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Abstract

Any designer of intelligent agents in a multiagent
system is faced with the choice of encoding a strat-
egy of interaction with other agents. If the nature
of other agents are known in advance, a suitable
strategy may be chosen from the continuum be-
tween completely selfish behavior on one extreme
and a philanthropic behavior on the other. In an
open and dynamic system, however, it is unrealis-
tic to assume that the nature of all other agents,
possibly designed and used by users with very dif-
ferent goals and motivations, are known precisely.
In the presence of this uncertainty, is it possible to
build agents that adapt their behavior to interact
appropriately with the particular group of agents in
the current scenario? We address this question by
borrowing on the simple yet powerful concept of re-
ciprocal behavior. We propose a stochastic decision
making scheme which promotes reciprocity among
agents. Using a package delivery problem we show
that reciprocal behavior can lead to system-wide co-
operation, and hence close to optimal global perfor-
mance can be achieved even though each individual
agent chooses actions to benefit itself. More inter-
estingly, we show that agents who do not help others
perform worse in the long run when compared with
reciprocal agents. Thus it is to the best interest of
every individual agent to help other agents.

Introduction

The design of intelligent agents that will interact
with other agents in an open, distributed system in-
volve the modeling of other agents and their behav-
ior (Gasser, 1991; Hewitt 1991). Assuming all agents
will be cooperative in nature, efficient mechanisms
can be developed to take advantage of mutual coop-
eration, which can produce improved global perfor-
mance. But, in an open system, assumptions about
cooperative agents or system-wide common goals are
hard to justify. More often, we will find different
agents have different goals and motivations and no
real inclination to help another agent achieve its ob-
jectives.

'With due apology to William Shakespeare.
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The above situation may appear to be hopeless. If
an agent cannot assume other agents to be coopera-
tive, it might as well solve its problems individually.
But this leads to inefficient problem solving perfor-
mance because agents miss out on mutually benefi-
cial interactions. Even if two individual agents are
self-motivated, they should cooperate if such an ar-
rangement is beneficial for both. The question there-
fore is, when should an agent help another agent?
We cannot rely on in-built inclination towards coop-
eration. The decision to cooperate should be made
to serve the agent’s own interests. In this paper,
we provide a decision-making paradigm that enables
autonomous agents to accept or decline requests for
cooperation from other agents based on local rather
than global considerations.

We assume agent actions to be self-motivated.
This means that an agent will help another agent,
only if such an action is beneficial to itself in the
short or the long run. We use the concept of reci-
procity to show that when agents help others who
have helped them in the past or can help them in
the future, cooperative behavior can evolve out of
self-motivation. We propose a stochastic method
for deciding whether one agent should help another
agent or not in a particular situation. Agents who
use this stochastic reciprocity mechanism are called
reciprocative agents We analyze the effects of selfish
agents (agents who receive help but do not recipro-
cate) on the behavior of other reciprocative agents.
We also characterize the performance of individual
agents (agents who never help each other) and phal-
anthropic agents (agents who always help others if
requested), and demonstrate that a society of recip-
rocative agents can approximate philanthropic be-
havior under proper environmental conditions. Our
results show that close to optimal system perfor-
mance can be obtained without sacrificing individual
preferences or autonomy.

Coordination of multiple agents

Multiagent systems are a particular type of dis-
tributed artificial intelligence (DAI) system (Bond,
1988), in which autonomous intelligent agents in-
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habit a world with no global control or globally con-
sistent knowledge. In contrast to cooperative prob-
lem solvers (Durfee,Lesser, Corkill, 1989), agents
in multiagent systems are not pre-disposed to help
each other out with the resources and capabilities
that they possess. These agents may still need to co-
ordinate their activities with others to achieve their
own local goals. They could benefit from receiving
information about what others are doing or plan to
do, and from sending them information to influence
what they do.

Coordination of problem solvers, both selfish and
cooperative, is a key 1ssue in the design of an effective
DAI system. The search for domain-independent co-
ordination mechanisms has yielded some very differ-
ent, yet effective, classes of coordination schemes.
Whereas some of these work uses architectures and
protocols designed off-line (Fox, 1989; Smith,1980)
as coordination structures, others acquire coordina-
tion knowledge on-line (Durfee, 1988; Sekaran Sen,
1994). In addition, some of these work assumes
agents to be cooperative with common system-wide
goals (Durfee, 1988; Fox, 1981), and others assume
self-motivated agents with individual goals (Gene-
sereth, 1986; Gmytrasiewicz, 1991). The other di-
mension to consider is if we are analyzing a single
instance of agent interaction or if we are considering
an ensemble of agent interactions (e.g., in the pris-
oner’s dilemma problem (Rapoport, 1989), most of
the formal analysis assume repeated interactions).

In this paper, we assume agents have individual
goals or tasks to complete. These individual goals,
however, can be achieved more expediently if an
agent receives assistance from other agents. This
suggests that both individual and overall system
performance will improve if agents can intelligently
share tasks. We will consider agents who repeatedly
interact with each other, and hence past history of
problem solving can be used to decide future course
of action. The question here is the following: given
that there are scopes for cooperation, how should
self-motivated agents choose when to cooperate and
when not to cooperate with another agent? In the
following section we provide an on-line mechanism
to answer this question.

Reciprocal decision making

In a companion paper (Sen, 1995) we have shown
that reciprocal behavior can be used effectively by
agents to balance their workloads. In that paper,
each task could be carried out by any agent, and
agents could exchange tasks to improve local perfor-
mance. In this paper we find out if reciprocity is
sufficient to promote cooperation when agents can-
not transfer tasks, but can use help from others to
reduce the cost of performing an assigned task.

We assume a multiagent system with N agents.
Each agent is assigned to carry out 7' tasks. The
Jjth task assigned to the ith agent is t,;, and if agent
7 carried out this task on its own, the cost incurred
is C'L.. However, if another agent k helped agent i to
carry out this task, the cost incurred by each of them
1s C;‘; We assume that 2 * C‘?j < C,-]J-, which implies
that if two agents together work on the same task,
the combined effort required to process the task is
less than what it would take one of them to pro-
cess 1t. Since the savings, C’,-lj - C,?j, obtained by
the agent being helped is greater than the cost in-
curred by the helping agent, C'?j, there is a net sav-
ing of effort for the entire system. This saved effort
when combined with reciprocal behavior, can lead to
a system with effective individual as well as group
performance. So, the gain of an individual is not at

the expense of the group.

The obvious question is why should an agent in-
cur any extra cost for another agent? If we con-
sider only one such decision, cooperation makes lit-
tle sense. If, however, we look at a collection of such
decisions, then reciprocal cooperation makes perfect
sense. Simple reciprocity means that an agent will
help another agent if the latter has helped the for-
mer in the past. But simple reciprocity by itself is
not sufficient to evolve cooperative behavior. This
is because, no one is motivated to take the first co-
operative action, and hence nobody ever cooperates!
In spite of all the potentials for cooperation and the
benefits that it can provide them, agents carry out
their own tasks without ever offering to help others.

In real life, in addition to past experience, reci-
procity includes a predictive mechanism. An agent
can help another agent, if it expects future benefits
from the latter. In absence of a general domain-
independent predictive mechanism, we propose a
much simpler but equally effective stochastic choice
mechanism to circumvent the problem of simple reci-
procity. We will define S;;x and Wi as respectively
the savings obtained from and extra cost incurred
by agent ¢ from agent k over all of their previous ex-
changes. Also, let B;x = Six — Wiy be the balance of
these exchanges (obviously, Bix = —By;). We now
present the probability that agent k£ will help agent
i carry out task t;;. This probability is calculated
as:

i g @ 1
PT'(Z, k)]) = c?-_s‘cffug—ak: )
1+ exp G
where C;ug 1s the average cost of tasks performed

by agent 7 (this can be computed on-line or preset),
and (# and 7 are constants. This gives a sigmoidal
probability distribution in which the probability of
helping increases as the balance increase and is more
for less costly tasks. We include the Cqyy term be-
cause the probability of helping should depend on
relative and not absolute cost (if the average cost is
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Figure 1: Probability distribution for accepting re-
quest for cooperation.

10, incurring an extra cost of 10 is less likely than
incurring an extra cost of 1). Due to the stochastic
nature of decision-making some initial requests for
cooperation will be granted whereas others will be
denied. This will break the deadlock that prevented
simple reciprocity from providing the desired system
behavior.

We present a sample probability distribution in
Figure 1. The constant 3 can be used to move the
probability curve left (more inclined to cooperate)
or right (less inclined to cooperate). At the onset of
the experiments By, is 0 for all 7 and k. At this point
there is a 0.5 probability that an agent will help an-
other agent by incurring an extra cost of 3 C:uy.
The factor 7 can be used to control the steepness of
the curve. For a very steep curve approximating a
step function, an agent will almost always accept co-
operation requests with extra cost less than 3 C,’,‘,,g,
but will rarely accept cooperation requests with an
extra cost greater than that value. Similar analyses
of the effects of  and 7 can be made for any cooper-
ation decision after agents have experienced a num-
ber of exchanges. In essence, # and 7 can be used to
choose a cooperation level (Goldman, 1994) for the
agents at the onset of the experiments. The level of
cooperation or the inclination to help another agent,
however, dynamically changes with problem solving
experience.

A package delivery problem

In this section, we present a simple package deliv-
ery problem which we will use to demonstrate the
effectiveness of our proposed mechanism to evolve
cooperative behavior. Each of N agents is assigned
to deliver T packets from a centralized depot to ran-
dom destinations located at a distance between 1

and D from the depot. An agent can carry only
one packet at a time by itself or with the help of
another agent. On arriving at the depot, an agent
1s assigned the next packet it is to deliver. At this
point, it checks for other agents currently located in
the depot. If so, it asks the other agent for help to
deliver this packet. This requests may or may not
be honored.

The cost incurred by agents is the time taken to
deliver packets. An agent takes 4 time units to cover
unit distance if it is carrying a packet by itself. The
speed of traveling increases to unit distance per time
unit when another agent is helping it. When agents
are returning to depot after delivery, they travel unit
distance in unit time.

Experimental results

In this section, we present experimental results on
the package delivery problem, with agents using the
reciprocity mechanism described before to accept or
deny a request for help from another agent. We vary
the number of agents and packets to be delivered by
each agent to examine the effects of different envi-
ronmental conditions. Values of other parameters
used are: D = 10, 7 = 4, and B = 0.5. Results
are averaged over 10 different randomly generated
data sets, where a data set consists of an ordered
assignment of package deliveries to agents. All the
agents are assigned the same number of deliveries.
The evaluation metric is the total cost incurred by
the agents to complete all their deliveries.

We used this domain to investigate the effects
of agent characteristics on overall systems perfor-
mance. In our experiments, philanthropic agents
always agree to help another agent when requested;
selfish agents request for help but never help oth-
ers; individual agents neither ask for help nor pro-
vide help to other agents; reciprocative agents
use the balance of cost and savings to stochastically
decide whether to accept a given request for coop-
eration. In homogeneous environments (where all
agents are of the same type), we expect the group
of individual agents and the group of philanthropic
agents to provide the two extremes for system per-
formance. The individual agents should incur the
highest cost to complete their deliveries (because
no one is cooperating), whereas the philanthropic
agents should should incur the least cost. We ex-
pect reciprocative agent behaviors to lie in between.
The frequency of occurrence of cooperation possi-
bilities should determine which of the two ends of
the spectrum is occupied by the reciprocative agents.
Whether selfish agents can benefit at the expense of
reciprocative agents depends on the percentage of
selfish agents in the group and the total number of
interactions they are likely to encounter. It would
seem that reciprocative agents should perform bet-

738



Effect of number of delivenes

14000 T T T T T
Individual <— i)
Rational —+-
12000 | Philanthropic -8-- Al
/_l!
£ 10000 | "
8
3
< 8000 | R
2
g
< 6000 4
4000 } !
2000 ﬂ/ 1 1 1 N 1 i |

50 100 150 200 250 300 350 400 450 500
Number of deliveries

Figure 2: Average total cost incurred by an agent to
complete all deliveries.

ter because with sufficient interactions they become
philanthropic towards each other, a possibility de-
nied of the selfish agents.

For the first set of experiments, we chose the num-
ber of agents, N, as 100 and varied the number of
deliveries per agent from 100 to 500 in increments
of 100. Experiments were performed on homoge-
neous groups of individual, reciprocative, and phil-
anthropic agents, Results from these set of experi-
ments are presented in Figure 2. As expected, the
performance of the individual agents was the worst,
and the philanthropic agents was the best. The in-
teresting thing is that the performance of the recip-
rocative agent is almost identical to that of phil-
anthropic agents. This is a significant result be-
cause it shows that under proper environmental con-
ditions (frequent and prolonged interactions with
possibilities of cooperation), self-motivated behav-
ior based on reciprocity can produce mutually co-
operative behavior that leads to near-optimal sys-
tem performance. In addition, with more deliveries,
the savings in cost incurred is more with reciproca-
tive and philanthropic agents over individual agents.
The ratio of corresponding points on the two curves
should be the same, however, as it is determined by
the probability of another agent being able to help
one agent with its delivery. For the package deliv-
ery problem described in the previous section this
probability is largely determined by the maximum
distance traversed from the depot, D, and the num-
ber of agents, V.

We also performed a similar set of experiments by
fixing the number of deliveries per agent at 500 and
varying the number of agents from 25 to 50 to 75
to 100. Results from these set of experiments are
presented in Figure 3. Since the average distance
of a package destination from the depot is 5.5, the
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Figure 3: Average total cost incurred by an agent to
complete all deliveries.

average cost incurred by an individual agent for de-
livering a packet is 22 on the way out and 5.5 on the
way back, for a total of 27.5. To deliver 500 packets,
therefore, the expected cost incurred by an individ-
ual agent is 13,750. This fact is verified in the figure.
As in the previous experiment, the performance of
the individual agents was the worst, and the phil-
anthropic agents were the best. The performance of
the reciprocative agents was very close to that of the
philanthropic agents, and these improved with more
agents. The reason for this improvement was that
with more agents, there is more scope for coopera-
tion. However, a level of saturation is reached when
all cooperation oppurtunities have been exploited.
At this point, an increase in the number of agents
do not lead to further improvement in system per-
formance.

The next set of experiments were designed to find
out the effects of including selfish agents in a group
containing reciprocative agents. We expected that
selfish agents should be able to obtain some help
from reciprocative agents, and their performance
would be better than individual agents but not as
good as that of reciprocative agents. For these set
of experiments, we chose N = 100 and the number
of deliveries to be 500. We varied the percentage of
selfish agents in the group. Results are presented in
Figure 4. The average performance of the group lies
in between the performance of the selfish and recip-
rocative agents, and moves closer to the performance
of the selfish agents as the percentage of the latter is
increased. The selfish agents are able to exploit the
reciprocative agents to improve their performance
significantly over individual agents. This is because
there are many reciprocative agents and they do not
share their balance information with other reciproca-
tive agents. If a reciprocative agent would broadcast
the continuous denial of request for help by a selfish
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Figure 4: Average total cost incurred by each agent
to complete all deliveries as the percentage of selfish
agent in a group of reciprocative agents is varied.
The individual and the philanthropic agent results
do not contain selfish agents and are presented for
comparison.

agent who has got a positive balance with the re-
questing agent, the selfish agent would not be able to
exploit other reciprocative agents. Since reciproca-
tive agents incur extra cost for selfish agents without
being reciprocated, their performance is noticeably
worse than the performance of philanthropic agents.
So, the presence of selfish agents can lower the per-
formance of the whole group.

To further analyze the relative performance of self-
ish and reciprocative agents, we ran a set of experi-
ments varying the number of deliveries while keeping
N = 100 of which 25 agents were selfish in nature.
Results from these experiments are presented in Fig-
ure 5. An interesting result was that with few de-
liveries to make, selfish agents outperformed recip-
rocative agents. This can be explained by the fact
that the number of reciprocative agents were large
enough compared to the number of deliveries, which
allowed selfish agents to exploit reciprocative agents
for most of its deliveries. The performance of the
reciprocative agents was affected, as they could not
recover from the extra cost incurred to help these
selfish agents. With sufficient deliveries to make,
however, reciprocative agents emerged as the clear
winners This lends further credence to our claim
that 1t 1s ultimately beneficial for an agent to be
reciprocative rather than selfish in domains where
cooperation is always beneficial to the group.

Conclusions

In this paper, we have shown that agents acting
in their own self-interest may find 1t practical to
help each other. Under appropriate environmental
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Figure 5: Average total cost incurred by an agent
to complete all deliveries with different number of
deliveries.

conditions, such a group of agents can also deliver
near-optimal global performance. This is a signifi-
cant result because in an open, distributed environ-
ment, the only defensible strategy an autonomous
agent can follow in deciding its actions is that gov-
erned by self-interest. Our analysis and experiments
show that reciprocal behavior can serve self-interest
as well as global efficiency concerns. Since, recipro-
cating behavior produces better performance in the
long run over selfish or exploitative behavior, it is
to the best interest of all agents to be reciprocative.
It 1s interesting to note that our proposed mecha-
nism will automatically track behavior changes (e.g.,
if a reciprocative agent becomes selfish) and ad-
just agent responses accordingly. This is a powerful
scheme that allows for dynamic behavior adjustment
to suit the changes in the environment. Our results
hold for domains where cooperation always leads to
aggregate gains for the group. It would be instruc-
tive to study the effects of relaxing this constraint.

The current reciprocation scheme can be enhanced
or modified to address other types of agent interac-
tions. If an agent is unable to individually identify
other agents, it can use its overall balance of interac-
tions to decide whether or not to accept a request for
cooperation. But this also creates new possibilities
for exploitative agents. We also plan to investigate
more complex domains such as distributed monitor-
ing, distributed information gathering, etc. to fur-
ther evaluate the strengths and limitations of our
proposed mechanism.
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