Table 3:3); this justifies the introduction of the WCF and its additional

performance counters for this RastSim use case.

Fig. 3:14 reports the IRs at the same threshold values as Fig. 3:14. Once again, RF and

Elastic-net achieve the highest IRs, although they are much lower than the results reported in Fig.

3:14. For example, RF achieves a 29.03% IR at the 20% threshold, and a 15.47% IR at the 10%

threshold, which once again testifies to the inaccuracy of our model without the additional

performance counters provided by the WCF. This level of degradation in model accuracy indicates

that the native RastSim counters do not correlate with GPU performance (CPF).

66

Table 3:3 RastSim 5 Best Performing Models

Comparison of the best model errors from each category without the RastSim workload characterization extensions.

Figure 3:14 RastSim Best Model IR Percentages without WCF.

Skylake Inlier rates at various error thresholds without the RastSim workload characterization extensions.

3.4.3 Relative Accuracy Preservation

Fig. 3:15 reports the predicted and observed CPF (both normalized) for each trace, along

with its APE, for the RF model built using WCF performance counters (Table 3:2). The observed

CPF was obtained by cycle-accurate simulation (GPUSim), as was used as the golden reference

model for predictive model training. With the data points reported in increasing order of observed

CPF, we observe that the predicted CPF ordering is similar for most traces, with a handful of

exceptions as observed CPF grows large. These disparities indicate that RastSim and WCF

performance counters lack some key features that strongly correlate to CPF. A significant

percentage of GPU execution time is spent on programmable shaders and threads in the Sub-Slice

67

EU clusters: GPUSim reported high EU active and stall times. These performance counter values

were much higher for the workloads that exhibited large disparities between predicted and observed

CPF.

Figure 3:15 RastSim Relative Accuracy Preservation.

Predicted and observed CPF and APE for each GWL workload using the RF model (Table 3:2). Data points are sorted
in non-decreasing order of observed CPF.

To capture this information, it is possible to extend RastSim to model TD and EU activity;

however, this would introduce cycle-accurate simulation to RastSim, slowing it down significantly.

It is clear talking to other internal RastSim users that increased execution time would degrade its

other pre-silicon use cases. RastSim with the WCF, as presently constituted, strikes a good balance

between preserving applicability to other uses cases and achieving accurate performance

prediction.

3.4.4 Predictive Model Speedup

The motivation for predictive modeling is to obtain workload performance estimates

faster than cycle-accurate simulation. Fig. 3:16 reports the speedup of RastSim functional

simulation (including WCF overhead) and predictive model deployment compared to GPUSim

cycle-accurate simulation for each workload; these results do not account for model training time,

which is performed offline. Observed speedups ranged from 40.7x to 1197.7x, with an average of

68

327.8x and a standard deviation of 196.62. These speedups are sufficient to enable internal usage

of RastSim for early-stage GPU architectural DSE. It is also worth noting that the WCF causes an

average slowdown of 3x compared to native RastSim execution; the speedups included in Fig. 3:17

include the WCH overhead.

Figure 3:16 RastSim Based Modeling Speedup.

Normalized RastSim and GPUSim execution time and speedup for each GWL workload. Data points are ordered in
non-decreasing order of GPUSim execution time.

3.4.5 RF Feature Ranking

The relative importance of counters in an RF regression model can be obtained by

measuring the impact of each feature on the model’s predictive capability. The impact is measured

by summing each variable’s RSS error, computed in Eq. (1), when it is used as a split point, for all

trees in the forest for which it was selected [43]. Table 3:4 reports the 20 program counters ranked

as being most important to the RF model using this approach; 18 of the counters are part of the

WCF, while the remaining 2 are native to RastSim.

69

Table 3:4 RastSim Top 20 RF Ranked Features

The 20 highest ranked performance counters in the RF model based on RSS ranking.

70

The 3 highest-ranked counters track the number of times pixels are written to the render

target, each indicating a different method of pixel grouping. The most important measure was the

total pixel write count, whose lower bound (for one frame) is the monitor resolution. In contrast,

the number of pixels written to the render target also includes pixel writes which are later

overwritten by objects that share the same space; the final viewable object is determined by depth

and stencil testing.

The next 5 highest-ranked performance counters relate to depth and stencil tests

performed on vertices in the GPU front-end. They closely track the number of vertices that are

tested and passed, which approximates the number of vertices that survive the HIZ and IZ tests and

are then rasterized by the WM.

The top-8 ranked counters suggest that performance is dominated by the GPU compute

activity that determines the final number of pixels, including identification of the number vertices

that pass early Z and stencil tests, and are subsequently converted to pixel space via rasterization

in the WM, and ultimately pass the late depth and stencil tests.

The 9th most important performance counter also tracks depth tests, this time the number

of pixels tested in the RastSim back-end. Six of the remaining counters (Sub-Span Z Tests, Passing

Sub-Spans, Passed Early Z Single Sample, Tested Early Z Single Sample, Tested Early Stencil

Single Sample, and Passed Early Stencil Single Sample) track additional depth and stencil tests.

Each of these counters indicates a different number of vertices tested, as indicated by the grouping

into single-samples, sub-samples, and sub-spans. Only the 17th ranked feature in Table 3:4

(Samples Killed) is indicative of work avoided in late pipeline stages.

Two front end FF unit counters (Stream Out Invocations and VF Instancing), ranked 18th

and 20th, track the number of times the stream out FF unit is used. Stream Out Invocations tracks

the last stage in the Geom/FF units in the GPU unsliced pipeline, while VF Instancing refers to the

71

first stage in the render pipeline during instancing mode. Rasterizer Counter, ranked 19th, counts

the number of times vertices were converted from vector graphics to raster/pixel format by the

WM, tracking the work flowing from the GPU front- to back-end.

In summary, Table 3:4 indicates that the most important performance counters for CPF

prediction were chosen from all portions of the render pipeline, and many of them measure the

number of vertices that were tested and passed front-end depth and stencil tests. This indicates that

these subsystems have the greatest impact on GPU performance, and should be slated for further

study and optimization by architects.

72

 Cross-Platform Prediction for FPGA
High-Level Synthesis

The design and implementation of FPGA accelerators is difficult and time consuming.

HLS tools [6, 7], can significantly boost developer productivity compared to writing RTL, though

developers must still properly optimize performance and throughput using design pragmas

(pipelining, loop unrolling, array partitioning). Finding the right HLS parameter settings is a

complex problem. Synthesizing, placing, and routing each design point to characterize its

performance by direct execution would be ideal, the amount of time required is untenable.

To address this need, we present HLSPredict [10], a cross-platform machine learning

framework that can predict FPGA performance and power consumption using program counter

measurements obtained from direct execution of a workload on a commercially available off-the-

shelf host CPU executing sequential C/C++ code.

Using HLSPredict, a designer can rapidly ascertain if the time required to port a

sequential application to an FPGA using HLS will yield sufficient improvements in performance

and/or power to justify the design effort. Our experiments show that HLSPredict is 36.24x faster

than HLS for baseline (unoptimized) workloads, and 43.78x faster than HLS for workloads that

were optimized by appropriately setting pragmas, with error rates averaging 9.8% for performance

and 7.8% for power prediction, respectively. Fig. 4:1 illustrates the high-level goal of HLSPredict

and Fig. 4:2 provides a motivating example of a HLSPredict use case.

This paper makes the following technical contributions:

HLSPredict leverages machine learning techniques: we create a suite of 10 models

that accurately predict FPGA performance (cycle counts) and pre-RTL power (in Watts) using CPU

counters as features.

73

Figure 4:1 HLSPredict Model Goal

A collection of polyhedral C/C++ applications are executed on a host Intel Core-I7 CPU is used to execute C/C++
applications. Performance counter measurements obtained from the host CPU are used by predictive models to predict

the performance and power of the HLS derived custom FPGA accelerators.

Figure 4:2 Hybrid CPU/FPGA Compute Example.

Hybrid CPU/FPGA compute model. The best platform choice is workload dependent and is not easily determined.
HLSPredict guides developers to the best choice.

HLSPredict is generalizable: we create two classes of predictive models. The first-class

targets unoptimized (baseline) HLS solutions; the second targets optimized solutions, which we

created by using loop unrolling, array partitioning and pipelining directives in Vivado HLS. In both

scenarios, HLSPredict obtains accurate estimates.

74

HLSPredict ensures time synchronicity between the host CPU and the target FPGA

accelerator by using sub-traces for model training: sub-traces are epochs of workload execution

time in the form of CPU counter measures for the host, and FPGA cycle-counts for the target.

HLSPredict identifies the CPU microarchitectural subsystems that best predict

FPGA performance and power: we rank model features using a model-appropriate statistically

rigorous approach.

The paper is organized as follows. Section 4.1 introduces the modeling framework, model

training, and sub-trace generation methods. Sections 4.2-4.5 present the FPGA accelerator design,

regression models, experimental methodology, and results. Section 4.6 places HLSPredict in the

larger context of related work on predictive modeling, and Section 4.7 concludes the paper and

outlines avenues for future research on this topic.

4.1 HLSPredict Modeling Framework

Fig. 4:3 illustrates the HLSPredict modeling framework. The Workload Library (WL) is

a collection of the 30 Polybench/C 4.1 workloads [44], and 2 Polybench/GPU convolution

workloads [45] manually ported to C; we list them in Table 4:1.

Figure 4:3 HLSPredict Prediction Framework

FPGA Perf prediction framework: (1) Traces are collected and stored in the WL. (2) Workloads execute on the desktop
CPU host, and hybrid CPU/FPGA platform. (3) Performance counter measurements are collected, a model trained and
used to predict an FPGA target metric. A complementary version of this framework exists for power prediction as well.

75

Each workload has two versions: one for execution on the host CPU and one for HLS

synthesis, and several workloads are optimized (highlighted in yellow in Table 4:1 to improve

performance over the baseline HLS implementation; the optimized workloads have an average

speed up of 14.49x over the baseline. Table 4:1 also lists the average speedup per workload, for

those that were amenable to optimization. All workloads were instrumented: the baseline workloads

yielded 3941 sub-traces and the optimized workloads yielded 2018 sub-traces.

Table 4:1 HLSPredict Workloads/Accelerators

Workloads, their sub-trace counts, and the average speedups obtained by optimizing workloads on the FPGA (yellow).

76

We instrument the host workload and execute it on the CPU to generate performance

counter measurements using pre-configured likwid-perfctr (a performance counter API) event

groups, one read per sub-trace [46, 47]. We then synthesize the same workload using Vivado HLS

and execute it on the FPGA to obtain the target performance (FPGA cycle count) and power

measures (total, dynamic, and static), one read per sub-trace.

The next step is to train a model to predict FPGA cycle counts and power consumption

using CPU counters as features. Given a trained model, we can then execute previously unseen

workloads on the host CPU to obtain performance counter readings and apply the model to rapidly

obtain pre-RTL estimates of FPGA accelerator cycle counts and power.

Figure 4:4 HLSPredict Model Training and Application

Model Training (Top): Performance counters are collected from the host CPU, and target metrics are collected from the
synthesized FPGA accelerator design. Models are then trained to predict FPGA cycle count and power. (Bottom):

During model deployment, a new workload runs on the host CPU and the model is then applied to predict FPGA cycle
counts and power. Again, a complementary version for each power metric also exists but is not depicted.

Fig. 4:4 details the model training process, the required collateral (each workload’s CPU

program counter measurements, FPGA cycle counts and FPGA power measures), and how to apply

the model in practice to estimate FPGA cycle counts and power. The predictive models and their

training process are programmed using Python3.6 and Scikit-learn 0.18.1 [48].

77

4.2 FPGA Accelerator Design and Template

All Polybench workloads were synthesized using Vivado HLS. Each workload is

specified in synthesizable C and verified via C/RTL co-simulation. In all instances, the HLS

accelerator design is integrated into an architectural template shown in Fig. 4:5.

The template leverages the Advanced eXtensible Interface (AXI) stream protocol for

communication, and Direct Memory Access (DMA) for memory transactions. We use the

Accelerator Coherency Port (ACP) of the DMA to leverage the CPU cache hierarchy, creating a

simple but effective system on chip (SOC). This template assumes (and we select) workload input

sizes that are small enough to fit into onboard BRAM and are templatized to accept standard data

types but evaluated using the 64-bit double type.

Figure 4:5 HLSPredict Hybrid CPU-FPGA architectural template

The template for all workloads. Each workload updates the HLS accelerator, and its internal trace generation logic.

4.3 Regression Models

HLSPredict trains and evaluates 8 linear and 2 non-linear models, summarized in Fig.

4:6. The choice to use an ensemble of models is driven by the suspicion that correlations between

78

collected features (host CPU performance counters), and the amount of non-linearity in the

relationship between features and FPGA cycles or power measurements may vary as the degree of

parallelism exploited by HLS changes. Ref. [8] describes each of the models listed below. Each

model is chosen to target one of these behaviors. Linear models based on OLS are useful when the

relationship between features and target FPGA cycles are linear, and features are non-correlated.

NNLS is an OLS variant that removes features with negative coefficients from the model, often

sacrificing overall model accuracy. OLS could predict negative execution time for some workload;

NNLS provably cannot.

Figure 4:6 HLSPredict Model Training and Application

HLSPredict creates eight linear models, and two non-linear models (RF, ANN). We now employ one feature selection
technique, the RFECV and have re-implemented the previous modelling suite in Python using Scikit-Learn.

Feature selection removes features from the model by setting their corresponding

coefficients to zero, improving prediction accuracy by sacrificing bias to reduce variance.

HLSPredict uses Recursive Feature Elimination with Cross-Validation (RFECV), which repeatedly

79

trains a model, and one-by-one ranks features by their impact on model accuracy [49] within a

nested CV loop; this allows RFECV to determine the correct number and combination of features

to include in the model, while ensuring model generalizability. Our framework includes OLS and

NNLS with and without RFECV.

Regularized models select features during model construction, which can help to mitigate

variance and noise on the prediction curve and can improve model accuracy. We employ two

regularization models, the Lasso (L1 regularization), and Elastic-net (hybrid L1/L2 regularization).

Our model suite includes Lasso and Elastic-net, both with and without NNLS post-processing.

HLSPredict also contains two non-linear models: RF, and an Artificial Neural Network

(ANN), which capture the presence of non-linear behavior which often becomes prevalent as

additional compute parallelism is exposed. HLSPredict uses 10-fold CV as a precursor to estimate

the usefulness of a trained model in practice.

 For each prediction scenario reported, we train all 10 models, selecting the one the

minimizes the Eout as the most accurate. We also report 10% and 20% IRs for each model and

compare them across thresholds of T = 10% and 20%, sufficient accuracies given model application

speed.

4.4 Experimental Methodology

We present eight hardware-assisted, cross-architecture predictive model scenarios based

on dynamic x86 CPU performance measurements which provide 75 features. For each scenario,

we report the most accurate model in terms of Eout and IR. In practice, each model would be trained

once using actual FPGA cycle counts and synthesized power measurements as targets, which are

obtained from direct execution of the training workloads, which have been synthesized, placed, and

routed; once the models have been trained, they can safely be applied to predict the performance

and power consumption of previously unseen workloads without involving the FPGA or its

80

synthesis tools. Thus, the cost of model training is amortized over the lifetime of the model once it

has been deployed. Table 4:2 outlines the scenarios below.

For each scenario, we generate two sets of performance models, one for the baseline

workloads, and the other for the optimized workloads, the latter of which allows us to quantify

HLSPredict’s ability to scale to FPGA workloads with highly varying degrees of parallelism and

compute-performance.

We also produce six predictive models for static, dynamic, and total power for the

baseline and optimized workloads. For our power modeling scenarios, we only collect counters at

the end of the workload’s execution, omitting sub-traces, as power per epoch is not a meaningful

measure. In all cases our models only utilize the host CPU performance counter measures to predict

the FPGA cycle count of our workloads, without requiring user intervention, HLS, or other

information gleaned from the FPGA.

Table 4:2 HLSPredict Prediction Scenarios Evaluated

We use eight prediction scenarios, two target FPGA performance and six target power to validate HLSPredict.

4.4.1 Host CPU

Host workload execution is performed on a desktop PC with a Haswell generation

Intel(R) Core(TM) i5-4670K CPU running at 3.40GHz with 16GB of DDR3 DRAM. All frequency

scaling and sleep states made available in the Basic Input-Output System (BIOS) are disabled and

non-essential background OS processes in Ubuntu 16.04 are killed. This minimizes 3rd party

application interference when executing each workload. We do not modify the drivers or OS to

81

ensure that their influence is captured in our models; the drawback is that we are unable to control

frequency and deep sleep states. Our models also capture the influence of OS-related background

tasks that cannot be readily killed, and deep sleep states not available in the BIOS.

Host CPU performance counters, which are used as model features, can be grouped into

two broader categories: core-local and socket-wide counters. These can be further broken down

into three groups each. For core-local counters we profile fixed-purpose counters, registers, which

track single events chosen by Intel, four general-purpose counters which are programmable via a

config and a counter register, and a single fixed thermal counter. The socket-wide counters track

metrics related to everything other than CPU cores, and can be categorized into energy counters,

consisting of only fixed counters, the uncore global counters, consisting of two programmable

counters and one fixed clock cycle counter, and, lastly, two programmable last level cache

counters.

4.4.2 Target HLS Derived FPGA Accelerator

Accelerator synthesis targets a Xilinx Zynq-7000 SOC (XC7Z020) development board.

This platform features a dual-core CPU with ARM Cortex-A9 MPCore processor cores operating

at 667MHz, as well as 256KB of on-chip random access memory. The CPU features 32KB of L1

cache for each core and 512KB of shared L2 cache. In addition to on-chip memory, the board

includes 512MB of DDR3 DRAM, 256MB of quad-serial peripheral interface (SPI) flash, and a

4GB SD card. The XC7Z020 platform also contains an integrated FPGA, featuring 53,200 LUTs,

220 DSP slices and 4.9MB of Block Random Acceess Memory (BRAM).

Synthesis of FPGA accelerators and FPGA sub-trace cycle count collection is required

only for model training. We created two versions of each Polybench workload using the Xilinx

Vivado 2017.2 HLS toolset, one using default HLS behavior and the other optimized for

performance. To accelerate workloads, we pipeline the outermost loop, unroll inner loops, and

82

partition arrays using Vivado HLS directives [50]. When physical resource becomes a constraining

factor, we eschew pipelining the outermost loop to limit duplication of hardware resources. If

needed, we reduce the unroll factor of the innermost loops until the design will fit on the FPGA.

We cannot optimize loops that have a variable iteration count or inter-loop index dependencies.

4.4.3 Sub-trace Generation

A Sub-trace is an epoch (or sub-region) within a much longer execution stream of a

workload. We produce sub-traces for both the CPU and HLS workloads to improve model fidelity

for performance estimation. Sub-traces only encompass active compute time; they do not account

for FPGA streaming, communication, or data initialization time. Sub-traces for CPU workloads

consist of the performance counter measures for each epoch; for FPGAs they consist of a one-time

reading of the FPGA cycle count, which resets when the next sub-trace starts.

5.3.1 CPU Sub-Trace Generation. Each Polybench workload is instrumented with the

likwid-perfctr Marker API by modifying kernel parameters to pass the likwid external variables

(#perfCounters, perfCounters, time, executionCount). We use these parameters, and API functions

to collect the specified number of sub-traces, each of which consists of the CPU performance

counter readings made available by likwid pre-configured Haswell performance groups [51].

Subtrace execution times are dominated by API initialization, file I/O overheads and the repeated

executions needed to collect all counters. With sub-traces, the average execution time per workload

is 43.23s, an average slowdown of 12,171x over direct execution of non-instrumented code. Sub-

trace execution is still considerably faster than the average FPGA synthesis time, which is 25.7 m

for baseline and 31.8 m for optimized workloads.

5.3.2 FPGA Sub-Trace Generation. To generate sub-traces, we built a timer in Verilog to

count FPGA clock cycles for a workload-dependent number of loop iterations, and to write the

cycle count to an array in memory. The timer communicates with the HLS-generated workload-

83

accelerator Intellectual Property (IP) block through a handshaking protocol and communicates with

memory using the AXI General Purpose Input-Output (GPIO) protocol.

The architecture template is assembled using Vivado IP integrator and programmed via

the Xilinx Software Development Kit (SDK), which dumps the collected metrics to a file. The HLS

IP block pauses while sub-trace clock cycles are written to memory via AXI GPIO. Reported FPGA

cycle counts do not include the time to write timer values to memory or other delays related to

instrumentation.

4.5 Experimental Results

We generate 10 models for each of the 8 prediction scenarios we target (see Table 4:2).

For each model, we report the Eout, 20% and 10% IRs, the number of selected features, and the

number of available features; we also report the APE for each workload. During model application,

our method produces power and performance estimates 36.24x faster for baseline workloads, and

43.78x faster for optimized workloads than FPGA synthesis and execution. Each speedup number

is calculated by 1) collecting the CPU execution time (including performance counter collection),

2) profiling the time it takes to apply all of the most accurate models for all scenarios related to

either the baseline workloads (Scenarios1,3,4,5) or the optimized workloads (Scenarios2,6,7,8) and 3)

collecting the FPGA synthesis and execution time in cycles and computing the wall- clock time

using the clock period for the same set of workloads. We then sum 1) and 2) for each respective

case and divide by 3) for the same case.

4.5.1 Predicting Default HLS Accelerator Cycles

Table 4:3 reports the out-of-sample accuracy of all models generated by HLSPredict for

Scenario1. We see that RF is more accurate than any linear model variant, and the non-linear ANN

with an average Eout of 9.08% across all workloads and sub-traces. This indicates that linear models

are inefficient for this cross-platform prediction scenario. Fig. 4:7 reports the observed and

84

predicted FPGA cycle times, and the resulting relative absolute percentage error (APE), ordering

sub-traces by their observed FPGA cycle in non-decreasing order from left to right.

Table 4:3 HLSPredict Scenario1 Model Comparison

We compare the Eout and the IR at 10% and 20% error thresholds for all 8 models generated for Scenario1. RF is most
accurate, with all linear models performing poorly.

Figure 4:7 HLSPredict Scenario1 Relative Error

Here we demonstrate the Observed FPGA cycle count, the Predicted FPGA cycle counts, and the APE of each sub-
trace used for FPGA baseline performance prediction (Scnaerio1) via the RF model.

The sub-traces with largest error tend to be those with the smallest FPGA cycle count,

noting that a small absolute deviation can lead to large APE. Fig. 4:8 reports the IR at various

thresholds T: RF, even with aggressive inlier thresholds has few outliers, and is highly accurate for

85

most traces. RF obtains an IR of 94.03% inliers at T=20%, while Lasso, the second most competitive

model, obtains an IR of 48.5%.

Figure 4:8 HLSPredict Scenario1 IR

Inlier Percentages for all models demonstrating RF’s clear accuracy advantage for Scenario1.

4.5.2 Predicting Optimized HLS Accelerator Cycles

Table 4:4 reports the accuracy of the HLSPredict models for Scenario2. Once again, we

observe that RF, which obtains an Eout of 9.79%, is much more accurate than the linear models and

the non-linear ANN. Fig. 4:9 reports the APE and predicted/observed FPGA cycle counts, with

most outliers being present in the smallest sub-traces. One notable outlier exists, in the middle of

the curve in Fig. 4:9, with an exorbitant error of ~5890%; it explains the seemingly counterintuitive

observation that Scenario2 has a lower Eout than Scenario1, yet higher inlier-ratios at T  10%.

Therefore, it is important to evaluate models using both IR in addition to Eout, as mean-based

statistics are sensitive to outliers.

4.5.3 Predicting Default HLS Accelerator Power

Next, we use HLSPredict framework to create predictive models for FPGA (static,

dynamic, and total) power consumption in Watts. For these experiments, we do not leverage the

sub-trace methodology on either the CPU or FPGA, as power per sub-trace is neither meaningful

86

nor collectible. Instead, we collect one end-to-end set of performance counter measurements per

workload, encompassing the entirety of the execution on the host CPU.

Table 4:4 HLSPredict Scenario2 Model Comparison

We compare the Eout and the IR for all 8 models generated for Scenario2. RF is again the most accurate.

Figure 4:9 HLSPredict Scenario2 Relative Error

Here we demonstrate the Observed FPGA cycle count, the Predicted FPGA cycle counts, and the APE of each sub-
trace used for FPGA optimized performance prediction (Scenario2) via the RF model.

87

Figure 4:10 HLSPredict Scenario2 IR

Inlier Percentages for all models demonstrating RF’s clear accuracy advantage for Scenario2.
Table 4:5 reports the Eout and IR of the three most accurate models (to conserve space) for

Scenarios3-5. RF is the most accurate in all cases with 7.84%, 4.28% and 1.88% Eout for total,

dynamic and static power respectively.

For Scenario3, total power, the runner up models, NNLS/RFECV and OLS/RFECV,

obtain >30% error, but for dynamic and static power, they obtain within 0.5% of RF’s error. We

do not have a statistical explanation for this observation; we suspect that RFECV had difficulty

with this data set. In the case of Scenario4, dynamic power, the NNLS/RFECV model has higher

inlier rates at the 10% threshold. In this case, the linear models are competitive with RF, suggesting

that CPU counters correlate more strongly with FPGA power consumption than with performance.

RF construction randomly selects a subset of features to include in each regression tree, so it is

likely, although not guaranteed, that all or nearly all features will appear in at least one tree in a

forest of sufficient size. In contrast, RFECV removes statistically insignificant features from linear

regression models.

Table 4:5 HLSPredict Scenario3 Model Comparison

88

Comparison of the top 3 Total Power models for optimized workloads.

Table 4:6 HLSPredict Scenario4 Model Comparison

Comparison of the top 3 Dynamic Power models for optimized workloads.

Table 4:7 HLSPredict Scenario5 Model Comparison

Comparison of the top 3 Static Power models for optimized workloads.

4.5.4 Predicting Optimized HLS Accelerator Power

We use the same approach as outlined in the preceding subsection to predict the power

consumption of our optimized accelerator implementations; Table 4:6 reports the out-of-sample

accuracy and IRs of three most accurate models, noting that the most accurate model in this case is

NNLS/RFECV, which outperforms RF by 1.24%, 1.34% and 0.91% for total, Scenario6, dynamic,

Scenario7, and static power, Scenario8, respectively. NNLS/RFECV uses far fewer features than

RF due to the feature selection processes employed. This shortens model application time and

highlights statistically significant features that are useful for power prediction. We show and

analyze these features in Section 6.5.

Table 4:8 HLSPredict Scenario6 Model Comparison

Comparison of the top 3 Total Power models for optimized workloads.

Table 4:9 HLSPredict Scenario7 Model Comparison

Comparison of the top 3 Total Power models for optimized workloads.

89

Table 4:10 HLSPredict Scenario8 Model Comparison

Comparison of the top 3 Total Power models for optimized workloads.

4.5.5 Random Forest Cycle Feature Ranking

RF models typically use all features as long as the number of trees in the forest is

sufficiently large. In our models, RF uses between 60 and 70 of the available 75 features; those

not included are omitted due to the random feature sampling employed by RF. Tables 4:11 and

4:12 report the top 10 most impactful features used for FPGA cycle prediction via RF, ranked by

RSS, Scenario1 and Scenario2. Feature ranking [52] provides insight into how CPU and FPGA

performance correlates.

The second column indicates whether the metric is a programmable counter provided by

the likwid-perfctr event groups, or a fixed counter; we explicitly list the category for fixed counter

measures and refer to programmable counters simply as programmable. Ref [51] provides a

detailed description of the peformance counters that are summarized and discussed here.

Table 4:11 HLSPredict Scenario1 RF Feature Ranking

RF top-10 feature ranking for FPGA cycle count prediction (Scenario1: baseline workloads).

90

The 3 highest ranking counters for Scenario1, shown in Table 4:11 track micro-op (UOP)

execution. UOPS are low-level hardware instructions, created in the CPU front-end by decoding

program code into architecure operations, which handle items like register arithmetic, and data

transfer into and out of registers and CPU busses[53]. ISSUED_FLAGS_MERGE, highest ranked,

relates to a merge operation required when executing shifts, which are prevelant in multiplication,

a ubiquitous operation in virtually all polybench workloads. ISSUE_STALL_CYCLES, the 2nd

highest ranking counter, reports the number of cycles stalled when issuing uops, indicates resource

saturation; finally the 3rd highest-ranking counter, UOPS_EXECUTED_USED_CYCLES, tracks

the number of cycles that execute micro-ops of any type.

For Scenario2 (Table 4:12), ISSUE metrics arise among the highest ranking counters, but

UOPS_EXECUTED_USED_CYCLES is no longer present in the top-10 features. In this case, the

highest ranking counters focus on stall cycles that occur during the CPU pipeline’s retirement stage,

and L2-L3 cache communication (L2_LINES_IN_ALL). Notably, the

UOPS_EXECUTED_PORT_# metrics increase in their ranking between Tables 4:11 and 4:12. The

UOPS_EXECUTED_PORT_# metrics track the number of uops scheduled and executed on a

particular port. Some uops can only be executed on a specific or subset of the ports. The summation

of all executed uops on all ports indicates the number of uops executed while the workload is

running, and individual port metrics can highlight broad groups of uops that can only be executed

on that PORT_#.

91

Table 4:12 HLSPredict Scenario2 RF Feature Ranking

RF top-10 feature ranking for FPGA cycle count prediction (Scenario2: optimized workloads).

Due to the out-of-order nature of the x86 CPU, the UOPS_EXECUTED_PORT metrics

can and often do execute in parallel for certain operations, though none of these metrics track that

explicitly, indicating that the total number of operations, rather than the degree of parallelism

leveraged in the CPU microarchitecture, can better predict FPGA performance and power. This

shows that RF selects useful features, as improvement in accuracy was obtained through exposing

and utilizing additional fine-grained parallelism via HLS directives, wherein the degree of

parallelism and the number of uops executed become increasingly important predictors.

Table 4:13 HLSPredict Scenario3 RF Feature Ranking

RF top-10 feature ranking for FPGA Total Power prediction (Scenario3: baseline workloads).

92

4.5.6 Power Model Feature Ranking and Analysis

Table 4:13 presents the top ten highest-ranked features as ranked by RF for Scenario3,

the most accurate model. The counters reported in Table 4:13 correspond to cache metrics. For

example, CYCLE_ACTIVITY_STALLS_LDM_PENDING, the highest-ranking counter,

measures CPU stalls caused by traffic in the cache hierarchy. We see that for Scenario6, a similar

trend holds, albeit in this case NNLSRFECV, a linear model that employs features selection is the

most accurate. In this case only 2 CPU counters and the model intercept are required to obtain a

highly accurate model for all workloads. The two CPU counters are

INT_MISC_RECOVERY_CYCLES, which measures the number of cycles used for recovery after

tasks like SSE exceptions, memory disambiguation, etc. and the second CPU counter is

DTLB_STORE_MISSES_WALK_DURATION, which measures the duration in cycles that a TLB

walk will take in the event of a TLB miss. Of note, both metrics are cycle counts, indicating that

time spent executing during recovery or memory hierarchy misses are important power predictors.

While only one of the counters employed by NNLSRFECV for Scenario6

(CYCLE_ACTIVITY_STALLS_LDM_PENDING) is present in Table 4:13, which lists the most

influential counters for RF on the baseline workloads; they are both used in the most accurate model

for Scenario7-8, (NNLSRFECV).

93

 Related Works
For CPUs and GPUs, CASs are employed to provide performance and power estimates.

For FPGA designs, FPGA synthesis tools [6, 7], whose design flows typically include software

simulation before synthesis, are used to obtain early estimates of design performance. In all cases,

the importance of detailed architectural simulation is [54] well-established, and simulators are often

used for design prototyping and verification, DSE, performance evaluation of workloads given a

design, assessing architectural innovations, and for software/hardware co-design and performance

tuning of software [1].

Cycle-accurate architectural simulators such as GPGPU-Sim [55], Atilla [56], and

Multi2Sim [57] run orders of magnitude slower than native execution [58, 59] due to their detailed

timing and functional execution. Functional simulators lack timing information [1], but run

considerably faster than CAS. The feasibility of these tasks is often improved by reducing cycle

accurate simulation time in a variety of ways. The speed of cycle accurate architectural simulation

is cost prohibitive, typically executing between 1 thousand instruction per second (KIPS) and 1

million instructions per second (MIPS) [2].

Techniques to reduce simulation times, such as representative statistical sampling [8, 60,

54, 9], synthetic benchmark reduction [61], synthetic benchmark generation, such as for cache

coherent traffic [62, 63], parallelization efforts [2, 4, 64], FPGA hardware assistance [65], and

attempts to raise the level of abstraction (lower the level of detail), as employed for GPUs by

RastSim of Chapter 3, and CPUs by Sniper [3] are helpful but remain prohibitively slow.

In response, we have turned to cross-architecture predictive modeling, as a potential

solution to this conundrum. The predictive models are intended to speedup pre-silicon GPU and

pre-RTL FPGA design tasks by avoiding cycle-accurate simulation in favor of estimating design

performance via predictive models instead. Although predictive models are less precise than cycle-

94

accurate simulation, and cycle-accurate simulation is required for CPU and GPU model training

and is explicitly leveraged as model input for DSE targeting FPGA-based accelerators, predictive

modeling can and should reduce the amount of simulation and synthesis required once a model is

deployed. This provides a substantial productivity advantage compared to existing design and

synthesis methodologies for these targets. In principle, the predictive modeling techniques

advocated in this paper should be viewed as being complementary to cycle-accurate simulation.

The remainder of this section evaluates predictive modeling targeting CPUs (Section 5.1),

GPUs (Section 5.2), and FPGAs (5.3), with specific emphasis on cross-platform models based on

machine learning.

5.1 CPU models

5.1.1 Statistical Models for CPUs

The majority of work on predictive modeling targets CPUs executing general-purpose

workloads. The overall objective is to limit the number of simulations required to evaluate design

points in a much larger architectural design space. Our predictive modeling frameworks for GPUs

and FPGAs are inspired by predictive models for CPU performance and power. CPU predive

modeling has leveraged several statistical and machine learning techniques. We compare these in

Table 5:1.

For example, Ipek et al. [66] consider a design space comprising 250K design points, and

sample a representative subspace (~2K points, or 1-2% of the total design space), using active

learning techniques. Model training leverages iterative refinement to build an ensemble of artificial

neural networks (ANNs), in which each represents one of a 10-fold CV process. Error rates range

from 2-5%, with models created for individual CPUs, a multiprocessor, and the memory subsystem.

Similarly, Lee et al. [67] trains regression models to predict performance and power

consumption of a large number of design points (22 billion) using a representative sub-sample

95

(4000), obtained via uniform at random (UAR) sampling. The regression models include linear

least-squares models as well as non-linear spline functions, in which the predictive function is

decomposed into multiple piecewise polynomials. Lee et al. train four categories of models,

Baseline, variance stabilized, regional and application specific. Appliation specific models are most

accurate for performance, achieving an average error of 4.1%, while regional models, in which

applications are grouped by feature similarity, are best for power achieving 4.3% average error.

Dynamic thermal management (DTM) often employs power models to reduce energy

consumption and prevent thermal emergency events. For example, Nath et. al. [68] developed an

analytical multi-core power model for the Intel Knights Ferry (KNF) architecture, comprising static

and dynamic models for compute, memory, and interconnect power, with a 4.73% average error

rate. The model relies on expert knowledge to identify the most relevant performance counters for

inclusion as features; the model itself is trained using the selected features and the HotSpot thermal

simulator [69] configured to model KNF thermal properties. The model itself has low overhead and

reduces energy consumption by 14%, and the occurrence of thermal emergency events by 58%.

Like HALWPE of Chapter 2 and HLSPredict of Chapter 4, these models are built using

performance counter readings and program metrics as features; however, the features that

effectively predict CPU performance and power differ from those that are useful for GPU and

FPGA accelerator performance are different due to architectural dissimilarities.

Ma et al. [70] report that models trained using detailed simulators can be more accurate

than models based on performance counters obtained from direct execution on hardware; the reason

is that simulators can be configured to collect performance metrics on architectural subsystems for

which post-silicon performance counters are not available. Although we do not compare with

models obtained from direct execution on post-silicon GPU hardware, we exploited this

observation to construct the WCF for RastSim in Chapter 3.

96

Approximate analytical models for out-of-order processors can perform high-level

microarchitectural analysis [71]. This method requires a trace-driven off-line analysis of the model

parameters to determine program locality behavior and miss rates as well as drain time after branch

miss-prediction. The model does not generalize for workloads not included in the off-line analysis.

Table 5:1 Comparison of statistical models for CPUs.

We compare the approach, accuracy, benefits and drawbacks of predictive CPU models.

5.1.2 Cross-Architecture Models for CPUs

LACross [72] appears to be the first work to perform cross-platform and cross-instruction

set architecture (ISA) CPU performance prediction. The initial iteration runs at near-native

Paper Model Features Accuracy
(avg.)

Speed Benefit Drawback

[66] Ensemble of
ANNs

Architectural
parameters
and latencies

Performance
:
95-98%

One order
of
magnitude
fewer
simulations
required

Predictive
models are
trained on a
subset of design
points to predict
the full space

Requires detailed
architectural
expertise and many
simulations to
characterize
latencies.

[67] Linear and
piecewise
cubic spline
models

Architectural
parameters
and latencies

Performance
: ~95.9%
Power:
~95.6%

~7 orders
of
magnitue
fewer
simulations
required

Predictive
models are used
to avoid
exhaustive
simulation

Requires detailed
architectural
expertise and many
simulation to
characterize
latencies

[68] Analytical
model

Architectural
parameters
and
throughput
measurements

Power:
~95.3%

NA Performance
feedback after
model training
reduces energy
and avoids
thermal
throttling

Performance
overhead; Hand-
tuned analytical
modeling requires
expert knowledge
to select features
and derivce
equations; this
limits portability.

[72] PCA with
Lasso and
CLSLR

Host CPU
performance
counters
collected once
per workload

Lasso: ~83-
73%
CLSR: ~
99%
For total
workload

Near-native
direct
execution
on CPU
host (~500
MIPs)

Cross-platform;
executes faster
than simulator
or instrumented
workload

End-to-end
prediction sacrifices
accuracy when
compared to the
phase-level
approach. [12]

[12] Modified
Lasso

Host CPU
performance
counters
collected once
per phase

Performance
and Power:
>90% at
phase
boundaries

Near-native
direct
execution
on CPU
host (~500
MIPS)

Cross-platform;
models power
and
performance;
high fidelity
phase-level
predictions

Choice of phase-
granulartiy impacts
accuracy and speed;
some parameter
tuning is required to
balance accuracy
vs. overhead.

97

hardware speeds, and accurately predicts the performance of 157 Association for Computing

Machinery (ACM) International Collegiate Programming Contest (ACM-ICPC) programs from a

variety of application domains. LACross used two commercially available processors as host and

target interchangeably, an Intel Core-i7 920 with 24GB DRAM and the AMD Phenom II X6 1055T

with 8GB DRAM. LACross first executes each workload on the host to collect performance counter

measurements and executes each workload on the target to measure performance. The host

performance counter measurements, one read per workload, are used to train two regression

models, the LASSO L1 regularization model (LASSO) [35] and the Constrained Locally Sparse

Linear Regression Model (CLSR), each combined with Principle Components Analysis (PCA) [73]

to extract latent semantics in the feature data, which improves model accuracy. The average

LASSO cross validation (CV) error, an estimate of model generalizability, was ~17% and ~27%

for the two respective targets, while the CLSLR model, achieved a much lower CV error of less

than 1%, on average, which suggests the existence of a non-linear relationship between host

performance counters and target ISA. Although the average model prediction error is not reported,

it is notably higher than the reported CV error. Due to the one-time counter collection, Lasso

accuracy suffers due to a relatively limited number of data points.

A subsequent extension to LACross [12] used a compiler to instrument program basic

blocks, which exposed program phases at a much finer granularity than end-to-end execution. The

user specifies the phase granularity: finer granularity increases the profiling overhead, but improves

accuracy; lower granularity is faster, but has lower accuracy. Program counter values are collected

once per phase, and each phase is treated as a data point. This work also employs an Intel Core-i7

920 as a host and ARM Cortex-series processors targets, representing not only cross-ISA

prediction, but also demonstrating the ability to predict the performance and power of embedded

targets using a desktop CPU as a host. The average error reported was less than 10% in each case.

98

The viability of cross-platform performance prediction has profound implications for future CPU

design methodologies. At present, architectural DSE necessitates the use of a simulator to

characterize workload performance and/or power consumption at each design point. High

simulation execution times limits both the number of design points that can be explored, and the

number of workloads that could be used to characterize each design point. A cross-platform

predictive model which uses a commercially available CPU as the host and targets a simulator

could significantly increase the throughput of next-generation DSE processes. Another practical

consideration is that analytical models require expert knowledge to design, while purely statistical

models, such as those employed by LACross, can be derived automatically.

Like the cross-generational HALWPE (Chapter 2) and cross-platform HLSPredict

(Chapter 4), the predictive features are performance counter measurements obtained from direct

execution, which lends credence to our approach. RastSim, a cross-abstraction model approach

uses simulator features created in the WCF and has the potential to use equivalent or higher quality

of features, without the need to overcome ISA differences.

5.2 GPU Models

Predictive modeling for GPUs is largely inspired by CPU approaches. Predictive models

for GPUs based on linear regression [74] decision trees [70], RFs [52] and ANNs [75] can

accurately predict performance and power consumption for the GPUs on which they were trained.

These techniques are primarily leveraged for DSE wherein models are trained to avoid exhaustive

simulation on the target platform. Table 5:2 lists and compares statistical models for GPUs. While

we omit explicit discussion of our own work in the Related works, we list them in the table for easy

comparison to other cross-architecture methods.

99

5.2.1 Statistical Models for GPUs

One such example is a paper that uses ANNs to predict performance and power of

OpenCL applications as architectural parameters of the GPU target scale [59], thereby avoiding a

more costly exhaustive enumeration. Architectural parameters that are considered include core

frequency, memory bandwidth, and the number of available compute units (CUs) with 448 different

possible configurations. The model clusters kernels with similar scaling behavior, a-priori, via k-

means clustering; the scaling trend is a model that predicts the performance and power consumption

of a workload from hardware performance counter measurements. An ANN classifier is trained to

predict the cluster of scaling trends that a previously unseen workload most closely matches; given

the classification, the scaling trend predicts the performance and power consumption of that

workload. The new workload is simulated using one parameter combination to obtain a baseline

that can be scaled according to its ANN-predicted trend, thereby avoiding exhaustive simulation

for each workload.

Our GPU oriented frameworks (Chapters 2 and 3) differ from the ANN predictor in

several respects. First, HALWPE achieves cross-generation performance prediction, while the

ANN predictor is limited to variants of the current-generation (host) GPU with three degrees of

freedom. Chapter 3, functional simulation-based prediction is also limited to prediction on the same

host but achieves cross-abstraction prediction wherein a GPU can be evaluated in advance of

manufacturing, perhaps during pre-silicon design. Using the same host also has the distinct benefit

of leveraged counters having been impacted by all architectural features available and exercised in

the design. Second, no approach we present in this manuscript required modification of the

firmware. This enables the usage of production drivers and software. In its favor, the ANN predicts

performance and power consumption, while our approaches are presently limited to CPF

performance prediction. Our evaluation of HALWPE focuses on graphics and gaming workloads,

100

whereas the ANN predictor was evaluated using OpenCL workloads spanning several application

domains.

Zhang et al. [76] create a modeling framework to predict the performance of existing ATI

GPUs to understand the relationship between program behavior, GPU performance and power

consumption. They leverage these predictions to provide insights to programmers so that they can

utilize and improve software design practices to maximize device performance. Our interest, in

contrast, is to build a predictive regression model that extends functional simulation to provide pre-

silicon GPU architectural performance estimates. The key similarity between our works and Zhang

et al.’s is that we both employ RF regression and RSS-based feature ranking.

Gerum et al. [77] predict the performance of a GTX480 GPU, simulated using

GPGPUSim, using a combination of source-level simulation, static analysis, and direct execution

of instrumented source code. The code is fist statically analyzed and compiled using a Clang

derivative to generate the Nvidia Parallel Thread Execution (PTX) code from the OpenCL

workloads. From there, performance counter measurements obtained from the hardware execution

are input to an analytical model, which predicts performance at native execution speeds. All but

two workloads are modeled with more than 80% accuracy with the others around 60%-70%, for a

rough average of 80%. The analytical models require a-priori knowledge of performance indicators

as a precursor to model construction. Predictive models, in contrast, do not require this information,

although do require the usage of a cycle-accurate GPU simulator to provide golden reference values

during training.

5.2.2 Cross-Architecture Models for GPUs

XAPP [78] is a suite of cross-platform models that predict the degree of speedup or

slowdown that would result from porting a C/C++ CPU workload to CUDA and executing it on a

GPU. XAPP instruments program binaries to produce a set of microarchitecturally independent

101

features, which are selected to represent characteristics that correlate with typical GPU execution

behavior, and, by extension, performance. Workload characteristics are measured using MICA

[79] or PIN [80] and capture characteristics such as instruction level parallelism, shared memory

bandwidth, memory throughput, memory coalescing, and bank conflicts in shared memory, among

others. XAPP collects 17 features in total, which are converted into a training set ensemble via

random bootstrap sampling with replacement [81].

Paper Model Features Accuracy (avg.) Speed Benefit Drawback
[59] K-means

clustering and
ANNs

Performance
counters

Performance: ~85%
Power: ~90%

20% of target
executions
eliminated

Power and perf.
models used to
avoid executing
all design points.

Large
percentage of
design points
required to
train model

[76] RF
regression

Performance
counters

Performance: ~86.9%
Power: ~95.7%

Near Native
hardware
execution

Model
Perforamnce
feature ranking to
gleam insight into
useful features

No speedup
or design
benefits. Only
an insight tool
for fixed
GPU.

[77] Analytical
model

Source-level
instrumentation
and analysis

Performance: ~80%,
no average given.

2-5 orders of
magnitude
speedup over
GPGPUSim.

Provides speedup
over traditional
functional and
cycle-accurate
simulation

Analytical
model
requires
expert design,
and may not
port easily to
other GPUs.

[78] Forward
stepwise
regression

Workload
characteristics
that expose
inherent GPU-
compatible
parallelism

Kepler Performance:
~64%
Maxwell
Performance: ~73%

Static analysis
incurs 10x-20x
slowdown over
native hardware

Cross-platform;
Predict GPU
performance
from CPU
features

High model
error.

[82] Analytical
model

Single-threaded
CPU memory
and
computation
traces and
latencies

Jetsen TK1
Performance: ~ 91%

CPU execution
plus code
instrumentation
and PTX
transform time

Cross-platform;
Estimate GPU
performance
from CPU C
code..

Input sizes
must be
chosen to
limit
insturmetation
overhead.

[83] RF regression Functional
simulation
execution
statistics

Intel Skylake GPU
Performance:~85.7%

~328x faster than
cycle-accurate
simulation

Cross-
abstracton;
Host and target
use same
software stack.

Functional
simulatior
instrumetation
overhead

[16] OLS with
feature selection
and RF
regression

Prev.
generation
performance
counters and
API metrics

Boradwell GT2/GT3
Performance: ~93%
Skylake GT3
Performance: ~91%

29,000x - 44,000x
faster than cycle-
accurate
simulation

Cross-
generation;
Predict pre-
silicon next-
generation GPU
performance.

Cannot
directly
account for
large-scale
architectural.
changes

Table 5:2 Comparison of statistical models for GPUs.

We compare the approach, accuracy, benefits and drawbacks of predictive GPU models.

102

For each training set, XAPP trains a least-squares regression model that includes higher-order

polynomial terms to capture non-linear relationships. For a new workload, the ensemble model

reports the mean prediction of all models as the final predicted value. XAPP reported 36% average

performance prediction error on a Nvidia Kepler GTX 660Ti, and 27% average performance

prediction error on a Maxwell GTX 750. In contrast, our GPU frameworks focus on early-stage

GPU architectural performance estimatio within an architecture family and early performance

feedback for graphics software development.

CGPredict [82] is another cross-platform model that collects features from single-

threaded non-optimized C code to predict the performance of Compute Unified Device Architecure

(CUDA) code running on an embedded GPU, such as the Jetson TK1 Kepler. CGPredict employs

an analytical model whose primary characteristics are based on the interaction between

microarchitectural parallelism and memory access latencies and parallelism. CGPredict

instruments source code via the compiler, and collects computation and memory traces, which are

transformed during a memory behavior analysis stage, converting single-threaded CPU memory

accesses to reflect GPU memory accesses and cache configurations. A subsequent computational

analysis converts the computation trace to PTX format, which is specific to Nvidia GPUs. These

transformed streams are coupled with estimated GPU computation and cache access latencies,

which were derived from repeated execution of micro-benchmarks. A comprehensive analytical

model predicts performance from the modified streams, achieving a relatively low predicted error

of 9% across 15 kernels. The data input size for each benchmark must be carefully chosen to avoid

excessive instrumentation and transformation latencies, while remaining long enough to

realistically stress the GPU’s compute and memory resources. While CGPredict aims to utilize

CPU code to predict the performance of the same code when executed on GPGPUs, our work

instead predicts 3D rendering workload performance and characterizes pre-silicon designs. Future

103

hopes to leverage our cross-architecture modeling techniques on GPGPUs to analyze pre-slicon

GPGPU design. CGPredict suggests such approaches should lead to good results.

5.3 Statistical Models for FPGAs

HLS tools [6, 7] improve productivity over RTL implementation, but must search large

design space and suffer from lengthy run times. In contrast, predictive modeling has a lengthy

model construction phase, but the model can be used rapidly once deployed, e.g., during DSE. To

our knowledge, HLSPredict is the first work to perform cross-architecture performance prediction

targeting FPGAs, and for this reason we only compare against other predictive modelling

approaches for FPGA design. These approaches are typically used in the context of DSE, and most

target HLS design tasks. Table 5:3 summarizes the characteristics of several FPGA-based

predictive modeling approaches, in the context of larger DSE frameworks and weighs their benefits

and drawbacks. FPGAs are often used as acceleration engines for parallel and streaming workloads.

Paper Model Features Accuracy (avg.) Speed Benefit Drawback
[84] RF regression HLS design

details
>99% ADRS from
Pareto-optima.

2-4x fewer
HLS runs
required.

Avoids
exhaustive
enumeration of
HLS design
space

Requires repeated
HLS calls to
improve model
accuracy, limiting
speedup

[85] Performance:
Analytical
Utilization:
Hybrid Analytical
+ ANNs

Architectural
template
parameters that
capture
parallelism

Performance:
~94%
Utilization:
88%-95%

279x - 6333x
faster than
Vivado HLS.

Faster DSE by
replacing HLS
with predictive
models

Requires HLS to
characterize target
FPGA;
requires non-
traditional HLS
flow

[86] Analytical Source-level
instrumentation
and HLS
simulation

Performance:
 ~99% (compute-
bound workloads);
~95% (memory-
bound workloads)

~2 orders of
magniute
faster than
target FPGA
bitsream
generation

Highly accurate;
avoids HLS and
target FPGA
bitstream
generation

Requires HLS
simulation and
board
characterization;
Vivado simulation
is a performance
bottleneck.

[87] Performance:
Anaytical
Utilization:
Gradient Boosted
Machine model

HLS directives
and workload
features from
compiler
instrumentation.

Performance:
~88%
Utilization: 81-
87%

2 - 3 orders
of magnitude
faster than
target FPGA
bitstream
generation

Avoids HLS
and target
FPGA bitstream
generation after
model training
and target
FPGA device
characterization

Requires custom
microbenchmarks
to characterize
FPGA resource
characeristics;
higher
instrumentation
overhead than
other approaches

Table 5:3 Comparison of statistical models for FPGAs.

We compare the approach, accuracy, benefits and drawbacks of predictive FPGA models used for DSE.

104

FPGA accelerator design methodologies have traditionally been based on RTL-centric hardware

design, and has more recently transitioned to HLS [6, 7]. Although HLS aims to be fully automatic,

the typical designer is tasked with the problem of finding the correct combination of parameters

(e.g., unroll factor, pipelining depth, etc.), which is a form of DSE. Due to long HLS times, direct

evaluation of each design point is infeasible, which necessitates a turn toward modeling.

Liu et al. [84] explore predictive modeling for DSE via Transductive Experimental

Design (TED) [88], which identifies and samples representative microarchitectural design points.

These training sets are then used to build an RF regression model which is iteratively refined via

repeated training and synthesis of additional directive permutations, wherein the training sets are

updated after evaluating the prior trained model’s accuracy. When used in conjunction with TED,

iterative refinement improves prediction accuracy and identifies the Pareto Optimal set of design

points, as measured using the average distance from reference set (ADRS) [89]. The user can

specify an HLS budget (the maximum number of HLS synthesis run) and report Pareto Optimal

design points using up 20 training workloads for budgets of up to 50 runs, and as few as 10

workloads for larger budgets up to 120 runs; this represents a reduction of more than half of the

242 total directive combinations in the search space. This model requires HLS-in-the-loop due to

the feature choice (post-HLS design specifications) and iterative improvement techniques (HLS is

used to verify performance improvement).

Koeplinger et al. [85] present a DSE methodology that repeatedly calls a bespoke HLS

tool with inherent predictive modeling capabilities. Their models are created from C/C++

descriptions which the programmer has annotated with pragmas to indicate design patterns such as

map, reduce, filter and groupBy [90]. The framework analyzes the annotated source code and

performs transformations such as loop fusion and tiling and converts the program to a more precise

specification called Delite Hardware Definition Language (DHDL). The DHDL specification is

105

converted to a set of parameterizable architectural templates, which account for the FPGA’s on-

chip resources (LUTs, BRAMs, routing, etc.) and off-chip memory bandwidth. Template

parameters determine tiling sizes, parallelization factors, and coarse-grain pipelining, which are

used alongside cycle-count and area utilization estimators to identify the Pareto Front of many

design points. To construct the estimators, it’s necessary to first characterize the board’s various

runtime latencies and resource availability using full synthesis runs, averaging 6 runs per template

across several parameter configurations; this yields analytical models for utilization and cycle

estimation for each template. The models are trained using ANNs with 200 design samples to

compensate for the DHDL models, which do not capture on-board utilization. For six workloads

consisting of millions of possible design points, they achieve average cycle estimation error of

6.1% and Look Up Table (LUT), DSP, and BRAM utilization estimates with 4.8%, 7.5% and

12.3% error respectively, while running 6,533x faster than DSE using Vivado HLS alone. While

expedient, this technique requires extensive source code instrumentation, and is only compatible

with applications that use standard design patterns.

HLScope+ [86] uses C code instrumentation and analytical modeling to improve the

accuracy of the Vivado HLS simulator, adding the capability to handle input-dependent loop

bounds. The instrumentation includes dependency analysis, which identifies independent regions

of code to parallelize and loop analysis, which estimates loop cycle counts, culminating in

execution cycle counts and DRAM transaction counts for each code module. This helps HLScope+

identify the application’s critical execution path, from which it estimates the per-module stall rate.

To compensate for the inaccuracy inherent to static analysis, loop analysis is extended with an

analytical model.

HLScope+ accounts for DRAM bandwidth and latency by creating a high-level external

memory module, which abstracts away individual memory accesses while accounting for resource

106

contention among processing elements (PEs); this model is more accurate than the Vivado HLS

simulator, which optimistically assumes that memory can be fetched each cycle and ignores

memory bandwidth and contention among PEs. An analytical model is created to predict memory

access time and can be combined with the compute cycle count to estimate execution time.

HLScope+ is evaluated using 14 HLS workloads, resulting in a 1.1% average error for compute-

bound workloads and 5.0% average error for memory bound workloads. This is much faster than

fully synthesizing each workload; however, the key drawback is that HLScope+ employs analytical

models which require expert knowledge of the target FPGA and its memory interface and are not

transferrable from one target to another.

MPSeeker [87] performs DSE using HLS simulation in conjunction with C/C++ source

code instrumented at the Low Level Virtual Machine (LLVM) Intermediate Representation (IR)

level, HLS design directives, and both predictive and analytical modeling techniques. MPSeeker’s

DSE considers several design directives including tile sizes, the number of PEs, loop unrolling,

loop pipelining, and array partitioning. MPSeeker extends a single-PE analytical model [91] with

the ability to estimate cycle counts for multi-PE designs that encompass coarse-grained parallelism.

MPSeeker also includes an ensemble tree predictor called the Gradient Boosted Machine (GBM)

[92], which uses 14 program features and user-defined parallelism directives to predict FPGA

resource usage.

MPSeeker’s profiler accepts C source code (tiled nested loop structure), FPGA resource

constraints, and user-supplied directive settings (tile size, loop unrolling, pipelining, and array

partitioning) to produce features. The features track key workload characteristics correlated to

parallelism and memory subsystem behavior and are input to Lin-Analyzer to predict performance

and the GBM model to predict resource utilization. A subsequent analytical equation combines the

107

outputs of the two models to account for further FPGA resource restrictions, which limit the number

of PEs that can execute concurrently.

MPSeeker uses 10 microbenchmark kernels to ascertain the degree of loop resource

consumption, communication interface behavior, and other similar properties, along with 5 larger

benchmarks for evaluation; each kernel has 280 unique design configurations. MPSeeker’s DSE

procedure achieves 90% of the Pareto optimal performance, while running ~421x to ~4308x faster

than FPGA bitstream generation. Lin-Analyzer reports an average error of 12.8%, while the GBM

model reports average errors of 13.2%, 14.7%, 12.7%, and 19.4% for LUTs, flip-flops, DSP blocks,

and BRAMs respectively. The reliance on expert-developed microbenchmarks to characterize

FPGA resource constraints and the necessity to execute instrumented source code on the simulator

are notable drawbacks of this approach.

Cross-architecture prediction (e.g., CPU host to FPGA target) could overcome many of

these shortcomings. Doing so would allow for the creation of automatically derived statistical

regression models that automatically select requisite features from direct execution on the host,

eliminating the need for expert guidance and increasing portability. Given that cross-platform

predictive models for both CPUs and GPUs has been successful, they can and should be applied to

DSE for FPGAs as well. For this reason, we have produced and submitted for peer review

HLSPredict of Chapter 4.

108

 Conclusion
6.1 Cross-Generation Concluding Remarks

Chapter2 details the HALWPE cross-generation integrated GPU performance estimation

framework has established the feasibility of cross-generation GPU CPF prediction using

performance counter readings, DirectX metrics, and hardware queries. HALWPE achieved high

accuracy when predicting across single and multiple generation deltas, and in the presence of

significant slice scaling and software modifications. HALWPE predicted the CPF of a Broadwell

GT2 GPU, a Broadwell GT3 GPU and a Skylake GT3 GPU with Eouts of 7.45%, 7.47%, and 8.91%

and speedups of 29481x, 43643x, and 44214x respectively. In addition, our simulator models

demonstrate the utility of cross-generation GPU performance estimation in the context of driver

scaling only, and compute parallelism scaling only. Our results and analysis suggest that predictive

modeling can aid early-stage microarchitecture DSE and may be able to help with identification of

performance bottlenecks; however, predictive modeling must be applied with care, as the models

themselves are inherently finicky.

6.2 Cross-Abstraction Concluding Remarks

Chapter 3 details the functional simulator based, cross-abstraction, integrated GPU

performance prediction framework. This work has further demonstrated the benefits of cross-

architecture statistical predictive modeling by leveraging a functional GPU simulation extended

with predictive regression models to accurately predict GPU performance. It also demonstrates the

utility of this this approach when applied during pre-silicon DSE. Our experiments, which focus

on an Intel Skylake GT3 GPU, achieve an out-of-sample-error rate of 14.3% while running three

to four orders of magnitude faster than cycle-accurate simulation, in large part due to the WCF

simulator extensions. In addition to moving co-optimization of GPU hardware and software to

earlier design stages, this approach could provide additional benefits, such as early-stage driver

109

conformance testing [93]. It may also be possible to distribute the framework, and a trained model,

as a pre-silicon evaluation platform for 3rd party vendors to assess workload performance when

integrated into a larger system. Feature ranking can help GPU architects to identify performance

bottlenecks on representative workloads as early as possible.

These models can be generally applied to any GPU that supports hardware acceleration

for 3D DirectX rendering workloads, as the bulk of our counters specifically address render actions

and units that must be performed and supported in the architecture to render these applications

functionally. For separate workloads that do not exercise units intended to support the DirectX

pipeline such as media workloads like video streaming, or video codec processing, or General

Purpose Graphical Processing Unit (GPGPU) tasks we do not believe our models are generally

applicable and would require a modified instance of the WCF to target the correct pipeline metrics.

It is also very common for these alternative workloads to exercise different hardware units, as

current GPUs used large amounts of FF hardware, consequently following a different execution

pipeline in the GPU. Our training set reflects this assumption.

6.3 Cross-Platform Concluding Remarks

Chapter 4 discusses HLSPredict, our cross-platform FPGA accelerator modeling

framework. The work generates predictive models that use CPU performance counters as model

features to predict the performance and power of FPGA accelerators designed using HLS. This

eliminates the need to construct bespoke analytical models for the target and the need to employ

variants of HLS-in-the-loop DSE, which has been the primary method for speeding up the

evaluation process when compared to exhaustive synthesis of the design space. Although model

training is an overhead, trained models can be applied at near-native CPU execution speeds,

obtaining a speedup of 36.24x for the baseline workloads and 43.78x for the optimized workloads

110

compared to HLS alone. HLSPredict achieved sufficiently low Eout of 9.08% for baseline

workloads, and 10.95% for optimized workloads.

6.4 Future Work

While each of our frameworks has demonstrated that cross-architecture predictive

modeling in each of the three forms presented here can readily be used to make power and

performance estimations before fabricating GPUs or before synthesizing FPGAs, the technical

approach is still relatively new. To mature the approach and spur its adoption, it is necessary to

advance and further evaluate the research by extending the current frameworks to answer several

remaining open questions.

For example: Can either HALWPE, or the functional simulator-based GPU modeling

approaches predict power/energy consumption with equal effectiveness? For the frameworks to be

extended, model retraining with the proper target metric, e.g. total power or dynamic power would

be required. Further, the target simulator would need to be inspected to determine if enabling the

power metric is possible, or if a more fundamental change like extending the simulator to model

power, or even using a different power-oriented simulator will be necessary. Finally, the effective

features for prediction would likely change, requiring additional analysis, and in the case of the

functional simulator approach, the WCF may need to be extended or rearchitected to obtain useful

features.

Can these GPU models be re-used to predict the CPF of similar targets without retraining,

and if not, what level of change necessitates retraining? Criteria for model retraining/reuse would

be beneficial and will need to be evaluated on a case by case basis for each framework. In the case

of Chapter 2, HALWPE we demonstrate that a modicum of compute parallelism scaling and

software driver scaling might result in accurate predictions without model retraining or feature

111

changes. These studies will need to be extended to identify when this no longer holds, and then

performed on our remaining frameworks for GPUs and FPGAs.

Can our GPU frameworks generalize to other GPU vendors such as Nvidia or AMD. To

evaluate this, academic or industrial simulators that target recent GPU advances from these vendors

will be needed. Further the simulator will need to model a GPU device of the same family for which

a previously manufactured product might be available. The instrumentation of the host and targets

would need to be redone, and models retrained, effectively reimplementing the framework for the

new platforms.

Can the GPU frameworks also generalize to rendering workloads that utilize different

APIs, such as OpenGL? In each iteration of our GPU frameworks we target only DirectX API

workloads. To evaluate this, a high-quality set of OpenGL workloads would need to be acquired,

representative traces sampled, and a GWL created. The Haswell GT2 host employed by HALWPE

of Chapter 2 will need to target non-DirectX counters, instead shifting the emphasis to the OpenGL

pipeline hardware instead. RastSim will require similar modifications in the abstracted functional

simulator host.

Further, can these GPU oriented models generalize to GPGPU workloads written in

languages such as CUDA or OpenCL? In this case, the simulators, would need to modified, or

different simulators leveraged, which support the GPGPU programming pipeline. Further, the

instrumentation of the host, be it the commercial GPU in Chapter 2, or the functional simulator in

Chapter 3 would need to be completely re-worked to target features that are relevant to the different

compute model, and new models trained.

Can these approaches be leveraged and applied to compute-intensive CPU workloads?

As outlined in the related works, we have seen cross-platform (e.g. predictions from one CPU to

another) perform well. It would be valuable to utilize our cross-generation and cross-abstraction

112

approaches for modern out-of-order CPUs to determine if the performance benefits and high

accuracy can be maintained, while exploring additional pre-silicon use cases.

HLSPredict of Chapter 4 currently predicts FPGA cycle count as well as several power

metrics. Can the HLSPredict be extended or modified to also predict various utilization percentages

of LUTs, LUT RAMs, DSP blocks, and more. Additional workload information, in the form of new

counters not encompassed by the current set of CPU performance counters would be required. One

potential avenue is to leverage static source code analysis to produce those new features relevant

to utilization such as loop trip counts, inter-loop dependency analysis, etc.

Can HLSPredict be further optimized to reduce the performance counter collection

overhead without sacrificing accuracy, to provide increased speedup? Currently. several counters

are required, necessitating repeated executions of the same data point on the host to collect all

necessary counters. More aggressive feature selection may reduce the number of repeated runs,

reducing host execution overhead, thereby increasing the speedup of the approach.

Finally, can HLSPredict’s prediction methodology be integrated into and used as the basis

of follow up studies that target DSE using HLS tools. HLSPredict will need to be extended to

automatically perform DSE on the FPGA target to collect training samples. Further, as the design

parameters, in the form of Vivado HLS directives are modified, the predictive model will need to

be made aware of this. Approaches exist to automatically cluster and scale workload predictions

based on similar performance counter observations. Other approaches might include integrating in

tool provided (in the case of training) or user provided (in the case of model application) features

that indicate the directive settings.

6.5 Closing Remarks

Predictive modeling has immense potential but has not yet been fully integrated into the

CPU or GPU architectural design process; on the other hand, predictive models are widely used in

113

design exploration for FPGAs, but often rely on repeated calls to HLS tools and/or non-portable

analytical modeling efforts. On the CPU/GPU side, the next step is to evaluate the potential of

cross-platform modeling as an alternative to cycle-accurate simulation, especially during early

design stages, by demonstrating accurate predictions of architectural modifications. In contrast,

cross-platform models for FPGAs have not yet been demonstrated; however, once this is

accomplished, DSE tools that target FPGAs will benefit significantly. Long-term, there is still a

considerable amount of work to be done to convince the research community that predictive models

are more than an intellectually meritorious curiosity and have the capability to significantly increase

designer engineering productivity.

REFERENCES

[1] Q. Guo, T. Chen, Y. Chen, and F. Franchetti, “Accelerating Architectural Simulation Via
Statistical Techniques: A Survey,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 35,
no. 3, pp. 433–446, Mar. 2016.

[2] J. E. Miller et al., “Graphite: A distributed parallel simulator for multicores,” in HPCA - 16
2010 The Sixteenth International Symposium on High-Performance Computer Architecture,
2010, pp. 1–12.

[3] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstraction for
scalable and accurate parallel multi-core simulation,” in SC ’11 Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, p. 1.

[4] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural Simulation of
Thousand-Core Systems,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture - ISCA ’13, 2013, vol. 41, no. 3, pp. 475–486.

[5] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “HAsim: FPGA-based high-
detail multicore simulation using time-division multiplexing,” in 2011 IEEE 17th
International Symposium on High Performance Computer Architecture, 2011, pp. 406–417.

[6] A. Canis et al., “LegUp : High-Level Synthesis for FPGA-Based Processor / Accelerator
Systems,” FPGA ’11 Proc. 19th ACM/SIGDA Int. Symp. F. Program. gate arrays, pp. 33–
36, 2011.

[7] Xilinx, “Vivado High-Level Synthesis.” [Online]. Available: https://goo.gl/2kpNwy.
[Accessed: 30-Mar-2018].

[8] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling,” in 30th Annual
International Symposium on Computer Architecture, 2003. Proceedings., pp. 84–95.

[9] E. Perelman et al., “Using SimPoint for accurate and efficient simulation,” in Proceedings
of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems - SIGMETRICS ’03, 2003, vol. 31, no. 1, p. 318.

[10] K. O’Neal, M. Liu, H. Tang, A. Kalantar, and P. Brisk, “HLSPredict: Cross Platform

114

Performance Prediction for FPGA High-Level Synthesis,” in Submitted For Publication,
2018.

[11] D. Marculescu, A. S. I. G. on D. Automation, K. ACM Digital Library., Y. Hoskote, L. K.
John, and A. Gerstlauer, “Learning-Based Power modeling of System-Level Black-Box
IPs,” in Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 2015, pp. 847–853.

[12] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level cross-platform power and
performance estimation,” in Proceedings of the 53rd Annual Design Automation
Conference on - DAC ’16, 2016, pp. 1–6.

[13] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model
selection. International Joint Conferences on Artificial Intelligence, Inc., 1995.

[14] K. O’Neal and P. Brisk, “Predictive Modeling for CPU, GPU, and FPGA Performance and
Power Consumption: A Survey,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) ’18.

[15] K. O’Neal, P. Brisk, E. Shriver, and M. Kishinevsky, “Hardware-Assisted Cross-Generation
Prediction of GPUs Under Design,” IEEE Trans. Comput. Des. Integr. Circuits Syst., pp.
1–1, 2018.

[16] K. O’Neal, P. Brisk, E. Shriver, and M. Kishinevsky, “HALWPE: Hardware-Assisted Light
Weight Performance Estimation for GPUs,” in Proceedings of the 54th Annual Design
Automation Conference 2017 on - DAC ’17, 2017, pp. 1–6.

[17] Intel Corporation, “Open Source Intel ® HD Graphics Programmer’s Reference Manual
(PRM).” [Online]. Available: https://goo.gl/9KSJks. [Accessed: 17-May-2018].

[18] Intel Corporation, “Intel GPA GPU Metrics.” [Online]. Available: https://goo.gl/3Ird2x.
[Accessed: 17-May-2018].

[19] Microsoft Corporation, “New Resource Types Direct3D 11.” [Online]. Available:
https://goo.gl/gX4MZz. [Accessed: 17-May-2018].

[20] Microsoft Corporation, “Introduction to a Device in Direct3D 11.” [Online]. Available:
https://goo.gl/bi6USV. [Accessed: 17-May-2018].

[21] Microsoft Corporation, “IDirect3DQuery9 interface.” [Online]. Available:
https://goo.gl/UZDyRD. [Accessed: 17-May-2018].

[22] Microsoft Corporation, “IDirect3DIndexBuffer9 interface.” [Online]. Available:
https://goo.gl/flRm1A. [Accessed: 17-May-2018].

[23] Microsoft Corporation, “IDirect3DDevice9 interface.” [Online]. Available:
https://goo.gl/HCSNTw. [Accessed: 17-May-2018].

[24] Microsoft Corporation, “ID3D11Device interface.” [Online]. Available:
https://goo.gl/gzeD0o. [Accessed: 17-May-2018].

[25] Microsoft Corporation, “ID3D11DeviceContext interface.” [Online]. Available:
https://goo.gl/4VnmIj. [Accessed: 17-May-2018].

[26] Microsoft Corporation, “ID3D10Device interface.” [Online]. Available:
https://goo.gl/4YNKpl. [Accessed: 17-May-2018].

[27] Intel Corporation, “The Compute Architecture of Intel ® Processor Graphics Gen9.”
[Online]. Available: https://goo.gl/RMmUc6. [Accessed: 17-May-2018].

[28] Intel Corporation, “The Compute Architecture of Intel® Processor Graphics Gen8,” 2014.
[Online]. Available: https://goo.gl/TnpAGc. [Accessed: 17-May-2018].

[29] Intel Corporation, “The Compute Architecture of Intel® Processor Graphics Gen7.5.”
[Online]. Available: https://goo.gl/5HZ54v. [Accessed: 17-May-2018].

[30] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE Trans. Automat.
Contr., vol. 19, no. 6, pp. 716–723, Dec. 1974.

115

[31] H. Akaike, “Information Theory and an Extension of the Maximum Likelihood Principle,”
Springer, New York, NY, 1992, pp. 610–624.

[32] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York,
2001.

[33] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Philadelphia: SIAM,
1995.

[34] R. R. Hocking, “The Analysis and Selection of Variables in Linear Regression,” Biometrics,
vol. 32, no. 1, p. 1, Mar. 1976.

[35] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” J. R. Stat. Soc. Ser. B,
vol. 58, pp. 267–288, 1996.

[36] L. Breiman and Leo, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[37] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation around the median,” J. Exp. Soc.
Psychol., vol. 49, no. 4, pp. 764–766, Jul. 2013.

[38] K. O’Neal, P. Brisk, A. Abousamra, Z. Waters, and E. Shriver, “GPU Performance
Estimation using Software Rasterization and Machine Learning,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, pp. 1–21, Sep. 2017.

[39] “OpenSWR — Gallium 0.4 documentation.” [Online]. Available:
http://gallium.readthedocs.io/en/latest/drivers/openswr.html. [Accessed: 30-Apr-2018].

[40] H. Zou and T. Hastie, “Regularization and Variable Selection via the Elastic Net,” J. R. Stat.
Soc. Ser. B (Statistical Methodol., vol. 67, pp. 301–320, 2005.

[41] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Applications to Nonorthogonal
Problems,” Technometrics, vol. 12, no. 1, pp. 69–82, Feb. 1970.

[42] L. Breiman, Classification and Regression Trees. Routledge, 2017.

[43] A. Cutler, “Trees and Random Forests,” 2013. [Online]. Available:
https://goo.gl/ZWyQYY.

[44] Louis-Noël Pouchet, “PolyBench/C.” [Online]. Available: https://goo.gl/2eNA9L.
[Accessed: 28-Mar-2018].

[45] Louis-Noël Pouchet, “PolyBench/GPU.” [Online]. Available: https://goo.gl/7PTHSJ.
[Accessed: 28-Mar-2018].

[46] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments,” in Proceedings of the International Conference on
Parallel Processing Workshops, 2010, pp. 207–216.

[47] LIKWID, “RRZE-HPC/likwid: Performance monitoring and benchmarking suite.”
[Online]. Available: https://goo.gl/Wyhur3. [Accessed: 28-Mar-2018].

[48] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol.
12, no. Oct, pp. 2825–2830, 2011.

[49] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification
using support vector machines,” Mach. Learn., vol. 46, no. 1–3, pp. 389–422, 2002.

[50] Vivado, “Vivado Design Suite User Guide: System-Level Design Entry,” vol. 901, pp. 1–
120, 2013.

[51] LIKWID, “RRZE-HPC/likwid Haswell Performance Groups.” [Online]. Available:
https://goo.gl/jQEuZG. [Accessed: 28-Mar-2018].

[52] J. Chen, B. Li, Y. Zhang, L. Peng, and J. K. Peir, “Tree structured analysis on GPU power
study,” in Proceedings - IEEE International Conference on Computer Design: VLSI in
Computers and Processors, 2011, pp. 57–64.

116

[53] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for
assembly programmers and compiler makers,” 2018.

[54] T. Sherwood et al., “Automatically characterizing large scale program behavior,” ACM
SIGARCH Comput. Archit. News, vol. 30, no. 5, p. 45, Dec. 2002.

[55] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA
workloads using a detailed GPU simulator,” in ISPASS 2009 - International Symposium on
Performance Analysis of Systems and Software, 2009, pp. 163–174.

[56] V. M. del Barrio, C. Gonzalez, J. Roca, and A. Fernandez, “ATTILA: a cycle-level
execution-driven simulator for modern GPU architectures,” 2006 IEEE Int. Symp. Perform.
Anal. Syst. Softw., pp. 231–241, 2006.

[57] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A simulation framework
for CPU-GPU computing,” in 2012 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2012, pp. 335–344.

[58] A. Gutierrez et al., “Sources of error in full-system simulation,” in ISPASS 2014 - IEEE
International Symposium on Performance Analysis of Systems and Software, 2014, pp. 13–
22.

[59] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, “GPGPU performance
and power estimation using machine learning,” in Proceedings of HPCA 2015, 2015, pp.
564–576.

[60] W. Jia, K. A. Shaw, and M. Martonosi, “Starchart: Hardware and software optimization
using recursive partitioning regression trees,” Proc. 22nd Int. Conf. Parallel Archit. Compil.
Tech., pp. 257–267, Oct. 2013.

[61] Z. Yu et al., “Accelerating GPGPU architecture simulation,” in Proceedings of the ACM
SIGMETRICS/international conference on Measurement and modeling of computer systems
- SIGMETRICS ’13, 2013, vol. 41, no. 1, p. 331.

[62] M. Badr and N. E. Jerger, “SynFull: Synthetic traffic models capturing cache coherent
behaviour,” in Proceedings - International Symposium on Computer Architecture, 2014, pp.
109–120.

[63] J. Yin, O. Kayiran, M. Poremba, N. E. Jerger, and G. H. Loh, “Efficient synthetic traffic
models for large, complex SoCs,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016, pp. 297–308.

[64] S. Lee and W. W. Ro, “Parallel GPU architecture simulation framework exploiting work
allocation unit parallelism,” in International Symposium on Performance Analysis of
Systems and Software, 2013, pp. 107–117.

[65] D. Chiou et al., “FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-System,
Cycle-Accurate Simulators,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), 2007, pp. 249–261.

[66] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz, “Efficiently exploring
architectural design spaces via predictive modeling,” ACM SIGPLAN Not., vol. 41, no. 11,
p. 195, Oct. 2006.

[67] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for
microarchitectural performance and power prediction,” in Proceedings of the 12th
international conference on Architectural support for programming languages and
operating systems - ASPLOS-XII, 2006, vol. 40, no. 5, p. 185.

[68] R. Nath, D. Carmean, and T. S. Rosing, “Power modeling and thermal management
techniques for manycores,” in 2013 IEEE Symposium on Computers and Communications
(ISCC), 2013, pp. 000740–000746.

[69] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,

117

“Temperature-aware microarchitecture: Modeling and Implementation,” ACM Trans.
Archit. Code Optim., vol. 1, no. 1, pp. 94–125, Mar. 2004.

[70] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power consumption analysis and
modeling for GPU-based computing,” in Proceeding of SOSP Workshop on Power Aware
Computing and Systems (HotPower), 2009.

[71] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic performance model
for superscalar out-of-order processors,” ACM Trans. Comput. Syst., vol. 27, no. 2, pp. 1–
37, May 2009.

[72] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-based analytical cross-
platform performance prediction,” in 2015 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015, pp. 52–59.

[73] J. Shlens, “A Tutorial on Principal Component Analysis,” Apr. 2014.

[74] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. R. De Supinski,
“Adaptive configuration selection for power-constrained heterogeneous systems,” in
Proceedings of the International Conference on Parallel Processing, 2014, vol. 2014–
Novem, no. November, pp. 371–380.

[75] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and accurate model of
power-performance efficiency on emergent GPU architectures,” in Proceedings - IEEE 27th
International Parallel and Distributed Processing Symposium, IPDPS 2013, 2013, pp. 673–
686.

[76] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis of ATI GPU: A
statistical approach,” in Proceedings - 6th IEEE International Conference on Networking,
Architecture, and Storage, NAS 2011, 2011, pp. 149–158.

[77] C. Gerum, O. Bringmann, and W. Rosenstiel, “Source Level Performance Simulation of
GPU Cores,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015, 2015, pp. 217–222.

[78] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-architecture
performance prediction (XAPP) using CPU code to predict GPU performance,” Proc. 48th
Int. Symp. Microarchitecture - MICRO-48, pp. 725–737, 2015.

[79] K. Hoste and L. Eeckhout, “Comparing Benchmarks Using Key Microarchitecture-
Independent Characteristics,” in 2006 IEEE International Symposium on Workload
Characterization, 2006, pp. 83–92.

[80] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with Dynamic
instrumentation,” in Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’05, 2005, vol. 40, no. 6, p. 190.

[81] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.

[82] S. Wang, G. Zhong, and T. Mitra, “CGPredict: Embedded GPU Performance Estimation
from Single-Threaded Applications,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s,
pp. 1–22, Sep. 2017.

[83] K. O’Neal, P. Brisk, A. Abousamra, Z. Waters, and E. Shriver, “GPU Performance
Estimation using Software Rasterization and Machine Learning,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, pp. 1–21, Sep. 2017.

[84] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-space exploration with
High-Level Synthesis,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), 2013, pp. 1–7.

[85] D. Koeplinger et al., “Automatic generation of efficient accelerators for reconfigurable

118

hardware,” in ACM SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, pp. 115–
127.

[86] Y. Choi, P. Zhang, P. Li, and J. Cong, “HLscope+: fast and accurate performance estimation
for FPGA HLS,” in Proceedings of the 36th International Conference on Computer-Aided
Design, 2017, pp. 691–698.

[87] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar, “Design Space exploration
of FPGA-based accelerators with multi-level parallelism,” in Proceedings of the 2017
Design, Automation and Test in Europe, DATE 2017, 2017, pp. 1141–1146.

[88] K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experimental design,” in
Proceedings of the 23rd international conference on Machine learning - ICML ’06, 2006,
pp. 1081–1088.

[89] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: A response surface-based pareto
iterative refinement for application-specific design space exploration,” IEEE Trans.
Comput. Des. Integr. Circuits Syst., vol. 28, no. 12, pp. 1816–1829, Dec. 2009.

[90] A. K. Sujeeth et al., “OptiML: An implicitly parallel domain specific language for machine
learning,” in IN PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE ON
MACHINE LEARNING, SER. ICML, 2011.

[91] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: A high-level
performance analysis tool for FPGA-based accelerators,” in Proceedings of the 53rd Annual
Design Automation Conference on - DAC ’16, 2016, pp. 1–6.

[92] Click C. et al., “Gradient Boosting Machine (GBM) — H2O 3.18.0.8 documentation,” 2016.
[Online]. Available: https://goo.gl/viLQGw. [Accessed: 01-May-2018].

[93] Microsoft Corporation, “Windows Hardware Certification Kit User’s Guide.” [Online].
Available: https://goo.gl/s0TCzJ. [Accessed: 22-May-2018].

119

LIST OF ABBREVIATIONS

ACM Association for Computing Machinery
ACM-ICPC ACM International Collegiate Programming Contest
ACP Accelerator Coherency Port
ADRS Average Difference from Reference Set
AIC Akaike Information Criterion
ANN Artificial Neural Network
APE Absolute Percentage Relative Error
API Application Programming Interface
AXI Application eXtensible Interface
BC Barycentric Calculator
BIC Bayesian Information Criterion
BIOS Basic input-output system
BLT Blitter
BRAM Block Random Access Memory
CAS Cycle-Accurate Simulator
CL Clipper
CLSR Constrained Locally Sparse Regression
CPF Cycles Per Frame
CPU Central Processing Unit
CS Compute Shader
CV Cross-Validation
DAPRC Render Cache
DC Data Cluster
DHDL Delite Hardware Definition Language
DRAM Dynamic Random Access Memory
DSE Design Space Exploration
DSE Design Space Exploration
DSP Digital Signal Processor
DTM Dynamic Thermal Management
Eout Out-of-sample Error
EU Execution Unit
FF Fixed Function
FPGA Field Programmable Gate Array
GA Global Asset
GAM Graphics Arbiter Model
GBM Gradient Boosted Machines
GPGPU General Purpose Graphical Processing Units
GPIO General Purpose input-output
GPU Graphical Processing Unit
GS Geometry Shader
GTI Graphics Translation Interface
GWL Graphics Workload Library
HIZ Hierarchical-Z

120

HLS High-Level Synthesis
HS Hull Shader
IA Input Assembler
IC Instruction Cache
IP Intellectual Property
IR Inlier Ratio
IR Intermediate Representation
ISA Instruction Set Architecture
IZ Intermediate-Z
KIPS Thousands of Instructions Per Second
KNF Knights Ferry
LLC Lower-level cache
LLVM Low Level Virtual Machine
LUT Look Up Table
MAPE Mean Absolute Reltaive Percentage Error
MIPS Millions of Instructions Per Second
MSAA Multi-Sampling Anti-Aliasing
NNLS Non- Negative Least Squares
OLS Ordinary Least Squares
OS Operating System
PC Personal Computer
PCA Principle Component Analysis
PE Processing Elements
PS Pixel Shader
PSD Pixel Shader
PTX Parallel Thread Execution
QOS Quality of Service
RF Random Forest
RFECV Recursive Feature Elimination with Cross Validation
RSS Residual Sum of Squares
RTL Register Transfer Level
SD Secure Digital
SDK Software Development Kit
SOL Stream Output Logic
SPI Serial Peripheral Interface
SVM State Variable Manager
TD Thread Dispatch
TE Tesselator
TED Transductive Experimental Design
UAR Uniforma at Random
VF Vertex Fetch
VS Vertex Shader
WCF Workload Characterization Framework
WL Workload Library
WM Windower

