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Mini-Symposium

Actions of Steroids: New Neurotransmitters

X Lauren M. Rudolph,1 X Charlotte A. Cornil,2 Melinda A. Mittelman-Smith,1 X Jennifer R. Rainville,3

Luke Remage-Healey,4 X Kevin Sinchak,5 and X Paul E. Micevych1

1Department of Neurobiology and Laboratory of Neuroendocrinology, David Geffen School of Medicine at the University of California Los Angeles, Los
Angeles, California 90095, 2Behavioral Neuroendocrinology Group, GIGA Neurosciences, University of Liège, 4000 Liege, Belgium, 3Department of Cell and
Molecular Biology, Tulane University, New Orleans, Louisiana 70118, 4Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies,
University of Massachusetts, Amherst, Massachusetts 01003, and 5Department of Biological Sciences, California State University, Long Beach, Long Beach,
California 90840

Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated,
neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral
changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be
mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute
regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents,
estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane pro-
gesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic
physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen
membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for
lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and
species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus
effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to
regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.

Introduction
At one time, the actions of steroid hormones were thought to
mediate physiological changes through changes in gene tran-
scription over an extended time course. This incomplete picture
of steroid action has been filled in by the additional under-
standing that these compounds can have rapid, extragenomic,
membrane-initiated actions. It has been known for decades that
steroid hormones can have acute actions (within minutes) on
physiology (Szego and Davis, 1967), the activity of neurons (Kelly
et al., 1976), and the expression of behavior (Hayden-Hixson and
Ferris, 1991). More recently, data demonstrate that steroids can
and do function in ways that are “neurotransmitter-like,” as they
are synthesized at precise spatial locations within neural circuits
and can act within minutes as local neuromodulators to rapidly
regulate cognitive functions and behaviors (Balthazart and Ball,

2006; Dewing et al., 2007; Saldanha et al., 2011; Remage-Healey,
2014). Here we discuss the ever-growing body of evidence detail-
ing nonclassical, neurotransmitter-like steroid hormone action
across neural systems, species, and classes of steroids, and suggest
that these compounds should also be considered neurotransmit-
ters, as they regularly function independently of classical hor-
mone signaling in an increasing number of systems and species.

Neurotransmitter-like effects of steroids
Estrogens in birds
An important update to the classical view of steroid function
involved our understanding of how and where steroids could be
produced. Historically, it was accepted that steroids were synthe-
sized in peripheral endocrine organs and traveled great distances
to exert physiological effects at target tissues. We have known that
neurosteroid production occurs in rodents for some time (e.g.,
for review, see Baulieu, 1991) and now understand that estrogens
can be synthesized centrally, by neurons, both in their cell somata
and at discrete synaptic junctions in birds as well (Naftolin et al.,
1996; Saldanha et al., 2000; Peterson et al., 2005).

In vitro work in quail hypothalamus/preoptic area followed by
in vivo studies in behaving zebra finches demonstrated that brain
estrogen synthesis is acutely controlled within neurons and
driven by changes in neuronal activity (Balthazart et al., 2001,
2006; Remage-Healey et al., 2008) via acute regulation of brain
aromatase activity by calcium-dependent phosphorylation
(Balthazart et al., 2001, 2003; Charlier et al., 2011; Cornil et al.,
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2012b; Comito et al., 2015). Interestingly, this acute regulation of
brain estrogen production can occur specifically at presynaptic
terminals, providing very fine spatial and temporal control over
estrogen availability (Remage-Healey et al., 2011; Cornil et al.,
2012b). This fine regulation of estradiol synthesis appears to be
driven by the activity of aromatase. The aromatase enzyme uses
androgens (typically testosterone) as precursors. Increasing evi-
dence indicates that, particularly in the songbird, the concentra-
tion of brain androgens is acutely modulated through the
regulation of their local synthesis (Pradhan et al., 2010; Heimov-
ics et al., 2016). However, a rapid and reversible reduction in
aromatase activity, paralleled by a change in estradiol brain con-
centration, was measured ex vivo in whole or specific hypothala-
mus/preoptic area subregions collected immediately after visual
or sexual interactions with a female (Cornil et al., 2005; de Bourn-
onville et al., 2013; Dickens et al., 2014), suggesting that aroma-
tase activity is the critical component that determines estradiol
availability. aromatase activity is upregulated in distinct brain
regions following brief exposure to acute stress (Dickens et al.,
2011), an effect that is counteracted by sexual interaction (Dick-
ens et al., 2012). Therefore, brain aromatase activity is also
rapidly and dynamically regulated in vivo in a region- and
context-dependent manner and in a way that affects behavior.
Changes in behaviors could thus result from rapid changes in
local brain estrogen production, presumably at the synaptic
level.

In addition to the mechanisms of synthesis, the time scale of
estrogen action also approximates that of neurotransmitters. Es-
trogens produced by brain aromatization of testosterone play a
pivotal role in the activation of male sexual behavior in birds and
mammals (Balthazart et al., 2004; Hull and Rodriguez-Manzo,

2009). The effects of estrogens on behavior are typically associ-
ated with long-term changes in circulating levels of testosterone
and are therefore mainly considered to result from the transcrip-
tional activity of their nuclear receptors (McEwen and Alves,
1999). According to this view, the long-term effects of brain-
derived estrogens (neuroestrogens) would prime the neural cir-
cuits involved in the regulation of behavior, which would then be
acutely modulated by neurotransmitter systems conveying infor-
mation from the environment (e.g., presence of a sexual partner
or predator; Fig. 1). The discovery that neuroestrogens are also
able to produce much faster effects at the cellular level than pre-
viously anticipated (Maggi et al., 2004; Vasudevan and Pfaff,
2007) and that their synthesis can be acutely regulated in the
brains of avian species (Remage-Healey et al., 2008; Charlier et
al., 2015) prompted further research on the short-term regula-
tion of behavior by brain-derived estrogens. Although it is now
clear that neuroestrogens acutely influence numerous physiolog-
ical or behavioral processes in birds, many advances on the rapid
effects of estrogens on behavior have been obtained in the study
of male sexual behavior and auditory processing (Cornil et al.,
2012a; Krentzel and Remage-Healey, 2015).

Initial studies investigating the acute effect of estradiol admin-
istered systemically found that estradiol facilitates sexual behav-
ior within 10 –35 min, whereas systemic aromatase inhibition
impairs this behavior within 10 –30 min depending on the species
(Cross and Roselli, 1999; Cornil et al., 2006a, b; Taziaux et al.,
2007). Direct manipulations of brain estrogen synthesis or action
subsequently showed that estradiol produces short lived (�2 h)
and estrogen receptor-� (ER�)-dependent membrane-initiated
effects through the transactivation of metabotropic glutamate
receptor 1 (Seredynski et al., 2013, 2015) as demonstrated in

Figure 1. Schematic representation of the dual action of estrogen hypothesis for the regulation of male sexual behavior. The nuclear-initiated effects of brain estrogens associated with long-term
changes in gonadal testosterone secretion would activate the circuits underlying the expression of sexual behavior, while membrane-initiated effects would, in a manner similar to neuromodulators,
acutely (within 15 min) modulate these primed circuits and determine whether animals engage in this behavior at a specific moment. These two complementary modes of action of the same
chemical messenger would thus cooperate to regulate the long- and short-term aspect of the same behavior.
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rodents (for review, see Micevych and Mermelstein, 2008). Im-
portantly, this work identified an interesting dichotomy in the
regulation of male sexual behavior by membrane- and nuclear-
initiated signaling of estrogens. Specifically, acute membrane-
initiated effects control sexual motivation (Seredynski et al.,
2013, 2015), whereas the priming of the neuronal circuits con-
trolling the performance of coordinated motor sequences de-
pends exclusively on a long-term exposure to both testosterone
and their aromatized metabolites, estrogens (Seredynski et al.,
2013; Niessen et al., 2011).

Further evidence that estrogens act more similar to neu-
rotransmitters than “classical” steroids is due to the fact that the
rapid effects of estrogen are not limited to female reproduction.
Indeed, they occur in both sexes in a variety of behavioral
contexts, notably auditory processing in birds (Krentzel and
Remage-Healey, 2015). Studies using in vivo microdialysis have
documented that brain-derived estrogens can fluctuate dynami-
cally in sensorimotor circuits of adult songbirds (Remage-Healey
et al., 2008; Remage-Healey et al., 2012) as well as juvenile song-
birds (Chao et al., 2015), in a variety of socially relevant contexts.
In addition, it appears that rapid estrogen signaling occurs in
male and female birds alike, further supporting the idea that
estrogens are neurotransmitter-like and not just female repro-
ductive hormones (Remage-Healey, 2014). Local estrogen sig-
naling within discrete circuits has consequences for neuronal
activity and for circuit-relevant behaviors. In songbirds, estro-
gens rapidly enhance the encoding of auditory stimuli in individ-
ual forebrain neurons (Tremere et al., 2009; Remage-Healey et
al., 2010, 2012), whereas blocking local estrogen synthesis can
impair auditory encoding. Together, this survey of recent work
shows that brain-derived estrogens can influence neural circuit
function and behavior via a time course and mechanism similar
to traditional neurotransmitters.

Collectively, these data support the idea that, in birds, some
aspects of acute behavioral regulation depend not only on classi-
cal neurotransmitter systems, but also on acute and spatially re-
stricted changes in local estrogen availability (Balthazart and Ball,
2006; Saldanha et al., 2011). There is a growing literature indicat-
ing that the acute regulation by estrogens on phenomena, such as
sexual motivation, is generalizable to other systems and behav-
ioral circuits (Cornil et al., 2015). For example, in both songbirds
(Remage-Healey et al., 2010; Bailey et al., 2013) and mice
(Tuscher et al., 2016), local infusion of estrogen synthesis block-
ers in the auditory forebrain and hippocampus impairs complex
behaviors, such as sensory processing and spatial memory, re-
spectively (see also Bailey and Saldanha, 2015).

In vivo microdialysis has been adapted in an increasing num-
ber of species and relevant brain areas to examine local fluctua-
tions in estrogens. From this recent evidence, it is now clear that
rapid estrogen signaling plays a key role in hypothalamic feed-
back in rhesus monkeys (Kenealy et al., 2013), seizure prolifera-
tion in the rat hippocampus (Sato and Woolley, 2016), and
gonadotropin feedback in quail preoptic area (Ubuka et al.,
2014). As this technique is applied to other species and systems,
we will begin to better understand the prevalence and specifics of
neurotransmitter-like effects of estrogens underlying a variety of
behaviors in a wide range of systems and species. On the other
end of the estrogen signaling input-output relationship, the
mechanism that can account for the fast cessation of estrogen
signaling is still unknown. Estrogen signaling in neural circuits
could be temporally and spatially restrained via mechanisms that
include degradation, diffusion, packaging, conjugation, or other
“stop-signals” similar to conventional neurotransmitters. It is

likely, therefore, that local estrogen synthesis in the brain is im-
portant for a variety of other behaviors; this possibility has been
implicated, but not yet directly tested, in several recent reports
(Ervin et al., 2015; Lamm et al., 2015; Phan et al., 2015; Mu-
rakami, 2016).

Estrogens, progesterone, and reproductive events in rodents
Steroids, such as progesterone, have been shown to have rapid
neurotransmitter-like effects that rapidly change the activity of
neuronal systems through multiple types of receptors (for review,
see Micevych and Mermelstein, 2008; Mani and Oyola, 2012;
Sinchak and Wagner, 2012; Micevych et al., 2015; Valadez-
Cosmes et al., 2016). Some of these steroid receptors that initiate
rapid signaling are, as expected, classified as extranuclear or
membrane receptors, which signal through G-proteins or other
second messenger systems (Zhou et al., 1996; Razandi et al., 1999;
Boulware et al., 2005; Zuloaga et al., 2012; Valadez-Cosmes et al.,
2016). However, a relatively recent finding shows that classical
steroid receptors that are classified as transcription factors and
bind to response elements on the DNA to regulate gene expres-
sion also contain palmitoylation sequences that allow them to be
trafficked to the plasma membrane to rapidly alter cellular activ-
ity (Boulware et al., 2007; Pedram et al., 2007; Meitzen et al., 2013;
for review, see Micevych and Mermelstein, 2008; Grove-Strawser
et al., 2010; Mani et al., 2012; Schwartz et al., 2016). These nuclear
transcription factors are trafficked to the plasma membrane and
require direct interactions with other proteins to initiate their
signaling at the level of the plasma membrane (Boonyaratana-
kornkit et al., 2001, 2007; Micevych and Mermelstein, 2008;
Boulware and Mermelstein, 2009). From here, intracellular sig-
naling cascades involving effectors (e.g., MAPK) are initiated
via the transactivation of cell surface-bound receptors, most
notably metabotropic glutamate receptors (mGluRs). Estro-
gen membrane-initiated signaling (EMS) can also lead to subse-
quent activation of CREB to affect transcription. Similarly,
progesterone can activate classical progesterone receptor (PR) at
the plasma membrane, which appears to transactivate Src kinase
(Src).

Before its characterization in bird sexual motivation, mGluR-
mediated, membrane-initiated steroid signaling was shown to be
a key component of the preovulatory events in rodent reproduc-
tion. Rising levels of estradiol on proestrus excite circuits that
activate gonadotropin-releasing hormone (GnRH) neurons,
which signal gonadotrophs in the pituitary to release luteinizing
hormone (LH) that induces ovulation. Removal of the influence
of ovarian steroids prevents the LH surge. Replacement of estra-
diol will restore the surge; however, this effect is magnified by
additional replacement with progesterone. Estradiol appears to
work “upstream” of progesterone signaling by upregulating PR
in the anterior hypothalamus (Simerly et al., 1996; Shughrue et
al., 1997) and facilitating local progesterone synthesis in hypo-
thalamic astrocytes (Sinchak et al., 2003; Ogi et al., 2004;
Micevych et al., 2007). While the specific molecular pathways
through which estradiol and progesterone signaling are inte-
grated have not been characterized, both estrogen receptor �
(ER�) and PR are needed (Ogawa et al., 1996; Conneely et al.,
2002; Stephens et al., 2015). Further, the dominant ER in repro-
duction is ER�. Indeed, mice genetically lacking ER� do not
exhibit proper estradiol positive or negative feedback on LH;
(Dorling et al., 2003; Wintermantel et al., 2006; but see Dubois et
al., 2015) and do not display sexually receptive behavior (Riss-
man et al., 1997). Similarly, classical PR is critical to reproduc-
tion: knock-outs or pharmacological blockade of the receptor
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lead to infertility and inability to properly mount an LH surge
(Chappell and Levine, 2000). Recently, the critical site of PR ex-
pression has been localized to kisspeptin (kiss1) neurons of the
anterior hypothalamus (Stephens et al., 2015; Gal et al., 2016).
Anterior hypothalamic kiss1 neurons are the principal stimula-
tors of GnRH neurons (e.g., Han et al., 2005). Indeed, the lack of
expression of ER� and PR in GnRH neurons indicates that an-
other population expressing these classical receptors mediates
estrogen-positive feedback on LH release. Kiss1 neurons express
ER� and estradiol-induced PR (Zhang et al., 2014) and have been
considered critical site for this feedback based on their induction
by estradiol (Clarkson and Herbison, 2009; Brock and Bakker,
2013; Smith, 2013).

Currently, it is hypothesized that activation of membrane PR
in kiss1 neurons underlies progesterone augmentation of estra-
diol positive feedback on LH release. The role of cell membrane-
localized PR on circuits governing the LH surge has been
investigated using the immortalized cell line, mHypoA51. These
cells were originally isolated from adult, female mouse hypothal-
amus and appear to recapitulate anterior hypothalamic kiss1
neurons in vivo. In mHypoA51 cells, EMS is needed for kiss1
upregulation, whereas classical, nuclear ER� activation mediates
upregulation of PR (Mittelman-Smith et al., 2015). PR is ob-
served on the membrane of these cells and mediates activation of
rapid intracellular kinases, such as Src and Erk1/2 (Mittelman-
Smith et al., under revision). Treatment with progesterone aug-
mented estradiol-induced kiss1 protein levels, which may have
implications for estradiol and progesterone integration in kiss1
neurons in vivo, that stimulate GnRH neurons to elicit the LH
surge.

Nonclassical progesterone action also mediates sexual recep-
tivity in rodents. Progesterone receptor-B (PR-B) is a classical
transcription factor, but progesterone has been shown to have
rapid neurotransmitter-like actions through PR-B to facilitate
sexual receptivity (Mani et al., 1994; Serey et al., 2014b). Rapid
actions of PR-B signaling are involved in a subcircuit regulating
lordosis, which originates in the arcuate nucleus of the hypothal-
amus (ARH) and projects to the medial preoptic nucleus (MPN)
(for review, see Sinchak and Wagner, 2012; Sinchak et al., 2015).
To initiate rapid signaling at the level of the plasma membrane,
PR-B complexes with and signals through Src (Boonyaratana-
kornkit et al., 2001, 2007; Phan et al., 2014). Infusion of pro-
gesterone into the ARH of estradiol-primed ovariectomized
rats facilitates receptivity within 30 min by inhibiting ARH
�-endorphin neurons that project to the MPN, which induces
sexual receptivity (Huss et al., 2011). These rapid actions of pro-
gesterone are mediated by extranuclear PR-B that complex with
and signal through Src. This PR-B-Src signaling is also dependent
on dopamine receptor D1/D5 (D1/D5). The PR-B, D1/D5, and
Src signaling pathways that facilitate sexual receptivity converge
in the ARH and appear to be interdependent. Antagonizing one
blocks facilitation of lordosis by the other two (Serey et al.,
2014a). It is hypothesized that these PR-B-Src-D1/D5 interac-
tions occur in ARH �-endorphin neurons. Indeed, double-label
immunohistochemistry in ARH tissue from estradiol-primed fe-
male rats demonstrated PR and D1 colocalization in the ARH,
which is increased following estradiol treatment (Sinchak et al.,
2014). Subpopulations of ARH �-endorphin neurons coexpress
PR and D1 (Phan et al., 2015). Together, these results indicate the
potential for ARH �-endorphin neurons to be the point of PR-B
and D1/D5 signaling convergence that facilitates sexual receptiv-
ity. However, although PR-B, Src, D1, and D5 were present in
ARH membrane and cytosolic fractions, coimmunoprecipitation

revealed D1 and D5 did not complex with either PR or Src on the
plasma membrane (Phan et al., 2015, 2016). Thus, it is likely that
the cross talk is further downstream within the cell signaling
cascade, such as through G-protein subunits activated by D1/D5
interacting with, and regulating, the rapid actions of progester-
one signaling through PR-B-Src complexes.

In addition to its regulation by progesterone, sexual receptiv-
ity is induced by estradiol. Similar to the progesterone regulation
of the circuit modulating lordosis, estradiol controls lordosis via
nonclassical, neurotransmitter-like actions. The ARH-MPN-
VMH “lordosis circuit” is sensitive to changes in estradiol and
undergoes morphological alterations in dendritic structures in
order for the display of female sexual receptivity (Matsumoto and
Arai, 1986). Nonclassical estradiol signaling is the initial step of
estradiol action in this circuit and triggers signaling that is re-
sponsible for spinogenesis in the ARH, and ultimately successful
reproduction (Christensen et al., 2011). The primary step of es-
tradiol signaling in the ARH occurs via ER� transactivation of
mGluR1a in NPY neurons of the ARH. In vitro, the trafficking
and internalization of ER� are regulated by �-arrestin and in-
volve the ERK1/2 pathway, which initiates morphological changes
that are coincident with and required for the display of lordosis
behavior (Wong et al., 2015a). Within 4 h of estradiol treatment,
immature, filopodia-like dendritic spines are formed in the ARH
(Christensen et al., 2011). At 24 h after estradiol treatment, there
is a shift in the proportion of dendritic spines, with a decrease in
filopodia and concomitant increase in mature, mushroom-
shaped spines (Christensen et al., 2011). The formation of new
spines is necessary for the estradiol-induced lordosis, as blocking
spine formation significantly reduces the expression of sexual
receptivity (Christensen et al., 2011).

Spinogenesis is initiated by estradiol action at membrane ER�
(Fig. 2), and the mechanisms responsible for spine maturation
are currently being investigated. Within an hour of estradiol
treatment, cofilin is phosphorylated, allowing for its deactiva-
tion, which is required for the generation of new spines to occur
(Christensen et al., 2011) (Fig. 2). Recent evidence indicates that
spine formation is coregulated by presynaptic and postsynaptic
components, as GAP43 and PSD-95 mRNA are induced along a
similar timeline following estradiol treatment in vivo (Wong et
al., 2015b). The induction of these presynaptic and postsynaptic
markers is blocked by mGluR1a antagonists, suggesting that EMS
mediates both the presynaptic and postsynaptic elements of syn-
aptogenesis that underlies lordosis behavior (Wong et al., 2015b).
Another component of the ARH-MPN-VMH circuit required for
lordosis behavior is activation/internalization of � opioid recep-
tor (MOR) in the MPN. This process produces a transient inhi-
bition of the circuit that is required for its subsequent activation,
and is controlled by EMS. Merely 20 min after estradiol treat-
ment, MOR is activated and internalized in the MPN via a process
that occurs along a time scale approximating neurotransmitter-
like activity (Mills et al., 2004). This MOR internalization is in-
duced using membrane-impermeable estradiol (Dewing et al.,
2007) and occurs through a PKC� pathway (Dewing et al., 2008),
further implicating the neurotransmitter-like signaling charac-
teristics of steroids.

Classical steroid receptors are involved in the hypothalamic
circuitry regulating rodent reproduction, and these receptors sig-
nal via both classical (e.g., nuclear) and nonclassical (e.g.,
membrane-localized) mechanisms. The membrane-initiated ef-
fects of ER� and PR signaling are critical for the LH surge and
female sexual receptivity. As future studies determine the local
mechanisms by which these pathways are regulated, we will con-
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tinue to update our understanding of the breadth and depth of
neurotransmitter-like steroid signaling and its role in reproduc-
tive events.

Glucocorticoid signaling
Although most evidence of neurotransmitter-like actions of ste-
roids has focused on estrogens and progesterone and reproduc-
tion, other steroids have also been shown to act via nonclassical
mechanisms. Glucocorticoids are a class of steroid hormones that
act via the glucocorticoid receptor (GR), a nuclear receptor
(Aranda and Pascual, 2001) that is localized in the cytoplasm
bound to chaperone proteins. Classical GR signaling requires
ligand binding to initiate GR dimerization and translocation to
the nucleus (Oakley and Cidlowski, 2013) where it interacts di-
rectly with DNA and other transcription factors to regulate gene
transcription. Post-translational modifications of the GR (e.g.,
phosphorylation) can alter the transcriptional effects of GR acti-
vation (Kumar and Calhoun, 2008), providing a potential link
between cell signaling pathways and GR-mediated transcrip-
tional activity.

As with estrogens and progestins, glucocorticoids can act at
the membrane to alter physiology, functioning more like neu-
rotransmitters than classical steroid hormones. The enzymes re-
quired for corticosterone synthesis are present throughout the
brain (MacKenzie et al., 2000), and de novo corticosterone syn-
thesis from pregnenolone has been detected in the hippocampus
of adrenalectomized rats (Higo et al., 2011). Various lines of
evidence suggest that glucocorticoids have membrane as well as
intracellular actions. Radiolabeled glucocorticoid binding has
been documented in membrane fractions of amphibian brain
(Orchinik et al., 1991; Evans et al., 2000) and the rodent hypo-
thalamus (Nahar et al., 2016). Further, GR immunolabeling has
been demonstrated in neuronal membranes of the rat hypothal-
amus, hippocampus, and amygdala (Liposits and Bohn, 1993;
Johnson et al., 2005) and in human lymphocytes and leukocytes
(Bartholome et al., 2004). Stably transfected siRNA to GR� de-
creased the expression of membrane glucocorticoid receptor
(mGR) in CD14� monocytes (Strehl et al., 2011), and condi-
tional knockdown of GR in the mouse hypothalamus abolished
the rapid, membrane-initiated glucocorticoid effects in neuroen-

docrine cells (Nahar et al., 2015; Nahar et al., 2016), suggesting
that GR and mGR may originate from the same gene.

In addition to the morphological evidence for membrane
localization of the intracellular GR, activation of G-protein-
coupled cascades has been observed following membrane-
limited glucocorticoid treatment and is responsible for rapid
effects in rat hippocampal primary culture (Yang et al., 2013) and
rat and mouse hypothalamic slices (Di et al., 2005; Malcher-
Lopes et al., 2006; Di et al., 2009; Nahar et al., 2015). Studies in
primary hippocampal neurons and in hypothalamic slices
revealed rapid activation of kinase pathways in response to BSA-
conjugated glucocorticoids, which signal only at the cell mem-
brane (Qi et al., 2005; Malcher-Lopes et al., 2006; Yang et al.,
2013). Similar kinase pathway activation has been reported in the
absence of detectable GR, suggesting the presence of a novel mGR
that signals via G-protein and protein kinase pathways (Xiao et
al., 2005).

Significantly, many of the kinases implicated in rapid gluco-
corticoid actions have also been shown to phosphorylate GR and
influence transcriptional activity (Galliher-Beckley and Ci-
dlowski, 2009). p38 MAPK activity may increase GR transcrip-
tional activation at the glucocorticoid response element (GRE) in
cancer cell lines through GR phosphorylation at serine 211
(Miller et al., 2005; Chen et al., 2008). In rat cortical neuron
primary cultures, the orthologous phosphorylation site, S232,
renders GR less transcriptionally active (Kino et al., 2007), sug-
gesting that GR phosphorylation has cell type-specific effects
(Galliher-Beckley et al., 2011). GR phosphorylation at S134
(Galliher-Beckley et al., 2011; Piovan et al., 2013), S203 (Bouazza
et al., 2014), and S226 (Chen et al., 2008) also has transcriptional
effects. Collectively, these studies support a model of integrated
signaling that couples signal transduction cascades to GR-
mediated transcription (Kumar and Calhoun, 2008), which may
be as important for GR physiology as it is for estrogen physiology
(Clark et al., 2014).

GR phosphorylation also affects nuclear trafficking of the re-
ceptor. Phosphorylation at S203 restricted GR to the cytoplasm in
cancer cells following treatment with dexamethasone (Wang et
al., 2002). Transfection with the phosphorylation-resistant mu-

Figure 2. EMS induces dendritic spine formation in the ARH. A, During low estradiol conditions (e.g., diestrus), ARH neurons have a population of mature spines. B, Estradiol stimulates the
ER�-mGluR1a signaling complex, leading to activation of PKC and LIM kinase (LIMK) and the phosphorylation of cofilin. This deactivation of cofilin allows for the formation of immature, filopodial
spines. EMS stimulates gene expression through the activation of the MAPK pathway leading to CREB-mediated transcription. C, Spine maturation results in mushroom-shaped spines that are
thought to be functional and stable. The time course of spine maturation coincides with the display of lordosis behavior in the female rat, beginning 20 h after estradiol treatment. Spine maturation
is regulated by either gene transcription resulting from membrane to nucleus signaling (B) or direct nuclear action (C).
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tant GR S203A resulted in increased GR nuclear localization and
GRE-mediated transcription (Bouazza et al., 2014). In a human
hippocampal cell line, the kinase, SGK-1, increased GR phos-
phorylation at S203 and S211, facilitating nuclear localization of
the unliganded receptor (Anacker et al., 2013). Nuclear translo-
cation of the unliganded GR in mammary gland cells results in
activation of apoptotic pathways, and has effects opposite those
of liganded GR, which induces growth and differentiation (Ritter
and Mueller, 2014). These data present the possibility that a bal-
ance of transcriptional activity between liganded and unliganded
GR in the nucleus may influence the net cellular response to
glucocorticoids. Preliminary data from a hypothalamic neuronal
cell line indicate that both dexamethasone and dexamethasone-
BSA rapidly induce GR nuclear localization in a hypothalamic
neuronal cell line, suggesting that trafficking to the nucleus does
not require a ligand-bound GR. Importantly, the unliganded GR
failed to stimulate transcriptional activity at the GRE, corrobo-
rating observations from HEK 293T cells (Strehl et al., 2011).
Therefore, rapid, membrane-initiated glucocorticoid signaling
directly regulates trafficking of the intracellular GR, with the
potential for specific effects on GR-mediated transcriptional reg-
ulation depending on whether the receptor is liganded or unli-
ganded. Future studies should assess the role of mGR in neuronal
function across systems and species, and will likely demonstrate
that these and other neurotransmitter-like effects of GR signaling
are common and critical to neuronal physiology and behavior
(Di et al., 2016).

Discussion
These various studies all demonstrate that the era of “simple”
direct nuclear actions of steroids is over. Both so-called gonadal
and adrenal steroids have now been demonstrated to signal at the
membrane as well as the nucleus to regulate brain function. Im-
portantly, when steroid signaling is initiated at the membrane,
intracellular signaling cascades are activated that can regulate
transcription. Thus, transcriptional regulation remains a vital
part of steroid signaling. The experiments reviewed here have
begun to fill in the missing pieces of how and where the steroid
signals are initiated. In earlier times, steroid receptors were con-
sidered to be strict ligand-gated transcription factors (Grone-
meyer and Laudet, 1995) that acted at specific stretches of DNA,
the response elements. Canonical response elements were de-
scribed for ER, the estrogen response elements, for progesterone,
the progesterone response elements, and the GREs for glucocor-
ticoids (for review, see Beato et al., 1996). Although this was an
elegant hypothesis, the response elements were seen to have
problems almost from the beginning. In some cases, partial ele-
ments appeared to be as active as the full-length response ele-
ment. In other cases, for example, the liganded and dimerized ER
could also stabilize Sp1 and AP-1 sites (Paech et al., 1997; Webb et
al., 1999; Safe and Kim, 2004; Panno et al., 2006). Although these
were forms of direct nuclear actions, they already suggested that
ER actions were heterogeneous. In parallel, several groups re-
ported rapid actions (i.e., within minutes) of steroid hormones,
especially in the brain (Szego and Davis, 1967; Kelly et al., 1976;
Lagrange et al., 1996; Mermelstein et al., 1996). Together, all these
results implied that our understanding of steroid action was
incomplete.

The fullness of steroid actions in the brain and their complex-
ity have been more recently demonstrated by results pointing to
membrane-initiated signaling. These experiments forced a para-
digm shift: no longer were steroids restricted to the “slow” signal-
ing associated with transcription and translation of new proteins.

Now cellular responses to steroids in the nervous system have
been shown to be on the same time-frame as GPCRs that influ-
ence a variety of cellular functions: gating membrane channels
(e.g., voltage-gated calcium channels), increasing intracellular
calcium release, activating Src, MAPK, or phosphatidylinositol-
3-kinase-AKT pathways, which eventually phosphorylate CREB
protein. An interesting phenomenon of membrane-initiate sig-
naling is that steroid receptors interact with other GPCRs or
growth factor receptors, for example, with mGluRs, and insulin
growth factor-1 (Quesada and Etgen, 2002; Micevych and
Mermelstein, 2008). In reproduction, a variety of membrane-
initiated estrogen actions are due to direct transactivation of
mGluRs (Micevych and Mermelstein, 2008).

In this review, we have discussed actions of steroids a number
of which are synthesized both peripherally and in the CNS. We
have argued that neurosteroids may be more properly considered
neurotransmitters based on their site and regulation of synthesis,
and cellular actions. Neurosteroids, like endocannabinoids, ni-
tric oxide, and prostaglandins, are neurotransmitters whose ex-
tracellular levels are regulated at the point of synthesis (Micevych
and Sinchak, 2008) and which can occur at synaptic terminals
(Saldanha et al., 2011). Once synthesized, these messengers are
released or, more correctly, diffuse out the cell to bind both mem-
brane and intracellular receptors. The membrane receptors for
steroids, once activated, follow similar dynamics as other neu-
rotransmitter receptors (Hammes and Levin, 2007). Following
natural ligand binding, membrane receptors are phosphorylated
and internalized. This process limits the duration of membrane-
initiated signaling. This has best been studied for ER, but the
mechanisms are likely to be conserved for membrane PR and GR.

For some steroids, their membrane-initiated actions have
been demonstrated throughout the CNS. For others evidence of
region-specific function or the global extent this signaling mech-
anism is not as complete as for membrane-initiated estrogen sig-
naling. On the other hand, the cell signaling mechanisms for ER,
PR, and GR have all been well characterized. The results pre-
sented here point to the importance of their roles in physiological
processes controlled by the CNS, and to the complexity of steroid
signaling.

Part of this complexity is reflected in the plethora of putative
steroid receptors that have been identified. In addition to various
isoforms, a number of splice variants of classical intracellular
receptors have been characterized. For example, for estrogen
there are ER� and ER� isoforms, as well as a number of splice
variants (e.g., ER��4) that can initiate signaling from the mem-
brane (Micevych and Mermelstein, 2008; Dominguez et al.,
2013). Additionally, GPR30 is an ER that is a GPCR; and although
there is controversy over whether GPR30 is present on the cell
membrane, there is no question that this receptor is involved in
estrogen signaling in the brain (Kuo et al., 2010; Hammond et al.,
2011; Long et al., 2014). In another case, we only have pharma-
cological evidence for a putative ER that is activated by STX
(Micevych and Kelly, 2012). For progesterone, the classic nuclear
PR has been localized to the membrane and a whole new class of
PRs, the membrane PRs, have been found that appear to be in-
volved in the reproductive actions of progesterone (Zuloaga et
al., 2012; Mittelman-Smith et al., 2015, in revision). For gluco-
corticoids, there is mounting evidence that, in addition to the
classical GR, another, as yet uncharacterized receptor mediates
membrane-initiated signaling.

For some, the apparent variety of membrane steroid receptors
and putative receptors reflects a chaotic situation that magnifies a
lack of understanding of membrane-initiated steroid signaling.
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But rather than being anomalous, this appears to be the norm
with respect to membrane receptors. For example, there are at
least five dopamine receptor subtypes (Cools and Van Rossum,
1976; Ellenbroek et al., 2014) and the glutamate receptors are
divided into metabotropic receptors, with 3 groups each with
several subtypes (Swanson et al., 2005), and 3 families of iono-
tropic receptors, again with several subtypes (Dingledine et al.,
1999; Andersson et al., 2001). The challenge for us is to determine
the functionality of the diversity of membrane steroid receptors.
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