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coefficient imputations are more variable, but imputed datasets with high 

densities of some values (peaks) appear to not be generating outliers, but 

instead high densities of intermediate Gini values. .............................................130 

 

Figure S5.2. Example of detrending methods for ring widths, using the i.detrend 

function in R package “dplR” (Bunn, 2008). Top image is raw ring width 

(black line), with the detrending line for each method shown by a different 

color. To calculate ring width index (RWI), raw ring width is divided by 

the value of the line at each time point. Resulting RWI chronologies for 

each method are displayed below. We chose a cubic spline (green) with a 

20-year length (i.e., 20 years between inflection points) to retain variation 

at decadal scales but minimize age-based effects and high-frequency 

variation (Speer 2010). Cubic splines are considered more aggressive than 

dividing by a negative exponential function (red line, which represents 

strictly age-based growth), an autoregressive model (purple), or dividing 

by the mean ring width (dark blue), and more conservative than a 

smoothing function (light blue, which only removes inter-annual 

variation). .............................................................................................................131 

 

Figure S5.3.  Relationship between hydraulic safety factor (HSF) and ring width 

index (RWI) in living and dead trees. Dead trees show a positive but not 

statistically significant (linear regression p = 0.61) relationship between 
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Abstract of the Dissertation 

 

From the Cell to the Stand: A Trait-Based Approach to Understanding Drought Tolerance 

and Fitness Tradeoffs in Sierra Nevada Conifers 

 

by 

 

Jeffrey Daniel Lauder 

 

Doctor of Philosophy in Quantitative Systems Biology 

 

University of California, Merced 

2020 

 

Professor Stephen C. Hart, Chair 

Professor Emily V. Moran, Research Advisor 

 

Climate change is expected to drive shifts in forest species distribution to track 

ideal climatic conditions. The relative capacity for a tree species to persist under climatic 

stress is dependent on life history traits, such as growth, survival, and reproduction. Trees 

that produce large amounts of seed may be better able to colonize newly suitable habitats, 

while those that survive stress at current locations may persist longer than nearby 

competitors. These traits each represent distinct resource sinks, however. What remains 

unknown is how physiological modification in response to drought influences both 

survival and reproductive capacity. I analyzed growth, tree ring anatomy, and 

reproductive capacity in Pinus ponderosa and P. jeffreyi in the Sierra Nevada mountains 

of California, where the unprecedented 2012-2016 drought led to large-scale forest 

mortality. I found that trees that died during drought unexpectedly exhibited anatomical 

traits thought to confer drought tolerance, such as thicker walls in water-conducting 

xylem cells. Under drought, trees close stomata (pores in their leaf surface involved in 

gas exchange) to limit water loss, but at the expense of carbon (C) uptake. This leads to a 

theoretical expectation of C depletion in drought-stressed trees, particularly during 

prolonged (i.e., multi-year) drought. While direct evidence of this “C-starvation” has not 

been recorded in nature, my results point to a potential mechanism of the impact of C 

depletion on mortality. The sampled trees also experienced a high level of bark beetle 

(Dendroctonus spp.) attack, which is typically defended against in trees via the 

production of C-rich resin and other chemical defenses. Drought appears to have 

weakened sampled trees, and excessive allocation of available resources to drought 

defense may have depleted reserves necessary for fending off beetle attack. To quantify 

potential tradeoffs between drought defense and reproduction, I developed a novel 

technique to measure total lignin (a C-expensive material involved in xylem cell wall 

thickening) in tree rings, and found that trees that died had higher lignin content than 

living trees. To further explore these patterns, I modeled likelihood of tree mortality as a 

function of tree ring width (growth), xylem anatomy, competition, and climate. I first 
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compared multiple commonly used drought metrics with ring widths from >800 trees 

from across the Sierra Nevada and found that drought metric choice influences 

interpretation of drought impacts. I then showed that trees that grew not only thicker-

walled xylem cells, but also more variable growth rings and variable cells between years 

were more likely to die. Trees that grew the same amount each year, or grew rings with 

relatively constant xylem cell diameters and wall thicknesses, were more likely to survive 

drought, counter to hypothesized tradeoffs between growth and reproduction during 

drought. Finally, cone counts of measured trees show that ring width (growth) was the 

primary determinant of reproductive capacity, with trees that grew more producing more 

cones. These results demonstrate that tree response to drought is a function of variation in 

xylem anatomy and ring width, with the mechanism of mortality being associated with C 

depletion. Trees that are less responsive to climate and maintain fairly constant growth 

appear to be most likely to survive prolonged drought, and trees that grow large rings 

(with low variance between years) are more likely to reproduce. These results improve 

our understanding of whole-forest response to future climate change by demonstrating 

the importance of both cellular scale (xylem anatomy) and forest-scale (drought metrics 

and competition) variation in influencing drought-induced forest mortality.  
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Chapter 1: 

Introduction 

 

1.1 Background 

Globally, forest ecosystems cover approximately 4 billion hectares (ha) of land. This 

equates to 30% of the global ice-free land area or roughly 0.6 ha for every person on the 

planet (Keenan et al. 2015). These forests provide ecosystems services estimated at more 

than $4.7 trillion annually (Krieger 2001), including climatic regulation, provisioning 

services such as timber and food production, aesthetic and cultural services, and water 

storage and flow regulation (Seidl et al. 2016). Climate change threatens these services 

through altered precipitation, increased temperatures, and increasing likelihood of 

catastrophic fire (IPCC 2014). Current climate change projections include increasing 

temperatures and altered precipitation patterns in already arid and semi-arid environments. 

Understanding how forests may respond to future change depends on better understanding 

of both theoretical and mechanistic responses of forest trees to climate anomalies. The 

California drought of 2012-2016 was more severe than any observed in the previous 1200 

years (Griffin and Anchukaitis 2014) and left an estimated 130 million standing dead trees 

in the Sierra Nevada (USDA). This “natural experiment” provides a unique opportunity to 

test hypotheses regarding drivers of tree mortality in a natural setting, and better quantify 

the range of potential responses to projected increases in aridity.  

The mechanism of eventual tree death under extreme drought stress is still 

mostly unknown, and two theories are still debated. As water stress increases, trees close 

stomata (small openings on their leaf surface that facilitate movement of water and 

carbon), mitigating water loss but also limiting gas exchange. This may lead to eventual 

carbon (C) starvation as stressed trees are no longer assimilating sufficient C (McDowell 

et al. 2008). However, evidence of C starvation in situ is lacking (Sala 2009, Sala et al. 

2012), and instead most trees are presumed to die of hydraulic failure. As drought stress 

rises, the pressure differential along the soil-plant-atmosphere continuum may eventually 

cause physical failure of tree xylem (water conducting tissues in trees) via either collapse 

or the formation of air bubbles (emboli) that break the water column (Sperry et al. 1988, 

Cochard 2006). Drought-killed conifers exhibit signatures of both hydraulic failure and C 

depletion (Adams et al. 2017), pointing to interactive effects of C limitation and xylem 

vulnerability to failure under drought stress. However, data on the mechanism of drought-

induced mortality in conifers is primarily limited to arid southwestern US forest species. 

Further, no studies to date have directly tested how traits influencing likelihood of 

mortality scale from the individual cell to the tree and the whole forest stand, impacting 

whole-forest health. Such a scaling of traits from individual trees to the forest scale 

would allow better predictions of landscape-level change with increasing climate 

variability. 

 Trees are especially susceptible to the effects of climate due to their long life span 

and lack of mobility. Tree response to climatic stress may be tempered or exacerbated by 

both competition and individual physiology (D’Amato et al. 2013, Fernández-de-Uña et 

al. 2015). There is a long history of studies examining general climate response of forests 

(Allen and Breshears 1998, Dale et al. 2001, Millar et al. 2007, D’Amato et al. 2013, Clark 

et al. 2016), but we still do not fully understand how populations and species vary in their 
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drought-specific traits and how these traits scale from the individual to the forest stand 

(Clark et al. 2016). While interest in forest-scale responses to climate change merits studies 

at the stand level, species-level variation in traits are the primary drivers of those responses 

(Clark et al. 2011), and more scalable individual-based studies are needed (Clark et al. 

2012). Analysis of functional traits has shown that models incorporating estimates of C 

assimilation and resource use may be more successful in explaining mortality than growth 

and related traits alone (Garcia-Forner et al. 2016). Using climate change as a natural 

experiment can allow us to test for the presence of a drought-resistant phenotype, or 

multiple phenotypes, using these trait-based approaches.  

 

1.2 Objectives of this study 

The mass-mortality events observed in the Sierra Nevada are primarily drought-induced 

but the likely cause of tree death may be bark beetle (Dendroctonus spp.) infestation (Hicke 

et al. 2016). Additionally, stand density in the Sierra is at a historic high (McIntyre et al. 

2015), exacerbating climate and pest stress. My work seeks to understand how trees cope 

with mixed high-severity stressors such as drought, pest infestation, and increased 

crowding, and what strategies confer the highest degree of stress resilience. In this 

dissertation I: develop a new hypothesis of C allocation tradeoffs in drought-stressed trees; 

develop and test a new method for quantifying C allocation tradeoffs; assess the validity 

of current drought metrics for predicting growth responses of Sierra Nevada conifers; and 

model likelihood of tree mortality based on growth, hydraulic traits, competition, and 

climate.  

In Chapter 2, I present a conceptual model of the C allocation tradeoffs associated 

with drought defense, pest defense, and reproduction during drought. Understanding how 

trees grow and reproduce is a key component of models of forest response to climate 

change. Tree response to climate stress is primarily a function of C budget (McDowell et 

al. 2008) and xylem hydraulic capacity (Sala 2009) as outlined above. Trees take in C 

through stomata, whose aperture is chemically controlled relative to the water and C 

status of the whole plant (Mansfield 1976). When water is unavailable, trees either slow 

stomatal gas exchange, slowing C uptake and potentially starving (Adams et al. 2013), or 

experience hydraulic failure, depending on tree ring anatomy (Sevanto et al. 2014). 

Reproduction may exacerbate drought-induced C limitation, as seeds and pollen also 

require C to be produced (Sánchez-Humanes et al. 2011). Stem growth itself also 

represents a tradeoff between hydraulic conductivity, drought or pest defense, and 

competitive dominance. This is because radial growth is a function of xylem anatomy, 

which directly influences drought and pest resistance. Because adults are non-mobile, 

tree populations can only “migrate” to track their ideal climate through successful 

reproduction and dispersal of seed. Thus, in stressful conditions there is a tradeoff 

between staying alive at current locations and producing enough seed to increase the 

likelihood that offspring can either find a more suitable area to germinate and grow, or 

successfully recruit and persist under current conditions. This relationship can potentially 

be described as a “fight” or “flight” response to drought. As trees change resource 

allocation and use under stress, they may focus primarily on growth and drought defense 

(“fight”), or hedge their bets on successful migration to track their climate niche by 

investing heavily in seed (“flight”). 
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Chapter 3 expands on Chapter 2 by developing and testing a novel technique for 

quantifying the C cost of drought-resistant tree ring anatomy. Tree growth rings are made 

up almost entirely of xylem tracheids, the primary water-conducting cells of a plant. 

Wider tree rings are associated with larger or more numerous tracheids, which can move 

more water, but potentially at a higher risk of cavitation (via air embolism of the water 

column) or wall collapse (Pittermann et al. 2006). Drought stress, at both seasonal and 

long-term scales, is known to induce smaller tracheid diameters and thicker walls in 

conifers (Bryukhanova and Fonti 2012, Cuny et al. 2014, Fonti and Babushkina 2016). 

The “thickness to span” ratio is a ratio of xylem cell wall thickness to tracheid cell lumen 

diameter. Trees vary both within and between species in their threshold thickness to span 

ratio beyond which hydraulic failure occurs, with higher ratios being correlated with 

higher drought survival (Bouche et al. 2014). Thicker cell walls, however, are 

synthesized via deposition of lignin, a C-expensive aromatic polymer, into cell walls. 

Lignin costs 1.3-1.7 times the amount of C per unit volume of cellulose, the other 

primary component in tracheid cell formation (Amthor 2003). Quantifying total lignin 

content may thus provide a direct proxy of C allocation to hydraulic safety. However, 

current methods for measuring lignin are time-consuming, and require expensive and 

specialized laboratory apparatus. In Chapter 3, I present a novel technique using digital 

image quantification to estimate lignin concentrations in living and drought-killed 

conifers.  

Chapter 4 asks: how do we define drought, and do current measures of drought 

accurately reflect tree response to water deficit? Simply defined, drought is the lack of 

water. But decreased water availability for plants can stem from decreased precipitation, 

increased temperature, or combinations of the two, as well as interactions of climate with 

stem density and rooting depth (Anderegg et al. 2013). Many of the currently widely 

available and used climate datasets include derived metrics of drought that attempt to 

combine raw climate variables into a biologically meaningful drought metric (Wang et al. 

2011, Flint et al. 2013, Goulden and Bales 2014, Abatzoglou et al. 2018). While these 

metrics are widely used to quantify species response to drought, few of them have been 

directly compared to each other in terms of predictive performance of drought response. 

These metrics inherently vary due to differences in their underlying theory and modeling 

techniques, and comparisons of similar metrics in European trees have demonstrated 

significant differences in their predictive power of tree growth response (Bhuyan et al. 

2017). In chapter 4, I use tree ring data—which provides a living, spatially explicit record 

of tree growth in response to climate—to test which of five widely used drought metrics 

best tracks tree growth in the Sierra Nevada. This chapter originally was conceived of as 

a simple methodological question to choose the preferred drought metric for inclusion in 

final models of tree mortality, but quickly spawned a discussion of the strengths and 

limitations of drought metrics that are often applied without in-depth consideration of 

their applicability.  

Finally, Chapter 5 combines all of the concepts and techniques in the other 

chapters to ask: what cellular traits confer tree drought resilience, and how do these traits 

interact with each other across species and locations to influence likelihood of mortality 

during extreme drought? This chapter combines modeling techniques and drought metrics 

explored in Chapter 4 with the concepts and mechanisms outlined in Chapter 2 and 3. I 
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model mortality likelihood in Sierra Nevada conifers as a function of xylem anatomy, 

growth, growth variability, competition, drought, and estimates of C costs of each trait. I 

then use cone counts from target trees to assess the validity of the “fight or flight” 

hypothesis outlined in Chapter 2, and discuss how cellular traits can be scaled to the 

entire forest stand to better understand forest dynamics under projected climate change. I 

found that the most significant predictors of mortality during extreme drought were 

growth plasticity, xylem anatomy, and variation in xylem anatomy. Specifically, a high 

degree of interannual variation in growth and xylem anatomy were associated with higher 

likelihood of mortality. Unexpectedly, xylem anatomy thought to confer drought 

tolerance was also associated with mortality. These novel results demonstrate that growth 

alone does not predict mortality under severe drought, and that instead xylem anatomy 

and variation in growth and anatomy should be considered in current models of forest 

response to climate change.  
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Chapter 2: 

Fight or Flight? Potential tradeoffs between drought defense and reproduction in 

conifers1 

 
1This chapter is a reproduction of a published article: Lauder, J. D., E. V. Moran, and S.C. Hart. 2019. 

Fight or Flight? Potential tradeoffs between drought defense and reproduction in conifers. Tree Physiology 

39: 1071–1085  

 

2.0 Abstract 

Plants frequently exhibit tradeoffs between reproduction and growth when resources are 

limited, and often change these allocation patterns in response to stress. Shorter-lived 

plants such as annuals tend to allocate relatively more resources toward reproduction 

when stressed, while longer-lived plants tend to invest more heavily in survival and stress 

defense. However, severe stress may affect the fitness implications of allocating 

relatively more resources to reproduction versus stress defense. Increased drought 

intensity and duration have led to widespread mortality events in coniferous forests. In 

this review, we ask how potential tradeoffs between reproduction and survival influence 

the likelihood of drought-induced mortality and species persistence. We propose that 

trees may exhibit what we call “fight or flight” behaviors under stress. "Fight" behaviors 

involve greater resource allocation toward survival (e.g., growth, drought-resistant xylem, 

and pest defense). "Flight" consists of higher relative allocation of resources to 

reproduction, potentially increasing both offspring production and mortality risk for the 

adult. We hypothesize that flight behaviors increase as drought stress escalates the 

likelihood of mortality in a given location.  

 

2.1 Introduction 

Tradeoffs between reproduction and somatic investment have long been hypothesized 

(Williams 1966), and evidence of such tradeoffs has frequently been observed. For 

instance, perennial polycarpic plants often show a negative correlation between growth 

and reproduction (Harper 1977). The principle of allocation (Levins 1968) suggests that 

the cost of one resource sink can be quantified as the direct loss in potential allocation to 

a different sink. Different trait combinations, given such tradeoffs, may be optimal under 

different environmental conditions. For example, total lifetime fitness under non-stressful 

conditions may be positively correlated with growth and survival that increase future 

reproductive success, or with current reproductive effort at the expense of growth. 

Lifetime fitness is often maximized via intermediate investment in both growth and 

current reproductive effort. As stress intensifies or is prolonged, however, intermediate 

strategies may be less likely to maximize fitness as the overall pool of resources that is 

being divided between growth and reproduction shrinks. 

Tradeoffs between radial growth rate, tree hydraulic efficiency and safety are well 

established in woody plants (Hacke et al. 2001, Pittermann et al. 2006b, Sperry et al. 

2006), and there is increasing evidence of tradeoffs between growth and reproduction 

under drought stress (Woodward and Silsbee 1994, Climent et al. 2008, Hacket-Pain et 

al. 2017, Hacket‐Pain et al. 2018). However, these tradeoffs are often explored 
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independently. Our aim in this paper is to briefly review what is known about these 

tradeoffs, and to present a conceptual model that synthesizes the tradeoffs between 

growth and hydraulic safety, and between growth and reproduction. Such a synthesis is 

necessary to move beyond simply predicting drought-induced mortality, to better model 

what that drought-induced mortality means for long-term forest dynamics including 

recruitment and overstory loss.  

We propose that under extreme stress, trees may face a choice between two 

options.  They may "fight" by allocating more carbon (C) resources to survival-enhancing 

features such as growth or defense at the expense of reproduction. Because perennial 

plants grow and reproduce over many seasons, greater survival is usually likely to 

increase lifetime reproductive output more than higher reproduction in any one year. 

Thus, this is the path one would expect trees to follow under most circumstances. 

Alternatively, by allocating more resources to reproduction, or not aborting reproductive 

structures already in various stages of production, they may increase the probability that 

offspring will successfully germinate in favorable sites locally or in a neighboring 

environment, achieving "flight." However, such a strategy could increase mortality risk if 

the resources diverted from growth decrease stress defenses. This strategy is commonly 

observed in annual plants (Wada and Takeno 2010, Suzuki et al. 2013) in which it often 

results in early death or senescence.  

We propose that perennial polycarpic plants might also exhibit a similar shift in 

allocation if unfavorable conditions are sustained and the probability of adult mortality 

passes a critical threshold, as has been occurring during increasingly intense and frequent 

drought globally in recent years (Allen et al. 2015, Hartmann et al. 2018). For a tree, 

favoring growth and survival over reproduction when under stress would usually be 

expected to maximize lifetime fitness, as decades of potential future reproductive success 

become zero if a tree dies. However, because fitness is zero if no seed is produced, and 

there may be a threshold level of stress that will kill most trees in a population, under 

these conditions reproduction at the expense of increased mortality risk may maximize 

lifetime fitness.  

While multiple types of stressors could induce these shifts in allocation, we will 

focus here on drought stress because closing stomata to reduce water loss (Tardieu and 

Simonneau 1998) decreases CO2 uptake (Farquhar and Sharkey 1982) and availability of 

C for growth or reproduction (McDowell et al. 2008). Recent work has attempted to parse 

mechanisms of drought-induced mortality from both a physiological and C availability 

perspective (McDowell et al. 2008, McDowell 2011, Kerhoulas and Kane 2012, 

Anderegg et al. 2012, Sala et al. 2012, Anderegg and Anderegg 2013, Sevanto and 

Dickman 2015, Adams et al. 2017, Birami et al. 2018). However, there has been little 

synthesis across studies of drought-response physiology and life history tradeoffs, and 

several prominent unanswered questions remain. These include: How do climate and 

individual life history traits influence stress avoidance strategies?; Is there an optimal 

strategy of resource use that allows for both survival and the highest chance of successful 

reproduction under stressful conditions?; and what are the implications of tradeoffs 

between survival and reproduction for species persistence under climate change? 

Answering these questions requires a more robust scaling of mechanistic drought 
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responses from the individual cell to the whole tree with respect to both survival and 

reproduction. 

In this paper, we focus on coniferous trees because they exhibit complex C 

dynamics, with drought-killed trees demonstrating both altered C storage patterns and 

hydraulic failure. In contrast, angiosperms primarily exhibit only hydraulic failure, with 

little evidence of C depletion (Adams et al. 2017). In addition, unlike most angiosperm 

fruits, conifer cones can take up to three years to mature following initiation (Mooney et 

al. 2011, Davi et al. 2016), potentially making reproductive allocation more risky in 

highly variable and unpredictable environments. However, though mechanisms involved 

may differ, similar tradeoffs are likely to occur in angiosperm trees as well.  

We first review current understanding of C allocation to growth, tradeoffs 

between growth and hydraulic safety, and how drought modifies these allocation patterns. 

Tradeoffs between growth and hydraulic safety are well studied (Xu et al. 2014, Venturas 

et al. 2017, Barotto et al. 2018), but often only with respect to tree growth and survival. 

Here we place these tradeoffs into a fitness context by reviewing the C budget 

implications of growth, hydraulic safety, and the interaction of the two for reproductive 

capacity. Next, we discuss how drought influences reproductive patterns, and evidence of 

tradeoffs between growth and reproduction. We then present a new conceptual 

framework of C allocation under stress, and discuss both evolutionary and ecological 

implications of tradeoffs among growth, reproduction, and defense by distinguishing 

“fight” and “flight” strategies in stressed trees. Finally, we discuss opportunities for 

research and synthesis across C budget studies, climate change experiments, and analyses 

of tree physiology, with the aim of creating a more integrated understanding of tree 

response to stress.  

 

2.2 Growth-survival relationships, as mediated by xylem hydraulic safety and 

carbon cost 

Growth is often used as a proxy for drought response in forest trees, with rapid or 

prolonged periods of depressed growth suggesting an increased likelihood of mortality 

(Wyckoff and Clark 2002, Das et al. 2007, Cailleret et al. 2017). However, in some trees, 

growth plasticity under drought (Lloret et al. 2011) or overall slow growth (Moran et al. 

2017) may in fact be a drought resistance strategy. Growing less during drought and then 

rapidly increasing ring width afterward may serve to conserve resources when water 

availability declines. This growth plasticity may simply be a by-product of shifts in 

allocation of growth resources belowground (Brunner et al. 2015, Hasibeder et al. 2015, 

Phillips et al. 2016), to carbohydrate storage pools (Chapin et al. 1990, Luxmoore et al. 

1995), or to non-woody tissues or osmo-regulatory components (Gower et al. 1995). This 

relationship between growth plasticity and drought tolerance is likely due to the complex 

interactions between growth and xylem anatomy during times of C depletion.  

Relationships among growth, xylem anatomy, and hydraulic safety are well 

established (Sperry et al. 2003, Xu et al. 2014, Venturas et al. 2017, Barotto et al. 2018). 

Hydraulic failure – breakage of the water column within xylem – can occur when air 

embolism blocks water flow (Sperry et al. 1988, Cochard 2006, Barotto et al. 2018), or 

when water potentials within the xylem become too negative and the xylem cell implodes 

(Hacke et al. 2001, Pittermann et al. 2006b). Drought increases the likelihood of either of 
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these mechanisms of hydraulic failure by decreasing water potentials within the soil and 

increasing the tension applied to the water column along the soil-plant-atmosphere 

continuum (Hacke et al. 2000, Sperry et al. 2003).  

Conifer resistance to hydraulic failure is a function of anatomy of xylem cells 

(tracheids) and inter-tracheid pits (Hacke et al. 2001, Sperry 2003, Pittermann et al. 

2006b, Sperry et al. 2006, Anderegg et al. 2015, Barotto et al. 2018). Trees with high 

resistance to hydraulic failure often have thickened xylem cell walls, high wood densities, 

lower xylem cell diameter (D), and lower inter-tracheid pit area than those that are less 

resistant (Hacke et al. 2001, Pittermann et al. 2006b, 2006a, Guet et al. 2015, Barotto et 

al. 2018). However, increases in wall thickness (t) and wood density represent multiple 

tradeoffs. First, trees with a high ratio of cell wall thickness to diameter (t/D) often have 

low hydraulic efficiency, as small xylem cells transport less water than larger cells 

(Hacke et al. 2001, Pittermann et al. 2006b). Additionally, thickened xylem cell walls 

have a higher C cost than thinner walls, potentially leading to tradeoffs among hydraulic 

safety and other potential C sinks such as radial growth (Figure 2.1).  

Tracheid walls are mostly composed of cellulose and hemicellulose (primary cell 

wall) and lignin (secondary wall). In conifers, radial growth is often positively correlated 

with tracheid abundance and size, with larger ring widths being associated with more 

numerous and thinner-walled tracheids (Xu et al. 2014, Cuny et al. 2014). Tracheid wall 

thickness is positively correlated with lignin concentrations (Gindl 2001). Lignin  

contains, on average, 30% more energy (in the form of C) than cellulose (White 2007, 

Novaes et al. 2010). High negative correlations have been shown between total tree 

biomass and lignin concentrations (Novaes et al. 2010), demonstrating that decreased 

radial growth is often associated with increased relative lignin (and thus increased C cost) 

per unit volume of wood. Lignin concentration in gymnosperms is negatively correlated 

with Ψ50 (the water potential at which 50% of conductivity is lost, Figure 2.2). This is 

likely due to tracheid wall reinforcement, but there is also mixed evidence of lignin 

deposition into the various components of inter-tracheid pit membranes that may alter 

embolism resistance (Pereira et al. 2018). While the role of lignin in reducing likelihood 

of cavitation must be further explored, this data demonstrates that constructing drought-

resistant xylem is lignin intensive. Thus, the tradeoffs among radial growth, xylem 

hydraulic safety, hydraulic efficiency, and the C cost of all three of these components 

show that growth and “type” of growth (i.e., high or low radial growth versus hydraulic 

safety) are only loosely dependent, and may be independent under drought stress. For 

example, two trees may grow rings of equal width, but with significantly different 

hydraulic safety and relative C investment; radial growth and hydraulic safety do not 

necessarily constrain each other, but may if resources are depleted.  

The C costs of growth-related structures are further exacerbated by the multiple 

interactive stresses often placed on trees during drought. In many coniferous forests, for 

example, outbreaks of wood-boring insects and other pests coincide with drought stress 

due to weakened pest defenses and ideal conditions for pest proliferation (Hicke et al. 

2016). Both chemical and physical defenses to pests represent a significant C cost 

(Franceschi et al. 2005). The quantity of resin ducts, which transport C-based defensive 

compounds, and the ratio of resin ducts to xylem cells, are both positively correlated with 

survival of bark beetle attack in conifers (Kane and Kolb 2010, Ferrenberg et al. 2014). 
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Tree growth and resin duct properties (including duct density) are also positively 

correlated, suggesting that conditions conducive to growth are also conducive to 

increased defenses (Kane and Kolb 2010, Ferrenberg et al. 2014), likely due to high 

availability of resources, including C. While resin duct formation tends to decrease under 

drought stress (Slack et al. 2017), allocation of resources to resin ducts can rise when 

trees are deprived of phosphorus (Ferrenberg et al. 2015), showing that different stresses 

can induce different changes in resource allocation to pest defense. Thus a tradeoff exists 

between stress defense (both drought and pest) and other resource sink demands, such as 

growth or reproduction.  

  

2.3 Mast seeding and carbon costs 

Average construction costs of seed vary and are not always significantly different from 

leaf and stem tissue, but maximum seed construction costs are often much higher than 

other tissues (Poorter et al. 2006). Reproductive structures can consume 6-10% of annual 

net canopy photosynthesis (Gower et al. 1995). Immature conifer cones can 

photosynthesize, but McDowell et al. (2000) reported that cone photosynthesis in 

Pseudotsuga menziesii can only provide about 27% of the C cost of cone production. The 

remaining C for cone formation must come from current photosynthetic activity or via 

drawing on C stores. Some data suggest potential C-limitation of reproduction. For 

instance, CO2 fertilization of P. taeda induces larger cones and earlier seed production 

relative to tree size than under ambient conditions (Way et al. 2010). Similarly, P. taeda 

trees exposed to elevated CO2 produced three times as many cones and were twice as 

likely to be reproductively mature as trees of the same size grown in ambient conditions 

(LaDeau and Clark 2001).  

Masting, the production of large seed crops in synchrony across a population at 

semi-regular intervals, is a common reproductive strategy in trees (Kelly and Sork 2002). 

The advantages of this strategy are twofold. First, synchronous flowering/pollen 

production can increase successful ovule fertilization (Mooney et al. 2011, Rapp et al. 

2013, Koenig et al. 2015, Bogdziewicz et al. 2017), perhaps especially in species that rely 

on wind to transport their pollen rather than the more directed dispersal services of 

animal pollinators. Second, synchronous seed production can satiate predators, reducing 

the proportion of seeds that get damaged or eaten (Mooney et al. 2011, Koenig et al. 

2015). However, these reproductive flushes represent a significant potential resource 

expenditure at particular time intervals (Hacket-Pain et al. 2015, Pearse et al. 2016). 

Studying trees with this reproductive pattern allows direct measurement of plant status 

and resource investment before, during, and after a mast (Herrera et al. 1998).  

 Weather may affect particular stages of reproduction in different ways (Figure 

2.3, Table 2.1). For instance, in species where the source of C for reproduction has been 

studied, spring reproductive structures (flower or immature female/pollen cones) tend to 

be built with stored C, while most of the C for developing fruits or cones comes from 

current-year assimilation (Hoch et al. 2003). Thus, weather conditions favorable for 

photosynthesis (relatively moist, moderately warm) during the seed development period 

are likely to be associated with larger seed crops (Keyes and González 2015, Guo et al. 

2016b). However, the amount, synchrony, and effectiveness of pollen dispersal, which 

sets the stage for fruit/cone development, is often favored by dry, warm, or dry and warm 
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spring conditions (Koenig et al. 2015, Pearse et al. 2016, Bogdziewicz et al. 2017, 

Gallego Zamorano et al. 2018). The pollen dispersal stage in turn depends on the 

development of flower/cone primordia and the meiosis that produces the precursors of 

ovules and pollen.  This is often favored by warm conditions in the previous spring and 

summer (Smaill et al. 2011, Bogdziewicz et al. 2017, Gallego Zamorano et al. 2018), 

though that is not universal (Mooney et al. 2011), and may depend on whether the species 

is more limited by cold or drought. Finally, in at least some species, the year prior to 

primordia formation seems to be important for "resource priming" (Buechling et al. 

2016), and the uptake of nitrogen (N) and other nutrients incorporated at this stage is 

often favored by moist, cool, or moist and cool conditions (Mooney et al. 2011, Smaill et 

al. 2011).  

There are tradeoffs evident in resource allocation to different stages of 

reproduction.  In pines, which develop cones over two to three years, the cone maturation 

period that will result in seed dispersal in the fall of year one overlaps with two years of 

cone primordia initiation and one year of pollen production and dispersal (Figure 2.3). 

Any resources devoted to one of these stages cannot be allocated to the others, likely 

resulting in masting periods that approximate a 3 year cycle (Guo et al. 2016b). Even in 

trees with a shorter seed development period, years of high seed production tend to be 

followed by years of low seed production, even if favorable weather conditions persist. 

This may account for patterns such as warm spring weather in the year of flowering and 

two years prior being positively associated with seed production, but warm spring 

weather one year prior being negatively associated with seed production (Keyes and 

González 2015, Pearse et al. 2016, Gallego Zamorano et al. 2018).  

There is mixed evidence for tradeoffs among growth and reproduction during 

drought (Table 2.1). Tree growth is often decreased both during mast years and one year 

following masts (Hacket-Pain et al. 2017, Hacket‐Pain et al. 2018). While positive 

correlations between growth and reproduction in non-masting years have been observed 

in Pinus halepensis (Santos et al. 2010, Ayari et al. 2012, Ayari and Khouja 2014), P. 

pinaster (Santos et al. 2010), P. banksiana (Despland and Houle 1997), and Abies 

sachinelensis (Hisamoto and Goto 2017), none of these studies explicitly assessed the 

growth-reproduction relationship in mast years versus non-mast years. Woodward and 

Silsbee (1994) found that both A. lasiocarpa and Tsuga mertensiana showed positive 

correlations between growth and reproduction overall, but that large cone crops (i.e., mast 

years) were associated with decreased radial growth. Koenig and Knops (1998) found 

negative correlations between vegetative growth and reproductive output over multiple 

years in both Picea and Pinus spp., and argue that this is direct evidence of a “switch” in 

C allocation between mast events. Eis et al. (1965) found that ring widths in P. menziesii 

over a 28-year period were only depressed during years of large cone crop production. 

Finally, a recent experimental study found that pines from which developing cones were 

removed grew marginally more immediately after the treatment, and also produced 70% 

more cones the year after, compared to control trees (Santos-del-Blanco et al. 2012). This 

suggests that resources may be mostly or entirely allocated to reproduction but re-

allocated following cone removal. 
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2.4 Drought impacts on reproduction 

Reproductive response of conifers to drought stress varies widely (Table 2.1). Direct 

evidence of drought-induced reproduction in conifers is mixed, and often difficult to 

directly assess (Davi et al. 2016). In part, this may be because, as mentioned above, 

climatic conditions can influence reproductive allocation during cone initiation, growth, 

and maturation differently.  Consistent with the favorable impacts of dry conditions on 

pollination, several studies in conifers have found either negative correlations between 

initial male and female cone production and precipitation (Roland et al. 2014), or positive 

associations between water stress and initial female cone production (Greenwood 1981, 

Riemenschneider 1985).  On the other hand, wet years are better for C assimilation, and 

have been found to be positively associated with the initiation of cone primordia 

(Mooney et al. 2011) or the development of fertilized cones (Roland et al. 2014, Keyes 

and González 2015, Guo et al. 2016b).    

Because cone production is usually a multi-year process, a switch in C allocation 

toward greater relative investment in growth than reproduction during a low-resource 

year would likely result in abortion of currently developing cones. Cone abortion in 

conifers does appear to be higher in subdominant trees than dominant trees under ambient 

conditions (Goubitz et al. 2002). This may be the result of decreased CO2 under light 

limitation (Berdanier and Clark 2016), leading to abortion of cones whose development 

cannot be safely supported. Thus, one potential direct indicator of altering C allocation to 

reproduction or growth under drought stress would be drought-induced increases in cone 

abortion rates, as trees shunt resources from cone production back into growth, drought 

defense, or pest defense. 

 

2.5 Fight or Flight  

2.5.1 Tradeoffs between growth, defenses, and reproduction 

If there are tradeoffs between growth and hydraulic safety, as well as between growth and 

reproduction, the C depletion experienced by trees under drought stress may further 

exacerbate the impacts of these tradeoffs. This may lead to one strategy (i.e. allocation to 

hydraulic safety, allocation to rapid radial growth, allocation to storage, or allocation to 

reproduction) becoming dominant. If trees exhibit significant tradeoffs between xylem 

construction and reproductive patterns, they may be displaying variations on classic 

“fight or flight” behaviors (Cannon 1915). If a stressed tree invests more of an available 

resource into defenses (against drought, pests, or competition) at the xylem anatomy, 

growth, or C storage levels, then this may be considered a “fight” behavior. Fight 

behaviors include numerous actions currently categorized under such terms as drought 

avoidance, drought tolerance, and drought resilience (Heschel and Riginos 2005, Lloret et 

al. 2011, Moran et al. 2017). Fight behaviors may increase likelihood of survival, 

potentially at the expense of reproductive success in the current or next year but allowing 

for later reproduction. If a tree instead invests more available resources into reproduction, 

either through maintenance of investment in previously initiated cones or through new 

cone initiation, this may be considered a “flight” behavior. Such a reproductive pulse 

could increase the risk of tree death under low resource conditions, but may also 

maximize lifetime fitness if mortality risk is already high and investment in reproduction 

increases the probability that offspring will reach suitable sites for establishment. 
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No current conceptual models of C allocation partition growth apportionment into 

sub-categories, such as hydraulic architecture versus radial growth. While radial growth 

produces new xylem, the anatomy of the xylem that makes up that radial growth can vary 

widely from year-to-year or tree-to-tree, affecting hydraulic safety. Few models of C 

allocation distinguish “types” of radial growth, such as the C cost of high radial growth 

with low wood density (and associated low hydraulic safety) versus the cost of low radial 

growth with high wood density. Such partitioning is important to fully understand the 

fitness implications of C allocation. Low stem radial growth is often predictive of 

mortality (Das et al. 2007), but lack of growth cannot be deemed drought intolerance if 

the tree is re-partitioning available resources to other “fight” behaviors that increase 

survival probabilities (e.g., decreased growth as a function of increased tracheid 

lignification, increased defensive chemicals, or increased root growth). Tradeoffs may 

occur not only between reproduction and growth, but also between growth of different 

tissues (i.e., stem, leaf, or root), and between different components of tissue growth, such 

as tracheid widening versus thickening.  

 

2.5.2 Physiological mechanisms of tradeoffs 

The density of sapwood, the zone of active xylem transport in a tree stem, is negatively 

correlated with whole plant hydraulic conductance (K; Mencuccini 2003) and xylem cell 

enlargement (Cuny et al. 2014), and positively correlated with tracheid wall thickness 

(Pittermann et al. 2006b). High K is also associated with high photosynthetic capacity 

and general plant vigor (Mencuccini 2003), and leaf area often scales linearly with 

sapwood conductive area (Luxmoore et al. 1995, Trugman et al. 2018). Thus, we can 

consider tracheid diameter (which is positively correlated with K), wall thickness, and 

number—in terms of their effects on whole plant hydraulics, stem sapwood growth, and 

C acquisition at the leaf level—and further parse the responses of these components to 

drought.  

Under drought, high K does not always increase survival. In fact, high K relative 

to hydraulic safety (i.e., low xylem wall thickness or inter-tracheid pit resistance to 

cavitation) may increase risk of mortality (Pittermann et al. 2006b). Drought stress will 

likely lead to increased investment in wall thickening in newly grown tracheids, and to 

decreases in K. Turgor-limited cell expansion provides a mechanism for this shift. 

Cellular radial growth is constrained by the amount of water present, which drives 

tracheid cell enlargement prior to wall lignification and cell death (Woodruff et al. 2004). 

Cell lumen diameter is highly dependent on how long turgor can be maintained; the 

longer the expansion phase, the larger the lumen diameters and the smaller the t/D of the 

cell (Anfodillo et al. 2012). If a plant is drought stressed, cell turgor tends to be reduced, 

leading to drought-induced decreases in new xylem cell diameters and a relative increase 

in wall thickness (Cuny et al. 2014). This would result in a decrease in K, which may 

signal defoliation and thus reduced photosynthetic capacity. Further, a decrease in K via 

decreased tracheid lumen diameters and increased wall thickness would result in an 

increase in the relative C cost per unit volume of wood produced. Thus, the relationship 

between K, photosynthetic capacity, and hydraulic safety represents a positive feedback 

loop; drought would induce smaller tracheids with a higher hydraulic safety and higher 

relative C cost, which is further exacerbated by decreased C uptake potential.  
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Unlike growth, which contains further allocation tradeoffs, reproduction 

represents only one significant tradeoff to the tree - the potential net loss of resources to 

reproduction from all other processes. However, as mentioned above, there may be 

tradeoffs in allocation between developing fertilized cones and cone primordia that 

results in negative correlations of current year seed production with reproduction in the 

year or two prior. Additionally, reproduction may reduce photosynthetic capacity, as 

cones take up branch area that may normally be covered in needle tissue (Luxmoore et al. 

1995). However, surrounding photosynthetic tissues may compensate for decreased leaf 

area, at least to some degree. Carbon assimilation dynamics are increasingly being shown 

to be sink-controlled (Luxmoore et al. 1995, Sala et al. 2012, Hayat et al. 2017). That is, 

as C demand at sinks increases, photosynthesis may be up-regulated. Yet, in the context 

of drought, if C sink demand increases photosynthetic activity, we may expect increased 

water loss due to increased stomatal conductance. This would increase the likelihood of 

hydraulic failure or lead to stomatal closure to mitigate water loss, counter-acting any 

potential cone-driven increases in C assimilation via photosynthesis. 

 

2.5.3 Conceptual model of C allocation tradeoffs 

By incorporating these various components of growth—radial growth, xylem anatomy, 

and the tradeoffs between hydraulic safety and hydraulic capacity—into a new 

conceptual model of C allocation, we can examine the implications of multiple tradeoffs 

in the C allocation pathway for masting conifer species in drought-prone environments 

(Figure 2.4). Under stressful conditions, we would expect the uppermost tradeoff in the 

allocation hierarchy to be exacerbated, if the C cost of both growth and reproduction is 

too high for the stressed tree. As discussed above, we would expect conifers in most 

situations to exhibit “fight” responses to stress (Figure 2.4A), with increased relative 

investment in components of growth, including induced defenses. This will maximize 

their potential to survive the stress and reproduce in subsequent years, even if current 

year reproduction is suppressed. However, if drought is prolonged or reaches an intensity 

threshold beyond which survival is unlikely, flight may be more beneficial. 

 Two potential fight responses are possible if direct tradeoffs exist between C 

allocation to belowground versus aboveground growth (Figure 2.4A). The first possibility 

is investment primarily in root growth, which could enable trees to reduce drought stress 

by accessing more water. Some studies in seedlings have found increased root allocation 

early in drought, though roots can die as drought intensifies or lengthens (Brunner et al. 

2015). There is some evidence of enhanced root non-structural carbohydrate (NSC) 

allocation during drought in many taxa (Hagedorn et al. 2016, Kannenberg et al. 2017, 

Piper et al. 2017), though other studies have found no significant change in C 

mobilization belowground (Kerhoulas and Kane 2012, Blessing et al. 2015), or decreased 

root NSC and increased stem NSC (Birami et al. 2018, Li et al. 2018). Changes in 

strategy from passive to active root C storage instead of growth may represent in-season 

switches in C allocation that serve to build up C reserves and shorten stress recovery time 

(Hagedorn et al. 2016).  

The second possible C allocation pathway associated with a fight response would 

be to aboveground growth or chemical pest defenses. Aboveground C allocation can 

result in either increased radial growth, increased hydraulic safety, or increased chemical 
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defenses. Turgor-limited cell expansion would be expected to lead to decreased tracheid 

diameter and increased relative wall thickness. Maximizing radial growth may increase 

susceptibility to hydraulic failure, but will also increase competitive ability, particularly if 

a tree survives the drought. However, growing small rings in order to maintain hydraulic 

safety does not preclude a tree from maintaining a large sapwood area and post-drought 

competitive ability. Theoretically, if a “fighting” tree does not maximize growth 

increment but instead grows larger numbers of smaller tracheids, K per unit area of wood 

(and associated canopy leaf area) can be maintained with little change in hydraulic safety, 

but at a higher C cost than small rings or large rings with large tracheids. Such a pattern 

has been demonstrated in nature; Picea crassifolia grew larger rings when more 

numerous smaller tracheids were produced and smaller rings were associated with less 

numerous larger tracheids (Xu et al. 2014). While this study did not directly assess C or 

lignin content of measured rings, we would expect these larger, tracheid-dense rings to be 

more C-expensive than the smaller rings, demonstrating fight behavior. Finally, drought 

stress may induce increased production of C-rich chemical defenses against pests that 

attack drought-weakened trees, such as terpenoids and phenolic compounds (Turtola et 

al. 2003), or resin (Franceschi et al. 2005). The production of these chemicals may 

preclude other C-expensive processes, thus representing fight behavior.  

Flight responses would be demonstrated by maintained or increased relative 

allocation to reproduction (Figure 2.4B). Due to the relationship between growth, 

tracheid diameter, and sapwood conductance (Mencuccini 2003, Pittermann et al. 2006b), 

if a switch in C allocation leads to decreased growth and increased reproduction, we 

would expect a decrease in K and total photosynthetic capacity in subsequent years 

relative to average climatic conditions, as well as decreased C availability for pest 

defenses. Thus, a stress-induced mast is likely only a viable strategy if risk of mortality is 

already high or if tree resource pools are sufficient. Another potential flight response in 

conifers would simply be continued development during drought years of cones that 

formed in prior years, but measurable decreases in survival-enhancing traits such as resin 

ducts or growth of xylem with high hydraulic safety. 

A switch to a flight response need not require mortality after reproduction or 

initiation of reproductive structures—only a shift to greater relative investment in 

reproduction. The terminal investment hypothesis, which argues that organisms may 

allocate resources preferentially to reproduction immediately prior to death or senescence 

(Clutton-Brock 1984) may not apply directly to long-lived perennial polycarpic trees. 

Koenig et al. (2017) present one of the first direct assessments of terminal investment in 

polycarpic trees, and find little support for it in Valley Oak (Quercus lobata). This 

conclusion is based on there being no tradeoff between growth and reproduction, and no 

change in seed production at the stand scale prior to mortality. However, this study did 

not examine tradeoffs between reproduction and growth in geographically constrained 

populations undergoing a stress-induced mass mortality event. Instead, only 0.7% of 

observed trees died “apparently of natural causes” across a large geographic range, and 

the lack of observable tradeoffs may be a result of natural patterns of senescence versus 

switches in resource allocation in terminally stressed trees. Thus terminal investment may 

still apply in highly stressed tree populations, but evidence is limited. More likely, trees 
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that increase C allocation to reproduction under drought stress may be somewhat 

reducing allocation to survival traits, but not to the point of ensuring their own death.  

Differential rates of continued investment of resources into reproduction that was 

initiated prior to stressful conditions can be categorized as fight or flight. If a tree invests 

resources into cone initiation and then resource availability drops, then we would expect 

an increase in cone abortion rates as trees switch resource allocation toward survival as 

part of a fight strategy (Figure 2.5A). A lack of increased abortion would then be 

indicative of continued resource allocation to reproductive output (Figure 2.5B). If 

coupled with a decrease in investment in fight responses, this would indicate a relative 

shift toward flight. If cone initiation and development are triggered by a drought at the 

expense of growth, survival probability, or both (Figure 2.5C), this would be a flight 

strategy tipping toward terminal investment. 

 

2.6 Evolutionary Implications 

From an evolutionary perspective, the effect of either of these behaviors on fitness 

depends on climatic and competitive conditions. If a tree species experiences rapid 

climate change, it must “migrate” via seed dispersal into newly favorable areas or adapt 

to new conditions. If a tree cannot migrate or adapt, the species may experience a 

decrease in population size or range (Aitken et al. 2008). This may reduce the relative 

fitness benefit of fight responses when climatic stresses increase, as sexual reproduction 

generates new genetic combinations on which natural selection can act locally, while 

dispersal enables migration to less climatically stressful areas (Figure 2.6).  

Investment in seed production does not guarantee successful recruitment of new 

individuals into a population, let alone a successful range expansion or shift (Case and 

Taper 2000, Aitken et al. 2008). Recent work has demonstrated that reproductive effort in 

P. ponderosa is expected to increase under climate change, but that the same conditions 

that benefit reproductive output may reduce seedling recruitment, leading to a net 

decrease in P. ponderosa range (Petrie et al. 2017). Increased reproduction does, 

however, increase adaptive potential in long-lived plants. Climent et al. (2008) show that 

early investment in reproduction may be an ideal strategy for trees that have serotinous 

cones, as building an early aerial seedbank can increase overall fitness in areas prone to 

stand-replacing fires. Reproductive investment at an earlier age than most Pinus species 

has been observed in both P. halepensis and P. pinaster (Climent et al. 2008, Santos-del-

Blanco et al. 2012), which both live in fire-prone landscapes with high-severity burns, 

demonstrating potential selection for high reproductive output in a disturbance-prone 

landscape. Tree species can exhibit “adaptation lag,” whereby the rate of genetic change 

is much slower than that of climate change (Aitken et al. 2008). Modeling studies have 

shown that increased adult mortality could potentially reduce this adaptation lag by 

allowing better-adapted seedling genotypes to regenerate more quickly in the resulting 

gaps (Kuparinen et al. 2010). Further, increased allocation of C and N to seeds has been 

shown to increase germination potential, demonstrating the simultaneous benefit of 

increased seed output and potential recruitment in trees investing more resources in seed 

(Caliskan and Makineci 2015). Thus, flight strategies may increase adaptive potential in 

stressful environments.  
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One caveat of the framework presented here is the response of a tree to stress may 

be affected by pre-stress growth patterns. Trees that grew vigorously when immature may 

be more susceptible to stress when mature, because fast growing trees may be more likely 

to be attacked by wood-boring insects and defoliators (Ruel and Whitham 2002). A tree 

can thus exhibit drought avoidance strategies in the current year and still be at risk of 

drought stress due to prior growth patterns. If a tree has already grown “safe” xylem (i.e. 

tracheids with high t/D), then decreased overall growth may actually be the best strategy. 

Such a strategy may then allow a tree to store more C in pools for later use. If a tree has 

inefficient or unsafe xylem, then rapid growth of safe xylem or root tissue may be the 

most beneficial strategy, depending on current leaf area. If leaf area is high, then high K 

must be maintained—potentially at the expense of hydraulic safety—in order to maintain 

canopy hydration (Pittermann, personal communication). Regardless, we hypothesize that 

as drought intensity or length increases, the fitness benefit of a reproductive flush is 

increased.  

 

2.7 Implications for Future Research 

The tradeoffs discussed above (reproduction-growth and growth-hydraulic safety) are not 

new concepts. Nor is the idea of tradeoffs between various survival-enhancing tree traits 

under stress (Ferrenberg et al. 2015). However, no research to date has synthesized both 

sets of tradeoffs into an integrative C budget model for trees under stress. The conceptual 

framework presented here identifies multiple targets for future research. If conifer 

populations do exhibit stress-induced flight behaviors, this would represent a significant 

shift in our understanding of the implications of drought stress on tree populations. We 

hypothesize that the tradeoffs inherent in wood growth in coniferous trees are 

exacerbated by drought in ways that can have counterintuitive effects on cellular 

physiology and reproductive output. We propose that “flight” strategies may increase 

fitness in stressful environments. To test this hypothesis, we must examine models of C 

allocation with the context of extreme environmental gradients. Recent and current 

studies continue to provide new insights into formation, concentration, and mobilization 

of NSC storage pools (Oberhuber et al. 2011, Aaltonen et al. 2016, Guo et al. 2016a, 

Birami et al. 2018, Li et al. 2018), which will greatly increase understanding of conifer C 

storage dynamics.  

Seed production and seed quality are areas in need of continued research. 

Comprehensive models of seed production that incorporate data from simple field 

methods (Clark et al. 1999, Sánchez et al. 2011) should be employed in studies of C 

dynamics to scale from individual tree physiology to patterns of seed production. 

Additional research is needed to quantify C investment in cone and seed tissue, as well as 

what variation in investment to cones and seeds means for germination success. Thus, 

future studies of forest drought response should incorporate cone and seed collections or 

counts as well as adult tree physiology. The greatest opportunity for integration of multi-

scale measurements of tree responses to climate change is in the joining of wood anatomy 

and tree ecology (Locosselli and Buckeridge 2017). Recent advances in the fields of 

tracheid anatomy and phenology demonstrate the temporal information that can be 

gathered from observing xylem production relative to climate stress in situ, including 

timing of xylem formation, tracheid widening, and wall thickening (Rossi et al. 2012, 
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Ziaco and Biondi 2016). These kinds of observational studies can be paired with 

reproductive surveys, 13C pulse-labeling experiments (Heinrich et al. 2015), and further 

chemical partitioning of wood (i.e., measurement of lignin concentrations) to understand 

the xylem-level tradeoffs that may occur under stress. Modern instrumentation can also 

be leveraged to measure everything from growth dynamics to sap flow and NSC 

concentrations all on a single tree in an automated fashion. Steppe et al. 2015) outline an 

idealized study system utilizing instrument clusters to pair ecophysiological and 

anatomical measurement, allowing a high-resolution, real-time tracking of growth 

dynamics along with potential C allocation patterns. These kinds of studies could then be 

used to further test for evidence of fight or flight behavior by incorporating simple 

reproductive surveys. Finally, hierarchical modeling techniques can use the conceptual 

model presented here as a foundation for building trait-based predictions of whole-forest 

or species-level range shifts in response to climate change (Rehfeldt et al. 2015, Garcia-

Forner et al. 2016, O’Brien et al. 2017). 

Climate change-induced mortality in forests can be leveraged as a “natural 

experiment” to evaluate differences between living and stress-killed trees (Gleason et al. 

2017). The widespread, drought-induced mortality of conifers in Western North America 

(Hicke et al. 2016, Young et al. 2017) provides an ideal system for examining drivers of 

differential mortality and survival at small scales. Such drivers may include variation in 

the cellular components of growth (e.g., variation in xylem anatomy) relative to 

reproductive output, as well as the degree of tradeoff between hydraulic architecture and 

seed production. As climate change continues to apply novel stresses to tree populations, 

forest ecologists and tree physiologists must develop methods to test not only current 

response to stress, but also how responses at multiple spatial scales affect whole-forest 

response. Some species and individuals may fight, and invest all available resources into 

survival at the risk of succumbing to long-term or permanent climatic stress. Others may 

exhibit flight behavior, putting resources toward seed, which may increase migration or 

adaptation potential.  Our understanding of these responses can be enhanced by not only 

developing conceptual and numeric models of C allocation within a tree, but also how 

that allocation affects future C allocation, tradeoffs, and feedbacks among tree processes. 

Fine-scale mechanistic studies of tree physiology continue to use novel approaches that 

should now be combined into integrative models of tree response to changing climate. 
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Table 2.1: Reported positive (+) or negative (-) relationships between growth and cone production or drought and cone production 

in studies directly assessing reproduction in conifer species. Spearman ρ and Pearson r correlation coefficients or estimated β 

values from original fitted models are reported where present or calculated from published data, and were re-calculated as a 

species average if values were from multiple plots in one location. Correlations between final cone production and climatic values 

in the inferred year of initiation, pollination, or maturation, if specified, are presented. Total R = total cone production. Values in 

parentheses are S.D. 

Species Growth: 

Total R 

 Drought: 

Initiation 

Drought: 

Pollination 

Drought: 

Maturation 

Drought:  

Total R 

Reference 

Abies sachinelensis +     Hisamoto and Goto 2017 

Pinus banksiana +0.05 (0.02)a 0.32a 0.05a -0.16a  
Riemenschneider 1985, Despland and 

Houle 1997 

Picea engelmanii +    + Buechling et al. 2016 

Pinus pinea +     Gonçalves and Pommerening 2012 

Pinus sylvestris 0.355b    - Vilà-Cabrera et al. 2014 

Abies alba -0.14b 0.55b -0.53b -  Davi et al. 2016 

Abies lasiocarpa - -0.1(0.45)c 0.05 (2.95)c -0.1(0.45)c  Woodward and Silsbee 1994 

Tsuga mertensiana -/+ 
-0.075 

(0.575)c 

0.075 

(0.375)c 
-0.075 (0.575)c  Woodward and Silsbee 1994 

Pseudotsuga 

menziensii 
-    + Ebell 1967, Eis et al. 1965 

Pinus edulis  ≤ -0.51c*    Redmond et al. 2012 

Picea glauca  -0.29b 0.47b -0.25b + Roland et al. 2014 

Pinus palustris     + Guo et al. 2016 

Pinus pinea  -0.01b    Calama et al. 2011 

Pinus ponderosa  ≤ -0.35c   -0.61b 
Mooney et al. 2011, Keyes and 

González 2015 

Pinus taeda  +    Greenwood 1981 

Pinus halepensis   -(female) 

+(male) 

+(Spring) 

- (Summer) 
 

Girard et al. 2012, Thabeet et al. 

2009 
aSpearman’s ρ, bβ estimate for reproduction term in fitted model (see reference for model), cPearson’s r 
*Temperature stress only 
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Figure 2.1. Conceptual diagram depicting potential tradeoffs in carbon (C) allocation in 

coniferous trees. Solid arrows represent C uptake (photosynthesis), dotted arrows 

represent C loss (respiration), and dashed arrows represent C allocation pathways. If C is 

allocated to seed production, that C is no longer available for leaf production (and 

associated photosynthesis, A), root production (B), or radial growth, which itself 

influences hydraulic conductivity and resistance to pests (as a function of tracheid size 

and resin duct formation, C).  
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Figure 2.2. Relationship between total wood lignin concentration (%) and 𝛹50, the water 

potential at which 50% of conductivity is lost, in 25 gymnosperm species distributed 

globally. R2 = 0.20, P = 0.0007. Data from (Pereira et al., 2018) and (Choat et al., 2012). 

Lignin data from multiple wood sources (branch or stem), and is assumed to scale 

linearly between sampled organs (see Pereira et al. 2018 for sample inclusion criteria).  
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Figure 2.3. Potential effects of two given drought events (shaded boxes A and B) on 

reproductive output in masting conifers relative to a given year (T). Conifer cone 

production occurs over two to three years, and the effects of drought on resource 

availability for masting can have both direct effects (e.g., decreased reproduction in a 

year of drought) or indirect effects (e.g., increased reproduction in subsequent years due 

to increased C storage) depending on the reproductive stage. Arrows in figure represent 

timing of each reproductive stage. Arrows below figure represent relative change in each 

reproductive stage, with the expected mechanism of this change given in parentheses.  
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Figure 2.4. Theoretical expectations of a “fight” response (A) or a “flight” response (B) 

in conifers under drought stress. Line weight represents the relative magnitude of carbon 

(C) allocation to that particular plant pool following a tradeoff induced by drought stress. 

Fight responses are demonstrated by allocation of available resources to growth or 

drought or pest defenses at the expense of reproductive allocation. Flight responses occur 

when a tree allocates C to cone and seed production at the expense of growth and drought 

defense or pest defense. C = carbon pool, R = respiration, Hyd. Safety = hydraulic safety, 

K = sapwood conductance.  
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Figure 2.5. Multiple strategies for “flight” behaviors relative to prior reproductive 

investment. If a drought occurs after cone initiation, cone abortion and re-allocation of 

resources to growth and drought defense is an indicator of “fight” behaviors (A). On the 

other hand, if cones are not aborted but maintained through their maturation under 

drought stress, this can be considered a flight behavior (B). The final observable flight 

behavior is drought-induced reproduction (C), which may or may not be associated with 

terminal investment prior to mortality.   
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Figure 2.6. Hypothetical increase or decrease in fitness versus expected “background” 

fitness of “fight” or “flight” behaviors relative to the likelihood of mortality under 

drought stress. As likelihood of drought-induced mortality increases (e.g., with increased 

drought intensity and duration), the relative benefit of fight behaviors may decrease as 

drought defenses fail and trees die without reproducing. Flight behaviors provide little 

increased fitness benefit when the probability of mortality is low, but provide 

significantly higher fitness increases as probability of mortality increases. This is because 

flight behaviors increase potential future recruitment of new seedlings and capacity for 

adaptation to a drier climate or migration to track a more optimal climate. 
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Chapter 3: 

Assessing differences in lignin content between drought-killed and living pines using 

chemical and visual methods 

 

 

3.0 Abstract: Current climate models predict increasing drought intensity, frequency, 

and duration in semi-arid forests globally. Tree drought resilience is a function of 

physiological resistance to hydraulic stress and management of carbon (C) reserves. 

Physiological resistance to drought-induced damage is partially conferred via deposition 

of lignin, a polymer that strengthens cell walls at a high C expense. Measuring lignin 

content in tree rings allows us to track the physiological response of trees to drought 

relative to C cost, but conventional lignin quantification methods can be expensive and 

time-consuming. We test a novel lignin quantification technique based on digital image 

analysis of stained wood cross sections that approximates lignin concentrations derived 

from conventional methods in living and dead trees from the drought-stricken Sierra 

Nevada mountains. Contrary to our initial hypothesis, living trees did not have higher 

lignin concentrations than dead trees, and dead trees had higher average and more 

variable lignin concentrations, suggesting that excessive lignification may lead to C 

depletion and mortality risk. Our rapid quantification method detects these differences, 

though it tends to exaggerate them, and can be combined with xylem anatomy analyses 

for little cost beyond that of thin-sectioning techniques. The visual method tracked 

traditional chemically derived lignin concentrations better for living than for dead trees, 

most likely due to differences in decomposition rates of cell walls versus all cell contents 

in wood of dead trees. It therefore has potential to aid assessments of C allocation, 

particularly in studies focusing on cell anatomy of live trees.  

 

3.1  Introduction 

Lignin is a complex aromatic polymer deposited in plant cell walls that serves many 

important roles. These include resistance to both drought stress (Pereira et al. 2018) and 

insect attack (McKay et al. 2003, Franceschi et al. 2005) via reinforcement of tissues for 

transporting water and chemical defenses. Lignification also provides the mechanical 

strength necessary for woody plants to achieve an erect growth habit (Hacke and Sperry 

2001, Sperry 2003, Sperry et al. 2006, Vanholme et al. 2010) as it confers resistance to 

bending stress (Voelker et al. 2011) and supports long-distance vertical water transport 

(Mencuccini 2003, Sperry 2003). However, lignin is carbon-expensive (Amthor 2003, 

Novaes et al. 2010); it has even been estimated to constitute up to 30% of  all terrestrial 

biosphere carbon (Boerjan et al. 2003), although this is primarily due to its slow 

decomposition rate. Under increasing aridity expected to be associated with projected 

climate change, we may expect the interactions among wood lignification and total 

carbon (C) budgets to become more significant and play an important role in forest 

response to drought.  

 Greater lignification of xylem cells (tracheids) seems to reduce likelihood of 

hydraulic failure under drought stress (Pereira et al. 2018). Xylem wall thickness is 

positively correlated with lignin concentrations (Gindl 2001) and this wall thickening 

may reduce likelihood of conduit collapse during drought (Hacke et al. 2001, Pittermann 
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et al. 2006). Lignification may also play a role in inter-tracheid pit membrane resistance 

to embolism (Pereira et al. 2018). This is important because drought intensity and 

frequency are expected to increase under projected climate change (IPCC 2014). Indeed, 

drought-induced forest die-offs are already occurring (Allen et al. 2010, 2015). A major 

goal of current forest ecophysiology research is to parse the interactions and tradeoffs 

among physiological traits that confer drought resistance and tree C budgets (Sala et al. 

2012, Sevanto and Dickman 2015, Adams et al. 2017). Comparing relative lignin 

concentrations between stressed and unstressed trees may be one avenue to further 

evaluate the C cost of growth and survival under extreme drought. 

Quantification of annual variation in lignification in trees is an important step in 

tracking C budget implications of drought stress in forests. Lignin quantification is 

notoriously time-intensive, requires unique laboratory apparatus, and is often very 

sensitive to materials or methods used. Questions remain regarding the ability of any 

lignin measurement method to accurately quantify true lignin concentration (Hatfield and 

Fukushima 2005). Current methods in lignin chemistry can be broken down into 

gravimetric methods versus noninvasive methods, and are extensively reviewed 

elsewhere (Hatfield and Fukushima 2005, Lupoi et al. 2015). Gravimetric methods are 

primarily based on the measurement of Klason lignin, or the lignin left over after 

complete dissolution of all non-lignin materials in 64-72% H2SO4 (Browning 1967, 

Nakano and Meshitsuka 1992). Noninvasive methods include the measurement of 

ultraviolet absorbance (Fukushima and Hatfield 2004), fluorescence or interference 

microscopy (Donaldson et al. 1999, Bond et al. 2008), near infrared (NIR, Gidh et al. 

2006, Li et al. 2015) and Fourier-transformed infrared (FTIR, Liu et al. 2010, 

Schwanninger et al. 2011) spectroscopy, and nuclear magnetic resonance (NMR) imaging 

(Martin-Sampedro et al. 2011). All of these noninvasive methods utilize physical 

properties of lignin, such as reflectance of specific wavelengths of light, to estimate 

lignin content. Finally, hybrid methods involve the use of UV spectroscopy to quantify 

lignin in solution. Each of these methods requires highly specialized equipment.  

As a potential alternative, we tested digital image analysis using histologically 

stained wood thin sections and a standard compound light microscope. Quantification of 

stain intensity in laboratory-stained thin sections of tissues is standard practice in 

histology (Jensen 2013, Ursache et al. 2018), and is gaining increasing traction among 

plant physiological studies (Bond et al. 2008, Pradhan Mitra and Loqué 2014). However, 

studies that do use histological staining of plant cells still primarily use it as a qualitative 

tool (Pradhan Mitra and Loqué 2014) or to assess spatial deposition of materials or 

quantitative change in lignification over time (e.g., lignin during xylogenesis, Rossi et al. 

2012). Little work has used it to explicitly quantify total lignin concentration differences 

between samples or across multiple annual growth rings. We have only identified one 

study to date that used histological staining and standard light microscopy to measure 

lignin content quantitatively, in which the authors were able to discern quantitative 

spatial variability in maize stem lignin content (Zhang et al. 2013). 

Plant physiologists studying hydraulic traits often obtain thin sections from 

selected individuals and cross-stain them to differentiate lignin and cellulose for 

improved visualization of cellular anatomy (Kutscha and R. Gray 1972, Kraus et al. 

1998, Bond et al. 2008). Here, we test the hypothesis that trees that survive drought will 
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have a higher total lignin content in annual rings during and after drought due to 

increased C allocation to hydraulic safety when stressed. We compare stain intensity of 

thin sections of living and dead conifers from drought-stricken locations in the Sierra 

Nevada in California with lignin concentrations measured using conventional methods to 

test for differences in lignin content between trees that lived and died as a result of the 

historic 2012-2016 California drought (Griffin and Anchukaitis 2014).  

 

3.2 Methods 

3.2.1 Field Sampling 

We extracted increment cores from living and drought-killed Pinus ponderosa and P. 

jeffreyi in six permanent sampling plots in California’s Sierra Nevada (Figure 3.1). These 

plot locations experienced high tree mortality as a result of the 2012-2016 drought. Sites 

were at 1905 m (SP), 2170 m (SJP), 1172m (SR), 878m (TP), and 1667m (TJP) 

elevation, spanning the middle elevation distribution of P. ponderosa to the middle 

elevation distribution of P. jeffreyi in the region. Where possible, we cored ten randomly 

selected living and dead trees of each species in each plot, with only recently killed 

(needles brown but not yet completely defoliated) trees cored. All selected trees were 

either dominant or sub-dominant trees ranging from 22 cm to 147 cm diameter at breast 

height (DBH). Reaction wood is the growth of thicker rings and more woody biomass on 

the uphill (“tension wood” in angiosperms) and downhill (“compression wood” in 

gymnosperms) sides of trees growing on steep slopes that helps maintain an upright 

growth position. We extracted cores in two perpendicular directions (from positions 

perpendicular and parallel to the slope) to mediate effects of potential reaction wood 

(Speer 2010). This allowed accurate annual ring dating, as well as ensured lignin 

concentration measurements were not biased toward reaction wood, which often has 

higher lignin concentrations (Yamashita et al. 2007). 

We used standard dendrochronology methods to ensure lignin concentrations 

were compared between the same years across all cores (Speer 2010). We stabilized cores 

in wooden mounts, surfaced them using consecutively finer grades of sandpaper until 

individual cells were visible, and then scanned them at 800 dpi. Ring widths were 

automatically measured in the winDENDRO tree ring software package (Regent 

Instruments Canada Inc. 2017). We cross-dated cores visually within winDENDRO, and 

checked final annual ring dates using the cross-dating statistical package COFECHA 

(Grissino-Mayer 2001). We adjusted dates manually under a stereo microscope if 

necessary. Trees were dropped from further analysis if robust cross-dating likelihood 

(assessed via correlation among chronologies in COFECHA) was not achieved. Thus, 

final cores were only analyzed if sample tree ring years were positively identified.  

 

3.2.2 Thin Section Preparation 

After rings were properly dated, we took 10-16 µm radial thin sections from each core 

using a GSL-1 tree core microtome (Gärtner et al. 2014). The thin sectioning process also 

removed any transferred wood powder that may have settled in non-current year rings 

during sanding. In lieu of stabilization of tree cores in paraffin, we brushed prepared core 

surfaces with a corn starch solution to facilitate non-destructive wood sectioning (von 
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Arx et al. 2016). We cleaned sections of all starch using deionized water and ethanol and 

cross-stained them using a 1% safranin and 1% astra blue solution (1:1 v/v).  

 We chose to use safranin after preliminary trials identified it as the most efficient 

stain for our wood tissues. Cresyl violet acetate and phloroglucinol have higher lignin 

affinity (Perdih and Perdih 2011), and recent advances in studies of cambial phenology 

have utilized cresyl violet acetate (Deslauriers et al. 2008, Rossi et al. 2012), while 

phloroglucinol has a rich history in lignin visualization. However, cresyl violet does not 

provide enough of a color distinction between violet and blue to quantitatively assess 

total lignin content digitally. Phloroglucinol, while providing optimal staining of soft 

tissues, did not stain our wood thin sections consistently, and resulted in large variance in 

stain efficiency between thin sections from the same sample. Safranin avoided these 

problems. 

All thin sections were stained for approximately 15 seconds with sufficient stain 

to fully cover the section and then thoroughly washed using deionized water and ethanol 

until runoff ran clear. We permanently fixed thin sections to slides using Euparal, placed 

them under a weight, and allowed them to dry for a minimum of 48 hours. Following 

drying, all slides were cleaned of excess mounting media using a razor blade and 

photographed at 100x magnification using a Leica DME compound microscope equipped 

with a Leica DFC290 digital camera.  

 

3.2.3 Lignin Quantification 

We analyzed lignin concentrations in annual rings via a modified acetyl bromide method 

(Barnes and Anderson 2017). We chose this method as it has been shown to provide the 

highest recovery of lignin in small sample sizes when compared to gravimetric methods 

(Fukushima and Hatfield 2004, Moreira-Vilar et al. 2014). We first removed individual 

annual rings using a razor blade as close to the ring boundary as possible under a stereo 

microscope. Effort was made to err on the side of the current year ring where ring 

boundaries were hard to see so that any sampling error would result in a loss of low-

lignin earlywood rather than inclusion of lignin-rich latewood from the previous year. We 

ground resulting wood wafers with mortar and pestle using liquid nitrogen, then further 

homogenized them in 2-mL safeseal tubes with three stainless steel grinding balls using a 

mini-g tissue lyser for approximately 3 minutes at 1800 RPM.  

Interfering extraneous substances (e.g., soluble fats, waxes, simple sugars, and 

low-molecular soluble phenolics) were removed in four successive two-day extractions 

with acetone. After each extraction, we centrifuged samples and replaced supernatant 

acetone. After the final extraction, we aspirated supernatant acetone and left all tubes 

open to air dry in a fume hood. The resulting structural biomass (plant cell wall) was used 

to quantify total lignin.  

We added one mL of freshly prepared 25% (w/w) acetyl bromide/glacial acetic 

acid solution to approximately 1 mg (+/- 0.2) air-dry, extractive-free wood powder in 2-

mL polypropylene micro-tubes and placed them in a water bath for 30 min with repeated 

mixing at 70 ˚C and stopped the reaction by submerging in ice. We transferred 100 μL of 

the reaction mixture into a 2 mL UV quartz cuvette containing 200 μL of 2.0 M sodium 

hydroxide, and filled to 2 mL with 1.7 mL of glacial acetic acid. The UV absorbance of 

the solution was determined at 280 nm against a blank solution on a Tecan M200 Pro UV 
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spectrophotometer (Tecan Trading AG, Switzerland). Total lignin was calculated from 

measured absorbance using the equation: 

𝐴𝐵𝑆𝐿 = ( 
𝐴280

𝜀𝐿
) ∗  (

𝐷

𝑚
) ∗ 100, 

where ABSL = acetyl bromide-soluble lignin (%), A280 = absorbance at 280 nm, L = path 

length (2 cm for the cuvette), D = dilution factor of final solution (1 = no dilution for our 

samples), m = mass of the sample prior to acetyl bromide mixing, and ε = the extinction 

coefficient of a known lignin standard. For this analysis, we used ε = 23.3 (Barnes and 

Anderson 2017). After final sample preparation, due to some samples being 

unmeasurable, we were left with n = 165 total ring samples broken down as follows: 52 

rings from 7 living P. ponderosa, 66 rings from 7 living P. jeffreyi, 35 rings from 7 dead 

P. ponderosa, and 12 rings from 2 dead P. jeffreyi,.  

We also created a lignin standard curve using kraft alkali lignin (Sigma Aldrich 

370959) and compared our standard curve-derived lignin estimates with those calculated 

using the above equation. Because of a robust standard curve (R2 = 0.99, Figure S3.1), we 

elected to calculate lignin content relative to our lignin standard (i.e., by using the 

regression equation of our standard curve), hereafter referred to as acetyl bromide lignin. 

 

3.2.4 Image Analysis 

We performed all image analyses in ImageJ (Schindelin 2015), following a modified 

version of the protocol for analysis of stained plant thin sections outlined by (Zhang et al. 

2013). Our three-step protocol (Figure 3.2) consisted of: (1) background bright-field 

correction of all images to account for dust, debris, mounting media blurring, and other 

imaging aberrations; (2) splitting of each image into red, green, and blue channels; and 

(3) selection of target areas in the red channel image, with an attempt to exclude areas of 

smudging, out-of-focus regions, and folded or broken wood that may significantly alter 

stain concentrations, followed by calculation of red intensity. For each image, we 

calculated Mean Red Density (mean gray value of the red channel image), Integrated 

Density (Mean Red Density x image area), and Raw Integrated Density (sum of all gray 

values in the red channel). Preliminary regressions of each of these metrics against acetyl 

bromide lignin found Mean Red Density had the best fit (Table 3.1), leading us to use this 

metric for all subsequent analyses.  

 We measured tracheid dimensions using the automated image analysis program 

winCELL, a sub-package of the winDENDRO suite of tree ring analysis software 

(Regent Instruments Canada Inc. 2017). We used winCELL to automatically detect cell 

walls and lumina, and manually corrected images with excessive torn walls or faint wall 

boundaries. We measured lumen diameter and wall thickness in all cells that were 

automatically detectable within a given thin section image. Data were then pooled and 

used to calculate within-ring average thickness-to-span (T-S, the ratio of tracheid wall 

thickness to cell lumen diameter), an indicator of hydraulic safety. Here, we use T-S as a 

final check of all methods of lignin detection, as tree rings with higher ratios of wall to 

lumen theoretically contain more lignin.  

 

3.2.5 Statistical Analysis 

Prior to all analyses, we assessed acetyl bromide lignin and stain-derived metrics for age 

effects, as prior work in tropical trees has demonstrated higher lignin and lower 
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holocellulose in younger trees (Martin et al. 2013). While our sampling scheme did not 

target especially young trees, our range of tree diameters included both small and large 

trees, and thus warranted checking for age effects. Linear regression of acetyl bromide 

lignin versus tree age found no significant age effect (p >0.5) and analyzed all trees 

together with no age term.  

Because our main focus here is on how lignin content differs between living and 

dead trees and whether stain-derived estimates of lignin approximate these differences, 

we conducted two-sample t-tests to compare all living trees to dead trees, living to dead 

P. ponderosa, and living P. ponderosa to living P. jeffreyi using each metric (stain-

derived lignin versus acetyl bromide lignin) individually. Due to sample size limitations 

on dead P. jeffreyi, we limited analyses to comparisons of living versus dead entirely, 

living P. ponderosa versus living P. jeffreyi, and living versus dead P. ponderosa only, 

avoiding analyses of dead P. jeffreyi versus live P. jeffreyi.  

We then assessed correlations between stain-derived metrics, T-S, and acetyl 

bromide lignin using linear regressions. Lignin concentrations in dead trees may change 

significantly due to wood rot after tree death (Pandey and Pitman 2004). We therefore 

tested for a “decay” effect by removing samples with greater than 50% acetyl bromide 

lignin (outliers >1.5 sd from mean lignin) and re-running models. We chose to use stain-

derived metrics as responses instead of predictors due to the basic assumption that stain 

intensity is itself a function of lignin, and not vice versa. To assess final model fit, we 

assessed p-values and adjusted R2. Data were assessed for homoscedasticity, and log-

transformed prior to final regressions, with residual inspection used to confirm 

assumptions were met. We also evaluated the ability of stain-derived estimates of lignin 

to track acetyl bromide lignin over time via 3-factor analysis of variance (ANOVA) with 

lignin concentration as a response and species, year, and survival status as factors, 

ignoring dead P. jeffreyi.  

Finally, we assessed the sensitivity of our stain-derived metrics to methodological 

error by comparing model results from final runs with those from models using discarded 

thing sections. Thin sections dropped from final analyses were discarded due to an 

inability to distinguish xylem cell lumen from wall, or general thin section quality issues 

such as section thickness and mounting media smudging. This allowed an assessment of 

the effects of “user error.” All analyses were carried out in base R version 3.5.1 (R 

Development Core Team 2020).  

 

3.3 Results 

Dead trees had higher acetyl bromide lignin than living trees on average (Figure 3.3A), 

but the difference was not statistically significant (p = 0.484, Table 3.1). Dead P. 

ponderosa had higher average acetyl bromide lignin content than dead P. ponderosa, but 

again, the difference was not statistically significant (p = 0.622). A high proportion of 

dead P. ponderosa lignin samples had lower lignin content than living P. ponderosa, but 

dead trees showed much higher variance in lignin content than living trees and higher 

content on average (Figure 3.4A).  

Mean Red Density approximated the same differences in average lignin 

concentration shown by acetyl bromide lignin (Table 3.1), but exaggerated differences, 

finding statistically significant differences not detected in acetyl bromide lignin. Mean 
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Red Density was weakly positively correlated with acetyl bromide lignin across all 

samples (Figure 3.6, Table 3.2), and had very low fit (p = 0.092, R2 = 0.013, n = 165). 

Separating living and dead trees improved significance and fit for both living (p = 0.008, 

R2 = 0.062, n = 118) and dead trees (p = <0.001, R2 = 0.261, n = 47, Figure 3.7). When 

further separating samples by species and status, the relationship improved for dead P. 

ponderosa (p < 0.001, R2 = 0.290, n = 35), and living P. jeffreyi (p = 0.001, R2 = 0.179, n  

= 66), but not living P. ponderosa (p = 0.523, R2 = 0.013, n = 52).  

 Variation in thin section quality slightly modified results. Removal of “low 

quality” thin sections caused species differences to no longer be significant in ANOVAs, 

but all other differences remained similar (Table S3.1). Relationships between Mean Red 

Density and acetyl bromide lignin in all dead trees and only dead P. ponderosa were no 

longer significant after removal of “low quality” thin sections (Table S3.2). Our test for a 

“decay” effect by removing samples with more than 50% acetyl bromide lignin resulted 

in ANOVA results that were no longer significant for any variable in the acetyl bromide 

models, demonstrating that high lignin samples may significantly influence results (Table 

S3.3). Removal of high lignin samples had a similar effect on regressions as removal of 

“low quality” thin sections, with dead tree-only models no longer being significant (Table 

S3.4). Stain-derived estimates of lignin continued to uncover more extreme differences 

between living and dead trees than acetyl bromide lignin even with high lignin dead trees 

removed (Table S3.3). 

Models of lignin concentrations that included year, species, and status improved 

fits dramatically over regressions with no year effect (Table 3.2, p < 0.001, < 0.001, and 

= 0.001, R2 = 0.222, 0.246, 0.211, and n = 165, 87, 66 for all samples, P. ponderosa only, 

and living P. jeffreyi only, respectively). Lignin concentrations over time were more 

variable in dead trees than living trees (Figure 3.8). Mean Red Density did not track 

acetyl bromide lignin over time particularly well in dead trees. However, in living trees, 

both methods provide similar estimates of change over time (Figure 3.9), particularly 

after drought onset in 2012.   

Thickness-to-span (T-S) was only correlated with acetyl bromide lignin across all 

samples or when accounting for tree status (Table 3.2, Figure 3.10), but did not track 

differences by species. The model comparing T-S to acetyl bromide overall was 

significant (p = 0.016), unlike the overall model for mean Red Density, but fit was very 

low (R2 = 0.0690).  

   

3.4 Discussion 

We found that the hypothesis that living trees exposed to drought stress would exhibit 

higher lignin concentrations was not supported. Instead, dead trees had higher and more 

variable lignin content, on average, and that lignin content varied substantially over time 

after drought onset, while living trees appeared to have more constant interannual lignin 

concentrations. We also found that our stain-derived proxy of lignin content varied in its 

consistency with conventional lignin measures. Stain-derived estimates of lignin may be 

viable for predicting change in lignin content over time, primarily in living trees. 

However, we also found that the relationship between stain-derived lignin and acetyl 

bromide lignin switched from positive to negative in dead trees.  
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More samples are needed to confirm differences in living and dead tree lignin 

content, but the higher variability in dead than living trees, higher lignin content on 

average in dead than living trees, and higher lignin in P. ponderosa than P. jeffreyi 

warrant further exploration. While numerous studies have assessed the effects of drought 

and other abiotic stressors on lignin biosynthesis and associated adjustments in wood 

traits (Gindl 2001, Deslauriers et al. 2014), this is the first study to document patterns in 

lignin concentrations in living and dead trees affected by drought with results that are 

counter to expectations. On-going research continues to elucidate the significance of C 

budgets and resource allocation in drought-stressed trees. Our results demonstrate that the 

concentration of lignin, a C-intensive material, in wood may not vary as significantly as 

previously predicted between living and dead trees, and in fact may vary more in dead 

trees. We note that the ultimate cause of mortality of target trees was likely a result of 

drought stress combined with bark beetle attack (Hicke et al. 2016, Das et al. 2016). 

Drought may reduce C uptake as a result of stomatal closure to limit water loss, limiting 

total C reserves over prolonged droughts (Adams et al., 2017). Our sampled trees were 

additionally under intense bark beetle pressure (Hicke et al. 2016), and production of 

defensive compounds may further stress C reserves (Franceschi et al. 2005, Ferrenberg et 

al. 2014). The C cost of lignin may lead to potential tradeoffs among mechanical 

strength, hydraulic safety, pest defense, and resource availability for other processes such 

as growth or reproduction (Lauder et al. 2019). For example, lignin concentration is 

negatively correlated with biomass and radial growth (Novaes et al. 2010). 

 One potential explanation for the observed higher lignin in dead trees than 

expected is a greater sensitivity to drought at the cellular level in the dead trees. Drought 

may induce decreased xylem cell diameters and shortened cell growth times via turgor-

limited cell expansion (Woodruff et al. 2004). Earlier cell death as a result of this 

shortened expansion time is often associated with increases in lignification time 

(Anfodillo et al. 2012). Likelihood of mortality does appear to be greater in trees with 

greater general drought sensitivity (Cailleret et al. 2017, 2019), and our sample dead trees 

appear to have higher average cell wall thicknesses and smaller cell diameters than living 

trees (Chapter 5). Our results may point to drought-induced increases in cell lignification 

and associated depletion of C resources as a mechanism of mortality in drought-sensitive 

trees, but that this drought-induced cell lignification varies from individual to individual, 

with some trees that eventually died allocating far more C to lignification and some 

allocating far less.   

Future work could incorporate stain-derived estimates of lignification into direct 

comparisons of lignification, hydraulic traits, and mortality relative to total C reserves 

such as non-structural carbohydrates (NSC; Hoch et al. 2003, Piper 2011, Oberhuber et 

al. 2011). Drought may reduce C availability for construction of new structures in the 

stem (Deslauriers et al. 2014), as non-structural carbohydrates (NSC) are preferentially 

allocated to maintenance of other drought defenses such as osmotic potential or shunted 

to roots (Piper 2011, Hasibeder et al. 2015, Hagedorn et al. 2016) and branches 

(Kannenberg et al. 2017). Our finding of increased lignification in drought-stressed trees 

prior to mortality demonstrates that if trees with altered NSC dynamics allocate C to 

lignification of cell walls to resist hydraulic stress, they may further deplete already 

stressed C stores.  
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We demonstrated that histological staining can be used to detect differences in 

tree lignin content across years and living vs. dead individuals. However, caution is 

needed in quantifying the degree of difference, as the method is sensitive to outliers in 

measured lignin concentration, and species and survival status need to be taken into 

account. While values do not quantitatively track acetyl bromide lignin across samples 

precisely enough to be used as a direct substitute for chemical measurement methods, we 

found that Mean Red Density may provide a reasonable proxy for comparison between 

annual rings over time once species and survival status are accounted for. 

  Assessing lignin in 50 ring samples with the Acetyl Bromide method costs 

approximately $50 per sample for sample preparation, and analysis requires a UV 

Spectrophotometer (price range $1200-$15000). Once such initial measurements are used 

to build a calibration curve, if thin sections and xylem anatomy are already being 

analyzed, there is no additional monetary cost to assess lignin concentration using the 

stain method. Further, the amount of time needed dropped from an average of 110 

minutes per sample for the acetyl bromide method to 23 minutes (only 3 if thin sections 

are already being created) when digital image assessment with an automated script was 

used (Table 3.3). The stain method facilitates rapid, high-throughput analysis of a 

previously time-intensive trait to measure. However, if the project would not otherwise 

utilize thin sections, it would be more time-efficient to use standard lignin quantification 

methods.  

 Interestingly, stain-derived estimates of lignin concentrations were positively 

correlated with acetyl bromide lignin in living trees overall, but negatively correlated in 

P. ponderosa. This relationship was more negative in dead P. ponderosa than in living P. 

ponderosa. We hypothesize that this change in relationship according to tree status is due 

to changing lignin structure, distribution, and composition as trees die and wood decays. 

Our highest measured acetyl bromide lignin concentration was 71% in a dead tree. 

Although this value is higher than expected average values in conifers, it is consistent 

with Pandey and Pitman (2004), who found lignin concentrations in Pinus sylvestris in 

excess of 80% in wood that had experienced 64% decrease in weight via degradation of 

carbohydrates after 12 weeks of exposure to the brown-rot fungus Coniophora puteana.  

We sampled target trees at the same time at each site, and although dating of tree 

rings allows us to track year of mortality, we were unable to discern when during the year 

trees died. Dead trees thus could have been exposed to rot for up to six months prior to 

sampling. This raises the significance of outlier scrutiny; we removed trees with 

impossible acetyl bromide lignin concentration estimates (i.e., >100%) from final 

analyses and attributed results to user or instrument error. We elected to keep high-lignin 

(i.e., > 40%) samples in final analyses after checking for decay effects, however, to 

include the natural range of variation that would be expected when comparing living and 

partially decayed dead trees. Our findings of a higher degree of difference between living 

and dead samples in stain-derived lignin than acetyl bromide may reflect this decay-

induced change in lignin estimates. Carbohydrate degradation may be accounted for in 

total acetyl bromide lignin because final lignin is expressed as % dry weight; as 

carbohydrates degrade, total sample mass also declines, and the relative lignin 

concentration increases. However, carbohydrate degradation would not necessarily be 

captured in stain-derived metrics when using a stain with a high lignin affinity; stain 
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intensity may be the same for one sample with high total biomass (no rot) and low 

biomass (significant carbohydrate degradation and decay), whereas measured (% dry 

weight) lignin will vary significantly. This is consistent with our observations of higher 

but much less variable stain-derived lignin than acetyl bromide lignin in dead trees. This 

may point to stain-derived estimates of lignin providing a more robust means of 

estimating dead tree lignin content when time since mortality cannot be accounted for 

(i.e., there may be lower absolute quantities of lignin in decaying wood than % by weight 

methods predict), but this hypothesis must be tested directly. Further complicating 

interpretation of our lignin estimates is the uncertainty surrounding all lignin 

measurement methods. Although more traditional methods (including acetyl bromide 

extraction) have been accepted as standard, debate remains on if these methods 

themselves are accurately quantifying lignin content, likely due to the inherent variation 

in lignin structure (Hatfield and Fukushima, 2005). Thus, we cannot rule out the 

possibility that our stain-derived estimates of higher lignin in dead trees across both 

species is more accurately picking up differences in lignin content than acetyl bromide 

lignin.  

 Our observations that T-S did not perfectly predict acetyl bromide lignin was 

unexpected, as wall thickness, and thus T-S, is expected to covary with total lignin 

content (Gindl 2001, Zhang et al. 2013). We hypothesize three potential explanations; 

variance in individual tree lignification with respect to wall thickness, measurement error 

not accounted for in our assessment of thin section quality effects, and inaccuracy and 

imprecision in the acetyl bromide lignin measurement process. Wall thickness and lignin 

content are predicted to covary based on the primary mechanism of cell wall thickening. 

Lignification occurs from the middle lamella (the zone between two adjacent cell walls) 

inward toward the center of the cell lumen via ordered deposition and buildup of three 

distinct cell wall layers, known as the S1, S2, and S3 layers (moving from middle lamella 

inward; Boudet et al. 1995, Wagner et al. 2012). There can be substantial variation in 

lignin content of these three layers due to variation in fiber orientation. Further, tension 

wood in angiosperms (wood formed on uphill sides of stems to keep them upright) and 

compression wood in conifers (wood formed on downhill side of stems) has been shown 

to have significantly increased S2 lignin content (Boudet et al. 1995, Yoshinaga et al. 

2012, Barros et al. 2015). Here, we sampled stems from mixed topographical conditions, 

but mitigated influence of compression wood by coring trees from positions 

perpendicular to the slope, and only taking compression wood samples to assist in cross-

dating. However, we did not directly characterize middle lamella lignin versus wall 

lignin, nor did we compare lignin chemistry using other analysis methods such as Nuclear 

Magnetic Resonance (NMR) imaging, which would allow further separation of lignin by 

type and location within the cell wall. Thus, it is likely that there is variation in cell wall 

lignin content entirely unexplained by wall thickness. Another potential explanation for 

our lack of observed correlation between T-S and acetyl bromide lignin is measurement 

error. While we controlled for image quality, there is inherent variation between images 

in wall-detection fidelity.  

Overall, we found that stain-derived estimates of lignin content are applicable to 

living trees, and may in fact predict lignin concentrations in dead trees as a function of 

cell wall lignification more realistically than methods based on % dry weight when wood 
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decay is expected. Nevertheless, this needs to be tested further, as we cannot definitively 

say that our stain-derived estimates or acetyl bromide-derived estimates are true 

measurements of total lignin. Our findings of higher lignin concentrations in dead trees, 

on average, demonstrate that the method outlined here can be used to rapidly extrapolate 

the C implications of hydraulic safety from physiological datasets to scale up from 

individual cells to whole tree C budgets. Here we analyzed lignin content in trees from 

three distinct forest transects from across the Sierra Nevada, but whether our observation 

of higher lignin in dead trees is a genetic characteristic of certain trees, a local site or 

population effect, or due to an interaction of these things is unknown and an important 

future research question. Further work is needed to calibrate stain-derived estimates of 

lignin, but this study presents a new method for high-throughput, low-cost estimates of 

lignin in samples that are already being examined for xylem anatomical variation. If 

using a stain with a high lignin affinity as well as standardized thin section thickness, 

stain times, and microscope light intensities, stain-derived estimates of lignin 

concentration appear relatively robust. A second line of evidence, T-S ratios, may help to 

confirm presence of higher or lower lignin concentrations between living and dead trees. 

Future work can assess further the quantitative relationships among xylem cell anatomy, 

lignin content, and tree survival to attribute differences in lignification to mechanisms of 

drought resilience. Such an effort would greatly improve our ability to forecast future 

drought-induced mortality across forest stands.  
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Table 3.1. Results of comparisons of ABSL and Mean density by tree species and 

survival status. Mean density = mean red intensity by thin section area (total red density 

divided by total number of image pixels), ABSL = acetyl bromide soluble lignin. T-tests 

were used for comparisons with only two groups, while 3-factor analysis of variance 

(ANOVA) was used to test for year effects. Bold values represent significance at α =0.05.  

 

Variable Factor n Test p 

ABSL Survival Status 165 T-test 0.484 

ABSL Survival Status, PIPO only 87 T-test 0.622 

ABSL Species, Living only 118 T-test 0.005 

Mean density Survival Status 165 T-test <0.001 

Mean density Survival Status, PIPO only 87 T-test <0.001 

Mean density Species, Living only 118 T-test 0.017 

ABSL Year 165 ANOVA 0.036 

 Survival Status 165 ANOVA 0.065 

 Species 165 ANOVA 0.002 

Mean density Year  165 ANOVA 0.04 

 Survival Status 165 ANOVA <0.001 

 Species 165 ANOVA 0.055 

 

Table 3.2. Results of linear models comparing stain-derived lignin concentration 

estimates to acetyl bromide soluble lignin measurements. Mean density = mean red 

intensity by thin section area (total red density divided by total number of image pixels), 

ABSL = acetyl bromide soluble lignin, T-S = “thickness-to-span”, the ratio of tracheid 

wall thickness to lumen diameter. Bold values represent significance at α = 0.05. 

 

Model n p R2 

Mean density ~ ABSL 165 0.092 0.013 

Mean density ~ ABSL, living only 118 0.008 0.062 

Mean density ~ ABSL, dead only 47 <0.001 0.261 

Mean density ~ ABSL, living PIPO only 52 0.523 0.01 

Mean density ~ ABSL, dead PIPO only 35 <0.001 0.290 

Mean density ~ ABSL, living PIJE only 66 0.001 0.179 

    

Mean density ~ ABSL + Year + SPP + Status 165 <0.001 0.222 

Mean density ~ ABSL + Year + Status, PIPO only 87 <0.001 0.246 

Mean density ~ ABSL + Year, living PIJE only 66 0.001 0.211 

T-S ~ ABSL 165 0.016 0.069 

T-S ~ ABSL + Status 165 0.050 0.059 

T-S ~ ABSL, living only 118 0.062 0.075 

T-S ~ ABSL, dead only 47 0.128 0.041 
Model notation: Response ~ predictors 
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Table 3.3. Approximate average time per sample (minutes) necessary for each activity 

associated with Acetyl Bromide-derived (ABSL) and stain-derived (Stain) lignin 

concentration estimates.  

Method Active Analysis Time Passive Analysis Time Hazards 

Total 

Time 

ABSL Removal of rings 1.00   Low 110.77 

 Grinding 5.00   Low  

 Homogenizing 5.33   Low  

 Acetone Extraction 1.50 
Acetone 

Extraction 
90.00 Medium  

 
Acetyl Bromide 

Extraction 
4.00  0.94 High  

 Final Sample Dilution 1.00   Medium  

 UV Absorbance 2.00   Low  

       

Stain 
Thin Section 

Preparation1 
20.00   Low 23.23 

 Image Collation 3.00   None  

 Script preparation2 0.00 Running of Script 0.23 None  
1Optional depending on other analyses (e.g., only necessary if thin sections are not 

already being taken) 
2See Appendix A for pre-packaged script 
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Figure 3.1. Sample site locations. SP = “Sequoia Ponderosa”, SJP = “Sequoia Jeffrey 

Ponderosa” in Sequoia National Park (SNP). SR = “Soaproot Ponderosa” in Sierra 

National Forest (SNF). TP = “Tahoe Ponderosa”, TJP = “Tahoe Jeffrey Ponderosa” in 

Tahoe National Forest (TNF).  
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Figure 3.2. Steps involved in lignin quantification via stain intensity measurement. The 

imageJ script (Appendix A) first applies a background correction to the raw stained thin 

section image (A) to correct for microscope slide noise from dust, excess mounting 

medium, etc. (B). The script then splits the image into RGB channels, and selects the red 

channel. Finally, the script prompts the user to outline the region of interest for final 

image quantification (C).  
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Figure 3.3. Violin plots of lignin concentration in living (A) and dead (D) tree ring 

samples from Pinus ponderosa and P. jeffreyi in the Sierra Nevada over 2011-2018. 

Width of figure represents number of samples with a given lignin value. Black dots 

represent mean values. Lignin concentrations were measured using a modified Acetyl 

Bromide extraction method (top) and a stain-derived estimate of lignin content (bottom).  
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Figure 3.4. Violin plots of lignin concentrations by species and tree status. A = Alive, D 

= Dead, PIJE = Pinus jeffreyi, PIPO = P. ponderosa. Width of figure represents number 

of samples with a given lignin value. Black dots represent mean values. Lignin 

concentrations were measured using a modified Acetyl Bromide extraction method (top) 

and a stain-derived estimate of lignin content (bottom).  
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Figure 3.5. Violin plots of lignin concentrations by species in living Pinus jeffreyi (PIJE) 

and P. ponderosa (PIPO) trees only. Width of figure represents number of samples with a 

given lignin value. Black dots represent mean values. Lignin concentrations were 

measured using a modified Acetyl Bromide extraction method (top) and a stain-derived 

estimate of lignin content (bottom). 
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Figure 3.6. Linear regression of Mean Red Density against acetyl bromide-derived lignin 

concentrations. Both variables were log-transformed due to heteroscedasticity (heavy left 

skew for red density, and right skew for % Lignin, respectively). R2 = 0.013, p = 0.092, n 

= 165). Shaded region represents 95% confidence interval of regression line.  
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Figure 3.7. Linear regression of Mean Red Density again chemically measured lignin 

concentrations by status. A = Alive, D = Dead. R2 = 0.062 and = 0.261 , p = 0.008 and 

<0.001 for living and dead trees, respectively. Shaded region represents 95% confidence 

interval of regression line. 
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Figure 3.8. Lignin concentration z-scores over time in living (A) and dead (D) tree ring 

samples. Z-scores were used to place estimated lignin concentrations on comparable 

scales. Solid lines with dark shaded areas represent Acetyl Bromide-derived lignin, while 

dashed lines with light grey shaded area represent mean red density. Shaded areas 

represent 95% confidence intervals. 
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Figure 3.9. Lignin concentration z-scores over time in living Pinus jeffreyi (PIJE) and P. 

ponderosa (PIPO) tree ring samples. Z-scores were used to place estimated lignin 

concentrations on comparable scales. Solid lines with dark shaded areas represent Acetyl 

Bromide-derived lignin, while dashed lines with light grey shaded area represent mean 

red density. Shaded areas represent 95% confidence intervals.  
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Figure 3.10. Relationship between Acetyl Bromide lignin and thickness-to-span (T-S, the 

ratio of tracheid wall thickness to lumen diameter) in all measured trees (top, R2 = 0.069, 

p = 0.016), and when separating living and dead (R2 = 0.075 and 0.041, p = 0.062 and 

0.128, n = 165, respectively). Species effects were not significant.  
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Supplementary Material 

Table S3.1. Results of t-tests and ANOVA when including “low quality” thin sections 

with potentially artificially inflated stain intensities. 

 

Variable Factor Test p 

ABSL Survival Status T-test 0.1955 

ABSL Survival Status, PIPO only T-test 0.535 

ABSL Species, Living only T-test 0.006 

Mean density Survival Status T-test <0.001 

Mean density Survival Status, PIPO only T-test 0.013 

Mean density Species, Living only T-test 0.006 

ABSL Year ANOVA 0.030 

 Survival Status ANOVA 0.397 

 Species ANOVA 0.007 

Mean density Year  ANOVA 0.011 

 Survival Status ANOVA 0.003 

 Species ANOVA 0.255 

 

 

Table S3.2. Model results when using “low quality” thin sections. Bold values represent 

significance at α = 0.05. Italicized values represent models that changed from significant 

to not significant following inclusion of low quality sections.  

 

Model p R2 

Mean density ~ ABSL 0.072 0.0145 

Mean density ~ ABSL, living only 0.008 0.058 

Mean density ~ ABSL, dead only 0.8481 0.004 

Mean density ~ ABSL, living PIPO only 0.5398 0.010 

Mean density ~ ABSL, dead PIPO only 0.755 0.019 

Mean density ~ ABSL, living PIJE only 0.017 0.071 

   

Mean density ~ ABSL + Year + SPP + Status <0.001 0.092 

Mean density ~ ABSL + Year + Status, PIPO only <0.001 0.119 

Mean density ~ ABSL + Year, living PIJE only 0.039 0.069 
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Table S3.3. Results of t-tests and ANOVA after removing dead tree samples with > 50% 

lignin content to test for a “decay” effect. 

 

Variable Factor Test p 

ABSL Survival Status T-test 0.993 

ABSL Survival Status, PIPO only T-test 0.211 

ABSL Species, Living only T-test 0.045 

Mean density Survival Status T-test <0.001 

Mean density Survival Status, PIPO only T-test <0.001 

Mean density Species, Living only T-test 0.007 

ABSL Year ANOVA 0.530 

 Survival Status ANOVA 0.843 

 Species ANOVA 0.122 

Mean density Year  ANOVA 0.025 

 Survival Status ANOVA <0.001 

 Species ANOVA 0.013 

 

 

Table S3.4. Model results when excluding high lignin outliers in dead trees to test for 

“decay effect.” Bold values represent significance at α = 0.05. Italic values represent 

models that changed from significant to not significant following inclusion of outliers.  

 

Model p R2 

Mean density ~ ABSL 0.031 0.029 

Mean density ~ ABSL, living only 0.006 0.072 

Mean density ~ ABSL, dead only 0.126 0.038 

Mean density ~ ABSL, living PIPO only 0.745 0.02 

Mean density ~ ABSL, dead PIPO only 0.1392 0.045 

Mean density ~ ABSL, living PIJE only 0.003 0.151 

   

Mean density ~ ABSL + Year + SPP + Status <0.001 0.298 

Mean density ~ ABSL + Year + Status, PIPO only <0.001 0.311 

Mean density ~ ABSL + Year, living PIJE only 0.002 0.202 
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Figure S3.1. Standard curve derived from UV-absorbance measurements of kraft lignin 

(Sigma Aldrich 370959) digested in acetyl bromide and acetic acid and measured at 

280nm.  
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Figure S3.2. Violin plots of lignin concentration in living (A, left side) and dead (D, right 

side) P. ponderosa and P. jeffreyi, separated by species after removal of high lignin 

concentration outliers. Width of figure represents number of samples with a given lignin 

value. Black dots represent mean values. Lignin concentrations were measured using a 

modified Acetyl Bromide extraction method (top) and a stain-derived estimate of lignin 

content (bottom).See text for rationale behind outlier use in final analyses.  
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Figure S3.3.  Mean Red Density (red intensity, which ranges from 0-255) of thin sections 

versus Lignin % measured via the acetyl bromide method across all trees, separated by 

species, after removal of high lignin outliers. A = Alive, D = Dead. See text for rationale 

behind outlier use in final analyses.  
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Chapter 4: 

How dry is dry? Comparison of drought metric ability to predict tree growth 

 

4.0 Abstract 

Global climate models predict increasing temperatures and more variable precipitation in 

already arid and semi-arid forests. Our ability to model forest response to climatic change 

depends on reducing uncertainty in relationships between forest health and climate. Many 

current, widely used climate models incorporate derived drought metrics—measures of 

water deficit based on relationships between temperature and precipitation—into their 

projections. However, the ability of these drought metrics to predict biological response 

to water deficit is often justified based on theory and not direct measurements. Here, we 

use tree rings from 866 trees sampled from across the Sierra Nevada of California to ask 

which of five widely available drought metrics best predicts measured ring width. We 

discuss spatial variability and sensitivity of each metric to wet and dry years, and 

applicability of each metric to projections of forest response to future drought. We show 

that Palmer Drought Severity Index (PDSI) and a measure of precipitation minus 

evapotranspiration (P-ET) derived from eddy flux tower-calibrated remotely sensed ET 

measurements are the best predictors of changes in ring width. We also show that P-ET 

shows large differences between locations, while climatic moisture deficit (CMD) from 

the ClimateNA model shows the smallest differences between locations. We find that 

PDSI is most sensitive to dry years, while climatic water deficit (CWD) is most sensitive 

to wet years.  

 

4.1 Introduction 

Current climate projections include increased temperatures and precipitation variability in 

drought-prone forests (Cook et al. 2010, IPCC 2014). Increasing drought frequency and 

intensity is predicted to lead to declines in forest productivity and increased large-scale 

tree mortality events (Allen et al. 2010), with greater than 50% loss of needleleaf 

evergreen trees in arid areas like the desert southwest of North America by 2100 

(McDowell et al. 2016). Quantifying tree response to drought has implications for forest 

management (Clark et al. 2016, Vose et al. 2016), water resources (Adams et al. 2012, 

Goulden and Bales 2014), fire risk (Dale et al. 2001, Westerling et al. 2006), and carbon 

sequestration (Powers et al. 2013).  However, considerable uncertainty remains in current 

large-scale drought metric datasets and their ability to accurately quantify biologically 

meaningful changes in water availability.  

 "Drought" as a concept is superficially simple, yet it can be challenging to 

quantify and the proper definition of drought can depend on the question at hand (Palmer 

1965). For instance, should it be defined in terms of the total amount of precipitation, the 

amount of moisture potentially available to plants given runoff or evaporation, or the 

degree of moisture stress experienced by the plants themselves? Some of the drought 

metrics that aim to represent water availability include climatic water deficit (CWD, 

Stephenson 1990, 1998), climatic moisture deficit (CMD, Wang et al. 2011), Palmer 

Drought Severity Index (PDSI, Palmer 1965), and hydrothermal deficit (HTD, Clark et 
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al. 2016). The basis for these metrics is the frequent observation of increased plant water 

stress as precipitation and/or soil moisture decrease and temperature increases.  

 The majority of drought metrics are derived using simplified modeling 

frameworks that make potentially unrealistic assumptions about hydrologic and plant 

physiological processes, or use calculations that are not biologically meaningful. For 

example, PDSI assumes that the top (arbitrarily defined, typically ~150 mm) layer of soil 

contains 1 inch (2.54 cm) of water at field capacity (Palmer 1965), limiting its ability to 

capture spatial variability in drought extremes outside of its calibration source in the 

Midwestern United States (Alley 1984). In highly topographically diverse landscapes, 

soil depth and water holding capacity can vary widely. This can lead to drastic over-

predictions of drought at large spatial scales (Sheffield and Wood 2008, Seneviratne et al. 

2012). Similarly, CWD relies on soil water holding capacity values derived from soil 

maps describing the upper 1.5 (Cal-BCM) or 2.5 (Dobrowski et al. 2013) m of soil. 

Nevertheless, biologically important water storage may occur at up to 20 m depth in 

some ecosystems, including the Sierra Nevada of California (Klos et al. 2018). Analyses 

of vegetation sensitivity to drought across time and/or space may lead to inaccurate 

inferences if the drought metrics they are based on do not accurately reflect the 

hydrologic environment experienced by plants. Given that each metric has its own 

nuances, it is unclear which is most useful for understanding the sensitivity of plants to 

drought.  

 Tree response to drought stress is often a function of aboveground tree physiology 

(McDowell et al. 2008b, McDowell 2011, Adams et al. 2017) relative to belowground 

access to water (Chitra-Tarak et al. 2018, Bales et al. 2018, Goulden and Bales 2019, 

Love et al. 2019). Variability in annual tree ring width can track water availability 

(Graumlich 1993, Cook et al. 2007, Boucher et al. 2014, Mokria et al. 2017), and provide 

a unique record of tree productivity as well as likelihood of mortality. Rapid and 

prolonged declines in growth often predict mortality following drought stress (Das et al. 

2007, Cailleret et al. 2017, 2019), and trees that show greater sensitivity of growth to 

precipitation variation tend to be more likely to die due to drought (McDowell et al. 

2009).  

Tree rings are often used to reconstruct past conditions such as climate (Boucher 

et al. 2014, Mokria et al. 2017) or streamflow. Yet this fundamental principle of 

dendroclimatology has not yet been used to ground-truth widely used drought metrics; 

one exception is a study on variations of PDSI across Europe (Bhuyan et al. 2017). 

Further, over-reliance on tree ring records from the international tree ring database—

which by design only includes trees sampled from semi-arid environments on rocky 

outcrops or otherwise climate-sensitive locations—can lead to biased interpretations and 

overall high predictions of drought impacts on vegetation (Klesse et al. 2018, Zhao et al. 

2019).  

Here, we use tree ring records from across the Sierra Nevada of California to 

assess drought metric utility for predicting tree growth. We focus on the Sierra Nevada 

due to its Mediterranean climate and seasonal drought, as well as to leverage knowledge 

gained during the 2012-2016 California drought. The first half of this drought was the 

most intense experienced by the region in approximately 1200 years (Griffin and 

Anchukaitis 2014). As a result, this four-year period was associated with widespread tree 
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mortality driven by drought, competition and bark beetle infestation (Hicke et al. 2016, 

Young et al. 2017). We ask how responsive five widely available and popular drought 

metrics are to known dry and wet years, and which metrics best match annual tree growth 

in dominant Sierra Nevada conifers.  

 

4.2 Methods 

4.2.1 Dendrochronology 

We sampled 866 trees from across the Sierra Nevada of California (Figure 4.1) from two 

tree-core datasets: (1) randomly selected dominant trees within 11 permanent 0.8 ha 

sampling plots in Sequoia National Park, Sierra National Forest, and Tahoe National 

Forest selected to fall within the ranges of ponderosa pine (Pinus ponderosa), Jeffrey 

pine (P. jeffreyi),, or their overlap; and (2) dominant (>20 cm diameter at breast height, 

DBH) trees and co-dominant competitors at point locations across the Sierra Nevada, 

randomly placed within the Douglas fir (Pseudotsuga menziesii) range in sites stratified 

by aspect. The species included in this analysis were the three target species - 

Pseudotsuga mensziessii, Pinus ponderosa, and P. jeffreyi - plus P. sabiniana (grey pine), 

P. lambertiana (sugar pine), Abies concolor (white fir), and A. magnifica (red fir). Unlike 

the many dendroclimatology studies, which target trees expected to be more climate-

sensitive than average, this approach should yield a more typical range of responses for 

adult trees.  

 All trees were cored at breast height using a Haglof 4.37 mm diameter increment 

borer (Haglof, Sweden). We transported cores to the laboratory for standard 

dendrochronological sample preparation (Speer 2010); we surfaced them using 

progressively finer grits of sandpaper and scanned them at 600 dpi for ring width 

measurement.  

 Cores were analyzed using winDENDRO (Regent Instruments Canada Inc. 2017) 

and cooRecorder (Cybis Electronic 2013) tree ring software; two software packages were 

used due to differences in sampling times and laboratory software availability among the 

authors. Rings were automatically detected in winDENRO and corrected manually by 

two observers to confirm ring boundary locations, while samples analyzed in 

cooRecorder had ring boundaries manually identified. Ring widths were measured to the 

nearest 0.01 mm. We cross-dated cores to confirm ring years in multiple ways. Cores in 

cooRecorder were assessed for overall correlation among cores, with cores with low 

correlation manually checked and removed from analysis if cross-dating was not 

possible. Cores in winDENDRO were both visually and statistically cross-dated within 

winDENDRO and adjusted to note missing or false rings or incorrect outer year dates, 

then checked using the COFECHA statistical cross-dating program. Cores flagged by 

COFECHA were manually checked, and dropped from analysis if adjustments were not 

possible given evidence from the cores. Finally, winDENDRO cores and cooRecorder 

cores were visually cross-dated using the “list” method. We visually ensured that marker 

years (e.g. the dry 1967/1977 period) matched across chronologies to ensure consistency 

across both core datasets, and found marker years were consistently represented.  

 We converted ring widths to unit-less ring-width indices (RWI) by detrending 

with a 20-year smoothing spline. A 20-year spline was first calculated for each core, and 

then raw ring width was divided by this spline value, yielding large values for years of 
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rapid growth and small values for years of slow growth. This removes low-frequency 

climate variability (such as ENSO or long-term trends), as well as age-based declines in 

growth, leaving only annual variability due to annual climatic variation or biological 

impacts (Speer 2010, Sullivan et al. 2016).  

 

4.2.2 Climate Data 

We selected five drought metrics from among popular drought metrics used to model 

forest drought, particularly in western North American and California forests. We 

performed a brief meta-analysis to identify the most frequently used drought metrics in 

California (Figure S4.1), as well as two relatively recent models of drought based on 

measured evapotranspiration (ET). We focused on selecting at least one model from this 

final set that uses each of the predominant ET estimation methods. This allowed us to 

account for variation in ET calculations (Table 4.1). The drought metrics examined were:  

 

1. Climatic moisture deficit (CMD) from ClimateNA (Wang et al. 2011, 2016) 

2 & 3. Palmer Drought Severity Index (PDSI) and water deficit (DEF) extracted from 

TerraClim (Abatzoglou et al. 2018) 

4.Climatic Water Deficit (CWD) from Cal-BCM (Flint et al. 2013) 

5. A metric of precipitation minus ET (P-ET) using ET calculated from LandSat-derived 

Normalized Differential Vegetation Index (NDVI) and eddy flux tower-measured ET 

(Goulden et al. 2012, Bales et al. 2018).  

 

  We extracted climate data from each of the target climate models using ArcGIS 

version 10.6 (ESRI 2018)  and the R package “raster” for each site over the length of the 

climate dataset. Lengths of each climate dataset vary significantly. For example, the 

longest dataset is CWD, with values available from 1896-2016, but the shortest dataset, 

P-ET, only has data available since 1980 due to its reliance on LandSat imagery. Thus 

final models employed climate datasets trimmed to their common time period: 1980-

2016.  

  

4.2.3 Analysis 

We conducted our analysis in three main steps: direct comparison of climate models to 

each other, sensitivity of climate models to wet and dry years, and comparison of models 

to tree ring width in trees throughout the Sierra Nevada. We assessed spatial and 

temporal variation in each drought metric with respect to known wet and dry periods. 

Year 2011 was the wettest and coldest period on record for the 1986-2016 period, 

whereas 2015 and 2016 were the warmest and driest (Figure 4.2). These years were used 

as indicator years to examine sensitivity of drought metrics to extreme years. 

Assessments of sensitivity to indicator years were conducted by comparing z-scores of 

each metric across the common period to examine temporal variability and sensitivity to 

extreme years. We also examined coefficients of variation (CV) for each year for each 

metric from the 2011-2016 period as a measure of spatial variability (variation between 

sample locations) during wet and dry years; higher average within-year CVs indicate 

higher variability across the sampling area. Finally, the ability of each drought metric to 

predict tree ring width was assessed using hierarchical regressions.  
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Ring width was modeled as a function of each drought metric individually within 

a Bayesian framework using Stan (Gelman et al. 2015) within the “brms” (Bürkner 2017) 

package for R version 3.6.2 (R Development Core Team 2020). Each tree ring was 

compared to drought metrics, with each drought metric nested within individual trees, 

each with an independent intercept: 

𝑅𝑊𝐼𝑖𝑗 ~ 𝑁(𝛽0𝑗 +  𝛽1𝑗𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗 , 𝜎𝑦
2) 

𝛽0𝑗 ~ 𝑁(𝛾00 + 𝑢0𝑗 , 𝜎𝛽
2 ) 

𝛽1𝑗 ~ 𝑁(𝛾10 + 𝑢1𝑗 , 𝜎𝛽
2 ),  

 

where 𝑅𝑊𝐼𝑖𝑗 is the logarithm of RWI of annual tree ring i within tree j;  𝛽0𝑗 is the 

intercept for tree j, allowing trees to vary in their average growth; 𝛽1𝑗 is the slope of the 

relationship between tree j ring width and drought metric; 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗 is the scaled (z-

score) drought metric value for tree ring (year) i at the tree j location; and  𝜎𝑦
2 is 

unexplained variance in the distribution of 𝑅𝑊𝐼𝑖𝑗 not explained by this model. Drought 

metrics were nested within trees, as individual trees may differ in their drought responses 

for various reasons. We used the same weakly informative priors for all models after 

assessing visual relationships between RWI and scaled drought metrics and after 

considering expected relationships; priors were broad normal distributions with a mean of 

0 and a standard deviation of 1. Species effects were omitted from these models because 

preferential sampling of P. ponderosa, P. jeffreyi, and P. mensziessii not allowing robust 

comparison of species effects with the other species. However, while a few species 

(particularly Pinus sabiniana) have slightly different responses, the overall response 

across species was fairly constant (Figure S4.1). Moreover, the goal here was to identify 

drought metrics that predict growth across trees in general. 

In order to account for variation in sample location climate biasing our results, we 

removed trees sampled from locations with higher than average precipitation for each 

species according to their current distributions within the Sierra Nevada. This resulted in 

12 chronologies being removed from further analysis. Thus, final analyses represent 

assessment of drought metric predictive power for ring widths in drier than average sites 

for each species, except for P. ponderosa and P. jeffreyi. Due to the difficulty of 

accurately distinguishing smaller individuals of P. ponderosa and P. jeffreyi in their 

zones of range overlap and differences in species identification in the two datasets used 

here, we calculated climate thresholds for each species individually as well as the 

distribution of both species, lumped here as “Yellow Pine”. All 12 removed individuals 

were identified as “Yellow Pine” from two sites that had higher than average 

precipitation for both species individually and for “Yellow Pine”. Thus, trees from sites 

with high precipitation for both species were removed from further analyses, but trees 

from sites that have higher than average precipitation for P. ponderosa but not higher 

than average for “Yellow Pine” may still be retained.     

To examine whether a linear or non-linear model was required, we assessed 

linearity of models visually using spline regressions, and found that relationships between 

scaled drought metrics and RWI were mostly linear when species effects were not 

included (Figure S4.2). To assess model fit, we used posterior predictive checks and 

leave-one-out posterior integral transformed (LOO-PIT) predictive checks in lieu of 
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model information criteria. The LOO-PIT method converts response values to a uniform 

distribution via integral transformation, and allow visual interpretation of modeled 

responses to observed responses (Gabry et al. 2019). Posterior predictive checks compare 

raw observations with successive draws from the model posterior distribution and are 

often a better indicator of model fit than simple comparison of information criteria among 

models.  

We ran each model for 10000 iterations of four chains with 3000 iterations 

discarded as “burn-in” (Gelman et al. 2015). Model convergence was assessed visually 

using trace plots, and statistically using the scale reduction factor (𝑅̂), with values >1.02 

indicating non-convergence (Gelman et al. 2015). Predictive power of drought metrics 

was finally assessed by comparing credible intervals and fit from each model, and 

identifying parameters that converged and had credible intervals not overlapping 0, 

indicating that there is at least a 95% chance of a non-zero correlation between the 

variable and the response. 

 

4.3 Results 

We found that differences between individual drought metrics were greatest in wet and 

dry years. Ring width index (RWI) did not track any single drought metric over short 

time periods but tracked longer duration drought or wet periods (Figure 4.3). Meanwhile, 

PDSI and CWD were highly sensitive to specific drought and wet years, respectively. 

CWD was most sensitive to wet years, with its lowest value in 2011, the wettest year in 

the sample period. PDSI as most sensitive to dry years, with high values in 2009 and 

2014. The DEF, P-ET, and CMD models all appeared to track dry and wet periods well 

but were not as sensitive to extreme years as CWD and PDSI. P-ET also demonstrated a 

rapid “recovery” period following dry years, with z-scores declining more rapidly 

following a dry year than the other metrics. Interestingly, all five metrics were in almost 

complete agreement during the 2001-2004 period and were particularly well correlated 

with RWI during this time. Use of PDSI may over-emphasize dry years, while use of 

CWD may over-emphasize wet years. 

We found interesting patterns in spatial variability (as demonstrated by high 

within-year variation across sites) that do not match expectations relative to model 

resolution. Whereas CMD is calculated at the highest resolution of the models compared 

here, P-ET (the second highest resolution dataset) was the most spatially variable drought 

metric across all years, while CWD (the third highest resolution dataset) is the most 

spatially variable in anomalously dry years. Spatial variability was highest in P-ET and 

lowest in CMD and DEF (Figure 4.4). Spatial variability in CWD was low in drought 

years but high in a wet year (2011). Spatial variability in P-ET was very high in dry 

years, but low in 2011, and spatial variability in PDSI was higher in wet years than dry 

years. Use of P-ET may over-estimate drought spatial variability, while the other metrics 

may under-estimate it. Further comparisons of each model with direct measurements of 

soil moisture are needed to compare these sensitivities with real-world values as opposed 

to the intermodal comparison presented here. 

We found that the drought metrics compared here vary somewhat in their ability 

to predict tree growth. Bayesian models all achieved convergence (1.00 < 𝑅̂ < 1.01 for all 

predictors). Those using PDSI and P-ET as the drought metric had the best fit according 
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to LOO-PIT comparisons, although no model had a notably poor fit. Posterior predictive 

checks (Figure 4.5) and LOO-PIT comparisons (Figure S4.3) demonstrated that no 

models had extreme deviations between model predictions and raw data. PDSI and P-ET 

also had the greatest effects on RWI among all models, though the effect sizes were 

rather small for all drought metrics (Figure 4.6, Table 4.2). The posterior estimate of the 

effect of CMD on RWI was the lowest of the drought metrics (Figure 4.6, Figure 4.7), but 

also had the smallest credible interval (variance, Figure 4.6), demonstrating less 

uncertainty in posterior predictions. Credible intervals of PDSI and P-ET overlapped, but 

the posterior probability for PDSI was slightly higher, indicating PDSI may be most 

correlated with RWI, but not significantly different from the effect of P-ET on RWI. 

These results demonstrate that choice of drought metric can influence modeled ring 

width, particularly in anomalously wet or dry years. 

 

4.4 Discussion  

Here we evaluated the ability of widely used drought metrics to predict tree ring width 

(RWI) and found that drought metrics do vary in their ability to predict tree growth. Our 

observation that each metric varies in its sensitivity to wet versus dry years, as well as in 

their ability to predict tree growth overall, may reflect inherent differences in the 

underlying method of calculation for each metric. Further, the assumptions implicated in 

each metric calculation may not always reflect true hydrologic processes in a natural 

landscape. For example, Climatic moisture deficit (CMD) is computed as annual 

potential evapotranspiration (PET) – annual precipitation (Wang et al. 2016). This lacks 

biological meaning because it does not account for water storage in soil and snow or the 

seasonal interactions of energy and water (Stephenson and Das 2011). Climatic water 

deficit (CWD) is interpreted to represent unrealized evaporative demand (Stephenson 

1998). It is computed as PET minus actual evapotranspiration (AET). AET represents the 

amount of water evaporated and transpired from a site given actual water availability, 

whereas PET represents the amount of evapotranspiration expected given unlimited water 

supply, and therefore purely reflects available energy (Stephenson 1990). Although AET 

is mechanistically related to important plant processes, particularly transpiration and 

photosynthesis (Rosenzweig 1968), CWD is not.  

Different vegetation types can differ substantially in the amount of solar radiation, 

heat, and/or water limitation they experience, as well as in their response to that stress. 

This change in response can then shift estimates of ET in ways that may not reflect actual 

shifts in plant-available soil moisture. Many species exhibit dormancy or persistence as 

seeds through hot and/or dry periods (Volaire and Norton 2006). Some species reduce 

photosynthesis, stomatal conductance, and thus transpiration when water availability 

declines in order to conserve water and/or reduce physiological damage (McDowell et al. 

2008a, West et al. 2012, Nardini et al. 2014, Skelton et al. 2015), and others store water 

in succulent leaves and stems for continued relatively normal photosynthesis when the 

surrounding environment is dry (Bartlett et al. 2012). A reduction in ET and increase in 

CWD as water availability declines is thus not necessarily associated with water stress or 

environmental (un)suitability. 

 Further complicating interpretation and use of drought metrics is their inclusion of 

parameters that difficult to accurately measure. Computing CWD requires modeling PET 
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and AET values across a landscape based on temperature and precipitation and simplified 

hydrological processes (e.g., Willmott et al. 1985, Dobrowski et al. 2013, Flint et al. 

2013). Despite the potential value of metrics such as CWD for understanding drought 

sensitivity of plants, it is difficult to tell the degree to which current methods reflect 

biologically meaningful water availability and stress. Direct measurement of AET 

requires lysimeters or eddy flux towers (Dingman 2002), and measurement of PET would 

require thoroughly watering the site(s) of interest first, or extensive sampling when water 

is not limiting. Because of the difficulty of obtaining values empirically, water balance 

values used in ecology (Willmott et al. 1985, Dobrowski et al. 2013, Flint et al. 2013) are 

usually derived from models parameterized for agricultural crops, short green grass, or 

simple modifications thereof, for which relationships have been more thoroughly studied 

and validated (e.g. PDSI, Alley 1984). The reliability of such models for plot-level 

estimates in natural ecosystems has not been evaluated. The physiological and 

hydrological assumptions inherent in these models affect not only the absolute estimates 

of AET and CWD (e.g., comparison of values derived by Stephenson 1998, Lutz et al. 

2010, and Flint et al. 2013), but also their relative variation across a landscape and, by 

extension, through time (Derek Young, University of California Davis, unpublished 

data). 

The variability in the ability of each metric to predict tree growth may partly 

reflect variability in soil moisture storage. The ability of trees to resist ongoing drought 

stress is dependent on below ground hydrologic ‘refugia’ (McDowell et al. 2019). 

Increasing evidence points to the importance of deep rooting for drought tolerance 

(Brunner et al. 2015), and that bedrock-depth water availability buffers drought stress 

(Goulden and Bales 2014, 2019, Bales et al. 2018). In fact, simulations of tree response to 

drought incorporating evaporative demand and deep soil rooting showed that removal of 

deep roots led to significantly reduced stem water potential (an indicator of drought 

stress) and led to rapid increases in tree mortality (Millar et al. 2017). However, Chitra-

Tarak et al. (2018) also found that trees classified as rooting in deep bedrock zones were 

more likely to die during prolonged drought as their rooting zone had slower recharge 

than trees rooted in more shallow soils. Only P-ET has been explicitly modeled and 

tested as a measure of deep soil water capacity (Bales et al. 2018), while PDSI, CWD, 

and DEF all only assume 1.5 m soil depth. Soil porosity in PDSI, CWD, and DEF are all 

parameterized using regionally-specific field measurements, with only CWD being 

parameterized for California. However, a preliminary analysis of ring width, P-ET and 

CWD at the heavily instrumented Southern Sierra Critical Zone Observatory (SSCZO) 

showed that both metrics appear to be correlated with soil moisture down to 90 cm, 

which predicted ring width in a small subsample of trees (Lauder, unpublished data).  

Differences in spatial resolution can potentially impact predictive ability of each 

drought metric. The metrics tested here represent a wide range of spatial resolutions: 

CMD is estimated as a scale-less point-measurement using elevation-corrected 

downscaling, P-ET is measured at 30 m resolution, CWD is measured at 270 m 

resolution, and DEF and PDSI are measured at 4 km resolution. If resolution played a 

significant role in differences in measured drought, we would predict higher spatial 

variability in higher-resolution metrics. Spatial variability was higher in P-ET than CMD 

across all years, even though CMD is calculated at a higher resolution. Further, in wet 
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years, DEF and PDSI were more spatially variable than CMD and CWD. Although this is 

not a direct test of the impact of spatial resolution on ring width predictive power, it does 

demonstrate that across our sampled sites, resolution alone does not explain differences 

in measured drought variability. Future studies, however, should scale each metric to a 

common resolution and assess differences in model output.  

An important driver of drought stress and its impacts is forest density. Many 

reconstructions of past climate using dendrochronological records focus on tree rings 

measured in climate-sensitive trees, little influenced by plant competition for resources 

like soil water. In western forests that have experienced intensive drought-induced die-

off, competition amplifies drought stress and is a significant covariate in models of 

drought susceptibility (Young et al. 2017, Asner et al. 2016). We did not include 

competition in our model due to incompatibility in the methods used for calculating 

competition in each dataset. This analysis combined data from cores extracted from target 

trees sampled over a wide range with competition estimated using Voronoi polygons with 

data from cores extracted from trees sampled in intensively sampled plots with full forest 

inventories. Voronoi polygons are derived using neighboring trees as vertices of a 

polygon centered on the sampled tree, with area of the polygon used as a proxy for the 

region of tree influence (an inverse proxy of competition). While we were able to 

calculate Voronoi polygons for trees sampled in forest inventory plots, the polygons for 

trees in the wide-ranging dataset derived from measurements taken from nearby 

dominant neighbors along bearing lines. We were able to roughly approximate similar 

estimates for our plot-based trees, but edge effects from trees sampled near a plot edge 

did not allow estimation of a truly comparable Voronoi polygon. However, future models 

aiming to predict forest growth based on correlations between ring width and climate 

should still attempt to incorporate competition where possible.  

A caveat to drought metric comparisons is that correlation between ring width and 

climate is an imperfect indicator of drought metric utility. Decoupling of ring width and 

climate in highly drought-stressed populations has been shown to predict eventual 

mortality (Cailleret et al. 2017, 2019). Thus, caution is warranted when interpreting high 

correlation as justification for use of a particular drought metric; low correlation can 

mean low predictive power, or simply that sampled trees have stopped responding to 

climate and may die soon after sampling. However, in this study, we only used living 

trees, rather than those that died during the drought, and conducted analyses across all 

tree rings for every tree since 1980. This reflects average growth response to climate over 

a 36-year period across individual years and individual trees. Decoupling of tree ring 

width from climate would not be reflected in this calculation, as it would ostensibly only 

decrease correlations in recent years in trees that may eventually succumb to drought. 

Future work should incorporate lagged effects and time-series correlations to detect 

degree of growth variation in direct response to climatic variation and further test for this 

decoupling effect.  

Our results demonstrate that the capacity of widely employed drought metrics to 

track spatial and temporal extremes in drought as well as tree growth response to those 

extremes varies. By using tree ring chronologies to compare drought metrics, we were 

able to show that spatial resolution alone does not predict degree of spatial sensitivity to 

drought, but instead that the method of drought metric derivation may drive differences in 
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predictive power. Understanding the inherent variation and biases in each of these 

metrics is an important component of future models of forest response to climate change. 

On-going research into both the reconstruction of past climate and how current forests 

may respond to future conditions should carefully consider the drought metric of choice, 

and how well the theoretical framework underlying that drought metric reflects 

biologically meaningful water availability and thus true drought experienced by natural 

forests.  
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Table 4.1. List of drought metrics compared including resolution, method of ET calculation (both potential/reference ET [ET0] 

and actual evapotranspiration, AET), and source of raw climate data. PPT = precipitation data source, T = temperature data source. 

Note that CMD has no resolution as it is a point estimate. N/A = not applicable or included in given modeling approach. 

 

Model Metric Resolution (m) PET or ET0 AET PPT T Reference 

Climate 

WNA 
CMD N/A Hargreaves N/A PRISM (BI1) PRISM (BI) (Wang et al., 2011) 

CalBCM CWD 270 Thornthwaite 
Output from 

CalBCM 

PRISM 

(GIDS2) 

PRISM 

(GIDS) 
(Flint et al., 2013b) 

P-ET P-ET 30 N/A Flux~NDVI  PRISM (BI) PRISM (BI) 
(Goulden et al., 

2012a) 

TerraClim DEF ~4000 
Penman-

Montieth 

Dobrowski 

(Thornthwaite-

Mather) 

WorldClim WorldClim 
(Abatzoglou et al., 

2018) 

TerraClim PDSI ~4000   WorldClim WorldClim 
(Abatzoglou et al., 

2018) 
1Downscaled from 800 m using bilinear interpolation. 
2Downscaled from 800 m using Gradient-Inverse Distance Squared interpolation 
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Table 4.2. Model posterior credible intervals for each drought metric. All models used 

only the RWI as a response, and drought metric and drought metric nested by tree as 

predictors. 𝐵0 = intercept (i.e. mean expected annual RWI), 𝐵1= effect of drought metric 

on RWI (i.e. slope of relationship), 𝜎 = variance. Bold values represent three best fit 

models and largest effect sizes (most negative posterior). 

 

Metric Parameter Mean Posterior Credible Interval 

P-ET 𝐵0 1.01 1.00,1.01 

 𝐵1 -0.08 -0.07,-0.08 

 𝜎 0.23 0.23,0.23 

CMD 𝐵0 0.99 0.99,0.99 

 𝐵1 -0.03 -0.02,-0.03 

 𝜎 0.24 0.24,0.24 

CWD 𝐵0 0.99 0.99,0.99 

 𝐵1 -0.05 -0.05,-0.06 

 𝜎 0.24 0.23,0.24 

DEF 𝐵0 0.99 0.99,0.99 

 𝐵1 -0.04 -0.04,-0.05 

 𝜎 0.24 0.24,0.24 

PDSI 𝐵0 0.98 0.98,0.99 

 𝐵1 -0.08 -0.08,-0.08 

 𝜎 0.22 0.22,0.23 
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Figure 4.1. Location of tree core samples used for comparison of drought metrics. 

Increment cores were taken at breast height from selected trees at all shown locations. 

See text for description of tree selection and core extraction and processing.  
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Figure 4.2. Precipitation (PPT) and maximum temperature (TMX) from 1986-2016 

across all sampled sites in the Sierra Nevada, California. Values are scaled by subtracting 

the mean and dividing by the standard deviation (i.e., converted to z-scores) to put them 

on comparable scales. Note 2011 was anomalously wet and cold. Shaded areas represent 

95% confidence intervals. 
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Figure 4.3. Z-scores of each climate metric and the inverse of ring width index (RWI). 

Positive values represent high drought and low ring width, while negative values 

represent low drought and high relative ring width. PDSI = Palmer Drought Severity 

Index, P-ET = Precipitation minus NDVI-derived ET, CWD = Climatic Water Deficit 

(Cal-BCM), DEF = Climate Water Deficit (TerraClim), CMD = Climatic Moisture 

Deficit (ClimateNA), and RWI = average ring width index, a detrended chronology from 

866 trees in the Sierra Nevada mountains. Note that both PDSI and P-ET were also 

inverted, with raw values converted to negative values before being converted to z-

scores.  
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Figure 4.4. Average within-year coefficient of variation of degree of drought as 

estimated by all measured drought metrics. CV is used here as a measure of spatial 

variability; higher within-year CV represents higher between-location variance. See 

Figure 4.3 and text for description of each drought metric.  
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Figure 4.5. Posterior predictive checks of Bayesian linear models for each drought 

metric. T(y) = mean RWI in observed dataset, T(yrep) = 500 random subsamples of 

posterior predicted RWI. Results show that PDSI and CWD models have the smallest 

ranges of posterior predictions (less variance), while the P-ET model has the largest 

number of predicted values closes to the mean. The DEF model had the highest total 

number of random draws that matched mean RWI, but also had a wide distribution of 

mean RWI, while CMD had mean predicted RWI that were lower than observed RWI. 

See Figure 4.3 caption and text for description of drought metric abbreviations.  
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Figure 4.6. Model posterior credible intervals for the effect (β) of each drought metric on 

tree ring width. Shaded areas represent posterior distributions, lines represent 60% (thick 

line) and 95% (thin line) credible intervals, and black dots represent mean posterior vales. 

More negative values represent a more negative effect of drought—as modeled by each 

respective drought metric—on ring width index. See Figure 4.3 caption and text for 

description of drought metric abbreviations.  
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Figure 4.7. Marginal effects from each drought metric model. Line represents modeled 

RWI as a function of each drought metric while controlling for variation across 

individual trees. Points represent ring width index (RWI) values. Drought metrics are 

scaled by subtracting the mean and dividing by the standard deviation (i.e., converted to 

z-scores) to place them on comparable scales. See Figure 4.3 caption and text for 

description of drought metric abbreviations. Note that P-ET and PDSI here are inverted (-

[P-ET] and -PDSI) to make them comparable to other drought metrics, where high values 

= high degree of drought. 
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Figure 4.8. Direct comparisons of each drought metric to raw maximum temperature 

(TMX) and precipitation (PPT). Drought metrics are scaled by subtracting the mean and 

dividing by the standard deviation (i.e., converted to z-scores) to place them on 

comparable scales. Shaded areas represent 95% confidence intervals. See Figure 4.3 

caption and text for description of drought metric abbreviations.  
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Figure S4.1.  Species-specific responses in ring width index (RWI) to drought for 

drought metrics. Sample size differences between species were too large for 
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incorporation of a species effect directly in the model, but species effects were still 

explored visually to account for any dramatic differences. Only Pinus sabiniana (PISA) 

showed different responses to climate from other species. Drought metrics are scaled by 

subtracting the mean and dividing by the standard deviation (i.e., converted to z-scores) 

to place them on comparable scales. See Figure 4.3 caption and text for description of 

drought metric abbreviations. ABCO = Abies concolor, ABMA = A. magnifica, PILA = 

Pinus lambertiana, PISA = P. sabiniana, PSME = Pseudotsuga menziesii, PIYE = P. 

jeffreyi and P. ponderosa, which were lumped into “yellow pine” category for 

classification of species range boundaries, due to diffuse range boundaries between these 

two species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.2. Relationship between ring width index (RWI) and drought metrics. Blue 

line represents best-fit line (spline regression) for each metric. Drought metrics are scaled 

by subtracting the mean and dividing by the standard deviation (i.e., converted to z-

scores) to place them on comparable scales. See Figure 4.3 caption and text for 

description of drought metric abbreviations.  
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Figure S4.3. Leave-one-out Posterior Integral Transformed (LOO-PIT) model 

comparisons. Light blue lines represent integral-transformed ring width index (RWI)   

(i.e., distribution of RWI values transformed to lay along a uniform distribution). Dark 

blue lines represent PI-transformed model output. Departures of the PIT values from the 

uniform values represent model fit departures. Best fit, determined visually, is seen in 

PDSI and P-ET.  
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Chapter 5: 

Growth variability and xylem traits as predictors of tree mortality during drought 

 

5.0 Abstract 

Tree response to drought is theoretically a function of tree size, growth, competitive 

environment, and the interaction between tree physiology and drought intensity. Few 

studies, however, have combined cellular-scale physiological measurements with tree-

ring and forest-scale measurements to examine cross-scale predictors of drought-induced 

mortality. Here, we combine measurements of xylem anatomical variation with tree ring 

records, forest inventory data, and multiple drought metrics at various scales to identify 

determinants of drought-induced mortality in response to the 2012-2016 megadrought in 

California’s Sierra Nevada. We found that trees with high average hydraulic safety (ratio 

of xylem cell wall thickness to cell diameter), high hydraulic safety plasticity (annual 

variation), and high plasticity in diameter growth were more likely to die during the 

2012-2016 drought. As the sampled trees were also exposed to a bark beetle 

(Dendroctonus spp.) outbreak, we hypothesize that the mechanism of mortality is likely 

C depletion. We then explore the impacts of this C depletion effect on surviving trees by 

comparing cone production to measured hydraulic safety and ring width. We found that 

cone production is loosely positively correlated with ring width, but that no one trait 

predicts reproductive output. Our results demonstrate the importance of both cellular and 

forest-scale traits in predicting forest response to climate change.  

  

5.1 Introduction 

Western North American forests have been experiencing decreased moisture availability 

and increased temperatures, driving dramatic shifts in forest density and composition 

(McIntyre et al. 2015), and widespread drought-induced mortality (van Mantgem and 

Stephenson 2007, Clyatt et al. 2016). For example, the California drought of 2012-2016 

was more severe than any observed in the previous 1200 years (Griffin and Anchukaitis 

2014), and left an estimated 130 million standing dead trees in the Sierra Nevada (Moore 

et al. 2020). Globally, instances of drought-induced forest mortality have increased in 

frequency in the last two decades (Allen et al. 2010), and are predicted to rise as 

temperatures increase (IPCC 2014, Allen et al. 2015). This mass tree mortality may have 

myriad implications for water resources (Flint et al. 2013, Goulden and Bales 2014, 

Grossiord et al. 2014), fire prevalence (Dale et al. 2001), and land management (Clark et 

al. 2016). However, it also provides a unique opportunity to test hypotheses regarding 

drivers of tree mortality in a natural setting.  

Current understanding of drought impacts on forests stems from either 

experimental application of drought to seedlings and saplings in a controlled greenhouse 

environment, or observations of whole-forest die-off. Greenhouse and experimental 

studies allow direct measurement of ecophysiological drivers of mortality in seedlings 

and young trees including wood anatomy (Anfodillo et al. 2012, Anderegg and Anderegg 

2013, Aaltonen et al. 2016), water potential, and stem water conductivity (Mitchell et al. 

2013, Anderegg and Anderegg 2013). Such measurements can reveal lethal threshold 

levels of water stress. Field observation studies allow exploration of climate and forest 

structure metrics that predict mortality (Das et al. 2013, 2016, Young et al. 2017), and 
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how biotic stressors such as pests interact with and alter likelihood of tree mortality 

(Stephenson et al. 2019). Few studies, however, consider interactions across these scales, 

and fewer still examine consequences of drought on components of fitness beyond 

survival.  

Under climate change, tree species must either adapt to changing conditions, 

migrate to track their environmental niche, or both, if they are to avoid a shrinking 

geographic range (Aitken et al. 2008). After a major drought, which represents a strong 

selective pressure (Eveno et al. 2008, Alberto et al. 2013), surviving trees may be 

expected to exhibit more drought-resilient physiological traits than dead trees. However, 

which traits will be favored is not entirely clear. In isohydric species like pines that 

respond to drought stress by closing stomata to control stem water potential, drought 

induces closure of leaf stomata, reducing water loss comes at the expense of carbon (C) 

assimilation and photosynthesis (Tardieu and Simonneau 1998, Klein 2014). 

Physiological responses to drought include building of C-expensive drought-resistant 

xylem (Bryukhanova and Fonti 2012, Bouche et al. 2014), increased allocation of C to 

root growth (Hagedorn et al. 2016), and changes in C storage dynamics (Chapin et al. 

1990, Sala et al. 2012, Adams et al. 2013). Thus, reduced C assimilation under drought 

coupled with enhanced allocation of remaining C to drought resilience traits may lead to 

tradeoffs among drought defense, radial growth, and other C-intensive processes such as 

reproduction (Lauder et al. 2019). These tradeoffs may then be associated with drought-

induced selection of trees with high reproductive effort at the expense of drought defense 

or growth.  

The record of not only how a tree grows, but the mechanisms underlying observed 

growth patterns and C allocation to growth, is maintained in the growth rings of a tree 

(Martínez-Vilalta 2018). Conifer growth rings are made up almost entirely of xylem cells 

called tracheids, the primary water-conducting cells of a plant. Wider tree rings are 

associated with larger or more numerous tracheids; larger tracheids can move more water, 

but potentially at a higher risk of cavitation (via air embolism of the water column) or wall 

collapse (Pittermann et al. 2006). Drought stress, at both seasonal and long-term scales, is 

known to induce smaller tracheid diameters and thicker walls in conifers (Bryukhanova 

and Fonti 2012, Cuny et al. 2014, Fonti and Babushkina 2016). This change in tracheid 

anatomy may be both a response to and a defense against drought conditions. Drought 

induces smaller cell diameters via means of turgor-limited cell expansion; decreased water 

availability leads to decreased outward pressure from within the xylem cell and thus limited 

cell expansion and subsequent diameter (Woodruff et al. 2004, Anfodillo et al. 2012). This 

decreased cell expansion time, however, may increase both cavitation resistance and 

mechanical damage resistance by means of higher water potentials and increased wall 

thickening times (Cuny et al. 2014).  

“Thickness to span” (also referred to as Mork’s index, Hacke et al. 2001) is a ratio 

of xylem cell wall thickness to tracheid cell lumen diameter. Trees vary both within and 

between species in their threshold thickness to span ratio beyond which hydraulic failure 

occurs, with higher ratios being correlated with higher drought survival (Bouche et al. 

2014). Evidence is mixed, however, for this relationship across different species. 

Intermediate ratios of wall thickness to diameter were associated with higher resistance to 

cavitation in Douglas-fir (Pseudotsuga menziesii), and large ratios were least resistant 
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(Dalla-Salda et al. 2014). Extension of this intra-annual observation to inter-annual 

measurements of tracheid anatomy would improve understanding of the relationships 

between anatomy and drought-induced mortality over time. Inter-annual variation in wall 

thickness may be particularly significant in multi-year droughts, as previously grown tree 

rings are used for water transport for many years (Pallardy et al. 1995).  

Inter-annual variation in tree ring traits may influence reproductive effort. Cone 

production in conifers typically takes two to three years (Guo et al. 2016). Trees that are 

highly sensitive to drought may develop higher thickness-to-span ratios than less 

drought-sensitive neighbors. This higher thickness-to-span ratio is associated with a 

higher total C cost per unit volume of wood (Lauder et al. in review, Chapter 3), resulting 

in less C left to allocate toward reproduction. Tradeoffs between growth and reproduction 

are well studied, but the impacts of drought on the degree of tradeoff remain largely 

unknown. Under mesic conditions, conifers typically demonstrate a positive relationship 

between growth and reproduction overall (Woodward and Silsbee 1994, Despland and 

Houle 1997, Santos et al. 2010, Ayari et al. 2012, Ayari and Khouja 2014, Hisamoto and 

Goto 2017). Masting, the synchronous production of large seed crops across a population 

(Kelly et al. 2013), has been shown to induce negative correlations between growth and 

reproduction both during and after mast years (Eis et al. 1965, Woodward and Silsbee 

1994, Hacket-Pain et al. 2017, Hacket-Pain et al. 2018). Drought appears to be associated 

with increased reproductive output overall, likely due to the positive effects of warm and 

dry climate on resource priming, cone primordia formation, and pollen dispersal (Lauder 

et al. 2019). Few studies have explored the impact of drought on growth-reproduction 

tradeoffs, however, and even fewer have examined the direct mechanism of potential 

drought-induced changes in degree of tradeoff. Changes in total stored non-structural 

carbohydrates (NSC) are implicated in changes in C allocation during drought (Sala et al. 

2012, Aaltonen et al. 2016, Adams et al. 2017). Whether these changes are driven by 

increased allocation to drought defenses and growth (“Fight” behaviors, Lauder et al. 

2019), or reproductive output (“Flight” behavior) remains unexplored. Such an analysis is 

necessary in order to understand not only how trees die under extreme drought, but also 

how traits that confer survival influence overall tree fitness.  

Here, we examine tracheid anatomy and its relation to tree diameter, ring width, 

competitive pressure and climate before, during, and after drought in widely distributed 

conifer species, ponderosa pine (Pinus ponderosa), and Jeffrey pine (P. jeffreyi), along an 

elevation gradient. We ask: which physiological traits influence likelihood of mortality in 

these species, and how do these traits influence likelihood of successful reproduction in 

surviving trees? We scale drought response of these species from the individual cell to 

the forest stand by incorporating data at the levels of the tracheid (anatomy), the whole 

tree (growth and survival), and the forest (climate, competition). This scaling fills a 

significant gap in our ability to connect ecophysiological and experimental responses to 

landscape-scale efforts to understand and predict climate change impacts on forests.  
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5.2 Methods 

5.2.1 Plot locations 

Three elevational transects were established: one each in the Southern, Central, and 

Northern Sierra Nevada (Figure 5.1), in Sequoia National Park (S), Sierra National Forest 

on both private property and in conjunction with Southern Sierra Critical Zone 

Observatory (R), and Tahoe National Forest (T), respectively. Sites were located at the 

lowest elevation boundary of P. ponderosa, the zone of overlap between P. ponderosa 

and P. jeffreyi¸ the mid to upper elevation range of P. jeffreyi, and the zone of overlap 

between P. jeffreyi and P. monticola. Plots were placed at locations that were accessible 

and contained target species. At each site, we established a 0.8 ha plot in which we 

identified and measured diameter at breast height (DBH) of all species, and mapped 

individual tree locations. Mapped tree locations and diameters were used to calculate the 

Hegyi index of competition for all trees. The Hegyi index is a size-weighted measure of 

competition experienced by target trees (Hegyi 1974). 

 

5.2.2 Core measurements 

We sampled a minimum of 10 individuals of each target species (P. ponderosa and P. 

jeffreyi) present in each site with a 4.37mm Haglof increment borer (Haglof, Sweden)  

increment borer at breast height. Co-occurring non-target species (Abies concolor, A. 

magnifica, Calocedrus decurrens, P. lambertiana, and P. contorta) were also sampled to 

assist in site-level tree core cross-dating and other plot-scale characteristics, but were not 

analyzed here due to low sample sizes per species. Cores were taken in two perpendicular 

directions (parallel and perpendicular to slope) to mediate potential reaction wood in trees 

growing on slopes and to ensure complete ring detection (Speer 2010). To test how various 

traits influence likelihood of mortality, we sampled both living and dead trees, with dead 

trees identified as those completely defoliated or with no green foliage.  

Cores were prepared using standard dendrochronology methods (Speer 2010). All 

extracted cores were stabilized in wooden mounts and surfaced using consecutively finer 

grades of sandpaper until individual cells were visible. Cores were then scanned at 800 dpi 

on a flatbed scanner and ring widths were measured in the winDENDRO (Regent 

Instruments Canada Inc. 2017) tree ring software package. Cores were cross-dated visually 

within winDENDRO, and final cross-dating accuracy was checked using COFECHA 

(Grissino-Mayer 2001), and adjusted manually under a stereo microscope if necessary.  

After cross-dating, 10-16 µm radial thin sections were made of each core using the 

GSL-1 tree core microtome (Gärtner et al. 2014). In lieu of stabilization of tree cores in 

paraffin, we brushed prepared core surfaces with a non-Newtonian starch solution to 

facilitate non-destructive wood sectioning (von Arx et al. 2016). Thin sections were 

cleaned of starch and fixed to glass slides, and cross-stained using a 1% safranin and 1% 

astra blue solution (1:1 v/v) to enhance contrast between lignified tracheid cell walls and 

cellulosic materials. Slides were permanently fixed using Euparal, and photographed at 

100x using a Leica DM microscope at constant light saturation across all images. Images 

were analyzed in winCELL (Regent Instruments Canada Inc. 2017) following processing 

to remove artifacts such as areas un-cleaned of starch, or to exclude areas of broken cell 

walls or warped cells from final analysis. Individual traits analyzed include tracheid 

diameter, tracheid area, cell wall thickness, total count, and density.  
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5.2.3 Reproductive effort measures 

To quantify reproductive effort, we conducted visual binocular cone counts of sampled 

trees in the summers of 2017, 2018, and 2019. Not all trees could be sampled in all years, 

with the highest density of cone counts conducted in 2019. We counted all visible cones 

using binoculars and a spotting scope where necessary to confirm cone presence and 

growth stage. Cones on the ground were also counted and categorized as current year, past 

year, or older based on cone color and degree of decay. Green cones or light brown cones 

that were unopened were counted as current, light brown cones with seeds still present 

within bracts were previous year, and gray-brown cones that broke easily in the hand were 

classified as >1 year old (Redmond et al. 2012). Ground cone counts were only conducted 

in areas where all ground cones could reasonably be sourced to nearby parent trees.  

 

5.2.4 Climate Data 

The degree of drought stress experienced by trees growing in each plot was evaluated using 

multiple available climate data sources. Models of likelihood of mortality included 

maximum July temperature, minimum January temperature, and the following measures of 

water availability:  

 

1. Climatic moisture deficit (CMD) from ClimateNA (Wang et al. 2011, 2016) 

2 & 3. Palmer Drought Severity Index (PDSI) and water deficit (DEF) extracted from 

TerraClim (Abatzoglou et al. 2018) 

4.Climatic Water Deficit (CWD) from Cal-BCM (Flint et al. 2013) 

5. A metric of precipitation minus ET (P-ET) using ET calculated from LandSat-derived 

Normalized Differential Vegetation Index (NDVI) and eddy flux tower-measured ET 

(Goulden et al. 2012, Bales et al. 2018).  

 

We opted to use multiple climate datasets in this analysis due to the different ability 

of each to track “true drought” with respect to both temperature and soil water availability 

for tree growth. We used tree ring records from 866 trees throughout the Sierra Nevada to 

test the ability of each of these drought metrics to predict tree ring growth, and found that 

PDSI, P-ET, and CWD models had the best fit (Chapter 4). PDSI and P-ET had the highest 

correlation coefficients with growth, but PDSI had the lowest spatial variability and P-ET 

had very high spatial variability. This means that P-ET may best predict tree ring growth 

at local scales and may best track spatial variability in drought. However, because that 

study (Chapter 4) did not include mortality or wood anatomy, we chose to extend the test 

of each drought metric to this dataset.   

 

5.2.5 Statistical Analysis 

After cross-dating removed cores that were unable to be dated, along with sample loss or 

an inability to generate thin sections with high enough quality for tracheid measurement, 

we were left with 156 individual tree ring width chronologies and 57 trees with thin 

sections from multiple rings. Not all records exist for all individuals, as thin sections may 

be taken from trees whose entire chronology could not be dated, or cores could be dated 

on trees whose wood was too brittle for thin sectioning.  



106 
 

    
 

In order to fill these gaps, we used multiple imputation using chained equations 

using the “mice” package in R version 3.6.3 (R Development Core Team 2020). In this 

method, missing values are imputed based on iterative regressions using all available data. 

The multiple iterations allow estimates of the likely missing values and error around the 

estimates of the missing values. We estimated missing values by imputing five new gap-

filled datasets with 150 iterations of classification and regression trees using all available 

data. This led to, for example, missing hydraulic safety factor (HSF) being estimated from 

climate, species, location, growth, and competition data, and growth being estimated from 

climate, species, location, competition, and HSF data. Final imputed data was checked 

against raw values visually, and means and ranges were found to approximate raw data 

(Figure S5.1), and thus were averaged across all five imputations to create the final dataset. 

Analyses were conducted using both this imputed dataset and the original measured dataset 

to evaluate the effects of imputation. Models approximated each other, but did have 

different results; raw data models did not converge, and were left with less than half of the 

original dataset due to inherent row-wise deletion of observations with missing values in 

R. So only imputed datasets (n = 157 final individual tree observations) were used for final 

analyses.  

Ring widths were detrended to remove age-based biases in tree growth estimates. 

Ring widths were converted to ring width index (RWI) by dividing all ring widths by the 

mean value for each year of a cubic spline with a 20-year length (Figure S5.2).  This length 

of spline retains 95% of decadal variance but minimized age-biased growth patterns (Speer 

2010). We then used these detrended ring widths to calculate the Gini coefficient, a 

measure of growth variability for which high values represent high year-to-year variation 

in growth and low values represent “constant” growth (Biondi and Qeadan 2008). All 

detrending and ring width analyses were conducted in the package “dplR” (Bunn 2008) in 

R. 

Cell traits were used to derive a hydraulic safety factor (HSF), calculated as  

𝐻𝑆𝐹𝑖 =  
𝑆

0.5(𝑇𝑤1+𝑇𝑤2)
, 

where: S = “span,” the diameter of the cell lumen, and T = wall thickness for wall 1 (w1) 

and wall 2 (w2) of cell i moving from left to right along the direction of growth in the 

image. Calculating these metrics for all cells for all rings led to an extremely large dataset 

(>9 million cellular observations). To simplify final analyses, we calculated mean HSF 

(mHSF) for each ring. We then calculated the Gini coefficient of HSF to estimate 

variability in mean HSF across multiple years for each tree.  

We constructed models of likelihood of mortality as a function of tracheid anatomy, 

growth, growth plasticity, degree of drought experienced, growth and tracheid anatomical 

response to drought, and competition. To test the effects of mediating variables and indirect 

effects, as well as uncertainty in effects, we use two different modeling methods and 

compared results. We first used Bayesian logistic regression to estimate the effects of all 

predictors on likelihood of mortality by species and year. We then used path analysis, a 

form of structural equation model (SEM), to model both direct effects of all predictors on 

likelihood of morality as well as interactions and indirect effects of predictors on each other 

and likelihood of mortality. This allowed a nested structure, where, for example, tracheid 

traits influence likelihood of mortality directly (via changes in physiological drought 

resistance) and indirectly (via influences on C use and ring width). This approach allowed 



107 
 

    
 

us to use multiple lines of evidence to infer final predictors of mortality. Further, the SEMs 

did not allow incorporation of prior year effects due to multiple collinearity (current year 

growth is highly correlated with prior year climate and growth), while the Bayesian models 

did not converge when including a variable representing latewood/earlywood ratios in tree 

rings.  

 The Bayesian model was constructed as: 

 

𝑀𝑖𝑗𝑡  ~ 𝐵𝑒𝑟𝑛(𝜃𝑖𝑗) 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖𝑗𝑡) =  (𝛽𝑗 +  𝛽𝑖𝑗𝑡𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗  +  𝛽𝑖𝑗𝑡𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗
𝑡−1 +  𝛽𝑖𝑗𝑡𝑅𝑊𝐼𝑖𝑗  +  𝛽𝑖𝑗𝑡𝑅𝑊𝐼𝑖𝑗

𝑡−1  

+  𝛽𝑖𝑗𝑡𝐻𝑆𝐹𝑖𝑗  +  𝛽𝑖𝑗𝑡𝐻𝑆𝐹𝑖𝑗
𝑡−1 +  𝛽𝑖𝑗𝑡𝑇𝑀𝑁𝑖𝑗  +  𝛽𝑖𝑗𝑡𝑇𝑀𝑁𝑖𝑗

𝑡−1  + 𝛽𝑖𝑗𝑡𝑔𝑖𝑛𝑖𝑖𝑗  

+  𝛽𝑖𝑗𝑡𝐻𝑆𝐹𝑔𝑖𝑛𝑖𝑖𝑗  +  𝛽𝑖𝑗𝑡𝐻𝑒𝑔𝑦𝑖𝑖𝑗  +  𝛽𝑖𝑗𝑡𝐻𝑆𝐹𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗  

+  𝛽𝑖𝑗𝑡𝑅𝑊𝐼𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗  +  𝛽𝑖𝑗𝑡𝐷𝐵𝐻𝑖𝑗, 𝜎𝑦
2) 

𝛽𝑖𝑗𝑡 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝜈𝑖𝑗𝑡, 𝜇𝑖𝑗𝑡, 𝜎𝛽
2 ), 

 

where: M = likelihood of mortality in tree i for species j in year t, a Bernoulli distributed 

function of θ; θ is connected to a series of linear predictors via a logit link; Drought = the 

drought metric of choice for that model with all metrics run in their own models; t-1 

superscripts represent lagged effects (value of each predictor from the prior growth year); 

RWI = ring width index; HSF = hydraulic safety factor (i.e. “thickness-to-span”); TMN = 

minimum temperature; Gini = growth variability; HSFgini = variability in HSF; Hegyi = 

the Hegyi index of competition for tree i; HSFDrought and RWIDrought = the linear 

correlation between HSF or RWI, respectively, and the chosen drought metrics across all 

growth years; and DBH = last measured diameter at breast height.  

Bayesian logistic models were built in the R package “brms” (Bürkner 2017). 

Predictors were all centered and scaled by subtracting the mean and dividing by the 

standard deviation. Priors were Student-t-distributed with a mean of zero, three degrees of 

freedom, and a scale of 2.5. This prior distribution is based on providing vaguely 

informative priors for logistic regressions when all predictors are scaled (Gelman et al. 

2008), and represents a change of 0.50 in the probability of mortality for each 1 s.d. change 

in a predictor. Prior distribution for all parameters is shown relative to posteriors in Figure 

5.2. Model fit was assessed using the leave-one-out information criterion (LOOIC), with 

smaller values of LOOIC indicating better fit. Cross-validation via LOO is based on 

evaluation of the log-likelihood of a single data point that was not included in parameter 

estimation, and then repeating this for each data point. This yields an estimate of overall 

model out-of-sample predictive accuracy (Vehtari et al. 2017). 

Path analysis models were built in the R package “lavaan” (Rosseel 2012), as: 

 

𝑀𝑖𝑗 =  𝑙𝑜𝑔𝑖𝑡(𝑅𝑊𝐼𝑖𝑗 +  𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗 + 𝐻𝑆𝐹𝑖𝑗 + 𝐻𝑆𝐹𝑔𝑖𝑛𝑖𝑖𝑗 + 𝐺𝑖𝑛𝑖𝑖𝑗 + 𝐻𝑒𝑔𝑦𝑖𝑖𝑗) 

𝑅𝑊𝐼𝑖𝑗 =  𝑅𝑊𝐼𝑖𝑗
𝑡−1 + 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑀𝑁𝑖𝑗 +  𝐻𝑒𝑔𝑦𝑖𝑖𝑗 

𝐻𝑆𝐹𝑖𝑗 =  𝐿𝑢𝑚𝑒𝑛𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑗 + 𝑊𝑎𝑙𝑙𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑖𝑗 + 𝐻𝑆𝐹𝑠𝑙𝑖𝑗, 

 

where LumenLength = tracheid lumen diameter for tree i in year j; WallThickness = wall 

thickness of tracheids within tree i in year j; and HSFsl = the slope of the relationship 

between HSF and tree ring position, representing “degree of latewood formation”. SEM 
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model fit was assessed using Akaike’s Information Criterion (AIC) and p-values from a 

χ2 goodness-of-fit test comparing the model covariance with covariance in the data (in 

this case a high p-value indicates good model fit).  

Finally, reproduction was compared to all other traits measured using a negative 

binomial regression with cone count on target trees as a response. Negative binomial 

regression gives the likelihood of reproduction based on zero-inflated count data, and is 

useful for estimating likelihood of an event given sparse observations (Hoef and Boveng 

2007, Lindén and Mäntyniemi 2011). Under the “fight or flight” hypothesis (Lauder et al. 

2019), flight is denoted by a mast prior to mortality. However, our reproduction dataset 

does not cover enough time to assess whether reproductive effort constitutes a mast. 

Further no trees that died during our observation period had cones observed on them 

immediately prior to death, so instead we analyzed likelihood of reproduction given other 

traits in surviving trees. Thus our analysis of reproductive effort is a test of the impact of 

“fight” behaviors on reproduction.   

 

5.3 Results 

We found that drought, growth variability, and variation in xylem anatomy all influenced 

likelihood of mortality in pines. The Bayesian models all achieved convergence (1.00 < 𝑅̂ 

< 1.01 for all predictors), with the best-fit models including either P-ET or PDSI as the 

drought metric predictors. However, the CWD-specific model had only slightly lower fit 

(Table 5.1). Trees were more likely to die when PDSI was high (Figure 5.2) or when P-ET 

was low (Figure 5.3); however, effects differed by species, with P. ponderosa being more 

likely to die in general (higher intercept) and being more responsive to both drought 

metrics. Within the PDSI and P-ET models, the best predictors of mortality were Gini, 

HSFgini, minimum temperature, the drought metrics, and the interaction between RWI and 

drought (Figure 5.4). However, only Gini and HSFgini had credible intervals that did not 

overlap zero across all models, meaning they have a clearly non-zero effect on mortality 

(Table 5.2).  

We identified multiple novel predictors of tree mortality. Gini coefficient, 

representing growth variability, was both higher and more variable in trees that eventually 

died than living trees (Figure 5.5). This demonstrates that trees that are able to grow at 

constant rates may more likely to survive drought stress, regardless of absolute growth 

increment. Both HSF and inter-annual variability in HSF (HSFgini) were significantly 

greater in trees that eventually died than in living trees (Figure 5.6). Interestingly, 

competition had a negative effect on likelihood of mortality in both species, with trees with 

a high Hegyi index being less likely to die (Figure 5.7).  

 We found that the best predictors of mortality were remarkably consistent across 

models, with growth variability (Gini coefficient of RWI) and competition being 

identified as strong predictors regardless of modeling approach or drought metric used. 

The path analysis models that included CMD, P-ET, or DEF as the drought metric had 

the best fits (Table 5.3). The single best-fit SEM included CMD and all predictors 

included in the Bayesian models (Figure 5.8). The most significant predictors of mortality 

in the SEMs were HSF (r = -0.19), CMD (r = 0.19), competition (r = -0.16), and Gini 

coefficient (r = 0.21), with the effect of HSF being driven primarily by lumen diameter (r 

= -0.89) and less so by tracheid wall thickness (r = 0.49). 
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Reproductive effort was high in trees with higher annual growth but was not 

predicted by interactions between growth and other physiological traits or by drought 

intensity. Negative binomial regressions of cone production did not converge, likely due 

to a very low number of non-zero observations. While more data is needed to assess 

model reproductive effort with the “fight or flight” framework, we examined univariate 

correlations between cone production and predictors. Cone production in living trees was 

positively correlated with ring width of the current and previous year (p = 0.013 and 0.19, 

R2 = 0.214 and 0.192, respectively, n = 27, Figure 5.9).  

 

5.4 Discussion 

Tree mortality during drought is thought to be a function of numerous interacting factors 

including drought intensity (Das et al. 2013, Young et al. 2017), competition, tree growth 

in current and prior years (Das et al. 2007), and tree physiology (Anderegg et al. 2013, 

Adams et al. 2017). However, interpretation of models of likelihood of drought-induced 

mortality depend on the drought metric of choice (Bhuyan et al. 2017; Chapter 4), the 

degree of interaction between competition and drought (Das et al. 2011, Young et al. 2017), 

species-specific variation in growth response to climate (Cailleret et al. 2017, Aubry-

Kientz and Moran 2017), and biotic interactions (Das et al. 2016, Stephenson et al. 2019).  

 Significant growth declines between years (Das et al. 2007), as well as increasing 

departure of variation in ring width from variation in climate (i.e. declining synchrony 

between growth and climate; Cailleret et al. 2017, 2019) have been found to predict 

likelihood of mortality. We show that trees with high growth plasticity were more likely to 

die, consistent with observations of growth variability in the most recent 10-15 years of 

growth predicting mortality in P. edulis (Ogle et al. 2000). This demonstrates that trees that 

grow more when water is available, and less when water is less available, may be less 

resilient to drought, or at least to multi-year droughts. Thus, growth amount alone is likely 

not a sufficient predictor of forest response to climate stress; consistency of growth may 

be more important.  

 Our most surprising and significant finding is that trees with both higher HSF and 

higher variation in HSF (HSFgini) are more likely to die, even though one would expect 

trees with high HSF to be more resistant to hydraulic failure during drought. We 

hypothesize multiple mechanisms for the relationship between HSF, HSFgini, and 

likelihood of mortality. Higher values of HSF are associated with higher C costs per unit 

volume of wood, due to the positive relationships between HSF, lignin and total C content 

(Amthor 2003, Lauder et al. 2019). This higher C allocation toward hydraulic safety 

depletes C reserves that may be necessary for other stress responses.  

The trees sampled here were exposed to extensive bark beetle (Dendroctonus spp.) 

outbreak, particularly in the southern and central Sierra Nevada (Hicke et al. 2016). The 

primary mechanism of tree defense against bark beetle is construction of C-rich resin ducts 

and resin to prevent successful bark beetle intrusion (Franceschi et al. 2005, Kane and Kolb 

2010). Depletion of C reserves via drought-induced stomatal closure, coupled with 

increased C allocation to drought-resistant xylem, may predispose drought-sensitive trees 

to bark beetle intrusion. Although we did not include signs of bark beetle stress in this 

study, recent observations have attributed mortality in P. ponderosa  and P. jeffreyi to bark 

beetle, with drought being the ultimate cause and bark beetle being the proximate cause 



110 
 

    
 

(i.e., drought weakened trees while bark beetle killed them; Hicke et al. 2016, Stephenson 

et al. 2019). Bark beetles induce mortality in a  number of ways, including direct physical 

girdling of plant vasculature and inoculation with fungal and bacterial pathogens that can 

either physically block xylem and phloem flow or override tree chemical defenses (Raffa 

et al. 2008, Huang et al. 2020). We hypothesize that the positive effect of HSF on mortality 

found here is consistent with bark beetle-induced mortality, with trees with high HSF 

depleting available resources.  

High values of HSFgini being associated with mortality demonstrates the potential 

hydraulic impacts of variations in HSF. While high HSF is associated with drought 

resilience, it is also associated with lower total hydraulic conductance. Hydraulic 

conductance, according to the Hagen-Poiseuille law, is proportional to conduit (i.e., 

tracheid) diameter to the fourth power (Gooch 2011). In tall conifers, maintenance of 

conductance up the entire stem is important for maintaining canopy hydration, which itself 

can influence degree of stomatal response to drought (Loewenstein and Pallardy 1998). 

Growing xylem cells with high HSF may limit drought-induced cavitation, but at the 

expense of water transport to the upper canopy (Loewenstein and Pallardy 1998, 

Pittermann et al. 2006). Xylem continues to be used for water transport for multiple years 

after growth, and trees that build xylem cells with a high HSF may be using excess C 

resources to build that xylem, while also lowering total canopy conductance in subsequent 

years. However, reversing this reduced conductance by building larger xylem cells in wet 

years may also reduce drought resistance should drought conditions return. Trees that grow 

rings with fairly constant HSF may thus be less prone to both resource depletion and 

cavitation.  

 Another surprising finding in this study was the negative impact of competition on 

likelihood of mortality. Previous work has demonstrated that competition often amplifies 

drought-induced mortality (Young et al. 2017). A potential explanation for this discrepancy 

is scale-dependence of the drought metric used. Quantifying competition at whole-forest 

scales is often done using long-term forest inventory datasets such as the Forest Inventory 

and Analysis (FIA) dataset (e.g., Young et al. 2017, Evans et al. 2017). Competition metrics 

derived from these large inventory datasets, however, are often based on basal area (BA) 

of trees per unit area. Although this provides a valid estimate of total biomass in an area, it 

cannot capture small-scale heterogeneity in competitive effects. For example, two 0.8 ha 

plots can have the same total BA with a high density of small trees or a low density of 

larger trees, in multiple combinations and spatial configurations. In this vein, basal area 

alone does not quantify the degree of competition experienced by a single tree. Here, we 

used a tree-specific index of competition that incorporates target tree DBH and distance-

weighted DBH of all surrounding trees. Thus, our competition effect may represent a more 

spatially explicit impact of competition and likelihood of mortality.  

 One biological explanation for the negative effect of competition on mortality may 

be size-dependence of our sampled trees. Examination of the relationship between Hegyi 

index and tree size in our plots demonstrates that larger trees are subject to less competition 

(Figure 5.10). This makes theoretical sense given that large trees often dominate and shade 

out the forest beneath them. Large trees are predicted to experience a higher degree of 

mortality during drought in the Sierra Nevada, primarily due to bark beetle preferential 

attack on larger trees (Stephenson et al. 2019). Large trees presumably have thicker phloem 
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than smaller neighbors, and beetle attack rates are higher on trees with thick phloem layers 

(Fischer et al. 2010). Further, a DBH effect was included in our models and found not to 

be significant. Thus, our negative effect of competition on mortality may be an artifact of 

both loss of large trees with lower Hegyi indices, and surviving trees being smaller and 

found in more dense plots. Smaller trees are often found in more dense plots until 

competition leads to self-thinning, which would then manifest a negative effect of 

competition on mortality. Further research is needed to parse competition effects, 

potentially by only sampling trees in standardized competitive environments—a sampling 

scheme not supported by our current dataset.  

 The SEM approach allowed us to test for indirect effects and mechanisms of 

relationships between predictors and survival that the Bayesian model did not support. The 

most strongly mediated variables in our data were lumen length, mediated by HSF, and 

RWI of the previous year, mediated by current RWI.  Interestingly, the SEM did not find 

that HSFgini was significantly correlated with likelihood of mortality and found that HSF 

was actually negatively correlated with mortality, counter to both the Bayesian model 

results and observations. This may be due to the nature of structural models, however; the 

effect of HSF in this model is part of a “path” of effects from lumen length and wall 

thickness through HSF to mortality. In this case, it appears that the primary effect of 

differences in HSF may be due to the highly negative effect of lumen length and highly 

positive effect of wall thickness on HSF (Figure 8).  

The mediating effect of lumen length and wall thickness on HSF may be fully 

explored by comparing RWI and HSF in living and dead trees (Figure S5.3). Dead trees 

appear to have produced tracheids with higher HSF in rings that were also larger prior to 

death, whereas living trees show a negative relationship between ring width and HSF. 

However, neither relationship was statistically significant (linear regression p > 0.05). The 

positive relationship between HSF and RWI in dead trees shows that as they grew larger 

rings, they may have grown a higher density of thicker walled cells than living trees in a 

given year. This also sheds further light on the potential mechanism of mortality due to 

higher growth plasticity and HSF plasticity. If dead trees are growing larger rings by means 

of increased cell density with thick walls, both C depletion and decreased hydraulic 

conductance may play a role. Living trees, meanwhile, appear to grow larger rings by 

growing cells with larger lumen diameters and thinner walls. This is again counter to 

expectations of HSF playing a role in drought defense but demonstrates that instead the 

mechanism of mortality may be associated with altered patterns of C allocation to xylem 

lignification.  

 Cone production did not vary relative to measured variables enough for models to 

converge, and thus few conclusions can be drawn from the cone data. The only 

physiological variable that appeared to be correlated with reproductive effort was RWI 

(and RWI of the previous year). A positive relationship between RWI and cone production 

means trees that grow more produce more cones, counter to the “flight” behavior prediction 

of a negative correlation between RWI or HSF and cone production or a growth-fecundity 

tradeoff. Our data primarily includes cone counts conducted in 2017-2019, after the end of 

the drought. It is worth noting that the majority of observations from early surveys were 

sparse, with little to no cone production. More data are needed to fully test which variables 

predict reproductive effort, but our results indicate a potential positive relationship between 
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growth and cone output in surviving trees after drought, and that this effect may be a post-

drought reproductive flush. Recent work in angiosperms in Mediterranean forests has 

demonstrated that positive relationships between growth and reproduction may simply 

become less positive (i.e. the slope of the relationship decreases) during simulated drought 

(Bogdziewicz et al. 2020). We did not measure reproduction prior to the drought in our 

trees and cannot compare relationships between drought-stressed and vigorous trees. 

However, future work should consider differences in growth and reproduction in natural 

populations before and during drought, or degree of drought stress experienced by target 

trees.  

 To our knowledge, this study is the first to document positive effects of growth 

variability and variability in hydraulic safety traits on likelihood of mortality. We show 

that trees with high growth plasticity and high inter-annual variation in the ratio of tracheid 

wall thickness to cell diameter are more likely to die during drought. We hypothesize this 

is likely due to drawdowns of already drought-depleted C resources by increased C 

allocation to tracheid wall lignification. We further hypothesize that hydraulic stresses are 

higher in trees that swap between low conductivity/high drought resistance and high 

conductivity/low drought resistance growth types than those that maintain constant growth 

strategies. Our data demonstrate trees that employ conservative growth strategies—

constant growth that is neither reduced excessively during drought or overzealous during 

periods of water excess—may best confer drought resistance. Whether this is a genetic 

characteristic of certain trees, the effect of site characteristics, or an interaction is unknown 

and is an important future research question. These results have important implications for 

future projections of forest response to drought. The majority of studies that project forest 

response to climate change focus on growth, with simple increases in biomass or growth 

indicative of “positive” responses to climate and declines in growth indicative of negative 

responses. Our results show that “type” of growth (i.e. xylem anatomy or C cost) as well 

as plasticity in ring width and tracheid anatomy, should be incorporated into models of 

forest response to change. Doing so would improve our ability to predict not just forest 

growth response to changes in climate, but likelihood of mortality. Further, incorporation 

of growth variability and anatomy in models of forest change would allow inclusion of 

mechanisms of response, greatly expanding understanding of forest health in a changing 

climate  
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Table 5.1. Bayesian logistic regression model fit comparison. All models were the same 

and included all predictors, with only different drought metrics chosen for each. LOOIC 

= leave-one-out information criterion, with lower values representing better model fit. 

Bold values represent top two best fits, n = 156 trees.  

 

Model Drought Metric LOOIC 

CMD 138.4 

CWD 126.9 

DEF 144.3 

PDSI 100.2 

P-ET 125.8 

 

Table 5.2. Bayesian logistic regression model parameter estimates. Due to the large 

number of models and parameters, not all tested models are displayed but only significant 

parameters (where credible intervals do not overlap 0). Drought metrics from each of the 

top models are also displayed even though they are not significant. Full list of all 

estimated parameters is available in Appendix B. 𝑅̂ = indicator of convergence, with 

values < 1.02 indicating model convergence.  

 Estimate Est.Error 

 

95% CI 𝑹̂ Model 

Intercept 1.62 4.40 -7.10 10.42 1.00 PDSI 

PDSI 1.60 3.65 -4.35 10.22 1.00 PDSI 

Gini 0.79 0.51 -0.19 1.86 1.00 PDSI 

HSF gini 0.26 0.45 -0.63 1.17 1.00 PDSI 

Min. Temp. 4.17 4.08 -2.38 13.37 1.00 PDSI 

Hegyi Index -0.17 0.10 -0.38 -0.01 1.00 PDSI 

Intercept 0.55 4.50 -8.70 9.30 1.00 PET 

P-ET -1.52 3.10 -8.54 3.80 1.00 PET 

Gini 0.63 0.37 -0.08 1.39 1.00 PET 

HSFgini 0.13 0.37 -0.59 0.85 1.00 PET 

Min. Temp. 1.39 2.27 -2.21 6.72 1.00 PET 

Hegyi Index -0.23 0.08 -0.40 -0.09 1.00 PET 

RWIxP-ET -2.47 1.77 -6.25 0.71 1.00 PET 

Intercept 1.56 4.32 -7.06 10.09 1.00 CWD 

CWD -1.81 3.64 -9.53 3.88 1.00 CWD 

HSF -0.85 1.98 -4.84 3.08 1.00 CWD 

Gini 0.68 0.37 -0.03 1.42 1.00 CWD 

HSF gini 0.20 0.36 -0.53 0.90 1.00 CWD 

Min. Temp. 1.30 2.25 -2.82 6.21 1.00 CWD 

Hegyi Index -0.22 0.08 -0.39 -0.07 1.00 CWD 

DBH -0.85 0.47 -1.81 -0.01 1.00 CWD 
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Table 5.3. Structural Equation Model (SEM) model fits. P-values are significance from 

𝜒2 tests comparing structural model covariance to data covariance, with values greater 

than 0.05 representing model covariance that is not significantly different from that 

observed in the data. Note p-values from 𝜒2  tests in this case are not comparable 

between models, and are only used here to confirm non-significant differences in 

covariances. AIC = Akaike’s information criterion, with lower values representing better 

fit. Bold metrics represent top two values in each fit measure, while Bold and Italic 

represents the only metric/model combination that was best fit according to both 

measures. 

 

Model Drought Metric p-value AIC 

CWD 0.058 560.38 

CMD 0.219 543.62 

DEF 0.059 554.58 

P-ET 0.193 561.50 

PDSI 0.122 563.85 
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Figure 5.1. Map of sample locations of all cored trees across the Sierra Nevada. Black 

dots represent sample locations.  
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Figure 5.2.  Relationship between scaled (mean = 0) -PDSI (higher values represent 

higher degree of drought) and likelihood of tree mortality (Status = 1) in P. ponderosa 

(PIPO) and P. jeffreyi (PIJE). Lines represent likelihood of mortality, while points 

represent observations.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  Relationship between scaled (mean = 0) P-ET (lower values represent higher 

degree of drought) and likelihood of tree mortality (Status = 1) in P. ponderosa (PIPO) 

and P. jeffreyi (PIJE). Lines represent likelihood of mortality, while points represent 

observations.  

- 
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Figure 5.4. Posteriors of predictors with most significant (non-zero) posteriors from top 

three best-fit Bayesian logistic regressions. Drought metric listed in upper right of each 

figure represents model (see text for description). Gray density plot represents posterior 

distribution, circle represents posterior mean, and thick and thin horizontal lines represent 

65% and 95% credible intervals, respectively. Priors (in top figure only but constant 

across all models) = distribution of student-t priors for all variables. PDSI = Palmer 

Drought Severity Index, TMN = minimum temperature, HSFgini = variability in HSF 

(wall thickness/lumen diameter), Gini = growth variability, Hegyi = hegyi index of 

competition, P-ET = precipitation minus evapotranspiration, CWD = Climatic Water 

Deficit, RWI:P-ET = interaction between ring width index and P-ET. 

PDSI 

P-ET 

CWD 
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Figure 5.5. Boxplots of observed Gini coefficients (variability in growth) between living 

and dead trees (ANOVA p = 0.011). Solid line represents median value, boxes define 

first and third quartiles, whiskers represent range, and dots represent outliers (>1.5 sd 

from mean).  

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Measured HSF (ratio of wall thickness/lumen diameter) in living and dead 

trees over time. Shaded area represent 95% confidence intervals.  P. ponderosa (PIPO) 

and P. jeffreyi (PIJE). Lines represent likelihood of mortality, while points represent 

observations.  

 

 



126 
 

    
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.  Relationship between Hegyi index of competition and likelihood of tree 

mortality (Status = 1) in P. ponderosa (PIPO) and P. jeffreyi (PIJE). Lines represent 

likelihood of mortality, while points represent observations.  
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Figure 5.8.  Path diagram of results of structural equation model (SEM). Boxes represent 

input variables, arrows represent correlations, with direction of arrow representing the 

“direction of influence.” Colors of arrows represent positive or negative correlations (red 

= negative, blue = positive), with color brightness corresponding to degree of correlation 

(bright colors = higher correlation). Colors of boxes are color-coded to represent 

predictor “group” in the original structural model:  green = growth and temperature that 

influences growth, tan = hydraulic traits, pink = variability, blue = drought metric, light 

green = competition/stand characteristics, and red = mortality.  RWI = ring width index, 

RWI (t-1) = RWI in prior year, HSF = hydraulic safety factor (xylem wall 

thickness/xylem lumen diameter), CMD = climatic moisture deficit from the ClimateNA 

climate model, Gini = interannual growth variability, HSFgini = interannual variability in 

HSF.  
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Figure 5.9.  Relationship between total cone production (mature cone presence on trees 

and on ground that are attributable to a target tree) and ring width (RWI, p = 0.013 R2 = 

0.214, n = 27) in the current and prior (t-1, p = 0.19, R2 = 0.192, n = 27) year. Lines 

represent best fit (local spline regression) lines, with shaded areas representing 95% 

confidence intervals of the best fit spline.  
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Figure 5.10. Relationship between Hegyi index and tree diameter at breast height (DBH). 

Hegyi index is a DBH-weighted measure of competition. Larger trees experience lower 

levels of competition in both living (top panel) and dead (bottom panel) trees. ABCO = 

Abies concolor, ABXX = unknown Abies sp., CADE = Calocedrus decurrens, CEIN = 

Ceanothus integerrimus (not included in analysis but marked here due to larger size), 

PILA = Pinus lambertiana, PIPO = P. ponderosa, PIXX = unknown Pinus sp., QUCH = 

Quercus chrysolepis, QUKE = Quercus kelloggii, UMCA = Umbellularia californica, 

UNKN = unknown (standing snag).  
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Supplemental Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5.1.  Results of multiple imputation for the three primary values imputed to fill 

data gaps: RWI (top), mean HSF (mHSF, middle), and Gini coefficient (bottom). Blue 

lines represent frequency distributions of raw data. Red lines represent density 

distributions of results of 20 imputations, where each variable is estimated based on all 

other variables iteratively. Ring width index (RWI) and mean hydraulic safety factor 

(mHSF) imputations appear to match observations almost perfectly. Gini coefficient 

imputations are more variable, but imputed datasets with high densities of some values 

(peaks) appear to not be generating outliers, but instead high densities of intermediate 

Gini values.  
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Figure S5.2. Example of detrending methods for ring widths, using the i.detrend function 

in R package “dplR” (Bunn, 2008). Top image is raw ring width (black line), with the 

detrending line for each method shown by a different color. To calculate ring width index 

(RWI), raw ring width is divided by the value of the line at each time point. Resulting 

RWI chronologies for each method are displayed below. We chose a cubic spline (green) 

with a 20-year length (i.e., 20 years between inflection points) to retain variation at 

decadal scales but minimize age-based effects and high-frequency variation (Speer 2010). 

Cubic splines are considered more aggressive than dividing by a negative exponential 

function (red line, which represents strictly age-based growth), an autoregressive model 

(purple), or dividing by the mean ring width (dark blue), and more conservative than a 

smoothing function (light blue, which only removes inter-annual variation).  
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Figure S5.3.  Relationship between hydraulic safety factor (HSF) and ring width index 

(RWI) in living and dead trees. Dead trees show a positive but not statistically significant 

(linear regression p = 0.61) relationship between HSF and RWI, indicating higher HSF in 

larger rings, and smaller HSF in smaller rings. Living trees show the opposite (also not 

statistically significant (p = 0.60) relationship, with HSF declining in larger rings. Shaded 

areas represent 95% confidence intervals of the regression lines.  
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Chapter 6:  

Conclusion 

 

6.1 Introduction 

Forest response to climate change is a function of tree survival, growth, and fecundity. As 

climate continues to change and forests are exposed to both increasing aridity in general 

(IPCC 2014) and increased drought frequency and intensity (Cook et al. 2010, Allen et al. 

2010), forests may shift in density, composition, and distribution (Allen et al. 2015). The 

degree of these shifts will be mediated by variation in individual and species-level traits 

that confer fitness. In long-lived species like trees, fitness is enhanced via growth and 

survival as well as increased fecundity (Moran et al. 2017, Lauder et al. 2019). Little 

work to date has explored interactions across these traits, such as how mechanisms of 

drought survival interact with growth and reproduction. Fewer studies still have 

examined how cellular traits scale to influence whole-forest response to climate. In this 

dissertation, I showed that variation in tree carbon (C) allocation strategies may be 

expected to significantly influence drought response through trade-offs among growth, 

drought defense (via increased allocation to C-expensive lignin in xylem cell walls), pest 

defense, and reproductive output. I then identified novel predictors of tree mortality in 

Sierra Nevada conifers during the 2012-2016 drought and identified variation in metrics 

used to quantify that drought. These novel predictors of mortality included high hydraulic 

safety, counter to theoretical expectations, and inter-annual variability in growth and 

hydraulic safety.  

 Theory predicts that increased thickening of xylem cell walls via lignification 

increases resistance to drought (Sperry 2003, Sperry et al. 2006). This increased 

resistance is thought to stem from enhanced mechanical resistance to implosion (Hacke et 

al. 2001, Pittermann et al. 2006b) or decreased likelihood of inter-tracheid air seeding and 

embolism formation (Pittermann et al. 2006a). However, lignification of xylem cell walls 

is C-expensive (Amthor 2003, Pittermann et al. 2006b, Lauder et al. 2019). Here I 

demonstrated that trees that died during extreme drought had thicker cell walls and more 

total lignin and C per annual ring. Coupled with the observation that bark beetle outbreak 

coincided with the extreme 2012-2016 drought, this finding extends prior theory and 

research on C depletion in drought stressed trees (McDowell et al. 2008, McDowell 2011, 

Adams et al. 2017) to identify the trade-off between drought defense and pest defense as 

a potential mechanism of that depletion and its influence on drought survival.  

 The influence of C allocation to growth and hydraulic safety on tree mortality 

under drought may also depend on how one defines drought. Drought metrics attempt to 

quantify drought via calculation of some biologically meaningful measure of water 

availability, typically in the soil. The methods used to calculate this water availability 

vary widely, however, in both their theoretical assumptions and their methods of 

calibration. Thus, choosing one metric of drought over another for inclusion in models of 

forest response to drought without consideration of these differences may alter model 

outcomes. I demonstrated that five popular drought metrics vary in their ability to predict 

tree growth according to a set of tree ring chronologies from across the Sierra Nevada. I 

further showed that these differences may stem from both varied underlying calculations 
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and different sensitivities to wet and dry years that not always vary across the landscape 

in accordance with their respective spatial resolutions. These results build on prior 

research examining how not all droughts are equal in their impacts (Anderegg et al. 2013) 

by demonstrating that there is further uncertainty in understanding tree response to 

drought that stems from our methods of quantifying drought. These results underline the 

complex interactions among tree physiology, drought stress, landscape scale drought 

measurement, and pest stress, and lay out a clear path for future research. 

 

6.2 Implications for Future Study 

Current models of forest response to climate change typically examine either individual 

tree ring growth (Charney et al. 2016) or change in total biomass as a proxy for growth. 

However, there is increasing evidence that growth variability (Ogle et al. 2000) or 

departure between tree growth and climate (Das et al. 2007, Cailleret et al. 2017, 2019) 

are better predictors of forest mortality than growth alone, and our results identify 

variation in hydraulic safety and the C cost of that safety as a potential mechanism of this 

discrepancy. This frames an important avenue for future research: the sensitivity of 

models of forest response to change to variance in tree physiology.  

Models of forest response to change that only incorporate growth do not account 

for what that growth means for resistance to extreme stress. For example, our finding that 

growth variability outweighs absolute growth in predicting mortality demonstrates that a 

model based on growth alone will predict positive forest response to change if average 

growth is high. But two forests can have the same level of average growth rate, while one 

forest contains trees with high inter-annual variation in growth and the other contains 

trees with low inter-annual variation. In the case of a growth-only model, both forests 

would be identified as responding positively to change, while we demonstrate here that 

the forest with a high degree of inter-annual variation may be expected to be less resilient 

to increased drought stress. Future work should examine inclusion of a growth variability 

term and sensitivity to that growth variability.  

The C cost of hydraulic safety also represents a significant target for future study. 

The role of C dynamics in tree physiological response to stress has a rich literature 

(Mooney 1972, Körner 2003, Hoch et al. 2003, Sala et al. 2012, Aaltonen et al. 2016), but 

few studies have connected C dynamics, cellular physiology, and drought response at the 

stand level. Two novel questions arise from our observations of high hydraulic safety and 

lignification in dead trees: 1) are there significant trade-offs between hydraulic safety and 

reproduction under drought that can influence fitness of surviving trees? And 2) can these 

traits be mapped to allow a true scaling of hydraulic safety and drought resilience to the 

entire landscape?  

In this dissertation I outline the potential mechanisms for a tradeoff between 

growth and reproduction, and between hydraulic safety and reproduction. However, I was 

unable to find sufficient evidence for or against this tradeoff in our sampled trees. Recent 

work demonstrating a lack of direct tradeoff between growth and reproduction in trees 

subjected to experimental drought shows instead that the relationship between growth 

and reproduction is altered, but not inverted, by drought. This shows that more work is 

needed to explore the relationships between reproduction and hydraulic safety in trees 

sampled here.  
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The observation of high lignification and hydraulic safety in dead trees provides 

an interesting target for applications to forest management. Mapping these physiological 

traits would provide valuable insights into total tree C content (as a function of lignin), as 

well as an ability to predict drought response at the forest population level. An interesting 

future direction for scaling of drought resilience traits is remote sensing of canopy 

chemistry and modeling of relationships between stem and canopy chemistry and 

physiology. On-going work is identifying hyperspectral bandwidths that can detect 

canopy water content (Asner et al. 2016) and canopy lignin content (Serrano et al. 2002). 

No work to date has scaled stem lignin and C to canopy traits using remote sensing, and 

this represents a potentially exciting application of my findings to landscape-scale forest 

drought planning. 

 

6.3 Concluding Remarks 

This dissertation constitutes an important contribution to the field of drought physiology 

and forest response to climate change. Our findings outline newly identified traits that 

confer drought resilience or susceptibility during a complex and extreme real-world 

drought. Interactions among pest stress, drought stress, tree physiology, and stand 

dynamics all influence forest drought resilience. The findings in this dissertation pave the 

way for new explorations of not only how trees survive drought, but what survival or 

mortality means in terms of reproductive capacity and C dynamics in a changing world.  
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Appendix A. ImageJ script for automatically batch analyzing images for total lignin via 

stain quantification.  

 

Change “\\YourPathHere\\” to the path location of all of your photos to be analyzed.  

 

//Script for analyzing Red Stain Intensity 

//Note that ImageJ scripting language uses “//” for comments, and “\\” instead of “\” in all 

//path names 

//To Use: Open ImageJ, Plugins -> Macros -> Record 

//Copy and paste this entire script into the blank field 

//Save as whatever you want to call it to your ImageJ/Macros/ directory 

//Must be saved as .ijm file 

//Then to run, close ImageJ, reopen, Plugins -> Macros -> Run 

//Select saved macro 

run("Input/Output...", "jpeg=85 gif=-1 file=.csv use_file copy_row save_column"); 

 

//Set image path to folder with all processed images 

PATH = "C:\\YourPathHere\\"; 

list = getFileList(PATH); 

 

//Set measurements to default measures plus integrated density 

run("Set Measurements...", "area mean standard min integrated stack display 

redirect=None decimal=3"); 
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//Open background correction image 

open("C:\\YourPathHere\\BackgroundImage"); 

 

//Loop for all images -> open, split color channels, delete blue and green channel, run 

//background correction draw area, run measure, close 

for (i=0; i<list.length; i++) { 

 setTool(3);  // Choose freehand tool 

 open(PATH+list[i]); // Open next image in folder 

 run("Split Channels"); // Split color channels 

 selectWindow(list[i]+" (blue)"); // Close blue 

 run("Close"); 

 selectWindow(list[i]+" (green)"); // Close green 

 run("Close"); 

 selectWindow(list[i]+" (red)"); //Select Red 

 //imageId = getImageId() 

//run("Calculator Plus", "i1=[imageId] i2=[ref 3 SR1705.jpg] operation=[Scale: i2 

= i1 x k1 + k2], k1=1, k2=0, create"); //Perform background correction 

 //selectWindow(list[i]+" (red)");  

 //run("Close"); 

 //selectWindow("Result"); //Select background correction result 

 waitForUser("Draw a polygon around your chosen analysis area."); 

//Prompt for measurement area 

 getSelectionCoordinates(xpoints,ypoints); 
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 makeSelection("freehand",xpoints,ypoints); 

 run("Measure"); //Conduct measurements 

 selectWindow(list[i]+" (red)"); 

 run("Close"); //Close window before opening next image 

 } 

 

//Export results: select measurement results table (will be open in background). Select all 

and //copy and paste into a.csv file or preferred spreadsheet. Note that this code can 

easily be //modified to add an “export results function” as the user sees fit. Simply place 

the export //function after the final closing “}” bracket.  
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Appendix B. All estimated model parameters from models of mortality likelihood 

(Chapter 5). All models were the same; “Model” represents primary drought metric, 

which is the only predictor that changed between models. 𝑅̂ = indicator of model 

convergence, with values <1.02 indicating convergence of all model chains.  

 

Predictor Estimate Est.Error l-95% CI u-95% CI 𝑹̂ Model 

Intercept 0.55 4.50 -8.70 9.30 1.00 PET 

RWI 0.28 1.77 -3.19 3.78 1.00 PET 

PmET -1.52 3.10 -8.54 3.80 1.00 PET 

mHSF -1.22 2.07 -5.43 2.86 1.00 PET 

gini 0.63 0.37 -0.08 1.39 1.00 PET 

HSFgini 0.13 0.37 -0.59 0.85 1.00 PET 

mTMN 1.39 2.27 -2.21 6.72 1.00 PET 

cindex -0.23 0.08 -0.40 -0.09 1.00 PET 

RWI1 -0.36 3.12 -6.87 5.79 1.00 PET 

PmET1 -1.53 3.10 -8.73 3.88 1.00 PET 

mHSF1 -0.74 3.38 -8.12 5.64 1.00 PET 

RWIPET -2.47 1.77 -6.25 0.71 1.00 PET 

mHSFPET -0.68 1.61 -3.93 2.43 1.00 PET 

LastDBH -0.69 0.42 -1.58 0.07 1.00 PET 

RWI:PmET -1.32 2.80 -7.56 3.70 1.00 PET 

RWI:mHSF 0.00 1.63 -3.45 3.12 1.00 PET 

PmET:mHSF -1.08 2.51 -6.43 3.67 1.00 PET 

RWI:PmET:mHSF 0.35 2.82 -5.07 6.16 1.00 PET 

sd(Intercept) 5.01 4.48 0.15 16.60 1.00 PET 

sd(RWI) 3.05 3.25 0.09 11.70 1.00 PET 

sd(PmET) 6.69 5.90 0.25 21.62 1.00 PET 

sd(mHSF) 3.24 3.27 0.10 12.01 1.00 PET 

sd(mTMN) 5.51 4.43 0.27 16.51 1.00 PET 

sd(RWI1) 4.29 4.01 0.13 14.61 1.00 PET 

sd(PmET1) 6.65 5.97 0.27 21.88 1.00 PET 

sd(mHSF1) 5.31 5.10 0.20 18.64 1.00 PET 

sd(RWI:PmET) 4.91 4.55 0.16 16.70 1.00 PET 

sd(RWI:mHSF) 2.92 3.33 0.07 12.06 1.00 PET 

sd(PmET:mHSF) 5.70 4.65 0.20 17.25 1.00 PET 

sd(RWI:PmET:mHSF) 5.18 4.92 0.16 17.96 1.00 PET 

Intercept1 1.62 4.40 -7.10 10.42 1.00 PDSI 

RWI2 0.59 2.09 -3.93 4.49 1.00 PDSI 

PDSI 1.60 3.65 -4.35 10.22 1.00 PDSI 

mHSF2 -1.27 1.98 -5.41 2.54 1.00 PDSI 

gini1 0.79 0.51 -0.19 1.86 1.00 PDSI 

HSFgini1 0.26 0.45 -0.63 1.17 1.00 PDSI 

mTMN1 4.17 4.08 -2.38 13.37 1.00 PDSI 

cindex1 -0.17 0.10 -0.38 -0.01 1.00 PDSI 

RWI11 -0.42 3.41 -7.53 6.29 1.00 PDSI 

PDSI1 1.64 3.63 -4.25 10.44 1.00 PDSI 

mHSF11 -0.78 3.27 -7.90 5.16 1.00 PDSI 

RWIPDSI -2.75 2.29 -7.75 1.24 1.00 PDSI 
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Predictor Estimate Est.Error l-95% CI u-95% CI Rhat Mod 

mHSFPDSI -1.63 1.92 -5.70 1.86 1.00 PDSI 

LastDBH1 -0.39 0.49 -1.42 0.51 1.00 PDSI 

RWI:PDSI 0.36 2.47 -4.67 5.23 1.00 PDSI 

RWI:mHSF1 0.67 1.70 -2.82 4.06 1.00 PDSI 

PDSI:mHSF -0.43 2.21 -5.07 3.83 1.00 PDSI 

RWI:PDSI:mHSF 0.11 2.95 -5.64 6.28 1.00 PDSI 

sd(Intercept)1 4.44 4.26 0.14 15.60 1.00 PDSI 

sd(RWI)1 3.90 3.76 0.15 13.83 1.00 PDSI 

sd(PDSI) 12.76 9.73 0.54 36.12 1.00 PDSI 

sd(mHSF)1 3.17 3.40 0.09 12.59 1.00 PDSI 

sd(mTMN)1 9.01 5.97 0.79 23.31 1.00 PDSI 

sd(RWI1)1 4.58 4.35 0.16 16.26 1.00 PDSI 

sd(PDSI1) 12.98 11.87 0.61 36.42 1.00 PDSI 

sd(mHSF1)1 5.05 4.84 0.18 17.73 1.00 PDSI 

sd(RWI:PDSI) 5.90 5.13 0.25 18.95 1.00 PDSI 

sd(RWI:mHSF)1 3.06 3.40 0.09 12.38 1.00 PDSI 

sd(PDSI:mHSF) 4.00 3.61 0.13 13.26 1.00 PDSI 

sd(RWI:PDSI:mHSF) 12.57 8.32 1.69 33.00 1.00 PDSI 

Intercept2 1.76 4.64 -7.76 10.86 1.00 CMD 

RWI3 0.42 1.99 -3.46 4.54 1.00 CMD 

CMD -0.57 2.72 -6.41 4.53 1.00 CMD 

mHSF3 -1.56 2.33 -6.56 2.88 1.00 CMD 

gini2 0.50 0.42 -0.32 1.34 1.00 CMD 

HSFgini2 0.12 0.38 -0.64 0.85 1.00 CMD 

mTMN2 1.27 2.75 -3.57 7.48 1.00 CMD 

cindex2 -0.18 0.08 -0.36 -0.03 1.00 CMD 

RWI12 -0.50 3.37 -7.72 6.04 1.00 CMD 

CMD1 -0.52 2.75 -6.35 4.72 1.00 CMD 

mHSF12 -0.97 3.60 -8.99 5.35 1.00 CMD 

RWICMD 0.62 1.63 -2.51 3.94 1.00 CMD 

mHSFCMD 1.44 1.60 -1.58 4.74 1.00 CMD 

LastDBH2 -0.55 0.46 -1.51 0.29 1.00 CMD 

RWI:CMD 0.25 1.86 -3.74 3.79 1.00 CMD 

RWI:mHSF2 -0.32 1.62 -3.80 2.83 1.00 CMD 

CMD:mHSF 0.47 1.44 -2.53 3.34 1.00 CMD 

RWI:CMD:mHSF -1.18 1.77 -4.69 2.40 1.00 CMD 

sd(Intercept)2 5.41 4.80 0.21 17.41 1.00 CMD 

sd(RWI)2 3.99 3.75 0.18 13.73 1.00 CMD 

sd(CMD) 6.39 5.09 0.28 19.19 1.00 CMD 

sd(mHSF)2 5.13 4.70 0.17 17.36 1.00 CMD 

sd(mTMN)2 12.04 6.54 2.84 28.41 1.00 CMD 

sd(RWI1)2 5.10 4.73 0.18 17.29 1.00 CMD 

sd(CMD1) 6.38 5.17 0.27 19.06 1.00 CMD 

sd(mHSF1)2 6.34 5.77 0.24 21.14 1.00 CMD 
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Predictor Estimate Est.Error l-95% CI u-95% CI Rhat Mod 

sd(RWI:CMD) 4.05 4.25 0.13 15.08 1.00 CMD 

sd(RWI:mHSF)2 3.08 3.40 0.09 12.15 1.00 CMD 

sd(CMD:mHSF) 2.32 2.28 0.07 8.49 1.00 CMD 

sd(RWI:CMD:mHSF) 3.31 3.61 0.09 12.94 1.00 CMD 

Intercept3 1.56 4.32 -7.06 10.09 1.00 CWD 

RWI4 0.56 1.96 -3.50 4.35 1.00 CWD 

tCWD -1.81 3.64 -9.53 3.88 1.00 CWD 

mHSF4 -0.85 1.98 -4.84 3.08 1.00 CWD 

gini3 0.68 0.37 -0.03 1.42 1.00 CWD 

HSFgini3 0.20 0.36 -0.53 0.90 1.00 CWD 

mTMN3 1.30 2.25 -2.82 6.21 1.00 CWD 

cindex3 -0.22 0.08 -0.39 -0.07 1.00 CWD 

RWI13 -0.47 3.18 -7.25 5.54 1.00 CWD 

tCWD1 -1.75 3.32 -9.32 3.95 1.00 CWD 

mHSF13 -0.58 3.26 -7.55 5.68 1.00 CWD 

RWICWD 0.85 1.35 -1.72 3.58 1.00 CWD 

mHSFCWD -0.96 1.71 -4.49 2.32 1.00 CWD 

LastDBH3 -0.85 0.47 -1.81 -0.01 1.00 CWD 

RWI:tCWD 1.06 2.12 -3.11 5.35 1.00 CWD 

RWI:mHSF3 -0.08 1.62 -3.15 3.59 1.00 CWD 

tCWD:mHSF 0.57 1.88 -3.05 4.48 1.00 CWD 

RWI:tCWD:mHSF -1.74 2.40 -6.86 2.64 1.00 CWD 

sd(Intercept)3 5.09 4.76 0.16 17.56 1.00 CWD 

sd(RWI)3 3.88 3.92 0.13 14.01 1.00 CWD 

sd(tCWD) 8.50 7.44 0.33 27.48 1.00 CWD 

sd(mHSF)3 3.51 3.71 0.09 13.73 1.00 CWD 

sd(mTMN)3 6.57 5.58 0.26 20.64 1.00 CWD 

sd(RWI1)3 5.00 4.79 0.17 17.58 1.00 CWD 

sd(tCWD1) 8.67 7.65 0.36 28.10 1.00 CWD 

sd(mHSF1)3 5.16 4.95 0.16 17.95 1.00 CWD 

sd(RWI:tCWD) 4.00 3.80 0.14 14.30 1.00 CWD 

sd(RWI:mHSF)3 3.19 3.67 0.08 13.12 1.00 CWD 

sd(tCWD:mHSF) 2.96 2.75 0.11 10.25 1.00 CWD 

sd(RWI:tCWD:mHSF) 4.52 4.15 0.14 15.10 1.00 CWD 

Intercept4 1.86 4.48 -7.01 10.99 1.00 DEF 

RWI5 0.55 2.06 -3.68 4.66 1.00 DEF 

DEF -1.78 2.87 -8.18 3.13 1.00 DEF 

mHSF5 -1.28 2.07 -5.46 2.88 1.00 DEF 

gini4 0.76 0.41 -0.01 1.58 1.00 DEF 

HSFgini4 0.07 0.38 -0.70 0.81 1.00 DEF 

mTMN4 1.31 2.05 -2.46 5.77 1.00 DEF 

cindex4 -0.27 0.09 -0.45 -0.12 1.00 DEF 

RWI14 -0.66 3.34 -7.88 5.63 1.00 DEF 

DEF1 -1.78 2.84 -8.10 3.12 1.00 DEF 
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Predictor Estimate Est.Error l-95% CI u-95% CI Rhat Mod 

mHSF14 -0.81 3.45 -8.44 5.49 1.00 DEF 

RWIDEF 0.49 1.54 -2.49 3.62 1.00 DEF 

mHSFDEF 2.08 1.82 -1.27 5.95 1.00 DEF 

LastDBH4 -1.07 0.50 -2.13 -0.19 1.00 DEF 

RWI:DEF 1.28 1.86 -2.55 4.95 1.00 DEF 

RWI:mHSF4 0.24 1.47 -2.76 3.38 1.00 DEF 

DEF:mHSF -0.07 1.61 -3.23 3.21 1.00 DEF 

RWI:DEF:mHSF -0.78 1.66 -4.23 2.44 1.00 DEF 

sd(Intercept)4 5.17 4.63 0.19 17.26 1.00 DEF 

sd(RWI)4 4.17 3.68 0.18 13.78 1.00 DEF 

sd(DEF) 3.88 3.70 0.11 13.57 1.00 DEF 

sd(mHSF)4 4.08 3.95 0.12 14.55 1.00 DEF 

sd(mTMN)4 5.40 4.77 0.18 17.70 1.00 DEF 

sd(RWI1)4 4.74 4.37 0.16 15.88 1.00 DEF 

sd(DEF1) 3.86 3.65 0.13 13.37 1.00 DEF 

sd(mHSF1)4 5.23 4.81 0.17 17.80 1.00 DEF 

sd(RWI:DEF) 3.57 3.40 0.12 12.52 1.00 DEF 

sd(RWI:mHSF)4 2.71 3.06 0.07 10.82 1.00 DEF 

sd(DEF:mHSF) 2.72 2.52 0.09 9.37 1.00 DEF 

sd(RWI:DEF:mHSF) 2.96 3.16 0.07 11.35 1.00 DEF 

 




