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Generating morphological paradigms with a recurrent
neural network

Robert Malouf
San Diego State University

Abstract

In traditional word-and-paradigm models of morphology, an inflectional system is represented
via a set of exemplary paradigms. Novel wordforms are produced by analogy with previously
encountered forms. This paper describes a Long Short-Term Memory (LSTM) network which
can use this strategy to learn the paradigms of a morphologically complex language. Results
are given which show good performance for a range of typologically diverse languages.

1 Introduction

Word-based theories of morphology take the word rather than the morpheme as the smallest mean-
ingful linguistic element and the basic unit of morphological analysis (Blevins, 2006). Traditionally,
in this approach a morphological system is represented via a set of complete exemplary paradigms.
Individual lexical items to be stored as a set of diagnostic forms or principal parts which allow
inflected wordforms can be produced by analogy from the exemplary paradigms.

While rote memorization certainly plays a large role in lexical learning, it is implausible to imag-
ine that speakers of morphologically complex languages simply memorize all the inflected forms
of all the lexemes in the vocabulary. In the Samoyedic language Tundra Nenets, for example, each
noun has 210 inflected forms, and this is hardly an extreme case. Furthermore, since both lexemes
and wordforms follow a Zipfian frequency distribution, speakers will encounter some forms of a
few lexemes very frequently, but many forms of many lexemes will be vanishingly rare. It is likely
that speakers will be exposed to complete paradigms for few if any lexemes in any given class, and
the sets of wordforms that are learned may vary dramatically from speaker to speaker based on each
individual’s personal linguistic history. The same observations hold for any system which is to de-
rive morphological patterns from a corpus: learners, whether human or computer, must generalize
beyond their direct experience.

Ackerman et al. (2009) highlight this issue by posing the Paradigm Cell Filling Problem: Given
exposure to an inflected wordform of a novel lexeme, what licenses reliable inferences about the
other wordforms in its inflectional family (Ackerman et al., 2009; Ackerman and Malouf, 2013;
Blevins et al., in press)? Stump (2001) formalizes the notion of a paradigm via the paradigm func-
tion PF, which maps a lexeme and a morphosyntactic feature set to a wordform. We can take a
lexeme to be an abstract identifier for a family of related inflected forms; it is similar to a lemma
but has no phonological form. A morphosyntactic feature set is a collection of feature values that
identify one cell in a lexeme’s inflectional paradigm. For example, in English if the morphosyntactic
feature set σ = {TNS:pres,PER:3,NUM:sg}, then PF(WALK, σ) = walks and PF(BE, σ) = is.
Our goal is to learn the paradigm function by observing the value of PF for some lexeme/feature set
pairs, thereby providing a solution to the Paradigm Cell Filling Problem.
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Figure 1: Network architecture

Most of the previous work on learning inflectional morphology has focused on the problem of
analysis rather than generation, and many of the systems which can generate novel forms do so
by inducing a lexicon of stems and affixes which can be productively combined (Goldsmith, 2006;
Kohonen et al., 2010). Approaches which do take paradigms as central have framed the problem as
one of generating a set of inflected forms from a single uninflected base form (Dreyer and Eisner,
2011; Durrett and DeNero, 2013; Ahlberg et al., 2014, 2015; Nicolai et al., 2015). This however is
founded on an unrealistic assumption: learners often must generalize from a partial set of known
forms (which may not happen to include the base form) to a partial set of unknown forms. In many
languages, there is no bare‘base’ form of if there is, it is not especially common. Often, it is not in
general possible to uniquely map between base forms and inflected forms in isolation.

These previously published systems make a number of assumptions that are inconsistent with
Paradigm Function Morphology, for example that learning is done on the basis of complete paradigms,
that words can be exhaustively segmented into meaningful parts (i.e., morphemes), or that all forms
of a word can be derived by rule from an underlying base form or lemma. These are useful heuristics
for analyzing languages of the familiar European type, but an extensive descriptive and theoretical
literature has shown definitively that not all languages are organized along those lines. Since these
are not universal properties of morphological systems, they also cannot be the basis for a general
theory of morphology.

2 The model

The aim of the model is to simulate a solution to the Paradigm Cell Filling Problem: given knowl-
edge of partial paradigms for a set of lexemes, correctly generate the remaining unobserved forms.
Recent work using recurrent neural networks for language modeling (Mikolov et al., 2010, 2012;
Mikolov and Zweig, 2012; Sundermeyer et al., 2012, 2015) has shown them to be competitive or
superior to standard Markov models. By sampling from the distribution over strings defined by the
language model, one can produce plausible-sounding random outputs in a range of domains and
modalities (Sutskever et al., 2011; Graves, 2014; Testolin et al., in press). Furthermore, by adding
additional inputs, the recurrent neural nets can be made to generate meaningful sequences. For
example, Vinyals et al. (2015) use a similar architecture to produce captions from images.

We will use the same basic strategy to generate wordforms for paradigm cells. An overview of the
network structure is given in Figure 1. The input xt is a localist one-hot representation of the previ-
ous character and mt is a ‘two-hot’ input identifying a lexeme and a paradigm cell: one bit encodes
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the lexeme (say, WALK) and another encodes the paradigm cell (e.g., {TNS:pres,PER:3,NUM:sg}).
These inputs are mapped to a combined projection layer zt (Bengio et al., 2003):

zt = (W xxt + bx)⊕ (Wmmt + bm)

where ⊕ is vector concatenation. The projection layer zt in turn is input for the recurrent layer,
implemented via Long Short-Term Memory (LSTM) blocks (Hochreiter and Schmidhuber, 1997;
Jozefowicz et al., 2015). LSTMs avoid the problems with gradients exhibited by Elman-style simple
recurrent networks and allow the model to more easily capture medium and long-distance temporal
dependencies in the data (Hochreiter et al., 2001). The output of the recurrent layer ht is given by:

i = σ(W izt + U iht−1 + bi)

f = σ(W fzt + Ufht−1 + bf )

o = σ(W ozt + Uoht−1 + bo)

ct = f ◦ ct−1 + i ◦ tanh(W czt + U cht−1 + bc)

ht = o ◦ tanh(ct)

where ◦ denotes element-wise multiplication. For implementation purposes, the sigmoid function σ
is evaluated using the ‘hard sigmoid’, a piecewise-linear approximation (Courbariaux et al., 2015):

σ(x) = max(0,min(1,
x

5
+

1

2
))

Finally, ht is mapped to a vector with the same dimensionality as the input xt from which we can
induce a probability distribution over output characters: yt = W yht. The probability that the next
character in the output xt+1 is the jth character in the character set is computed by applying the
softmax function on the output layer:

p(xt+1 = j|x1 . . . xt) =
exp(yjt )∑
k exp(y

k
t )

The probability of a wordform p(x1 . . . xn) given a lexeme and paradigm cell is the product of the
probabilities of each character given the preceding context. During training, the weights W and U
and biases b are selected to maximize the log likelihood of the training data.

To produce a candidate wordform, we use the begin-word marker as x1 and predict a new charac-
ter x2, use x2 as the input to predict x3, and so on until the end-word marker is generated. The output
of the paradigm function PF is the character string that the model assigns the highest probability,
found in the current implementation via beam search.

3 Datasets

To evaluate the appropriateness and performance of the proposed model, paradigms were generated
based on full-form lexicons for five morphologically complex and typologically diverse languages:
Russian, Finnish, Irish, Maltese, and Khaling. The database for each language consists of a set of
paradigm function triples: a lexeme, a paradigm cell identifier, and the corresponding wordform.
The Russian and Khaling wordforms are given in phonemic transcription. Lexicons for the other
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languages use the practical orthography. A special word boundary character is added to the begin-
ning and end of each wordform.

The Russian lexicon consists of all inflected forms of the 1,500 most frequent noun lexemes
as generated in phonemic transcription (including stress) by a DATR implementation (Corbett and
Fraser, 1993; Brown and Hippisley, 2012).1 Russian is a typical fusional Indo-European language:
each noun lexeme has 12 wordforms marking for two numbers and six cases via a single fused suffix.
Corbett and Fraser (1993) roughly divide Russian nouns into four declensions which determine the
endings that are used. For example, the dative singular of Class II KARTA ‘map’ is karte, while the
dative singular of Class I ZAKON ‘law’ is zakonu. Russian nominal inflection is made significantly
more complex by a cross-cutting system of stress shift patterns. Nouns can fall into one of four
stress shift classes (with several subclasses), and there is no direct correspondence between the
classes that determine choice of suffixes and the stress shift classes.

The Finnish lexicon is based on a sample of 1,000 noun lexemes from the wiktionary-derived
paradigms in Durrett and DeNero (2013). Nouns in Finnish have 29 distinct forms, with suffixes
marking 15 cases and two numbers (there is no comitative singular form). There is some stem
allomorphy (certain lexemes show a change in the final consonant in some paradigm cells) and a
high degree of suffix allomorphy: depending on how one counts, Finnish may have as many as 85
nominal declensions (Thymé, 1993).

The Irish lexicon is made up of all inflected forms of the 1,216 noun lexemes in Carnie (2008).
Irish nouns occur in up to eight different forms, marking two numbers and four cases. Nouns
can be classified into two genders, forty singular declensions, and sixty-five cross-cutting plural
types. Carnie’s lexicon gives examples of 220 distinct gender/declension/plural class combinations.
Morphological categories are marked via one or more of an proclitic definite article, a suffix, an
initial consonant alternation, and vowel syncope.

The Maltese2 lexicon contains wordforms of 455 verb lexemes taken from the Maltese dictionary
for the Apertium translation system (Forcada et al., 2011). Individual verbs have as many as 38
distinct forms, marking subject agreement and tense/aspect/modality. Maltese verbs fall into distinct
morphological systems depending on whether they are of Semitic, Romance, or English origin, and
the system for Semitic verbs follows a root-and-pattern organization (Hoberman and Aronoff, 2003).
For example, the root of the verb meaning ‘break’ is k-s-r, which combines with a vowel pattern and
potentially an affix to form an inflected word: ksirt ‘I broke’, kisret ‘she broke’, niksru ‘we break’.

Khaling is a Sino-Tibetan language with about 15,000 speakers in Eastern Nepal (Jacques et al.,
2012). The Khaling lexicon consists of all inflected forms of a sample of 250 verb lexemes. There
are up to 331 forms per verb lexeme (depending on the verb type), for a total of approximately
66,000 wordforms (Walther et al., 2013).3 Khaling verbal morphology is fairly extensive: each
verb form potentially consists of a verbal stem plus a prefix and up to seven suffixes indicating
negation, subject/object agreement, and tense/aspect/modality marking. The affixal part of the ver-
bal paradigm is straightforwardly agglutinative, and there is little variation in the affixes between
verb lexemes. However, there is a complex system of stem alternations, with some verb lexemes
occurring with up to ten variant stems depending on the particular set of affixes in the verb form.
For example, the verb lexeme Hod ‘to bring’ has ten different stem forms: Hod-u, H8ts-i, HoOç-

1http://networkmorphology.as.uky.edu/sites/default/files/ch23_rusnoms.dmp
2https://svn.code.sf.net/p/apertium/svn/trunk/apertium-mlt-ara/

apertium-mlt-ara.mlt.dix
3https://gforge.inria.fr/frs/download.php/file/35119/khalex-0.0.2.mlex.tgz
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x, y m z h L

Finnish 26 1,030 132 512 17
Irish 34 1,218 260 512 21
Khaling 34 674 132 256 16
Maltese 31 500 136 512 17
Russian 27 732 132 1,024 21

Table 1: Layer sizes: x, y,m are fixed by the input data, z and h were optimized by random search.
L is the length of the longest word in the lexicon.

ki, Pi-HoÔn-ni, H8̄:d-0, H8̂:t-nu, Hô:-t2, H8s-ti, H8̂-tE, Pi-HoÔj (Jacques et al., 2012, 1104). Only
the initial consonant remains the same. The patterns of alternations are not completely predictable
across lexemes, though Jacques et al. argue that the full set of alternate stems can be produced with
knowledge of at most four forms of a given lexeme.

4 Results

The architecture in Figure 1 was implemented in Python using Keras and Theano (Bergstra et al.,
2010; Bastien et al., 2012; Chollet, 2015). Model parameters were fitted using RMSprop (Hinton,
2012) for 30 epochs with a mini-batch size of 128. The experiments were performed using Nvidia
GRID K520 GPUs on Amazon EC2 g2.2xlarge instances. The number of nodes in each layer for
each language is given in Table 1. The dimensions of the inputs x and m are fixed by the data and
are the number of characters in the character set and the combined number of lexemes and paradigm
cells, respectively. The output y is the same dimensionality as the input x. The sizes of the hidden
layers were optimized using random search (Bergstra and Bengio, 2012), though the results were
not particularly sensitive to the choice of settings. For the most part the performance differences
between hyperparameter values were smaller than the variation between runs with the same settings.
L is the length of the longest word in the lexicon (including word boundary markers) and is the depth
to which the recurrent layer was unrolled for back-propagation through time (Elman, 1990).

Overtraining was not observed to be a problem, and adding regularization did not improve the
results. This is consistent with Daelemans et al.’s (1999) observation that regularization actually
harms performance on natural language tasks which involve a large amount of rote learning. What
in other domains might look like noise in the data that needs to be generalized away from, in this
domain is simply irregular. Learning, for example, that the past tense of PAY is paid and not payed
or the past tense of GO is went and not goed is not ‘overtraining’.

Each network was trained on 90% of the paradigm function triples and then evaluated by having it
generate the remaining 10%, and then again using 60% of the wordforms for training and evaluating
on 40%. The results are given in Table 2.

Performance is quite good for all of the languages with 90% of the wordforms known and remains
good for most as the density of training examples is reduced. In general, it seems to perform better
for languages which have a large number of wordforms for each lexeme (Finnish, Khaling). Irish,
on the other hand, has the smallest paradigms and the worst performance.

It may seem paradoxical that languages with larger systems are more easily learned, since there
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90% train 60% train
acc sd acc sd

Finnish 99.6 0.13 99.2 0.04
Irish 90.7 0.84 72.7 1.34
Khaling 99.2 0.15 91.2 0.07
Maltese 95.0 0.90 88.8 2.56
Russian 96.1 0.53 91.9 0.62

Table 2: Ten-fold mean and standard deviation of wordform accuracy, using 90% or 60% of the
wordforms in the lexicon for training with the remaining forms used for testing.

are more different forms that need to be produced. However, in larger systems there are also more
forms to draw inferences from and it is less likely that an important diagnostic form or principal
part will be unknown. This effect is also seen in the high variance for Irish and Maltese: it matters
not just how many forms are in the training data but specifically which forms there are.

5 Conclusions

Models of this type have a range of potential applications, both practical and theoretical, and while
preliminary, these results are encouraging. In a sense, it is remarkable that an approach like this
works at all, given that the input is merely a lexeme code and contains no phonological informa-
tion. The next steps will be to test the model on a wider range of languages in order to isolate the
properties of languages that lead to good and poor performance.

Other extensions that are possible move beyond Stump’s conception of a paradigm function. For
one, the lexeme and feature set inputs need not be discrete. If we think of the lexeme as a unit
of lexicosemantic distinctiveness, then it makes sense to give lexemes a semantic representation.
Replacing the 1-of-M encoding with an embedding along the lines of Mikolov et al. (2013) would
allow the model to take advantage of any semantic categories that could help predict a lexeme’s
inflection class.

The probabilistic nature of the model also leads to natural extensions to address situations in
which the paradigm function is not strictly functional. Paradigm gaps occur when a lexeme simply
lacks a wordform for a particular paradigm cell, and overabundance arises when there is more than
one possible wordform for a cell.

Finally, by manipulating the training data, this model could be used to investigate the properties
that real languages have that make them learnable (Ackerman and Malouf, 2013; Bonami, 2013;
Blevins et al., in press).
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