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A mass-conservative predictor-corrector solution to the
1D Richards equation with adaptive time control

Zhi Lia,∗, Ilhan Özgen-Xiana, Fadji Zaouna Mainaa

aEnergy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Predictor-corrector-type (P-C) numerical solution to the 1D Richards equa-

tion only requires one matrix inversion operation per time step, making it at-

tractive in terms of computational cost. However, mass conservation could be

violated at the saturated-unsaturated interface. A new post-allocation proce-

dure is designed for the P-C method, which redistributes moisture after the

corrector step to achieve strict mass balance. A novel adaptive time-stepping

strategy is proposed to further improve model efficiency and robustness. It ad-

justs time step size based on both moisture difference and the Courant number.

By testing against analytical solution, existing P-C solution and existing itera-

tive solution, the new numerical solution shows good conservation property and

efficiency. The new time-stepping strategy better balances computational cost

and model accuracy because it takes the soil water retention relationship into

consideration.

Keywords: Richards equation, mass conservation, predictor-corrector method,

adaptive time control

1. Introduction

Richards equation (Richards, 1931) describes flow in unsaturated soils due

to gravity and capillarity. Because it is widely used to model the variably satu-

rated flow in physically-based hydrological models (Paniconi and Putti, 2015),
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its numerical solution plays a key role in hydrology and environmental sciences.5

Unfortunately, the Richards equation is highly nonlinear, which makes its nu-

merical solution computationally expensive, uncertain, and non-robust (Far-

thing and Ogden, 2017). This work presents an efficient numerical scheme for

the one-dimensional Richards equation that reduces computational cost and

enhances robustness.10

Richards equation can be formulated in a head, water content, or mixed

form—see Caviedes-Voullieme et al. (2013) for a detailed discussion of trade-offs.

We will only discuss the mixed and the head forms in this manuscript, because

the water content form is not relevant to our work. The one-dimensional mixed

form of the Richards equation is given by:15

Ssθ

φ

∂h

∂t
+
∂θ

∂t
− ∂

∂z

[
K(h)

(
∂h

∂z
− 1

)]
− qs = 0 (1)

Here, Ss is specific storage, h is pressure head, θ is water content, φ is

porosity, K(h) is hydraulic conductivity and qs represents source/sink terms. It

is called the mixed form because both h and θ are considered primary variables.

The head form can be derived from the mixed form by defining a specific capacity

C(h) = ∂θ/∂h and substituting C(h) into Eq. (1), which yields:20

(
Ssθ

φ
+ C(h)

)
∂h

∂t
− ∂

∂z

[
K(h)

(
∂h

∂z
− 1

)]
− qs = 0 (2)

The advantage of the head form is that it only involves h as the unknown,

which is not bounded at saturation. However, the numerical solution of the head

form does not conserve mass in the unsaturated zone (Lehmann and Ackerer,

1998; Caviedes-Voullieme et al., 2013), because the soil water retention rela-

tionship (i.e. the h-θ relationship) is highly nonlinear, which makes the time25

derivative C(h)∂h/∂t to diverge from ∂θ/∂t in its discrete form (Zha et al.,

2017). An iterative numerical scheme by Celia et al. (1990) overcomes this is-

sue. It uses a Taylor series expansion of water content to compensate for the
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mass loss and has become a widely used strategy to solve the head form of the

Richards equation (Paniconi and Putti, 2015).30

Kirkland et al. (1992) propose a non-iterative predictor-corrector-type (P-C)

method to solve the Richards equation. A predictor step, which solves the head

form, is followed by a corrector step, wherein the mixed form is solved to correct

head values in the unsaturated zone. Lai and Ogden (2015) further improve this

method using a post-allocation procedure to enforce mass conservation at the35

saturated-unsaturated interface, which redistributes the non-conserved fraction

of moisture to nearby grid cells. In contrast to the iterative method by Celia

et al. (1990), the P-C method only requires one matrix inversion per time step.

This makes the P-C method competitive in terms of computational cost.

The aim of the present study is to further improve the P-C method by iden-40

tifying its capabilities and limitations. We improve the P-C method proposed

by Lai and Ogden (2015) to address the following issues: (i) the post-allocation

procedure is conservative only when an unsaturated capacity exists; (ii) the

computational cost of the P-C method has not yet been compared to iterative

methods.45

The first point concerning the post-allocation procedure acknowledges that

moisture cannot be redistributed between fully saturated grid cells, because

there is no space to accommodate excess water. This limitation is relevant for

catchment-scale studies, which commonly use impermeable bottom boundaries

(e.g. Camporese et al., 2015; Sun et al., 2016; Weill et al., 2013). In these studies,50

fully saturated regions exist near the impermeable bottom or below the water

table. When excess moisture is sent to these regions from the upper unsaturated

zone, it has to be abandoned to guarantee the saturated water content is not

exceeded, thus resulting in an inaccurate mass balance.

The second point concerning the computational cost reflects on the fact that55

the iterative scheme becomes more efficient than the non-iterative P-C method

if the time step size (∆t) of the P-C method is too restrictive. Numerical solu-

tions of the Richards equation often adopt variable ∆t (Zha et al., 2019). For

iterative methods, ∆t is usually constrained by monitoring the number of itera-
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tions it takes for the current step to converge (D’Haese et al., 2007; Maina and60

Ackerer, 2017). Here, if the number of iterations exceeds a certain threshold,

∆t is reduced. For non-iterative methods, there is no single optimal strategy

to constrain ∆t. While ∆t can be adjusted based on the maximum change of

water content (Lai and Ogden, 2015) or the truncation error of the time deriva-

tive (Kavetski et al., 2002), a mixed use of multiple criteria is often required65

(D’Haese et al., 2007). Because the P-C method uses an explicit time inte-

gration for the corrector step, it might require an additional stability criterion

that further limits the maximum time step size ∆tmax (Lai and Ogden, 2015).

Several approaches have been suggested to limit ∆tmax. For example, El-Kadi

and Ling (1993) apply a Kirchhoff transformation to the Richards equation, ob-70

taining a new form that is similar to an advection-diffusion equation. Stability

criteria can then be established using the Courant (Co) and Peclet (Pe) num-

bers as commonly performed for degenerate hyperbolic-parabolic shallow flow

equations in surface hydraulics (for example, Li and Hodges, 2019). Because

the recommended Co and Pe values in El-Kadi and Ling (1993) are based on75

a literature review rather than a stability analysis of the Kirchhoff transform,

whether these values are optimal remains unclear. Assuming linear behavior

of soil parameters and a minimum bound for the length of the observable dis-

crete wave, Caviedes-Voullieme et al. (2013) carry out a von Neumann stability

analysis to constrain ∆t. This results in a time step constrain of order O(h2),80

which is to be expected for diffusion-type equations (for example, Hirsch, 2007).

Due to the strong assumptions taken to cope with nonlinearity, this stability

criterion might be too restrictive in some cases—see Hunter et al. (2005) for

similar arguments.

In this work, we (i) present modifications to the post-allocation procedure85

to conserve mass when moisture redistribution within fully saturated regions

occur; and (ii) apply various time control strategies to the P-C method and

derive a novel adaptation strategy for ∆t, which combines the use of an em-

pirical Courant number and the water content criterion from Lai and Og-

den (2015). We compare our novel P-C method (named P-C-A for predictor-90
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corrector-allocation) with the P-C method from Lai and Ogden (2015) and an

iterative method to assess its robustness and computational efficiency.

The next sections are organized as follows: Section 2 introduces the P-C

method (Lai and Ogden, 2015), the new post-allocation procedure and the new

time control scheme. Section 3 describes the test problems and results. Section95

4 discusses in detail the reasons behind the observed results as well as directions

for future research. Section 5 concludes the findings.

2. Methods

2.1. The predictor-corrector method

We briefly sketch out the predictor-corrector (P-C) method—see Lai and100

Ogden (2015) for a more detailed description. In the predictor step, the head

form of the Richards equation (Eq. 2) is discretized as (neglect source term):

[
C(hni ) +

Ssθ
n
i

φ

]
(h∗i − hni )

−
K(hn

i+ 1
2

)∆t

∆zi∆zi+ 1
2

(
h∗i+1 − h∗i

)
+
K(hn

i− 1
2

)∆t

∆zi∆zi− 1
2

(
h∗i − h∗i−1

)
+
K(hn

i+ 1
2

)∆t

∆zi
−
K(hn

i− 1
2

)∆t

∆zi
= 0 (3)

where the subscript i indicates spatial coordinates (cell-centered, increasing

downward) and superscript n indicates time level. The variable h∗ is an in-

termediate solution, which does not ensure mass conservation. The grid size ∆z105

is indexed to allow potential use of variable spatial resolution, but fixed ∆z is

applied in the present study.

The Mualem–van Genuchten model (Mualem, 1976; van Genuchten, 1980)

is used to link pressure head with water content and hydraulic conductivity:
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S(h) = (1 + |αh|n)
−m

(4)

θ(h) =θr + (θs − θr)S(h) (5)

K(h) =KsS(h)
1
2

[
1−

(
1− S(h)

1
m

)m]2
(6)

where, S represents saturation, α and n are soil parameters, m = 1 − 1/n, θs110

and θr are saturated and residual water contents, Ks is the saturated hydraulic

conductivity. The specific capacity can be derived as:

C(h) =
αnm (θs − θr) |αh|n−1

(1 + |αh|n)
m+1 (7)

For fully saturated soil, we have S = 1, θ = θs, K = Ks and C = 0. The

interface conductivity, for example, Ki+ 1
2

at the interface i+ 1
2 , is calculated as

the arithmetic mean of the two neighboring cell-centered values as suggested by115

Lai and Ogden (2015); van Dam and Feddes (2000).

Eqs. (3–7) can be combined to form a tri-diagonal linear system, which can

be solved to obtain h∗. Then, a corrector step to enforce mass conservation is

performed by solving the mixed form of the Richards equation (Eq. 1). The flux

between two grid cells is estimated with Darcy’s Law:120

q∗i+ 1
2

=
K(h∗

i+ 1
2

)

∆zi+ 1
2

(
h∗i+1 − h∗i

)
−K(h∗i+ 1

2
) (8)

The water content is updated by substituting Eq. (8) into the mixed form

equation (neglect source term):

θ∗i +
Ssθ

∗
i

φ
(h∗i − hni ) = θni −

∆t

∆zi

(
q∗i− 1

2
− q∗i+ 1

2

)
(9)

Since h∗ has been solved via Eq. (3), the corrector step is fully explicit. The

water content calculated from Eq. (9), θ∗, is not the final value. The modeler

needs to decide whether the head form (Eq. 3) or the mixed form (Eq. 9) solution125
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will be used; in other words, whether h∗ or θ∗ is the solution at the new time

level. Lai and Ogden (2015) listed three cases based on the saturation status

and position of a grid cell i:

1. If cell i is unsaturated and is not adjacent to a saturated cell, set θ∗∗i = θ∗i .

The head hn+1
i = h(θ∗∗i ) is calculated by inverting Eq. (4) and (5).130

2. If cell i is unsaturated and is adjacent to a saturated cell, set hn+1
i = h∗i . If

Eq. (4) and (5) give a water content θ(hn+1
i ) > θ∗i , then set θ∗∗i = θ(hn+1

i )

and fill the gap by extracting water from its upwind cell.

3. If cell i is over-saturated, set hn+1
i = h∗i , θ

∗∗
i = θs and send excess water

to its downwind cell.135

The entire solution procedure can be summarized as predict (get h∗) – correct

(get θ∗) – select (get hn+1 and θ∗∗) – allocate (get θn+1). Here, the last two

steps can be grouped together as the post-allocation step.

2.2. Improved moisture allocation procedure

In the absence of unsaturated adjacent cells, the P-C method may still violate140

mass conservation when a grid cell switches its saturation status. In this section,

we present an improved allocation procedure that satisfies mass conservation

under all circumstances.

The novel post-allocation procedure is illustrated in the flowchart in Fig. 1.

We summarize:145

1. If cell i is unsaturated and is not adjacent to a saturated cell, set θ∗∗i = θ∗i .

The head hn+1
i = h(θ∗∗i ) is calculated by inverting Eq. (4) and (5).

2. If cell i is unsaturated and is adjacent to a saturated cell, set hn+1
i = h∗i .

The corresponding water content is computed from the water retention

relation, i.e. θ∗∗ = min
[
θs, θ(h

n+1)
]
.150

3. If cell i is over-saturated, set hn+1
i = h∗i , θ

∗∗
i = θs.

4. Whenever the head form is accepted (hn+1
i = h∗i ), the difference between

θ∗ and θ∗∗ needs to be sent to or extracted from (depending on its sign)

nearby cells to satisfy conservation.
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An example algorithm that sends an excess amount of moisture (∆θi =155

θ∗i−θ∗∗i ) to the downward cells is provided as function send down in Algorithm 1.

Similar algorithms can be used for send up, extract down and extract up.

Algorithm 1: Function - send down(θ∗∗, ∆θi, i)

input : Water content θ∗∗, Cell index i, Moisture deficit ∆θi

output: Water content θ∗∗∗, Remaining moisture δθi

j = i+ 1;

while ∆θi > 0 and j ≤ N do

ω = min(∆θi, θs − θ∗∗j );

θ∗∗∗j = θ∗∗j + ω;

∆θi = ∆θi − ω;

j = j + 1;

end

δθi = ∆θi

In Algorithm 1, the moisture deficit ∆θi is sent successively to all downwind

cells until the remaining deficit is zero or the bottom of the domain is reached.

Here, θ∗∗∗i represents an intermediate water content for cell i after it sent or160

received moisture. θ∗∗∗i is not the final water content, because cell i might

continue to send or receive moisture from other cells. After all post-allocation

steps are completed for all grid cells, the water contents are updated to θn+1.

The main differences between our improved post-allocation procedure and

the original one (Lai and Ogden, 2015) are summarized in Table 1. Our proce-165

dure checks for unsaturated capacity before allocating excess moisture, ∆θ, and

does not limit the redistribution to the adjacent cell only. If the adjacent cell

does not have enough space, after filling the adjacent cell, the remaining excess

moisture is sent further downwind. If excess moisture still exists after reaching

the downwind boundary (that is, δθ > 0), the remaining moisture is sent back170

to the upwind cells. Extracting moisture follows a similar pattern to sending

moisture. Unlike in Lai’s original method, where allocation is performed once

8



for each grid cell, the new procedure may allocate moisture multiple times for

one grid cell until δθ is zero.

Furthermore, Lai’s original procedure only sends moisture from over-saturated175

grid cells. Our procedure sends moisture whenever a positive moisture deficit

∆θi is detected. It will be shown in Sec. 4 that sending ∆θ from unsaturated

cells should not be neglected.

Table 1: Differences between the post-allocation procedure by Lai (P-C) and the new alloca-

tion strategy (P-C-A)

Mechanism P-C P-C-A

Check for unsaturated capacity No Yes

Redistribute within adjacent cells only Yes No

Send ∆θi when θ∗i ≥ θs, ∆θi > 0 Yes Yes

Send ∆θi when θ∗i < θs, ∆θi > 0 No Yes

Extract ∆θi when ∆θi < 0 Yes Yes

The upwind/downwind direction is determined by the gradient of the to-

tal head, dH/dz (total head H is distinguished from pressure head h). For180

example, if (dH/dz)i+ 1
2
< 0 and (dH/dz)i− 1

2
< 0, meaning that flow is down-

ward at cell i, moisture is sent down or extracted from up. A special case

exists where the total head gradients at the cell faces are of opposite signs, i.e.

(dH/dz)i+ 1
2
(dH/dz)i− 1

2
< 0. In this case, ∆θi is split in both directions and

the fraction of ∆θi in each direction is determined by the relative magnitudes185

of each head gradient.

Hereinafter, Lai’s original method (Sec. 2.1) is referred to as the P-C method.

The P-C method with our novel post-allocation scheme (Sec. 2.2) is referred to

as the P-C-A method.

2.3. Adaptive time stepping190

A variable time step (∆t) is often used to solve the Richards equation in

order to improve the computational efficiency. For example, Lai and Ogden

9



θ∗i < θs?

hn+1
i = h∗, θ∗∗i = θs Adjacent to a saturated cell?

θ∗∗i = θ∗i , h
n+1
i = h(θ∗∗i ) hn+1

i = h∗i , θ
∗∗
i = θ(hn+1

i )

θ∗∗i > θ∗i ?Send Extract
Send

dH
dz |i+ 1

2

dH
dz |i− 1

2
> 0?

θn+1 = θ∗∗∗

Similar paths to Send

send up and send down

δθi > 0? send down and send up
yes

no

dH
dz |i+ 1

2
> 0?

send down send up

δθi > 0?δθi > 0?

no yes

no yes

no yes

yes

no

no yes

nono

yes yes

Figure 1: New post-allocation flowchart. send down and send up are functions that send

excess moisture to nearby cells (see Algorithm 1). The Extract operations are similar to Send,

so they are not expanded in detail. 10



(2015) adjust ∆t based on the change in moisture content during the corrector

step, namely:

∆θ∗max = maxi(θ
∗
i − θni ) (10)

∆tn+1 =


max(∆tnrred,∆tmin), if ∆θ∗max > Θmax

min(∆tnrinc,∆tmax), if ∆θ∗max < Θmin

∆tn, otherwise

(11)

where, Θmax = 0.02 and Θmin = 0.01 are threshold values determining when195

time step needs to be changed and rred = 0.9, rinc = 1.1 are coefficients de-

termining how much the time step is to be changed. To avoid instability or

impractical computational cost, the new time step ∆tn+1 is limited within the

user-defined range [∆tmin,∆tmax].

One issue of using Eq. (11) is that the selections of Θmax, Θmin, rred, rinc,200

∆tmin and ∆tmax are somewhat arbitrary. For model domains with different

soil characteristics and boundary conditions, it is difficult to determine optimal

values for these parameters without extensive trial and error. Another popu-

lar strategy to adjust ∆t is to use the truncation error of the unsteady term

(Kavetski et al., 2002; Maina and Ackerer, 2017). The truncation error is defined205

as:

εn+1
t =

1

2
∆tn+1maxi|

hn+1
i − hni
∆tn+1

− hni − h
n−1
i

∆tn
| (12)

The time step is adjusted according to the following criteria:

∆tn+1 =


∆tnmin

(
s
√

ε0
max(εn+1

t ,εmech)
, (rt)max

)
, if εn+1

t < ε0

∆tnmax

(
s
√

ε0
max(εn+1

t ,εmech)
, (rt)min

)
, otherwise

(13)

where, s, ε0,εmech, (rt)min and (rt)max are all user-defined parameters. A guid-

ance on determining the values for these parameters is provided by Kavetski
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et al. (2002). The present study uses s = 0.9, ε0 = 1× 10−3,εmech = 1× 10−9,210

(rt)min = 0.1 and (rt)max = 4.

The P-C and P-C-A methods differ from other prevailing numerical schemes

in that the corrector step is fully explicit, which might impose additional limits

on ∆t for stability reasons. By using the Kirchhoff transformation, El-Kadi and

Ling (1993) showed that the transformed Richards equation shares a similar215

form with the advection-diffusion equation, whose stability is reflected from the

Peclet number (Pe) and the Courant number (Co). These two dimensionless

numbers are defined as:

Pe =
∆z

K

dK

dh
, Co =

∆t

∆z

dK

dθ
(14)

El-Kadi and Ling (1993) suggested to use Pe< 0.5 and Co< 2 as the stability

criteria for the Richards equation. Note that only Co is a function of ∆t. In220

the present study where sensitivity to the grid spacing (∆z) is not extensively

investigated (we use fixed ∆z), Pe is not used.

With the Courant number, the maximum allowable time step can be derived

as:

∆tmaxCo = Comax∆z

(
dK

dθ

)−1

(15)

where, dK/dθ is derived analytically from Eq. (4) to (6):225

dK

dS
=

1

2
KzS

− 1
2

(
1−

(
1− S 1

m

)m)2
+2KzS

2−m
2m

(
1−

(
1− S 1

m

)m)(
1− S 1

m

)m−1

(16)

dK

dθ
=
dK

dS

dS

dθ
=
dK

dS

1

θs − θr
(17)

In the present study, Eq. (15) is used together with Eq. (11) in a way where

the minimum between ∆tmaxCo and ∆tmax in Eq. (11) is used as the maximum

12



allowable ∆t, that is:

∆tn+1 =



max(∆tnrred,∆tmin), if ∆θ∗max > Θmax

min(∆tnrinc,∆tmax,∆tmaxCo), if ∆θ∗max < Θmin and θ∗imax < λθs

min(∆tnrinc,∆tmax), if ∆θ∗max < Θmin and θ∗imax ≥ λθs

∆tn, otherwise

(18)

where, θ∗imax is the water content θ∗ for the cell where ∆θ∗max is obtained.

Note that the use of ∆tmaxCo is disabled when θ∗imax ≥ λθs because:230

1. In saturated regions (θ∗imax = θs), solution of the explicit corrector step is

rejected (Fig. 1) and stability is no longer a concern.

2. In nearly saturated regions (θs > θ∗imax ≥ λθs), the Courant number

increases abruptly (Fig. 2), which puts a stringent limit on ∆tmaxCo.

Therefore, λ ≤ 1 acts as a safety factor that avoids ∆tmaxCo becoming too235

small. The present study uses λ = 0.9999. It should be noted that although

El-Kadi and Ling (1993) recommend Comax = 2, this value is not analytically

derived and it only acts as a guideline. Nevertheless, it still narrows down the

scope of selection by orders of magnitudes (selecting ∆tmax in Eq. 11 could be

purely random).240

3. Numerical test cases

The proposed P-C-A method is first validated against the Warrick’s analyt-

ical solution (Warrick et al., 1985). Then it is tested on a synthetic soil column

with 6 different initial and boundary conditions to fully understand its behavior

and assess its efficiency. Sensitivities to various adaptive time control strate-245

gies are also investigated. The results are also compared with that simulated

by Hydrus-1D (Simunek et al., 2009), which is a finite element solver based on

lumped Picard iterative method (Celia et al., 1990).
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Table 2 lists parameters used for the Warrick and Synthetic test problems.

The present study does not investigate model sensitivity to different soil char-250

acteristics. The soil parameters are chosen based on the drainage test in Lai

and Ogden (2015). The Co− θ relations can be visualized in Fig. 2. Note that

this curve increases rapidly near saturation, which supports the use of the safety

factor (λ) in Eq. (18).

Table 2: List of parameters

Symbol Description Value

∆t0[s] Initial time step 1× 10−5

θr Residual water content 0

θs Saturated water content 0.33

Ks[m/s] Saturated conductivity 2.89× 10−6

α[1/m] Soil parameter 1.43

n Soil parameter 1.56

Ss[1/m] Specific storage 1× 10−5

0.3 0.305 0.31 0.315 0.32 0.325 0.33

Water content

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

Figure 2: Courant number as a function of water content for the soil given in Table 2. The

Courant number is estimated at ∆t = 100 s.
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3.1. Warrick’s analytical solution255

Warrick et al. (1985) proposed a generalized solution to the 1D infiltration

problem, which has been widely used to validate Richards solvers (Caviedes-

Voullieme et al., 2013; Phoon et al., 2007). The problem configuration consists

of a soil column (1 meter deep) infiltrated with a constant head htop = 0 m on

top. A Neumann boundary condition (no flow) is imposed at the bottom of the260

domain. The initial water content is uniform in the domain and is θ0 = 0.033.

With soil parameters listed in Table 2, this initial water content corresponds to

a pressure head of -42.65 m. Detailed derivation of the Warrick’s solution can be

found in Phoon et al. (2007); Warrick et al. (1985) and is skipped here. In the

present study, we first select proper values for ∆t and ∆z through grid and time265

step refinement tests. Then a comparison between the P-C and P-C-A results

is performed to understand the effects of the proposed allocation scheme.

3.1.1. Sensitivity to ∆t and ∆x

Figure 3 shows simulation results for different values of ∆tmax (Eq. 11 is used

for adaptive time control). All the water content profiles in Fig. 3(a) are very270

similar and they all have good agreements with the analytical solution. But

detailed examination near the saturated-unsaturated interface (Fig. 3b) reveals

oscillatory behaviors. The oscillations can be reduced by using smaller ∆tmax,

but they are never completely suppressed even with ∆tmax = 0.05 s (not obvious

on the figure). Figure 3(c) shows the relative errors (εz) as functions of ∆tmax.275

The relative error for variable γ is estimated similar to the L2-norm in Maina

and Ackerer (2017):

εγ =

(
1

M

∑
m

|γm − γref
γref

|2
) 1

2

(19)

where, M is the total number of samples (M = 9 for the Warrick’s problem

in the present study), γref is the reference value for this variable. Since the

analytical solution in Fig. 3(a) is derived along the wetting front with large280

moisture gradient, we use γ = z (rather than γ = θ) for evaluating errors to
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minimize interference from interpolation. It can be seen from Fig. 3(c) that εz

with respect to the analytical solution becomes stable when ∆tmax ≤ 0.2 s. At

this time step, the Hydrus-1D produces similar error with the P-C-A method.
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Figure 3: (a): Water content profiles for the Warrick problem with ∆tmax = 0.05, 0.2, 0.5, 2

s. The Hydrus results are plotted at a coarser spatial resolution for readability. Blue: 11700

s, Red: 23400 s, Black: 46800 s. (b): Same profiles but zoomed to the saturated-unsaturated

interface. (c): Model errors (εz) estimated as the L2-norm (Maina and Ackerer, 2017). Circle

represents P-C-A error with respect to the analytical solution (γref in Eq. 19 equals z from

the analytical solution). Diamond represents P-C-A error with respect to ∆tmax = 0.05 s

(γref equals z from PCA dt005 simulation). Cross is the Hydrus error with respect to the

analytical solution. These simulations are executed with ∆z = 0.2 cm.

Figure 4 shows the results for different grid resolutions. Unlike Fig. 3(a)285

where all water content profiles overlap with each other, the profiles in Fig. 4(a)

are affected by ∆z. This phenomenon supports the viewpoint of Caviedes-

Voullieme et al. (2013) who state that using small ∆z should have higher priority

than using small ∆t. The zoomed profiles (Fig. 4b) show stronger oscillations

for smaller ∆z, indicating a reduction in ∆t is required when grid resolution is290

refined. For the error plot in Fig. 4(c), minimal error is achieved at ∆z = 0.2

cm. Further reducing the grid resolution slightly increases the model error.
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Combining Fig. 3 and 4 together, we use ∆tmax = 0.2 s, ∆z = 0.2 cm as the

reference P-C-A configuration in the following sections.

Note that solution of this reference simulation is not completely oscillation-295

free, but the oscillations are too weak to be noticed even in the zoomed profile

(Fig. 3b). In fact, all the oscillations are generally negligible if we look at the

full water content profiles in Fig. 3(a) and 4(a). Caviedes-Voullieme et al. (2013)

tried to reproduce the Warrick’s solution with an explicit scheme, but reported

instability at 46800 s. The P-C-A method, however, remains stable under minor300

oscillations. Thus we believe the P-C-A simulation with ∆tmax = 0.2 s, ∆z = 0.2

cm can be used as reference.
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Figure 4: (a): Water content profiles for the Warrick problem with ∆z = 0.1, 0.2, 0.5, 1 cm.

The Hydrus results are plotted at a coarser spatial resolution for readability. Blue: 11700 s,

Red: 23400 s, Black: 46800 s. (b): Same profiles but zoomed to the saturated-unsaturated

interface. (c): Model errors (εz) estimated as the L2-norm (Maina and Ackerer, 2017). Circle

represents P-C-A error with respect to the analytical solution (γref equals z from the analytical

solution). Diamond represents P-C-A error with respect to ∆z = 0.1 cm (γref equals z from

PCA dz01 simulation). These simulations are executed with ∆tmax = 0.2 s.
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3.1.2. Comparison between P-C and P-C-A

With ∆z = 0.2 cm, ∆tmax = 0.2 s from Sec. 3.1.1, the performance of P-C

and P-C-A methods are compared in Fig. 5. No visible difference is observed305

between the two scenarios from the water content profiles in Fig. 5(a). A zoomed

examination in Fig. 5(b) suggests slightly faster propagation of the infiltration

front for the P-C-A method. The reason for this difference in infiltration speed

can be found in Fig. 5(c), where the P-C method shows non-zero volume loss

and positive relative mass error (RME) over time. The volume loss is estimated310

as the total amount of moisture truncated when enforcing over-saturated grid

cells to exact saturation. The RME is defined as:

RMEn+1 = 1−
∆z
∑
i θ
n+1
i

N∆zθ0 +
∑n+1
τ=0 q

τ
in −

∑n+1
τ=0 q

τ
out

(20)

where, N is the number of grid cells, qin and qout are the flux in and

out of the computational domain. The positive RME curve verifies the P-C

method being non-conservative. The increasing volume loss indicates that the315

non-conservation can be contributed to truncating excess moisture for over-

saturated cells. Recall that the post-allocation scheme of Lai and Ogden (2015)

sends excess moisture from the over-saturated cells to their downwind cells,

meaning that the excess moisture in over-saturated cells is not completely ig-

nored, but they did not consider the situation where the downwind cell is also320

saturated. This negligence invalidates their post-allocation procedure when an

unsaturated downwind cell does not exist. Figure 5(c) also shows the total

volume redistributed during the post-allocation steps, which is estimated as∑
i(θ

n+1
i − θ∗i )∆z. The P-C-A simulation shows continuous moisture alloca-

tion during the entire infiltration process. The P-C simulation stops allocating325

moisture at about 2.7 × 104 s. The decrease and vanish of allocated volume

corresponds to an increase of volume loss and RME. It further verifies that the

conservation issue of the P-C method is related to its post-allocation scheme.

On the contrary, the P-C-A simulation with the new allocation scheme (Fig. 1)

is strictly conservative with zero RME.330
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Figure 5: (a): Water content profiles for the Warrick problem with ∆z = 0.2 cm, ∆tmax =

0.2 s. The Hydrus results are plotted at a coarser spatial resolution for readability. Blue:

11700 s, Red: 23400 s, Black: 46800 s. (b): Same profiles but zoomed to the saturated-

unsaturated interface. (c): Blue: Volume changes during post-allocation, Red: Volume loss

for P-C method. Black: Relative mass error (Eq. 20).
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The relative errors for P-C and P-C-A simulations with respect to the an-

alytical solution are 6.9 × 10−3 and 9.8 × 10−3. Although the P-C method

seems to produce lower error, detailed examination (not shown) reveals that

the P-C error is partially neutralized by the volume loss. This serendipitous

neutralization does not weaken the superiority of the P-C-A method over the335

P-C method.

3.2. Synthetic soil column

The P-C-A method is further tested using a 0.4-m synthetic 1D soil col-

umn with ∆z = 0.2 cm. Six test scenarios are simulated to understand model

behavior under various field conditions (Table 3). These scenarios are named340

using its top and bottom boundary conditions, which could be no flow (N),

constant evaporation flux (E), constant infiltration flux (I) and constant head

(H). In the first scenario (NN), the column is initially unsaturated and is sealed

on both ends. After some time, the column reaches steady state under gravity

and the bottom region becomes fully saturated. The second scenario (EN) adds345

complexity by enforcing an evaporation flux on top, which is often required in

hydrological applications (e.g. Maquin et al., 2017; Or et al., 2013). The third

and fourth scenarios (IN and HN) simulate infiltration into relatively dry soil

with constant flux and constant head respectively. The fifth scenario (NH) is

similar to the free drainage test performed in Forsyth et al. (1995); Lai and350

Ogden (2015), where a constant head condition is used on the bottom. The last

scenario (EH) is similar to NH, but with evaporation on top.

For each of the synthetic scenarios, six simulations are performed with dif-

ferent solution algorithms and time control strategies. They are summarized in

Table 4. For Hydrus-1D with heuristic time control strategy, ∆t is increased by355

rinc if a time step takes less than 3 iterations to converge. If it takes more than

7 iterations, ∆t is reduced by a factor of rred. All simulations in Table 4 use a

minimum time step of 1× 10−5 s.
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Table 3: List of synthetic test scenarios

Name Initial θ Top BC Bottom BC

NN 0.315 qtop = 0 qbot = 0

EN 0.315 qtop = −2× 10−7 m/s qbot = 0

IN 0.03 qtop = 2× 10−6 m/s qbot = 0

HN 0.03 htop = 0 m qbot = 0

NH 0.33 qtop = 0 hbot = 0

EH 0.33 qtop = −2× 10−7 m/s hbot = 0

Table 4: Summary of 6 simulations performed for each test scenario. The PCA02 is used as

reference for estimating errors of other simulations.

Label Solver ∆t control ∆tmax[s] Comax

Hydrus Picard iteration Heuristic 20 N.A.

PCA02 P-C-A Eq. (11) 0.2 N.A.

PC02 P-C Eq. (11) 0.2 N.A.

PCA20 P-C-A Eq. (11) 20 N.A.

PCAC2 P-C-A Eq. (18) 20 2

PCAT P-C-A Eq. (13) N.A. N.A.
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3.2.1. NN and EN scenarios

Figure 6 shows the head and water content profiles for the NN and EN360

scenarios at 28, 144 and 648 minutes. The left two columns are the entire

profiles. Column (c) is the water content profiles zoomed in to the saturated-

unsaturated interface. Column (d) is the relative difference in water content

estimated using Eq. (19) with respect to PCA02. Here we do not use the term

“error” because the reference solution (PCA02) is not strictly considered the365

“true solution” (although Sec. 3.1 has shown it produces small error). For the

NN scenario, gravity drives the initially-constant head and moisture towards

hydrostatic distributions. The initial water content (θ0 = 0.315) is close to

saturation, so steady state is reached in a short time (around 144 min). The EN

scenario shows similar trend at early stages, but under continuous evaporation,370

the moisture profile finally moves away from saturation.

For both NN and EN profiles, different time control strategies make indis-

tinguishable discrepancies (including PC02, which is not shown) and they are

all very similar to the Hydrus results. The only visible discrepancy comes from

PCAT after zooming in, where it slightly underestimates water content evolu-375

tion. This is likely due to a very large ∆t, which will be discussed in detail in

Sec. 3.2.4.

The NN scenario has zero flux on both ends, so its mass should remain

constant during simulation. It turns out that this is the case for all the P-

C-A simulations, but PC02 generates a relative mass error of 0.000001% at380

648 minutes. If the P-C model is executed with ∆tmax = 20 s (not listed in

Table 4), RME is increased to 0.000007%. Since the head and water content

evolutions are relatively mild for NN scenario, the mass error is negligible and

invisible from the water content profiles, but it still indicates the existence of

non-conservation for P-C method when simulating flow towards fully saturated385

region near an impermeable bottom boundary.

Figure 6(d) shows that PC02 produces the lowest relative difference with

respect to PCA02 – less than 10−10 for EN. Since PC02 and PCA02 use same
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time control strategy and ∆tmax, the relative difference of PC02 is purely due

to non-conservation, which is negligible. The relative difference of PCA20 is390

slightly higher than PCAC2 at 144 min. PCAT produces the highest deviation

from PCA02 in both scenarios. The different behaviors among these 3 simula-

tions are due to different time control strategies used. This result indicates that

∆t has more important influence on model performance than mass conservation

for the NN and EN scenarios.395

In both scenarios, the relative differences generally decrease with time. For

PCAT, this is because an increasing head gradient at late times leads to higher

truncation error (Eq. 12), which enforces small ∆t. For PCA20 and PCAC2, the

reason is that water content evolves towards stabilized (NN) or highly unsatu-

rated (EN) patterns at late times. Both of them minimize saturated-unsaturated400

exchange. It will be shown in the following sections that such exchange has to

be resolved with small ∆t, so as the saturated-unsaturated exchange diminishes,

large ∆t is allowed. But PCA20 and PCAC2 limit the maximum ∆t, meaning

that the actual ∆t = ∆tmax is much less than the maximum allowable ∆t in

theory, so a declining model deviation is observed.405

Unfortunately, an error analysis of Hydrus is not performed because (i)

Hydrus-1D output only retains 4 digits for water content, which is too coarse to

be compared with the P-C-A results, and (ii) under the absence of an analytical

solution, it is difficult to assess which method (between P-C-A and Hydrus) is

more accurate. The error analysis loses its significance.410

3.2.2. IN and HN scenarios

The head and moisture profiles for the infiltration scenarios (IN and HN) are

shown in Fig. 7(a) and (b). In both scenarios, evolution of the wetting front is

generally captured and good agreements with the results obtained with Hydrus-

1D are observed. Detailed examination near the top boundary shows oscillatory415

behavior for PCA20 and PCAC2 in both scenarios. However, the oscillations

are triggered by different mechanisms. For the IN scenario where a constant

flux (smaller that the saturated hydraulic conductivity) is applied on top, the
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Figure 6: (a): Head and (b): water content profiles for NN and EN scenarios. Blue: t = 28

min, Red: t = 144 min, Black: t = 648 min. The Hydrus results are plotted at coarser reso-

lution for readability. (c): Zoomed water content profiles to show details near the saturated-

unsaturated interface. (d): Relative difference of water content (εθ) for the tested scenarios

(taking PCA02 as the reference solution).
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soil column remains unsaturated during infiltration. According to Fig. 1, no

post-allocation process occurs and the oscillation is likely due to the use of large420

∆t when solving the mixed form equation explicitly. The fact that PCA20 and

PCAC2 have identical oscillation patterns indicates the Courant number criteria

is not invoked. For the HN scenario that is similar to the Warrick’s problem,

the oscillation occurs during saturated-unsaturated transitions. Owing to the

Courant number, in HN the PCAC2 has much weaker oscillation than PCA20.425

The different oscillation patterns between IN and HN can be explained by the

shape of the Co− θ curve (Fig. 2), where the Courant number increases rapidly

when approaching saturation. For the IN scenario where the computational

domain is fully unsaturated, the Courant number criteria becomes too loose

(i.e. ∆tmaxCo > ∆tmax). Given that both IN and HN are not oscillation-free,430

Comax = 2 as recommended by El-Kadi and Ling (1993) is clearly not small

enough for these 2 scenarios.

The relative differences shown in column (d) match the observations from

the profiles. PCA20 has high deviations in both scenarios. PCAC2 is identical

to PCA20 for IN, but less deviated for HN. PCAT has relatively low relative435

differences in both scenarios because large head gradient at the wetting front

leads to large truncation error and very small ∆t. PC02 produces the lowest

relative differences that are less than 10−10. In fact, the relative difference of

PC02 is zero for IN scenario because when post-allocation is not invoked, PC02

is identical to PCA02. No estimation is made for HN at 648 min because the440

computational domain becomes fully saturated.

3.2.3. NH and EH scenarios

Figure 8 shows the head and moisture profiles for NH and EH scenarios that

simulate drainage at the bottom. In both scenarios, good agreements for all

test simulations are achieved in the upper part of the computational domain.445

Oscillations are observed near the bottom boundary for PCA20 and PCAT

profiles. The oscillations are the strongest for PCA20 at 28 min, but disappear at

later times. This results emphasize the importance of the time control strategy
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Figure 7: (a): Head and (b): water content profiles for IN and HN scenarios. Blue: t = 28 min,

Red: t = 144 min, Black: t = 648 min. The Hydrus results are plotted at coarser resolution for

readability. (c): Zoomed water content profiles to show details near the saturated-unsaturated

interface. (d): Relative difference in water content (εθ) for the tested scenarios (taking PCA02

as the reference solution).
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particularly when the domain is nearly saturated. It also supports the use of

the Courant number criteria that allows larger ∆t at low saturation.450

The plots of the relative difference show that PCA20 and PCAT have the

highest deviations. PCAC2 has relatively low deviations and PC02 has the

lowest deviations. As time evolves, relative differences of PCA20 and PCAC2

decrease while PACT shows a different trend. This phenomenon again high-

lights the distinction between time control strategies under different saturation455

status and head gradient. For these 2 scenarios, the Courant number criteria

successfully reduce model deviation and avoid oscillation.

3.2.4. Computational cost

Figure 9 shows the total number of iterations (i.e. total number of matrix

inversion operations performed) for different simulation scenarios. PC02 and460

PCA02 produce indistinguishable results, so it is not shown. The PCA02 and

PCA20 curves are generally consistent among different scenarios because change

in ∆t is limited by ∆tmax, which is constant among scenarios. Although PCA02

is considered the most accurate solution, it is certainly not an efficient approach.

The PCA20 simulations are generally efficient, but it produces oscillatory pro-465

files for IN, HN, NH and EH scenarios. The implication is that time control

based on moisture change alone (Eq. 11) does not capture all potential sources

for oscillations and instability. Although model performance can be improved

by reducing ∆tmax, since no guideline is available for determining the optimal

∆tmax, good computational efficiency and oscillation-free solution are unlikely470

to be achieved simultaneously without multiple trials.

The PCAT has good computational efficiency for NN, NH, EN and EH

scenarios, but its performance on infiltration scenarios are disappointing. The

reason is that these scenarios involve large head gradients, which lead to high

truncation errors. Without a limitation on ∆tmax, PACT takes much fewer475

iterations in NN and EN at a cost of higher model error (but remains oscillation-

free). For drainage problems (NH and EH), oscillations are observed for PCAT.

It can be concluded that (i) time control based on truncation error (Eq. 13)
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Figure 8: (a): Head and (b): water content profiles for NH and EH scenarios. Blue: t = 28

min, Red: t = 144 min, Black: t = 648 min. The Hydrus results are plotted at coarser reso-

lution for readability. (c): Zoomed water content profiles to show details near the saturated-

unsaturated interface. (d): Relative difference in water content (εθ) for the tested scenarios

(taking PCA02 as the reference solution).
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is not suitable for problems with drastic head change, and (ii) a ∆tmax is still

needed to restrict oscillations, so it shares the same problem with the moisture480

criteria (Eq. 11).

For all tested scenarios except IN, the computational cost of PCAC2 lies be-

tween PCA02 and PCA20, making it a promising choice that balances accuracy

and efficiency. However, it fails to restrict ∆t in fully unsaturated domains (e.g.

IN), which results same cost as PCA20. The Courant number criteria reduces485

∆t at high saturation where oscillations are likely to occur, which is the main

advantage over the use of constant ∆tmax. But Comax = 2 is not a universally

optimal value. More discussion on the Courant number criteria can be found in

Sec. 4.

Finally, the heuristic ∆t control strategy with Hydrus-1D outperforms the490

PCAC2 in almost all scenarios. The only exception is the EN scenario (ex-

cluding IN that has oscillations), where PCAC2 uses large ∆t at late stages

because evaporation drives the entire soil column to become unsaturated. We

may conclude that a non-iterative scheme is not necessarily more efficient than

an iterative scheme. The selection between an iterative and a non-iterative495

solver could depend on the problem to be solved, the soil properties, the dis-

cretization and the desired tolerance level. For example, if relatively large error

can be accepted, PCAT is the most efficient method for NN scenario. The Hy-

drus simulations performed in the present study use the default convergence

criteria in the Hydrus-1D software, which is based on the change of both head500

and water content. We found that if water content is used as the convergence

criteria alone, Hydrus takes many more iterations for the infiltration scenarios.

There is no universally optimal time control strategy, but the Courant number

criteria certainly provides an attractive alternative for the P-C-A method.
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Figure 9: Total number of iterations for all tested scenarios. The x-axis is displayed at log

scale.
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4. Discussion505

4.1. Post-allocation in detail

Post-allocation is a key step of the proposed P-C-A method. To fully un-

derstand this process, a toy infiltration problem is investigated (similar to the

Warrick’s problem, but with fewer grid cells and time steps). The maximum ∆t

is set to 2 s to intentionally create oscillations. Figure 10 shows the variation510

of water content in one grid cell (at z = −0.008 m) when transitioning from

unsaturated to saturated status. This transition does not occur smoothly. Os-

cillations are observed for both θn+1 and θ∗. For the P-C-A method (Fig. 10a),

starting from 100 s, the target cell switches between unsaturated and saturated

status multiple times, which corresponds to the oscillations of the water content515

profile near the saturated-unsaturated interface that we have seen previously

(e.g. Fig. 3). During this process, θn+1 ≤ θs always holds and volume loss is

avoided. Note that θn+1 shows much weaker oscillation magnitudes that θ∗,

indicating the post-allocation scheme helps to stabilize the evolution of water

content. It also indicates that the oscillations arise in the explicit corrector520

step, not the post-allocation step. Thus the key to suppress such oscillations

is to reduce ∆t when necessary. For the P-C method (Fig. 10b), there exists

θn+1 values that exceed θs. Truncation of such unrealistic θ values leads to

non-conservation.

Figure 10 also displays the volume of water redistributed through differ-525

ent mechanisms during post-allocation. All 3 mechanisms can be found in

Fig. 10(a), which are (i) send from over-saturated cells, Vssat, (ii) send from

unsaturated cells, Vsuns and (iii) receive from neighbor cells, Vr (see detailed

allocation paths in Fig. 1 and Table 1). The mechanism (ii) is not implemented

for the P-C method described in Lai and Ogden (2015), which could be another530

reason that infiltration is delayed (Fig. 5) and conservation is violated for the

P-C method (the first reason is moisture redistribution among fully saturated

cells).
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Figure 10: Tracking water content change in one grid cell (at z = −0.008 m) before and after

post-allocation. (a): P-C-A method. (b): P-C method. Vssat, Vsuns and Vr are volumes of

water that is sent when the target cell is over-saturated, when the target cell is unsaturated

and the volume of water that is extracted by the target cell. Note that these volume changes

are only triggered by post-allocation of the target cell itself, but the water content update from

θ∗ to θn+1 is affected by all allocation processes in the entire computational domain, so the

allocated volumes (the circle markers) do not necessarily show correlations with (θn+1 − θ∗).
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4.2. Courant number in detail

The Courant number criteria (Eq. 15) with Comax = 2 generally provides535

acceptable results, but it could be inadequate for IN and HN, while too con-

servative for NN and EN scenarios tested in Sec. 3.2. We further find that

oscillation-free solutions can be obtained for NN and EN scenarios even with

Comax = 3 (not shown), but Comax = 0.5 is required to suppress oscillations for

IN and HN (not shown). This result suggests the Comax is problem-dependent,540

meaning that not all factors leading to oscillation have been included in the

Courant number. Finding the missing factors is reserved for future study. De-

spite this incompleteness, the Courant number criteria is still useful because

(i) for most test scenarios the oscillations are so small that they do not affect

the overall shapes of the moisture profile, (ii) variation of the Courant number545

matches variation of required ∆t, where small ∆t is automatically obtained at

high saturation, and (iii) selecting Comax, which is around 2, is much easier

than selecting ∆tmax.

The Courant number criteria is sensitive to the safety factor λ. If we reduce

λ to 0.99, oscillations appear in all scenarios even with Comax = 0.5 (not shown).550

If we increase λ to 1, ∆t drops down to < 1× 10−4 s for the HN scenario (not

shown). The effects of λ could depend on the soil characteristics (the shape of

Co − θ curve), future studies that apply the P-C-A method to different types

of soils (possibly with heterogeneity) should provide more insight on the role of

λ. For the time being, λ is simply used as a constant parameter that balances555

computational cost and acceptable level of oscillations.

5. Conclusions

The present study focuses on solving one-dimensional Richards equation for

variably-saturated groundwater flow. The predictor-corrector (P-C) method

proposed by Lai and Ogden (2015) is used with a new post-allocation scheme560

(named the P-C-A method) to guarantee mass conservation when moisture re-

distribution occurs in the saturated region. A variety of adaptive time control
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strategies are tested, including a novel approach that combines the traditional

moisture difference criteria with the Courant number criteria. The findings are

listed below:565

1. The P-C method does not always conserve mass at the saturated-unsaturated

interface because it unrealistically allocates excess moisture to fully satu-

rated grid cells. But depending on the problem tested, this non-conservation

could be negligible.

2. The new post-allocation scheme is essential for the P-C-A method to guar-570

antee exact mass conservation. It also helps to alleviate oscillations when

large ∆t is used.

3. Error of the P-C-A method is sensitive to the time step size (∆t). Adap-

tive time control based on moisture difference (Eq. 11) lacks guidance for

the modeler to choose the maximum allowable time step (∆tmax), which575

often results either inefficient simulation (with ∆tmax being too small) or

oscillatory solution (with ∆tmax being too big).

4. Adaptive time control based on truncation error (Eq. 13) can be used

when the head gradient is small, otherwise it becomes expensive.

5. Using the Courant number to constrain maximum ∆t is promising be-580

cause it enforces small ∆t at high saturation where oscillations are likely

to occur. Although the optimal value of Comax is problem-dependent, de-

termining Comax is much easier than determining ∆tmax because Comax

varies within a smaller range. For most problems tested in the present

study, a Comax of 2 is sufficient for the P-C-A method to produce conser-585

vative, accurate numerical solution at reasonable computational cost.

6. Non-iterative method does not necessarily have computational advantage

over iterative method because a smaller ∆t might be required to maintain

stability.
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