
Lawrence Berkeley National Laboratory
LBL Publications

Title

ROBOT: A Tool for Automating Ontology Workflows

Permalink

https://escholarship.org/uc/item/3v0036mg

Journal

BMC Bioinformatics, 20(1)

ISSN

1471-2105

Authors

Jackson, Rebecca C
Balhoff, James P
Douglass, Eric
et al.

Publication Date

2019-12-01

DOI

10.1186/s12859-019-3002-3

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3v0036mg
https://escholarship.org/uc/item/3v0036mg#author
https://escholarship.org
http://www.cdlib.org/

SOFTWARE Open Access

ROBOT: A Tool for Automating Ontology
Workflows
Rebecca C. Jackson1* , James P. Balhoff2, Eric Douglass3, Nomi L. Harris3, Christopher J. Mungall3 and
James A. Overton1

Abstract

Background: Ontologies are invaluable in the life sciences, but building and maintaining ontologies often requires
a challenging number of distinct tasks such as running automated reasoners and quality control checks, extracting
dependencies and application-specific subsets, generating standard reports, and generating release files in multiple
formats. Similar to more general software development, automation is the key to executing and managing these
tasks effectively and to releasing more robust products in standard forms.
For ontologies using the Web Ontology Language (OWL), the OWL API Java library is the foundation for a range
of software tools, including the Protégé ontology editor. In the Open Biological and Biomedical Ontologies (OBO)
community, we recognized the need to package a wide range of low-level OWL API functionality into a library of
common higher-level operations and to make those operations available as a command-line tool.

Results: ROBOT (a recursive acronym for “ROBOT is an OBO Tool”) is an open source library and command-line tool
for automating ontology development tasks. The library can be called from any programming language that runs
on the Java Virtual Machine (JVM). Most usage is through the command-line tool, which runs on macOS, Linux, and
Windows. ROBOT provides ontology processing commands for a variety of tasks, including commands for
converting formats, running a reasoner, creating import modules, running reports, and various other tasks. These
commands can be combined into larger workflows using a separate task execution system such as GNU Make, and
workflows can be automatically executed within continuous integration systems.

Conclusions: ROBOT supports automation of a wide range of ontology development tasks, focusing on OBO
conventions. It packages common high-level ontology development functionality into a convenient library, and
makes it easy to configure, combine, and execute individual tasks in comprehensive, automated workflows. This
helps ontology developers to efficiently create, maintain, and release high-quality ontologies, so that they can
spend more time focusing on development tasks. It also helps guarantee that released ontologies are free of
certain types of logical errors and conform to standard quality control checks, increasing the overall robustness and
efficiency of the ontology development lifecycle.

Keywords: Ontology development, Automation, Ontology release, Reasoning, Workflows, Quality control, Import
management

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: rbca.jackson@gmail.com
1Knocean Inc., Toronto, Ontario, Canada
Full list of author information is available at the end of the article

Jackson et al. BMC Bioinformatics (2019) 20:407
https://doi.org/10.1186/s12859-019-3002-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3002-3&domain=pdf
http://orcid.org/0000-0003-4871-5569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:rbca.jackson@gmail.com

Background
Ontologies are vital parts of the informatics ecosystem
supporting life science research, enabling analysis of
high-throughput datasets, data standardization and inte-
gration, search, and discovery. However, there is a lack
of tools supporting the complete ontology development
lifecycle, especially when compared with the software
development lifecycle. This has resulted in many groups
developing their own ad-hoc ontology development
workflows, often with time-consuming and inefficient
manual steps. In some cases, groups release ontologies
without any kind of systematic workflow or quality con-
trol process, which can result in errors or problems with
downstream applications or analyses.
Noy, Tudorache, Nyulas, and Musen (2010) describes a

general ontology lifecycle with a focus on bio-ontologies
[1]. First, requirements for the ontology are gathered.
Then, the ontology is collaboratively developed in an
ontology editor such as Protégé [2]. Once the require-
ments have been fulfilled, the ontology is published, and
feedback is solicited from the community. Feedback is
integrated back into development, and the ontology is
continuously updated and released. At any point after the
initial publication, the ontology may be deployed in other
applications.
In broad strokes, this ontology development lifecycle re-

flects much of our experience of ontology development in
the Open Biological and Biomedical Ontologies (OBO)
community [3], circa 2010. A wide range of Semantic
Web software exists to support these steps, including
many tools for Web Ontology Language (OWL) ontology
development. In practice, though, the OBO community
has relied predominantly on the free and open source
Protégé OWL editor for manual editing and conversion,
and on a small set of other tools supporting OBO
conventions.
Other than Protégé, the most prominent suite of tools

used by the OBO community has been the Onto-animal
suite developed by the He group [4] including Ontobee
[5], Ontofox [6], and Ontorat [7]. These tools are free web
services backed by a Virtuoso triplestore loaded with the
latest version of all available OBO community ontologies,
as well as some other ontologies. Ontobee is an ontology
term browser. Ontofox implements the MIREOT term ex-
traction method [8]. Ontorat implements template-based
ontology term creation. Together with a few other tools,
these support an extensible ontology development strategy
[9] covering a range of ontology development tasks, many
of which can combined and automated using a sequence
of web-based API calls.
The core operations of the Onto-animal suite are driven

by SPARQL queries against the centralized triplestore.
This results in a number of limitations. First, only the spe-
cific version of each ontology loaded into that triplestore

can be used. This is a particularly severe limitation during
ontology development. Second, processing is done on the
centralized server, limiting the processing power available
to any user. Third, SPARQL has limited utility when
working with OWL logical axioms.
These limitations are mitigated by running software lo-

cally, loading the desired versions of the desired ontologies,
and using OWL API [10] for OWL-native processing. A
number of tools used in the OBO community have done
precisely this. We have seen a spectrum of development,
from tools that are focused on a single project, to tools used
by a dozen related projects, to the current push for tools
that are shared across the OBO community.
Slimmer [11], created as part of the eNanoMapper

ontology project [12], uses OWL API to create ontology
subsets (also known as “slims”). A configuration file al-
lows the user to specify which terms to include and
which annotations to include on those terms. OntoPilot
[13], developed for the Plant Phenotype Ontology, uses
OWL API via Jython (a version of Python that runs on
the Java Virtual Machine) to provide an integrated ontol-
ogy development framework, including term imports,
term creation, releases, and documentation.
The lack of automation seen circa 2010 led directly to a

lack of standardization, with each ontology editor or
group adopting a slightly different approach to manual
editing in Protégé. This diversity of practices, even within
the OBO community, made it a challenge to develop tools
to serve multiple ontology projects. OWLTools [14] was
designed for use by multiple OBO ontology projects, pro-
viding convenience methods on top of the OWL API.
OWLTools includes the OBO Ontology Release Tool
(OORT) [15], a command-line tool to release OWL- and
OBO-format ontologies. OORT provides a series of basic
commands to create a release pipeline for an ontology, in-
cluding module extraction with MIREOT, support for
multiple input ontologies, reasoning, and creation of
‘main’ and ‘simple’ release products.
ROBOT (a recursive acronym for “ROBOT is an OBO

Tool”) was developed to replace OWLTools and OORT
with a more modular and maintainable code base. It
builds on previous experience to include a comprehen-
sive set of automation capabilities to support an even
wider range of OBO projects. Development began in
2015 and continues with more than 1000 commits from
a dozen contributors. ROBOT is freely available open
source software. Although we do not track our users, a
recent GitHub search shows that at least 26 ontology
projects in the OBO community have adopted ROBOT.

Implementation
Overview
ROBOT provides a standardized yet configurable way to
support the ontology development lifecycle via a library

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 2 of 10

of common high-level functionality and a command-line
interface. ROBOT builds on OWL API and is compatible
with all ontology syntaxes that OWL API supports: RDF/
XML, OWL/XML, Turtle, OWL Functional Syntax, OWL
Manchester Syntax, and OBO format. The source code is
written in Java and is available from our GitHub reposi-
tory [16] under an open source (BSD 3) license. It is also
released as a Java library on Maven Central. ROBOT code
can be used from any programming language that runs on
the Java Virtual Machine (JVM). The command-line tool
is packaged as a JAR file that can be run on Unix (includ-
ing macOS and Linux), Windows, and other platforms
supported by the JVM. This JAR file is available for down-
load from the ROBOT GitHub site [16], along with plat-
form-specific scripts for using ‘robot’ from the command
line. Installation instructions and documentation are avail-
able from http://robot.obolibrary.org.

Architecture
We previously described the basic architecture of the
tool [17], which we summarize here.
The ROBOT source code consists of two parts: ‘robot-

core’ and ‘robot-command’. ‘robot-core’ is a library sup-
porting common ontology development tasks, which we
call “operations”. ‘robot-command’ provides a command-
line interface divided into “commands”, each of which
wraps a ‘robot-core’ operation.
Most ROBOT operations package low-level functionality

provided by OWL API into high-level functionality com-
mon to ontology development workflows in the OBO com-
munity. For best compatibility, we aim to match the exact
version of OWL API used by ROBOT with the exact
version used by the latest Protégé release. Some operations
use Apache Jena [18]. Each operation works with Java
objects that represent OWL ontologies, OWL reasoners,
OWL classes, etc., while each command works with com-
mand-line option strings and files. The commands also
perform various conversion and validation steps. The
command-line interface uses the Apache Commons CLI
library [19] for parsing commands.
Each operation has a set of unit tests built with JUnit

[20] that are executed each time the final product (the
JAR file) is generated. Each command in ROBOT is docu-
mented in its own web page (e.g. http://robot.obolibrary.
org/reason). The web pages are authored in Markdown
format and contain embedded command-line examples
that are parsed and executed as part of our integration
tests, with the results compared against a “gold standard”
set of outputs. ROBOT’s ‘diff ’ functionality is used
when comparing ontology files, otherwise standard
file comparison is used. This helps ensure correctness
and consistency of documentation and code. The unit
tests and integration tests are executed on any pull
request onto the codebase via Travis continuous

integration (Travis CI) [21], so that contributions to
the codebase are verified.

Commands and operations
ROBOT currently provides 15 operations (in the ‘robot-
core’ library) and 19 commands (for the command-line
interface). Some commands are quite specialized, and
most ontology projects will not make use of all of them.
Here we provide an overview of the most common and
general commands. In each case, the core functionality
is supported by operations in the ‘robot-core’ library,
that can be used independently of the command-line
interface from any programming language that runs on
the JVM.

Convert
A variety of OWL ontology formats are supported, inclu-
ding RDF/XML, Turtle, Manchester, OBO format, and
more. To enable further interoperability, ROBOT includes
a ‘convert’ command to change between supported onto-
logy formats. A complete list of supported formats can be
found in the ‘convert’ documentation [22].

Reasoning
Reasoning is one of the most important operations in
ROBOT. The ‘reason’ command covers two uses: logical
validation of an ontology and automatic classification.
In both cases, users can choose their preferred reasoner,
which is used to perform inference. Large ontologies
such as the Gene Ontology typically use ELK [23], which
performs reasoning quickly using the OWL EL profile.
Smaller ontologies with richer axiomatization, such as
the Relations Ontology, typically use a complete OWL
DL reasoner such as HermiT [24].
When the ‘reason’ command is invoked on an input

ontology, ROBOT will initiate a reasoner using the
OWL API Reasoner interface. The resulting inferences
are checked to ensure the ontology is logically coherent:
the ontology must be consistent and have no unsatis-
fiable classes (i.e., classes that cannot be instantiated
without introducing an inconsistency). If the ontology is
incoherent, this is reported and execution halts. ROBOT
can optionally perform additional checks, such as
ensuring that no two classes are inferred to be equiva-
lent post-reasoning.
If the ontology is consistent, ROBOT will perform

automatic classification. All direct inferred ‘subClassOf ’
axioms are added to the ontology. Generation of other
types of axioms can be configured.
The assertion of all inferred axioms is often a funda-

mental step in the release process for biomedical onto-
logies. Many of these ontology classes only assert a
single named superclass (‘A subClassOf B’, where B is
another class in the ontology), and zero or more

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 3 of 10

http://robot.obolibrary.org/
http://robot.obolibrary.org/reason
http://robot.obolibrary.org/reason

anonymous superclasses and/or anonymous equivalent
classes (‘A subClassOf/equivalentTo (R some B)’, where R
is an object property). These anonymous classes allow the
reasoner to make inferences, which are then asserted.
Therefore, in the release version of an ontology, a class
may have more than one named superclass.
The ‘reason’ command has additional “helper” com-

mands. The ‘relax’ command asserts entailed subClassOf
axioms according to a simple structural rule: an expression
‘A equivalentTo (R some B) and …’ entails ‘A subClassOf R
some B’. This can be useful as consumers of bio-ontologies
often expect to navigate these expressions, e.g., partonomy
in GO and Uberon. The ‘relax’ command relieves the
ontology developer from the need to assert these in
addition to the equivalence axioms, and as such it is also
often included in release workflows. Finally, the ‘reduce’
command removes redundant subClassOf axioms, and can
be used after ‘relax’ to remove duplicate axioms that were
asserted in that step.
The ‘materialize’ command uses an Expression

Materializing Reasoner (EMR) to assert inferred expres-
sions of the form ‘A subClassOf R some B’ [25]. Where
the ‘reason’ command asserts inferred named superclasses,
‘materialize’ asserts anonymous superclasses. This is not
part of the standard release cycle but can be beneficial for
creating complete ontology subsets.

Working with external ontologies
The OBO Foundry aims to coordinate ontologies in a
modular fashion, such that parts of some ontologies can
be used as building blocks for other ontologies. For
example, the ChEBI chemical entities ontology [26] is
used to construct OWL definitions for metabolic
processes and activities in the Gene Ontology [27].
There are a variety of different strategies for leveraging
external ontologies and managing dependencies between
ontologies, depending on the use case.

Extract
The ‘extract’ command creates a module based on a set
of entities to extract (the “seed”). There are four differ-
ent extraction methods (as specified by the ‘--method’
option): MIREOT, TOP, BOT, and STAR.
ROBOT’s MIREOT extraction method is based on the

principle of the same name [8] and requires that one or
more “bottom” entities are specified. Optionally, one or
more “top” entities can also be specified. The command
extracts all the “bottom” level entities and their ances-
tors up to the “top” level from the input ontology. If no
“top” entities are provided, ancestors up to the top-level
entity (‘owl: Thing’) are included.
The TOP, BOT, and STAR methods make use of the

OWL API Syntactic Locality Module Extraction (SLME)
implementation, which is guaranteed to capture all

information logically relevant to the seed set [28]. The
BOT method (“bottom”) includes all relationships
between the input entities and their ancestors. The TOP
method includes all relationships between the input
entities and their descendants. Finally, the STAR method
only includes all relationships between input entities.
The STAR method produces the smallest outputs, while
the TOP method typically produces the largest outputs.
In order to support ontology term provenance, the

‘extract’ command has an ‘--annotate-with-source true’
option that will annotate each extracted term with the
URL of the source ontology that it is extracted from.

Remove and filter
The ‘remove’ and ‘filter’ commands are used for fine-
grained operations on OWL axioms. ‘remove’ allows
users to choose which sets of axioms they wish to
remove from a target ontology. ‘filter’ does the opposite,
so that only selected axioms are copied from the input
into a new output ontology.
These two commands work by starting with a seed set

of entities, then applying various selectors to find related
entities, and finally selecting which axiom types to
remove or filter. We expect only a small number of
“power users” to use this feature directly, but these
commands will eventually provide a foundation for other
higher-level commands.
These commands can be used to generate ontology

subsets based on annotations by either filtering for or re-
moving entities with the specified annotation. OBO
Foundry ontologies often annotate classes with the ‘in
subset’ property to specify where a class might be used.
The annotation selector allows a user to provide a full
annotation value or a pattern to match using regular
expression.

Merge
The ‘merge’ command combines two or more separate
input ontologies into a single ontology. It also provides
the ability to merge all imported ontologies of a single
input ontology into one main ontology, which is often
used when creating a release.
Merging imported ontologies (specified by import

statements) into the input ontology is performed auto-
matically, so that the user does not need to list each
imported ontology as an input. We offer the option
(‘--collapse-import-closure false’) to turn this feature off,
supporting cases in which users may merge multiple
input ontologies that have import statements but want
to keep their imports separate.

Querying and reporting
Ontology workflows typically include query operations over
the ontology, producing reports which may be informative

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 4 of 10

for both editors and users of the ontology -- for example, a
table of all classes plus their textual definitions. Query
operations can also be used for validation checks. The
SPARQL query language provides a universal and declara-
tive way for ontology maintainers to create ontology reports
and validation checks [29]. ROBOT provides a convenient
way to perform queries with the ‘query’ command, or
validation checks using ‘verify’. Additionally, the ‘report’
command includes a configurable package of standard
queries for OBO projects that can be used in any ontology
workflow, without requiring the maintainer to be familiar
with SPARQL.

Query
ROBOT’s ‘query’ command runs SPARQL queries on
ontologies or other RDF resources. This can be used by
an ontology maintainer to either perform interactive
queries, or more typically to include standard queries
into an ontology workflow. The ‘query’ command wraps
one of the few operations that uses Apache Jena [18],
rather than OWL API. The Jena API allows ROBOT to
load an ontology as a collection of triples contained by
an RDF Model object. It provides a SPARQL query en-
gine for those models, which we use to run all queries.
‘SPARQL SELECT’ queries produce a comma- or tab-

separated table of results. ASK queries produce a file
with a Boolean value. ‘SPARQL CONSTRUCT’ queries
produce an RDF file, which can be further processed by
ROBOT or merged back into the loaded ontology.
‘CONSTRUCT’s provide a convenient way of performing
“macro” style expansion [30]. ‘SPARQL UPDATE’ quer-
ies insert and/or remove data directly in an ontology (as
an RDF Model). ROBOT converts the updated RDF
Model back to an OWL API ontology object to be saved
in any of the supported syntaxes.
The ‘query’ command supports an option to load

imported ontologies as named graphs with the ‘--use-
graphs’ option. If this is set to ‘true’, the imports can be
queried as named graphs (the name being that onto-
logy’s IRI) and the default graph is a union of all graphs.
Using the default graph is similar to conducting a
‘merge’ of all the imports prior to querying, but the
distinction between imports would be lost in a ‘merge’.

Verify
The ‘verify’ command is a variation on the ‘SPARQL SE-
LECT’ execution. The queries are used to ensure that an
ontology conforms to a predetermined set of conditions;
for example, ensuring that no class has multiple textual
definitions. Given a SELECT query, ‘verify’ will succeed
(i.e., exit with status code 0) if no results are returned. It
will fail (i.e., exit with a non-zero status code) if any results
are return from the query. So, given a SPARQL query that
SELECTs for invalid data, the ‘verify’ command will verify

that the ontology (or other resource) does not contain any
such invalid data.

Report
The ‘report’ command is an extension of ‘query’ and
‘verify’ that provides a series of configurable quality
control (QC) checks for an ontology and returns a
spreadsheet or YAML output of the violations. The
spreadsheet is output in either comma- or tab-separated
format and easy for a user to read, while the YAML
output can be easily parsed by other programs.
The QC checks include annotation checks, logical

checks, and metadata checks. Annotations are important
to facilitate human comprehension, so the ‘report’ com-
mand finds cases where missing or duplicate annotations
could cause problems. Logical checks look at the struc-
tural coherency and consistency of the ontology. Finally,
‘report’ identifies missing ontology metadata, as specified
by OBO Foundry recommendations.
There are three levels of violations that are reported:

ERROR, WARN, and INFO. An ERROR is the most se-
vere, such as a missing or duplicate label. By default, the
‘report’ command fails if there are any ERROR-level vio-
lations, halting any automated build processes. These
types of violations must be fixed before publishing an
ontology. WARN-level violations should be fixed as soon
as possible, e.g. inferred one-to-one class equivalencies,
which are typically unintended in OBO projects. INFO
is for recommended fixes that help maintain consistency
across OBO Foundry ontologies, such as beginning a
definition with an uppercase letter and ending with a
period. ‘report’ can be configured with a command-line
option to fail on a different violation level or to never
fail, regardless of any violations. We document each QC
check with a suggestion for a manual fix that the user
can apply.
A default “profile” with report levels for each QC

check is provided by ROBOT, but users are also able to
create their own profiles. In these profiles, they can
change the violation levels of individual checks, choose
to exclude certain checks, and add their own checks as
SPARQL queries. For example, some ontologies may
categorize a class lacking a textual definition as an error,
while others may categorize this as a warning. One of
our goals is to converge on a standard profile that is
maximally useful for the set of all ontologies in the OBO
library, encouraging adoption of common quality control
checks.

Repair
Although most problems raised by ‘validate’ and ‘report’
must be fixed manually, ROBOT also provides a ‘repair’
command that can automatically fix certain problems.
The current implementation will merge annotations on

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 5 of 10

duplicate axioms and update references to deprecated
classes when they are annotated with a suggested re-
placement. We intend to extend ‘repair’ to a wider range
of common problems for which the correct fix is clear.

Templated ontology development
ROBOT provides a template-driven ontology term
generation system. Users also have the option to plug
in their own term generation system into their work-
flow, such as Dead Simple OWL Design Patterns
(DOS-DPs) [31].
A huge amount of data is stored in spreadsheets and

databases, and tabular formats are well suited to many
sorts of data. ROBOT’s ‘template’ command allows users
to convert tabular data into RDF/OWL format. A
ROBOT template is simply a tab-separated values (TSV)
or comma-separated values (CSV) file with some special
conventions, which are outlined in the ROBOT ‘tem-
plate’ documentation [32].
These templates can be used for modular ontology de-

velopment. The template spreadsheets may be main-
tained as part of the ontology’s source code repository,
and instead of directly editing the ontology file, devel-
opers edit rows in the spreadsheet which correspond to
terms in the ontology. The ‘template’ command is then
used to generate a module of the ontology, which is in-
cluded as an import statement in the editors’ version of
the ontology and merged during the release process.

Workflows
A workflow consists of a set of tasks coordinated by
some workflow system. Ontology workflows consist of
tasks such as executing QC checks, building import
modules, reasoning over ontologies, and generating vari-
ous ontology release products.
ROBOT itself is not a workflow manager, although it

allows multiple commands to be chained together into
one long command. When chaining ROBOT commands,
the output ontology from one command is passed
directly as the input to the next command. For example,
chaining may be used to replace two commands that
merge ontologies and then reason over the merged
product:
`robot merge --input ont-1.owl --input ont-2.owl

--output merged.owl.
robot reason --input merged.owl --output reasoned.owl`.
Instead of creating the merged product and running

‘reason’ over that, it can be done in one command:
`robot merge --input ont-1.owl --input ont-2.owl

reason --output reasoned.owl`.
The key advantage to chaining is that ontologies do

not have to be serialized and parsed between each step;
the same OWL API ontology object is maintained in
memory and passed through the chain of ROBOT

commands. For large ontologies, chaining can vastly im-
prove ROBOT’s performance.
Because ROBOT commands can be executed on the

command line, a number of different workflow systems
can be used. We highlight the use of GNU Make [33],
which is typically used to compile software. A Makefile
consists of a set of rules used to make “targets”. In
ontology development, the Makefile is used for auto-
mated tasks, such as preparing an ontology for release.
In this case, the targets are usually ontology files. The
“recipes” for the rules are Unix-style system commands,
carried out by the ‘make’ command.
ROBOT commands can be used as the “recipes” to

make the “targets”. A typical workflow will not use all 19
of the ROBOT commands. For example, not all ontology
projects may use ROBOT templates and therefore not
all release workflows need to include the ‘template’ com-
mand. Ontology developers can decide which commands
are needed to perform the release and build a workflow
around those commands. Figure 1 shows a standard way
in which a selection of ROBOT commands is combined
for a release workflow.
First, quality control checks are run over the editors’

version of the ontology with ‘report’ or ‘verify’. These
look for equivalent classes, trailing whitespace in anno-
tations, self-references, incorrect cross-reference syntax,
and missing labels. The results are saved to a specified
‘reports/’ directory. If there are any ERROR-level viola-
tions, the task will fail and write the violations to a table
so that they can be easily identified. This step allows
developers to quickly see if new changes have introduced
any problems within the ontology and fix them before
releasing.
Assuming the initial QC check step has completed

successfully, the next step is to create the import mod-
ules. The ROBOT ‘extract’ is run for each entry in a list
of imports, which have corresponding term files (for the
seed set) in the ‘imports/’ directory. This creates all the
import modules in the same ‘imports/’ directory. This
ensures that when an ontology is released with external
terms, all external terms are up-to-date with the released
versions of the source ontologies. Releasing out-of-date
external terms can cause confusion, as the term will
show both the old and new details in ontology search
services like Ontobee [5] and the Ontology Lookup
Service [34]. Additional QC checks can be run over the
full ontology with imports using the ‘verify’ command or
by running ‘report’ again.
Last, the main release products are created: the OWL

file and the OBO file. To create the OWL release, the
editors’ file is passed through a series of chained ROBOT
commands: ‘reason’, ‘relax’, ‘reduce’, and ‘annotate’. This
series of commands helps to ensure that the released
ontology is both easy to browse and understand, as well as

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 6 of 10

free of any redundant axioms. If any of these commands
fail, the Make process will terminate with the corre-
sponding error message. For example, if an ontology
is incoherent the ‘reason’ step will fail. Finally, the
‘annotate’ command adds the version IRI to the onto-
logy metadata. This OWL file is then converted to
OBO format, at which point all targets are copied to
a dated release directory.

The Ontology Development Kit
Creating a Makefile to coordinate all these steps can be
challenging. We make this easier for ontology developers
by providing an Ontology Development Kit (ODK) [35].
This can be used to create a GitHub repository following a
standard layout, with a standard Makefile following the
workflow detailed above. The resulting GitHub repository
will also be automatically configured to run the validation
steps (such as ‘report’) of the workflow via Travis CI [21].
The workflow can also be executed using Docker with
ODK containers released on Dockerhub [36]. This allows
easy execution of workflows on either the local computer
of an ontology developer, with Travis CI, or through
scalable-build tools such as Jenkins [37].

ODK builds on ROBOT and demonstrates ROBOT’s
utility, but a full discussion is beyond the scope of this
article.

Results and discussion
While there are many other Semantic Web and OWL
development tools available, a number of factors have
driven the OBO community to build and support
ROBOT. First, the OBO commitment to open source
development is a strong reason to use open source soft-
ware. Second, our wide reliance on the free and open
Protégé editor is a strong reason to use the same OWL
API library that it is built upon. Third, there is a strong
incentive to pool our limited resources and invest in
shared tooling. Fourth, the OBO community has a range
of conventions that support interoperability, and our
workflows are simpler if we build these assumptions into
the tools. Points three and four are clearly in tension:
what is the right balance to strike between reusing
general Semantic Web tools and building our own?
Protégé, OWL API, and various OWL reasoners are
general tools that we use, for instance, but we have
strong conventions in our community for identifiers,

Fig. 1 The ROBOT release workflow. A typical release workflow using ROBOT. The ontology edit file ONT-edit.owl is first verified as a quality
control check with ROBOT ‘verify’. Then, text files containing lists of external ontology terms in the imports directory are used to regenerate
import modules using ‘extract’, ensuring that the imports are up-to-date. ONT-edit.owl is then passed through a series of ROBOT commands
(‘reason’, ‘relax’, ‘reduce’, and ‘annotate’) to generate the release, ONT.owl. Finally, ONT.owl is converted to OBO format

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 7 of 10

release artifacts, metadata, quality control, etc. that these
tools do not help us to enforce. Our compromise is to
reuse open source tools as much as practical and invest
community resources in customizing general tools such
as OWL API to serve the needs of our community. A
growing number of ontology developers are using
ROBOT to help automate their quality-checking and
release workflows. Two case studies are described here.

Ontology for Biomedical Investigations
The Ontology for Biomedical Investigations (OBI) is an
OBO Foundry ontology that aims to describe the processes,
agents, devices, inputs, and outputs of scientific investiga-
tions [38]. When the project began more than a decade
ago, development was done in Protégé, without any auto-
mation, and hosted on SourceForge. Today, OBI uses
ROBOT to implement an automated workflow, supported
by GitHub pull requests and Travis CI testing. More than
50 people have contributed to OBI development, including
two of the authors of this paper (Overton and Jackson).
OBI has always imported a range of terms from other

OBO projects, and OBI developers have maintained a
number of separate OWL files to facilitate concurrent
development by different groups of developers. When it
comes time to prepare a new release of OBI, the various
OWL files must be merged, tested and reasoned over.
In the early days of the project, OBI developer

Alan Ruttenberg wrote a series of scripts for quality control
and common operations, but merging, reasoning, and test-
ing a new release still involved many hours of work by OBI
developers. In 2013, James Overton developed a precursor
to ROBOT: an automated build tool written in Java, using
OWL API and Apache Ant, that automated some of the
build, test, and release processes. This drastically reduced
the time required to make a release, allowing for more fre-
quent releases. While this code was specific to OBI work-
flows, some of it was used in early versions of ROBOT.
In 2017 OBI moved from SourceForge to GitHub and

the release workflow was updated to use ROBOT
throughout. This change vastly increased the degree of
automation for ontology development tasks, expanded
capabilities, and allowed OBI to pool some of its deve-
lopment resources with the wider OBO community to
support shared tooling. OBI currently uses a Makefile
[39] that defines a range of tasks for managing imports,
converting templates, merging, reasoning, testing, and
releasing new versions of OBI. The Makefile specifies
various target files, and most target files are generated
from a single ROBOT command or a single chain of
ROBOT commands. The key steps are:

1. Update imports from upstream ontologies
(currently using Ontofox [6]). OBI imports subsets
of terms from more than a dozen OBO projects. As

discussed, ROBOT supports this functionality with
‘extract’, but OBI’s use of Ontofox predates ROBOT
development and has not yet been migrated.

2. Normalize RDF/XML for cleaner history of changes
in the version control system (‘robot convert’).
Different versions of OWL API have slightly
different serialization behavior, which can lead to
spurious reports of differences that make it more
difficult to see relevant changes to the source files.

3. Convert template files (TSV) to OWL modules
(‘robot template’). Templates often make it easier
for domain experts to contribute to ontology
development and enforce ontology design patterns
that improve the overall quality of OBI.

4. Merge imports and templates with ‘obi-edit.owl’
(‘robot merge’). OBI uses a number of import and
template files to enforce a separation of concerns,
rather than making all changes in a single source
file. These are merged into a single release file.

5. Use ‘SPARQL CONSTRUCT’ queries to update
various term annotations (‘robot query’). Some
standard term metadata can be automatically added
and updated, rather than manually maintained.

6. Run an automated test suite (‘robot verify’). A
range of quality control checks helps to ensure
that errors have not been introduced into OBI by
recent changes.

7. Run the HermiT reasoner (‘robot reason’).
Reasoning checks the logical consistency of OBI
and performs automated classification of terms.

8. Update annotations for release (‘robot annotate’).
These annotations include the dated version IRI
of this release of OBI.

9. Extract the OBI Core subset (‘robot extract’). The
OBI Core subset provides approximately 100
important terms for educational and documentation
purposes.

10. Create a list of OBI terms (‘robot query’). The
term list is used to report on the new terms added
to OBI with each release.

Disease Ontology
The Disease Ontology (DO) is an OBO Foundry ontol-
ogy that provides a standardized description of human
diseases, including the phenotypic characteristics, symp-
toms, genetic bases, and related medical terminology.
These terms are used by various model organism data-
bases to provide a consistent representation of diseases
[40]. The DO is developed at the University of Maryland
School of Medicine by Lynn Schriml and her team,
which currently includes one of the authors (Jackson).
In order to accurately and thoroughly describe the

different aspects of diseases, DO makes use of more
than 10 other biological ontologies. In the past, all DO

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 8 of 10

imports were manually created and maintained. This led
to inconsistencies as ontologies were updated and ex-
panded, and also made it very difficult to add new en-
tities to the imports.
In 2018, DO switched their entire automated build

process (contained in the Makefile) from OWLTools
[14] and OORT [15] to ROBOT. Instead of manually
updating import modules, all required entities are now
specified in text files. When a developer wishes to add a
new imported entity, they simply add a line to the text
file and run ‘make imports’. All imports are automati-
cally regenerated during releases, as well, to keep the
information up-to-date.
Before ROBOT, the monthly DO releases took

multiple hours to run and required additional hours of
manual editing and review. Now, DO developers simply
run the ‘make release’ command and all content is
generated in less than 20min. The release process makes
use of ROBOT commands such as ‘report’ to run quality
control checks over the release products and reduce the
time spent reviewing output.
Both ROBOT ‘verify’ and ‘report’ are used for DO’s

Travis CI system [21]. Each time a new commit is
pushed to the GitHub repository, a series of queries is
run against the ontology files to ensure they meet certain
standards. If they do not (or if ‘report’ fails with an
ERROR-level violation), Travis CI notifies developers
that the checks have failed with a red “X” next to the
commit. Clicking on the red “X” will take the user to
Travis CI, where they can see the command log to deter-
mine what caused the failure. On success, a green check-
mark is displayed next to the commit to show that the
checks have passed.

Conclusions
ROBOT makes it easy for ontology developers to auto-
mate a wide range of tedious and error-prone deve-
lopment tasks, freeing their time to focus on other
important parts of the ontology life cycle. Circa 2010,
most OBO projects were manually edited, with manual
imports, manually tested, and manually released using
only Protégé. With ROBOT, ontology developers have a
convenient tool for building powerful workflows that in-
clude format conversion, reasoning, extracting, querying,
updating, testing, reporting, templating, and more. Low-
level OWL API and Apache Jena operations are pack-
aged into a library of high-level operations, and these
operations are wrapped in a convenient command-line
interface that is supported on the common server and
desktop platforms. With ODK, developers benefit not
only from ROBOT, but additionally from a wide range of
best practices and standard procedures developed and
shared by the OBO community.

ROBOT is open source software developed by a com-
munity of a dozen contributors with more than 1000
commits, hundreds of closed issues, and six releases.
The ROBOT source code is freely available on GitHub and
Maven Central. Documentation for the library is available
on Javadoc.io and documentation for the commands is
available on our website at http://robot.obolibrary.org,
where you will also find examples of usage, test files, and
explanations of common errors.
With ROBOT, we have tried to strike a balance

between general tools such as Protégé and the specific
needs of the OBO community, and to deliver the
benefits of automation from software development to
ontology development.

Availability and requirements
Project name: ROBOT (ROBOT is an OBO Tool).
Project home page: http://robot.obolibrary.org/
Operating system(s): Platform-independent.
Programming language: Java 8.
Other requirements: None for the command-line tool.

The ROBOT library depends on the following: Apache
Jena, SnakeYAML, OpenCSV, FasterXML Jackson, OWL
API, Apache Commons IO, Apache Maven, JSONLD-
JAVA, Protégé, JUnit, SLF4J, and fmt-maven-plugin.
License: ROBOT is available under BSD 3. Dependencies

are available under Apache 2.0 (Jena, SnakeYAML,
OpenCSV, Jackson, OWL API, Commons IO, and Maven),
BSD 3 (JSONLD-JAVA and Protégé), EPL-1.0 (JUnit), and
MIT License (SLF4J and fmt-maven-plugin).
Any restrictions to use by non-academics: None

other than those specified by the licenses.

Abbreviations
CSV: Comma-separated values; DL: description logic; DO: Disease Ontology;
DOS-DP: Dead Simple OWL Design Patterns; EMR: Expression Materializing
Reasoner; GUI: graphical user interface; OBI: Ontology for Biomedical
Investigations; OBO: Open Biological Ontologies; ODK: Ontology
Development Kit; OWL: Web Ontology Language; ROBOT: ROBOT is an OBO
Tool; TSV: Tab-separated values

Acknowledgments
We thank David Osumi-Sutherland for requirements and testing and Nico
Matentzoglu for submitting bug reports and feature requests. We also thank all
of our users and everyone who has participated in ROBOT development, from
contributing code and documentation, to reporting bugs and requesting
features.

Authors’ contributions
RCJ, JAO and JPB wrote the manuscript. NH edited the manuscript. RCJ, JPB,
ED, JAO and CJM developed and implemented the software. All authors read
and approved the final manuscript.

Funding
This work and related resources are supported by the following grants:
· From the Department of Health and Human Services (NIH) for “Immune
Epitope Database and Analysis Resource Program” (HHSN272201200010C).
· From the National Institute of Allergy and Infectious Diseases (NIH) for
“Human immune signatures of Dengue virus and Mycobacterium
Tuberculosis exposure in infection, disease and vaccination” (1-U19-AI-118626-01).

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 9 of 10

http://robot.obolibrary.org
http://robot.obolibrary.org/

· From the National Human Genome Research Institute (NIH) for “Services to
support the OBO foundry standards” (R24-HG010032).
· From the National Human Genome Research Institute (NIH) for “Gene
Ontology Consortium” (U41HG002273).
These funding bodies did not play any role in the design of ROBOT, the
interpretation of data, or the writing of this manuscript.

Availability of data and materials
All code is available from https://github.com/ontodev/robot/

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests. ROBOT
development is largely funded by the grants acknowledged above. Knocean,
Inc. is subcontracted for ROBOT development from those grants. Overton is
president and owner of Knocean, Inc. Jackson is a contractor for Knocean, Inc.

Author details
1Knocean Inc., Toronto, Ontario, Canada. 2Renaissance Computing Institute,
University of North Carolina, Chapel Hill, North Carolina, USA. 3Lawrence
Berkeley National Laboratory, Berkeley, California, USA.

Received: 9 October 2018 Accepted: 19 July 2019

References
1. Noy N, Tudorache T, Nyulas C, Musen M. The ontology life cycle: integrated

tools for editing, publishing, peer review, and evolution of ontologies. AMIA
Annu Symp Proc. 2010:552–6.

2. M. Horridge, D. Tsarkov, and T. Redmond, “Supporting early adoption of
OWL 1.1 with Protégé-OWL and FaCT++,” OWLED, 2006.

3. Smith B, et al. The OBO foundry: coordinated evolution of ontologies
to support biomedical data integration. Nat Biotechnol. November 2007;
25:1251–5.

4. Y. He, J. Zheng, and Y. Lin, “Onto-animal tools for reusing ontologies,
generating and editing ontology terms, and dereferencing ontology terms,”
Proceedings of the International Conference on Biomedical Ontology (ICBO)
Lisbon: CEUR Workshop Proceedings, 2015.

5. E. Ong, Z. Xiang, B. Zhao, Y. Liu, Y. Lin, J. Zheng, C. Mungall, M. Courtot, A.
Ruttenberg, and Y. He, “Ontobee: a linked ontology data server to support
ontology term dereferencing, linkage, query and integration,” Proceedings
of the 2nd international conference on biomedical ontologies (ICBO), pp.
279–281, 2011.

6. Z. Xiang, M. Courtot, R.R. Brinkman, A. Ruttenberg, and Y. He, “OntoFox:
web-based support for ontology reuse,” BMC Research Notes, vol. 3,
June 2010.

7. Z. Xiang, J. Zheng, Y. Lin, and Y. He, “Ontorat: automatic generation of new
ontology terms, annotations, and axioms based on ontology design
patterns,” Journal of Biomedical Semantics, vol. 6, Jan 2015.

8. Courtot M, Gibson F, Lister AL, Malone J, Schober D, Brinkman RR,
Ruttenberg A. MIREOT: the minimum information to reference an external
ontology term. Appl Ontol. 2011;6:23–33.

9. He Y, Xiang Z, Zheng J, Lin Y, Overton JA, Ong E. The eXtensible ontology
development (XOD) principles and tool implementation to support
ontology interoperability. Journal of Biomedical Semantics. Jan 2018;9.

10. M. Horridge, S. Bechhofer, and O. Noppens, “Igniting the OWL 1.1 touch
paper: the OWL API,” OWLED, 2007.

11. enanomapper/slimmer: Slims ontologies. https://github.com/enanomapper/
slimmer/ (n.d.). Accessed 21 May 2019.

12. J. Hastings, N. Jeliazkova, G. Owen, G. Tsiliki, C.R. Munteanu, C. Steinbeck,
and E. Willighagen, “eNanoMapper: harnessing ontologies to enable data
integration for nanomaterial risk assessment,” Journal of Biomedical
Semantics, vol. 6, March 2015.

13. B. Stucky and A. Luc, “OntoPilot: new software to simplify and accelerate
ontology development and deployment,” Proceedings of TDWG 1, 2017.

14. owlcollab/owltools: OWLTools. https://github.com/owlcollab/owltools (n.d.).
Accessed 21 May 2019.

15. Oort Intro. https://github.com/owlcollab/owltools/wiki/Oort-Intro (n.d.).
Accessed 21 May 2019.

16. ontodev/robot: ROBOT is an OBO Tool. https://github.com/ontodev/robot
(n.d.). Accessed 9 Oct 2018.

17. J.A. Overton, H. Dietze, S. Essaid, D. Osumi-Sutherland, C.J. Mungall, “ROBOT:
a command-line tool for ontology development,” Proceedings of the
International Conference on Biomedical Ontology (ICBO) Lisbon: CEUR
Workshop Proceedings, pp. 131–132, 2015.

18. J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.J.
Wilkinson, “Jena: implementing the semantic web recommendations,”
WWW Alt, pp. 74–83, 2004.

19. Commons CLI. https://commons.apache.org/proper/commons-cli/ (n.d.).
Accessed 23 May 2019.

20. JUnit 4. https://junit.org/junit4/ (n.d.). Accessed 21 May 2019.
21. Travis CI. https://travis-ci.org/ (n.d.). Accessed 21 May 2019.
22. Convert | robot. http://robot.obolibrary.org/convert (n.d.). Accessed 9

Oct 2018.
23. Kazakov Y., Krotzsch M., and F. Simancik, “The incredible ELK,” J Autom

Reason, vol. 53, pp. 1–61, June 2014.
24. R. Shearer, B. Motik, and I. Horrocks, “HermiT: a highly-efficient OWL

reasoner,” OWLED, 2008.
25. owlcollab/expression-materializing-reasoner: Extension to OWLAPI Reasoner

for working with class expressions. https://github.com/owlcollab/expression-
materializing-reasoner (n.d.). Accessed 9 Oct 2018.

26. J. Hastings, P. de Matos, A. Dekker, M. Ennis, B. Harsha, N. Kale, V.
Muthukrishnan, G. Owen, S. Turner, M. Williams, and C. Steinbeck, “The
ChEBI reference database and ontology for biologically relevant chemistry:
enhancements for 2013,” Nucleic Acids Res, vol. 41, pp. 456–463, Jan 2013.

27. D.P. Hill, et al., “Dovetailing biology and chemistry: integrating the gene
ontology with the ChEBI chemical ontology,” BMC Genomics, vol. 14,
July 2013.

28. Cuenca Grau B, Horrocks I, Kazakov Y, Sattler U. Modular reuse of
ontologies: theory and practice. J Artif Intell Res. 2008;31:273–318.

29. SPARQL 1.1 query language. https://www.w3.org/TR/sparql11-query/ (March
2013). Accessed 23 May 2019.

30. Mungall CJ, Ruttenberg A, Osumi-Sutherland D. Taking shortcuts with OWL
using safe macros. Nat Publ Group. 2010.

31. D. Osumi-Sutherland, M. Courtot, J.P. Balhoff, and C. Mungall, “Dead simple
OWL design patterns,” Journal of Biomedical Semantics, vol. 8, June 2017.

32. Template | robot. http://robot.obolibrary.org/template (n.d.). Accessed 9
Oct 2018.

33. Make. https://www.gnu.org/software/make/ (n.d.). Accessed 21 May 2019.
34. Côté R, Reisinger F, Martens L, Barsnes H, Vizcaino JA, Hermjakob H.

The ontology lookup service: bigger and better. Nucleic Acids Res.
2010;38:155–60.

35. INCATools/ontology-development-kit: Bootstrap an OBO Library ontology.
https://github.com/INCATools/ontology-development-kit/ (n.d.). Accessed 9
Oct 2018.

36. obolibrary – Docker Hub. https://hub.docker.com/r/obolibrary/ (n.d.).
Accessed 9 Oct 2018.

37. Jenkins. https://jenkins.io/ (n.d.). Accessed 21 May 2019.
38. Bandrowski A, et al. The ontology for biomedical investigations. PLoS One.

April 2016;11.
39. OBI Makefile as of 2019-02-22. https://github.com/obi-ontology/obi/blob/5

fc065729fc7eb013dafd14690559621b5606057/Makefile
40. Bello SM, Shimoyama M, Mitraka E, Laulederkind SJF, Smith CL, Eppig JT,

Schriml LM. Disease ontology: improving and unifying disease annotations
across species. Dis Model Mech. 2018;11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Jackson et al. BMC Bioinformatics (2019) 20:407 Page 10 of 10

https://github.com/ontodev/robot/
https://github.com/enanomapper/slimmer/
https://github.com/enanomapper/slimmer/
https://github.com/owlcollab/owltools
https://github.com/owlcollab/owltools/wiki/Oort-Intro
https://github.com/ontodev/robot
https://commons.apache.org/proper/commons-cli/
https://junit.org/junit4/
https://travis-ci.org/
http://robot.obolibrary.org/convert
https://github.com/owlcollab/expression-materializing-reasoner
https://github.com/owlcollab/expression-materializing-reasoner
https://www.w3.org/TR/sparql11-query/
http://robot.obolibrary.org/template
https://www.gnu.org/software/make/
https://github.com/INCATools/ontology-development-kit/
https://hub.docker.com/r/obolibrary/
https://jenkins.io/
https://github.com/obi-ontology/obi/blob/5fc065729fc7eb013dafd14690559621b5606057/Makefile
https://github.com/obi-ontology/obi/blob/5fc065729fc7eb013dafd14690559621b5606057/Makefile

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overview
	Architecture
	Commands and operations
	Convert
	Reasoning
	Working with external ontologies
	Extract
	Remove and filter
	Merge
	Querying and reporting
	Query
	Verify
	Report
	Repair
	Templated ontology development
	Workflows
	The Ontology Development Kit

	Results and discussion
	Ontology for Biomedical Investigations
	Disease Ontology

	Conclusions
	Availability and requirements
	Abbreviations

	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

