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Preface 

Throughout the ages, the compulsively curious and inquisitive amongst our 
ancestors have quested for ever deeper insights into the natural world. Today 
we have a labyrinth of scientific theories capable of explaining and predicting a 
vast array of natural phenomena covering every aspect of the material existence, 
from the mundane to the extraordinary, from the palpable to the imperceptible. 
This is an impressive feat, but even more significant is that they are not just a 
hotchpotch of arbitrary and independent rules. Rather, they fit within a very 
tightly constrained framework. Using the language of mathematics they can be 
reconstructed from an amazingly small set of principles in physics. Yet this process 
of distilling is still incomplete. Beyond our sights lies temptingly the pinnacle atop 
this pyramid of ideas, a mythical "final" theory of all matters and energy in their 
most elemental forms that connects the divergent regimes of subnucleonic particles 
and of the whole cosmos itself. 

No rationale justifies the optimism that intelligent creatures such as ourselves 
can one day comprehend this all encompassing scheme in its entirety. Yet it is 
the hope for its existence that perpetuates us in the cycle of formulating, refining, 
verifying, and modifying proposals after proposals for its interpretation. For the 
last decade and half, the most promising amongst them is superstring theory, 
or string theory in short. It may still be very far from being tested in any sort of 
experiment or observation, but it has already claimed one glory denied to all other 
valiant attempts: a consistent quantum mechanical framework for the theory of 
gravity, which describes the very fabric of our space-time. As a result, superstring 
theory has grown into an impressive intellectual enterprise. We devote this report 
to but a few aspects of it, those of a certain type of dynamical objects known as 
Dirichlet branes, or D-branes in short. They weld crucial and previously missing 
links connecting drastically different physical conditions yet at the same yield to 
classical string theory methods. As a result they have played a pervasive role in 
recent developments. 

In § 1 we review some elements of string theory relevant to the rest of this 
report. We shall touch on both the "classical," i.e. perturbative, string physics 
before D-branes rise to prominence, and some of the progresses they brought forth. 
In §2 we proceed to give an exact algebraic formulation of D-branes in curved 
spaces. This allows us to classify them in backgrounds of interest and study their 
geometric properties. We apply this formalism to string theory on Calabi-Yau and 
other supersymmetry preserving manifolds. Then we study the behaviour of the D­
branes under mirror symmetry in §3. Mirror symmetry is known to be a symmetry 
of string theory perturbatively. We find evidence for its nonperturbative validity 
when D-branes are also considered and compute some dynamical consequences. 
In §4 we turn to examine the consistency of curved and/or intersecting D-brane 
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configurations. They have been used recently to extract information about the 
field theories that arise in certain limits. It turns out that there are potential 
quantum mechanical inconsistencies associated with them. What save the day are 
certain subtle topological properties of D-branes. This resolution has implications 
for the conserved charges carried by the D-branes, which we compute for the 
cases studied in §2. In §5 we use intersecting brane configurations to study three 
dimensional supersymmetric gauge theories. There is also a mirror symmetry there 
that, among other things, exchanges classical and quantum mechanical quantities 
of a (mirror) pair of theories. It has an elegant realization in term of a symmetry 
of string theory involving D-branes. We employ it to study a wide class of 3d 
models. We also predict new mirror pairs and unconventional 3d field theories 
without Lagrangian descriptions. 
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Chapter 1 

Strings and p-Branes 

1.1 Perturbative string theories 

1.1.1 Motivations and intuitions 

It is customary to formulate physical models in terms of particles. For macro­
scopic objects such as billiard balls or microscopic objects such as nuclei, this is 
just a simplifying approximation that captures their most salient physical proper­
ties. Occasionally and gradually, when it becomes necessary to take into account 
the nuances resulting from their finite spatial extension, one use model of strings, 
membranes, or clumps. As candidates for the most basic building block of matter 
and energy, however, one often takes for granted that the objects of interest are 
exactly point particles. More than being a mere simplifying assumption, it also 
fits the notion of being fundamental, bypassing the perpetual question "what is it 
that makes up this object?" The advent of quantum mechanics brought the real­
ization that perhaps this is a meaningless question to ask. Quantum theories lead 
naturally to the quantization of angular momentum, energy, as well as charges. 
A string that carries a minimal unit of charge can be just as fundamental as a 
point particle. 

With this insight, models using strings as fundamental objects have been for­
mulated over the past decades. A complete introduction to this field requires 
an extensive treatise, such as [1]I. Here we shall just outline some fundamental 
features relevant to understanding this report. 

1.1.2 Bosonic string theories 

World sheet action 

We now formulate string theory as a quantum field theory on a two-dimensional 
world sheet , parameterized by aO and al. The cylindrical coordinate aO is the 
"time" on the string worldsheet, and a l is the "space" coordinate along the closed 
string, with the identification a l + 27r rv a l . In this section we shall consider 
orientable closed strings, which means that the worldsheet has no boundary and 
can be assigned a definite orientation. The {1+1)d field theory on it should contain 
information about the embedding (position, size, and shape) of the worldsheet 
in space-time. Therefore one introduces the worldsheet fields XJL{aO, a l ), J-l = 

1 For a quick introduction to perturbative string theory, see [2] 
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Figure 1.1: The worldsheet of a string propagating in space-time. 

0, ... , D- 1. We also want the theory to be invariant under reparameterization of 
the worldsheet. The most familiar way to achieve this is to introduce a metric gab 
for the worldsheet as a dynamical variable. However, the Einstein-Hilbert action 
in 2d is topological, so for the purpose of canonical quantization, one only· need 
to consider the action 

(1.1.1) 

where both; the metric gab as well as XJI., are treated as dynamical variables. 
The worldsheet metric gab has no local propagating degrees of freedom and 

acts mainly as Lagrangian multipliers. Classically, the equation for g requires it ' 
to be proportional to the induced metric gab 

oXJl.oXV 
gab = 'fJJl.V O(Ja O(Jb; a, b = 0,1; g = det gab. (1.1.2) 

Substitute this back to (eq. 1.1.1) and we obtain the Nambu-Goto action 

S = ~ Jd2(J CfJ. 27ra' V-Y (1.1.3) 

This is the 2d generalization of the action for a relativistic point particle: 

(1.1.4) 

It can be shown from (eq. 1.1.3) that the dimensionful constant T = 1/(27ra') 
gives the tension of the string. 
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Consistent with the topological nature of the Einstein-Hilbert action for g, the 
worldsheet metric consists almost purely of gauge degrees of freedom. First the 
worldsheet metric has three independent degrees of freedom, two of which can 
be gauged away using worldsheet diffeomorphism, bringing the metric into the 
standard form 

(1.1.5) 

in what is known as conformal coordinates. Furthermore, the Polyakov action (eq. 
1.1.1) has the Weyl rescaling symmetry which allows us to scale). to, say, 1. This 
is known as the conformal gauge. Note that although this choice of gauge breaks 
diffeomorphism invariance, it still preserves the global Poincare invariance on the 
worldsheet. The equation of motion for 9 is as usual the vanishing of the energy 
momentum tensor. After fixing g, this must imposed as a constraint, known as 
the Virasoro constraint. 

In conformal gauge, there is still a residual gauge symmetry. It is called con­
formal symmetry because it only rescales the induced metric. To exhibit it, 
define the light-cone coordinates a± = aO ± a1. It is not difficult to show that 
a coordinate transformation preserving the conformal gauge condition (eq. 1.1.5) 
must be of the form 

a+ ~ a+' = I(a+), 

In the light-cone coordinates, 

-(daO)2 + (da1)2 = -da+da-. 

Since 
da'+ = j'da+, 

(eq. 1.1.5) is indeed preserved as 

da'+da'- = j'h'da+da-. 

(1.1.6) 

The worldsheet of a freely propagating string clearly looks like a tube. Choos­
ing Ln and Ln, the Fourier components of 1 and h respectively, as the generators 
of conformal transformation on a cylinder, it is not difficult to find their commu­
tators: 

[Ln' Lml - (n - m)Ln+m, 

[Ln' Lm] (n - m)Ln+m, 

[Ln' Lm] o. 
In the conformal gauge, the action (eq. 1.1.1) becomes 

S 4:al J d2aV-'Y'YabOaXI.£ObXI.£ 

-!, J~a o+Xl.£o_Xw 
7ra 

3 
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There are two complications to this story. First, in general (eq. 1.1.5) can 
only be enforced in each coordinate patch. Between patches there can be global 
degrees of freedom left. Roughly speaking they describe the shape of the world­
sheet and are known as complex moduli since they parameterize the choice of a 
complex structure. Second, quantum mechanically the Weyl rescaling symmetry 
may became anomalous, and the algebra of conformal transformation (eq. 1.1.7) 
is not realized on the Hilbert space. It is deformed to be the Virasoro algebra, 
which is the conformal algebra (eq. 1.1.7) with a nontrivial central extension: 

[Ln,LmJ 

[Ln' Lm] 
[Ln' Lm] 

(n - m)Ln+m + I
C
2 (n3 

- n)8n+m,o, 

- c 3 
(n - m)Ln+m + 12 (n - n)8n+m,o, 

o. (1.1.9) 

The central charge c measures the violation of conformal invariance. The central 
charge for (eq. 1.1.8) is D, equal to the dimension of the space-time. However, 
as in gauge fixing for Yang-Mill theories, choosing the conformal gauge introduces 
Faddeev-Popov ghosts. Their action, which provide for the correct normalization 
for the path integral respecting the reparameterization invariance, carry an addi­
tional central charge -26. Since the conformal anomaly is additive, only when 
D = 26 does the anomaly from the X's cancel against that from the ghosts and 
give us a consistent theory. 

First quantization of string 

For point particles, there are two roads from classical physics to quantum 
physics. The first quantization qua:ntizes the worldline action and yields quantum 
mechanics (i.e. one-dimensional QFT) of the particles. The second quantization 
quantizes their space-time action and yields a (1, D~I)-dimensional QFT. In string 
theory, the worldsheet is already two-dimensional, so we have a (1, I)-dimensional 
QFT theory already in the first quantization. 

Let us use the conformal gauge (eq. 1.1.5) and quantize the action (eq. 1.1.8), 
which is just an action of D free'scalars. The equation of motion for XJ.I(o-) is 

(1.1.10) 

and its general solution is 

The X's must be periodic in 0-
1 with period 27r. After Fourier decomposition, we 

separate and recover the center of mass and the oscillating modes: 

(1.1.11) 
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Canonical quantization gives2 

[XJ.I(aO,al),XII(aO,al ')] = ~1fa'i'fJJ.lIlt5(al' - al) 

In term of the Fourier modes, one has 

[xl' ,pll] ~ i'fJJ.l1I 

[ I' II] I'll$: an' am = n'fJ Un+m,O, 

(aJ.l)t = aJ.l n -n, 

(1.1.12) 

(1.1.13) 

Note the left and right moving fields are completely symmetric. The a's and a's 
are raising and lowering operators for the harmonic oscillators associated with 
the oscillation modes on the string. The above commutation relations are also 
captured in the operator product expansion (OPE) of the relevant fields. For 
example, the above commutation relations are equivalent to 

(1.1.14) 
o 

So the Hilbert space is the tensor product of 2 x D infinite towers of harmonic 
oscillators, each labeled by positive integers (coming from an and an) and thit 
of the D-dimensional q~antum mechanics (coming from the zero modes XI' and 
pJ.l): 

n>O n>O 
® {(a~n)i 10) Ii = o ... oo} ® {(a~n)i 10) Ii = o ... oo} ® cp(XJ.I). 

O~J.I<D O~J.I<D 

The operator a~n (a~), with n > 0, creates (destroys) a quantum of left moving os­
cillation with angular frequency n along the XI' direction in space-time. a~n (a~) 
does the same for the right movers. This decomposition of degrees of freedom into 
essentially decoupled left and right movers is what makes many two-dimensional 
field theories so much more manageable compared to theories in higher dimensions. 

It remains to impose the Virasoro constraints. By varying the worldsheet 
metric away from Tab, we can find its (worldsheet) energy-momentum tensor Tab I"V 

/8 . Since the action is conformally invariant, the trace of the classical energy-
'Yab 

momentum tensor T vanishes. The remaining two components are 

(1.1.15) 

Classically the Virasoro constraints is that they must also vanish. As mentioned 
earlier, there are quantum mechanical anomalies. To exhibit the nature of this 
anomaly, it is convenient to Fourier transform the T's: 

2In this report, i denotes v'-I. 
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",J.I _ ;::.,J.I_ ~/~ 
..... 0 - ..... 0 - p . 

2 

These Ln and Ln are well defined except for n = 0, for which there is a normal 
ordering ambiguity. If we define 

Lo 

Lo (1.1.16) 

the constraint for the n = ° part would be Lo - a = 0, Lo - a = 0 where a 
and a are constants reflecting the normal ordering ambiguity. The combination 
(Lo + Lo) is the Hamiltonian of the system generating a translation in a O direction 
and (Lo - Lo) is the worldsheetmomentum. Since 

the n-th oscillator has energy n, equal to its angular frequency. The same holds 
for the right movers. 

It can be checked that the L's form a representation of the Virasoro alge­
bra (eq. 1.1.9). In our case, the central charge c is equal to D, the space-time 
dimension. 

We shall not review the detail for imposing the Virasoro constraints, which 
gives another derivation that D=26 is a critical value that gives a consistent spec­
trum. Suffices it to say that the Virasoro operator L's and L's are very important 
for building a consistent string theory in this formulation. They will useful again 
when we define D-branes in the next chapter. Some of their properties will be 
reviewed briefly later in this introduction. 

String propagation and interactions 

Point particles propagate in a straight line with amplitude given by their Feyn­
man propagators. They interact at a well-defined point in space-time, where 
straight lines intersect at vertices. Each vertex also has some coupling constant 
associated with it. We calculate a scattering amplitude of them by drawing the 
corresponding Feynman diagrams, and multiplying together all the propagators 
and the coupling constants at each vertex figure 1.2. In string theory, the picture 
is similar figure 1.3. Propagation of string is represented by a tube. A slice of the 
worldsheet at any time determines a string state at that instant. However, because 
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Figure 1.2: Some Feynman diagrams for point particles 

of worldsheet reparameterization invariance, no scheme of time slicing is preferred 
over others. This and the smooth joining and splitting of string tubes mean that 
there is no freedom in assigning coupling constants to any particular point. Indeed 
it will soon become clear that there is only one measure of string coupling, which 
is however a field carried by and distributed over the strings themselves. 

To study string worldsheets of various topologies, it is convenient to choose 
the worldsheet metric to be Euclidean rather than Lorentzian. This can be done 
by performing a Wick rotation on the worldsheet: 

z = ia+ = a2 + ia1
, z = ia- = a2 

- ia1
, 

XIJ. = xIJ. - ia'p#J.Rez + ~ L ~{a~e-nz + a~e-nz} 
n,eO 

We will use this Euclidean notation from now on. 
figure 1.3a shows the worldsheet for a tree level string-string scattering. Its 

amplitude is calculated by evaluating the Polyakov path integral over it. After 
gauging away arbitrary reparameterizations, the integration over the worldsheet 
metric 9 of Polyakov action is reduced to a sum of over all possible shapes and 
sizes of worldsheets of a given topology. Since the size of the worldsheet can be 
gauged away for critical string theory, this reduces to a finite dimensional integral 
over its moduli space, the space that parameterizes the shape of worldsheet with 
this topology. Worldsheet actions themselves do not tell us which topology of 
worldsheet we should choose, but analogy with Feynman diagrams suggests that 
handles in the worldsheet represent internal loops and we should sum over all 
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a. Tree-level 4-string scattering b. One-loop 2-string scattering 

Figure 1.3: Some worldsheet for string interactions 

number of handles. In fact the unitarity of the S-matrix dictates how to sum 
over topologies of the worldsheet. As 'another simple illustration, consider the 
one-loop vacuum to vacuum string amplitude figure 1.3b. This has the physical 
interpretation of calculating the vacuum energy. 

Conformal field theory and vertex operator 

The conformal gauge action (eq. 1.1.8) is an example of a 2d conformal field 
theory (CFT)3. Each CFT has two copies of the Virasoro algebra. One each for 
left and right movers4• The decoupling between the left and right movers is an 
essential feature of all 2d conformal field theories. They possess conformal invari­
ance quantum mechanically with a mild, controllable anomaly. 5. Many conformal 
field theories of interest here or in the literature have additional symmetries. Their 
algebra are also infinite dimensional and decoupled into independent left and right 
movers. They are known as chiral algebras. We will now introduce some facts and 
concepts that will be useful. Consider a path integral calculation of a CFT over 
some Riemann surface, with some tubes extending to infinity. The field config­
urations at the ends of the tube correspond to states in the CFT Hilbert space. 
In string theory they represent external, asymptotic string states in a scattering 

3For an extensive discussion on the subject, see for example [3] and [4] 
4They are decoupled as far as the action of the two copies of Virasoro algebra are concerned. 

The actual states in the spectrum generically transform under both. In this sense the left and 
right movers are intertwined. 

5To be more precise, conformal invariance is realized projectively. 
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process. We can perform arbitrary conformal transformations when evaluating the 
path integral of a CFT. Let us choose one that brings the tube C in (fig. 7) from 
infinity to within a finite distance from the scattering region. Because this would 

A 

c 

a. Before conformal transformation: 
asympototic states coming from infinity 

b. After conformal transformation: 
vertex operators inserted 

Figure 1.4: Two worldsheets for the same 2-100p 3-string amplitude, related by a 
conformal transformation. 

involve an infinite rescaling in the neighborh90d of the end circle of tube C, the 
end circle, which has finite radius, will shrink to a point. Its effect should therefore 
be represented by the insertion of a local field operator at that point. It is called a 
vertex operator. Therefore there is a one-to-one correspondence between states 
and operators in CFT. In string theory, for example, a vertex operator taking mo­
mentum k has the form, : (oscillator part) xeik.X :, where :: denotes the normal 
ordering. The oscillator part of the operator is determined by its counterpart for 
the corresponding state. For example, the operator that creates an insertion of a 
massless operator of momentum k is 

For the tachyon, the oscillator part is just the identity, so the vertex operator 
is simply: eik.X :. Of course, not all vertex operators correspond to insertion 
of physical states. They have to obey the operatorial version of the Virasoro 
constraints. For an operator <P, the constraints can be summarized in the singular 
parts ofits operator product expansion (OPE) with the energy-momentum tensor: 

T(z)¢J(w,iIJ) rv a¢J(w,iIJ) 8¢J(w,iIJ) 
(z - W)2 + (z - w) , 
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T(z)</>(w,w) rv 
a</>(w,iiJ) 8¢(w,iiJ) 
(z - iiJ)2 + (Z - iiJ) . (1.1.17) 

with 
a = 1 = a. (1.1.18) 

The last one is known as the level matching condition. If it is not satisfied but 
(eq. 1.1.17) holds, </> is known as a Virasoro primary field with conformal weight 
(a, a). 

The Virasoro algebra (eq. 1.1.9) itself can be written as , 

c/2 2T(w) OT(w) 
T(z)T(w) rv ( )4 + ( )2 + ( )' (1.1.19) z-w z-w z-w 

and similarly for T with no singularity between T and T. Thus T is almost 
a Virasoro primary field of weight (2,0) except for its conformal anomaly. It 
is a fundamental property of a conformal field theory that its Hilbert space and 
operator content is a direct sum of often infinitely many irreducible representations 
of the left x right Virasoro algebra, each of which is generated by the action of 
the algebra on a highest weight state. The Virasoro primary fields of a eFT and 
their operator product expansion (OPE) completely characterize it. 

1.1.3' . Superstrings 

The bosonic string theory reviewed in the last section displays some very inter­
esting structures, yet it conspicuously lacks one important ingredient: fermion. In 
the real world, we of course know that fermions, such as quarks and electrons, are 
the basic constituents of matter. So we should find some way to incorporate them 
into string theory if the latter is to become a theory of reality. By the theorem 
on the connection of spin and statistics [5], we want space-time spinors. Over 
the years physicist found a way to build a string theory containing space-time 
spinors by introducing worldsheet spinors. Besides gaining fermionic degree of 
freedom, the annoying tachyon has disappeared. Moreover a symmetry between 
space-time bosons and fermions emerges naturally. This symmetry is known as 
supersymmetry and the string with it is called superstring. Some versions of su­
persymmetry have been studied by phenomenologists as a promising extension to 
their "standard model". Interestingly, the worldsheet action for superstring also 
has worldsheet supersymmetry. As it turns out, this is not a coincidence. 

Superstring action and its quantization 

The symmetric version of the action (eq. 1.1.1) is: 

S = 4:a
f 
f d2a~ {gab(8aX I18bXI1 + i~wxa8awl1) 

+Xa,\b,\a(8bXIL + ~~I1WILXb)} . 
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Here ).a are the worldsheet Dirac matrices. New to the field content are D 
worldsheet spinors w'" that transform in space-time as a tangent vector, and a 
worldsheet Rarita-Schwinger field Xa with no space-time index. The action has 
four local symmetries: the worldsheet diffeomorphism and Weyl rescaling symme­
tries already present for the bosonic string, and their superpartners: local super­
symmetry and super-Weyl transformation. Classically they together allow one to 
gauge away the metric g and the Rarita-Schwinger field Xa, and impose constraints 
on the physical phase space. In the superconformal gauge, gab can be set to ).'Yab 

and Xa to O. Again, there are potential anomalies. The new Faddeev-Popov ghosts 
introduced by gauge fixing the local fermionic symmetries raise the central charge 
for the ghost sector to -15. On the other hand, the contribution from the w's 
increases the matter sector central charge to ~ D. Therefore the critical dimension 
for them to cancel is now D = 10. 

Like the conformal gauge, the superconformal gauge is preserved by some resid­
ual gauge symmetries, which are called superconformal transformations. The 
superconformal gauge action, 

(1.1.20) 

is the supersymmetric extension of (eq. 1.1.8). Here the worldsheet fermions 
W'" split into the left moving 'lj;""s and the right moving {;""s. (eq. 1.1.20) is a 
superconformal field theory (SCFT), a conformal field theory with additional 
structures and algebra reflecting its superconformal symmetry. Quantizing this 
theory one finds 

{'lj;~, 'lj;~} = 2G"'v or+s,O, 

with the Fourier modes of 'lj; defined as 

'lj;"'(z) = L: W~e-rz. 
r 

This is also captured in their OPE: 

(1.1.21) 

(1.1.22) 

(1.1.23) 

As a worldsheet fermion, there are two possibilities for the (anti-)periodicity of 
the'lj;'s. Using the cylindrical coordinate 0"0(0"2) and 0"1 for the string worldsheet, 
in the Ramond (R) sector the W's are periodic along 0"1 while in the Neveu-Schwarz 
(NS) sector they are antiperiodic. Space-time Lorentz covariance requires all the 
left (right) moving fermions to be in the same sector, but the choice for the left 
and right movers be independent. Hence the superstring has 4 sectors: NS-NS, 
NS-R, R-NS and R-R. As usual, left and right moving operators decouple, and we 
will concentrate on the left movers: 

T = L:Lne-nz = -~ax. ax - ~'lj;. 8'lj;, 
n 
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G = :E Gne-nz = i'lj; . ax. 
n 

Because ax's have integer moding, the moding of G is the same as that of 'Ij;'s: 
r E Z in R sector; r E Z + ~ in NS sector. The superconformal algebra is 

D 3 ) [Ln, Lm] = (n - m)Ln+m + g(n - n 8n+m,o. 

D 2 1 
. {Gr, Gs} = 2Lr+s + "2.(r - 4)8r+s,o 

1 
[Ln, Gr] = (2 n - r)Gn+r. (1.1.24) 

The corresponding OPE's can be found in §12 of [4]. T "" 0 "" t and G f'V ot 
are the equations of motion for 9 and X in the super-conformal gauge. Therefore 
they make up the super-Virasoro constraints one must imposes in that gauge. 
In particular they contain the Dirac and the Klein-Gordon equations, as well as 
equations of motions for all other fields. 

In R sector, the 'Ij;'s have even moding. From (eq. 1.1.21) 'lj;o's form a Clifford 
algebra. The R sector Hilbert space, in particular the ground state, form a repre­
sentation under it, therefore they transform as space-time spinors. One can define 
spin fields Sa's that map the unique NS ground state to those R grounds states. 
The construction of sa is involved and can be found in [6], but we shall not need 
it for this report. It is worth noting, however, that the spin fields are very special 
vertex operators and are not completely local with respect to the 'Ij;'s, as seen in 
the fractionai power in their OPE: 

(1.1.25) 

To maintain overall consistency of the worldsheet theory, one has to include both 
NS and R sectors yet at the same time take what is known as the GSO projec­
tion. The latter project out spinors of, say, negative 10d chirality and odd powers 
of 'Ij;. N ow consider both the left and the right movers. The spin fields are es­
sentially the generators for space-time supersymmetry. Thus type II superstrings 
have lOd N=2 supersymmetry, or 32 real supercharges. 

The five perturbative superstring theories 

In taking the GSO projection, if the same space-time chirality is used for both 
the left and the right movers, one obtains the nonchiral type IIA string theory; 
otherwise, it is type lIB string theory. Both have 32 global supersymmetry 
charges and no non-Abelian gauge symmetries. 

Now let us examine the massless particles in superstring theory for their space­
time meaning. We will use the language of the covariant superconformal gauge, 
therefore our counting will be off-shell. For NS-NS sector, we clearly get the same 
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fields as for bosonic string: the dilaton <I> , the metric G fJV and the antisymmetric 
tensor field BfJv. For the NS-R and R-NS sectors, the Ramond parts transform 
as space-time spinors AL or AR' In fact they are Majorana-Weyl spinors. The NS 
parts are of course vectors, so we have two lO-dimensional Rarita-Schwinger fields. 
The only known way to incorporate such fields consistently is to couple them to 
the supergravity current. They are therefore the gravitinos. So a GSO projected 
superstring theory contains N = 2 supergravity. Depending on the choice of the 
relative sign in defining (-1 )FL and (-1 VR, we have two inequivalent possibilities, 
corresponding to the relative chirality of the surviving AL and AR' If we choose 
opposite chiralities, we obtain the type IIA superstring theory whose low energy 
effective theory is the type lIA supergravity. The type IIA theory is non-chiral 
and can be obtained by dimensional reduction from ll-dimensional supergrav­
ity. This is the first and simplest evidence for the relation between type IIA 
string theory and a theory in eleven dimensions, "M theory." If we choose the 
same chirality for both left and right movers, we obtain the type IIB superstring 
theory. The corresponding type IIB supergravity is chiral and potentially anoma­
lous. Cancellation of gravitational anomaly in type lIB supergravity was shown 
by Alvarez-Gaume and Witten (ref. 20 in [1], Vol 1). 

More novelties 'come from the R-R sectors. Here the massless states transform 
as the products of two spinors. Contracting them with antisymmetrized products 
of gamma matrices, we see that they are related to antisymmetric tensors of rank 
o to 10. However, because the spinors making the products are chiral, not all the 
possibilities can appear. For the type IIA theory, AL and AR are of the opposite 
chiralities, and we obtain even rank tensors 

On the other hand, the type IIB theory contains odd ran.k tensors 

{I} __ - {3}-F -- 'Lr 'R F = 'Lr 'R' .. fJ -- A fJA, fJVp -- A fJvpA, • 

Here r fJl ... fJn is the antisymmetrized product of n Gamma matrices. Moreover they 
are not all independent. There is an important r-matrix relation: 

where rIO is the lOd chirality operator. Because of the GSO projection, W Land 
W R both have definite eigenvalue of rIO. Therefore 

(1.1.26) 

In particular, F{5} is self-dual. The readers can verify that the number of inde­
pendent components of the antisymmetric tensor fields, taking into account these 
relations, is equal to that of the tensor product of two Majorana-Weyl spinors. 
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What kind of fields are they? It is not difficult to show that the massless Dirac 
equations for )..L and )..R are equivalent to 

d* F{n} = 0, dF{n} = o. 
They are the equations of motion and Bianchi identities for antisymmetric tensors 
fields A{n-l} such that F{n} = dA{n-l}. Note that A{n-l} and A{9-n} are related 
by electric-magnetic duality, which exchanges equations of motion and Bianchi 
identities. The way they arise out of string theory places them on equal footing. 

There is also an antisymmetric tensor field B in NS-NS sector, but the way it is 
coupled to the string is very different from the R-R fields. The VEV of its potential 
BILv couples directly to the vertex operator for it. Its contribution to the string 
action is just the integral of the pullback of B over the worldsheet. By analogy 
with the minimal coupling of the usual I-form potential AIL to the worldline of a 
charged point particle, we see that this means a string carries unit "electric" charge 
with respect to B. However, the coupling of R-R fields with string involves only 
the field strength. This means elementary string states cannot carry any charge 
with respect to the R-R fields. However, it was discovered by Polchinski that there 
are (p+l)-dimensional solitonic objects called Dp-branes, which do carry such 
charges [7]. They have played a very significant role in string theory recently. For 
example, DO-brane is at the core of the proposed equivalence between type IIA 
and M theory. They will be the protagonist in this report and starting at the next 
section we shall turn our attention to them. 

Type II string theories are not the whole story. Exploiting the decoupling of 
left and right movers of the worldsheet theory, one can use bosonic string theory 
for the left moves and superstring for the right movers and obtains what is called 
heterotic superstring theory. The boundary condition kills half of the space­
time supersymmetry So its fields fall into 10 N=1 supermultiplet. At the massless 
level it contains a N=l. gravity multiplet. To cancel the ensuing gravitational 
anomaly it is necessary to introduce gauge multiplets (besides returning to the 
type II complement). Such theory possess non-Abelian gauge symmetries. It 
turns out that there are two discrete choices:' Spin(32)/~ and Eg x Eg. 

To understand 'the remaining possibility6 one has to allow the worldsheet to 
have boundaries. This procedure is be reviewed later in this chapter. Because it 
intertwine the left movers and right movers, it can only be performed within type 
IIB theory, where there is a symmetry between the two. Even there consistency 
turns o,ut to require a certain projection on close string spectrum. The resulting 
theory is known as type I and has gauge symmetry Spin(32) /Z2 7 Its spectrum 

6There are other theories of supersymmetric strings not mentioned here. They all have 
some idiosyncrasies such as possessing more than one time directions and/or have no propagat­
ing gravitons. They are of interest in their own sake and may even be indirectly relevant to 
the usual superstring theory. However, they do not yet lend themselves to standard physical 
interpretations. 

7Perturbative formulation itself only establish that the gauge group be one of the cover groups 
of SO(32)/Z2, but consideration of Dl-brane vacuum structure fixes it to be Spin(32)/~. 
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include part of that of type IIB string. Among the massless bosons, the NS-NS 
B field, the R-R 0 and 4-form potentials are projected out, and what remains 
belong again a 10 N=1 gravity supermultiplet. The remainder comes from the 
gauge multiplet. Therefore the massless fields are the same as that of Heterotic 
Spin(32)/~. ' 

1.2 Solitonic p-branes 

1.2.1 p-Forms and p-branes 

There are supergravity solutions carrying charges with respect to the antisym­
metric tensor field A's [8]. Associated to A{p+l} are'solitonic objects known as 
p-branes with p+l dimensional worldvolume M. They couple to A{P+1} in the 
same minimal fashion as electrons couple to an U(I) gauge potential: 

The antisymmetric tensors are distinguished also by whether they come from ., 
NS-NS sector or R-R sector of the strings. The brane correspondingly there are 
called NS and D-brane respectively. Table 1.1 gives all the possibilities for all 
five perturbative formulation of string theories. An entry with "NS" 'denote the 
existence of a (p+l) form from the NS-NS sector and the corresponding NS p­
branes. An entry with "D" similarly denote R-R forms and Dp-branes. 

Table 1.1: p-Branes and (p+l)-forms 
p 0 1 2 3 4 5 6 7 8 9 
IIA D NS D D NS D D 
lIB D,NS D D,NS D 
I D D D 
Het(both) Het Het 

A more substantial difference between the NS-NS and the R-R fields lies in 
their the low energy effective actions1

. That of the NS-NS fields is the same as 
that of the bosonic string: 

S = _1_ !dlOX v'-Ge-2<I>{R - ~H2 + 4(V<I»2 + O(a')} 
2~2 12 ' 

where H = dB. The variation of S with respect to B gives 

e2
<I>V/.L ( e -2<I> H /.LVP) = (VIL - 2aIL <I» H ILVP = O. 

1 The following argument was given by Polchinski and possibly others. 

15 



The origin of the coupling between Hand <l> can be traced to the way the dilaton 
couples to the string worldsheet, J9R<l>. Since T rv .)g o~~z, if the dilaton is not 
constant, the energy-momentum tensor T is modified as ' 

T rv _~(8X)2 + 8 <l> 82 XJ.I 2 J.I z . 

The equation of motion for H can then be obtained from the Virasoro constraint 
on physical states, which receives the additional contribution from <l>. 

Now let us find out what happens to the antisymmetric tensor fields in the 
R-R sector. The dilaton field also modifies the supercurrent as 

As we recall, the zero mode of the super-Virasoro constraint yields the massless 
Dirac equation in the constant dilaton background. If the dilaton is not constant, 
the Dirac operator is modified as . 

Correspondingly, the equations of motion for the R-R fields are 

Therefore it is the rescaled fields 

which obey the usual Bianchi identity and equations of motion for an antisym­
metric tensor. We can then write iNn} = dA{n-l} and their space-time action 
is ! d10 X F{n} 1\ *F{n}, 

without the usual e-2<l> factor. Thus, we find that the R-R fields do not couple to 
the dilaton if they are suitably defined. This is contrary to the case of the NS-NS 
B field, for which such rescaling is not possible. It protects certain quantities 
associated with D-branes from string loop and nonperturbative corrections. 

1.2.2 Description of NS and Dp-branes 

NS 1-brane is simply the fundamental string itself. NS 5-branes are described 
as nontrivial conformal field theory background [9, 10], as are the 5-branes in 
heterotic theories [11, 12], although such descriptions are often not adequate or 
convenient. Dp-branes, on the other hand, has a elegant description in terms of 
worldsheets with boundaries within the framework of perturbative string theory 
and amenable to many calculations. A precise formulation for general situation 
will be given in §2. Here we review the simple case of flat D-branes in flat space. 
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Recall that on a worldsheet there are ten fields parameterize its embedding 
in the 10d space-time, XI-', /l = 0, ... ,9. If in addition to closed worldsheets, 
one allows the possibility of worldsheets with boundaries, i.e. open strings, then 
one also have to specify boundary condition for the fields X. There are two 
distinguished choices: Neumann boundary condition 

(1.2.1) 

and Dirichlet boundary condition 

(1.2.2) 

One can see that the latter means the tangential derivative of XI-' along the bound­
ary vanishes. In other words, the string is stuck at the boundary to some fixed 
value for XJ1.. Thus p+ 1 Neumann boundary condition and 9 - p Dirichlet bound­
ary condition describes a fundamental string ending on (p+1) dimensional object 
which has been named a Dp-brane as depicted in figure 1.52 • In any case, su­
persymmetry between X's and the worldsheet fermions '!jJ's lead to the boundary 
conditions 

(1.2.3) 

with the same choice of sign for all /l. 
Impose the boundary conditions as a constraint one may proceed to quantize 

the theory of open strings. The collective excitation of a Dp-brane is described 
by the fluctuation of such open strings. Here we shall sketch the results when the 
two boundary of the string share the identical conditions. More general scenarios 
will be discussed in §4.3 Using (half) cylindrjcal coordinate to parameterize the 
open string so that the two boundaries are at (11 = 0 and 7r respectively, then (eq. 
1.1.11) and (eq. 1.1.22) still hold but with left and right oscillators no longer inde­
pendent - only one set is. Roughly one gets the Hilbert space of only, say, the left 
movers of close superstring. The zero modes, x and p, , are also affected. Quan­
tizing a coordinate with Dirichlet boundary condition yields a massless space-time 
scalar along the associated direction in its spectrum. This is a Goldstone boson 
signalling the spontaneous breaking of translation invariance along that direction 
- it parameterizes fluctuation. As will be discussed in §2.1.3, Neumann bound­
ary condition preserves translation invariance. Quantizing coordinates under its 
influence yields a gauge potential propagating in the D-brane worldvolume. 

The choice of sign in (eq. 1.2.3) divides the Hilbert space into two sectors 
analogous to the situation for close superstring. The overall choice of sign is 
immaterial as it can be changed by a field redefinition of '!jJ, but the relative sign 
does. If one chooses opposite signs, the fermion oscillators' mode number are 
half integral. The Hilbert space is that of NS sector. If one chooses the same 
sign, those mode numbers are even and the Hilbert space is that of the Ramond 

2In particular, if p = 9,'the D9-brane fills the whole space. For this case there are additional 
consistency conditions, which, when satisfied, yields the type I string theory. 
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Figure 1.5: A D-brane is where strings can end 

sector. As expected the ground state of the Ramond sector transform as spinors 
of Spin(l, 9), which is broken by the boundary conditions into the products of the 
Lorentz groups for the worldvolume and the space transverse to it, Spinll x Spin..l' 
One must also take the GSO projection to keep only spinor of a definite 10d 
chirality. The fields surviving the projection complement the fields from the NS 
sector to make complete supermultiplets with 16 supercharges. This suggests, and 
will be shown in §2.1.3, that exactly half of the 32 space-time supercharges in 
flat 10d space are broken by the presence of a D-brane. They generate Goldstone 
fermions. 

Partial breaking of supersymmetry is one of the salient attributes of a p-brane. 
As supersymmetry transformations close into translation, this follows from their 
tautological property of breaking translation invariance. On the other hand, for 
p-branes that are flat and have not boundary, some translation invariance re­
mains. It turns out that for those p-branes, precisely one half of the original 
(vacuum) supersymmetry are broken. This remaining supersymmetry imposes se­
vere kinematic constraint on the property of the p-branes that are often expressed 
as nonrenormalization theorem. 
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1.3 Unifying string theories and p-branes 

One of the unexpected consequences of studying the rich variety of p-branes 
in string theory has been a set of duality transformations that relate them among 
each other and unify the different perturbative forms of string theories. 

1.3.1 ,T-duality 

The simplest of them is the T-duality. Consider a type II string theory (either 
type A or B) in space-time R9 x SI with the radius of circle being R. An immedi­
ately consequence of this compactification is that the string can wind around the 
circle for an arbitrary number of times 

X 9 (a + 2rrR) = X 9 (a) + 2mrrR. 

This means the general solution to the equation of motion for X 9 is no longer (eq. 
1.1.11) but 

X 9 =Xi+Xk; 

with independent left and right moving part, even for the zero modes: 

9 n mR 
PR=---' 

R 2 

Here n is the quantum of center of mass momentum along the circle. Then allowed 
values for the momenta are simply 

n mR 
PL= R+T' 

n mR 
PR= R --2-' (1.3.2) 

Consider another theory compactified on radius R' = ~. If we interchange n 
and m i~ (1.3.2), then we can identify the momentum operator for R' = ~ with 
that of R with the isomorphism 

(1.3.3) 

by interchanging the labels nand m. Now extending this to an isomorphism of 
the fields in the two theories, the commutation relation between XL,R and PL,R 
forces us to require also 

(1.3.4) 

In order to have the space-time interpretation of this duality as inverting the 
radius of (or equivalently the metric Gij on) the circle, we need to transform the 
oscillators as well: 

(1.3.5) 
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(eq. 1.3.3), (eq. 1.3.4), and (eq. 1.3.5) can be combined into a more compact 
form 1: 

XL B X~; XR B -Xk. (1.3.6) 

This isomorphism of operators clearly translates into an isomorphism between 
Hilbert spaces. As a check, one can evaluate the path integral of the worldsheet 
theory on closed Riemann surfaces of arbitrary genus. There R -+ ~ is an invari­
ance provided one shifts the constant dilaton field appropriately. See [13] for more 
details. To show that the two theories are :tctually equivalent, we have also to 
show that this map is an operator algebra isomorphism. This is easy, since both 
theories are free and their operator product expansions can be computed exactly. 
Thus R -+ ~ is an exact symmetry of the string action, on arbitrary Riemann 
surfaces. But is it really a symmetry of the space-time theory that the worldsheet 
action describes? From earlier discussion of string perturbation, we see that it is 
a symmetry of string theory order by order in string perturbation expansion. In 
fact, it is a gauge symmetry of the bosonic string theory. 

Now let us briefly review how the T-duality R -+ ~ acts on superstring 
compactified on M9 x 8 1 . Recall that this duality involves the isomorphism 
aXl B axE' and aXk ++ -aXk'. The same clearly carries over to superstrings, 
but we also have to respect the worldsheet supersymmetry. It is clear that the 
isomorphism for the worldsheet fermions should be ¢'i B ¢'i' and ¢~ B -¢~'. In 
particular, the zero mode of ¢9 in R seCtor, which acts as r 9 on the right movers, 
changes its sign. This means that the relative chirality between the left and right 
movers is flipped. Therefore R -+ ~ maps type II A superstring compactified on 
a circle of radius R to type IIB superstring on a circle of radius l This is an 
identification of two different types of theories, rather than a gauge symmetry as 
in the case of bosonic string. 

T-duality also connects the two type of Heterotic strings. When they are 
compactified on a circle, one can break the gauge symmetries of both theories down 
to SO(16) x 80(16) by turning on their respective Wilson lines appropriately. The 
resulting configurations are related by a T-duality transformation. 

1.3.2 Dp-branes from type I string theory 

So far we have only considered T-duality for closed strings. When bound­
ary conditions are involved, T-duality introduces more surprises - it exchange 
Neumann (eq. 1.2.1) and Dirichlet (eq. 1.2.2) boundary conditions. Therefore 
Dp-branes and D(p+1)-branes are mapped into each other. The massless scalar 
on a Dp-brane that corresponds to the Goldstone mode for translation along the 
T-dualized direction is exchanged with the Wilson line along the same direction for 
the gauge potential on the the dual D(p+1)-brane. In particular, one can obtain 
Dp-branes for all possible values of p by repeatedly compactifying type I string 

1 As a side remark, we note that this is a two-dimensional version of the "electro-magnetic" 
duality. 
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theory on circles and perform T-dualities. These mappings of branes constitute 
an important part of the nonperturbative definition of T -duality. D-branes are 
solitonic objects whose tension are inversely proportional to the coupling constant 
of string perturbation expansion. Excitations on them correspond to nonpertur­
bative states of string theory. At the same time they are also charged under the 
appropriate R-R fields. If T-duality holds nonperturbatively, it maps the states 
and the fields of the dual pairs in a consistent way. 

Because NS5-branes are represented in string theory by a nontrivial conformal 
field theory in the space transverse to the branes, T -duality along worldvolume 
direction of a NS5-brane just returns another NS5-brane wrapping around the 
dual circle. T-duality along a circle transverse to a NS5-brane maps it to some 
other space-time (metric) background [1,4]. 

1.3.3 S duality of type lIB superstring 

While T-duality can be formulated perturbatively, there are also duality trans­
formations that are inherently nonperturbative. A famous example is the S-duality 
of type lIB string theory [15]. All other nonperturbative string dualities can be 
constructed by conjugating :with T-dualities. In type lIB string theory's massless 
spectrum, in addition to the graviton, there are two scalar fields, the dilaton cp 
and axion X, two rank two antisymmetric tensor fields, B~v, i = 1,2, and a rank 
four antisymmetric tensor field. Organizing the two real scalars into one complex 
scalar: 

p = X + iei2</J, (1.3.7) 

then the S-duality acts on it by 

p -+ -lIp, (1.3.8) 

which is why it can not be seen perturbatively. It transforms the two 2-forms by 

(1.3.9) 

while leaving the 4-form invariant. Therefore it exchanges fundamental strings 
with D 1-branes, NS5-brane with D5-brane, but leaves D3 branes unchanged. 

Type I string theory can be obtained by introducing 32 D9 branes in type lIB 
string theory and impose a projection. This projection eliminates the axion, one 
of the two 2-forms, and the 4-form. Therefore this S duality cannot be a sym­
metry of type I string theory; rather it map it to another string theory, Heterotic 
Spin(32)/Z2. Again it maps D1-branes to fundamental strings and D5-branes to 
heterotic 5-branes. 

Therefore, we see that all five types of perturbative string theory and the 
p .. branes they admit are unified by T and S dualities. 

21 



Chapter 2 

General Formulation of Dirichlet p-Branes 

2.1 D-branes and boundary conformal field theory 

As mentioned in chapter 1, D-branes are Ramond-Ramond charged BPS soli­
tons in type n string theories [7]. In the presence of a D-brane, the boundary 
conditions for open strings are modified in such a way that Dirichlet boundary 
conditions are allowed in addition to the Neumann boundary conditions. Ear­
lier study of D-branes has been mainly restricted to the cases where the D-brane 
worldvolume is flat. In [16], a study of D-branes wrapped on curved spaces has 
been carried out in the long wavelength limit. 

In this chapter we will present a framework at the. SCFT level for the study of 
D-branes on Calabi-Yau spaces. Perturbative string computations in the presence 
of a D-brane can be formulated by using a boundary state which describes how 
closed strings are emitted or absorbed on the D-brane worldvolume. In the case 
of the fully Neumann boundary condition near the flat background, the boundary' 
state was constructed in [17]. One of our 'Objects of study is the boundary state for 
a D-brane wrapping on a non-trivial supersymmetric cycle in a Calabi-Yau space. 
In particular, we examine how the geometric data on the cycle are encoded in the 
boundary state. 

Although Calabi-Yau compactifications are the most thoroughly studied, there 
are other, "exceptional" compactifications. They are of particular interest in ap­
plication to M and F theories and result in an amount of supersymmetry that 
is phenomenologically interesting. Again we use the boundary SCFT approach 
to study supersymmetry preserving D-branes in these spaces. Along the way, we 
shall also find an exceptional type of supersymmetric cycles in Calabi-Yau 4-fold 
with a surprising property 

This chapter is organized as follows. In sect\on 1 we review the notion of 
string compactification and give the general formulation of D-brane' in term of 
boundary conformal field theory. In section 2 we classify boundary conditions for 
N = 2 SCFT which preserves half of the space-time supersymmetry and the N = 1 
worldsheet supersymmetry. We then examine how these boundary conditions are 
realized by D-branes wrapping on cycles in a Calabi-Yau manifold. In section 
3 we will study the algebraic and geometrical structures of the boundary states 
of D-branes wrapped on supersymmetric cycles in Calabi-Yau spaces. We will 
distinguish between the middle-dimensional and even-dimensional cycles, and find 
the dependence of the boundary states on the choice of the cycles as well as the 
complex and Kahler moduli of the Calabi-Yau space. For illustration we discuss 
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the construction of boundary states for Gepner models, exhibiting the relation 
between the boundary conditions for the model and the supersymmetric cycles. 
In section 4 we will analyze some exceptional types of supersymmetric cycles: the 
Cayley cycles in 8d 8pin(7) holonomy and Calabi-Yau manifolds, the associative 
and coassociative cycles in seven-dimensional G2 holonomy manifolds. We will find 
that the Cayley 4-cycle in 8U(4) holonomy Calabi-Yau 4-fold is novel in that it 
preserves only one quarter of space-time supersymmetry, while the others preserve 
as usual half of the supersymmetry. We also present some simple examples of 
supersymmetric cycles in Calabi-Yau 4-folds. 

2.1.1 String compactification in curved spaces 

The restriction on-space-time dimension by requiring quantum mechanical con­
sistency that we reviewed in the last chapter is a striking result. Some analog of 
it may one day tell us why we live in three spatial and one temporal dimensions. 
However, as a candidate theory of everything, string theory faces the immediate 
criticism that it gives us too many dimensions. Naturally one entertains the pos-
sibility that the true space-time takes the form of a direct product F x M, where ": 
F is the "observable" space-time, in real life the 4-dimensional Minkowski space, 
and M an extremely tiny compact manifold that our crude probes of nature have 
so far failed to reveal. This idea was formulated in the form of Kaluza-Klein pro­
gram long before string theory was invented. However, string compactifications 
iD;troduce interesting "stringy" effects not seen in the usual Kaluza-Klein schemes. 

For a string propagating in a F x M background space-time with constant 
VEV <I> for the dilaton, we may absorb <I> intq the string coupling constant. The 
conformal gauge action is then 

(2.1.1) 

where we have set a' to 2 by choosing a unit" of length. Because of the direct 
product structure of F x M, 8 can be split into an external part 8F involving 
coordinates on F and an internal part 8M on M, which can be studied separately. 
The analysis of 8 F is trivial and all the interesting consequences of compactifica­
tion come from 8M . In the last chapter we reviewed briefly string theory in flat 
space-time, including toroidal compactifications. However, many more interesting 
and potentially phenomenologically relevant physics appear for more complicated 
choices of M. In this chapter we define D-branes for general compactifications. 
Although the ultimate goal of string theory is to describe the D = 4 world we live 
in, it turns out to be very instructive and enlightening to consider choices of M 
other than six dimensional manifolds. 

From the last chapter we see that conformal invariance and hence cancellation 
of conformal anomaly is crucial for a consistent string theory. Generic conformal 
field theories do not have a space-time interpretation. Since only the space-time 
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in the uncompactified Minkowski space is observable, one may consider using 
arbitrary CFT to represent the effects of "compactification" even if they do not 
have any space-time interpretation like that of (2.1.1). This is consistent as long as 
they have the right amount of central charge so that the total conformal anomaly 
still cancels. The formulation of D-branes presented in this chapter is based on 
general properties of conformal field theories and therefore applicable to these 
types of compactifications as well. However, when a space-time interpretation is 
available for the CFT, we will still be able to recover the geometric features of 
the D-branes. Almost all works on string compactification being studied preserve 
some amount of supersymmetry, for both phenomenological and technical reasons. 
We sha]l also specialize to D-branes in supersymmetric compactifications that 
preserves some supersymmetry, known as supersymmetric cycles. Such D­
branes share many of the properties of BPS states in supersymmetric field theories. 
For example, their energy density in the uncompactified space and the multiplet 
structure of their long wavelength collective excitation are both protected form 
radiative corrections. (In certain compactifications and limits they truly become 
BPS states in the approximating field theories.) This allows one to study them 
within perturbative string theory yet obtain results that are nonperturbatively 
correct [18]. 

2.1.2 Boundary conformal field theory 

A D-brane is where strings ca~ end. This most succinctly characterizes a D­
brane from the worldsheet viewpoint. We are thus led to examine the ramification 
of boundaries for worldsheet theories. For the worldsheet Lagrangian (eq. 1.1.8), 
conformal invariance is of uttermost importance. It is a residual gauge symmetry 
and generated by two copies of the same algebra (eq. 1.1.7) or its quantum defor­
mation (eq. 1.1.9). In the presence of a boundary, half of this gauge symmetry is 
fixed by a choice in representing it, e.g. the real axis of the upper complex plane 
or the perimeter of a disc. The rest remains and generates a single copy of the 
virasoro algebra. This half breaking of conformal invariance is expressed by the 
boundary condition 

T=T (2.1.2) 

along the boundary of the worldsheet. 
There are two ways to implement this type of boundary conditions. If the 

boundaries are timelike on the worldsheet, as in figure 2.1a, one imposes (eq. 2.1.'2) 
or rather its solution in terms of boundary conditions for fundamental fields, as 
constraints in quantizing this open string theory. If the boundary is spacelike, as 
in figure 2.1b, it can be realized as a boundary "state" IB)) that satisfies 

(T - T) IB)) (2.1.3) 

Written in terms of the Fourier modes of T and T, this can be written as 

(Ln - L-n) IB)) (2.1.4) 
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-a. Open string 1-loop b. Closed string exchange 

Figure 2.1: Open string one-loop v~. closed string exchange. 

General solutions of this equation have been found [19]. Associated with every 
representation j of the Virasoro algebra is an independent solution of (eq. 2.1.4). 
Denote by Ij, n), Ij, n) an orthonormal basis of j. The corresponding solution is 

Ij)) = E Ij, n) ® Ulj, n), (2.1.5) 
n 

where U be an antiunitary matrix that preserves the highest weight state Ii) and 
commutes with the £'s. The general solution to .(eq. 2.1.4) is an arbitrary linear 
combination of such Ii)) 'so 

The above two ways of formulating boundary conditions in conformal field the­
ory are equivalent. Some worldsheet diffeomorphism not connected to identity can 
exchange them so that the same amplitude can have two different interpretations. 
For instance, in figure 2.1, an one-loop diagram from the open string fields between 
two D-branes is related to an exchange of close string fields between them. They 
fit the above mentioned two situations respectively.· In practice, the boundary 
state formalism provides a concrete object to associate with a D-brane and yields 
more easily to computation. We shall use it in §2.3 and the next chapter. The 
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relative phase between the left and right movers in the boundary conditions can 
change, depending on the spin of the worldsheet fields involved, after a worldsheet 
diffeomorphism swapping time and space. As a result, open string constraint is 
slightly more intuitively at the level of current algebra and will be implicitly used 
in other parts of this chapter unless stated otherwise. 

For all the cases studied here, there are also additional generators in the chiral 
algebra. For instance, N = 1 superconformal invariance (eq. 1.1.24) adds the 
generate G and G. In general, a conformal field theory we study will have some 
chiral algebra of interest A x A. A and A are the isomorphic symmetry algebra for 
the left and right movers respectively. The boundary condition breaks the left x 
right algebra down to a diagonal part in the following fashion. Let A be generated 
by :ri and A by ji. The general boundary conditions are 

(2.1.6) 

UJ is not an arbitrary matrix. (eq. 2.1.6) must respect both the left and the right 
moving current algebra A and A. Therefore UJ must be an automorphism of A. 
The allowed choices for U classify the possible boundary conditions. 

Again take the N = 1 super-Virasoro algebra (eq. 1.1.24) as example. Because 
it generates the residual gauge symmetry of the superstring worldsheet, it enters 
in every case we shall study here and must always be half preserved in the above 
fashion independent of any additional chiral field of interest. This algebra contain 
a Z2 automorphism, associated with the choice of sign for G and G. We already 
encountered it when discussing the (anti-) periodicity of the fermionic elements. 
Thus the additional boundary condition is 

G=±G. (2.1.7) 

In the situations of figure 2.1, only the relative choice of signs on the two boundary 
matters, as the Z2 automorphism of the algebra changes the overall sign. 

2.1.3 Preserving supersymmetry 

We now apply the above formalism to reexamine the flat D-branes introduced 
in the last chapter. For those simple case the language of boundary conformal 
theory is not mandatory since the worldsheet theory is free. Nonetheless it is an 
instructive preparation for more complicated compactifications. The close string 
worldsheet theory has (8,8) superconformal symmetry. In addition lOd super-

. Poincare symmetry is also reflected on the worldsheet as a chiral algebra. Its gen­
erators are ax/-, and 'IjJ/-', J.L = 0, ... ,9, and, in the Ramond sectors, the Spin(l, 9) 
spin fields sa, along with their right moving counterparts. Their current alge­
bras are (eq. 1.1.14), (eq. 1.1.23), and (eq. 1.1.25). Space-time translation are 
generated by 

(2.1.8) 
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and Lorentz rotation by 

(2.1.9) 

Since the Poincare symmetries are generated by a particular linear combination of 
left and right moving chiral fields, the only allowed boundary conditions for ax's 
and 'IjJ's are 

axl-' = [}Xl-', 

'ljJ1-' = ±;jJI-'. (2.1.10) 

So far the choices of signs for different I-" are independent. However, the N=1 
super-Virasoro algebra must be separately preserved in half as mentioned earlier. 
As G ,....., 'ljJ8X, this forces the the same sign to be chosen for alII-" in (eq. 2.1.10). 

The space-time supersymmetries are generated simply by sa and sa, inde­
pendently. (eq. 1.1.25) thus allows 

s=±s. 
for the choice of "+" sign in (eq. 2.1.10) and 

S = ±XlOS. 

(2.1.11) 

(2.1.12) 

for "-" sign. Here X10 is the lOd chirality operator. We have to take into account 
the GSO projection. The above boundary conditions on spin fields are therefore 
only sensible in type lIB theory, in which the surviving Sand S have the same 
chirality, say, positive under XlO • So (eq. 2.1:11) is sufficient. Note that exactly 
half of the supersymmetry of type II B theory survives it. 

Now we would like to relax the condition and require that only (l+p)­
dimensional Poincare invariance and an Spin(9-p) global symmetry ofthe original 
lOd Poincare invariance of the space-time. Some analysis shows that this allows 
some new possibility: 

RIl- [}x v . v , 

±Rl-'v'IjJ'R· 

(2.1.13) 

(2.1.14) 

Here R is a real 10 by 10 matrix that can be diagonalized into two blocks of size 
p+ 1 by p + 1 and 9 - p by 9 - p respectively: 

R=(lI 0) o -ll 
(2.1.15) 

The eigen-subspace of R with +1 eigenvalue retains the (p+1)d Poincare invari­
ance. Let it be parameterized by XPA, A = 0, ... ,po The transverse space has 
only rotational invariance. Note that (eq. 2.1.10) is the special case of (eq. 2.1.13) 
with p = 9. 
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The boundary condition for the spin or part is slightly more involved. For that 
we define the worldvolume chirality operator 

XP+1 = (_1)(p+2)(p-l)/2r . 
Po···fJp (2.1.16) 

and a modified version of it, 

{ 
XP+l (p = even)',. 

XP
+1 = XlOXp+1 (p = odd). 

(2.1.17) 

xp
+1 has the useful property 

(2.1.18) 

Now we can write down the boundary condition for the spin fields consistent with 
(eq. 1.1.25): 

(2.1.19) 

Note that once again exactly half of the supersymmetry are broken. This con­
straint makes sense for type lIA if p is even and type lIB if p is odd. The special 
case p = 9 reduces to earlier results (eq. 2.1.11). 

2.1.4 Supersymmetric cycles 

In general, (eq. 2.1.19) tells us how to realize the breaking of space-time super­
symmetry with worldsheet boundaries. In curved space-time, a smaller amount of 
supersymmetry exists then in flat space. The spin fields representing them take 
the form 

(2.1.20) 

and 
(2.1.21) 

where both ( and ( are covariantly constant spinors. The boundary condition (eq. 
2.1.19) can be translated to a statement meaningful within a low energy effective 
theory approximation: 

(2.1.22) 

Therefore at least half of the space-time supersymmetry is broken by the presence 
of a D-brane. We shall explore its ramification in the remainder of this subsec­
tion. Along the way we shall gain useful insights into the physical properties and 
geometric attributes of supersymmetric cycles. 

For D-brane of general shape in general space-time, the covariantization of (eq. 
2.1.22) is tantamount to replacing XP+1 with its covariantized form 

1 EAo ... Ap 
p+1 = 8 XlJ.o.··8 xlJ.pr 

X - (p + I)! y'g Ao Ap IJ.O ••• lJ.p (2.1.23) 
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A space-time supersymmetry transformation is preserved by the presence of the 
D-brane only in if (eq. 2.1.22) is satisfied and both ( and ( = XP+1( are preserved 
by the compactification. 

Unless explicitly stated to the contrary, we shall assume in this chapter that 
the D-brane worldvolume lie entirely within the internal space M. It is therefore 
at a point in Fl. One can always write a lOd space-time spinors can as a linear 
combination of 

(2.1.24) 

Here (F and (M are spinors under SpinF and SpinM, the spin groups for the exter­
nal and internal spaces respectively. The criterion for space-time supersymmetry 
surviving compactification is that (M be a covariantly constant spinor of M2. (eq. 
2.1.22) means that given a covariantly constant spinor (1 of M, to get a space-time 
supersymmetry preserved by the D-brane, it must pair up with another covariantly 
constant spinor (2 so that 

(2 = XP+1(l' 

If this is satisfied, because (Xp+1)2 = 1, 

with 
(± = (1 ± (2 

Define the chiral projection operators for the Dp-brane 

P!+1 = ~ (1 ± :RP+1). 

(eq. 2.1.26) can be rewritten as 

The sign choices in the same equation are correlated here and below. 
(eq. 2.1.29) has an interesting interpretation. Consider the inequality 

,t pP+1pp+1, _,t pp+1, > 0 
'>'F ± ± '>'F - '>'F ± '>'F - • 

Scale ( to unit norm, and the last inequality turns into 

Here 

(2.1.25) 

(2.1.26) 

(2.1.27) 

(2.1.28) 

(2.1.29) 

(2.1.30) 

(2.1.31) 

(2.1.32) 

lSupersymmetry condition for the D-brane with worldvolume in F can be readily studied 
separately or obtained from T -duality. 

2Here we are assuming vanishing background for antisymmetry tensor field strengths 
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and f* is the pullback associated with the embedding map XI-'(A) of the D-brane: 

(2.1.33) 

The spectrum of antisymmetric tensors from decomposing the products of co­
variantly constant spinors are an important characteristic of the compactification 
manifold M [20, 21]. In later sections of this chapter we will see examples of them 
and their physical applications. 

Because (" and ( are covariantly constant, so are the forms p's. In particular 
they are closed. Mathematicians refer closed differential forms that satisfy (eq. 
2.1.31) as calibrated [22, 34]. Since J9EAo ... Ap is the volume form of Dp-branes, 
integrating (eq. 2.1.31) over any submanifold '"'( of M yields 

(2.1.34) 

If (eq. 2.1.31) saturates for some ,",(, '"'( is said to be calibrated by p. It has the 
_ minimal volume in its homology class: if '"'(' differs from '"'( by a boundary 8{3, one 
has 

vol('"'(') ~ 1 p = 1 p = vol('"'(). 
'Y' 'Y 

(2.1.35) 

(eq. 2.1.34) and (eq. 2.1.35) have physical interpretations. (eq. 2.1.34) resembles 
a Bogomolnyi bound - the mass or tension is greater th~n or equal to the charge 
of a Dp-brane, in appropriate units. (eq. 2.1.35) says no smooth deformation 
can make a supersymmetry preserving Dp-brane smaller in volume. This fits with 
the notion that supersymmetry implies stability - the configuration of a D-brane 
can hardly be stable if it has finite tension yet can shrink in size smoothly. To 
conclude, supersymmetric cycles are submanifolds calibrated by forms 
coming from products of covariantly constant spinors. 

2.2 Supersymmetric cycles in Calabi-Yau manifolds 

The most thoroughly studied class of string compactification is that over 
Calabi-Yau manifolds, and among them Calabi-Yau 3-folds (6 real dimensional) 
in particular. All Calabi-Yau compactifications have the common feature that the 
conformal field theory for the internal space possesses at least N=2 superconformal 
symmetry. 

In this section we will classify the boundary conditions for N = 2(4) SCFT 
which preserves half of the space-time supersymmetry as well as the worldsheet 
superconformal symmetry. We will then examine how these boundary conditions 
are realized by D-branes wrapping on cycles in a Calabi-Yau manifold. Here we 
will consider the case when the sigma-model for the Calabi-Yau manifold has one 
set of N = 2(4) superconformal algebra for the left-movers and one set for the 
right movers. It is straightforward to extend this analysis to the case where we 
have more than one set of N = 2(4) algebras, such as T2d with d ~ 2. 
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The supersymmetric cycles we find below are universal to all Calabi-Yau com­
pactifications. They share the property of preserving exactly one half of the super­
symmetry of type II string theory with those compactifications. Generically they 
are the only possibility for preserving space...;time supersymmetry. For Calabi-Yau 
4-fold, however, there are an exceptional type that breaks 3/4 of the space-time 
supersymmetry, to which we shall to in §2.4.2. 

2.2.1 Boundary conditions for N = 2 SCFT 

The supersymmetric sigma-model for a Calabi-Yau manifolds has N = 2 su­
perconformal algebra (SCA). Throughout this chapter, we set the signs of the left 
and the right U(l) currents to be 

which determines the convention for G±· as 

9ij'l/Ji8XJ, Gi = 9iJv{8Xi , 

9iJ'¢k8XJ , Gil = 9iJ~8Xi. 

(2.2.1) 

(2.2.2) 

In addition, in order to preserve half of the space-time supersymmetry, we should 
take into account the spectral How operator eitfJL defined by 

(2.2.3) 

This and its complex conjugate are the squares of the spin fields associated with 
the covariantly constant spinor on the Calabi~ Yau. They are more convenient to 
use than the spin fields. Here n is the holomorphic d-form on the Calabi-Yau 
d-fold and JL = i8c/>L. Note that, in this convention, the N = 1 supercurrent is 
generated by 

(2.2.4) 

In order to represent a BPS saturated state in space-time, the boundary must 
preserve half of the space-time supersymmetry. Thus we require the boundary 
state to be invariant under a linear combination of the left and right N = 2 
algebra extended by the spectral flow operators. As discussed earlier, consistency 
restricts the linear combination to correspond to the automorphism group of the 
algebra. The automorphism is 0(2) for N = 2 SCA and Z2 for N = 1. Since the 
supercurrent G is gauged, its form should be preserved. Thus we are left with a 
Z2 x Z2-wise choice: 
A-type boundary condition:1 

(2.2.5) 

1 In this section we write boundary conditions in the notation appropriate for the open string 
channel. 
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B-type boundary condition: 

JL = +JR , Gt = ±G"k, ei4>L = (±I)dei8ei4>R. (2.2.6) 

The phase factor ei8 will be determined later. In the A-type boundary condition, it 
can be absorbed in the definition of n. This is why we did not put the phase factor 
in (eq. 2.2.5). Clearly both A-type and B-type boundary conditions preserve the 
N = 1 SCA 

(2.2.7) 

where T denotes the stress tensor. It should be noted that the mirror symmetry 
exchanges the A-type and the B-type boundary conditions. 

2.2.2 N = 4 SCFT 

In the case of string compactification on K3, the spectral flow operators have 
the conformal weight 1. Combined with the U(I) current J, they form the affine 
8U(2) algebra and N = 2 SCA is extended to N = 4. For later convenience, let 
us write the holomorphic 2-form and the Kahler form as 

n = kl + ik2, k = k3
. (2.2.8) 

The 8U(2) currents are then 

J I = ki ./'/-'.1,11 (/ 1 2 3) 
/LII'PL'PL =,." (2.2.9) 

where the indices IL, v refer to real coordinates on K3. 
In addition to G±, we have two more supercurrents, which together with the 

original two form a .4 of 80(4), the automorphism group of N = 4 SCA. The 
automorphism consists of the internal and the external parts, 8U(2)c x 8U(2)" 
where 8U(2)c is generated by the 8U(2) currents Ja and 8U(2), is the external 
automorphism of the N=4 SCA [23]. We can then organize the four supercurrents 
as (.~, 2) of 8U(2)c x 8U(2), as 

G+­

G-+ 
9i31fJiax3, G++ = nij1fJiaxj

, 

gij1/llaxi
, G-- = fl"[j1fJiax3. 

In this notation, the N = 1 supercurrent G is 

G = G+- +G-+, 

(2.2.10) 

(2.2.11) 

which is a singlet under the diagonal action of 8U(2)c x 8U(2),. Since G is fixed, 
a general boundary condition which preserves both the N=4 and N=1 should 
only involve the diagonal subgroup of 8U(2)c x SU(2)" Le. 80(3) in the full 
automorphism 80(4). By decomposing the four supercurrents into ~ and 1 of 
80(3), the most general boundary condition is written as 

Ji = UIJJ~, Gi = ±UIJG~, G L = ±G R, (1, J = 1,2,3), (2.2.12) 

where U E 80(3). 
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2.2.3 Geometric realization - general case 

We would like to find out how the ab<?ve classification of supersymmetric 
boundary conditions corresponds to that of D-branes in a Calabi-Yau manifold 
M. In this section, we seek this identification in the large volume limit of M, 
where we can treat the sigma-model semi-classically. 

We begin by noting that (eq. 2.2.7) is solved by 

(2.2.13) 

for some matrix R provided it satisfies 

(2.2.14) 

The eigenvector of R with eigenvalue (-1) gives the Dirichlet boundary condi­
tion for X, and thus should correspond to directions normal to the D-brane. If 
the matrix R is symmetric, the orthogonal directions are also eigenvectors of R 
with eigenvalues (+1), and thus they obey the Neumann boundary condition cor­
responding to the tangential directions to the D-brane. In general, however, R . 
does not have to be symmetric, and this gives rise to a mixed Neumann-Dirichlet 
condition. As we will see, this corresponds to the case when the U(I) gauge field 
on the D-brane worldvolume has non-zero field strength. 

In the neighborhood of a (p + I)-cycle 'Y on the Calabi-Yau d-fold, we can 
choose local coordinates such that x A (A = 1, ... , (p + 1)) are coordinates on the 
cycle and ya (a = 1, ... , 2d - (p + 1)) are for the directions normal to 'Y. Clearly 
(2d - (p + 1)) is equal to the number of (-1) eigenvalues of R. 

Suppose the D-brane wrapping on 'Y gives, the B-type boundary condition. It , 
follows from (eq. 2.2.6) that R shmild satisfy 

(") RP-I RP-d 
~ GI-'I.·.P-d VI· • • Vd 

The first of these equations implies 

(2.2.15) 

(2.2.16) 

namely the Kahler form k must be block diagonal on 'Y in the tangential and 
the normal directions to 'Y. Since k is nondegenerate, kAB and kab must also 
be nondegenerate. This means the dimensions (p + 1) of the cycle must be even. 
Because k is block diagonal, we can use it to define almost complex structure on the 
cycle. In fact it is integrable and defines a complex structure on the cycle. Thus 'Y 
is a holomorphic submanifold of M. In the complex coordinates, the nonvanishing 
components of the top form n has (p + 1) /2 holomorphic indices tangential to 'Y 
and d - (p + 1) /2 holomorphic indices normal to it. This determines the phase ei () 

in (2.2.15) in terms of the background gauge field on 'Y. In particular when the 
gauge field is fiat, we find ei () = (-1 )d-(P+l)/2. 
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On the other hand, if the cycle corresponds to the A-type boundary condition, 
(eq. 2.2.5) implies 

klowRl-'pRVu -kpu, 

nl-'l ... J.ldRJ.I~l ••• RJ.I;d - nVloooVd· (2.2.17) 

If the background gauge field on 'Y is fiat, R squares to the identity matrix. In 
this case, the first of the above equations implies 

kab = 0, kAB = O. (2.2.18) 

Since k is nondegenerate, this is possible only if (p+ 1) = d. Thus a cycle without 
a gauge field must be middle-dimensional. In this case, all the components of the 
holomorphic d-form n are related to nA1o.oAd as 

(2.2.19) 

for m = 1, ... , d. Since n /\ n is proportional to the volume form of the d-fold, it 
follows that the pullback of n onto the cycle is proportional to its volume form. 
It is easy to generalize this to the case with background gauge field. One can see 
that (eq. 2.2.17) implies (p + 1) = d, d + 2, ... , 2d. The reason for this will become 
clear in the next chapter. 

We can make contact with earlier discussion of minimal cycles. In Calabi-Yau 
manifold, there are two universal types of calibrated forms. One consists of powers 
of the Kahler form, 

kP = 1 k(p+1)/2 
- ((p + 1)/2)! ' 

(2.2.20) 

and the other is constructed from the top holomorphic form, 

(2.2.21) 

They appear in the decomposition of products of the two covariantly constant 
spinors on a Calabi-Yau manifold. In the above we imposed the boundary condi­
tions on n, the square of the corresponding spin fields. By looking at the condition 
for these spin fields directly, one finds that supersymmetric cycles of A and B types 
are calibrated by w() and KP+l respectively. They are known to the mathematicians 
as special Lagrangian and Kahler cycles. The geometric condition for supersym­
metric cycles in the case of p + 1 = 3 also arises from the low-energy effective 
worldvolume action of the supermembrane [24]. 

2.2.4 Geometric realization - K3 

In the case of K3, (eq. 2.2.12) states that kI (1 = 1,2,3) behave as 

kI RJ.I RV - UI kJ 
J.lV P u - J pu· (2.2.22) 
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on the cycle 'Y. By going through some linear algebra, we find that the conjugacy 
class of the rotation U is completely determined by the gauge field. For example, 
in the absence of the gauge field, the matrix U is equal to 1 for O-cycle and 4-cycle 
while it is in the· conjugacy class of 7r-rotation for 2-cycle. To understand this 
more geometrically, we diagonalize U as 

(

cosO 
U=M

t sin~ 
- sinO 0) 

cosO 0 M. 
o 1 

(2.2.23) 

By introducing a new basis by M E 80(3) rotation 

(2.2.24) 

(eq. 2.2.22) is expressed as 

(2.2.25) 

Comparing this with the analysis of the B-type boundary condition in the previous 
subsection, we see that the cycle 'Y is a holomorpbic sub manifold of K3 with respect 
to the complex structure such that 'k3 is a Kahler form and 'k+ is a holomorphic 2-
form. Namely the 80(3) rotation by U reflects the 80(3)-wise choice of complex 
structure for a given metric on K3. This result also agrees with the analysis in 
[24], [16]. 

2.2.5 Summary 

We now summarize our classification of supersymmetric cycles that are uni­
versal to all Calabi-Yau compactifications. For Calabi-Yau 4-fold, additional pos­
sibility appear and will be discussed in §2.4.2. For each complex dimension d of 
the Calabi-Yau manifold, we designate allowed values of (p + 1) (real dimensions 
of the cycle) and their possible boundary conditions by type A, B or the one pa­
rameterized by 80(3). This table is for the case with flat gauge field on 'Y. It is 
straightforward to generalize this to the case with non-zero gauge field strength. 

Table 2.1: Supersymmetric cycles in Calabi-Yau Manifolds 
d 1 2 3 4 

p+1 0 1 2 0 2 4 0 2 3 4 6 0 2 4 6 8 
Type B A B B 80(3) B B B A B B B B AjB B B 
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2.3 Boundary states for D-branes 

In this section, we examine the properties of the boundary states for D-branes 
wrapping on the supersymmetric cycles discussed in the previous section. We will 
show how the geometric data of the cycles are encoded in the boundary states. 

2.3.1 Supersymmetric boundary states 

Type II strings compactified on Calabi-Yau spaces possesses the worldsheet 
N = 2 SCA in both the left and right sectors. As we saw in the previous section, 
a D-brane wrapping on a supersymmetric cycle preserves a linear combination of 
the left and right N = 2 algebras. We would like to study the correspondence, 
D-branes f-t boundary states, for D-branes wrapped on supersymmetric cycles 
in Calabi-Yau spaces. In particular, given a D-brane, we would like to find the 
highest weight states that appear in its boundary state and their multiplicity, 
and conversely for a given boundary state we would like to find the D-brane 
configuration. 

Recall from the analysis of section 2 that, for the closed strings, there are two 
types of supersymmetric boundary conditions: For middle-dimensional cycles, we 
have 

Gt = ±iGR, GL = ±iG1i, (2.3.1) 

and for even-dimensional cycles 

G+L = ±,jG+R, G- ±,jG-~ . L·= ~ R, (2.3.2) 

Here we are using the notation appropriate for the closed string channell. They 
are called the A-type and the B-type boundary conditions. For the K3 case, the 
boundary conditions are parameterized by 80(3) corresponding to the 80(3)­
wise choice of complex structures fora given metric on K3. The boundary states 
realizing the A and B-type conditions should then satisfy 

(Gt =F iGR)IB) = 0, (GL =F iG1i)IB) = 0, (JL - JR)IB) = 0, (2.3.3) 

or 

(Gt =F iG1i)IB) = 0, (GL =F iGR)IB) = 0, (JL + JR)IB) = 0, (2.3.4) 

depending on whether the boundary conditions are A-type or B-type. Let us 
examine the properties of these boundary states. 

IJR ---+ -JR and G~ ---+ iG~ compared to the notation in section 2. 
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I 

2.3.2 A-type boundary condition 

Let us consider first the A-type boundary condition corresponding to middle­
dimensional cycles. The boundary state can be expanded in terms of the Ishibashi 
states as 

(2.3.5) 
a 

where the sum is over the highest"weight states of the N = 2 algebra which appear 
in the Hilbert space of the sigma-model for the Calabi-Yau space M. They may be 
chiral primary states or non-chirals. According to our convention (2.2.2), complex 
moduli of M are associated to (c, c) and (a, a) primary states and Kahler moduli 
are included in and (c, a) and (a, c). 

The requirement that (JL - JR) = 0 at the boundary implies qL = qR for the 
U(l) charges and thus a selection rule for the conformal fields that can contribute 
to the boundary state. In particular, this means that the coefficients in front of 
the (c, a) and (a, c) primaries are zero. In the following we will find an explicit 
form for the coefficients ca for the (c, c) and (a, a) chiral primarystates. 

For the sigma-model, the (c, c) primaries with charge (q, q) correspond to ele­
ments of the middle cohomology Hq,d-q(M) where d = dimcM. It is straightfor­
ward to show that the coefficient ca corresponding to the ( c, c) primary state is 
given by 

(2.3.6) 

where (Otopl is the topological vacuum of the A-model, 'TJab is the topological metric, 
and <Pb is the (c, a) primary field associated to Wb E Hq,d-q(M). By the A-model, 
we mean the one with the topological twist ~uch that Gt and G"R become one­
forms on the worldsheet2

• Since <Pb is physical in the A-model, and one may regard 
Ca = 'TJabCb as a topological string amplitude on a disk with a puncture at z. 

The coefficient Ca may in principle depends on the Kahler moduli (ti, Ii) (i = 
1, ... , hI,I) as well as the complex moduli of M. To ,compute 8t of Ca, we insert 
GtG"R'Pi onto the disk, where 'Pi is an (a, c) primary field with (qL, qR) = (-1,1). 
Since both Gt and G"R are one-forms in the B-model, we can employ the standard 
contour deformation argument in the topological field theory. Taking into account 
the boundary condition Gt = ±iG"R, one finds that the result of this insertion is 
zero. Thus Ca is holomorphic in ti and therefore the instanton approximation to 
Ca is exact. 

Furthermore one can also show that Ca is independent of ti. One way to 
show this is to do the instanton expansion explicitly and verify that the instanton 
correction vanishes due to the fermion zero modes. 

Another way to show this is to insert G"L G1i'Pi where 'Pi is a (c, a) primary 
field with (qL,qR) = (-1,1). In this case, both G"L and G1i are two-forms on 

2Thus the topological vacuum (Otopl has charges (-d/2, +d/2). Since the (c, a) primary field 
<Pb carries charges (q, q ~ d), the total charges of (Otopl<Pb is (q - d/2, q - d/2) satisfying the 
selection rule. 

37 



the disk and we cannot immediately deform their contours. On the disk with one 
puncture at z, there is a global holomorphic (-1) form ~(w) = (w - z)(w - z). 
By multiplying ~, we can convert G"L into Qne-form and we can use the contour 
deformation argument. Since ~(w) vanishes at w = z, where ¢a is located, we can 
move the contour to the Dirichlet boundary where we can convert ~G"L into ~G1i 
since ~ is real-valued on the boundary (We chose the boundary to be 1m w = 0.). 
We can them move ~G1i back and the contour slips out of the disk. Thus we 
have shown that at; of Ca also vanishes. This reasoning is similar to the one which 
shows that the topological metric of the A-model does not receive the instanton 
correction. 

Since Ca is independent of the Kahler moduli, we can take the large volume 
limit in (2.3.6) to show 

(2.3.7) 

where , is the supersymmetric cycle in question. Thus the chiral primary part of 
the boundary state is determined entirely by the homology class of the cycle ,. 

This in particular means that the chiral primary part 

I,) = L cala)Ramond-Ramond, 
tPa:(C,C) 

(2.3.8) 

of the boundary state is a flat section of the so-called improved connection 
[25, 26, 27] for the bundle of Ramond vacua over the moduli space of N = 2 
superconformal field theories (for a review, see also section 2 of [28]). Since it 
plays an important role in the case of the B-type boundary condition in the fol­
lowing, let us demonstrate this fact explicitly here. Let us organize the basis of 
Hd(M) as Wo E Hd,O, Wo E Hd-l,l (a = 1, ... , 'hd-1,1), etc. Then we find 

(2.3.9) 

where yO are the complex moduli of M and D is the covariant derivative on 
the vacuum line bundle C over the moduli space of the N = 2 theories. These 
equations can be summarized as 

(2.3.10) 

where 
(2.3.11) 

and Go is the multiplication by the Yukawa coupling. 
This in particular means that Ca for Wa E Hd-1,1 etc, is obtained by acting with 

Do on Co. Thus the chiral primary part of the coefficients in (2.3.5) is completely 
determined by computing the period 

Co(r) = i 0, (2.3.12) 
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of the holomorphic (d, D)-form. To be precise, this is the case when the complex 
dimension of the Calabi-Yau manifold is less than 4. When d ~ 4, there is some 
subtlety since there may be an element W a ' of Hd-q,q with q ~ 2 which is not 
generated by differentiating Hd,o with respect to the complex moduli. If that is a 
case, we have to evaluate (2.3.7) for such Wa separately. Understanding how this 
procedure works ford ~ 4 would help clarify issues on the mirror symmetry in 
higher dimensions [29]. 

2.3.3 B-type boundary condition 

For an even-dimensional cycle i', the boundary states satisfy the B-type con­
dition (JL + JR)IB) = D. Thus the coefficients ca for the expansion 

(2.3.13) 
a 

vanish for the (c, c) and (a, a) primary states. On the other hand, the coefficients 
for the (c, a) primaries are obtained by 

(2.3.14) 

where (Otopl is the topological vacuum of the B-model, ijab is the topological metric 
and ~a(z, z) is the (c, c) primary field associated to wa in the vertical series of the 
cohomologies Hvertical(M) = EB:=oHq,q(M). The B-model is defined in such a way 
that Gt and Gil behave as one-forms3 . 

By repeating the contour deformation argument as in the case of the A-type 
boundary condition, one finds that ca is independent of the complex moduli y, but 
may depend on the Kahler moduli (t, t). We now present two arguments to show 
that the (c, a) primary part of the boundary state 

Ii') = L cala} Ramond-Ramond, 

4>a :(c,a) 

(2.3.15) 

is "flat" with respect to the improved connection over the Kahler moduli space. 
This determines the (t, t) dependence of ca. 

A simple way to show this is to use the mirror symmetry. Since the mirror 
symmetry transforms the A-type boundary condition into the B-type, the flatness 
property of the state I,) over the complex moduli space for the middle-dimensional 
cycle, should imply the flatness of Ii') over the Kahler moduli space for the even­
dimensional cycle i' provided, and i' are related to each other by the mirror 
transform. 

In the next section, we will use the flatness of Ii') to study the mirror symmetry 
between the D-branes. For the sake of completeness, we therefore give another 

3Thus the topological vacuum (Otop\ has charges (-d/2, -d/2) while wa carries (d - q, q). 
Combined, they satisfy qL = -qR as required. 
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argument for the flatness which stands independently of the mirror symmetry. To 
take a derivative of ca with respect to the Kahler moduli ti, we insert GL G"Ji'Pi on 
the disk, where <Pi is a (c, a) primary field corresponding to an element of HI,I. 
Unlike the case of the complex moduli derivative, however, this does not yet give us 
Dica since GL Gk'Pi is divergent at the Dirichlet boundary. The covariant deriva­
tive Di must be defined in such a way that the contribution from the boundary 
is removed. Since Gk is a one-form in the B-model, we can deform its contour 
on the disk. By taking into account the boundary condition (2.3.4), one finds 
that GL Gii'Pi becomes 8'Pi. The integral of 8'Pi over the disk with the puncture 
reduces to two surface integrals, one around the puncture at z and another around 
the Dirichlet boundary. The former can be evaluated using the Yukawa coupling 
since it is related to the OPE of H1,1 and Hq,q. The latter is canceled by the 
covariantization. This shows 

(2.3.16) 

and similarly 
(2.3.17) 

The flatness of ii') implies that the coefficient Co corresponding to the top 
cohomology Hd,d is holomorphic with respect to the Kahler moduli. It also implies 
that the rest of ca is obtained by taking derivatives of Co with respect to t. Since Co 
is holomorphic in t, the instanton approximation is exact, i.e. Co can be expressed 
as a sum over holomorphic maps from the disk to M such that the boundary of 
the disc is mapped to the cycle i'. When i' is 2q-dimensional, the contribution 
from the constant map can be evaluated by taking the large volume limit as 

Co(i') fV h kq + O(e27rit
) , (2.3.18) 

where k = L:i tiki and we choose ki to be the basis of H1,I(Mj Z). 
The instanton corrections to Co are obtained by replacing the classical inter­

sections in (2.3.18) by quantum ones in an appropriate sense. This in particular 
implies that Co for 0 or 2-cycle does not receive an instanton correction since the 
image of the holomorphic map of the disc does not intersect with the homology 
dual to ki in these cycles. In the next section, we will find that this in fact is 
consistent with the mirror symmetry. 

The expressions (2.3.18) in particular means that the large volume limit of Co is 
a homogeneous polynomial of t and the dimensions of the cycle i' is characterized 
by the degree of the polynomial. One may be worried that this statement is not 
invariant under the integral shift of the theta parameters of the sigma-model, 
ti -+ t i + mi (mi E Z). In fact this shift should mix cycles of different dimensions. 
Consider a cycle i' E Hvertical(Mj Z) and decompose it as 

(2.3.19) 
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where i q E Hq,q(M; Z). The equation (2.3.18) can then be rewritten as 

ea(i) = LIM kqA i; 
q 

1M ek 
A (~q!i;) , (2.3.20) 

where i; E Hd-q,d-q(M; Z) is the Poincare dual of i q. One then finds that the 
shift k -t k + w with wE H2(M; Z) mixes iq's as 

(2.3.21) 

As we will see in the next chapter, this mixing is in accord with the mirror sym­
metry. 

2.3.4 Example: boundary states for Gepner models 

A Gepner model [30] can be viewed as an orbifold construction in which we 
project out states that do no satisfy the required conditions and add twisted sectors 
to the Hilbert space. This suggests that the way to construct the boundary state 
for a Gepner model is to take the product of the boundary states for the minimal 
model parts with the appropriate projection and addition of twisted sectors. 

In the following we consider the simplest example: The (k = 1)3 Gepner model. 
This corresponds to a sigma-model on T2 with Z3 symmetry. In this case, each 
minimal model can be constructed by a free boson. Thus we have 4>i, i = 1,2,3. 
Let us construct the boundary state for a D-brane wrapped on a supersymmetric 
I-cycle in T2. Imposing the A-type boundary conditions implies 

(2.3.22) 

with constants Gi 

(2.3.23) 

where ni are integers and the choice of 0 or 2~ corresponds to the sign of the 
Ramond-Ramond charge (Le. BPS or anti-BPS). For each choice of Gi, the bound­
ary state is uniquely constructed by the standard oscillator procedure. 

It is instructive to interpret this from the sigma-model viewpoint. The sigma­
model for T2 consists of complex free boson X and a complex free fermion 'ljJ which 
are related to 4>i by 

'ljJ - exp [~(4)1 + 4>2 + 4>3)] , 

ax exp [~( -24>1 + 4>2 + 4>3)] + (permutations in 1,2,3). (2.3.24) 
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The boundary conditions (2.3.22),(2.3.23) correspond in the sigma model to 

'l/JL 

ax 
±e 2~i (nl +r;&2+n3)'l/JR, 

e 2~i (nl +n2+n3)ax. (2.3.25) 

The case nl + n2 + n3 = 0 mod 3 corresponds to the Neumann boundary 
condition on the {X = real} cycle of T2, while nl + n2 + n3 = 1 or 2 mod 3 
correspond to Neumann boundary conditions on the Z3 related I-cycles. We see 
thl),t the different choices of boundary conditions for the Gepner model correspond 
to the different choices of supersymmetric I-cycles. We expect that such relations 
between the algebraic and the geometric structures should exist in general. 

The boundary state takes the form IB) = IB)xIB)1/! where 

IB)x exp [_e2~i(nl+n2+n3\~ ~aL,-naR,-n + c.c)] 10), 

IB)1/! = exp [±ie2~i(nl+n2+n3)(~'l/JL,_n'I/JR,_n +c.C)] 10). (2.3.26) 

Note that from the chiral primary states only the (c, c) ring {I, 'l/JL'l/JR} and .its 
complex conjugate (a, a) ring contribute to the boundary state as expected. 

2.4 Exceptional supersymmetric cycles 

In previous sections we studied two types of supersymmetric cycles. Their 
existence and characteristics are intimately tied with the properties of Calabi-Yau 
manifold. Our aim in this section is to study supersymmetric cycles of exceptional 
type that are not complex or special Lagrangian submanifolds. ·For this we turn our 
attention to compactification manifolds with the exceptional Ricci-flat manifold 
with Spin(7) and G2 holonomy [31]. Spin(7) manifold have real dimensional 8 
and G(2) manifold 7. They both have only one covariantly spinor on them. The 
analysis in §2.1.4 still applies and we look for closed forms for these manifolds 
that arise from the products of covariantly constant spinors on them. This is a 
straightforward group theoretic exercise. On Spin(7) one finds manifolds a self­
dual 4-form known as the Cayley calibration on eight-dimensional manifolds On 
G(2) manifolds there are the associative calibration, a 3-form, and its dual the 
coassociative calibration, a 4-form. 

2.4.1 Spin(7) holonomy . 

Let M be an eight-manifold. A Spin(7) structure on M is given by a closed 
self-dual Spin(7) invariant 4-form <P. This defines a metric 9 with holonomy 
group Hol(g) C Spin(7). Such a metric is Ricci-flat. Compact Spin(7) holonomy 
manifolds have been constructed in [32] by resolving the singularities ,-of T8 If 
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orbifolds. Here T8 is equipped with a Hat Spin(7) structure and r is a finite 
group of isometries of T8 preserving that structure. On a Spin(7) holonomy 
manifold there exists one covariantly constant spinor, which will provide us, upon 
compactification, with one space-time supersymmetry. 

The extended symmetry algebra of sigma models on Spin(7) manifolds has 
been found in [31]. In addition to the stress momentum tensor T and its super­
partner G, it contains two operators X and !VI with spins 2 and ~ respectively. 
The presence of the spin 2 operator X may be understood along the following 
lines: Recall that corresponding to the covariantly constant spinor there exists a 
dimension ~ Majorana-Weyl spin field operator "IlI'L mapping the Neveu-Schwarz 
(NS) sector to the Ramond sector. It implies the existence of a dimension 2 op­
erator X, which is the energy-momentum tensor for the c = ~ Majorana-Weyl 
fermion (Ising model), mapping the NS to NS sectors. In the large volume limit 
of the manifold M, X takes the form [31] 

(2.4.1) 

with a similar formula f~r XR. The 'ljJ's in (2.4.1) are the left handed fermions in 
the sigma-model. This X and its superpartner M together with T and G make a 
closed algebra, and we will refer to it as the Ising superconformal algebra (ISCA). 

Let us impose now the boundary conditions. In order to preserve the N = 1 
SCA we require 

(2.4.2) 

Also, we have to preserve a linear combination of the left and right spectral How 
operators. The ISCA algebra implies that 

(2.4.3) 

Thus, there is only one type of boundary condition in this case. 
The conditions (2.4.2) are solved in the large volume limit by 

(2.4.4) 

where 
, (2.4.5) , 

Here XI' and 'ljJJ1. denote coordinates and vielbein one-forms on the manifold. The 
eigenvectors of R with eigenvalues (-1) give the Dirichlet boundary condition and 
thus correspond to the directions normal to the D-brane. As noted above, in the 
large volume limit X takes the form (2.4.1). Using (2.4.4),(2.4.5) and (2.4.1) we 
see that the condition (2.4.3) reads 

(2.4.6) 
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One can derive this by applying the boundary condition (eq. 2.1.26) on the unique 
covariant spinor with the help of (eq. 2.1.18). From the same equations one readily 
finds that the submanifold is calibrated by <I?: it is a Cayley cycle. The physical 
content of (eq. 2.1.22) in this case is again that half of the space supersymmetry is 
preserved by the D-brane. Let type lIB string theory be compactified on Spin(7) 
holonomy manifold. It possesses (2,0) space-time supersymmetry in the flat 2d 
space-time. Now consider a D-brane wrapping a Cayley cycle and spanning the 
2d external space-time. l The final supersymmetry is (1,0). 

2.4.2 SU( 4) holonomy 

A Calabi-Yau 4-fold with SU( 4) holonomy possesses two covariantly constant 
spinors of the same chirality. Thus, there exist two corresponding spin field oper­
ators W Land WL of dimension ~. Combined with W Rand Wil we have four spin 
field operators which means that type liB string compactified on a Calabi-Yau 
4-fold to 1 + 1 dimensions has (4,0) space-time supersymmetry. 

As shown in §2.2, supersymmetric cycles of special Lagrangian and holomor­
phic types are associated with A and B types of boundary conditions respectively 
[33]. These boundary conditions preserve two linear combinations of the spin 
field operators {w L, WL, W R, Wil} which implies that wrapping D-branes on these 
cycles breaks half of the space-time supersymmetry. For Calabi-Yau 4-fold,the 
(4,0) space-time supersymmetry for the (l+l)-dimensional external space is bro­
ken down to (2,0). Unlike the others cases, there is room to break supersymmetry 
further down to (1,0). Can a single D-brane do this? 

To answer this question, we apply the methods developed in §2.1.4. The num­
ber of supersymmetry preserved -by the D-brane boundary conditions is that of 
independent solutions for Ceq. 2.1.29). On Calabi-Yau 2 and 3-fold, the two co­
variantly constant spinors are correlated through an overall reality condition when 
tensored with spinors of the external space F to make a lOd Majorana spinor. ON 
Calabi-Yau 8-fold, however, they are completely independent. Therefore one find 
three scenarios that preserves some supersymmetry. 

Let El and f2 be two orthonormal covariantly spinors on the 4-fold. The first 
possibility is 

Pp+1 -0 '-12 + fi - ,z - , . (2.4.7) 

Here the choice of p~+1 instead of p~+l merely reflects a preference for the orien­
tation of the D-brane. The calibrated forms that can come out of the left hand 
side of (eq. 2.1.31) are the powers of Kahler form kP (eq. 2.2.20). Therefore the 
supersymmetric cycle is Kahler . 

Another possibility is for 

PP+l", _ 0 _ pp+l", 
+ '-1 - - - "2, (2.4.8) 

1 We shall ignore the problem with uncancelled charge here. 
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There is a angular parameter () in the choice of €1 and €2 that was implicit in this 
equation. One readily infers from this by means of (eq. 2.1.31) that the cycle is 
calibrated by n9 defined in (eq. 2.2.21). 

So far we reproduced the standard supersymmetric cycles for Calabi-Yau man­
ifold. For 4-fold, however, it is possible to impose only 

Pp+1 0 + €1 = (2.4.9) 

without any condition on €2. Clearly this means only one supersymmetry is pre­
served by the D-brane. Again an angular parameter () is implicit in the above 
equation. The corresponding Bogomolnyi-type equation says the cycle is cali­
brated with respect 

(2.4.10) 

known as the Cayley calibration. 
Now we turn to a boundary SCFT formulation of this supersymmetric cycle. In 

view of the previous results, we know a Cayley cycle in a Spin(7) manifold preserve 
the same absolute amount of supersymmetry as this Cayley cycle in Calabi-Yau 
4-fold that we are-studying. Since Calabi-Yau 4-fold are special cases of Spin(7) 
manifold, we should the ISCA algebra in the N = 2 SCA and then preserve 
only the linear combination of spin fields in the N = 2 SCA that correspond 
the '11 of ISCA. Thus in particular we need to preserve the spin 2 operator X 
corresponding to the energy momentum tensor of the preserved spin field operator. 
The embedding of the algebra goes as follows: 

T = TN=2, G = G"t=2 + GN=2' X = ~J2 + Re(ei9n) , (2.4.11) 

with M as the superpartner of X. In the large volume limit X takes the form 

XL = ~9IJv1Pt8z1P~ + (~k2 + Re(ei9n))lJvpu1Pt1P~1P£1Pf, (2.4.12) 

where we used the large volume limit expressions JL = 9/-1v1Pt1P'L and n = 
n/-lvpu1Pt1P'L1P£1P'L. Equation (2.4.12) is expected since as noted in (2.4.1), X con­
sists of two parts: The energy momentum tensor for the fermions and the Cayley 
calibration form, and the latter is given in (2.4.10). Note that in fact (2.4.11) 
defines an SI family of embeddings as suggested by (2.4.10). 

Let us also verify that X is indeed the energy-momentum tensor for the Ising 
model. One way to see that is to bosonize the U(l) current J = iaz ¢> and use 
n = eit/>. Thus, 

(2.4.13) 

Combining the two spin field operators as ei (t/>+9) = WI + iW2 we see that XL = 
wl8zWl, namely XL is the energy-momentum tensor for the Majorana-Weyl spinor 
WI with c = ~2. 

2That the energy-momentum tensor of the Ising model is given by (2.4.13) was shown in [35]. 
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The boundary condition that corresponds to a Cayley submanifold which is 
neither special Lagrangian nor complex is that of (2.4.2) and (2.4.3). Thus, as 
we discussed, we are only preserving the energy-momentum tensor for one linear 
combination of spin field operators and break the rest of the N = 2 SCA. This 
leaves us with one quarter of the supersymmetry. The 8 1 family of Cayley cali­
brations corresponds to the choice of the preserved linear combination of the spin 
field operators. 

Until now the only known way for D-branes to break more than half of the 
space-time supersymmetry was to use a configuration of intersecting branes [36]. 
The Cayley submanifold provides the first and the only example of a supersym­
metric cycle on which a single wrapped D-brane breaks three quarters of the 
space-time supersymmetry. 

Examples 

The simplest examples of supersymmetric 4-cycles can be found in flat space 
by explicitly solving 

I ~k /\ k + Re(ei9 ! n) . vol4' (2.4.14) 

Here: 
., 

n dX l 
/\ dX2 

/\ dX3 
/\ dX4 , 

k dX l /\ dX i + ... + dX4 
/\ dX4. (2.4.15) 

An example of a Lagrangian submanifold is the surface described by Xi = Xl. 
for i = 1, ... ,4. In that case (eq. 2.4.14) is satisfied because the pullback of n 
satisfies 

(2.4.16) 

while the pullback of k vanishes. 
A more complicated example, that is not in flat space, can be found as a 4-cycle . 

in the sextic hypersurface 

(2.4.17) 
i=1 

in Cps. This 4-cycle is the four-dimensional submanifold on which all the Xi'S 
are real [37, 24]. 

An example of a complex submanifold is given by the surface described by 
X3 = X4 = O. Here the pullback of n vanishes and the pullback of k /\ k is 

(2.4.18) 

so that (eq. 2.4.14) holds. 
An example of a Cayley geometry, for which both the pullback of the holo­

morphic 4-form and the pullback of k /\ k are non-vanishing is described by 
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X 2 = v'2eicp(X I + Xl) and X 4 = v'2eicp (X3 +- X3), for every value of the an­
gle <po More generally, every Cayley plane that is neither special Lagrangian nor 
holomorphic will give an example of this type. 

2.4.3 G2 holonomy 

Let M be an seven-manifold. A G2 structure on M is given by a closed G2 in­
variant 3-form <1>. This defines a metric 9 with holonomy group Hol(g) C G2 • Such 
a metric is Ricci-flat. Compact G2 holonomy manifolds have been constructed in 
[38, 39] in analogy with the Spin(7) holonomy case by resolving the singularities 
of T7/r orbifolds. Here T7 is.equipped with"a flat G2 structure and r is a finite 
group of isometries of T7 preserving that structure. On a G2 holonomy manifold 
there exists one covariantly constant spinor. The 3-form <1> and its Hodge dual 
4-form *<1> define the associative and coassociative calibrations respectively. 

The extended symmetry algebra of sigma models on G2 manifolds has been 
constructed in [31] .. In addition to the stress tensor T and its superpartner G, it 
contains the superpartners (K, <1» with spins (2, ~) and (X, M) with spins (2, ~). 
In the large volume limit, <1> corresponds to the associative calibration 3-form and 
X is the sum of the coassociative calibration 4-form *<1> and the stress tensors 
for seven Majorana-Weyl fermions. In analogy with the Spin(7) holonomy case 
where we viewed X as the stress tensor corresponding to the dimension ~ spin field 
operator, here we can view X as the stress tensor corresponding to the dimension 
1
7
6 spin field operator which is the that of the c = io tri-critical Ising model. 

In addition to the N ~ 1 boundary condition (2.4.2), the G2 algebra implies 
the boundary conditions 

In the large volume limit we have 

KL = ±KR , 

ML=±MR • 

.if.. _.if.. .I,i .I,j .I,k X 1 9 .I,i a .JJ +* .if.. .I,i .Ij .I,k .1,1 
'!!L - '!!ijk'f'L'f'L'f'L' L = 2 ij'f'L z'f'L '!!ijkl'f'L'f'L'f'L'f'L· 

Thus the boundary conditions (2.4.19) take the form 

*.iF.. .. Ri RjRkRI _* .if.. 
'!!tJkl m n 0 p - '!!mnop, 

These conditions can also be found in the familiar vein by requiring 

P~+lf = 0 

(2.4.19) 

(2.4.20) 

(2.4.21) 

(2.4.22) 

from the unique covariantly constant spinor epsilon. Therefore these cycles inherit 
one half of the space-time supersymmetry endowed by a G(2) manifold. Product 
of f with itself generate <1> and *<1>. Thus it also follows that the supersymmetric 
cycles can be either 3 or 4 dimensional. On a 3-cycle <1> is the volume form while 
on a 4-cycle *<1> is the volume form. They are the associative and coassociative 
cycles respectively. 
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Chapter 3 

Applications to Mirror Symmetry 

In §1.3.1, we reviewed T-duality, an equivalence between two string theories on 
different geometric background and D-branes. In general, it requires the existence 
of a compact Abelian isometry. For most curved backgrounds, such as generic 
Calabi-Yau manifolds, this is not available. However, a refined version of it does 
exist for Calabi-Yau. It is known as the mirror symmetry for superstring theory. 
It is to be distinguished from the mirror symmetry for 3d supersymmetric gauge 
theory which we shall turn to in §5, but we shall refer to it simply as mirror 
symmetry in this chapter. 

To see how it works, recall that string theory on a Calabi-Yau manifold pos­
sesses N = 2 SCA. To be precise it contains two copies of it, one each for the 
left and right movers respectively. Each has a Z2 automorphism of particular in­
terest. It simply amounts to changing the sign of the U(l) R-current and hence 
exchanging G+ with G-. It is the same automorphism that we used to distinguish 
between the A and B type of boundary conditions in §2.2. At the level of confor­
mal field theory, this automorphism is trivial. However, it does have an impact 
on the space-time interpretation, much like the more mundane T-duality. Given 
a conformal field theory describing string propagating on Calabi-Yau manifold 
M. If we act on the right mover the nontrivial element of the Z2 automorphism, 
the resulting theory describe string propagating on a Calabi-Yau manifold M. In 
general M and M are different [40].1 

Like T-duality, mirror symmetry is established perturbatively at each level 
of string loop. If it also holds nonperturbatively, it must map nonperturbative 
objects such as D-branes of the dual theories in a well defined and consistent 
manner. Interestingly, its perturbative representation as an isomorphism between 
the Hilbert spaces of the sigma-models on M and M provides a'mean to study this 
nonperturbative effect. If the cycles 'Y and i are related to each other by mirror 
symmetry, the corresponding boundary states IB) and IE) should be identified by 
the isomorphism2. 

Mirror symmetry transform.!. type IIA string on a Calabi-Yau 3-fold Minto 
type IIB string on the mirror M. Since type IIA string has even-dimensional D­
branes while type IIB has odd-dimensional ones, we expect that mirror symmetry 
to transform middle (= 3) dimensional cycles on M into even-dimensional cycle 

1 In some cases iiI might not exist as a manifold although M does. However, the dual 
conformal field theory still makes sense. . 

2To be precise, the boundary state IB} does not belong to the Hilber~ space since it is not 
normalizable. This problem can be easily avoided by considering qLOqLOIB} for Iql < 1, for 
example. 
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on M. From the point of view of SCFT, mirror symmetry transforms the A­
type boundary condition (2.3.3) for the 3-cycle to the B-type boundary condition 
(2.3.4) for the even-dimensional cycle. In this section, we will examine how this 
transformation between the supersymmetric cycles takes place. The analysis of 
the boundary state in §2.3 will be our main tool. 

It has been observed that, for a Calabi-Yau 3-fold M, mirror symmetry not 
only maps the even cohomology of M to the odd cohomology of its mirrorM 
(with complex coefficient), as an Hilbert space isomorphism would require, but it 
does so while respecting the integral structure of the cohomologies [41]. Based on 
this, it was conjectured by Aspinwall and Morrison [42] that the Ramond~Ramond 
field on a Calabi-Yau space must have a certain periodicity reflecting this integral 
structure. This way, the mirror map can be extended to the Ramond-Ramond 
field configurations. We will verify that this conjecture is consistent with the 
mirror map between D-brane configurations. This by itself is an evidence for 
the nonperturbative validity of mirror symmetry for it means mirror symmetry 
commutes with charge quantization conditions for the Ramond-Ramond fields. 

The precise understanding of mirror symmetry between D-branes enables us 
to study open string worldsheet instanton effects. We will find that the chiral 
primary part of the boundary states for 0, 2 and 3-cycles in a Calabi-Yau 3-fold 
does not receive instanton corrections while the instanton corrections for 4 and 
6-cycles can be expressed in term of the closed string worldsheet instantons on the 
same manifold. 

Section 1 will be devoted to the analysis of the mirror transformation of D­
brane configurations. In section 2 we will present examples where mirror symmetry 
is realized as T-duality on tori and Calabi-Yau orbifolds. In section 3 we discuss 
the implications of the exceptional supersymmetric cycles found in §2.4 for mirror 
symmetry in higher dimensions. 

3.1 Mirror map between cycles 

Suppose the boundary state IB) for a 3-dimensional cycle 'Y in M is mapped 
to the boundary state 1..8) for an even-dimensional cycle :y in M under the mirror 
transformation. Since the chiral primary part of the boundary states are charac­
terized by Co and Co given in the previous section, they should be related to each 
other under the mirror map. For the 3-cycle 'Y, Co is given by 

(3.1.1) 

Since we know the large volume limit of Co as in (2.3.18), we should compare it 
with Co in the corresponding limit, which is called the large complex structure 
limit [43] of M. 

In this limit, HO,3(M) aligns with the lattice of H3(Mj Z) [26], [41]. Thus we 
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have a filtration of H3(M; Z) in a form of 

HO,3 C HO,3 ED H 1,2 C HO,3 ED H 1,2 ED H2,1 C H3 (M; Z), (3.1.2) 

called the monodromy weight filtration [44]. Accordingly we can choose a sym­
plectic basis {CtI' jJlh=0, ... ,h2,1 for H3(M; Z), 

(3.1.3) 

such that Cto is the unique cycle dual to HO,3 and {Cto, ... , Cth2,1} spans the dual of 
HO,3 ED H 1,2. The cycle Cto may also be. characterized by the fact that it is invariant 
under the monodromy of H3(M; Z) at the large complex structure limit [45], [46]. 
Note, on the other hand, Cti with i = 1, ... , h2,1 may be shifted by Cto under the 
monodromy transformation. 

With this choice of the basis for H 3 , the flat coordinates of the complex moduli 
space are given by 

. Xi 
~--

S - XO (3.1.4) 

where 
(3.1.5) 

In the large complex structure limit s -+ 00 the Schmid orbit theorem [47] yields 

eo(j30) = r n 
1(30 

eo(j3i) =. ki n 

- :!XOdijkisisk +"., 

-.!.xod··ksisk + ... 2! '3 , 

where dijk is the large complex structure limit of the Yukawa coupling. 

(3.1.6) 

In order to construct the mirror map, we choose the standard gauge of the 
special geometry, 

(3.1.7) 

In this gauge, the flat coordinates are 

(3.1.8) 

By the mirror map, we may also use it as the flat coordinates for the Kahler 
moduli space of M. In the large complex structure limit, this mirror symmetry 
maps the Yukawa coupling dijk in (3.1.6) to 

(3.1.9) 

By comparing large volume limit (2.3.18) of Co for .even-dimensional cycles in 
M with the large complex structure limit (3.1.6) - (3.1.9) of eo for {CtI' ,BI}, we can 
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immediately see how mirror symmetry transforms a D-brane '!E.apping on a 3-cycle 
in M to a D-brane wrapping on an even-dimensional cycle in M. In particular, the 
3-cycle Qo dual to HO,3 in M is a mirror image of a O-cycle in M, and the 3-cycles Qi 

(-i = 1, ... , hl,2) correspond to 2-cycles in M. Thus the mysterious correspondence 
between the integral structures of H3(M) and Hvertiool(M) pointed out in [41] is 
now understood as the mirror map between the D-brane configurations. 

After the research reported in this chapter is finished, we received a preprint 
[48U>y Strominger, Yau and Zaslow where it is argued that the mirror of a O-cycle 
in M should be a toroidal 3-cycle in M. Our allalysis here shows a mirror of the 
O-cycle should be the 3-cycle Qo dual to HO,3 in the large complex structure limit 
of M. In the case of the quintic defined by, 

(3.1.10) 

such a 3-cycle is in fact known to be T3 [49]. In the large complex structure limit 
'IjJ ~ 00, the holomorphic 3-form becomes 

n = 5'IjJ X5dxl I\. dX2 I\. dX3 ~ _ dXl dX2dx3 , 

8p/8x 4 XlX2 X 3 
(3.1.11) 

and the 3-cycle dual to n is T3 surrounding Xl = X2 = X3 = O. It would be very 
interesting to see whether this feature of HO,3 is true for a general M with a mirror 
partner. 

So far we have only looked at the large volume limit of M and the corresponding 
large complex structure limit of M. Fortunately, since the state Ii') and Ii') are flat 
sections over the moduli spaces, their correspondence can be traced to interiors 
on the moduli spaces following the mirror map. We will demonstrate this through 
examples in section 5. If we go around a non-trivial cycle over the moduli space, 
we have to deal with the monodromy problem, which we will discuss below. 

3.1.1 Open string instantons 

For the A-type boundary condition, the classical formula 

Co(r) = in (3.1.12) 

is exact. On the other hand, the formula (2.3.18) for Co (i') for the B-type boundary 
condition is corr~ted by open string worldsheet instantons, i.e. holomorphic maps 
from a disk to M such that the boundary of the disk is mapped to the cycle i'. 
Mirror symmetry suggests that such open string instanton effects are expressed in 
terms of the closed string instantons on M. 

Mirro~ symmetry gives another proof for the fact that the formula (2.3.18) 
for Co does not receive the instanton correction when the cycle i' is 0 or 2-
dimensional. This is because the corresponding formulae (3.1.7) and (3.1.8) for Q[ 

(/ = 0, ... , h2,l) are, by definition, exact. 
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On the' other hand, Co for 4 or 6-cycle does receive instanton corrections. In the 
mirror picture, the exact formulae for Cob) for (31 (/ = 0, ... , h2

•
1

) can be written 
in terms of the prepotential F for M as 

(3.1.13) 

where we are working in the XO = 1 gauge appropriate for mirror symmetry. In 
M, the prepotential is related to the sum over closed string instantons as l 

(3.1.14) 

where N(n) is the number of rational curves on M of the type n = {nl' ... , nhl,l(M)}. 
By integrating this, we find 

1 " k L Loo 
N(n) 2' i F = --d·· s's1s + a - e 1rl

mn
i

S 

31 13k (2 . )3 ' 
. n m=l 7r'tm 

(3.1.15) 

where a is a constant, presumably related to the four-loop term in the (3-function 
of the sigma-model [49]. Substituting this into (3.1.13), we can extract the open 
string instanton corrections to Co and express them in terms of of the number of 
the closed string instantons N (n). 

This suggests a relation between the moduli spaces of open and closed string 
instantons and the corresponding intersection theories. One way to find such a 
relation may be to regard a closed string instanton intersecting a supersymmettic 
cycle as a pair of open string instantons glued on the cycle. 

3.1.2 Integral structure and monodromy 

It has been observed that in the large radius limit, mirror symmetry maps 
the integer valued homology H 3(Mj Z) to ffiqH 2q (Mj Z) in such a way that the 
monodromy is preserved [41], [45]. Based on this, it was conjectured by Aspinwall 
and Morrison [42, 46] that the Ramond-Ramond fields on the Calabi-Yau 3-fold 
should have periodicity under the discrete shift reflecting these integral structures. 
This would guarantee that mirror symmetry can be extended to the Ramond­
Ramond fields configurations. This periodicity should be a consequence of the 
coupling of the Ramond-Ramond field to the worldvolume of the D-brane. In fact 
the mirror map between the D-branes we found in the above is consistent with 
this picture. 

1 We ar~sing the same coordinates si for both the complex moduli of M and the Kahler 
moduli of M related to each other by mirror symmetry. 
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By requiring that the monodromy be preserved, Morrison also pointed out [46] 
that the shift of the NS-NS B-field by H 2(Mj Z) should cause a certain rearrange­
ment of the integral structure of the Ramond-Ramond fields of even ranks. This is 
also consistent with the mixing of the even dimensional cycles we found in (2.3.21). 

Although the mixing of the cycles is required by mirror symmetry, one can also 
explain it without invoking the mirror. For the sigma-model without a boundary, 
the shift of B-field by H 2(Mj Z) is a discrete symmetry. However, in the presence 
of a boundary, the coupling of the B-field to the string world-sheet is accompanied 
by the coupling of a U(l) gauge field A to the boundary [50]. Since the gauge 
invariant field strength is :F = F - B where F = dA, the shift B -+ B + w 
with ~ E H2(Mj Z) is compensated by F -+ F + w. This effectively mixes cycles 
of different dimensions as in (2.3.21). Below we will demonstrate this explicitly 
through examples. 

3.2 Two case studies 

In this section we will present several examples to illustrate the general re­
sults of the previous sections. We will show explicitly how starting with a D­
brane wrapped on a middle-dimensional supersymmetric cycle, depending on the 
D-brane configuration and T-duality or mirror transformation, we can obtain dif­
f~rent dimension ali ties for the dual configuration with gauge fields background. 

3.2.1 T-duality on tori 

Let us start with a general discussion of the duality map for tori and orbifolds. 
As we discussed in section 2, the condition for N = 1 SCA yields 

(3.2.1) 

where R is an orthogonal matrix. The requirement for having a geometrical in­
terpretation of a D-brane without gauge fields background is mor~ restrictive and 
implies that R has to be a symmetric matrix and squares to the identity matrix. 
In this case, its eigen-values are (+1) or (-1) corresponding to the tangential and 
normal vectors to the D-brane respectively. To preserve the N = 2 SCA, R should 

. further obey 
kl-'vRl-'pRVu = ±kpu , (3.2.2) 

where ± refers to the A and B-type boundary conditions and thus to middle and 
even-dimensional cycles. 

T -duality transformation is realized by 

(3.2.3) 

where T is the symmetric matrix implementing the duality transformation and 
T2 = 1. In order for this to induce the mirror transformation, the sign of J R 
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should be reversed while JL remain invariant. This means 

(3.2.4) 

Thus, starting with a D-brane configuration and performing T-duality transfor­
mation we will end up with a configuration satisfying the boundary condition 

(3.2.5) 

where R = RT is an orthogonal matrix. If the matrix R is symmetric and thus 
sq~ares to the identity matrix, the boundary condition has geometrical realization 
as a D-brane without the U(I) gauge field. This occurs if and only if 

[R,T] = 0, (3.2.6) 

namely T-duality transformation commutes with the original D-brane configura­
tion. 

When (3.2.6) is not satisfied, we get a mixing between the Neumann and 
Dirichlet boundary conditions of the type induced by a background gauge field. 
Since R = RT is orthogonal, by a coordinate transformation, we can alway bring 
it into the standard form, 

R = (-1(2d-p) X (2d-p) 
, 0 (3.2.7) 

where for some p and an anti-symmetric matrix F. This implies the Dirichlet 
boundary condition for the first (2d - p) directions, -while the boundary condition 
for the second p directions is ' 

axJ.l = (1 - F)J.I [}x v . 
1 +F v 

(3.2.8) 

Therefore the matrix R describes a p-cycle with a background gauge field F. 
Whether F is zero or not, mirror symmetry exchanges odd and even­

dimensional cycles when d = dimcM is odd. In this case, the condition (3.2.4) 
for T-duality to be the mirror symmetry implies detT = -1. On the other hand, 
detR = -1 for an odd dimensional cycle since-the rotation matrix (i+:) has de-
terminant (+1). Thus R = RT for its mirror obeys detR = detR· detT = +1, i.e. 
the mirror of the odd dimensional cycle is even-dimensional. If Rand T commute, 
F = 0 in the original cycle implies F = 0 for its mirror. 

Let us construct now a simple example to illustrate the above. Consider the 
torus T2 with real coordinates (x, y), and a D-brane configuration defined by the 
Pauli matrix R = al. The Neumann boundary condition is imposed on the I-cycle 
defined by the vector (1,1), while the Dirichlet boundary condition is imposed on 
the vector orthogonal to it. Then the mirror transformation is generated by T­
duality transformation along the x coordinate, i.e. T = -a3. Clearly this T does 
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not commute with R. In fact R = -iu2 = F, and this has no (-1) eigen-value, 
namely there are no Dirichlet boundary conditions. The configuration we got is 
that of a 2-cycle with background gauge field F. 

It is instructive to consider this example from a different viewpoint. In the 
limit of the large complex structure, 'f -+ ioo, the cohomology HO,l generated by 
d-z = dx + fdy gets aligned with the lattice Hl(T2j Z) generated by dx and dy. In 
this limit, the cycle (1,0) becomes dual to HO,l and the mirror map transforms it 
to a O-cycle, as expected. On the other hand, either (0, 1) or (1,1) can be combined 
with (1,0) to make the symplectic basis of H l (T2 j Z). Since (0,1) is mirror to a 
2-cycle without a gauge field, one may regard (1,1) = (0,1) + (1,0) as mirror to 
the 2-cycle with a O-cycle on it. Though the filtration HO,l c H l (T2 j Z) makes 
sense. only in the large complex structure limit, the mirror map between the cycles 
holds even for finite value of T. The reason for this can be traced back to the fact 
that the chiral primary part of the boundary state I'Y) is a flat section over the 
moduli space of complex structure, as we explained in section 4. 

This picture is correct as far as the homology goes, but a sum of the straight 
lines, (0,0) -+ (1,0) and (1,0) -+ (1,1), is not actually supersymmetric since the 
combined cycle is not minimal. The diagonal line (0,0) -+ (1,1) is shorter and 
thus costs less energy. In the mirror picture, this means that the 2-cycle with 
the U(I) gauge field should be regarded as a ground state of the O-cycle on the 
2-cycles. 

This simple example illustrates the mixing of cycles (2.3.21). The D-brane 
. worldvolume action has terms of the form [51] 

(3.2.9) 

where Co and C2 are the Ramond-Ramond fields and F = F - B. A shift of B 
by H2(T2j Z) then mixes Co and C2 corresponding to the mixing of cycles. In 
the mirror picture, the shift B -+ B +.1 becomes the modular transformation 
T -+ T + 1. This sends the cycle (0,1) (the 2-cycle in the mirror) to (1,1) (the 
O-cycle on the 2-cycle in the mirror). Thus the mixing of the cycle (2.3.21) is 
natural from the point of view of the coupling of the D-brane to the B field [50] 
as well as the mirror symmetry. 

3.2.2 Calabi-Yau orbifold 

In this section we discuss an example of a mirror pair of Calabi-Yau orbifolds. 
In fact the phenomena is basically similar to the tori cases, with some technicality 
related to the correct choice of a ground state. As an explicit example we will con­
sider the mirror of the Calabi-Yau orbifold (T2)3 I (Z2 x Z2) which is constructed 
by the inclusion of a discrete torsion [52]. Let us first discuss the orb if old without 
a discrete torsion. The Calabi-Yau orbifold (T2)3/r where r = Z2 x Z2 is defined 
by Zi -+ (-I)gizi' i = 1,2,3 such that IIi ( -1)gi = 1. Supersymmetric 2 cycles can 
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constructed by projecting a T2 in (T2)3 with respect to r. Similarly, supersym­
metric 4-cycles can be obtained by projecting a product of two T 2 ,s with respect 
to r. The even-dimensional supersymmetric cycles are interesting in this example 
since the twisted Ramond ground states contribute to HI,1 and H 2,2. Thus the 
latter can show up in their boundary states: 

Consider, for instance, a 2-cycle boundary state where Neumann boundary 
conditions are imposed on the Z3 coordinate and Dirichlet boundary conditions on 
Zb Z2. Orbifold boundary states are simply constructed as a sum of contributions 
from the untwisted and twisted sectors 

IB)orbi/old = IB)untwisted + 
twisted sectors 

with an appropriate projection on invariant states. 
untwisted sector: 

The boundary state takes the form 

(3.2.10) 

(3.2.11) 

and projection is not required since the boundary state is r-invariant. The 
fermionic part works similarly. 
twisted sectors: 

There exist three twisted sectors corresponding to the three r group ele­
ments. Consider, for instance, the twisted sector corresponding to the generator 
a, a(zI, Z2, Z3) = (-ZI, -Z2, Z3)' where the f3 and 'Yare defined by a permutation 
of the signs. This implies half integer moding for the first two coordinates and 
integer moding for the third. The other twisted sectors are simply permutations 
of that. 

Let us consider now the inclusion of a discrete torsion. This simply amounts 
to a change in the projection operators in the twisted sectors. Thus in the sector 
twisted by a it amounts to an inclusion of another minus sign in the transformation 
of states under Z3 -+ -Z3' This has the effect that only twisted Ramond ground 
states that contribute to H I ,2 and H2,1 survive the projection. Thus we end up 
with a Hodge diamond mirror to that of the orbifold without discrete torsion. It 
was argued in [52] that these indeed constitute a mirror pair, where the mirror 
map is T-duality. 

Upon inclusion of a discrete torsion, the interesting 8upersymmetric cycles are 
the middle dimensional ones. The construction of a boundary state is standard 
and we can follow the duality map. There is, however, a delicate point. The 
discrete torsion changes the projection operator, and for instance in the a twisted 
sector it takes the form 

(3.2.12) 
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which naively annihilates the twisted sector boundary state. This is resolved by 
picking the correct ground state. Consider the Ramond sector: Related to Z3 we 
have the fermionic zero modes 1/JI 0' 1/Jk 0 with the boundary condition , , 

(3.2.13) 

with 'TJ = ±l. 
Of the possible Ramond ground states only (i'TJ1/Jl,o + 1/Jk,o + c.c) 10) survives the 

projection and should be picked. This is to be contrasted with the case without 
discrete torsion where the correct twisted sector Ramond ground state is (i'TJ + 
1/Jl,01/Jk,o + c.c) 10). 

Consider now the D-brane matrix R = diag[O"b 0"1, 0"1]. A mirror symmetry 
transformation is defined by: 

(3.2.14) 

Thus the matrix T takes the form T = diag[0"3' 0"3, 0"3] and does not commute with 
R. Since both R and the mirror symmetry Tare equivariant with respect to the 
Z2 x Z2 discrete group, the same applies for the Calabi-Yau orbifold (T2)3/ (Z2 x 
Z2), and we get the mixing phenomena as we discussed before. 

In the orb if old models, we may'consider gauge field strength which belongs to 
the twisted sectors, namely localized on a particular fixed point. In this case we 
should expect that the particular twisted sector corresponding to this fixed point 
will be influenced. Thus, we are led to consider different boundary conditions R 
in (3.2.1) for the untwisted and twisted sectors. It would be interesting to further 
explore this structure. 

3.3 Mirror symmetry in higher dimensions 

Mirror symmetry for 4-folds has several new features which distinguish it from 
the three-dimensional case [29]. Mirror symmetry is expected to map H4(X) = 
Eap HP,4-p(X) to Eap HP,P(Y) and Eap HP,P(X) to H4(y) = Eap HP,4-p(y); one of 
the new features is that H 2,2(X} appears in both of these spaces. (These spaces 
were referred to as the "horizontal" and "vertical" cohomology in [29].) 

The special Lagrangian sub manifolds of X define classes in H4(X) which lie in 
the so-called primitive cohomology, that is, they are classes which are orthogonal 
to the Kahler class. Since the classes of special Lagrangian sub manifolds are also 
classes in integer cohomology, the natural space to consider for these manifolds 
is H4(X)prim n H4(X, Z). It is not clear how much of this space will actually be 
represented by special Lagrangian submanifolds. 

On the other hand, the complex submanifolds of X define classes which have 
Hodge type (p, p) and are also integer cohomology classes; the natural space to 
consider for them is Eap HP,p(X)nHeven(x, z). The celebrated "Hodge conjecture" 
in mathematics asserts that if we pass to Q-coefficients instead of Z-coefficients, 
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then all classes in this space are represented by complex submanifolds; it is not 
known if this conjecture holds for Calabi-Yau 4-folds. 

We are thus faced with the situation.· of having an unknown subspace of 
H4(X)prim n H4(X, z) represented by special Lagrangian submanifolds, and an 
unknown subspace of ESp HP,P(X) n Heven(x, Z) represented by complex subman­
ifolds. In fact, it is quite possible that the appropriate pieces of these subspaces 
fall short of filling out all of H2,2(X) (even though both will contribute subspaces 
of H2,2(X)). Cayley submanifolds provide another potential source of cohomology 
classes which could help to fill out H2,2(X): it may be that some of the classes 
which cannot be represented by either special Lagrangian or complex submanifolds 
will instead be represented by Cayley submanifolds. 

Such a possibility meshes well with mirror symmetry: we observe that the 
mirror of a Cayley submanifold will be another Cayley submanifold. (This is 
because any D-brane on X-which defines some type of boundary condition for 
open strings-should map to a D-brane on Y.) If the first Cayley submanifold 
is neither special Lagrangian nor a complex submanifold, then since it preserves 
only 1/4 of the supersymmetry, its mirror will have the same property. It would 
be interesting to find explicit examples of this phenomenon. 

Finally, we would like to mention an implication for mirror symmetry in higher 
dimensions that becomes evident by considering the spectrum of BPS soliton 
states. Strominger, Yau and Zaslow [48] showed that every Calabi-Yau 3-fold 
that has a mirror admits a supersymmetric T3-fibration. The basic assumption 
of this argument is quantum mirror symmetry [53, 42, 24, 46], where the isomor­
phism between the type IIA theory compactified on a 3-fold X and the IIB theory 
compactified on the mirror Y of X is extended to the non-perturbative BPS states 
in D = 4. Since these BPS states are constructed as D-branes, the quantum mir­
ror symmetry is actually a consequence of the classical mirror symmetry of the 
bulk CFT [33]. It is then natural to wonder if the previous argument can be ex­
tended to higher dimensional Calabi-Yau manifolds. Some precise mathematical 
aspects of this generalization have been recently considered in [54]. We consider 
the type IIA theory compactified on a large Calabi-Yau n-fold X and its mirror Y. 
Quantum mirror symmetry implies that both theories are isomorphic. On the X 
side there are BPS objects in D = (10 - 2n) which arise from the ten-dimensional 
O-brane. These states arise from a supersymmetric n-brane wrapping a n-cycle in 
Y. This n-cycle corresponds to a special Lagrangian submanifold. This is because 
the O-brane corresponds to B-type boundary conditions and by mirror symmetry 
these are transformed to the A-type boundary conditions that correspond to the 
special Lagrangian submanifold [33]. Extending the arguments of [48] to n-folds, 
we arrive at the conclusion that the n-cycles corresponding to special Lagrangian 
submanifolds are toroidal. This leads us to the conclusion that every Calabi-Yau 
n-fold that has a mirror admits a supersymmetric Tn-fibration. This suggests that 
mirror symmetry for the n-fold is equivalent to a T-duality on the Tn-fibers. 
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Chapter 4 

Consistency of D-Brane Configurations 

4.1 Anomaly, the dark secret of brane engineering 

In recent studies of string theory, configurations of curved D-branes and/or 
intersecting D-branes playa very important role. Examples of the latter type of 
brane engineering at work are as presented in the next chapter. The low en­
ergy physics of those configurations are that of field theories, which often possess 
both gauge and global symmetries. In such constructions, some global symme­
tries, usually the R symmetries that act on the supercharges, originate from the 
rotation symmetry of the bulk string theory restricted to the normal bundles of 
the branes. They are gauged in the bulk space-time and therefore must be free of 
anomalies, just as the symmetries gauged on the branes. However, there is gener­
ically chiral asymmetry with respect to these global symmetries on a D-brane or 
the intersection of a pair of D-branes, known as an I-brane. It brings about 
pure and mixed anomalies involving these global symmetries in the effective brane 
world volume theory. If this were the only story, such brane configurations would 
be inconsistent. 

The mechanism to cancel the anomaly in an otherwise anomalous theory is to 
compensate it with an "anomalous" variation,of the classical action. An example 
is the Green-Schwarz mechanism for type I and heterotic string theories [55]. More 
generally, the anomalous theory can be embedded in a higher dimensional theory. 
The anomalous variation of the classical action of the bigger theory is localized at 
("flows" to) the worldvolume for the anomalous theory and cancels its anomaly, 
hence the name anomaly inflow [56, 57]. More recently it has been applied to 
derive the Chern-Simons type of actions on D-branes, whose classical variations 
cancel the Yang-Mills and gravitational anomalies that appear on a certain class 
of I-branes [58]. However, there are additional anomalies associated with the 
global R symmetries as mentioned earlier. They exist for generic D-branes and 
their intersections. If D-branes are wrapped around nontrivial cycles of a curved 
compactification manifold [16, 33, 59], the anomalies can manifest themselves as 
nonvanishing variation of the effective action under a local gauge transformation. 
Such scenarios have appeared in studies of string dualities [60, 14] as well as field 
theory dualities [61, 62, 63, 64]. They have also found use in studying topological 
field theories [16, 65, 66]. However, anomaly cancellation for them has not been 
investigated until now. 

In generalizing the inflow method to such cases, one inevitably runs up against 
a serious obstruction. Factorizability of an anomaly, as defined precisely later, 
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is crucial for it to be cancelled via the inflow mechanism. However, for the ad­
ditional anomalies we study, factorizability is apparently lost. To recover it we 
shall encounter a classic result from differential topology!. It allows us to cancel 
the new anomalies in all cases as long as the D-brane Chern-Simons actions are 
well-defined. 

The D-brane Chern-Simons actions derived in [58] imply that topological de­
fects on D-branes carry their own Ramond-Ramond charges determined by their 
topological ( "instanton") numbers. This observation has far reaching consequences 
[69, 51, 70]. To cancel the new anomalies that we study, the Chern-Simons actions 
are modified. This can change the induced Ramond-Ramond charges on a D-brane 
if it is wrapped around some cycle of a nontrivial compactification manifold. 

The plan of this chapter is as follows. In section 2 we discuss how the inflow 
mechanism works. In addition to a review of some known results, we shall uncover 
subtleties in the choice of the kinetic action for the Ramond-Ramond field that 
have not been addressed in the literature. We also define carefully the notion of 
brane current. For describing flat D-branes, it is just a very convenient notation, 
but in the anomaly cancellation considered later in this chapter, it plays an es­
sential role. In section 3 we consider the chiral asymmetry induced by twisting 
the normal bundle and compute the resulting anomaly. We then point out the 
apparent obstruction to cancelling such anomaly. In section 4 this difficulty is 
overcome with the help of some interesting topological information encoded in the 
brane current. Then in section 5 we give examples where the normal bundles of 
D-branesare nontrivial and calculate the induced Ramond-Ramond charge. In 
the appendix we comment on the relevance of brane stability and supersymmetry 
to our anomaly analysis. 

4.2 Help from beyond: the inflow mechanism 

The inflow mechanism was originally discovered in the context of gauge theory 
[56], where the action in space-time has a gauge noninvariant term. Its variation is 
concentrated on topological defects and cancels the anomalies produced by their 
chiral fermion zero modes. It was recognized in [58] that this mechanism also 
applies to the Yang-,Mills and gravitational anomalies that arise for a certain class 
of intersecting D-branes in string theory. In this section, we present systematically 
the details of the inflow mechanism. Although much of it is a review of the earlier 
results cited above, there are some salient departures. The most important one 
being our use of a kinetic action manifestly symmetric with respect to all Ramond­
Ramond potentials. Its use is really required by the way the inflow mechanism 
works for D-branes and turns out to be important for reproducing the correct 
Ramond-Ramond charge. 

1 This result, the relation between Thorn class and Euler class, has also been used in a different 
context: anomaly analysis for the NS5-branes in type IIA string theory and the 5-branes in M 
theory [67, 68]. 
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As it shall become clear, an anomaly must be factorizable in an appropriate 
sense in order to be cancelled by inflow. One of the difficulty associated with the 
anomalies we consider here is their apparent lack of factorizability, and the key to 
cancelling them involves rewriting them in a factorized form. 

4.2.1 Branes and currents 

Before discussing the detail of the inflow mechanism, we first introduce a notion 
that is very convenient here and will prove essential later. Usually a brane is 
introduced into the bulk theory by adding to the bulk action 

where M is the m-dim world volume of the brane and CM the Lagrangian density 
governing the dynamics on the brane. One may rewrite this into an integration 
over total (bulk) space-time X, with the help of a "differential form" TM, defined 
by 

(4.2.1) 

for all rank m form ( defined on MI. Thus the rank of TM is equal to the codi­
mension of M in X. To be precise, (eq. 4.2.1) defines TM as an element in the 
dual of the space of forms, known to mathematicians as the space of currents [71]. 
Currents are differential-form analogue of distributions; likewise, TM is the gener­
alization of Dirac's delta function2

• Obviously, TM must have singular support on 
Mand integrate to 1 in the transverse space of M. 

In (eq. 4.2.1), the form ( is allowed to be any form on M. If instead it is 
restricted to be closed, the same equation only defines a cohomology class [TM], 

known as the Poincare dual of M. It contains topological information about M. 
TM can be defined as a particular representative of [TM] that is supported only on 
M. 

Here we shall call TM the brane current associated with a brane wrapped around 
M, for a very physical reason. For illustration, consider a d-dim gauge theory with 
a conventional 2-form field strength F. Let M be the worldline trajectory of an 
electrically charged particle embedded in the total space-time X. The kinetic term 
for the gauge field F is 

Sgauge -:- - ~ Ix F A *F. (4.2.2) 

1 This definition makes sense because any form ( on M can be extended to be a form on X 
by a suitable bump function with support on a tubular neighborhood of M. Conversely, if ( is 
a form defined on X to start with, pullback to M is implicit on the LHS of (eq. 4.2.1), as in 
similar expressions throughout this chapter. 

2In this language, a delta function in Rd is really a rank d current that maps a function 
(O-form) into a number. 
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The coupling of the potential to the electron is 

Smatter 

(4.2.3) 

Then the equation of motion for A yields 

( 4.2.4) 

So the usual physical current (source) is related to TM by a Hodge * operation. 
Similarly, if !VI is the (d - 3)-dim worldvolume of a magnetically charged object, 
the Bianchi identity would read something like 

*jmag = dF = ±TM· 

Now return to string theory. Let M be the worldvolume of a D-brane. It couples 
to the Ramond-Ramond potential C of the appropriate rank just as in (eq. 4.2.3) 
but with A replaced by C. Then (eq. 4.2.4) gives the definition of the brane 
current TM with F replaced by the appropriate Ramond-Ramond field strength 
H. 

On M, the tangent bundle T(X) of the total space-time X, decomposes into 
the Whitney sum of T(M) and N(M), the tangent and normal bundles to M 
respectively. Note that within each fiber of N(M) (eq. 4.2.4) is just the usual 
Poisson equation. Its RHS has Dirac's 8-type,singular support on the zero section. 
Thus TM can be constructed locally as 

(4.2.5) 

where xP- are Gaussian normal coordinates in the transverse space of M, or equiv­
alently Cartesian coordinates in the fiber of N(M). We emphasize that this ex­
pression is naive and in general ill-defined globally. 

Now consider the intersection Ml2 = MIn M2 of two brane-worldvolumes MI 
and M2. In the literature Ml2 has been called I-brane. For simplicity we shall 
concentrate on I-branes from intersections at right angle, but the results apply 
to other cases as well3 . The right angle condition implies that on the I-brane 
MI n M 2 , the tangent bundle of the total space-time T(X) decomposes as follows: 

T(X) = T(MI) n T(M2) EB T(Md n N(M2) 

9N(Md n T(M2) EB N(Md n N(M2), (4.2.6) 

3The basic reason is that the relevant quantum numbers of the massless fermions are de­
termined by T(M1 ) n T(M2 ) and N(Mt} n N(M2 ), which are well defined even for oblique 
intersections. 
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where n denotes fiberwise set theoretic intersection. It is clear that 

(4.2.7) 

(4.2.8) 

Then (eq. 4.2.5) implies that 

otherwise, (4.2.9) 

where in the second line we have used the anticommutivity of exterior multipli­
cation. Here again we emphasize that the second equation is naive, because it 
uses the naive expression (eq. 4.2.5). The correct statement and its important 
implication will be given in section 4. Intersections on which N(MdnN(M2) = 0 
are known as transversal. 

4.2.2 The inflow 

Suppose the anomaly on an I-brane M12 can be written in the following form: 

J ( -. .- )(1) 
112 = 7r TM12 /\ Yi. /\ Y2 + Y2 /\ Yi. , (4.2.10) 

where Yi and fi, i = 1,2, are some invariant polynomials of the Yang-Mills field 
strengths and gravitational curvatures defined on Mi' The expression Z(l) denote 
the Wess-Zumino descent [72, 73] of an invariant curvature polynomial Z: if N is 
the constant part of Z, 

Z= N +Zo, 

and Z(O) is its secondary characteristic, 

Zo = dZ(O), 

then the gauge variation of Z(O) is 

Yi and fi must he defined entirely by the D-branes wrapping Mi. For example, 
Yi.'s dependence on the gravitational curvature from T(Md and N(Ml) may be 
different, but it must not distinguish, say, between the contributions from T(M1) n 
T(M2) and T(Md n N(M2). In this report such an anomaly is called factorizable. 
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To cancel the anomaly (eq. 4.2.10), one introduces the following ansatz for a 
Chern-Simons type action on D-branes [58]4: 

Here q is 1 for lIA and 0 for lIB string theory. i labels the D-brane wrapping world­
volume Mi, whose brane current is TMi' Ni is the constant part of }'i. Anomaly 
computation in section 3 will show that it is the multiplicity of the D-branes wrap­
ping Mi' IL, rather than ~ as one would naively expect, is the brane charge, for 
reason to be explained shortly. C and H are the formal sums of all the Ramond­
Ramond antisymmetric tensor potentials and field strengths respectively. Integra­
tion automatically picks out products of forms with the appropriate total rank. 
In the following we shall often denote by Z(n) the rank n part of any formal sum 
Z. For example, 

C = C(I) + C(3) + C(5) + C(7) + C(9) 

for type lIA string theory and 

for type lIB string theory. It is important to remark that unlike the usual Chern­
Simons action, in (eq. 4.2.11) one cannot use integration by parts to reduce the 
RHS to the more uniform expression of -~ JMi C A Yi. The reason is, as we shall 
see, dH(n) =1= 0, even away from any magnetic D(8-n) brane. So H has corrections 
to its usual expression of dC: 

H=dC+ .. ·. (4.2.12) 

Therefore a brane Lagrangian in the form of -~C AY is different from (eq. 4.2.11) 
by some additional terms. In fact, only (eq. 4.2.11) can cancel the factorized 
anomaly (eq. 4.2.10). 

In a theory that treats electric and magnetic potentials on equal footing, there 
could be ambiguity in deriving the equations of motion using the conventional 
kinetic action. Since (eq. 4.2.11) explicitly involves both electric and magnetic 
sources, it must be understood to be part of an action that is a manifestly electro­
magnetically symmetric. The detail of the action and its ramifications are 
interesting in their own rights and presented in the next subsection. The relevant 
results can be summarized as follows: given the coupling in (eq. 4.2.11), with the 
factor of ~, the equations of motion are 

d * H = IL 'LTi A }'i, 
i 

(4.2.13) 

4T-duality relates the charge J.l for D-branes of different dimensions. With a suitable choice 
for the unit of length, they are all equal [75]. 
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and the Bianchi identities are 

dH = -J.L ~ 'Ii /\ ii, (4.2.14) 
i 

with 
(4.2.15) 

without any factor of~! Note Y and Yare in general different. It will become 
apparent later that the factor (-1 )'/2 relates Y to Y by complex conjugation of the 
group representation of the associated Yang-Mills gauge group, while the factor 

dim(M·)-q 

(-1) / chooses an orientation for the I-brane. 
The Bianchi identities (eq. 4.2.14) impose very strong conditions on the terms 

represented by ... in (eq. 4.2.12). The minimal expression for H is 

(4.2.16) 

where Nj is the constant part of fj, and Yj(O) its secondary characteristic (similar 
notations apply to the untilded Y's). Since the field strengths H are physical 
observables, they must be invariant under gauge transformations. Thus C must 
have compensating gauge variations: . 

(4.2.17) 

where Yj(1) is the Wess-Zumino descent of fj. 
Now we can compute the variation of (eq. 4.2.11) under gauge transformations 

to be ' 

(4.2.18) 

For a particular pair of distinct D-brane worldvolume Ml and M2 , this gives an 
anomalous variation 

(4.2.19) 

According to the first equation in (eq . .4.2.9); when N(M1 ) n N(M2 ) = 0, this 
inflow precisely cancels the anomaly (eq. 4.2.10) if 

J.L2 
- =7r. 
2 

(4.2.20) 
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So the anomaly and inflow analysis also constitutes an independent verification 
of brane charge computed in [7]. The factor of ~ in (eq. 4.2.11) relative to (eq. 
4.2.13) and (eq. 4.2.14) is crucial for agreements. 

The cases with N(M1) n N(M2) = 0 were considered in [58]. When this does 
not hold, the second equation in (eq. 4.2.9) suggests that the inflow (eq. 4.2.19) 
vanishes. However, we shall show in section 3 that on the corresponding I-branes 
there still exist anomalies. Fortunately, in section 4, we shall find the correction 
to (eq. 4.2.9) that keeps the inflow finite and cancels the anomaly. 

4.2.3 Electro-magnetically symmetric action 

In this subsection we derive the equations of motion (eq. 4.2.13) and justify 
the relative factor of ~ in (eq. 4.2.11)6. As mentioned earlier, this factor is 
essential for obtaining the correct brane charges required by string duality [7, 75]. 
The kinetic action for· antisymmetric tensors we shall use is the one proposed in 
[76] for source free situations. After we couple it to sources, it is well suited for 
(eq. 4.2.11) because it treats both electric and magnetic potentials on the same 
footing. The price to pay is the loss of manifest Lorentz invariance - the action has 
only manifest rotation invariance in the spatial dimensions, although it possesses 
additional symmetries that reduce on shell to the usual Lorentz transformations 
[76]. More recently, there has been progress in covariantizing it 1. However, for the 
present discussion the simpler noncovariant version suffices. 

First consider just one electro-magnetic dual pair of RR fields H(n) and H(d-n), 

where the subscripts, often omitted, denote the ranks of forms. Their respective 
potentials are C(n-l) and C(d-n-l). Now let 

(4.2.21) 

and 
H=E+B (4.2.22) 

so that the components of <I> and E consist of those of C and H respectively with 
a temporal index, while A and B have only spatial indices. Similarly we can also 
decompose the space-time exterior derivative d into the spatial exterior derivative 
V' and the temporal part dt : 

d=dt+V', (4.2.23) 

with 
(4.2.24) 

51n [58], there was no factor of ~ in the Chern-Simons action, but the total anomaly was 
computed to be twice as large, so the same value for I' was obtained. We would like to thank 
the authors of [58] for useful communications regarding this issue. . 

6 A similar factor of ~ in the coupling to sources has also been suggested recently in [74]. 
However, the detailed form of the action used there seems to be different. 

7See, for example, [77]. 
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Then 

E 

B 

(4.2.25) 

(4.2.26) 

The analogy with the usual non-manifestly Lorentz covariant formulation of elec­
trodynamics should be clear. The same can be carried out for the dual fields: 

Consider now the action [76]: 

fI 
6 

1/ v v v v 

8BE = -2 (B /\ E - E /\ B+ B /\ *B + B /\ *B). 

(4.2.27) 

(4.2.28) 

In the absence of sources, the fields satisfy the following Bianchi identities in light 
of (eq. 4.2.24): 

VB - 0 

dtB+VE - 0 

(4.2.29) 

(4.2.30) 

By using the first of them one finds that the equations of motion for q> and ~ are 
trivially satisfied - they only enter the action as parts of total exterior derivatives. 
This implies a larger set of gauge transformations than in the usual formulation: 

8g.A= vi\ 
8g~ = q, 

(4.2.31) 

(4.2.32) 

with independent f, f, w, and q,. The gauge transformations (eq. 4.2.32) allow 
q> and ~ to be set to 0, corresponding to the usual temporal gauge. Applying (eq. 
4.2.30), the equations of motion for A and .A are found to be 

V(E + *B) 0; 
V(E - (-It(d-n) * B) = 0 

(4.2.33) 

( 4.2.34) 

respectively: the expressions inside the parenthesis are closed. By using the gauge 
transformations (eq. 4.2.31), one can choose a gauge so that they vanish: 

E 
E 

-*B; 
( -1 ) n( d-n) * B. (4.2.35) 

They then give the duality relation between Hand fI. Substituting them for the 
Bianchi identities (eq. 4.2.29) and (eq. 4.2.30) one finally recovers the conventional 
equations of motion for antisymmetric tensors: 

o 
o 
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Note that although the action (eq. 4.2.28) is not Lorentz invariant, the equations 
of motion obtained from it are. Furthermore, one can recover from (eq. 4.2.28) 
the conventional action for one of the gauge potential, say A, in temporal gauge 
by solving the duality equation (eq. 4.2.35) for its dual A and make the gauge 
choice 

(4.2.37) 

Now let us put in the sources. In the conventional action formalism, where only 
one potential is used, the potential remains single valued if just electric sources are 
present. When there is also magnetic source, the potential can only be defined over 
patches - it is a connection of a nontrivial bundle [78]. The Bianchi identities 
must be modified. When one switches to the dual description, the meaning of 
electric and magnetic sources are interchanged, as are the equations of motion 
and the Bianchi identities. In the symmetric formalism we use here, because 
both of the dual pair of potentials are used, some Bianchi identities must be 
modified whichever type of sources is introduced - there is no longer a meaningful 
distinction between "electric" and "magnetic" sources. However they are called, 
the same set of equations for the field strengths must obtain in all three approaches 
if they are equivalent. 

Let the brane current for the the sources be proportional to 

,\ = W + (j, (4.2.38) 

(4.2.39) 

with the decomposition into the temporal parts (wand w) and the spatial parts 
((j and if) understood. They are normalized ~o that the Bianchi identities are now 

VB - iT, 

dtB+VE - w' , 
VB - (j, 

dtB+ VE - w. (4.2.40) 

These brane currents also make a contribution, denoted by Sj, to the total 
action. One can derive the form of Sj by using the modified Bianchi identities 
(eq. 4.2.40). The equations of motion for <I> and <l> require the dependence of Sj 
on them to be 

(4.2.41) 

This is necessary for the consistency of the theory and ensures that the gauge 
transformations (eq. 4.2.32) continue to hold. Note the factor of~. It comes from 
the same factor in (t:!q. 4.2.28). 

Turning now to the equations of motion for A and A, we demand that the 
duality relation (eq. 4.2.35) holds again. This completely fixes the dependence of 
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Sj on them: 

Sj = ~ / (( _l)n+1 A /\ w + ~(_l)(n+~)(d-n) / A /\ W + .. -) . (4.2.42) 

Now Sj is completely determined and has a Lorentz invariant expression: 

(4.2.43) 

The conventional equations of motion are again determined from the Bianchi iden­
tities (eq. 4.2.40) and the duality relation (eq. 4.2.35): 

"V*E 

dt*E+"V*B 

"V*E 

dt*E+"V*B 

( -It(d-n)o-, 

(-It(d-n)Wj 

-(7, 

-w. (4.2.44) 

When, say, :x = 0, one can recover the conventional action in temporal gauge 
for C just as for the source free case. The resulting source term is found to be 
conventionally normalized, i.e. without the factor ~. When both an electric 
brane of charge qe and a magnetic brane of charge qm are present, deforming the 
worldvolume of, say, the electric brane around the magnetic brane by a complete 
revolution shifts the action (eq. 4.2.42) by a constant. The electric and magnetic 
parts of (eq. 4.2.42) each makes an equal contribution of ~qeqm. Requiringexp(iSj ) 

to be single-valued reproduces the standard Dirac quantization: qeqm = 2m7r. 
Finally, we shall write down the electro-magnetically symmetric action for the 

Ramond-Ramond fields, which is directly rel~vant for the inflow mechanism. In 
string theory, a Ramond-Ramond field strength H(n) and its dual *H(n) appear on 
equal footing. The formal sum H actually includes all electro-magnetic dual pairs 
of Ramond-Ramond field strengths, and so does *H. To find their relation,_recall 
that these field strengths can be defined as follows in terms of the decomposition 
of bispinors: 

(4.2.45) 

Here SL has positive Spin(l, 9) chirality, while SR has positive or negative chirality 
for lIB and IIA string respectively. It is straightforward to infer from this 

H(n) = (_1)(n+q-l)/2 * (H(1o-n)). (4.2.46) 

Recall that q is 0 for lIB and 1 for IIA theory. These duality relations can be 
obtained from the action 

SBE = -~ / dlOx L ((-1)(n-q+l)/2B(n) /\ E(lO-n) + B(n) /\ *B(n)). 
n 

(4.2.47) 

Then if Sj is the Chern-Simons coupling in (eq. 4.2.11), it can be shown that the 
Bianchi identities must be (eq. 4.2.14) and the equations of motion must be (eq. 
4.2.13). . 
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4.3 Brane anomalies 

As usual, the anomalies on D-branes and I-branes result from the chiral asym­
metry of massless fermions on them. These fermions are in one-to-one correspon­
dence with the ground states of the relevant open string Ramond sectors. In the 
case of N D-branes wrapping M, the relevant open strings start and end on identi­
cal but possibly distinct D-brane. Open string quantization l as in §1.2.2 requires 
that the Ramond ground states be the sections of the spin or bundle lifted from 
T(X) = T(M) + N(M), tensored with a vector bundle in the (N, JV) representa­
tion (adjoint) of the gauge group U(N) on the brane. The latter is dictated by 
the usual Chan-Paton factors. Because the adjoint representation is real, these 
fermions are CPT self-conjugate. We shall be interested in perturbative gauge 
anomalies, so consider dim(M) to he even. The GSO projection restricts the 
fermions to have a definite SO(I, 9) chirality. If N(M) = 0, one is dealing with 
D9-branes. The worldvolume theory is the super-Yang-Mills part of the type I 
string theory [7]. It is chiral and anomalous but its anomaly is cancelled by that 
of the gravitinos and the inflow from the close string sector via the Green-Schwarz 
mechanism [55] . 

. When N(M) =1= 0, the fermions have the quantum number (+, +) EB (-, -) 
under the worldvolume Lorentz group Spin(l,p) and the space-time Lorentz group 
restricted to N(M): Spin(9 - p). The latter is now the global R symmetry of the 
worldvolume theory. If N(M) is flat, left and right moving fermions as sensed 
by the worldvolume are treated equally and the theory is nonchiral. However, 
when N(M) has curvature, chiral asymmetry on the worldvolume is induced. 
The point is that the worldvolume chiralities of the fermions are correlated with 
their representations under the global R symmetry. Therefore a distinction arises 
between (+, +) and (-, - ). The resulting perturbative anomaly can be calculated 
by the family index theorem [79, 80, 81, 82, 83]. For dim(M) = 4k + 2, the (+, +) 
and (-, -) fermions are independent and separately Majorana. The total anomaly 
associated with them is 

ID-brane 

(4.3.1) 

Here ch[E] denotes the Chern character of a vector bundle E. U(N)(N,JV) denotes 
the vector bundle in the (N, JV) representation of the structure group U(N) asso­
ciated with the N D-branes . S~(M) is the spin bundle lifted from N(M) with ± 
chirality. A is the Dirac genus. The factor of ! in front reflects the reality of the 
fermions. Since U(N) is unitary, 

ch[U(N) (N,JV)] = ch(F) 1\ ch( - F*} 

1 See the appendix for a discussion of the issue of stability and supersymmetry of brane 
configurations. 
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where 

ch(F} 1\ ch( -F), 

. 'F 
ch(F) = exp(-). 

27r 

(4.3.2) 

(4.3.3) 

F is the properly normalized Hermitian field strength for the U(N) connection on 
the D-brane in the fundamental representation. Using 

+ _ e(E) 
ch[SE] - ch[SE] = -A-, 

A(E) 
( 4.3.4) 

which holds for any spin and orient able real vector bundle E, one can rewrite the 
anomaly as 

27r 1 ( A[T(M)]) (1) 
IV-brane = - ch(F) 1\ ch( -F) 1\ A 1\ e[N(M)] 

2 M A[N(M)] 
(4.3.5) 

In the special case when N(M) is null, e[N(M)] as well as A[N(M)] is l. 
For dim(M) = 4k, (+, +) and (-, -) are both complex and related by conju­

gation. Anomaly can be calculated by the contribution from either (but should 
not be doubly counted) as 

IV-brane 27r 1M (ch(F) 1\ ch( -F) 1\ A(M) 1\ ch[St(M)l) (1) 

- 27r 1M (ch(F) I\ch(-F) I\A(M) 

I\~ (ch[St(M)] + ch[S~(M)] 

)

(1) 

+ch[St(M)] - ch[SN(M)l) . (4.3.6) 

Because ch[St(M)] + ch[SN(M)] is a sum of Pontrjagin classes, it is made up of 
forms of ranks in multiples of 4. The same is true ch(F) 1\ ch( -F). So only 
ch[St(M)J - ch[SN(M)] can contribute in (eq. 4.3.6) and we obtain (eq. 4.3.5) 
again as the expression for the anomaly. 

When two D-branes intersect, additional massless fermions arise from the open 
string sectors with two ends on the two D-branes respectively. Consider a config­
uration with Nl D-branes wrapping around Ml and N2 around M2. In the sector 
with the string starting on Ml and ending on M2, the difference in the boundary 
conditions on the two ends of the string modifies its zero point energy and shifts 
the moding of some of its worldsheet operators [84, 36]. I~ the Ramond section, 
the worldsheet fermions have integral, in particular zero, mode numbers only along 
the directions either tangential to both D-branes or transverse to both. The result 
is that the massless fermions are a section of the chiral spinor bundle lifted from 
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tensored with the (NI , N2 ) vector bundle due to their Chan-Paton quantum num­
bers. The anomaly can be calculated in the same fashion as before: 

II-brane = 

(4.3.7) 

Since (NI , N2 ) is complex, the fermions are not self-conjugate, and there is no 
factor of ~ in front. Note that (eq. 4.3.5)is precisely one half of the special case 
of (eq. 4.3.7) with MI = M = M2. 

Using brane currents and (eq. 4.2.1), we can rewrite the anomalies (eq. 4.3.5) 
and (eq; 4.3.7) in forms that will prove useful: 

ID-brane = ± 2; ! TM 1\ (e[N(M)] 

A[T(M)] ) (1) 
I\ch(F) 1\ ch( -F) 1\ ....".~-=---..:....~ 

A[N(M)] , 

h-br~ne ±21r ! TM12 1\ (e[N(MI ) n N(M2)] 

~ (1) 
I\ch(Fl) 1\ ch( -F2) 1\ ~[T(MI) n T(M2)]) . 

A[N(MI) n N(M2)] 

(4.3.8) 

(4.3.9) 

Here we have left their signs undetermined because, being integrals of differential 
forms, they really depend on choices of orientation that are not yet fixed by any 
consideration so far. This ambiguity will soon be resolved by the requirement of 
factorizability . 

. In [58], the cases in which MI2 is the transversal intersection of MI and M2, i.e. 
N(Ml) n N(M2) = 0, were considered. Then the expression for I-brane anomaly 
(eq. 4.3.7) can be further simplified as 

! ( A[T(MI) n T(M2)] ) (1) 
II-brane = ±21r TMll\TM21\ ch(FI ) I\ch(-F2} ~ , (4.3.10) 

A[N(MI) n N(M2)] 

where we have evaluated e(0) to be 1 but kept A([N(MI) n N(M2)] for future 
comparison. 

It is easy to check that (eq. 4.3.10) is factorizable in the sense of (eq. 4.2.10), 
with 

Yi = ch(Fi) 1\ 

and 
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A[N(Mi)] 
(4.3.11) 
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Hence this anomaly can be cancelled by the inflow (eq. 4.2.19). The sign factor 
in (eq. 4.3.12) is determined by (eq. 4.2.15). As promised before, this fixes the 
choice of orientation for the,anomaly, and (eq. 4.3.10) becomes 

h-brane = -7r! 'TMI A'TM2 A (( (-1) dim(~2)-q ch(F1) A ch( -F2 ) 

+{1 f-t 2}) A 1[T(Md nT(M2)] )(1). (4.3.13) 
A[N(Ml) n N(M2)] 

After some manipulation one can show that the two terms in the integrand of (eq. 
4.3.13) contribute equally, rather than cancelling each other, to the anomaly: 

h-brane = -(-1) dim(~2)-q 27r ! 'TMI A'TM2 A (Ch(Ft) A ch( - F2 ) 

A 1-[T(M1) n T(M2)] )(1). 
1\ ~ (4.3.14) 

A[N(Mt) n N(M2)] 

(eq. 4.3.10) is also trivially correct when N(Mt) n N(M2) is non empty but 
trivial, because the RHS' of both (eq. 4.3.7) and (eq. 4.3.10) vanish. However, 
(eq. 4.2.9) would want one to believe that (eq. 4.3.10) fails for a nontrivial 
N(Mt} n N(M2) because its RHS would seem to vanish, although the anomaly 
does not in general. There are similar difficulties for the D-brane anomaly (eq. 
4.3.5). Consider D-branes with worldvolume M. For N(M) = 0, the anomaly 
is that of Type I string theory and cancelled via the Green-Schwarz mechanism 
[55]. For N(M) =1= 0, the closest thing would be (eq. 4.2.18) with Ml = M = M2. 
However, 'TM A 'TM naively vanishes. 

4.4 Topology to the rescue 

It is clear from the earlier discussions that factorizability in the sense of (eq. 
4.2.10) is crucial for an anomaly to be cancelled via this inflow method. However, 
when the relevant normal bundle is nontrivial, it can be shown that the integrand 

, of (eq. 4.3.7) is no longer factorizable because of the Euler class. In other words, 
it is not factorizable unless N (Md n N (M2 ) is empty. The same can be said about 
the D-brane anomaly (eq. 4.3.5). A related puzzle on the other side of the inflow 
mechanism has also been shown. The second equation in (eq. 4.2.9) would imply 
vanishing inflow for M12 as long as N(Mt} nN(M2) =1= 0, regardless of the twisting 
of the normal bundle. It could cancel no anomaly, factorized or not. 

The origin of all these difficulties can be traced back to the properties of brane 
currents. Being a physical observable, 'TM must be globally defined over M. How­
ever, (eq. 4.2.5) only makes sense within each coordinate patch, because between 
patches the transversal coordinates are defined only up to the transition func­
tions for the normal bundle. To it one must add additional terms, which vanish 
when N(M) is trivial but turn 'TM into a globally defined form when N(M) is 
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not. Therefore if such correction can be found, it must carry topological infor­
mation about N(M), and from (eq. 4.2.5) it must have components with indices 
tangential to M. Mathematicians have found an elaborate construction for this 
correction [85]. By pulling TM back to M, only parts from the correction can sur­
vive. It is remarkable that the result is cohomologically the Euler class e[N(M)] 
of N(M). 

Before proceeding further it is convenient to introduce some notations. First 
observe that TM is determined by N(M), because it should be defined as the 
limit of nonsingular differential forms with shrinking compact supports in the 
neighborhood of M, which is approximated by the neighborhood of the zero section 
of N (M). As such TM can be defined for any oriented real orientable vector bundle 
E by taking M to be the zero section E. To emphasize this we define1 

<I>[E] = TM (4.4.1) 

for any vector bundle 7r, E -+ M. The important property just mentioned can be 
written as 

TM 1\ TM = TM 1\ <I>[N(M)] = TM 1\ [e[N(M)]] ( 4.4.2) 

where [e] denotes some representative of the cohomology class of e. Another useful 
property is [85]: 

<I>(A EB B) = <I>(A) 1\ <I>(B). ( 4.4.3) 

This can be seen as Euler class also factorizes under Whitney sum. Now by (eq. 
4.2.6), for the I-bnine worldvolume M12 = Ml n M2 we have 

TMI 1\ TM2 = <I>[T(Ml) nN(M2) EB N(Ml) n N(M2)] 
1\<I>[N(Ml) n T(M2) EB N(Md n N(M2)] 

- <I>[T(Ml) n N(M2) EB N(Md n T(M2) EB N(Ml) n N(M2)] 
1\<I>[N(Md n N(M2)] 
TM12 1\ e[[N(Ml) n N(M2)]], (4.4.4) 

where in the last step we have used (eq. 4.4.3) again along with (eq. 4.4.2). This is 
the correct replacement for the naive equation in (eq. 4.2.9). Now returning to the. 
l-brane anomaly (eq. 4.3.9), one notes that as long as dim[T(Md n T(M2 )] + 2 > 
dim[N(M1)nN(M2)], one can use the freedom to add local counterterms to choose 
to make the Wess-Zumino descent on terms other than the Euler form. The 1-
brane anomaly then becomes 

( 4.4.5) 

1 Actually for our purpose, knowledge of the cohomology class of C}(E) is sufficient. It is called 
the Thorn class of E. 
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By the same token, only the cohomology class of e is important here. Substituting 
for (eq. 4.4.4), one obtains again (eq. 4.3.10) as the expression for anomaly. But 
now it is clearly valid even when the normal bundle is nontrivial. Furthermore, 
the D-brane anomaly can also be written in this form with Ml = M2 = M, 
as long as dim[T(M)] + 2 > dim[N(M)]. When dim[T(Md n T(M2)] + 2 < 
dim[N(Ml) n N(M2 )], both the anomaly and the inflow vanish. The case of 
dim[T(Md n T(M2)] + 2 = dim[N(Ml) n N(M2)] is an intriguing one and we will 
comment on it shortly. We have shown that except for that case, the inflow (eq. 
4.2.18) not only does not vanish identically but cancels precisely the anomalies 
(eq. 4.3.9) and (eq. 4.3.8). 

There is a nice topological characterization of our results. It has emerged that 
the anomaly, written as an integral over the total space-time, is always propor­
tional to 

(4.4.6) 

Its cohomology class is the Poincare dual of the transversal intersection of Ml and 
M2 . Thansversal intersection, unlike geometric or set-theoretic intersection, has 
the property of stability: because there is no common transverse direction, small 
perturbation can only move the intersection around but never make it disappear. 
Consider now a nontransversal intersection M12 = Ml n M2. Because N(MI) n 
N(M2 ) i= 0, a small perturbation in those directions would naively separate them· 
and lift the intersection altogether. This is the meaning of the second line in 
(eq. 4.2.9). Such perturbation is given by a global section of N(M1) n N(M2). 
However, a global section of a sufficiently twisted vector bundle will necessarily 
have nonempty zero locus. For N(Md n N(M2), this means that Ml and M2 
cannot be completely separated. Any small perturbation will leave intact some 
submanifold of M12 , the zero locus ofthe corresponding section of N(M1)nN(M2), 
which is now stable. That is precisely the traversal intersection of Ml and M2. It 
can be shown that the Poincare dual of the zero locus of an orientable real vector 
bundle E is none other than e(E). This gives another derivation of (eq. 4.4.4). 
For Ml = M = M2, the story is similar. e[N(M)] is the Poincare dual of the zero 
locus of N(M). So TM 1\ TM measures the self-intersection of M. To recapitulate, 
D-brane and I-brane anomalies are associated with transversal intersections, even 
when the pertinent geometric intersections are not'transversal. In light of this, it 
seems worthwhile to introduce the notion of transversal I-brane, whose brane 
current is simply TMI 1\ TM2. 

N ow turning to the special case of 

dim[T(M1) n T(M2)] + 2 = dim[N(M1) n N(M2)]. 

This implies that dim[T(Md] + dim[T(M2 )] = 8, or that the two D-branes make 
up an electro-magnetic dual pair. An example would be a D-string intersecting 
with a D5-brane at 0 angle. For Ml = M = M2, the condition dim[T(M)] + 2 = 
dim[N(M)] means one is dealing with the self-dual D3-brane in lIB theory. For 
these examples the anomaly (eq. 4.3.9) is finite but the inflow, even after taking 
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into account the nontriviality of the normal bundles, still seems to vanish. But 
one should not rush to conclude that anomaly does not cancel for them, because 
the intersection of electric and magnetic sources introduces an additional subtlety: 
the Chern-Simons action (eq. 4.2.11) is no longer well defined. A more powerful 
approach is needed but will not be pursued in the present work. 

4.5 Induced brane charges, the silverlining 

An important consequence of the inflow mechanism, besides lending support 
to the consistency of various brane configurations, is that charges for the bulk 
Ramond-Ramond fields are induced by the gauge fields and gravitational curva­
tures as in (eq. 4.2.13). Let M be the worldvolume of some Dp-branes with gauge 
field strength F. Consider am-cycle 'Y of MI. Then 

Qind = i ch(F) 1\ 
A[T(M)] 
A[N(M)] 

. (4.5.1) 

gives the induced charge, in integral unit, for the Ramond-Ramond (p+1-m)-form 
potential. From the viewpoint of the field theory on the Dp-brane, the characteris­
tic 'class on the RHS measures the topological charge of a gravitational/Yang-Mills 
"instanton". Let us call it Y as before. Then (eq. 4.2.13) shows that TMAY can be 
thought of as the brane current for a "fat" D(p - m)-brane bound to and spread 
out on the Dp-brane. When the instanton shrink to zero size, Y also acquires 
Dirac's 8 singularity. TM A Y is just like a brane current. One might well won­
der if the instanton can be lifted off the brane and become a physical D-brane in 
its own right. At least for Yang-Mills instantons there has been much evidence 
in support of this idea: field theory instantons and branes are continuously con­
nected by transitions between different branches of the moduli space of the I-brane 
field theory [69, 51, 70, 86]. Recently, more complicated configurations involving 
gravitational curvatures on the D-brane were used to study geometric engineering 
and realizations of field theory dualities employing brane configurations [61, 64]. 
In this section we consider specific examples in which the twisting of the normal 
bundle modifies the induced charge. 

As discussed in the appendix, our analysis seems to apply, a posteriori, to 
nonsupersymmetric brane configurations as well. However, in most applications 
considered in the literature there are some supersymmetries left so as to have 
control over radiative corrections. Therefore here we shall only consider Type II 
compactifications over d-dimensional manifolds S that preserve some supersymme­
tries. A D-brane wraps around am-dimensional submanifold M of S can preserve 
some of the supersymmetries of the compactification provided Msatisfies some. 
conditions. Such a M is called a supersymmetric cycle [24]. All supersymmetric 

1 In this section we count in complex unit the dimensions of compactification manifolds S if 
it is Calabi-Yau and in real units those of other types as well as all submanifolds of S. 
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cycles have been analyzed and classified in [33, 59]. We shall consider them one by 
one. We shall also only consider S' with irreducible holonomy because the analysis 
for the other cases can be reduced to them. The forms in A(N) all have ranks in 
multiples of 4. On the other hand, to have nontrivial normal bundle, the D-brane 
must wrap a proper submanifold of M. By counting dimensions and ranks, the 
contribution of N(M) to Qind comes from the rank 4 component of 

1 

VA(N(M)) . 

For convenience we shall group it together with the contribution from T(M) at 
the same rank, so the characteristic class we shall be computing is 

A = PI[N(M)] - PI [T(M)] 
- 48 . (4.5.2) 

Let the Chern roots of T(M) be 

(4.5.3) 

For the cases considered here m is always even. Let the Chern roots of N(M) be 

d-m 
j=l.··l 2 J, ( 4.5.4) 

with an additional 0 if d - m is odd. Then (eq.4.5.2) can be written via the 
splitting principle as 

(4.5.5) 

Of particular interest is whether A and hence Qind can be expressed purely in 
terms of x's, information which is encoded in T(M). 

The first nontrivial compactification is K3. However, for this case there cannot 
be any additional contribution to the induced brane charge from a twisted normal 
bundle, for dimensional reasons mentioned above. 

The next case is for S to be a generic Calabi-Yau 3-fold. According to [33] 
a supersymmetric cycle is either a Lagrangian submanifold (3-cycle) or ,a Kahler 
submanifold (2n-cycle) of the Calabi-Yau 3-fold. For the reasons discussed above, 
only for Kahler 4-cycles does N(M) make a contribution to Qind. The holonomy 
of T(M)is U(2)r and that of N(M) is U(l)N. The Calabi-Yau condition requires 

Xl + X2 + y = o. 
The relevant charge is proportional to 

A -
PI[N(M)] - PI [T(M)] 

48 
2XIX2 2e(T(M» 

48 48 
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The remaining type of Calabi-Yau compactification is over a generic Calabi-Yau 
4-fold. It can have three types of supersymmetric cycles: Lagrangian (4-cycle), 
Kahler (2n-cycle), and Cayley (4-cycle). A special Lagrangian submanifold has 
the property that the holonomy of its normal bundle is the same as that of its 
tangent bundle. Therefore the effect of N(M) on the induced charge completely 
cancels whatever contribution from T(M): A = o. 

Among the Kahler (2n)-cycles, 4-cycles and 6 cycles will see contribution from 
N(M). The holonomy group of T(M) is U(n). The holonomy group of N(M) is 
U(4 - n). The Calabi-Yau condition says that 

Using this we can calculate 

A = 418 (2(.~ Xil X i2 - .~ YilYh)) 
Zl <Z2 31 <32 

2C2[T+(M)] - 2C2[N+(M)] 
48 

(4.5.8) 

(4.5.9) 

where T+(M) and N+(M) are the holomorphic tangent and normal bundles of 
M respectively, and C2 denotes the second Chern class. For· a Kahler 6-cycle, 
c2[N(M)] is 0, so (eq. 4.5.9) is entirely determined by information e~coded in 
T(M). This is not so for a Kahler 4-cycle, for which (eq. 4.5.9) reduces to 

2(e[T(M)] - e[N(M)l) 
A4- cycle = . 48 (4.5.10) 

but cannot be expressed in terms of x alone. 
Calabi-Yau 4-folds admit one more type of supersymmetric cycles [59]. It is to 

date the only known case where a single D-brane breaks the supersymmetries of a 
type II compactification by ~ instead of~. They are known as Cayley submanifolds 
[87]. They are 4-dimensional and satisfy the conditions [88, 59] 

(4.5.11) 

and 
(4.5.12) 

These conditions are sufficiently restrictive to imply the vanishing of A. 
There are two other cases of string compactifications: S may be a seven dimen­

sional manifold with G(2) holonomy or an eight dimensional manifold with Spin(7) 
holonomy [31, 89]. A generic Spin(7) manifold supports only Cayley submanifolds 
as supersymmetric cycles [59]. It is again 4-dimensional. With a suitable choice 
of orientations, the curvature is subject to (eq. 4.5.11) but not (eq. 4.5.12). Then 
(eq. 4.5.10) follows again [59]. 
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Finally we come to the case of G(2) manifold. It admits two types of super­
symmetric cycles [59]. They are known as coassociative (4-cycle) and associative 
(3-cycle) submanifolds respectively. Only for the coassociative submanifold will 
Qind be affected by the gravitational curvature. With a suitable choice of orien­
tations, they satisfy the condition [88] that 

Xl + X2 + y = o. (4.5.13) 

Hence 
,\ = 2XlX2 = 2e(T(M)) 

48 . 48 . (4.5.14) 

The.results in this section are summarized in the following table. 

Table 4.1: Induced Ramond-Ramond charges 
Holonomy of S Type ofM ,\ 

SU(3) Kahler 4 2e(M)/48 
SU(4) Special Lagrangian 0 
SU(4) Cayley 0 
SU(4) Kahler 4 2[e(M) - e(N)]j48 
SU(4) Kahler 6 2C2[T+(M)]j48 
G(2) Coassociative 2e(M)/48 
Spin (7) Cayley 2[e(M) - e(N)]/48 

Appendix 4.A Comments on Brane Stability and Supersym­
metry 

It is appropriate to address the issue of stability of brane configurations and 
its relevance to the anomaly analysis2 • For a generic brane configuration, there 
are forces between nonparallel branes. If they do not cancel, this configuration is 
not stable. One can no more trust string perturbation theory in an unstable brane 
configuration than one can trust perturbative expansion around a false vacuum 
in field theory. Anomaly calculations is in some sense more robust than many 
other perturbative calculations, but one must still know the correct spectrum 
of massless fermions in some true vacuum to correctly compute the anomaly. Of 
course this was the original motivation for t'Hooft's anomaly matching conditions. 
In the above, we have relied on string perturbation when we obtained the massless 
fermion contents and their quantum numbers. When the brane configuration is 
unstable, there is no known reason to expect a priori that such analysis captures 
correctly the spectrum. 

2We would like to thank K. Bardakci for useful conversations regarding this issue. 
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On the other hand, supersymmetry is the only general condition under which 
the forces between branes cancel. If supersymmetry is completely broken in a 
brane configuration, the latter is generically unstable. For N identical D-branes 
to preserve some supersymmetry in a string compactification, they must wrap 
around the supersymmetric cycles classified in [33, 59]. Between a pair ofD-branes, 
the pattern of supersymmetry breaking depends on their relative arrangement. For 
the case of intersection at right angle, some supersymmetries survive provided that 
[58] 

(4.5.15) 

The expression on the LHS of this equation is sometime denoted nd + dn in the 
literature because it is the number of space-time coordinates for which the bound­
ary condition of the relevant open string is Neumann on one end and Dirichlet on 
the other. When (eq. 4.5.15) is not satisfied, anomaly calculation based on per­
turbative string theory does not have to be reliable. For example, if nd + dn = 2, 
it may be shown that the force between the two D-branes is attractive. It is be­
lieved that in this case there exists a stable nonmarginal bound state [75]. There 
seems a priori to be no reason to expect that the correct degrees of freedom of the 
bound state to be obtained from a perturbative string analysis carried out at the 
unstable configuration. 

On the other hand, (eq. 4.5.15) was not needed in the analysis carried out in 
this chapter. In fact it follows through as long as 

dim[T(M1) n T(M2)] + dim[N(Md n N(M2 )] = 0 (mod2),' (4.5.16) 

a condition satisfied by any pair of D-branes that can coexist in the same string 
theory. This seems to suggest that even for nonsupersymmetric brane configura­
tions, at least the massless fermion contents might be captured correctly. 
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Chapter 5 

p-Branes and 3d Gauge Field Theories 

5 .1 Introduction 

3d mirror symmetry for was first proposed in [90] as a duality between certain 
pairs of generally different 3d N=4 theories at the infrared limit. Infinite sequences 
of new mirror pairs and strong field theoretic evidence for them were found in [91]. 
It is a nonperturbative duality that in particular equates certain quantities receiv­
ing large quantum corrections with some that are determined entirely classically. 
Naturally one asks whether this can be the consequence of some string dualities. 
There are several different approaches [90, 91, 92, 93, 94, 95, 96], each of which 
has it own advantage and is related to the others by some sequences of dualities. 
In this chapter we shall present one that is particularly intuitive, first proposed in 
[93, 94]. As mentioned in the last chapter, the global R-symmetry of N=4 theories 
appears as geometric rotations. R-symmetry breaking part of the moduli space 
of vacua and the parameters space of the field theory are realized as the moduli 
space of D-branes configurations!. Mirror symmetry itself is implemented by the 
S duality of type lIB string theory [93]. This construction allows us to engineer 
a large class of theories and find their mirror duals [94]. Since then it has been 
generalized to 3d N=2 theories [98, 99]. Similar ideas of constructing field theories 
in 4d have also been very fruitful2. In this chapter, we will focus on 3d N=4 the­
ories. After reviewing the rules for "model building" via "brane engineering," we 
will show how the mirror pairs emerge from this prescription. As a bonus we can 
predict an infinite number of 3d field theories without conventional Lagrangian 
descriptions. Some of them are dual to ordinary Lagrangian theories via mirror 
symmetry, but the rest are not; yet they can be smoothly connected in the mod­
uli space of brane configurations. We will also discuss how open string instanton 
configurations appear as field theory instantons giving corrections to the 3d gauge 
theories. 

5.2 What is 3d mirror symmetry? 

The structure of N =4 supersymmetric gauge theories in three dimensions 
can be easily obtained by dimensionally reducing the minimally supersymmet-

IThe anomalies associated with such R-symmetry in brane configurations have been analyzed 
in [97]. 

2See, for example, [100, 101, 102, 103, 104]. 
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ric 6d Yang-Mills Lagrangian [105]. The global R-symmetry of the 3d theory is 
SU(2h45 x SU(2hs9. The reason for choosing these subscripts will become clear 
in the brane realization described later. The field content consists of vector multi­
plets and hypermultiplets. For each vector multiplet associated with a U(l) factor 
of the gauge group there are 3 real Fayet-Iliopoulos parameters, (, which can 
be thought as coming from the VEV's of a background hypermultiplet. For each 
hypermultiplet, there are 3 real mass parameters, m. They are the VEV's of a 
background vector multiplet. There are also gauge coupling constants, which also 
come from background vector multiplets. The transformation properties of the 
parameters and VEV's under R-symmetry are summarized in table 5.l. 

Note that usually the scalars in a hypermultiplet are written as a doublet under 
SU(2hs9. However, it is convenient, by a change of variables, to rearrange them 
into a singlet b and a triplet r. On the other hand, an interesting feature peculiar 
to three dimensions is that a vector potential is dual to a scalar by the usual 
electro-magnetic duality. Of course this duality transformation can be precisely· 
formulated only for a free U(l) gauge fields, but this is what is available for the low 
energy effective theory at generic points of the vector multiplet branch of moduli 
space. Therefore it is meaningful to include the dualized scalar in considering 
the moduli space of vacua. By supersymmetry, the moduli space must be hyper­
Kahler for both the hypermultiplets and the (dualized) vector multiplets. Because 
of their different patterns of global R-symmetry breaking, however, the VEV's 
of the vector and hyper multiplets respectively are distinct order parameters of 
the theory, even after taking into account of quantum fluctuations. Vacua of 
N=4, D=3 gauge theories always contain a vector multiplet branch in which the 
gauge group is generically broken down to U(l)N where N is the total rank of the 
gauge group. This branch is parameterized 'by the 4N real scalars from the N 
corresponding vector multiplets. If it has a sufficient number of hypermultiplets, 
there can also be a hypermultiplet branch and/or mixed branches. 

Table 5.1: R charges of the VEV's and parameters 
M ul ti plets /Parameters Notation SU(2h45 x SU(2hs9 
Vector a: a3 , a4,a5 (3,1) 

AJ.I-+ a (1,1) 
Hyper r: r7, rl:l, r9 (1,3) 

b (1,1) 
Fayet-Iliopoulos ( : C, (S, (9 (1,3) 
mass m: m3,m4 ,m5 (3,1) 
( electric) coupling e (1,1) 

The low energy effective action up to two derivatives and four fermions is 
controlled by the metric of the moduli space, which depends on the parameters 

82 



of the theory as well as the position on the moduli space. The dependence is 
constrained by extended supersymmetry: the Kahler potential is the sum of a term 
that depends only on the hypermultiplet scalar and one only on vector multiplet 
scalars [106, 107]. So a mixed branch is the direct product of a vector branch 
M v and a "hyper" branch M H. By reinterpreting the parameters of the theory 
as the VEV's of background superfields, one can further deduce the effects of 
tuning them on the metric. The gauge coupling 912 " lives in a vector multiplet, so 
it can continuously deform the metric of Mv but not that of M H. Since g2 also 
plays the role of ti, one concludes that the the metric of MH is determined purely 
classically whereas that of Mv in general receives quantum corrections. Mass 
parameters also live in a vector multiplet, so they also can continuously deform 
Mv but not MH - they can only affect MH'S dimensionality by changing the 
number of massless hypermultiplets. Fayet-Iliopoulos parameters, on the other 
hand; live in hypermultiplet, and therefore can only deform MH and change the 
dimensions of Mv. This is summarized in table 5.2. 

Table 5.2: Parameters' influence on moduli space 
Branch ... 

( m (?) m e 

Mv deform reduce deform no effect (?) 
MH reduce deform no effect deform (?) 

Looking at the above two tables, the pattern for a possible duality emerges. 
Starting with some theory that we call A model, if we switch what what we mean 
by SU(2h4S and SU(2hs9' and at the same time exchange masses with Fayet­
Iliopoulos parameters, will we end up with an apparently different theory, model B, 
that is nonetheless equivalent to A? Mv of one theory would have to be mapped to 
MH ofthe other. Classically this is definitely not true: MH is a complicated space 
obtained via the hyper-Kahler quotient construction [108] while Mv is just a flat 
space quotiented by the Weyl group for the gauge symmetry. Furthermore, when 
some of the mass terms rnA of, say, A, vanish, enhanced global (flavor) symmetries 
emerge and act on Ml For B there would have to be corresponding global 
symmetries emerging at vanishing Fayet-Iliopoulos parameters ~ and acting on 
M~. Classically there is no such symmetry. Therefore this hypothetical duality, 
named mirror symmetry in three dimensions in [90], must be a quantum 
equivalence. However, a glance at tables 5.1 and 5.2 reveals a missing dual of the 
gauge coupling constant e, whose property as predicted by mirror symmetry is 
listed in table 5.2 with question marks. Brane interpretations of this parameter, 
kilOwn as the magnetic coupling m (without an arrow), have been proposed 
[93, 95], but it has yet to be found in any. Lagrangian formulation. Given such, 
mirror symmetry can only manifest for ordinary field theory when e approach a 
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particular value l . Being dimensionful (e2 has the dimension of mass in 3d), the 
only natural candidates are ° and 00. e = 0, the classical limit, is already ruled 
out. 80 we are left with the strong coupling limit, which, since it is in 3d, is 
also the infrared limit. This also leads us to one of the most striking aspects of 
this proposed mirror symmetry: it maps from one theory the metric for M v, a 
quantity that receives very large quantum corrections, to, in the dual theory, the 
metric for M H , which is given by purely classical expressions. As many physicists 
have suggested, this may imply the line between quantum and classical physics is 
more blurred than previously thought. 

Because of its strong coupling nature, proving mirror symmetry within the con­
text of field theory will be difficult. Embedding the field theory in the dynamics of 
branes [70, 109, 110, 111, 112] renders many aspects of mirror symmetry manifest 
[93, 94]' if one assumes the 8 duality of type lIB string. This will be reviewed 
extensively in the rest of this talk. Before that, we want to give some example of 
mirror pairs and one of the many pieces of field theoretic evidence supporting it 
[91]. They are logically independent of any conjectures about string theory. 

A model has gauge group U(K) with N fundamentals and 1 adjoint hy­
permultiplets. B models has gauge group U(K)N, which we label as U(K)a, 
a = 0, ... ,N - 1. Its hypermultiplets consist of one fundamental charged under 
U(Kh and N bi-fundamentals. The latter type of fields are each charged respec­
tively under U(K)a x U(K)a+l in representation (K, K), with cyclic identification 
a. rv a + N. These field contents are nicely encoded in the "quiver" diagrams [113] 
of figure 1. Each inner node with a number K represents a U(K) gauge group. 
Each link connecting a pair of them represents a bi-fundamental charged under the 
pair as (fundamental, fundamental*). An outer node with number N represents 
fundamentals with multiplicity N charged under the gauge group associated with 
the inner node to which it is attached. 

A Model B Model 

Figure 5.1: Quiver for A and B models .. 

1 However, it is possible, and the brane realization discussed later strongly suggests, that m 
can be a field theory parameter that has no Lagrangian representation. 

84 



I 

Using the notation given in table 1, the metric forM~ takes the form 

under the constraint 

(5.2.1) 

(5.2.2) 

(5.2.3) 

Here i, ... = O, ... ,k -1 index the Cartan of U(k);x, ... = 3,4,5. In [91], gij is 
. computed. Perturbatively it is one-loop exact: 

2 1 1 

laj - ajl laj - aj + rnadjl lai - aj - rnadjl' 

1 N-l 1 

e2 + ~ lai - rna I (5.2.4) gii 

+ L ........ +.... .... .... +.... ........ . #i ( -2 1 1) 
j=1. .. K lai - aj I lai - aj + madj I lai - aj - madj I 

(5.2.5) 

Here rnadj is the triplet mass for the adjoint hypermultiplet; rna those of the 
fundamentals, indexed by a = 1, ... , N. When rnadj = 0, there is no instanton 
correction to the metric and (eq. 5.2.4) is ,also nonperturbatively exact. For 
illustration, consider this simpler case, so that gi,;:j vanishes. (eq. 5.2.1) and (eq. 
5.2.4) state that M~ is the direct product of K multi-Taub-NUT space with charge 
N. After quotiented by the Weyl group of U(K), the direct product becomes a 
symmetric product. 

It turns out that setting rnadj = ° for A model is mapped by mirror symmetry 

to a condition on the Fayet-Iliopoulos parameters Ca of B model: 

a 

In this case, M~ is given by the symmetric product of K ALE spaces with AN - 1 

singularity [114]. The metric of each ALE spaceis given by 

with 

1 . 
ds2 = gdf'2 + -(db + w(r) . dr)2 

9 

N-l 1 

g(r)=LI .... a .... 1· 
a=O r - 2:,8=0 (,8 
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Now the metric for each Taub-NUT factor of M~ can be read from (eq. 5.2.4) 
after setting madj = O. 

It is clear that M ~ = M Z if and only if e = 00 and one makes the following 
identification 2 

5.3 Setting the branes to work 

Consider in type lIB string theory, a configuration that includes 3 types of 
branes, whose worldvolume configurations are given in table 5.3 [93]. Such a con-

Table 5.3: Configurations of the branes 
0 1 2 3 4 5 6 7 8 9 

D3-brane ~ x x x 
D5-brane x x x x x x 
NS5-brane x x x x x x 

figuration can preserve up to 8 supercharges,' corresponding to N =4 in 3d. Of the 
original Spin(l, 9) Lorentz symmetry, only the (1+2)d Lorentz group S£(2, R)012 
and the R-symmetry group SU(2h45 x SU(2h89 remain manifest. we will now 
review some basic rules for "model building" from branes and their justifications. 
Many of them first appeared in [93] . 

• By sending Mplanck to 00, the worldvolume theory on the branes decou­
ple from the bulk fields such as graviton . 

• D3-branes can break and end on D5 or NS5-branes without violating RR 
charge conservation [115, 116] by becoming a magnetic "monopole" on 
the 5-branes, as depicted on the left in figure 5.2. There the horizontal 
lines represent D3-branes; solid and dashed vertical lines represent NS 
and D5-branes respectively. Conversely, two D3-branes ending on the 
same 5-brane from opposite sides can rejoin. 

2To see the counting of parameters matches, note that the "center" of the mass parameters 
can be absorbed by shifting the origin of Mv on both sides. Here this is used to set mN-l = 0 
for A model. 
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Ending on NS Ending on 05 Forbidden 

Figure 5.2: D3-brane ending on 5-branes and forbidden configurations. 

• To the worldvolume theory on the D3-branes, breaking and ending are 
tantamount to imposing boundary conditions, reducing N=4, D=4 super­
multiplets to N=4, D=3 supermultiplets. 

• By taking the appropriate scaling limit, the Kaluza-Klein modes along 
the 6th direction can be kept massive and integrated out. The effective 
infrared theory on the D3-brane is therefore a {1+2)d QFT. 

• The worldvolume theories on the 5-branes are weakly coupled in the in­
frared. The fields on them have an infinite volume coefficient in their 
kinetic terms as compared to D3-bran~ fields due to their relative sizes. 
As a result they are frozen as background fields and their VEV's are pa­
rameters of the effective 3d theory. Gauge symmetries on the 5-branes 
become global symmetries. 

• When a NS5-brane crosses a D5-brane, a D3-brane is created and 
stretched in between. This is a consequence of charge conservation [93]1. 

• Certain configurations are believed to be forbidden. They involve more 
than one D3 brane stretched between the same NS-D5 pair, such as the 
one in the right of figure 5.2. 

Following the above rules one can build brane configurations of arbitrary com­
plexity. To read off the contents of the resulting field theory, one also needs to 
know the following. 

• Dynamical fields of the decoupled {1+2)d theory arise out of the lightest 
excitations of open strings starting and ending on the D-branes. There 
are three types: open strings connecting between D3-branes in the same 
"cubicle" . (figure 5.3a) give vector multiplets; those between D3-branes 
in adjacent "cubicle" give bi-fundamental hypermultiplets (figure 5.3b); 

1 For some other treatments of this phenomenon, see [117] and the references therein. 
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while open strings connecting between D3 and D5 give fundamental hy­
permultiplets (figure 5.3c). These can be read off from perturbative open 
string quantization and the boundary conditions. Their transformation 
properties under R-symmetry agree with the assignment given in the last 
section. Their end points are electric sources on the D3-branes. 

a. Vector b. Hyper (bi-fundamental) c. Hyper (fundamental) 

Figure 5.3: Field content from open fundamental strings. 

• Configuration of the D3-branes selects the gauge symmetries and the vac­
uum, as illustrated in figure 5.4. 

Generic point in Mv. 
U( 4)xU(1 )xU(3)->U(1)4+ 1 +3 

Generic point in MH 

Figure 5.4: D3-brane configuration selects gauge group and vacuum 

• Configuration of the 5-branes determines the parameters (figure 5.5) and 
global ~ymmetries of the 3d QFT. Note the identification of the mag­
netic coupling constant as the inverse square root of the distance between 
adjacent D5-branes along the 6th direction. The frozen gauge dynamics 
of the D5-brane gives rise to the flavor global symmetry acting on the 
fundamental hypermultiplets. Since in conventional Lagrangian field the­
ories, this global symmetry is restored by setting the masses to zero, the 
magnetic coupling is fixed to be infinite. At the same time, the global 
symmetry resulting from the NS5-branes is broken unless they coincide, 
which amounts to setting Fayet-Iliopoulos to zero and e to infinity - it 
can only appear at a nontrivial infrared fixed point. 

• Type lIB string theory has a nonperturbative S duality [15] that inverts 
the string coupling constant and exchange NS5-branes with D5-branes as 
well as fundamental strings with D-strings. It leaves invariant D3-branes 
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Figure 5.5: 5-Brane configuration fixes parameters and global symmetries 

but acts on their worldvolume theories as the S duality for N=4, D=4 
SYM [118]. 

• We therefore should also consider excitations of open D-strings starting 
and ending on D3-branes and/or NS5-branes. They are simply obtained 
from the S dual of figure 5.3. However, on D3-branes, rather than gen­
erating additional degree of freedom, they are related to the open string 
fields nonlocally - end points of these two types of string on D3-branes 
are respectively magnetic and electric sources. Each appear as solitonic 
excitations of the other and are exchanged by the field theoretic S duality. 

• Therefore there are two descriptions of the same 3d theory: one uses open 
fundamental string fields as the canonical variables while the other uses 
open D-string fields. Their equivalence is the 3d mirror symmetry, and it 
follows from the S duality type IIB string theory. 

• It is convenient to rephrase this duality as an operation combing an S 
duality transformation with the interchange of 345 and 789 directions [93]. 
This makes explicit the interchange of the two R-symmetry factors, M v 
with M H , masses with Fayet-Iliopoulos parameters, and e with m. For 
reasons just stated, this is reflected on ordinary Lagrangian field theories 
only in their infrared limit. 

5.4 Mirror pairs 

Now we will present a few examples of mirror pairs constructed in [94]. Their 
field contents are best described by the type of quiver diagrams introduced earlier. 
They are obtained using the brane-engineering rules outlined above, but with a 
compactified 6th direction, i.e. with periodic identification along X 6 • As a warm­
up, let's look at the A and B models given in figure 1. The corresponding brane 
configurations are sketched in figure 5.6 

For A model, the N fundamentals of U(K) originate from open strings 
stretched between the N D5 and the K D3-branes. A special feature of this 

89 



• N • ' .... 

A Model B Model 

Figure 5.6: Brane configurations for the quivers in figure 5.1. 

configuration is that the bi-fundamental, coming from open string stretching be­
tween "nearest-neighbor" D3-branes, become the adjoint of U(N) because there 
is only one gauge groups. For B model, more generic situation prevails and there 
are N bi-fundamentals. The correspondence between the moduli spaces of vacua 
of A and B as well as the identification (eq. 5.2) is evident. As it is, there is one 
constraint on the field theory parameters, namely 

A way to relax this condition has been given in [101]. 
Now let's look at mirror pairs of more complex theories. As depicted by the 

quiver diagrams in figure 5.7, model A again has gauge group U(K)N and N bi­
fundamentals, but each U(K) now has fundamentals with an arbitrary number of 
flavors Wi. Its mirror, model B, has gauge group U(K)M with 

Besides the M bi-fundamentals, it has N fundamentals arranged as shown in 
figure 5.7. If all Wi > 0, each U(K) factor has at most one fundamental. If some 
Wi = 0, the corresponding nodes in B model's quiver coalesce and give rise to 
fundamentals of higher flavor. Such mirror pairs are again constructed via the S 
duality of type IIB string theory [94]. The mirror map relates the moduli spaces 
of the two theories, as well as their parameters, in the same manner as the simpler 
case discussed above. 

It is natural to generalize to the caSes with A model having gauge group 
TI~(;I U(Ki ), N bi-fundamentals, and arbitrary fundamentals. Its quiver is shown 
in figure 5.8, along with its brane realization. However, here one encounters an 
important subtlety. Although one can always perform a S duality transformation 
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Figure 5.7: Arbitrary flavor of fundamentals and the mirror 

and obtain the mirror configuration, the result does not always correspond to a '" 

gauge .theory. To see this, recall that mirror symmetry exchanges Mv with M H • 

A universal property of N=4, D=3 super-Yang-Mills theories is the existence of. \ 
the Coulomb phase, a branch of M~ with 4r dimensions, where r is the total rank 
of the gauge group. This is mapped under mirror symmetry to a branch of M J}: 
the completely Higgsed phase. Therefore a necessary condition for model B to 
have an ordinary gauge theoretic Lagrangian description is for model A to admit 
complete Higgsing. This amounts to requiring [119, 120, 91, 94]: 

(5.4.1) 

When this is satisfied, the mirror gauge theory can be constructed along the same 
vein as before. The details become complicated and can be found in [94]. 

5.5 Phases and transitions 

What happens if (eq. 5.4.1) is not satisfied? S duality still gives a mirror 
configuration, but one without a gauge theoretic description. An example of this 
is shown in figure 5.9a. 

To understand this phenomenon, note that from the field theory perspective, 
mirror symmetry corresponds to the Z2-wise freedom in labeling the two SU(2) 
R-symmetries. While the vector and hypermultiplets transform distinctly though 
somewhat symmetrically under them, their interactions enter in the Lagrangian 
in rather different form. The Lagrangian descriptions of a theory and its dual 
would in general be quite different, as the examples above show. Actually, there 
is no reason a priori to expect that both sides of a mirror pair have Lagrangian 
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Figure 5.8: Quiver and brane realization of IIi U(Ki) 

a b 

Figure 5.9: Brane configurations giving rise to novel field theories 

descriptions at all. It is natural to conjecture this is the what is happening here l . 

3d N =4 theories with Lagrangian description can therefore be classified into those 
that have two, related by mirror symmetry in the infrared, and those that have 
only one2 . 

An example of the latter type, in which the non"7Lagrangian description is 
that with En tensionless string [121, 122], was conjectured already in [90]. It 

1 In fact, barring an unexpected way to inGorporate the mysterious magnetic coupling into a 
Lagrangian formulation, even for the cases in which both of the dual pair have a Lagrangian 
description, mirror symmetry is manifest only at the infinite coupling, i.e. infrared limit, as 
mentioned earlier. Here we shall be referring to that limit implicitly unless oth~rwise stated. 

20ne should note that the lack of a completely higgsed phase i~ necessary but not sufficient 
for a non-Lagrangian dual. For example, a free U(l) vector multiplet, which obviously does not 
have any Higgs phase, is dual to a free hypermultiplet. However, such free theories cannot help 
explain interacting fixed points, e.g. when the D3-branes in figure 5.9a or b coincide. 
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has recently been explicitly engineered using one of the alternative formulations 
of mirror symmetry from string theory [95, 96]. Here we have a very simple 
prescription for engineering an infinite number of such Lagrangian-non-Lagrangian 
mirror pairs. As noted in [90], these are local quantum field theories, simply 
because on one side of the mirror there is a Lagrangian description that flows 
to it. However, experience in 2, 4, 5, and 6 dimensions has shown a Lagrangian 
description, though convenient in many ways, may not be a necessary condition 
for a local quantum field theory (see, for example, [123, 124, 125, 126]. Indeed, one 
can easily engineer using branes a third class of theories that have no Lagrangian 
description on either side of the mirror. An example is shown in figure 5.9b. Since 
the decoupling of bulk as well as Kaluza-Klein modes works just as in the more 
mundane cases, they should still be interacting local quantum field theories, but 
with no known Lagrangian description flowing to it. 

Such interesting phenomena deserve an explanation from string theory. In 
that context mirror symmetry is the equivalence of two descriptions of the same 
physics related by S "duality. The degrees of freedom on the D3-brane theory 
can be captured both by open fundamental string and by open D-string fields. 
Starting with, say, a description using only open fundamental string fields, one 
can employ standard string perturbation theory to obtain their interactions and 
write a Lagrangian for the field theory modes in the decoupling limit. The'same 
prescription goes through for a description based solely on open D-string fields. 
Suppose, however, that there is no way to capture the full degrees of freedom by 
using only, say, open D-string fields. The description on the B model side may 
not be in the form of a local action, as open D-strings and open fundamental 
strings ending on D3-branes are mutually nonlocal. If neither open fundamental 
string fields nor open D-string fields can account for the full degrees of freedom 
by themselves respectively, we end up with the third class of theories. 

3 
3 • 

a b c d 

Figure 5.10: Transition between different classes offield theories via brane motion. 

Remarkably, with branes one can not only engineer examples of all three types 
of theories, but also interpolate between them continuously by moving the 5-branes 
around. Shown in figure 5.10a, b is the mirror of figure 5.9a. It is a theory of the 
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second type (Lagrangian-non-Lagrangian mirror pair). By moving one NS5-branes 
past another, we arrive at the theory depicted in figure 5.10c, d, which is of the first 
type (Lagrangian-Lagrangian mirror pair). Similar transition can be engineered 
between theories of the third class and the first two as well. To appreciate the 
meaning of such a process, recall that the electric and magnetic coupling constants 
are inversely proportional to the square root of the distance between adjacent NS5 
and adjacent D5-branes respectively. Moving 5-branes of the same type past each 
other effectively makes coupling constants of the corresponding type imaginary. 
This is indicative of a change of the effective degrees of freedom describing the 
system, namely a phase transition. That smooth movements in the moduli space 
of brane configurations can· connect distinct classes of field theories via some type 
of phase transitions is one of the most important lessons to be learned from this 
work. . 

5.6 Superpotentials and open D-string instantons 

It has been argued that nonperturbative dynamics of supersymmetric gauge 
theories in three dimensions is controlled by instantons [127]. In this section we 
will study instantons from string theory viewpoint with the aid of open D-strings. 
In three dimensions the instanton carries a magnetic charge. The magnetic charge 
is mediated by the scalar dual to the photon a [128]. The instantons from the 
string theory viewpoint are the D-strings that end on the D3 branes[93, 94]. The 
boundary of a D-string is the worldline of a magnetic monopole in the D3 brane 
[129]. To break half of the supersymmetry, it'must be holomorphically embedded 
[33], which in this case means being fiat and orthogonally intersecting other branes. 
To qualify as an instanton configuration for the effective three dimensional theory, 
the D-string worldvolume must be Euclidean and compact. Therefore it must be 
bounded on all sides. 

One such instanton is illustrated in figure 5.11, a D-string stretched (shaded 
region) between parallel pairs of D3 and NS 5-branes. They are the 8L(2, Z) dual 
of the open fundamental string instantons of [48, 33]. Here we consider a generic 
point in the Coulomb branch of the moduli space, so the U(Nc) gauge group on the 
D3 worldvolume is broken to its maximal Abelian subgroup. By the convention of 
§5.2, the ii's are the VEV's of the expectation values of the scalars in the vector 
multiplets. They parameterize the positions of the D3 branes in the x3 direction. 

The instanton contributions to the path integral take the form of K'e-So - iu 

[128], where K' is a factor that includes the one loop determinant and 80 is the 
classical action for the instanton background 80 '" - ~ le2 • a is the dual to the 
photon of the unbroken U(1). It emerges from field theory after summing the 
instantons in the dilute instanton gas approximation [128, 130]. It is also expected 
by holomorphy arguments. All these have counterparts in string theory language. 
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Figure 5.11: Open D-string instanton generation of a superpotential. 

Naturally, instanton corrections in string theory come in the form of 

K e-SO-atring (5.6.1) 

where K is a factor that includes the one-loop determinant of the massive fields 
on the D-string worldsheet, and SD-string is the D-string worldsheet action. This 
action contains two pieces: 

So = SNambu-Goto + irA. dX, 
Jboundary 

(5.6.2) 

The N ambu-Goto action simply yields the area of the Euclidean D-stringdivided 
by the tension of the D-string [94]. Thus 

S t · [lai - ai+1la'] x [gst/e2 ] l<pi - <pi+II (563) 
N ambu-Goto = area x enSlOn = , = 2 ' " 

gsta e 

where we used the relation between the three dimensional gauge coupling e, the 
string coupling gst and the distance s between the NS 5-branes in the x6 direction: 
~-~ . 

e2 - gat' 

In addition, there is the contribution from the boundary of the D-string. It 
couples to the electric and magnetic gauge potential on the D5 and D3 branes 
with coupling constants g of the respective theories. The former is not dynamical 
but the latter is important. Denote the magnetic and electric gauge potentials 
and field strengths by tilded and untilded symbols respectively, then 

(5.6.4) 
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where i, j, k take value among 0, 1,2. Applying 8L(2, Z) to the discussion in [93], 
one deduces that when a D3 brane ends on two NS 5-branes, the magnetic gauge 
field vanishes in the effective three dimensional theory but A6 survives. Equation 
(5.6.4) now reads 

€i.ikFij = 9stOkA6. (5.6.5) 

Thus 9stA6 = e2a is the dual of the photon. The contribution of the second term 
in (5.6.4) is now 

{ A· dX = ai - ai+l 
lboundary 

(5.6.6) 

Therefore the correction from such an instanton is proportional to 

(5.6.7) 

in agreement with field theoretic expectation. Note that 8Nambu-Goto is insensitive 
to the orientation of the D-string but the ia term is. For anti-(D-string)instanton 
it changes sign so an anti-instanton correction is anti-holomorphic. Note also that 
the factor K cannot have any dependence on the fields Z. 

The instantons, being BPS objects, break one half of the supersymmetry of 
the gauge theory. This is consistent with the stringy interpretation as the D­
string configuration in figure 5.11 breaks by a" further half the supersymmetry 
preserved by the the NS5-D3 configuration. This yields four zero modes. Hence 
such instanton configurations correct the superpotential. Indeed when madj 1= 0, 
the perturbative expression (eq. 5.2.4) for the vector multiplet metric ceases to 
be positive definite for sufficiently small lai - ajl. It is believed that instanton 
corrections of the form (eq. 5.6.7) keeps the metric meaningful. 

It is not obvious how to compute the contribution of D-string instanton more 
explicitly then we have done above, least of all the quantum fluctuation K. How­
ever mirror symmetry may give us an indirect approach. The mirror dual of figure 
5.11 is an open fundamental string bounded on D5 and D3-branes. One can inter­
pret this as an open string exchange between two "monopoles" on D5-branes By 
analogy with the formalism discussed in §2.3, one can formally define boundary 
states using open string Hilbert space and compute the amplitude in figure 5.11 
as a matrix element of the form (B'lqLoqLOIB). 
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