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Summary

Gene networks are rapidly growing in size and number, raising the question of which networks are 

most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction 

networks for their ability to recover 446 disease gene sets identified through literature curation, 

gene expression profiling, or genome-wide association studies. While all networks have some 

ability to recover disease genes, we observe a wide range of performance with STRING, 

ConsensusPathDB and GIANT networks having the best performance overall. A general tendency 

is that performance scales with network size, suggesting that new interaction discovery currently 

outweighs the detrimental effects of false positives. Correcting for size, we find that the DIP 

network provides the highest efficiency (value per interaction). Based on these results we create a 

parsimonious composite network with both high efficiency and performance. This work provides a 

benchmark for selection of molecular networks in human disease research.
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We evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease 

gene sets. While all networks can recover disease genes, we observe STRING, ConsensusPathDB 

and GIANT networks having the best performance overall. Performance scales with network size, 

suggesting that comprehensive interaction inclusion outweighs the detrimental effects of false 

positives. We create a parsimonious composite network with both high efficiency and 

performance. This work provides a benchmark for selection of molecular networks in human 

disease research.

Introduction

Molecular networks capture knowledge of diverse biochemical, statistical and functional 

interactions that occur between genes and gene products. In a human disease setting, 

molecular networks augment both gene association and gene expression analysis, enabling 

the identification of novel genes and pathways associated with a particular disease 

phenotype (Carter et al., 2013). A common approach has been to leverage molecular 

network topology to discover new genes of interest that are functionally similar to a starting 

core of known disease genes (Kim et al., 2014; Lee et al., 2011; Leiserson et al., 2015; Paull 

et al., 2013; Qian et al., 2014; Vanunu et al., 2010). In this respect, networks enable a 

systematic “candidate gene approach” (Tabor et al., 2002) to the study of complex traits, in 

which the candidates are identified by their proximity within molecular network 

neighborhoods to known genes associated with a particular disease. Many of these 

candidates might otherwise fall beneath significance thresholds for testing individual SNPs 

or genes in a genome-wide association analysis.

Using these principles, networks have identified genes functioning in a spectrum of diseases, 

including neurodevelopmental disorders such as autism (Willsey et al., 2013) and hereditary 

spastic paraplegia (Novarino et al., 2014), coronary artery disease (CARDIoGRAMplusC4D 

Consortium et al., 2013), and hypertension (Greene et al., 2015). For example, in hereditary 

spastic paraplegia three disease candidates identified by network analysis, MAG, CCDC64 
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and REBP2, were validated as having causal variants (Novarino et al., 2014). See (Carter et 

al., 2013) for a review of the use of networks in the analysis of genotype-phenotype 

relationships.

In these types of studies, a network must first be constructed from an existing repository of 

molecular interactions. However, the number of these networks, as well as the number and 

types of molecular interactions within them, is rapidly growing. The PathGuide website at 

present tracks at least 550 pathway and molecular interaction databases available to the 

general public (Bader et al., 2006). More recently, (Yu et al., 2013) reviewed 9 major 

human-relevant network resources, and the Network Data Exchange (NDEx) (Pratt et al., 

2015) has begun an attempt to provide a common public repository for biological network 

models of all types. Network databases can contain a variety of interaction types, such as 

protein-protein interactions, transcriptional regulatory interactions, genetic interactions, co-

expression correlations and kinase/phosphatase signaling relations. They can be populated 

by strategies such as systematic experimental screens, literature curation and computational 

inference. Even accounting for the fact that most databases are tissue- and disease-context 

independent (Yeger-Lotem and Sharan, 2015), the diversity in molecular interaction curation 

and network construction methods can lead to significant differences in database content and 

utility for different types of analysis. As a consequence, from their very outset network 

biology studies must face a difficult question of determining which molecular network(s) are 

the most informative for the particular biological study at hand.

Here, we develop benchmarks to aid in selecting the most appropriate networks for a 

specific human disease or molecular pathway of interest. Using this framework, we 

benchmark 21 popular human gene interaction networks by their ability to recover gene sets 

that characterize a wide variety of diseases. We find that empirical evaluation of networks 

not only informs current genomic analyses, but it can also inform the creation of future 

networks as the importance of various sources of network information becomes clear.

Results

Human gene networks are numerous and capture a diversity of data types and sources

We obtained the complete contents of 21 popular human gene-gene interaction network 

databases, each of which is available for public use and described in previous publications 

(Table S1). We noted high diversity among these resources in types of interactions and 

curation methods (Figure 1). Networks such as the Database for Interacting Proteins (DIP) 

(Xenarios et al., 2000) and the Human Protein Reference Database (HPRD) (Peri et al., 

2003) focus wholly on physical protein-protein interactions. Networks such as 

ConsensusPathDB (Kamburov et al., 2009) and MultiNet (Khurana et al., 2013) concatenate 

protein interactions from multiple molecular networks with many additional interaction 

types, such as genetic interactions. Meanwhile, networks such as HumanNet (Lee et al., 

2011) and STRING (Snel et al., 2000; Szklarczyk et al., 2016) quantitatively integrate 

different studies and interaction types into a single integrated score for each gene pair based 

on the total weight of evidence. We also examined a pair of molecular networks each 

generated from a single, large-scale, high-throughput protein interaction screen (Huttlin et 

al., 2015; Rolland et al., 2014). Specific interaction content varied widely, even among 
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repositories that appeared superficially similar (Figures 1 and S1). For example, HumanNet 

and STRING have less direct overlap in gene-gene interactions than might be expected given 

they use similar data types and data integration methodologies. These differences in both 

interaction type and coverage can give rise to large differences in network size and 

topological structure (Figure 1 and S1).

A benchmark for evaluating networks based on gene sets

To benchmark these networks, we developed an approach to score how well each network is 

able to recover a diverse collection of disease-associated gene sets (Figure 2A–C, STAR 
Methods). Each gene set was randomly split into two equally-sized subsets. We then 

calculated the ability of one subset to recover the other within the network, using the 

technique of network propagation under the random walk with restart model (Köhler et al., 

2008). Models were constructed to select optimal parameter values used in the sub-sampling 

and network propagation steps (Figure 2D–E, STAR Methods). The random walk with 

restart model is a common technique used for network propagation. While other variations 

of variations of network propagation, such as heat diffusion, could be used to evaluate 

networks, previous studies have found that there is no appreciable difference between these 

variations for most tasks (Köhler et al., 2008; Lee et al., 2011; Paull et al., 2013; Vanunu et 

al., 2010). After network propagation, recovery was scored using the Area Under Precision-

Recall Curve (AUPRC). The average AUPRC over repeated trials was calibrated against a 

null distribution of AUPRC scores from networks in which individual edges had been 

shuffled preserving node degrees. Comparison to this null distribution allowed the AUPRC 

to be expressed as a z-score (Rousseeuw and Croux, 1993), henceforth called the network’s 

“performance score”.

This framework was applied to evaluate the 21 networks for recovery of 446 disease-

associated gene sets from the DisGeNET database (Piñero et al., 2015, 2016), which is 

based on text mining of MEDLINE abstracts (Figure 3A, henceforth called “literature gene 

sets”, Data S1A). We observed that all networks significantly outperformed their 

corresponding null models on at least 220 of the literature gene sets (49%), while 118 gene 

sets (26%) were recovered (at Bonferroni corrected p-value <0.05) by all 21 networks 

(Figure 3B). For recovering these literature gene sets, we found that STRING had the best 

overall performance (Figure 3A).

We also wanted to confirm that our network evaluation method was not simply scoring a 

network’s ability to separate disease genes from non-disease genes, but rather its ability to 

recover specific gene sets. Therefore, we also measured network recovery of the literature 

gene sets when using a background of only disease genes. We found that these results using 

a different background were very similar to those obtained when using all genes (Figures S2 

and S3). We were also concerned that the null models might have low variance, in which 

case a network’s performance (z-score) could be high without a large effect size. Therefore, 

we also calculated an effect size metric, called the “performance gain”, to address this 

concern (Figure 3C, STAR Methods). This metric was highly correlated with the 

performance score (Pearson’s R=0.88, p<1.0×10−16) with 58% of the tasks having 
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performance gains of over 50%, confirming that many networks have large effect sizes on 

the gene recovery tasks (Figure 3D).

Larger networks have improved performance

In these results, we noticed that many of the larger networks appeared to be the best 

performing. We thus examined how performance rankings change when correcting each 

network’s performance for the number of interactions in the network (Figure 3E, STAR 
Methods). We found that the smallest network (DIP) moved to the top of the network-size 

adjusted rankings, suggesting that, per edge, this network is most efficient. The number of 

interactions in a network was strongly predictive of its overall average rank in recovery of 

the literature gene sets (Pearson’s R=0.88, p=1.7×10−7) (Figure 3F). The full numeric results 

of network performance, performance gain and size-adjusted network performance are given 

in Data S1B–D.

We also attempted to determine if other network properties, such as the type of molecular 

interaction or method of network construction, were correlated with performance. For this 

purpose we encoded network type descriptors (columns in Figure 1) into a binary vector 

describing each network and performed ANOVA on the size-adjusted performance. Beyond 

network size, however, we did not find any additional network properties that significantly 

correlated with performance in recovery of disease gene sets (Table S2).

Assessing the influence of literature bias

Although no particular type of molecular interaction significantly correlated with network 

performance, we next asked whether networks that used co-citation information have an 

unfair advantage over other networks on the literature gene set recovery task. Specifically, 

some of the co-citation information used in STRING and HumanNet had been determined 

by mining a compendium of MEDLINE abstracts (Lee et al., 2011; Szklarczyk et al., 2016), 

which we considered might be similar to how the literature gene sets were mined by 

DisGeNET (Piñero et al., 2015, 2016). To test the degree to which literature curation might 

bias our performance results, we removed all interactions in STRING and HumanNet that 

were based solely on text mining. This filter removed 634,062 of 5,135,768 interactions 

(12.3%) in STRING and 4,631 of 475,959 interactions (1.0%) in HumanNet. We found that 

this filtering greatly reduced the performance of HumanNet relative to other networks (Table 

S3), suggesting that co-citation of genes in MEDLINE abstracts were an important driver of 

its performance. In contrast, such filtering did not greatly affect the performance of 

STRING.

As additional controls, we also evaluated all networks on two collections of gene sets which 

had been constructed independently of literature-mining or other information that could 

influence network construction. The first of these was a collection of nine expression-based 

cancer gene sets. These gene sets were derived from a single high-throughput mRNA 

expression profiling study in an unsupervised manner without any network or literature-

based gene selection and were found to correspond with well-known oncogenic pathways 

(Kim et al., 2017). Furthermore, this study was published very recently, making it 

impossible for any of the networks to use information from these gene sets. While STRING 
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had the best overall performance for recovering the literature gene sets, we found that 

GeneMANIA and GIANT were the best performing networks on these expression gene sets, 

with STRING ranking third. In general, however, we found that the overall rankings of 

networks between the literature and expression recovery tasks were correlated (Pearson’s 

R=0.60, p=3.7×10−3) (Figure 4A). We also observed that performance gain was correlated 

with performance score (Figure S4A, Pearson’s R=0.89, p<1.0×10−16) and network 

performance was correlated with network size (Figure S4B, Pearson’s R=0.62, p<2.8×10−3).

As a second control against literature curation bias, we evaluated each molecular network 

against 11 gene sets derived from the GWAS Catalog (MacArthur et al., 2017). These gene 

sets had been constructed from experimental genome-wide association studies (GWAS) of a 

common disease or trait: nine gene sets were associated with a disease (e.g. Crohn’s Disease 

or Type 2 Diabetes) and two gene sets were associated with a complex trait (height or body 

mass index). The genetic loci discovered in these studies had been associated with disease 

phenotype without any prior expectation from the literature (although one cannot entirely 

rule out the possibility that literature may have been used to distinguish among multiple 

candidate genes at a locus). Nonetheless, we found that the performance of the 21 networks 

on the GWAS gene sets was highly correlated with performance on the literature gene sets 

(Pearson’s R=0.89, p=5.7×10−8) (Figure 4B). Performance on the GWAS gene sets was also 

correlated to the performance gain metric (Figure S4C: Pearson’s R=0.94, p<1.0×10−16), as 

well as the network size (Figure S4D: Pearson’s R=0.74, p=1.0×10−4). The gene sets and 

full numeric results of network performance, performance gain and size-adjusted network 

performance for the expression and GWAS gene sets are given in Data S1E–L.

Integrating networks improves gene set recovery

Given the good performance of molecular networks that are large and inclusive, we 

considered that these separate resources might be further improved by combining them to 

form a single composite network. We explored several approaches for creating this 

composite, as follows. First, we created a series of composite networks of increasing size, by 

progressively aggregating individual networks in order of their performance scores in 

literature gene set recovery (Methods, Table S4). However, such composite networks did not 

increase performance, regardless of how many individual networks were added together 

(Figure 5A, Data S1M). Next, we created a series of composite networks of decreasing size, 

by requiring interactions to be present in ever greater numbers of individual networks (Table 

S5). By requiring a minimum of two networks supporting each interaction, the performance 

was significantly improved over the best individual network (STRING) despite having a 

much smaller network size (Figure 5B–C). This configuration was optimal, since further 

increasing the minimum number of supporting networks beyond two resulted in a 

degradation of performance (Figure 5B, Data S1M). This optimal configuration we call the 

“Parsimonious Composite Network” (PCNet).

Many of the interactions from the larger networks were not contained within PCNet, 

implying that these larger networks contain interactions not reproduced elsewhere (Figure 

5D–E). On the other hand, several of the smaller networks had almost all of their 

interactions covered by PCNet (Figure 5F). Thus, while large networks generally associate 
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with high performance in gene set recovery, carefully designed small networks can 

efficiently achieve equal or better performance.

A simple explanation for how a smaller network (e.g. PCNet) can lead to increased 

performance is that it concentrates interactions among genes of the same disease and, 

conversely, depletes interactions among unrelated genes. To test this hypothesis, we 

performed a case study of four different networks: a protein-protein interaction network 

derived from a single experimental study (BioPlex, Figure 6A), a much larger network 

integrating many different studies (STRING, Figure 6B), the maximal composite network 

containing the union of interactions from all 21 individual networks (Figure 6C), and, 

finally, the PCNet parsimonious composite network (Figure 6D). In each case, we examined 

the relationship between a network’s interaction density within members of a disease gene 

set and the performance of recovering that gene set. For all four networks, we found that 

interactions were greatly enriched among known disease genes, with STRING and PCNet 

showing by far the greatest enrichment (Figure 6E). Moreover, this interaction enrichment 

was well correlated with performance in gene set recovery (Figure 6F). Thus, density of 

interactions among disease genes is indeed an important indicator of network performance.

Discussion

Given that the compositions and topologies of popular molecular networks vary greatly 

(Figure 1), a key question is whether these differences impact downstream studies of 

disease, and if so, how much? Here we have found that the choice of network can matter 

greatly. A particularly revealing example is the case of the Lymphopenia gene set, for which 

the performance gap was a factor of >5000× between the networks with highest and lowest 

performance (Data S1B). In other instances, the choice of network appears less important, 

such as in the Measles gene set where the gap in performance was <5× (Data S1B) as 

measured by performance gain. This variation highlights not only the importance of 

evaluating networks globally, but in matching the correct network to the disease of interest. 

When studying a particular disease, one might start with the networks that performed best on 

that particular gene set, instead of or in addition to the networks that were the best 

performers overall (Data S1B).

The result that larger networks outperform smaller ones, as a general trend, supports the 

continued investment in high throughput discovery of biological interaction networks. At the 

same time, we were able to derive a much smaller PCNet that outperformed a network twice 

its size on the literature gene set recovery tasks (Figure 5B). This observation suggests at 

least one straightforward method of contracting the size of a reference network without 

sacrificing performance: requiring multiple database support for interactions. Moving 

forward, the principle of network expansion by introduction of new data, followed by 

network contraction by independent verification, may provide general guidance for network 

construction. This principle also highlights the importance of cooperation between multiple 

approaches to network creation and the continued need for community development of 

human molecular interaction maps.
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While systematic, we acknowledge that the evaluation framework used here is but one of 

several that might have been employed. Random walk with restart, although common, is not 

the only network distance metric appropriate for molecular networks. Alternate possibilities 

include diffusion state distance (Cao et al., 2014; Vandin et al., 2011), among others. More 

broadly, one might employ completely different network analytical engines, such as using 

networks as priors or regularization constraints for machine learning approaches (Hill et al., 

2016; Sokolov et al., 2016) or as the underlying structure for probabilistic graphical models 

(Vaske et al., 2010). Establishing the generality of our results across a broader selection of 

network analysis approaches remains for future work.

As ever greater numbers of protein interactions are mapped and verified across a range of 

biological contexts, database curators will continue making decisions on how and which 

molecular interactions should be incorporated. This work provides a proof-of-principle for 

how any network database, or interaction subset, may be evaluated and compared. We hope 

that the systems biology community will continue to develop other complementary, and 

especially data-driven, methods of network evaluation to complement to the present 

approach.

STAR★Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Trey Ideker (tideker@ucsd.edu).

METHOD DETAILS

Raw network data processing—To normalize all networks for comparison, we filtered 

out all interactors that were not human protein coding genes. Then, the interactors were all 

mapped to HUGO Gene Symbols using MyGene.Info (Wu et al., 2013; Xin et al., 2016). We 

kept only interactions where both interactors were mapped to a HUGO Gene Symbol. Many 

orthologous protein interactions and interactions between human proteins and small 

molecules/non-human proteins were also removed from analysis. We then removed 

redundant- and self-interactions in each of the 21 molecular networks. No other filters were 

applied to the networks except for the GIANT network. For GIANT, we downloaded the file 

of the top functional interactions across all tissues and filtered the network for only the top 

10% of interactions by functional interaction score to extract a network that was comparable 

in size to the other networks.

Network propagation—Network propagation requires a network and some nodes from 

that network as input. In this case those nodes represent a sub-sample of genes from a gene 

set of interest. These nodes were given some initial value (1 in this case), then a smoothing 

propagation process was applied to those initial values, passing some of the value to 

neighboring nodes. In this paper, the nodes are genes, and the edges represent various types 

of functional relationships between genes. These interactions include, for instance, protein 

binding interactions, transcriptional regulation and signaling by phosphorylation.
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We employed a random-walk with restart model as our network propagation method. We 

used a closed-form version of the method as described by the HotNet2 paper (Leiserson et 

al., 2015):

F = (1 − α)F0 · (I − αAnorm)−1 (Equation 1)

In this formulation, α is the propagation constant, or random walk probability, Anorm is the 

degree-normalized adjacency matrix, and F0 is the initial binary vector over all genes 

indicating which genes in the network are in the initial subset of a gene set (Leiserson et al., 

2015). Finally, F is a real-valued vector describing the network-smoothed values over all of 

the nodes in the network (called the “propagation score”). For the purpose of this paper, all 

networks were treated as undirected simple graphs. If there are multiple connected 

components in the network being smoothed, each connected component was propagated 

independently and the results of each connected component concatenated.

Gene set selection for network evaluation—Three collections of gene sets were 

downloaded as standards to evaluate networks against. The first collection of gene sets was 

downloaded from the DisGeNET website (http://www.disgenet.org). We used the “BeFree 

gene-disease associations,” which is a collection of text-mined disease-associated gene sets 

mined from a collection of MEDLINE abstracts (Piñero et al., 2015, 2016). These gene sets 

were chosen to remove as much human curation bias as possible from the gene sets. The 

gene sets were then filtered to only the gene sets that contained less than 300 genes and 

contained at least 20 genes in each network studied. This yielded a collection of 446 gene 

sets from DisGeNET referred to as “literature gene sets”.

We also evaluated the networks on two additional collections of gene sets that were 

constructed independently from the literature gene sets and molecular networks. The first 

literature-independent collection of gene sets were acquired from a recent Cell Systems 

paper that determined the pathways involved in treatment response in RAS-induced cancer 

cell lines (Kim et al., 2017). The authors in this paper defined 9 oncogenic transcriptional 

components ranging in size from 50–122 genes, each centered on different common cancer 

pathways. We refer to these sets as “expression gene sets”.

The second literature-independent collection of gene sets was derived from the GWAS 

Catalog (MacArthur et al., 2017). The GWAS Catalog is a large database of significant SNP-

trait associations. We defined each gene set as the genes mapped to significantly disease 

associated SNPs, with one gene set per trait. We kept only the gene sets that had between 20 

and 500 genes present in all 21 networks. Of these, we eliminated gene sets that were 

unlikely to be generalized outside of the particular study context (e.g. blood cell count, 

resting heart rate), and kept the 9 gene sets associated with disease and 2 gene sets 

associated with easily observable quantitative traits: height and body mass index.

Network Evaluation Method—The set-based network evaluation method for a molecular 

network’s ability to recover disease-associated gene sets was performed with the following 

steps:
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1. Identify a gene set of interest on the molecular interaction network.

2. Sub-sample a proportion (~30–60%, see “Propagation and sub-sampling 

parameters”) of the gene set of interest (Figure 2D).

3. Propagate this sub-sample of genes from (2) using the random walk model across 

the molecular interaction network (Hofree et al., 2013; Leiserson et al., 2015; 

Vanunu et al., 2010) (Figure 2E).

4. Sort all genes in the network by propagation score and then sweep this list to 

calculate a precision-recall curve of the list for recovering genes from (1) not 

contained in (2).

5. Calculate the area under the precision-recall curve (AUPRC) from (4).

6. Repeat (2–5) for 50 different sub-samples of the gene set of interest and average 

these values. This averaged AUPRC is the raw measure of performance for a 

given molecular network on clustering a gene set of interest.

7. Repeat steps 1–6 for 50 degree-preserved shuffles of the network on the same 

gene set of interest to construct a null distribution of average AUPRC values.

8. Calculate the robust Z-statistic (Rousseeuw and Croux, 1993) using the null 

distribution of average AUPRC values from (7) of the actual network’s 

performance on the gene set of interest. This is the performance score of a 

network for a particular gene set.

Accounting for literature mined interactions—Recognizing the possible effect of co-

citation information in both STRING (https://string-db.org/) and HumanNet (http://

www.functionalnet.org/humannet/about.html), we removed all interactions in these networks 

that were supported exclusively from text-mined sources in human studies in these networks. 

However, we did keep edges with evidence from exclusively text-mined evidence in non-

human studies since this evidence was not used for the literature gene sets. These filtered 

networks were then evaluated using our set-based evaluation method and re-ranked in the 

context of the performance of the other unmodified networks (Table S4). It is also important 

to note that the remaining network containing co-citation information, ReactomeFI, does not 

directly contain information mined from MEDLINE abstracts, nor does its publicly available 

database indicate which interactions are exclusively determined with literature text mining 

(Wu et al., 2010). Therefore, we did not perform any interaction filtering and re-evaluation 

on ReactomeFI.

Composite network analysis—We constructed two sequences of composite networks to 

study the effect of combining networks on performance. The first sequence of composite 

networks increases in size starting with the best performing network across the literature 

gene sets, STRING. Each subsequent composite network was made by adding all unique 

edges from the next best performing network on the literature gene sets (Figure 5A and 

Table S4). Then we created a sequence of parsimonious composite networks of decreasing 

size by requiring increased support of each edge, starting with the additive composite 

network containing the union of all edges from the 21 networks (Figure 5B and Table S5). 
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The performance of both sequences of composite networks were then evaluated on the same 

literature gene sets. We found that the network constructed out of edges with at least 2 

network sources outperformed STRING on the literature gene sets, and we refer to this 

network as PCNet.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculating network topology similarity—We compared the 21 molecular networks to 

each other with two similarity metrics, one based on the number of shared network edges 

and one based on the network topology by propagation (Figure 1). To determine the network 

similarity by shared network edges, we first took the intersection of nodes between the two 

networks being compared. Then all edges between this set of nodes in both networks were 

taken to create a subgraph of both networks. The Jaccard index of the number of shared 

edges between these two subgraphs was then taken as a the network edge similarity. In order 

to measure the similarity of network topology by propagation, we again took the intersection 

of nodes between the two networks. Then, each one of these nodes was propagated 

(Equation 1) across the entire network and we measured the similarity between the 

propagation scores across all shared nodes by Spearman correlation. The average similarity 

across all shared nodes between any two networks was the final network topology-by-

propagation similarity measure.

Propagation and sub-sampling parameters—In order to calibrate the network 

propagation method, we constructed a model to estimate the optimal propagation constant 

(α, Equation 1) as well as a reasonable sub-sampling proportion to use to optimize cohort 

recovery. In order to establish these parameters, we tested the performance of the 21 

networks on recovering the 50 Hallmark MSigDB pathways (Liberzon et al., 2011) so as not 

to contaminate the parameter selection with the literature gene sets that were used in the 

actual benchmark. We examined a range of sub-sampling proportions and propagation 

constants to identify which values for these parameters yields the best results (Figure 2D–E). 

First, we averaged the resulting network performance scores for each propagation constant α 
(from 0.05 to 0.95 in increments of 0.05) and fit a model to determine the best sub-sample 

proportion p for each gene set based on the coverage of that gene set in the network (Figure 

2D). Then, using our model for determining p, we fit a second model to determine the 

optimal α such that the networks had the best performance on recovering the MSigDB 

Hallmark gene sets. These α constants for each network were then compared against various 

network properties. We found that a the optimal α constant for each network was predicted 

by a linear model against the log10-adjusted number of interactions in the network (Figure 

2E). These two linear models are then used to set the α constant and sub-sample proportion 

for all subsequent network evaluation tasks. Note that the determination of these parameters 

was based on gene sets that were not used in any other evaluation, so overtraining of these 

parameters is not an issue in our evaluation framework.

Network performance ranks—Three network performance metrics are used here 

(Figure 3). In order to derive each of these metrics, we compared against a background of 

degree matched null networks that were created by shuffling the network edges while 

preserving node degree. We defined the performance score as the robust z-score of the true 
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AUPRC of the gene set recovery task as compared to the background of AUPRCs from the 

degree matched null networks (Figure 3A). To determine the network rankings by an effect 

size metric, we defined the performance gain as the difference between the AUPRC of a 

given network and the median AUPRC of its null networks divided by the median AUPRC 

of its null networks (Figure 3C). In order to calculate the size-adjusted performance, a linear 

model was fit to the performance scores of each task against the log10-adjusted network 

interaction count. The residual values for each performance score were calculated against 

their respective size-adjusted performance models (Figure 3E).

All networks were ranked on each of these metrics individually for each task in each 

collection. The overall rankings were determined by the average rank of each network across 

all tasks in each collection. This value is described as the average ranked performance of a 

network. The average ranked performance gain as well as the average ranked network size-

adjusted performance are calculated in the same manner as the average ranked performance 

using their respective metric.

Network size-adjusted performance ANOVA Model—In order to determine if any 

specific network properties were correlated with network performance, we constructed an 

ANOVA model using the statsmodel package in Python (Seabold and Perktold, 2010). The 

construction method for each network, along with the types of interactions they contain were 

considered as independent categorical variables (columns marked with yellow in Figure 1, 

with the exception of column titled “Physical”). Each column where a network has a yellow 

indicator without a grey “X” in it was given 1 for that variable and given 0 otherwise. We 

then used all 14 of these variables to construct a model for predicting the averaged ranked 

network size-adjusted performance of each network. The formulation of the ANOVA model 

is as follows:

Size Adjusted Residuals Low − Throughput + High − Throughput + Scored + Co − Citation +
Co − Complex + Co − Expression + Genetic + Metabolic + Non − Protein + Orthologous +
Pathway + Regulation + Shared Domain + Signalling

The resulting ANOVA summary table then gave the strength and significance of the 

explanation of the network size-adjusted performance by any of the network properties we 

examined (Table S3, Table S4).

DATA AND SOFTWARE AVAILABILITY

Many of the functions written to perform the network evaluation are contained within an 

installable Python 2.7 package at https://github.com/huangger/Network_Evaluation_Tools. 

Documentation and examples of how to evaluate a molecular network for a given collection 

of gene sets are provided as both Jupyter notebooks and an executable command line script. 

All of the networks were processed using Jupyter Notebooks also available via this project’s 

Python package Github repository. The Jupyter Notebooks also should contain the download 

link for network source data for processing. The raw molecular interaction data used is also 

described in the Key Resources Table for website links and Table S1 for version numbers 

and database references. The gene name-normalized networks as well as some of our 

composite networks are available in collections on NDEx(Pillich et al., 2017; Pratt et al., 
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2015) http://www.ndexbio.org/#/networkset/e8ebbdde-86dc-11e7-a10d-0ac135e8bacf?

accesskey=7fbd23635b798321954e66c63526c46397a3f45b40298cf43f22d07d4feed0fa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We present a benchmarking method for molecular networks recovering 

disease gene sets

• STRING had the best overall performance out of 21 biological network 

databases

• We constructed a composite network and improved performance over any 

single network
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Figure 1. Comparative Analysis of Gene Network Resources
The construction methods for each network are marked, along with the types of interactions 

they contain (yellow) for each molecular interaction network database evaluated. 

Interactions from the databases that are not used in our evaluation framework due to missing 

or embargoed data are marked with a grey X. The two interaction networks generated from 

single, large-scale, high-throughput experiments are marked with red dots. Pairwise 

similarity of all evaluated networks reveal differences in network edges (red gradient, edge-

wise Jaccard index) and network propagation behavior due to varying topologies (blue 

gradient). Network sizes are shown by numbers of nodes (genes, green bars) and edges 

(interactions, purple bars). See also Figure S1 and Table S1.
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Figure 2. Set-Based Network Evaluation
(A) A gene set of interest is sub-sampled (with proportion p) on the molecular network. 

Each sub-sample of genes is then propagated over the network of interest (with network 

propagation coefficient ɑ) to recover the remaining genes in the gene set. (B) The area under 

the precision-recall curve (AUPRC) is calculated to measure the performance of this 

recovery task. (C) For each network, a set of null models is created by shuffling network 

edges (while preserving node degree) and repeating steps (A) and (B). The final network 

performance metric on this gene set is the improvement over the distribution of the null 

models’ AUPRCs. (D) The subsampling rate p of each gene set was set by a function of the 

number of genes from the gene set also found in the network. We determined this 

relationship by fitting the log10-adjusted gene set coverage in the network versus the optimal 

sampling rate for recovering the mSigDB gene sets (Liberzon et al., 2011). (E) Similarly, the 

optimal amount of network propagation (ɑ) was fit by a linear model on the log10-adjusted 

number of edges in the network. For additional details see STAR Methods.
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Figure 3. Molecular Network Recovery Performance of Literature Gene Sets
(A) The network performance score (purple) on 50 selected literature gene sets. (B) The 

proportion of all 446 literature gene sets versus the number of networks have performed 

significantly better than their null networks via the network performance score (Bonferroni 

corrected p-value<0.05). (C) Network performance gain for 50 literature gene sets as shown 

in (A). This value represents the effect size of the improvement in gene set recovery 

performance due to using real networks over scrambled null networks. (D) The log10-

adjusted network performance score of molecular networks compared to the log10-adjusted 

network performance score gain by the molecular networks over their respective null 

molecular networks recovering the literature gene sets. (E) Network size-adjusted 

performance scores for 50 literature gene sets as shown in (A). The columns (networks) in 
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heatmaps (A), (C), and (E) are sorted by the average rank of the metric being measured 

(green rows). (F) The average ranked performance of each molecular network on the 

recovery of the expression gene sets compared to the log10-adjusted number of interactions 

in the molecular networks. The error bars are one standard deviation of the ranked network 

performances across the tasks. The methods to calculate the described metrics above 

(network performance score, network performance gain, network size-adjusted performance 

score, and average ranked performance) are described in the STAR Methods. See also 

Figure S3, Figure S4 and Data S1.
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Figure 4. Literature-Independent Gene Set Recovery Correlates with Literature Gene Set 
Recovery
(A) The average ranked performance of molecular networks recovering literature gene sets is 

correlated with their average ranked performance on the recovery of expression gene sets 

(red) (B) as well as their average ranked performance on the recovery of GWAS gene sets 

(green). The calculation to determine the average ranked performance of a molecular 

network on a collection of gene sets is described in the STAR Methods. See also Figure S4 

and Data S1.
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Figure 5. Composite Networks Can Gain Performance Despite Smaller Size
(A) Composite network average performance gain across all 446 literature gene sets 

compared to STRING (blue line) and composite network size (red line) for additive 

composite networks and (B) parsimonious composite networks. All error bars are 95% 

confidence intervals on the average performance gain for a given composite network. PCNet, 

the parsimonious network with at least two networks supporting each edge, achieved the 

highest performance, despite having less edges than STRING. The blue dotted line in (A) 

and (B) represents the performance gain of STRING against itself on the literature gene set 

recovery task (no gain) and the red dotted line in (A) and (B) is the network size of 

Huang et al. Page 24

Cell Syst. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STRING. See STAR Methods for additional details on how to construct the composite 

networks. (C) The average performance gain of PCNet across all 446 literature gene sets as 

compared to each of the 21 selected molecular networks. All error bars are 95% confidence 

intervals on the average relative gain in performance for PCNet against a given molecular 

interaction network. (D) The percentage of interactions in PCNet that are found in each of 

the 21 selected molecular networks. (E) The number of interactions from each of the 21 

networks that are supported by exactly one other network in PCNet. The grey dotted line 

represents the total number of edges in PCNet supported by exactly 2 network sources 

(1,830,145 interactions). (F) The percentage of interactions from each of the 21 selected 

molecular networks that can be found in PCNet. See also Data S1.
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Figure 6. Increased Interaction Density in Relevant Network Neighborhoods Improves Gene Set 
Recovery
Interactions among genes associated with the same disease, Pancreatitis, as contained in (A) 
BioPlex, (B) STRING, (C) the union of all networks, (D) and the Parsimonious Composite 

Network (PCNet). For each of these the (E) quantitative enrichment of interactions is shown 

among genes associated with five representative diseases. (F) Scatterplot of gene set 

recovery performance versus the within-disease enrichment for interactions.
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