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Abstract

DNA sequencing technology has revolutionized the field of biology, shifting biology from a data-limited to data-rich state.
Central to the interpretation of sequencing data are the computational tools and approaches that convert raw data into
biologically meaningful information. Both the tools and the generation of data are actively evolving, yet the practice of
re-analysis of previously generated data with new tools is not commonplace. Re-analysis of existing data provides an
affordable means of generating new information and will likely become more routine within biology, yet necessitates a new
set of considerations for best practices and resource development. Here, we discuss several practices that we believe to be
broadly applicable when re-analyzing data, especially when done by small research groups.
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Background

Advances in high-throughput, next-generation sequencing
technologies have catapulted biology into a new computational
era. In fields of biology that leverage sequencing data, the pri-
mary limiting step in the earlier stages of biological inquiry has
increasingly shifted away from data generation to data analy-
sis. Concomitant with the increasing emphasis on the compu-
tational processing of these data is the advancement of the com-
putational tools available for such analyses; new computational
approaches for the analysis of these data are constantly being
created, tested, and proven worthy of use. Yet, outside of com-
putational lab groups, the practice of re-analysis of previously
generated data with new tools and approaches is not common-
place. Such re-analysis has great utility and will become more
routine within the life sciences, yet re-analysis necessitates a

new set of considerations for best practices and resource devel-
opment.

Our interest in the issues surrounding re-analysis was
spurred by a large-scale sequencing project: the Marine Micro-
bial Transcriptome Sequencing Project (MMETSP), which gener-
ated 678 transcriptomes, spanning 396 different strains of eu-
karyotic microbial eukaryotes isolated from marine settings [1].
This dataset is an invaluable resource within the oceanographic
community [1,2], as it exponentially expands the accessible ge-
netic information base of marine protistan life. Moreover, the
MMETSP has created a uniquely useful test dataset for compu-
tational biologists. The MMETSP dataset spans a large evolution-
ary history of organisms, and all of the 678 transcriptomes were
prepared and sequenced in a consistent way [2]. The sequencing
project, which was completed in 2014, was originally assembled
by the National Center for Genome Resources using a custom
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pipeline that employed the best available computational tools
at the time [3,4].

Since the original MMETSP analysis, new tools and tech-
niques for the assembly of de novo transcriptomes from RNA se-
quencing data have been described, and preexisting tools have
been improved upon [5]. Moreover, new annotation tools and
databases have become available. The transcriptome assembly
project described in [6] was designed to create a streamlined and
reproducible assembly framework that not only enables the re-
analysis of these datasets but creates a framework to facilitate
easy and rapid re-analyses in the future.

These secondary data products of sequencing, such as an-
notated assemblies, should be viewed as hypotheses gener-
ated from the underlying biology, rather than some immutable
“truth.” As such, these secondary data products can continue to
be improved as new tools are developed. For example, we note
that [7] described several limitations and challenges of current
assembly technology and developed an improved Oyster River
Protocol, which we could use to generate another, perhaps im-
proved, MMETSP assembly.

Ultimately, such iterations on the original raw data have the
potential to improve upon the secondary data products, that is,
the assembled transcriptomes and associated annotations that
are relied upon by the broader community for biological inquiry.
Through this process, we developed several practices that we be-
lieve to be broadly applicable when re-analyzing data, especially
when done by small research groups.

Storage of Secondary Data Products

Funding agencies and academic journals now mandate the
deposition of raw data into digital repositories (e.g., the Na-
tional Center for Biotechnology Information Sequence Read
Archive (SRA) and Gene Expression Omnibus, European Nu-
cleotide Archive). Thus, to date, the majority of the sequence
data that have been generated and published is openly avail-
able online for reference and use in other studies. The sharing
and availability of raw data from high-throughput sequencing
studies has been largely managed through the development of
archival services such as the SRA, which was established as part
of the International Nucleotide Sequence Database Collabora-
tion [8]. The SRA currently contains more than 1.8e16 bases of
information (˜7e15 are open access).1 While a tremendous re-
source for biological inquiry, a major problem remains in that
raw sequencing data are not the most directly useful form of
sequencing data. Rather, biologists rely heavily upon the com-
putationally generated secondary products of sequencing reads
(e.g., assembled transcriptomes or genomes, annotations, asso-
ciated count-based data). There is a dearth of these secondary
products in central, publicly accessible databases, such as the
Transcriptome Shotgun Assembly (TSA) Sequence Database.

In fact, a substantial proportion of these data products might
be aptly categorized as “dark data,” as they are largely undis-
coverable and often archived independently in association with
a publication or on private servers. Even more limiting, how-
ever, is that the guidelines for public databases such as the TSA
specifically state that “assemblies from sequences not directly
sequenced by the submitter” should not be uploaded to the TSA,
thereby excluding the potential for reassembled datasets to be
made available and directly linked to preexisting BioProjects,
BioSamples, TSAs, and SRA entries (https://www.ncbi.nlm.nih.g
ov/genbank.tsa/).

1 As of 17 May 2018.

From the perspective of our MMETSP re-analysis, we argue
that the community needs more than a place to put the primary
and secondary data products associated with a single publica-
tion. Ideally, the results of each re-analysis would be deposited
in a discoverable location but would have a coherent archival
procedure that is lab independent, easily searchable, and “for-
ward discoverable” (i.e., when a new version of a data product
is released, old versions can point to the new version). More-
over, such an archival platform would ideally document the full
provenance of the secondary data product. Movement toward
this kind of data archival system is being made both with the de-
velopment of alternative scientific data publication models (e.g.,
the Research Object [9]) as well as integration of metadata mod-
els (such as the Resource Description Framework) onto existing
scientific databases such as the European Bioinformatics Insti-
tute [10]. However, policies surrounding secondary data prod-
ucts will need to change.

Directly linking secondary data products to provenance
of workflow

In the absence of a community database specifically for the type
of secondary product that was produced in this analysis, we
opted to upload the assemblies, annotations, and counts to Zen-
odo (https://zenodo.org), a scientific data repository founded by
CERN, which provided a DOI for the assemblies (https://doi.or
g/10.5281/zenodo.740440). The header information for each as-
sembly was modified to contain the DOI. We then created a
GitHub repository containing the scripts used to generate the as-
semblies. The repository was then archived with Zenodo, which
generated a single DOI for the project (https://doi.org/10.5281/ze
nodo.594854).2

As such, the scripts used in the generation of transcriptomes
are directly linked through a unique DOI to the data products
that are listed in the directory. Since the scripts are easily acces-
sible, they can be tweaked to re-analyze the primary sequence
data using different parameters or tools, and the new pipeline
and output files can be archived again with Zenodo using the
same approach as above. Moreover, the Zenodo archival sys-
tem will then automatically indicate the presence of other ver-
sions of a given repository such that a user might be sure to use
the newest version of an assembly. In the future, such an ap-
proach might be further complemented by the integration of a
JSON Linked Data file detailing the metadata for the assembly
product, such as the pipeline used and previous versions of the
assemblies.3

Conclusion

The GitHub-Zenodo framework presented here represents an ef-
ficient way for small research groups (e.g., a graduate student)

2 Individual components of the project are assigned specific DOIs, e.g.,
translated peptide files: https://doi.org/10.5281/zenodo.745633; gff3 an-
notation files: https://doi.org/10.5281/zenodo.744702; annotation tables:
https://doi.org/10.5281/zenodo.775129; quantification files: https://doi.or
g/10.5281/zenodo.746294.

3 It should be noted that uploading the assemblies to Zenodo was not
an automated process. New versions of files on Zenodo must be man-
ually curated. Since the start of this project, the Open Science Frame-
work (OSF) and the accompanying automated command-line client, os-
fclient, has been established. In the future, large-scale projects such as
the assemblies created in this analysis may benefit from the integration
of OSF command-line client by automatically uploading data products
to an OSF project, which generate an OSF-specific DOI.
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to host and link both the code and results from large-scale re-
analysis projects in a publicly accessible way. The direct linking
of protocols and metadata to output data products is paramount
in the data-heavy future of scientific advancement. We also
identified several lingering issues surrounding large-scale re-
analysis.

Actual computation on these large datasets is a non-trivial is-
sue, as it requires access to facilities with sufficiently large, high-
memory machines. Amazon Web Service instances and other
“cloud” platforms, including XSEDE, provide flexible computing
options and are broadly accessible. Cloud-based systems, how-
ever, tend to be more expensive per computation hour than lo-
cal resources. High-performance computing (HPC) resources at
local institutions represent another potential site of compute
ability. However, HPC resources can be temperamental and po-
tentially balk at larger, more node-consuming procedures; more-
over, bioinformatics tools may be poorly optimized for HPC re-
sourcess. Trinity, used in our pipeline, creates many small files
for each run, and this repeatedly caused disk slowdowns on our
HPC. The re-analysis by [6] attempted to use both but ultimately
found that the HPC provided the most consistent scalable au-
tomation for running hundreds of jobs in a cost-efficient man-
ner. However, more generally, we see no global solution for iden-
tifying and optimizing the global scientific cyberinfrastructure
requirements for projects that require significant scaling; such
considerations must be made on a project-by-project basis given
the resources available to each lab.

Beyond the optimization of computational resources, we feel
that there is a significant opportunity for scientific advancement
with high-throughput sequencing projects in making data prod-
ucts “forward discoverable,” because this makes it possible to
improve downstream work without significant upstream invest-
ment. In an ideal future, a researcher might be automatically no-
tified when a dataset that she is actively working on is updated
or changes. This presents many social and technical challenges
that will need to be solved if we are to take full advantage of
public datasets.
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