
UC Irvine
ICS Technical Reports

Title
EXTEND-L : an input language for extensible register transfer compilation

Permalink
https://escholarship.org/uc/item/3v38x0nf

Authors
Dutt, Nikil D.
Gajski, Daniel D.

Publication Date
1988-04-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3v38x0nf
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

EXTEND-L

AN INPUT LANGUAGE FOR

EXTENSIBLE REGISTER TRANSFER COMPILATION

BY

NIKIL D. DUTT
q;- ~:;,~

DANIEL D. 'GAJSKI

Technical Report 88-11

Information and Computer Science
University of California at Irvine

Irvine, CA 92717
(714) 856 7063

Abstract: This report discusses the model and input language for EXTEND, a
synthesis system that permits extensible register transfer synthesis.
EXTEND-L fills the need for a language that bridges the gap
between existing behavioral input descriptions, which are too
abstract, and structural schematics, which cannot capture the
high-level behavior. The report first discusses previous work in
behavioral synthesis and summarizes the deficiencies of these ,
behavioral specifications. The report then describes the proposed
language in detail, and concludes with a few examples that show
its utility.

no, I/

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION 2

1.1. Problem Description .. 2

1.2. Existing Tools ... 3

2. DESIGN PARADIGM AND MODEL .. 6
2.1. Design Paradigm .. 6
2.2. Design Model .. :................. 8

3. INPUT LANGUAGE .. 13

3 .1. Essen ti al Issues 13
3.2. Previous Work 17

3.3. EXTEND-L: The Input Language .. 19

4. EXAMPLES .. 41

4.1. Controlled Counter .. 41

4.2. 6850 UART .. 48

5. SUMMARY ... 59

BIBLIOGRAPHY ... 60

APPENDIX A .. 63

APPENDIX B ... 75

April 15, 1988 EXTEND: MODEL and· INPUT LANGUAGE

LIST OF FIGURES

Figure 1. SYNCHRONOUS CONTROL FLOW ICONS ... 27

Figure 2. SYNCHRONOUS CONTROL FLOW EXAMPLE 28

Figure 3. MEMORY CONTROLLER READ CYCLE TIMING DIAGRAM 29

Figure 4. ASYNCHRONOUS CONTROL FLOW ICON .. 30

Figure 5. ASYNCHRONOUS CONTROL FLOW EXAMPLE 31

Figure 6. DATA OPERATIONS AVAILABLE ... 34

Figure 7. BLOCK DIAGRAM OF CONTROLLED COUNTER 41

Figure 8. CONTROLLED COUNTER OPERATIONAL PRINCIPLES 42

Figure 9. CONTROLLED COUNTER DEFINITIONS ... 43

Figure 10. ASYNCHRONOUS CHART FOR CONTROLLED COUNTER 45

Figure 11. CONTROLLED COUNTER SYNCHRONOUS CHART 46

Figure 12. CONTROLLED COUNTER: GENERATED STRUCTURE 47

Figure 13. BLOCK DIAGRAM OF THE MOTOROLA 6850 UART 49

Figure 14. 6850 DEFINITIONS 51

Figure. 15. 6850 Mam Process 52

Figure 16. UART TransrniLData PROCESS .. 54

Figure 17. UART Receive_Data PROCESS ... 56

Figure 18. THE GENERATED STRUCTURE FOR THE 6850 UART..................... 57

Figure 19. GENERIC STORAGE COMPONENTS .. 75

Figure 20. GENERIC FUNCTIONAL COMPONENTS .. 76

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page i

CHAPTER 1.

INTRODUCTION

1.1. Problem Description

The task of high level synthesis spans the continuum from fully automatic design,

which starts from a purely behavioral description, down to compiling a fully specified struc

tural design. Although automatic high level synthesis is the ultimate goal, several parts of

the synthesis process are not completely understood. The design process spans many levels,

and several inter-related synthesis tasks need to be performed at each level. These syn

thesis t-:=i-Bks are actively being researched at various universities and industries. l)ue to the

complexity of this process, only a few tasks are examined at a time. Until we understand

the synthesis task in its entirety, the user will play an important part in the design process.

There is a need for a tool which allows the designer to give input to the iterative decision

making loop. EXTEND is a new tool that attempts to meet these needs. This new tool

(1) is powerful: the user can specify any level of binding, from fully bound structural

designs to purely behavioral specifications;

(2) is interactive: permits user interaction of compiled design; employs a mixed

graphic/textual interface for ease of use;

(3) is general: allows combined specification of synchronous and asynchronous behavior;

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 2

(4) simplifies compilation: uses a small set of constructs for specifying timing and asyn

chronous behavior.

(5) is extensible: permits gradual incorporation of synthesis tools as they become well

understood.

The user interacts with EXTEND through its input language EXTEND-L and the

graphic user interface. This paper summarizes the model and features of EXTEND-L.

1.2. Existing Tools

1.2.1. Description level

Most of the existing synthesis tools are either at too high a level of description, or too

low a level of description. Most research synthesis systems start with an algorithmic or

instruction-set-processor-like description which is very abstract. With this very high level of

description, no structural information is specified; the behavior is described as an algorithm

which operates on abstract data carriers such as variables. On the other end of the spec

trum, commercial schematic entry systems require the designer to enter a net-list of struc

tures that are already designed; almost all of the high level synthesis is performed by the

user. These low-level systems simply serve as a convenient entry point for simulation and

layout.

1.2.2. Design Model

Existing high-level synthesis research has primarily concentrated on the synthesis of

synchronous processes, where each process may be viewed as an FSM. Most high-level

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 3

synthesis systems currently permit the synthesis of a single process at a time, with the

designer manually specifying the inter-process communication and protocols. They also

have no means of expressing simple asynchronous behavior, such as setting or clearing of

registers within synchronous processes. Asynchronous designs are generally not considered.

These restrictions in the design model often arise from the fact that the existing high

level synthesis systems are targeted towards synthesizing instruction-set processors or

microprocessor-like architectures. As a result, these synthesis systems cannot effectively

cope with ASIC designs which have differing architectures and which often exhibit both

synchronous and asynchronous behavior.

Another limitation of many existing systems is that most of them synthesize the data

path a.lone, and generate a (symbolic) description of the control for the data path. This

controller description is then sent to a control synthesizer as a post-synthesis task. Decou

pling of the two synthesis tasks makes it hard to perform tradeoffs between the control and

data parts of the design.

1.2.3. futerface and Timing Issues

Interface and timing issues are often not considered, although a few high level syn

thesis systems are starting to look into these issues. Several issues are involved in this

regard; a few of the important ones are mentioned here.

Communication between processes: many systems cannot handle multiple processes

that communicate with each other. The communication may involve a specified sequence

of activities occurring at the process inputs and outputs, possibly with associated timing

constraints. A simple example of this communication is the protocol for reading or writing

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 4

of a memory that is external to a processor.

Timing constraints between events: within a process, operations may have to be per

formed in a particular order with respect to events occurring on the input ports of the pro

cess. For instance, a register may have to be loaded after a signal on the input port rises;

minimum and maximum times for the loading of the register may need to be specified.

Timing constraints on combinatorial paths: if a designer knows that a certain section

of the design is going to be critical, minimum and maximum delays may need to be

specified on the critical path.

1.2.4. futeractivity

The process of automation is fraught with inertia and distrust, as history has shown.

Designers who are used to the "hands-on" approach of existing CAD tools will not trust

tools that suddenly elevate the abstraction level of the design and which perform automatic

synthesis. To gain user acceptance, a smooth transition from existing commercial CAD

tools to fully automatic synthesis systems is required. Initially, the user must be able to

provide hints (or "pragmas") to the synthesis system and guide the design using the user's

design knowledge. As the problems in synthesis become well understood and synthesis tools

mature, they may be incorporated into the synthesis environment. These considerations

underscore the importance of allowing user interaction in the synthesis tasks. Existing high

level synthesis systems have not addressed this very important issue, and often permit little

or no user interaction.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 5

CHAPTER 2.

DESIGN PARADIGM AND MODEL

2.1. Design Paradigm

The task of design spans many levels and involves several inter-related steps, each of

which are complex and often time-consuming for a human designer to perform. In order to

control the complexity of the design process, the task of design has traditionally been split

up into several hierarchical levels. At each level of the design process, the task of synthesis

takes a specification which is an "abstract" description of the design, and produces a "com

pleted" design, which is then passed on to the next level as a specification. The "abstract"

design is often considered to be some kind of behavior at that level, while the "completed"

design is a structural description for that level. For instance, high level synthesis takes an

algorithmic (abstract) description of a design, and produces a register-transfer (structural)

implementation of the description.

Existing tools operate at the ends of the design continuum: t~ey either attempt to per

form completely automatic design, or they require the user to perform the design manually.

W~at is missing is a set of tools that permits a gradual move towards completely automatic

synthesis. This will allow a smooth transition towards automatic synthesis by interfacing to

the existing lower-level infrastructure.

The other important issue is the role of the user in the design paradigm. While design

synthesis tasks are being researched and understood, the user has to play an active part in

the design process. Automation of the synthesis tasks involves capture of the designer's

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 6

knowledge into the synthesis tool in some form (rules/ algorithms/meta-rules, etc.). When a

generated design does not meet the design constraints, several options are available to the

user and the synthesis system. Existing research tools often require the user to re-write the

input in the hope that constraints are met in subsequent synthesis cycles. In this situation,

the user has to have a good understanding of the design tool to be able to predict the out

put of the synthesis tool. This approach (although necessary sometimes), does not make

efficient use of the compiled design and suffers from the inaccuracy of the user's predictions

or the inability of the user to understand the assumptions behind and implementation of a

particular design tool.

The other approach is to permit user modification of compiled design. This provides

better prediction capability and allows a smoother transition towards automation.

EXTEND is a system that attempts to meet these needs. Its language, EXTEND-L,

allows the user to provide structural and design "hints" in the input specification. These

"hints" or "bindings" may be removed at a later time when a synthesis tool that performs

the task is mature enough to be incorporated into the synthesis environment.

By permitting a gradual incorporation of synthesis tools, the design paradigm also

alleviates the problem of tool obsolescence. As better synthesis tools become available, it is

easier to incorporate them into EXTEND.

At a higher level of abstraction, the constraints may be managed by a simple "knobs

and-gauges" approach by the user [BrGa86]. This approach can also take advantage of the

compiled design by modifying those parts that do not meet the constraints, or by perform

ing tradeoffs between different parts of the design. The "knobs-and-gauges" paradigm also

permits larger exploration of the design space.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 7

2. 2. Design l\10del

The design model assumes a partitioning of the intended design into a set of communi

cating processes, each of which is a finite state machine (FSM). Each process is described

separately by specifying its behavior with respect to signals on its input and/ or output

ports. A process may exhibit synchronous, asynchronous, or combined behavior and hence

the communication protocol between processes may also be synchronous, semi-synchronous,

or asynchronous.

2.2.1. Synchronous Processes

For synchronous processes, the behavior is expressed is composed of two parts:

(1) State-by-state description of the synchronous behavior using a control graph (which

captures sequencing information) and associated text (which describes the data opera

tions performed in that state).

This description partitions the synchronous process into control and data parts, which

are synthesized separately.

(2) Behavior which describes specific asynchronous activities with respect to structural

components within the synchronous process (eg. asynchronous "clear" for a register).

2.2.2. Asynchronous Processes

The behavior of an asynchronous process is derived from a timing chart which

describes the outputs of the process with respect to the inputs along the time axis. This

timing chart is not part of the input, but merely a starting point in the user's mind for

entering the behavior of the design into the system. An "event", in this context, is a

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 8

change in the value of an input signal which causes some asynchronous activity within the

process.

The behavior is then captured through an asynchronous "event-state chart", where

each event-state has associated with it some text that describes the actions to be performed

on that event occurring. Any conditional activity or looping is described textually within

the event-state. This restricts the event-state chart to fixed sequence of events in time.

This is similar to the concept of "event-graphs" in the WAVES system for transducer syn

thesis [BoKa87].

Although this may seem like a limitation in the model, it is quite appropriate for

describing asynchronous protocols at the RT level. 1The variety of examples in this docu

ment support our belief that this model suffices for a large range of ASIC designs.

2.2.3. Combined Synchronous and Asynchronous Behavior When describing a design

that exhibits a combination of asynchronous and synchronous behavior, the behavior natur

ally lends itself to a particular style of description. We have identified three ways of

describing this mixed behavior; each is appropriate in certain cases. In general, a combina

tion of the three specifications may be required.

2.2.3.1. Synchronous Behavior within Asynchronous Specification

The asynchronous behavior is expressed as a sequence of event-states. Each event

state is triggered by a specified event (which is often a change in the value of an external

signal). Within an event-state, the behavior is captured with a set of of operations· on vari

ables. If the behavior in a particular event-state requires a sequence of synchronous opera-

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 9

tions, this may be described by a "call" to a synchronous state chart. Semantically, this

implies that the clock is the default "event" for the synchronous sub-chart; there is no over

head involved in "entering" or "leaving" the synchronous description.

As an example, consider the description of a count-down timer which is activated

asynchronously, counts down from a specified value synchronously, and asserts the "DONE"

line to signal completion. This type of description is similar to the synchronous subcontrol

described in [Clar73] and [Holl81].

2.2.3.2. Asynchronous Behavior Within Synchronous Behavior

In a particular state of a synchronous state chart, an asynchronous assignment may be

made to a variable (which is bound to a register). This assignment implies that the storage

element corresponding to the variable is enabled by the synchronous clock in the specified

state, but is actually clocked in by the asynchronous event specified. If the value assigned

t~ the variable is zero, this implies "clearing" of the storage element in that synchronous

state. This is a feature which is missing in most of the existing behavioral synthesis sys

tems.

2.2.3.3. Separate Asynchronous and Synchronous Specification

When there is a fair amount of both kinds of behavior, and both behaviors are some

what orthogonal, it is convenient to describe the asynchronous behavior separately from the

synchronous behavior for the same process. Both descriptions may refer to the same set of

variables and/ or defined structures. Semantically, the asynchronous specification for a

variable or structure overrides the synchronous behavior. For instance, if the reset line for

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 10

a counter is enabled, the counter is cleared (no matter which synchronous state the counter

was in). When the reset line is disabled, the counter continues its synchronous behavior.

This style of description is similar to the "applicative" and "imperative" descriptions in DSL

[Camp85].

2.2.4. Constraints

EXTEND performs design at the register transfer level. The outputs of the system

consist of a net-list of register-transfer components such as registers, shifters, counters,

RAM's, etc. These component types are stored in a generic component library. Abstrac

tion of the constraints is achieved through the use of these generic components. Con

straints such as time, area and power can be estimated by functions that return values

based 011 the instantiations of generic components in the library. The generic l'Ompon2nt

library itself is characterized by loading in a technology file at run time. Appendix B gives

a description of the types and attributes of generic components in the library.

2.2.5. Uniform Representatioi::i

The design model treats both synchronous and asynchronous processes in a similar

fashion. The default "event" ~hich takes a synchronous process into a new state is the

clock. Conversely, each "event" in an asynchronous description may be viewed as a "clock"

which activates a new state and triggers data transfers and operations.

The use of a control/ data representation permits the synthesis task to focus on data

path synthesis first, generating a symbolic control table of activities in each state. For syn

chronous systems, this table may be implemented in a variety of different styles: PLA +

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 11

state register, sequencer + control output generator, ROM-based control, random logic, etc.

The asynchronous description suits itself to a "one-hot" implementation, a counter-based

controller, encoded control or even combinatorial logic. Several optimizations may be per

formed on the one-hot control. For instance, the flip-flop for a state may be replaced by

combinatorial logic if that state is completely input dependent. The internal representation

used in EXTEND is the subject of a forthcoming report.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 12

CHAPTER 3.

INPUT LANGUAGE

3.1. Essential Issues

Several issues are involved in designing a behavioral represe~tation for synthesis. In

this section, we discuss these issues to provide a framework for comparing and evaluating

different input languages.

3.1.1. l'vhdel

A behavioral description is written with a target architecture in mind, which we call

the architectural model. In the most general case, the model consists of a set of communi

cating processes, where each process is a generalized finite state machine implemented as a

control unit (which generates control outputs and the state of the machine), and a data

path (which performs computations on data values on each state of the machine). For

further details, the reader is directed to the tutorial described in [GaDP86). The underlying

architectural model for the representation determines the power of its expression.

3.1.2. Underlying Representation

The representation scheme describes the data structures used in capturing the

behavior. This is most commonly a variant of the control/data flow graph. Other con

straints such as timing and protocols are handled differently by each system. This report

discusses the input language and model; representational issues will be discussed in a

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 13

subsequent report.

3.1.3. Hierarchy

There are two types of hierarchy that the behavioral representation may allow. Scruc

tural hierarchy specifies the interconnection of the conununicating processes via global sig

nals and ports on the processes. Procedural hierarchy permits decomposition of the

behavior in a structured fashion, thereby allowing a concise representation. In some

representations, a process (or a sub-process) may be encapsulated into a structure, and may

be used later in the structural hierarchy.

3.1.4. Data Types

Data typing in a system is characterized by the formats (eg. number of bits), types

(eg. boolean, integer, floating point) and the representation (eg. signed/unsigned, 2's com

plement) of all data carriers in the behavioral description. This includes the data types of

variables, components, ports, etc. Strict data typing permits consistency checks during the

synthesis process, but also burdens the compiler with more tests. A minimal data type

wou1J consist of variables characterized by their bit widths, with the system assuming a

d~fault data representation.

3.1.5. Sequentiality and Parallelism

This issue focuses on how the languagf) permits the user to specify sequentiality of

operations and parallelism of operations. Most schemes enforce sequentiality through data

dependence of operations, as well as through specific control sequencing constructs. Paral-

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 14

lelism iH the representation is most conunonly implied between operations that have no

dependencies (con t.rol or data) between them. Some languages have special constructs to

indicate parallelism of activities within a block.

3.1.6. Delay Specification and Synclrronizaiion

This aspect deals with how delays may be specified in the behavior, and how syn

chronization of conununication between different. processes is achieved. Delays may be

specified relative to a process clock, or relative to a specific event within a process. Syn

chronization between different processes is often achieved hy means of global signals that

indicate the status of the conununicating processes.

3.1.7. A~.rnclrrony

Another issue, closely related to timing specification, is how a system represents asyn

chronou~ ~w~:::1ts. Recall that the architectural model often consists of a set of comrnunicat

ing processes, each of which is synchronous with respect to a local clock. How can asyn

chronous events like RESETS and INTERRUPTS be handled? Most often, the behavioral

specification indicates that a signal is asynchronous, in which case its value is asynchro

nously set in a register and is detected at the next clock cycle.

Many systems that have a synchronous model of processes have no language con

structs to describe this asynchronous behavior. As a result, thesf. systems are unable to

deal with very simple designs which exhibit some amount of asynchrony.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 15

3.1.8. Bindings

Behavioral synthesis is composed of four basic tasks: state binding, register binding,

function unit binding and connection binding. State binding in valves assigning each

operation in the behavioral description to a state of the machine. Ope1at.ion binding

assigns each operation to a functional unit (component) that can perform the operation:

Register binding assigns registers to those variables (or signals) which have to be stored

across states. Finally connection binding refers to the task of synthesizing connections

(wires, buses) between allocated functional units and registers.

Bindings come in three flavors: they may be implied in the model, they may specified

by the user (in the behavioral description), or they may be synthesized from the behavior

automatically. If a user specifies the bindings in the behavioral input, he or she is making a

lot of the synthesis decisions. This burdens the user with the task of understanding the

syn thesis process. On the other hand, if the system has to perform the bindings automati·

cally, the compiler has to incorporate the knowledge of the synthesis tasks. This defines a ·

tradeoff between compiler complexity and the user's responsibility for the tasks of binding.

Each system has a different mix of these bindings, which reflects the tradeoff between the

user and compiler complexity .

3.1.9. Extensibility

This is cio<\ely related to the concept of evolutionary design. An extensible syste:::n per

mits the incorporation of synthesis tasks (eg. bindings) as these tasks become well under

stood. The user may specify a fully bound structural design in the input language. An

extensible system permits gradual removal of these bindings from the input description and

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 16

incorporation of automatic synthesis tools to perform t.he task.

3.2. Previous Work

Eixisting input !~nguages fall into two major classes: textual ianguages, which arc pri

marily u~ed fur synthesis and simulation; and graphic languages, which are p:iil'arilJ used

as an aid for manual design.

3.2.1. Textual Languages

Textual languages are currently used by most high-level synthesis systems. These

languages permit the user to describe the design as an algorithm (for general applications)

or as an instruction set (for processors). Existing input languages have severa] limitations:

they describe only synchronous processes driven by a single· clock; they permit limited tim

ing and protocol specification; they are hard to use when the design is fairly large. Two

basic types of textual languages are currently used in high-level synthesis: block-oriented

languages, and single-state languages.

3.2.1.1. Block Oriented Languages

ISPS [Barb81] is representative of several blor.k-o-dented input languages for synthesis.

These languages allow the user to specify the behavior of the design in a basic-blocks

fashion, with languagP.s control constructs (IF's, LOOP's) permitting transitions between

blocks. As a result, operations within the basic blocks exhibit parallelism as constrained by

the data dependencies between their inputs and outputs. Sequencing of different basic

blocks is achieved via the language control constructs. Hence the underlying programming

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 17

language model enforces meta-state binding through the sequencing of basic blocks. Most

of the systems using this type of input language assume no stat.e binding within the basic

blocks, and use state synthesis algorithms for this purpose.

These languages are often suited towards the description of instruction-set processors,

since control constructs like "DECODE" can be used to describe decoding of the processor

instructions, without specifying state information for the operations that occur during the

instruction. Other input languages like ADA (GiBK85] and Pascal (Pang87] (Tric87) are

also used.

The CADDY system [Camp85) uses a Pascal-like input language, but extends it to

permit the description of "applicative" behavior, which includes asynchronous behavior like

sets, resets and interrupts.

3.2.1.2. Single-state Languages

These languages require the user to specify the parallelism in the design explicitly. ·

Hence state binding is done by the user in the input language. Examples of these

languages include MacPitts (Sout83] and SILC [BIFR85). These languages also have primi

tives for synchronization between processes.

3.2.2. Graphic Capture of Behavior

Existing graphic-based input languages are primarily used as an aid for manual design.

The ASM [Clar73] methodology uses a graphic representation that is close to software

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 18

flowcharting. This mimics the human designer's thought process and is thus a convenient

form of input specification. However, ASM charts are used to specify the control for a data

path that is almost completely designed: the user performs state, unit and register binding;

only connections have to be synthesized. Tredennick [Tred81] describes a very similar

flowcharting process for microprogramming.

Drongowski [Dron83] proposes the use of the "d-n" notation for providing a structured

design methodology and notation in graphical environment. This methodology has been

used to create a graphical hardware design language [Dron88]. At the time of writing, not

much information was available about this effort, although it seems similar in spirit to that

of EXTEND.

Graphical capture enhances user-interaction and permits a more natural means of

design entry. It is also a good vehicle for describing the overall structure and partitioning

of a design. However, the abstract behavior is more conveniently expressed in textual form

(as expressions or statements).

3.3. EXTEND-L: The Input Language

3.3.1. ()vervievv

EXTEND-L is a mixed graphic/textual language that permits the user to describe the

design in a natural fashion. A design entity is described with the input definitions and the

behavior as processes which operate on the defined structures and variables. Both the

definitions and the behavior of a design to be synthesized are specified in a mixed

graphic/textual input form. For each design, a set of declarations specify the inputs, out-

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 19

puts and variables to be used. Optionally, the user may specify structural information such

as the type and number of units. The behavior of a process is specified using a graphical

control flow format, along with textual expressions for operations. The control flow of the

process is captured through an interconnection of graphic icons. This control flow specifies

the states and their transitions for the process. Corresponding to each control flow tem

plate, data operations are expressed in a textual form.

For a detailed description of the input language syntax, the reader is referred to

Appendix A which contains EXTEND-L's grammar in BNF notation.

3.3.2. Definitions

The definitions may be broadly categorized into four classes: type, structu'l'al,

behavioral and bindings.

3.3.2.1. Types

Type declarations allow the user to define new data types in the system. Each type

definition can refer to previous type definitions. Primitive type definitions include bit-type,

array-type, and component-instantiation type. Simple examples follow:

type

April 15, 1988

SIXTEEN BIT = {15 .. 0};

lK_ARRAY = [0 .. 1023] ofSIXTEEN_BIT;

CMP _FOUR = CMP(4,EQ,GT,LT);

EXTEND:MODELandINPUTLANGUAGE Page 20

The lK_A.RRA Y type specifies 1024 locations of sixteen bits each, while CMP _FOUR

specifies a comparator (CMP) instantiated with 4 bits and the functions "EQ", "GT" and

"LT".

3.3.2.2. Structural Declarations

Structural declarations allow the user to prespecify structural components such as

registers, function units and buses which are used in the design. This creates a partial

structural design on which further synthesis is performed.

3.3.2.2.1. Corr.ponents

Appendix B gives a description of some generic components that may be used in the

synthesis ta.sk. Each component is instantiated by specifying a call to the gcner)c com

ponent name, along with its instantiation parameters. Components may be instantiated

directly, 0r jp_directly (through a previously defined "type"). For instance,

component

COUNTER =UP _DWN_CNT(4,UP,DOWN,LOAD,RESET,SET,ENABLE);

COMP : CMP _FOUR;

specifies a four-bit up down counter named "COUNTER" which is instantiated here,

while COMP is of type CMP _FOUR as described earlier.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 21

3.3.2.2.2. Ports

Ports specify the locations through which the process communicates with the other

processes. A port is declared with the following attributes:

(1) mode= (input/output/input-output)

(2) gating = (tristate,wired).

(3) storage = (buffered/unbuffered)

A pre-defined type may be used to specify the nit-width of the port. A port specified

with its mode only is assigned default values for gating (wired) and storage (unbuffered).

The following is a sample port definition:

port

APORT, ZPORT : input of EIGHT_BIT;

BP ORT

CPORT

DP ORT

EPORT

: input wired of EIGHT_BIT;

: input tristate of TWO_BIT;

: output tristate buffered of EIGHT_BIT;

: input_output buffered of EIGHT_BIT;

3.3.2.3. Behavioral Declarations

The behavioral declarations allow the user to specify abstract data earners such as

variables and special types of operators. These declarations specify the data type, the size

and representation of all data carriers. Behavioral elements (eg. variables) are mapped into

structural components (eg. registers, buses, wires) during data path synthesis. This process

is called binding of behavioral elements to structural elements. The binding process is

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 22

effected in three ways:

(1) Static binding associates a structural component with the variable or operator at the

time of declaration. Hence this binding is valid throughout the behavioral description.

(2) Multiple binding permits the user to change the structural bindings in the behavioral

description. For instance, a variable 'A' may be bound to register 'Rl' in one state of

the process, and to bus 'Bl' in another state of the behavioral description.

(3) Automatic binding is applied to variables and operators that have not been bound by

the user. The synthesis system applies specialized rules and algorithms to perform this

binding to meet the design constraints (also called register and unit binding).

3.3.2.3.1. Variables

Each variable to be used must be declared with its size (number of bits), type (integer,

:floating point, etc.) and representation (unsigned, sign-magnitude, 2's complement, etc.).

Often, only the size of a variable is specified in the language. The system assumes the

defaults "integer" for its type, and unsigned for the representation. H the variable is an

array, the lower and upper bounds of the array should be specified. A type-denoter defined

earlier may be used for this purpose. Sample variable definitions are shown below:

var

April 15, 1988

A,B,C

D,E

SIGNAL

: EIGHT_BIT;

: MEM_256;

: ONE_BIT;

EXTEND:MODELandINPUTLANGUAGE Page 23

3.3.2.3.2. O:mstants

Constants may be defined by the user; these may be merged into a constant register

stack, or may be optimized (and some eliminated) by the synthesis tasks. Constants are

defined by specifying the bit width and the value, as shown below:

const

ZERO of EIGHT_BIT = O;

TEN of EIGHT_BIT = 10;

3.3.2.3.3. Operators

Special types of operators may be defined by the user. Most of the primitive language

operators are either binary or unary and generally produce a :single output. The user may

wish to define multiple input, multiple output operators in the language. These may sim

plify the task of binding to specific kinds of structural r,omponents. A typical example of

such an operator is an add performed on an ALU. It takes three inputs (carry _in, A, B)

and produces at least two outputs: (sum, carry_out, and status bits). Using the operational

primitives in a Pascal-like language, it is impossible to describe such an add operation.

Since the user defines a new type of operator into the language, its input-output

characteristics and its functionality has to be defined. A simple ALU add operator is

defined below:

operator:

ALU_PLUS (inputs:

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 24

(outputs:

(operation:

3.3.2.3.4. Clocks

A of EIGHT_BIT;

B of EIGHT_BIT;

Cin of BOOLEAN;)

S of EIGHT_BIT;

Cout of BOOLEAN;)

Cout@S := A + B + Cin;)

The dock for a synchronous system may either be defined internally: or a.s a set of

input pm:ts. In either case, the user must define the characteristics of the system clock by

specifying the number of phases, duration of each phase, and the relative delay between

successive phases. As with other parts of the definition, this could be entered using a

query-like form system which prompts the user for various clock attributes.

3.3.2.4. Bindings

Bindings in the definitions permit "static" bindings of behavioral variables to struc

tural components. For instance, a variable may be bound to a shift-register at definition

time, or the ALU_FLUS operator could be bound to an instantiated ALU component as

shown below:

bind

A to REG_A;

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 25

3.3.3. Behavior

B to REG_B;

ALU_FLUS to ALUl;

The description of a process in the design is expressed through graphic capture of

sequencing (through control flow icons), and data operations (through textual assignments

and expressions).

3.3.3.1. Flow of Gmtrol

Control flow captures the sequencmg of the design over time at the granularity of

"states". In synchronous designs, the state length is fixed and is determined by the syn

chronous clock, while for asynchronous designs, a state may have a va.rying time length.

The control flow chart specifies the execution of the design on a state-by-state basis, and is

sinular to flowcharting in conventional programming. Both synchronous and asynchronous

behavior can be represented with the control flow chart. Although the basic concept is the

same for both, we employ different symbols to represent synchronous and asynchronous

control flow charts. Each of these is discussed separately.

3.3.3.1.1. Synchronous Charts

Four symbols are used to specify the synchronous control flow chart: the uncondi

tional box, the conditional test box, the conditional output box and the conditional join

box as shown in Figure 1. The unconditional box specifies actions that are to occur uncon

ditionally· in that state. The conditional test box performs a test of some expression (writ-

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 26

Unconditional
Box

Conditional
Box

Conditional
Join

Figure 1. SYNCHRONOUS CONTROL FLOW ICONS

ten as a data flow sequence in the box), based on whose value one of the branches is exe-

cuted. The conditional output box exists as an immediate output of a conditional test box.

It specifies the actions to be performed only when the conditional value matches that of the

output branch of the conditional test box. The conditional join box indicates a merging of

several conditional paths.

These symbols are connected by the user m an unambiguous manner to specify the

sequencing of the intended algorithm. The user partitions the control flow chart into states

of the machine. In this version of the system, the user performs state binding by deciding

which operations are to be executed in which state. This is done by designating state

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 27

zones, each of which has unambiguous exits leading to the next state zone, as shown in Fig-

ure 2.

This representation can easily be extended to remove the state bindings by having the

user describe activities in "macro-states", which are then "sliced" into states by performing

state allocation [Pang87].

3.3.3.1.2. Asynchronous Charts

In the asynchronous realm, two concepts are of importance: an event and an event-

state. An event is defined by a change in an input signal (port), and forces the process to

r---------
1
I
I
I
I
I

--------------,
I
I
I
I
I
I

I
I
I

INC= 1 ? I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I

L---------

y = x + 1;

I
I
I
I
I
I _____________ _J

Figure 2. SYNCHRONOUS CONTROL FLOW EXAMPLE

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 28

enter a new event-state. An event-state lasts from the time the event occurs until the

occurrence of the next event. The user must describe the asynchronous control flow chart

from the behavior of the output signals (ports) with respect to the input signals (ports) as a

function of increasing time. One way of achieving this is to have the user look at a timing

diagram which shows the behavior of the input signals and the behavior of the process in

terms of all signals (variables, ports, etc.) that are transformed with respect to the inputs.

This is a natural starting point for the design. Figure 3 shows a sample timing diagram for

I
I

MEMREQI
I
I
I

BUSACK I
I
I
I
I
I

MR : I
I
I
I
I
I

ADDR '--~~--+~~~~~--f~~~~~~~~-+1~~~~~~~-~
I
I
I
I
I

BUSREQ I
I
I
~

I
175'ns

I

:OBUS l

I
DATA_RDY

I
I
I

I
r-

1
I
I
I
I

'-----------4~------~

Figure 3. MEMORY CONTROLLER READ CYCLE TIMING DIAGRAM

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 29

the read cycle of a memory controller which is activated by two input signals, MEMREQ

and BUSACK. Note how every event on the input signal causes a new state to be defined.

Once the states of the process have been determined, an asynchronous control flow

chart is drawn. The chart is constructed by connecting event-nodes in the order of their

appearance. Each event-node represents the event being tested. Figure 4 shows a sample

symbol which indicates that state 5 is entered when the value on input port A rises. Figure

5 shows the asynchronous control flow chart for the sample timing diagram.

A= RISING?

ops;

Figure 4. ASYNCHRONOUS CONTROL FLOW ICON

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 30

MR= O;
ADDR = ABUS;

BUSREQKdelay 175ns after l\JR = o) = O;

BUSREQ = 1;
DBUS = MDR;

DATA_RDY = O;

MR= 1;
ADDR = 'X';

DBUS = 'X';
DATA_RDY = 1;

Figure 5. ASYNCHRONOUS CONTROL FLOW EXAMPLE

3.3.3.2. Hierarchy

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 31

A control ft.ow node may contain calls to other control ft.ow nodes in the form of pro

cedures and functions. This allows the user to express the design in a hierarchical fashion.

For instance, in describing the behavior of a processor, the top level would have control

nodes corresponding to the fetch/ execute/ store phases, while lower levels in the hierarchy

would perform the actual data operations and transfers. The structural realization of the

hierarchy can be "fiat" or interpreted. The flattened implementation expands the control

graph and uses a centralized controller for the operations. In the interpretive realization,

each level of hierarchy in the control graph has a local controller which communicates with

the levels above and below it [JVJC86]. For the first version of our system, we will assume

a flattened implementation of the control hierarchy.

3.3.3.2.1. Procedures and Function~

Procedures and functions are used simply as a descriptive aid, providing a short-hand

notation for repetitious segments of the description. The user may wish to define a main

procedure with calls to sub-procedures and functions. This facility simplifies the

specification of a process. Each procedure or function will be treated as a macro and will

be expanded in-line during the compilation phase. This allows all process declarations to

be visible within any procedure or function (these are treated like global variables).

The process window will then consist of a "page" for each procedure or function, with

a label identifying the current "page" under examination.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 32

3.3.3.3. Dnth Operations

Data transfers and transformations in the design are performed by various types of

operators. Broadly, these may be classified into arithmetic operators, comparison opera

tors, shift/ rotate operators, logical operators, bit manipulation (concatenation/ selection)

operators, array references and assignment operators. Since each data carrier is strongly

typed, it is not necessary to have special operators to be used with variables, ports and

buses of different types. As described later, type mismatches are handled according to cer

tain rules. When a mismatch cannot be resolved, or is erroneous, the system can flag an

error to inform the user. Figure 6 sununarizes sample data operators of each type.

3.3.3.3.1. Aritlm"I:!tic

The standard set of arithmetic operators for addition ('+ '), subtraction ('- '), multipli

cation ('*'), and division ('/') may be used. These assume an inputs of the same type, and

produce output.s of the same type as the inputs. The shorter inputs are right justifiE><i if

they are all not of the same bit width.

3.3.3.3.2. C.On~)arison

Comparison operators ('==', '!=', '> ', '<')may be used for comparison between vari

ables. The user must make sure that the variables. being tested are of the same type and

have the appropriate bit widths.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 33

f Table Datnops.tbl

Operator _'fy:pe O_perator Tar_g_et C01"!£Q11ents

ARITHMETIC + ALU, Adder, Counter
. ALU, Subtractor, Counter

* Multjplier

I Divider

COMPARISON <, <= Comparator, ALU

>, <= Comparator, ALU
=, != Com_B__arator_i_ ALU

SHIFT /ROT ATE SHL{0/1} Shifter, Shift-register
SHR{0/1} Shifter, Shift-register
ASH{L/R} Shifter, Shift-register
ROT{L/R} Shifter_i_ Shift-re_g_ister

BIT\VISE & And-gates, ALU
LOGICAL I Or-gates, ALU

" XOR-gates, ALU
- Inverters, ALU
-& N and-gates, ALU
-1 NOR-gates, ALU
,.._

XNOR-_g_ates, ALU

BOOLEAN LAND And-gate, ALU
LOGICAL LOR Or-gate, ALU

LNOT Inverter, ALU

I LNAND Nand-gate, ALU
LXOR XOR-gate, ALU
LXNOR XNOR-_gate_l_ ALU

CONCATENATE @ Switch box

SELECT {XX .. YY} Switch box

ARRAY [J Memory, register file
REFERENCE

ASSIGNMENT .-
ASYNCHRONOUS «-.-
ASSIGNMENT

Figure 6. DATA OPERATIONS AVAILABLE

3.3.3.3.3. Logical

Logical operators include 'AND', 'OR', 'NAND', 'NOR', 'XOR' and 'XNOR'. These

operators work on a bit-by-bit fashion on the operands.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 34

3.3.3.3.4. Boolean

These are unary operators that perform "concentrator" logic functions by subjecting

all the bits of the single input to the logical operation and producing a boolean output.

3.3 . .>.3.5. Shift/m1.ate

These operators perform arithmetic shifts, logical shifts, and rotations of the operator's

first argument of the operator. The second argument specifies the distance for the shift or

rotation. For example, A SHRO 2 performs a logical shift right of A by 2 bit positions,

using a fill of 0.

3.3.3.3.6. Bit nnnipulation

Bit extraction and insertion is achieved with the pair '{ .. }', with the high and low bit

positions to be extracted specified within the curly braces. For example, A{8 .. 5} appearing

on the right hand side of an expression would extract bit positions 8 through 5 of the vari

able A. The construct A{4 .. 2} appearing on the left hand side of an expression would

replace the old value of positions 4 through 2 in A with the result of the computation on

the.right hand side.

The '@' operator is used to concatenate two bit strings to produce a new bit string

whose. length is the sum of the two input lengths. For instance, A{8 .. 5}@B{2 .. 0} would pro

duce a carrier 7 bits long.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 35

3.3.3.3.7. Anay references

Array are referenced with the '[' and ']' pair. Since an array most often gets bound to

a memory or a register file, it may be necessary to qualify the access with the associated

port of the structural module. For examµle, if array A[0 .. 255) is bound to a single port.

memory, the reference A[5) accesses the memory with the address 5.

3.3.3.3.8. Assigmrent

The '=' operator is used for assignment. The '=' operator assigns a value to a variable.

The semantics of the assignment statement depends on the data types involved, so it is

important to make sure that the operands are of similar types. Violations. may be detected

by the compiler and flagged as errors.

3.3.3.4. Tining

3.3.3.4.1. Types

Two types of timing specification are supported in this system. The first is a path-

1·elative delay which expresses the delay from one point in the structural irr..pfomentation to

an0ther. This delay is the sum of the transmission delays on the wires, the operation times

for components and the set-up and hold times for registers that exist on the physical path

between the two points.

The second is event-relative delay which expresses the delay for one event with

respect to another. An event corresponds to the change in the value of particular signal (or

of a set of signals). Since two events may be logically unrelated, event-relative timing

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 36

specifte:, the exact sequencing of the two signals waveforms. This is often used in describing

protocols which involve two or more signals that are not data dependent, but. which must.

follow a particular behavior over time to ensure correct behavior.

In synchronous systems, the major event is the system <'lock. All actions are per

formed on a state-by-state basis where the rising or falling edge of the system clock initiates

a new state. Hence event-relative delays in the synchronous case refer to delays specified

with respect to the rising or falling edge of the system clock.

3.3.3.5. G€ncral Form and Sen"Rntics of the Assigmn3nt Staterrent

A general form of the assignment statement permits the user to express both kinds of.

timing constraints in a concise notation. The general form is:

where:

carrier I event-constraint :=expression I path-constraint;

('.~pression is a standard expression using the operators previousl) <lefoa~d;

path-constraint is a delay specified from some input (of the expression or port) to

the carrier on the left hand side;

and

enent-constru.int ·is a sP.t of delays which specify when the signal on thP. left. hanJ.

side should receive the computed value on the right hand side, with r~spect

to the specified event.

'I'hrec notions are of importance here: relativity, duration and event-cause. Relativity

specifies the change of one signal with respect to another. If the two signals are data

dependent, we call this delay specification a path constraint and use the keyword from to

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 37

indicate the relativity of the delay. If the two signals are data independent, we call this

delay an event-relative delay and use the keywords before or after to specify event

relativity.

Delays may be if minirnnn, rrnxinnm or nominal duration. A nominal duration is an

"average" value with a certain tolerance. A delay no specified too be of a particular dura

tion type defaults to maximum for path-relative delays, and minimum for event-relative

delays.

Event-cause specifies the characteristics of the event as being of type rising, falling or

changing.

The versatility of this assignment construct permits the designer to specify timing at

various leveb: combinatorial delays, delays relative to clock phases, and asynchronous

assignments. Each of these is illustrated with examples in the following sections.

3.3.3.5.1. Path Constraints

A path constraint permits the user to specify the delay on a path from an input to the

element on the left hand side. In this version of the system, since the user performs state

binding this delay is used to capture the combinatorial delay on the path from the input to

the output of the expression. However, a general path constraint can specify delays from

inputs to outputs over several assignments (and over several states). The syntax of each

path constraint is:

delay delay-value from input

For instance, if A and B are register and INPORT is an input port, the statement

B := INPORT +A, delay 80 ns from INPORT, 40 - 60 ns from A;

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 38

specifies a delay of 80 ns maximum (by default) from the input port INPORT to the regis

ter B, and a delay of 40 ns minimum, 60 ns maximum from the output of register A to the

register B. These delay constraints may be passed on to the module generator for the func-

tion '+'.

3.3.3.5.2. Event Constraints

An event constraint specifies a delay for the output of an expression with respect to a

change in some signal (which is often data independent). The syntax of an event-

constraint is:

delay delay-value {after or before} event-cause

where delay, as before: is a mininnm, rmximurnor nominal delay, and event-cause is a sig

nal rising,, falling or changing. This type of timing constraint is most often used to capture

timing chains from a timing chart, which specifies the change of one signal with respect to

another over time.

For example, if A is an output port and B is an input port, the statement

A I delay 100-1500 ns after B rising := X + 1;

specifies that the port A be assigned the value "X + l 11 with a delay of 100 to 1500 ns after

the value on port B rises.

Clock phase assignments are also achieved with this construct. For example, if R and

Q are registers, and the system clock is 2-phase (with names phase-1 and phase-2), the

statement:

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 39

RI (after phase-2 =rising) := Q;

assigns the value in register Q to register R in phase 2 of the system clock.

3.3.3.5.3. Asynchronous Assignrrents

When an asynchronous assignment to a variable has to be described, a special assign

ment operator, '< =', is used to indicate this. Semantically, the asynchronous assignment

implies the use of an asynchronous input on the structure bound to the variable, to achieve

the assignment. Most often, this type of assignment is used to clear or set a register asyn

chronously. For instance, if R is a variable bound to a register and RESET is defined to be

an input port, the statement

RI (RESET= rising) < := O;

ties the RESET line to the 'clear' input of the register R.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 40

CHAPTER 4.

EXA1\1PLES

This chapter illustrates the use of EXTEND-L to describe two designs: a simple con

trolled counter and a simple UART.

4.1. Omtrolled O::mnter

4.1.1. Principles of Operation

Figure 7 shows the block diagram of a process that we will call a controlled counter.

This example was obtained by abstracting the behavior of the VHDL structure of the con-

STROBE RUN CLK

-DBU

8 8 DON~

-CBUS B
Figure 7. BLOCK DIAGRAM OF CONTROLLED COUNTER

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 41

trolled counter defined in [Arms88]. Its basic operation is sketched in Figure 8. On the ris

ing edge of the signal STROBE, an internal control register is loaded with the value on

CBUS. The value in the internal control register is decoded to perform one of four func

tions: clear the counter, load a limit register, count up till limit, or count down till limit.

The counter runs synchronously under the input clock, and the counting functions are per-

formed only when RUN is high.

4.1.1.1. Dec1arations

Figure 9 shows the definitions for the process. Two registers, LIMIT and CREG, are

defined. The input ports consist of STROBE, RUN, CLK, DBUS and CBUS, while the out

put port is DONE. The port definitions specify the width, type and direction of the ports

for the process. For synchronous operation, the clock has to be defa1ed explicitly. In this

example, the system clock is defined to be 1 phase, with the source being the input port

When STROBE rises, load CREG with CBUS;

while RUN is asserted,

if CREG = 'OO', clear COUNT;

if OREG= '01', load LTh1 with DBUS

on falling edge of STROBE;

if OREG = '01', count up until LIM reached;

if CREG = '11', count down until LIM reached;

set DONE to 1 when count is finished;

Figure 8. CONTROLLED COUNTER OPERATIONAL PRINCIPLES

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 42

type
BOOLEAN
TWO_BIT
FOUR_BIT
REG_TWO
REG_FOUR
DEC_ TWO
CMP_FOUR
CNT_FOUR

= {O};
= {1..0};
= {3 .. 0};

= REGISTER(2,LOAD,,,,RESET,ENABLE);
= REGISTER(4,LOAD,,,,RESET ,ENABLE);

= DEC(2,4);
= CMP(4,,GT,LT);
= UP_DWN_CNT(4,UP,DOWN,LOAD,RESET,SET,ENABLE);

component

port

clock

var

const

: REG_TWO;
: REG_FOUR;

CREG
LIMIT
COUNT
COMP
DECODER

: CNT_FOUR;
: CMP_FOUR;

: DEC_TWO;

CBUS : input of TWO_BIT;
STROBE, RUN : input of BOOLEAN;
DBUS : input of FOUR_BIT;
DONE : output of BOOLEAN;

CLK : port;

LOAD_LIM, UP, DOWN

ZERO of FOUR_BIT = O;
B_ONE of BOOLEAN= 1;
ONE of FOUR_BIT = 1;

: BOOLEAN;

Figure 9. CONTROLLED COUNTER DEFINITIONS

CLK. Two variables, COUNT and LIM_EN, are also defined.

4.1.1.2. Behavior

The behavior of this simple process can be expressed in many ways. For illustration,

we choose to describe the behavior of the controlled counter with an asynchronous behavior

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 43

chart. We will embed the synchronous behavior of the counter by explicitly specifying its

clocking requirement. Figure 10 shows the asynchronous chart. Two main events can be

recognized in this example: STROBE rising and STROBE falling. We therefore describe

the behavior in each of these event-states.

When STROBE mes, CREG is asynchronously loaded with the value on CBUS.

Next, based on the value in CREG, either COUNT is cleared, the limit register is enabled,

or the count-up/ count-down sequence is initiated by setting the signals UP or DOWN high.

When STROBE falls, if the LIM_EN signal is high, the LIMIT register is loaded asyn

chronously with the value on DEUS.

The synchronous behavior is described by the synchronous chart, shown in Figure 11.

"COUNT_UP" is a one state loop with several synchronous control icons. First, based on

the concatenated value of the signals RUN, UP and DOWN, one of three branches is taken:

if RUN and UP are high, the counter counts up; if RUN and DOWN are high, the counter

counts down; in all other cases, the counter busy-waits. When either the count-up or

count-down sequence is completed, the DONE signal is set to 1 to indicate completion of

the counting task.

4.1.1.3. Structure Generated

Figure 12 shows the structure that 1s generated after synthesis from the description.

In this example, the synthesis task is quite straightforward as there are not many event

states synchronous states and variables (or defined structures).

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 44

CREG I (STROBE= RISING) := CBUS;

Case (CREG) of:

00: COUNT I (CREG = 00) < := O;

10: UP:= 1;

01: LThI_EN := 1

11: DOWN:= 1;

IF (LIM_EN = 1) THEN
LIMIT I (STROBE=FALLING) = DBUS;

Figure 10. ASYNCHRONOUS CHART FOR CONTROLLED COUNTER

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 45

clock: CLK

Figure 11. CONTROLLED COUNTER SYNCHRONOUS CHART

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 46

CBUS

STROBE

CLK

DEUS

N
CREG

LIM EN

N LIM OU

RUN

DECODER

00 01 10 11

COMP

LT GT

Figure 12. CONTROLLED COUNTER: GENERATED STRUCTURE

The case statement in the asynchronous chart gets compiled into a decoder, while the

conditional test for LIM_EN in event-state 2 of the asynchronous chart gets compiled as

the enable line for loading the limit register (on the falling edge of the STROBE line).

In the synchronous chart, the test for ">" and "<" get bound to a comparator, while

the count-up and count-down functions are compiled into activating the control lines "UP"

and "DOWN" for the counter. The counter is also enabled when one of the two procedures

(count_up or count_down) is invoked.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 47

4.1.1.4. Comrnmts

This example shows the power of the input description: synchronous and asynchronous

behavior is described together in a natural fashion; the resulting description is quite concise

and easy to compile. The user can see the behavior and make any modifications easily.

In contrast, the same example would require several pages of VHDL text to describe

[VHDL87]. The VHDL description is bulky and cumbersome. The user does not have an

immediate feel for the design just by looking at the VHDL description. Most of the existing

high-level input languages are not capable of describing this kind of mixed behavior (syn-

chronous and asynchronous), and do not permit mixed behavioral and structural descrip-

ti on.

4.2. 6850 UART

4.2.1. Principles of Operation

Figure 13 shows the block diagram of the Motorola 6850 Asynchronous Communica-

tions Interface Adapter (ACTA), popularly referred to as a Universal Asynchronous

Receiver-Transmitter (UART). Its basic function is to interface serial I/ 0 devices to a

rmcroprocessor. The UART converts 8-bit parallel data from the processor into a serial
I

data stream for the serial I/O device in "transmit" mode. In "receive" mode, the UART

converts serial data from the I/O device into an 8-bit parallel word that the processor can

understand.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 48

XCLOCK

,------ - --,
I I
I j\fain I ,-------------,
I I I I
I I I Transmit_J)ata I
I

I I

I I

I I

I
I I I I

DATAJ3US I STATUS I I TSHIFT I

~ ~ ~
I I I I

~ = ~

I I I I

I I I I

I I I I

I

~ I
I

L _____________ _J

I
TD A TA

I ""-
I I

~

I I

R_\V

I I
cs I I

,-------------,
I I I I

I I
I Receive_J)ata I I I

CONTROL I

I
I

···~ I I

I
I I

I I

I I
I RSHIFT I """'""

-""
I I

I I I I

RS

I I I I ENABLE I

~ J
I I I

I RDATA I L _____________ _J

I

I I
I I
I I
L _____________ _J

I

L ---------

RCLOCK

Figure 13. BLOCK DIAGRAM OF THE MOTOROLA 6850 UART

TXD

~

~

~

ATA

DCD

CTS

IllQ

RTS

RXD ATA

In this section, we de·scribe a stripped down version of the 6850 that performs only the

receive and transmit functions, without performing error checking. The description of the

UART can be entered in several different forms, depending on how the user performs the

initial system partitioning. In this example, we will treat the 6850 as three concurrent

processes labelle.d "Main", "Receive_Data" and "Transmit_Data". The operation of "Main"

is completely asynchronous, while "Transmit_Data" and "Receive_Data" are synchronous,

clocked by TCLOCK and RCLOCK respectively. All the three processes operate on the

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 49

structures and data carriers defined in the definitions section, and hence refer to the same

variables and structures.

"Main" is the process that communicates with the processor and receives/ sends data

words in parallel. "Transmit_Data" is the transmitter process which converts a parallel

word into a bit stream for the serial I/ 0 device. "Receive_Data" is the receiver process

which accepts a bit stream from a serial I/O device and converts into a parallel word for

the processor.

4.2.2. Declarations

Figure 14 shows the definitions for the 6850. STATUS, CONTROL, TDATA and

RDATA are four registers instantiated for the main process. TSHIFT and RSHIFT are

eight bit shift registers, while TCNT and RCNT are four bit counters used for the transmit

and receive functions. The STATUS register is eight bits wide, with each bit containing

specific information about the status of the 6850. As shown in the "bind" section of the

definitions, register RXRDF is connected to bit 0 of STATUS: this bit indicates if the

receiver shift register, RSHIFT, is full (signalling start of the receive function). Likewise,

register TXRDE is connected to bit 1 of STATUS; when TXRDE is high, it signals the

main process to transfer another word from TDATA to TSHIFT and begin a new transmit

cycle.

4.2.3. Behavior

The behavior of the UART is described using an asynchronous state chart and two

synchronous charts. These correspond to the dotted partitions in the block diagram which

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 50

type
BOOLEAN= {O};
EIGHT_BIT = {7..0};

TWO_BIT = {1..0};

FOUR_BIT = {3 .. 0};
REG_l = REGISTER(l,LOAD,CLEAR,,, ,ENABLE);

REG_8 = REGISTER(8,LOAD, , , , ,ENABLE);

SHIFT_8 = REGISTER(8,LOAD,SHL,SHR, , ,ENABLE);

COUNT_4 = UP _DWN_CNT(4,UP ,DOWN,LOAD, , ,ENABLE);

component

port

clock

var

con st

bind

STATUS, CONTROL, TDATA, RDATA : REG_8;

TSHIFT, RSHIFT : SHIFT_8;

TCNT,RCNT: COUNTJ;

TXRDE, RXRDF : REG_!;

DATA_BUS : input_output of EIGHT_BIT;
R_W, CS, RS, ENABLE, XCLOCK, RCLOCK,

RXDATA, DCD, CTS : input of BOOLEAN;

TXDATA, IRQ, RTS output of BOOLEAN;

XCLOCK, RCLOCK port;

START_FLAG : BOOLEAN;

B_ZERO of BOOLEAN = O;

B_ONE of BOOLEAN = 1;

THREE of TWO_BIT = 3;

ONE of FOUR_BIT = 1;

EIGHT of FOUR_BIT = 8;

TXRDE to STATUS{l};
RXRDF to STATUS{O};
IRQ to STATUS{7};
CTS to STATUS{3};
DCD to STATUS{2};

Figure 14. 6850 DEFINITIONS

1 b ll d "M . " "T . D . " d "R . _D II are a e e ain , ransnnt_ ata an ece1ve ata .

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 51

4.2.3.1. Main Process

Figure 15 shows the asynchronous chart for the 6850 main process. When the UART

PROCESS
name: main
type: async
clock: -

April 15, 1988

power_up?

CONTROL{l..O} := THREE;

CONTROL{7 .. 2} :=ZERO;
STATUS :=ZERO;

ENABLE@CS = 11

case (RS@R_ W) of

00: CONTROL := DATA_BUS;

01: DATA_BUS :=STATUS;

10: if (TXRDE = 0)

TDATA := DATA_BUS;
TXRDE := B_ONE;

endif;

11: if (RXRDF = 1)

endif;

end case;

DATA_BUS := RDATA;
RXRDF <:= O;

Figure 15. 6850 Main Process

EXTEND:MODELandINPUTLANGUAGE Page 52

is powered up, it enters the MASTER RESET state. In this state, all bits of the control

and status register are set to zero, and the registers TXRDE and RXRDF are set to 1.

These actions are described in the first event-state.

Subsequently, the UART has only one event-state: it functions only when both

EN ABLE and CS (Chip Select) are set high. Based on the value of the RS (Register

Select) and R_ W (Read/Write) lines, one of four sets of actions are performed.

When RS@R_ Wis '00', the DATA_BUS has the control word on it; this is loaded into

the CONTROL register.

When RS@R_W is '01', the value in the STATUS register is put on the DATA_BUS.

When RS@R_ W is '10', the UART is ready to execute a data-transmit cycle. If

TXRDE is set to 1, the main process has to wait until the transmit process sends out the

previous word. When TXRDE is set to 0, a new word can be transmitted. TDATA is

loaded with the value on the DATA_BUS, and TXRDF is set to 1. This signals initiation

of the transmit function.

When RS@R_ W is '11 ', the UART is ready to execute a receive cycle. If RXRD F is

set to 0, the reciever has not yet filled the receiver shift register with a word; hence the

main process waits. After RXRDF is set to 1, the main process is ready to send out the

received word. This word is sent out on DATA_BUS and RXDRF (connected to STATUS

bit 0) is reset to indicate that the receiver buffer RSHIFT is empty.

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 53

4.2.3.2. The Transnit_Data Process

Figure 16 shows the synchronous process for data transmission. As indicated by the

box on the upper left-hand comer, this is a synchronous process whose clock is XCLOCK.

The transmit sequence starts only when RS@R W equals
11

00" and TXRDE is "1" (indi-

eating that the transmit register is loaded with a new word). The transmitter then moves

PROCESS

name: Transmit_Data
type: sync
clock: XCLOCK

r------------------ ------------------.
I
I
I
I
I

E I
I
I
I
I

I
I
I
I
I
I
I
I

------------ ------------------------~

r------------------------ --------------------------.

April 15, 1988

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~----------~----r-------------------------- --------~

Figure 16. UART Transmit_Data PROCESS

EXTEND: MODEL and INPUT LANGUAGE Page 54

the word to be transmitted from the register TDATA to the shift-register TSHIFT. The

counter is set to eight, and a start bit is sent out on TDATA.

The next state is a loop in which the bits in TSHIFT are shifted out. While the value

in the counter has not reached 0 (the body of the loop), the least significant bit of TSHIFT

is sent out on the port TXDATA. When all the bits in TSHIFT have been shifted out

(loop exit), a stop bit is sent out on TXDATA. The TXRDE flag is set to "o" to indicate

completion of transmission.

4.2.3.3. The Receive_Data Process

Figure 17 shows the synchronous process for Receive_Data. Receive_Data is clocked

by B.CLOCK, and RSHIFT is the shift-register used for the serial-to-parallel conversion.

The receiver first waits for the main process to finish transferring a previous word by

checking for (RXRDF = 0) and (RS@RW = 01). At this time, it sets START_FLAG to 0.

In the next state, the receiver loops until a start bit is detected in the serial input. The

loop is terminated by setting START_FLAG to 1.

After the start flag is detected, the receiver proceeds to shift in 8 bits from RXDATA

into RSHIFT. Finally, the newly-assembled word is moved from RSHIFT to RDATA and

RXDRF is set high to indicate that a new word has been loaded into RDATA.

4.2.4. Structure Generated

Figure 18 shows the structure generated by the synthesis system for the UART. Each

of the processes "Main", "Transmit_Data" and "Receive_Data" has its own control gen-

erated. They communicate with each other through the registers "TXRDE" and RXRDF"

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 55

PROCESS
name: Receive_Data
type: sync
clock: RCLOCK

r------------------- --------------,
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

L------------ ------------ --------~

r---------------------- ---------------------------,
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L---------------- -----------------------

I
I
I
I
I
I
I
I

I
I
I
I
I
I

---------~

r---,

April 15, 1988

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I

L-------------- -------------------------- ---------~

Figure 17. UART Receive_Data PROCESS

EXTEND: MODEL and INPUT LANGUAGE Page 56

0
TSHIFT

SHR

SET DEC

TCNT

C> ZERO

RCLOCK

Figure 18. THE GENERATED STRUCTURE FOR THE 6850 UART

and the buses that connect TD A TA with TSHIFT and RDA TA with RSHIFT.

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 57

4.2.5. Cormrents

In this section, we described the use of synchronous sub-charts within an asynchronous

process to capture the behavior of a 6850-like UART. Since a process, by definition,

operates on a single clock, the design had to be partitioned into a a main (asynchronous)

process, which calls two synchronous processes, each of which runs on a different clock.

This kind of design is hard to describe in ·a language like ISP S, which permits only one

clocked process per description. For instance, Nestor [Nest88] has written a version of the

Intel 8251 UART (similar to the 6850) which has separate processes running in parallel.

The inability of ISPS to permit description of concurrent processes operating on the same

set of variables and structures forces each process to be described separately with their own

declarations and ports. Each process is then synthesized as a data path and controller, and

they communicate through flip-fl.ops. Hence the synthesis produces extra hardware for the

interface and communication.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 58

CHAPTER 5.

SUJ\11\1ARY

In this document, we showed how existing input specifications are not powerful

enough to capture several aspects of the design, including a combination of behavior and

structure, synchronous and asynchronous functionality. We have developed a new

language, EXTEND-L, which will be part of a synthesis system that will overcome many of

these deficiencies. The document described the model and input language in detail.

Several examples were used to illustrate the versatility of the input language in describing a

variety of designs. Work on the synthesis system is in progress and forthcoming reports will

describe the synthesis environment and the internal representation used in EXTEND.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 59

BIBLIOGRAPHY

[Arms88] J. R. Armstrong, "Chip Level Modeling with VHDL," Prentice Hall, 1988.

[Barb81) M. Barb acci, "Instruction Set Processor Specifications (ISPS): The Notation
and its Applications" IEEE Transactions on Computers 30(1)(Jan, 1981).

[B1FR85) T. Blackman, J. Fox, and C. Rosebrugh, "The SILC Silicon Compiler: Language
and Features," Proc. 22nd Design Automation Conj., June 1985.

[BoKa87) G. Borriello and R. H. Katz, "Synthesis and Optimization of Interface Trans
ducer Logic," Proc. ICCAD, Nov. 1987.

[BrGa86] Forrest D. Brewer, Daniel D. Gajski, "An Expert System Paradigm for Design"
23rd IEEE Design Automation Conference pp. 62-68, Las Vegas, NV (July,
1986).

[Camp85] R. Camposano, "Synthesis Techniques for Digital System Design," Proc. 22nd
Design Automation Conj., June, 1985.

[Clar73] C. R. Clare, "Designing Logic Systems using State M...t.chines," McGraw-Hill .
Inc., 1973.

[Dron83] P. J. Drongowski "A Graphical Engineering Aid for VLSI Systems," UMI
Research Press, 1986.

[GaDP86] D. D. Gajski, N. D. Dutt, B. M. Pangrle, "Silicon Compilation (Tutorial)," Cus
tom Integrated Circuits Conference, May, 1986.

[GiBK85] E. F. Girczyc, R. J. A. Buhr, J.P. Knight, "Applicability of a Subset of Ada as
an Algorithmic Hardware Description Language for Graph-Based Hardware
Compilation," IEEE Transactions on Computer-Aided Design, vol. CAD-4, no.
2, (April, 1985). .

[JVJC86] A. A. Jerraya, P. Varniot, R. Jamier, B. Curtios, "Principles of the SYCO Com
piler" 23rd Design Automation Conference IEEE ACM, Las Vegas, NV, (July,
1986).

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 60

[Nest88] J. Nestor, "Notes on the i8251 ISPS Description," ACM/IEEE Workshop on
High-Level Synthesis, Orcas Island, WA, Jan. 1988.

[Pang87] B. Pangrle, "A Behavioral Compiler for Intelligent Silicon Compilation" PhD
Dissertation, University of Illinois, Urbana-Champaign (June, 1987).

[Sout83] J. R. Southard, "MacPitts: An Approach to Silicon Compilation," IEEE Com
puter, vol. 16, no. 12, (Dec, 1983).

[Tred81] N. Tredennick, "How to Flowchart for Hardware," IEEE Computer, December
1981.

[Tric87] Howard Trickey, "A High-Level Hardware Compiler" IEEE TRAN. on Com
puter Aided Design CAD-6(2), (March, 1987).

[VaGa88] N. Vanderzanden and D. D. Gajski, "MILO: A Microarchitecture and Logic
Optimizer," Proc. 25th Design Automation Conference, Anaheim, CA, June
1988.

[VHDL87] VHDL Tutorial for IEEE Standard 1076 VHDL, CAD Language Systems l.fl.c.,
June 1987.

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 61

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 62

APPENDIX A

BNF syntax for definitions and statements

The syntax for the definition grammar and the statement grammar is shown
separately.

definition_part

definitions_header

defini tion_b lo ck

typ e_defi !lition_p art

typ e_definition_list

t:yp e_definition

tidentifier

type_denoter

, type_type

Definition Gramrrnr

definitions_header definition_block DOT
empty

DEFINITIONS

TBEGIN
typ e_definition_p art
comp on en t_definition_p art
port_definition_p art
clock_definition_part
variab le_defini tion_p art
constant_definition_part
binding_definition_part
TEND

TYPE type_definition_list
empty

type_definition_list type_definition
typ e_definition

tidentifier TEQUAL type_type semicolon

identifier

identifier

bit_type
array_type
component_type

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE Page 63

bit_type

subrange_type

array_type

component_type

generic_component_name

pararneter_list

parameter

comp onent_definition_p art

LCURL
subrange_type
RCURL

constant
DOTDOT
constant

constant

ARRAY LBRAC subrange_type RBRAC OF type_denoter

generic_component_name LP AREN parameter_list RP AREN

identifier

parameter_list COMMA parameter
parameter

identifier
DIGSEQ
empty

r
C 0 MP 0 NENT component_definition_list semicolon
empty

component_definition_list component_definition_list semicolon component_definition
componen t_definition

component_definition : component_id_list COLON type_denoter

component_id_list component_id_list comma identifier
identifier

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 64

port_definition_part

port_definition_list

port_definition

po_identifier_list

prt_mode

prt_gating

prt_storage

clo ck_defini tion_p art

clo ck_defini tion_list

clock_definition

PORT port_definition_list semicolon
empty

port_definition_list semicolon port_definition
port_definition

po_identifier_list
COLON
prt_mode
prt_gating
prt_storage
OF
type_denoter

po_identifier_list comma identifier
identifier

TINPUT
TOUTPUT
TINPUT_OUTPUT

TWIRED
TTRISTATE
empty

TUNBUFFERED
TBUFFERED
empty

CLOCK clock_definition_list semicolon
empty

clock_definition_list semicolon clock_definition
clock_definition

clock_id_list COLON clock_source

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 65

clock_id_list

clock_source

variable_definition_p art

variable_definition_list

variable_definition

videntifier_list

constan t_detlnition_p art

constant_definition_list

constan t_definition

cidentifier_list

cvalue

binding_definition_part

I

binding_definition_list

I

clock_id_list comma identifier
identifier

PORT
VAR

VAR variable_definition_list semicolon
empty

variable_definition_list semicolon variable_definition
variable_definition

videntifier_list COLON type_denoter

videntifier_list comma identifier
identifier

CONST constant_definition_list semicolon
empty

constant_definition_list semicolon constani_definitjon
constant_definition

cidentifier_list OF type_denoter TEQUAL cvalue

cidentifier_list comma identifier
identifier

constant

BIND binding_definition_list semicolon
empty

binding_definition_list semicolon binding_defin ti on
binding_defintion

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 66

binding_defintion

var_name

component_name

statement_part

compound_statement

sta temen t_se quence

statement

assign_statement

async_assign_statement

r_h_s

expression_part

pa th_timing_p art

timing_list

var_name TO component_name

identifier

identifier

StatenEnt Syntax

compound_sta temen t

statement_sequence

statement_sequence semicolon statement
statement

assign_sta temen t
async_assign_statement
empty

l_h_s TASSIGN r_h_s

l_h_s TASYNCASSIGN r_h_s

expression_p art p ath_timing_part

expression

DELAY timing_list
empty

timing_list comma path_constraint
path_constraint

April 15, 1988 EXTEND:MODELandINPUTLANGUAGE· Page 67

path_constraint

delay_range

min_delay

max_ delay

timing_input

l_h_s

lhs_ variable_access

lhs_identifier_part

lhs_indexed_ variable

lhs_a_identifier

lhs_index_expression

even t_timing_p art

even t_timing

delay _range FROM timing_input

min_delay max_delay

MIN DIGSEQ
empty

MAX DIGSEQ
empty

identifier

lhs_ variable_access event_timing_part

lhs_identifier_part
lhs_in dexe d_ variable

identifier bit_field
identifier

lhs_a_identifier LBRA C lhs_index_expression RBRA C

identifier

expression

TOR LP AREN event_timing LP AREN
empty

after_event
async_assign_event

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 68

after_event

event_id

event_cause

async_assign_event

port_name

expression

simple_expression

logic_one

bit_one

bit_two

bit_three

reLone

reLtwo

AFTER event_id event_cause

identifier

RISING
FALLING

port_name TEQUAL event_cause

identifier

simple_expression
simple_expression or simple_expression

logic_one
simple_expression xor logic_one

bit_one
logic_one and bit_one

bit_ two
bit_one bor bit_two

bit_ three
bit_two bxor bit_three

reLone
bit_three band reLone

reLtwo
reLone relop_two reLtwo

shift_ term
reLtwo relop shift_term

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 69

shift_term

add_ term

term

factor

exponentiation

base

primary

add_term
shift_term shiftop add_term

term
add_term addop term

factor
term mulop factor

sign factor
exponentiation

base
base expop exponentiation

prnnary
base concatop primary

variable_access
unsigned_constant
LP AREN expression RP AREN
not primary
comp lop
primary

unsigned_constant unsigned_number

unsigned_rmmber unsigned_in teger

unsigned_integer DIGSEQ

exp op exp op 1 bind_op

expopl TS TARS TAR

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 70

cone atop

concatopl

comp lop

complopl

mulop

mulopl

addop

addopl

shift op

shiftopl

relop

relopl

April 15, 1988

cone atop 1 bind_op

TCONCAT

comp lop 1 bind_ op

TCOMPL

mulopl bind_op

STAR
SLASH

addop 1 bind_op

TPLUS
TMINUS

shift op 1 bind_op

TASHL
TASHR
TSHLO
TSHLl
TSHRO
TSHRl
TROTL
TROTR

relop 1 bind_op

TLT
TGT
TLE
TGE

EXTEND: MODEL and INPUT LANGUAGE Page 71

relop_two

relop_twol

band

bandl

bxor

bxorl

bor

borl

and

andl

xor

xorl

or

orl

April 15, 1988

relop_two 1 bind_op

TEQUAL
TNOTEQUAL

bandl bind_op

TL AND
TLNAND;

bxorl bind_op

TLXOR
TLXNOR

borl bind_op

TLOR
TLNOR

andl bind_op

TAND
TNAND

xorl bind_op

TXOR
TXNOR

orl bind_op

TOR
TNOR

EXTEND: MODEL and INPUT LANGUAGE Page 72

not

notl

bind_op

bound_component

variable_access

identifier_part

v _identifier

bit_field

indexed_ variable

a_iden tifier

inde:x:_expression

constant

sign

non_string

notl bind_op

TNOT

empty
LCURL bound_component RCURL

identifier

identifier_part
indexed_ variable

v _identifier bit_field /* select (rhs) * /
v _identifier

identifier

LCURL subrange_type RCURL

a_identifier LBRAC index_expression RBRAC

identifier

expression

non_string
sign non_string

TPLUS
TMINUS

DIGSEQ

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 73

identifier IDENTIFIER

semicolon SEMICOLON

conuna COMMA

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 74

APPENDIX A

GENERIC C01\1PONENT LIBRARY ELEMENTS

A brief description of the generic component library elements that are used in the syn
thesis task is given here. Abstract behavioral elements such as operations and variables in
the language are mapped into instantiations of components drawn from this library.

Storage Corrponents

Various types of storage components may be declared by the user: registers, shift regis
ters, counters, memories, register files, stacks and FIFO's. Storage elements are character
ized by their type, the functions they perform, data inputs and outputs, control inputs,
clock inputs, asynchronous inputs, and their attributes (#bits, size, etc.). Figure 19 shows
these characteristics for storage components that are currently supported.

Bus Corrponents

Each bus component is declared with the following attributes:

(1) bit width

TABLE Stora_g_e.tbl

~ Functions Data-i_Lo control a~c attributes

Register load, clear 1-inp' load, set, #bits, delay,
1-outl2_ enable clear 2_ower

Shift load(par), par-i/ o, load, shl, clear #bits, delay,
Re_gister clear ..Lshr _,_shl llr-ij_ oi shr..Lenable _B_ower

Counter load(par), 1-input, enable, set, #bits, delay,
up, down, 1-output up, down clear power
set)_ clear

Memory read, write 1-input enable,read, size, delay,
1-ou~ut writeiaddress #bits .l2_ower

Register read, write #i ports, enable, size, delay,
File #o ports, read,write & #bits, power

#ij_o _B_orts addr for each _B_ort

Stack push, pop 1-input, enable, size, delay,
or 1-output push, pop #bits, power

FIFO

Figure 19. GENERIC STORAGE COMPONENTS

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 75

(2) transfer mode = (unidirectional/bidirectional)

(3) storage = (buffered/unbuffered)

(4) gating= (tristate/wired).

Functional Corrponents

Figure 20 lists some of the more commonly used functional components. In addition
to the generic structural modules that are read into the library, specific function units may
be declared by the user. This allows for an extensible library of structural modules, where
declared function units are added to the library as new modules and are used later. The
declaration should specify the number of data, control, clock and asynchronous inputs, the
number of data outputs, and for each operation, the control code and function mapping the
inputs to the outputs. The bit width and the representation of each input and output must
also be specified.

TABLE FUs.tbl

~ Functions Data IlO Control Attributes

ALU ADD, SUB, AND, OR 2-inputs 8 bits #bits, delay,
EQV_l_ INC_l ZRO_l_ NOP 1-out_.12__ut]2_ower

ADDER ADD 2-inputs #bits, delay,
1-out_.12__ut]2_ower

Comparator GT, LT, EQ 2-inputs #bits, delay,
3 bits]2_ower

Shifter SHL, SHR, 1-input sel, sh, rot #bits, delay,
ROTL2 ROTR 1-oUtJ2.Ut l_Lr J_ a 11.J.. fill J2.0Wer

Multiplier MULT 2-inputs enable #bits, delay,
1-ou~ut J2..0Wer

Figure 20. GENERIC FUNCTIONAL COMPONENTS

April 15, 1988 EXTEND: MODEL and INPUT LANGUAGE Page 76

