
UCLA
UCLA Electronic Theses and Dissertations

Title
Formal Error Bounds in Neural Networks, LiDAR Localization, and Generative Models in
Closed-Loop Learning

Permalink
https://escholarship.org/uc/item/3tw7d712

Author
Marchi, Matteo

Publication Date
2025

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tw7d712
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Formal Error Bounds in Neural Networks, LiDAR Localization,

and Generative Models in Closed-Loop Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Matteo Marchi

2025

© Copyright by

Matteo Marchi

2025

ABSTRACT OF THE DISSERTATION

Formal Error Bounds in Neural Networks, LiDAR Localization,

and Generative Models in Closed-Loop Learning

by

Matteo Marchi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2025

Professor Paulo Tabuada, Co-Chair

Professor Ankur M Mehta, Co-Chair

In the modern world, we are witnessing a rapid acceleration in the adoption of complex and poorly

understood systems, such as neural networks, and their use in processing high-dimensional sen-

sor data like cameras and LiDAR. While it is hard to deny the effectiveness and impact of these

systems, their theoretical understanding remains elusive. Unfortunately, this makes their use in

closed-loop control systems hazardous, as many probabilistic characterizations of their errors fail

to hold in this regime, and the tools used to prove properties such as safety and stability (e.g.,

Input-to-State-Stability theory) are not applicable. Furthermore, while substantial work exists on

applying machine learning to control problems—mostly empirical in nature—far less has explored

the application of control-theoretic tools to the analysis of machine learning systems.

The primary aim of this work is to bridge these gaps by providing rigorous worst-case er-

ror, safety, and stability guarantees for control systems with neural network or black-box compo-

nents in the loop, as well as improving the theoretical analysis of these systems through control-

theoretical tools. Specifically, this work focuses on: 1. Developing a neural network architecture

ii

that enjoys deterministic error bounds. 2. Deriving worst-case pose estimate error guarantees for

LiDAR localization. 3. Performing a formal analysis of the long-term dynamics of generative

models that are trained on their own synthetic data.

The first part of this dissertation builds on prior work showing that arbitrary depth residual

networks (as opposed to the classical result involving arbitrary width) enjoy universal approxi-

mation capabilities in the uniform norm sense. However, these results lack a training procedure.

We address this gap by developing an architecture and training algorithm exploiting monotonicity

that result in residual neural networks with deterministic error bounds by construction. Addition-

ally, such deterministic error bounds enable formal safety and stability guarantees to be proven

when using these networks in control loops. Thus, we develop a framework based on Input-to-

State-Stability (ISS) that exploits these deterministic errors when using neural networks as state

observers, or feedback controllers.

The second part considers the problem of LiDAR-based localization. In particular, it looks at

the so-called point cloud registration problem, which is a core routine of most localization and

Simultaneous Localization And Mapping (SLAM) algorithms. The literature is rich with a wide

variety of algorithms that attempt to solve the problem, from the classical Iterative Closest Point

(ICP) to feature and learning-based approaches. However, the existing methods lack in near una-

nimity the ability to provide bounds on the pose estimation error they provide. In Part II we

present a simple and fast point cloud registration algorithm called PASTA (Provably Accurate Sim-

ple Transformation Alignment), provide an extensive formal analysis of its worst-case estimation

error, and experimentally verify its effectiveness. Such an algorithm, due its formal error bounds,

and fast execution time, can be used as a supervisor for other localization algorithms that would

otherwise not enjoy worst-case error bounds.

Finally, in the third part, we consider a topic very relevant to recent developments: generative

models. As these models rapidly spread in popularity and use, the synthetic data they generate

enters the internet, and, in turn, becomes part of the datasets used to train the next generation of

generative models. There are rising concerns (supported by empirical observations) about the long-

iii

term consequences of this process, with fears that it may lead to the internet and these models to

“degenerate” over time. In this work we analyze the learning dynamics of generative models that

are fed back their own produced content in addition to their original training dataset, with particular

focus on the effect of “temperature”, a parameter typically used to modulate the sampling of these

models. Using tools from control theory, we show that, unless a sufficient amount of external

data is introduced at each iteration, any non-trivial temperature leads the model to asymptotically

degenerate. In fact, either the generative distribution collapses to a small set of outputs, or becomes

uniform over a large set of outputs.

iv

The dissertation of Matteo Marchi is approved.

Suhas N Diggavi

Brett Thomas Lopez

Bahman Gharesifard

Ankur M Mehta, Committee Co-Chair

Paulo Tabuada, Committee Co-Chair

University of California, Los Angeles

2025

v

To Eden, my friends, and all who have shaped the person I am today.

vi

TABLE OF CONTENTS

I Deterministic Error Bounds for Residual Neural Networks 1

1 Introduction . 3

2 Uniform Norm Universal Approximation . 5

2.1 Residual networks as control systems . 5

2.2 Controllability . 6

2.3 Uniform approximation . 8

3 Error Bounds and Training . 9

4 Revisiting Universal Approximation . 15

5 Neural Networks in Control Loops . 19

5.1 Motivation . 19

5.2 Problem statement . 20

6 Deterministic Generalization Guarantees . 23

7 Safety and Stability Guarantees . 25

7.1 From density to the δ-cover property . 25

7.2 Closed-loop stability guarantees . 26

7.3 Closed-loop safety guarantees . 31

8 Conclusions . 34

II Formal Error Bounds for LiDAR Localization 35

vii

9 Introduction . 37

9.1 Notation . 39

9.2 Problem statement . 40

10 PASTA: Provably Accurate Simple Transformation Alignment 41

10.1 Ideal case . 41

10.2 Algorithm . 43

10.3 Non-ideal case . 44

10.4 Perturbation measure . 46

11 Theoretical Analysis . 48

11.1 Eigenvector perturbation bounds . 48

11.2 From overlap to eigenvalue separation . 51

11.3 Pose estimate error bound . 54

12 Simulations . 58

13 Experiments . 62

14 Conclusions . 66

III Generative Models in Closed-Loop Learning 67

15 Introduction . 69

15.1 Notation . 70

16 Closed-Loop Learning . 72

16.1 Model sampling with temperature control . 72

16.2 Learning process . 73

viii

16.3 Problem statement . 74

17 A common class of models . 75

17.1 Temperature . 75

17.2 Closed-loop learning dynamics . 78

18 Asymptotic Dynamics . 81

18.1 Identity temperature leads to Martingale-like behavior 81

18.2 High temperature leads to uniformly generated data 83

18.3 Low temperature leads to mode collapse . 87

19 Conclusions . 89

IV Appendix 90

A Fast Computation of Simplex Moments . 91

A.1 Auxiliary results . 91

A.2 Closed-form expressions for moments . 94

A.2.1 Volume . 94

A.2.2 First moment . 95

A.2.3 Second moment . 95

References . 97

ix

LIST OF FIGURES

10.1 Top row: LiDAR rays from different positions in a 2D environment. Bottom row:

corresponding distance measurements converted into a point cloud. The average of

the points (green cross) differs between the two measurements. 42

10.2 Top row: LiDAR rays from different positions in a 2D environment. Bottom left: point

clouds corresponding to the two measurements (blue is the first measurement, red is

the second). Bottom right: hulls of the two point clouds and their intersection (hatched

region). Here, δ is the surface area of the hatched region divided by the greatest of the

areas of the two hulls. 47

12.1 Visualization of the environment, the reference and actual position trajectories in the

closed-loop simulation. 59

12.2 Norm of the trajectory tracking error over time for the closed-loop control task with

the observer fed by the real pose and the pose estimated by PASTA. We do not plot the

initial transient for ease of visual comparison. 60

12.3 Norms of the actual error of the pose estimated by PASTA along the trajectory com-

pared with the error bound guaranteed by Theorem 11.4. Note the bound scale (left-

hand side) differs from the actual error scale (right-hand side). 61

13.1 Sample LiDAR scan and trajectory (left) and image (right) of the robot from the ex-

perimental setup. 63

13.2 Comparison of the estimated pose vs the true pose of the robot. The green band shows

the magnitude of the error bound in Corollary 1 (orange) for a lag value of 15. 63

13.3 Comparison of the error bound in Corollary 1 (orange) and Theorem 11.4 (blue) and

the empirical error of PASTA (green) on real LiDAR data. Increased “lag” implies

larger times between compared LiDAR measurements. 65

x

ACKNOWLEDGMENTS

It is that section where you have a heartfelt acknowledgment of all the wonderful people in your

life who have helped you along the way to where you are now. As someone who feels chronically

awkward displaying emotions, it is hard for me to write, but it would be harder still to keep it all

to myself and not share my appreciation for the great people who have intersected my life. I hope

I am able to convey the gratitude I have for meeting all of you.

Of all people, my advisor, Prof. Paulo Tabuada, could not possibly be left unrecognized in

a dissertation. Thank you for giving me this opportunity and for jump-starting this incredible

journey; my life would be completely different had you not been here. Thank you for all the

support and guidance you have provided over the years and for being understanding when things

did not go as expected. Your passion and inquisitiveness for research are incredible, and I truly

believe you deeply care for all your students.

Of course, I have to acknowledge everyone on my committee. Prof. Gharesifard, I am sure you

hear this a lot, but you really are a wonderfully enjoyable and fun presence to be around. I loved all

the discussions we had (together with everyone else in the lab), both research- and non-research-

related. To Prof. Diggavi, it has been a pleasure collaborating with you, and to Prof. Lopez and

Prof. Mehta, thank you for being on my committee and patiently listening to my ramblings during

my quals exam and defense.

To everyone in the lab, I want to give you the most heartfelt thanks I can. I was shy and

awkward when I joined, but you all have been impossibly warm and welcomed me without hes-

itation! To Alimzhan Sultangazin and Tzanis Anevlavis, it was always fun to be in the lab with

you guys around! To Luigi Pannocchi, I am so glad I had another Italian to share my perplexities

with! To Marcus Lucas, your infectious calm is always welcome. To Lucas Fraile, you have pulled

triple duty—being a great lab mate, friend, and roommate! To Yskandar Gas, you have the best

sense of humor and always made it a pleasure to be there. To Jonathan Bunton, you have been

the most incredible friend, and I really miss all our rambling sessions in the lab! To all the new

students—Rahal Nanayakkara, João Pedro Silvestre, Alvaro Rodriguez Abella, Mitalee Oza, and

xi

Valen Yamamoto—it has been a pleasure to meet you (even if briefly for some of you) and I really

hope you enjoy the journey ahead.

To my family in Italy, I need to thank you for supporting me and helping me become the person

I am today. I wouldn’t have had the courage to undertake such a great step if you hadn’t been there.

Finally, to Eden Haney, my deepest thank you for existing and for choosing to be on this crazy

ride with me. I could never have imagined that on this journey, I would meet someone like you,

and even less that I would be married to you! You have been there during my deepest lows and my

highest highs, and you unlocked a part of me that I was not sure even existed. I can safely say that

you taught me to actually live life, and I am so grateful to have you in mine!

I can only conclude with something Yska always used to say (and he’s so right): “What a life!”

xii

VITA

2014 B.S. Control and Automation Engineering,

Politecnico di Milano, Milan, Italy.

2017 M.S. Control and Automation Engineering,

Politecnico di Milano, Milan, Italy.

2019-2025 PhD Candidate,

Department of Electrical and Computer Engineering,

University of California, Los Angeles, CA, USA.

PUBLICATIONS

M. Marchi, S. Soatto, P. Chaudhari and P. Tabuada, “Heat Death of Generative Models in Closed-

Loop Learning”, 63rd IEEE Conference on Decision and Control, 2024.

M. Marchi, J. Bunton, J. Pedro Silvestre and P. Tabuada, “A Framework for Time-Varying Opti-

mization via Derivative Estimation”, 22nd European Control Conference, 2024.

M. Marchi, J. Bunton, Y. Gas, B. Gharesifard and P. Tabuada, “Sharp Performance Bounds for

PASTA”, IEEE Control Systems Letters, 2023.

M. Marchi, J. Bunton, B. Gharesifard and P. Tabuada, “LiDAR Point Cloud Registration with

Formal Guarantees”, 61st IEEE Conference on Decision and Control, 2022.

xiii

M. Marchi, J. Bunton, B. Gharesifard and P. Tabuada, “Safety and Stability Guarantees for Control

Loops with Deep Learning Perception”, IEEE Control Systems Letters, 2021.

M. Marchi, B. Gharesifard and P. Tabuada, “Training Deep Residual Networks for Uniform Ap-

proximation Guarantees”, 3rd Conference on Learning for Dynamics and Control, 2021.

xiv

Part I

Deterministic Error Bounds for Residual

Neural Networks

1

It has recently been shown that deep residual networks with sufficiently high depth, but bounded

width, are capable of universal approximation in the supremum norm sense. Based on these results,

we show how to modify existing training algorithms for deep residual networks to provide approx-

imation bounds for the test error, in the supremum norm, based on the training error. Our methods

are based on control-theoretic interpretations of these networks both in discrete and continuous

time, and establish that it is enough to suitably constrain the set of parameters being learned in a

way that is compatible with most currently used training algorithms.

These results have immediate control applications, as deep learning is currently used in the

perception pipeline of autonomous systems, such as when estimating the system state from cam-

era and LiDAR measurements. While this practice is typical, hard guarantees on the worst-case

behavior of the closed-loop system are rare. In this part, we further leverage our results on neural

network approximation, combined with classical input-to-state stability (ISS) properties, and show

how to design deep neural networks for state estimation that guarantee the safety and stability of

the resulting closed-loop system.

2

CHAPTER 1

Introduction

Deep learning [LBH15] has profoundly changed the way in which many engineering problems

are solved, with computer vision being a particularly striking example. Deep neural networks can

now perform complex tasks like gesture recognition [OK17], obstacle detection for self driving

cars [RGP17], and many more [VDD18]. Although similar benefits may be expected by integrating

machine learning with control, we must contend with the safety critical nature of many control

applications. Unfortunately, the statistical guarantees typically provided in machine learning, such

as probably approximately correct learning bounds, cannot be directly used to establish formal

guarantees of safety and performance of control loops. Despite these difficulties, several research

efforts are underway to tackle this problem. For example, there are several recent papers studying

control related tasks that employ data-driven controllers or perception maps [DMR20, COM19,

ALS19], and others that further study classical problems such as the Linear Quadratic Regulator

[DMM19] or the Kalman Filter [TMP20] in settings where the underlying parameters are to be

learned as new information arrives, while still guaranteeing some level of performance. On the

other hand, control-theoretic techniques, particularly ideas from robust and optimal control theory,

have been useful in developing training algorithms for neural networks [SFP20, LCT17].

In this work, we offer one additional contribution towards this effort. It was recently estab-

lished by [TG20], using control-theoretic techniques, that deep residual networks have the power

of universal approximation with respect to the infinity norm. In other words, given a continuous

function f : E → Rn to be learned, defined on a compact set E ⊂ Rn, and given a desired

accuracy ε ∈ R+, there exists a deep residual network implementing the function ϕ satisfying

supx∈E ∥f(x)− ϕ(x)∥∞ ≤ ε. Such a result has obvious relevance in the context of a control loop

3

since one can use well-established nonlinear control analysis techniques to study the effect of using

ϕ instead of f by using the upper bound ε on the mismatch between f and ϕ. Unfortunately, the

results of [TG20] are not constructive and, in particular, they do not provide training procedures

for deep residual networks that guarantee such bounds. Moreover, the results are established for

the continuous limit of deep residual networks given by continuous-time control systems. These

shortcomings are addressed in this work. We show that most training algorithms, and gradient

descent in particular, can be modified to offer similar approximation guarantees without the need

to take the continuous limit.

At the technical level, we make the following two contributions: 1) we show how to modify

training algorithms so that an upper bound on the infinity norm of the test error can be computed

from an upper bound on the training error; 2) we show the training error can be made as small as

desired by increasing depth (although we do not guarantee that any particular training algorithm

can achieve it, as the training of deep networks is known to be a non-convex problem).

Interestingly, the guarantees provided in this work are deterministic which contrasts with the

mainstream approach in machine learning that typically only provides probabilistic guarantees

[SB14,AB09]. Underlying this difference are the assumptions made on the training data. Whereas

classical learning theory assumes the training data to be generated according to some distribution,

we make no assumptions on how it is generated. However, our bounds are based on how well the

data covers the domain of the function to be learned. This is similar to robustness bounds in the

Input to State Stability framework: nothing1 is assumed about disturbances and the bound on the

state depends on the concrete disturbance being applied. In our case, nothing is assumed about the

training data and the bound depends on the actual data that was used for training.

1Except for being essentially bounded.

4

CHAPTER 2

Uniform Norm Universal Approximation

In this section we review the results of [TG20] upon which the results of this work are based.

2.1 Residual networks as control systems

One of the key insights exploited by [TG20] is that residual neural networks can be thought of as

the forward Euler discretization of continuous-time control systems. This observation, first made

by [Wei17, HR17, LZL18], allows us to use control theoretic techniques to analyze deep residual

networks.

Let us consider a deep residual network modeled by the discrete-time control system:

z(k + 1) = z(k) + s(k)Σ(W (k)z(k) + b(k)) , (2.1)

where k ∈ N0 indexes the layers of the network, z(k) ∈ Rn models the contents of the n neurons

in layer k, (s(k),W (k), b(k)) ∈ R × Rn×n × Rn are the weights (interpreted as inputs), and

Σ(z) = (σ(z1), . . . , σ(zn)) is defined by the scalar activation function σ : R → R. In particular,

we consider deep residual networks that have fixed width equal to n. To help the reader distinguish

between discrete-time models and continuous-time models, we reserve z for the state of discrete-

time models and x for the state of continuous-time models. Before introducing the continuous

analogue of (2.1), we recall the notion of flow. The flow Zk : Rn → Rn of (2.1) under the input

(s,W, b) : {0, 1, . . . , ℓ} → R×Rn×n×Rn is the map Zk taking the state z ∈ Rn to the state Zk(z)

reached from z at time k ∈ {0, 1, . . . , ℓ+ 1} by the solution of (2.1) under the input (s,W, b).

Discrete-time control systems of the form (2.1) can be viewed as the time discretization of the

5

continuous-time control system:

ẋ(t) = s(t)Σ(W (t)x(t) + b(t)) , (2.2)

where x(t) and (s(t),W (t), b(t)) take values in the same sets as in (2.1), except they are indexed

by t ∈ R+
0 modeling continuous time. The weights are now functions defined on [0, τ] that we

interpret as open-loop inputs parameterized by time t ∈ [0, τ]. Similarly to the discrete-time case,

we define the flow X t : Rn → Rn induced by (2.2) and by a choice of inputs (s,W, b) : [0, τ] →

R × Rn×n × Rn to be the function mapping the state x ∈ Rn to the state X t(x) reached at time

t ∈ [0, τ] from x by the solution of (2.2) under the input (s,W, b).

2.2 Controllability

The interpretation of deep residual networks as continuous-time control systems allows the prob-

lem of training a network to be recast as the problem of designing an open-loop control input.

Let us assume that we seek to train a network so as to learn a continuous function f : E → Rn

where E ⊂ Rn is a compact set. We are given a collection of samples of this function, i.e., a

collection of d pairs (xi, f(xi)), with i ∈ {1, . . . , d}, and our objective is to choose a time τ ∈ R+

and a control input (s,W, b) : [0, τ] → R × Rn×n × Rn so that the resulting flow X t satisfies

Xτ (xi) = f(xi) for all i ∈ {1, . . . , d}. We emphasize that, independently of the number of

samples d, we seek a single control input. In other words, we seek a single input to concurrently

control d copies of the control system (2.2), each initialized at one of the points xi in the sample

set. To make this idea formal, we introduce the ensemble control system:

Ẋ(t) =
[
s(t)Σ(W (t)X•1(t) + b(t))|s(t)Σ(W (t)X•2(t) + b(t))| . . . |s(t)Σ(W (t)X•d(t) + b(t))

]
,

(2.3)

where X•i represents the i-th column of X(t) ∈ Rn×d. If we define X init =
[
x1|x2| . . . |xd

]
and

Xfin =
[
f(x1)|f(x2)| . . . |f(xd)

]
, we can express the network training problem as the design of

a time τ ∈ R+ and an input (s,W, b) : [0, τ] → R × Rn×n × Rn so that the flow X t of (2.3)

satisfies Xτ (X init) = Xfin. Note that the ensemble control system (2.3), is formed by d exact

6

copies of (2.2) whereas the literature on ensemble control, e.g., [LK06,HS14,Bro07], mostly deals

with ensembles of different control systems, with the exception of [AS20] where a setting similar

to the one here is considered.

To summarize, the ability to train a network relies on the controllability of the ensemble control

system (2.3). Let us recall the notion of controllability.

Definition 2.1. Control system (2.3) is said to be controllable on a submanifold M of Rn×d if,

given any points X init, Xfin ∈ M there exist τ ∈ R+ and a control input (s,W, b) : [0, τ] →

R× Rn×n × Rn so that the flow X t of (2.3) under said input satisfies Xτ (X init) = Xfin.

In order to state one of the key results of [TG20], showing that controllability holds on an open,

dense, and connected subset of Rn×d, we introduce a mild assumption on the activation function σ

stated in terms of its derivative denoted by Dσ:

Assumption 2.1. We assume that Dσ ≥ 0, Dσ := supx∈RDσ <∞, and that there exists k ∈ N0

such that ξ = Dkσ is injective and satisfies a quadratic differential equationDξ = a0+a1ξ+a2ξ
2

with a2 ̸= 0.

Assumption 2.1 is quite mild. It is satisfied, e.g., by the logistic function, hyperbolic tangent,

tangent, and soft plus. Moreover, it also holds for the ReLU by regarding this function as the limit

of the soft plus function, see [TG20] for more details.

Theorem 2.1 ([TG20]). Let N ⊂ Rn×d be the set defined by:

N =

{
F ∈ Rn×d |

∏
1≤i<j≤d

(Fℓi − Fℓj) = 0, ℓ ∈ {1, . . . , n}

}
. (2.4)

Suppose that Assumption 2.1 holds. If n > 1, then the ensemble control system (2.3) is controllable

on the submanifold M = Rn×d\N .

Theorem 2.1 shows that given any finite set of samples defining X init and Xfin, as described

above, only two situations can occur: 1) either X init, Xfin ∈ M and Xτ (X init) = Xfin or; 2)

X init /∈ M or Xfin /∈ M and ∥Xτ (X init) − Xfin∥ ≤ ε for any chosen norm ∥ · ∥ and accuracy

7

ε ∈ R+. The latter case holds in virtue of M being an open and dense subset of Rn×d. In other

words, deep residual networks can memorize exactly almost any finite set of samples. Moreover,

those finite sets that cannot be exactly memorized can be approximated to an arbitrary accuracy.

2.3 Uniform approximation

The second main result of [TG20] extends Theorem 2.1 from finite sets to the whole domain of the

function to be learned. This is done by using a deep residual network with n + 1 neurons to learn

a function f : E → Rn, with E ⊂ Rn a compact set. The additional neuron allows non-monotone

functions to be approximated while using a monotone flow. The monotonicity property is crucial to

the L∞ norm approximation result, and is the main ingredient behind our results in Chapter 3. To

recall this result more precisely, since f and the flow X t have different domains and co-domains,

we introduce a linear injection α : Rn → Rn+1, a linear projection β : Rn+1 → Rn, and measure

the error between f and the learned function β ◦Xτ ◦ α by:

∥f − β ◦Xτ ◦ α∥L∞(E) := sup
x∈E
∥f(x)− β ◦Xτ ◦ α(x)∥∞.

Theorem 2.2. Let n > 1 and suppose that Assumption 2.1 holds. Then, for every continuous

function f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time

τ ∈ R+, a linear injection α : Rn → Rn+1, a linear projection β : Rn+1 → Rn, and an input

(s,W, b) : [0, τ] → R × R(n+1)×(n+1) × Rn+1 so that the flow X t : Rn+1 → Rn+1 of (2.2) with

state space Rn+1 under the said input satisfies:

∥f − β ◦Xτ ◦ α∥L∞(E) ≤ ε.

By interpreting α and β as linear layers, the first and last, respectively, we conclude that deep

residual networks can approximate any continuous function arbitrarily well with respect to the

supremum norm. [TG20] select α as the fixed function α(x) = (x,111Tx) and β as the linear function

β(x, y) = x + κ111y where κ ∈ R has to be appropriately chosen for each f being approximated,

and 111 ∈ Rn is the vector whose entries are all one.

8

CHAPTER 3

Error Bounds and Training

In this chapter, we show how the approximation error between a function to be learned and the

function implemented by a deep residual network can be bounded by the training error. Mono-

tonicity plays a key role in our approach and thus we start by reviewing this concept.

Definition 3.1 (First-orthant partial order on Rn). The first-orthant partial order⪯ on Rn is defined

by x ⪯ y if and only if xi ≤ yi for all i ∈ {1, . . . , n}, where ≤ denotes the usual total order on R.

Monotonicity of a map can now be introduced by making use of the preceding partial order.

Although monotonicity can be defined with respect to other orders, the first-orthant order will

simplify the analysis.

Definition 3.2 (Monotone map). We say that a function ϕ : Rn → Rm is monotone if for any

x, y ∈ Rn:

x ⪯ y =⇒ ϕ(x) ⪯ ϕ(y) .

We say that a flow Zk is monotone if the map Zk : Rn → Rn is monotone for each k ∈ N.

Given a set E ⊂ Rn, we denote, respectively, by supE and inf E the least upper bound of all

the elements in E and the greatest lower bound of all the elements in E with respect to the order

⪯. Moreover, given two points x, z ∈ Rn with x ⪯ z, we denote by [x, z] the set defined by:

[x, z] = {y ∈ Rn | x ⪯ y ⪯ z}.

Flows of deep residual networks can be made monotone by enforcing certain constraints on the

inputs.

9

Proposition 3.1. Consider the discrete-time control system (2.1) modeling a deep residual net-

work and assume Assumption 2.1 holds. Any flow Zk induced by (2.1) using an input (s,W, b) :

{0, 1, . . . , ℓ} → R× Rn×n × Rn satisfying:

s(k)wij(k) ≥ 0, 1 + s(k)wii(k)Dσ ≥ 0, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j, k ∈ {0, 1, . . . , ℓ},

(3.1)

is monotone.

Proof. Let k ∈ N0 and consider the map ϕk : Rn → Rn defined by

ϕk(z) = z + s(k)Σ(W (k)z + b(k)) .

Note that for all i, j ∈ {1, 2, . . . , n} with i ̸= j, we have that

∂ϕk
i

∂xj
(x) = s(k)Dσ(W (k)x+ b(k))wij(k) .

Since Dσ ≥ 0 and s(k)wij(k) ≥ 0, by assumption, we have ∂ϕk
i

∂xj
≥ 0 for all i ̸= j. Moreover, for

i = j we have:
∂ϕk

i

∂xi
(x) = 1 + s(k)Dσ(W (k)x+ b(k))wii(k) .

It now follows from the assumption 1 + s(k)wii(k)Dσ ≥ 0, alongside with the fact that Dσ ≥ 0,

that ∂ϕk
i

∂xj
≥ 0 holds for i = j. Hence, by [HS06, Lemma 5.1], we conclude that ϕk is monotone.

Finally, since:

Zk = ϕk−1 ◦ ϕk−2 ◦ · · · ◦ ϕ0 ,

and the composition of monotone functions is monotone, Zk is monotone.

We now prove one of the main results of this work, a deterministic bound for the approximation

error based on the training error. Although reminiscent of a generalization bound that holds for

any set of sample points, the bound in the following result depends on the specific set of samples.

The result makes use of a discrete-time control system of the following form, representing

a residual neural network, where the state z(k) ∈ Rn+1 is a tuple z(k) = (z1(k), z2(k)) with

10

z1(k) ∈ Rn and z2(k) ∈ R, whose dynamics are described by:

z(k + 1) = (z1(k + 1), z2(k + 1)) = (z1(k) + s(k)Σ(W (k)z1(k) + b(k)), z2(k)) . (3.2)

The dynamics are split into two independent parts. The first is a control system of form (2.1),

while the second has no dynamics and just propagates the initial value of z2 through the layers. We

denote by Zk
1 and Zk

2 the flows of the first and second part of (3.2), respectively.

Theorem 3.1. Consider the discrete-time control system (3.2), modeling a deep residual network,

and suppose that Assumption 2.1 holds. Let f : Rn → Rn be a continuous function, and let

E ⊂ Rn be a compact set. For any finite setEsamples ⊂ Rn satisfyingE ⊆ [inf Esamples, supEsamples],

let δ ∈ R+ be the smallest number satisfying:

∀x ∈ E, ∃x, x ∈ Esamples, ∥x− x∥∞ ≤ δ and x ⪯ x ⪯ x.

For any flow Zk induced by (3.2) and by an input (s,W, b) : {0, 1, . . . , ℓ} → R × Rn×n × Rn

satisfying the constraints (3.1), we have:

∥f − β ◦ Zℓ+1 ◦ α∥L∞(E) ≤ 3∥f − β ◦ Zℓ+1 ◦ α∥L∞(Esamples) + 2ωf (δ) + 2n|κ|δ, (3.3)

where ωf is the modulus of continuity of f , α : Rn → Rn+1 is given by α(x) = (x,111Tx),

β : Rn+1 → Rn is given by β(x, y) = x + κ111y, 111 ∈ Rn is the vector whose entries are all 1,

and κ ∈ R.

Proof. Observing the structure of (3.2) we can write for any x ∈ E:

β ◦ Zℓ+1 ◦ α(x) = β ◦ (Zℓ+1
1 (x), Zℓ+1

2 (111Tx)) = Zℓ+1
1 (x) + κ111Zℓ+1

2 (111Tx) = Zℓ+1
1 (x) + κ111111Tx .

Then:

∥∥f − β ◦ Zℓ+1 ◦ α
∥∥
L∞(Esamples)

=
∥∥f − Zℓ+1

1 − κ111111T
∥∥
L∞(Esamples)

=
∥∥∥f̃ − Zℓ+1

1

∥∥∥
L∞(Esamples)

, (3.4)

11

where f̃ = f − κ111111T . Then, since f̃ is a continuous function and Zℓ+1
1 is monotone, we can apply

Lemma A.3 of [TG20] to obtain:∥∥f − β ◦ Zℓ+1 ◦ α
∥∥
L∞(E)

=
∥∥∥f̃ − Zℓ+1

1

∥∥∥
L∞(E)

≤ 3
∥∥∥f̃ − Zℓ+1

1

∥∥∥
L∞(Esamples)

+ 2ωf̃ (δ)

≤ 3
∥∥f − β ◦ Zℓ+1 ◦ α

∥∥
L∞(Esamples)

+ 2ωf̃ (δ).

To conclude the proof, it remains to be shown that ωf̃ (δ) ≤ ωf (δ) + n|κ|δ. This can be seen by

observing that for any x, y ∈ Rn, we have:∥∥∥f̃(x)− f̃(y)∥∥∥
∞

=
∥∥f(x) + f(y)− κ111111T (x− y)

∥∥
∞

≤ ∥f(x) + f(y)∥∞ + |κ|
∥∥111111T∥∥∞ ∥x− y∥∞

≤ ωf (∥x− y∥∞) + n|κ| ∥x− y∥∞ ,

yielding the claim.

Note that the bound (3.3) can be used as a stopping criterion for the training. Since ∥f − β ◦

Zℓ+1 ◦ α∥L∞(Esamples) is known, some knowledge of an upper bound for ωf will directly give us

an upper bound for the approximation error. Hence, the question arises as to how to train deep

residual networks so that the assumptions of Theorem 3.1 hold. This can be done by training a

deep residual network with any of the usual iterative optimization techniques (such as gradient

descent), as long as the parameters s,W are suitably constrained to satisfy (3.1). We now make

this idea precise.

Consider a deep residual network described by (3.2) with n + 1 neurons and ℓ + 1 layers

enhanced with a layer implementing the linear map α(x) = (x,111Tx) functioning as layer 0, and

another layer implementing the linear map β(x, y) = x+κ111y functioning as layer ℓ+2. Note that

while layer 0 is fixed, the parameter κ in layer ℓ + 2 will also be learned. If we denote by θ(k),

k ∈ {1, 2, . . . , ℓ+ 2} the parameters of each layer, we have:

θ(k) = (s(k),W (k), b(k)) ∈ R× Rn×n × Rn, k ∈ {1, 2, . . . , ℓ+ 1}

12

θ(ℓ+ 2) = κ ∈ R.

To ensure that the parameters θ(k), k ∈ {1, 2, . . . , ℓ+1}, satisfy the constraints (3.1), we project

them to the closest point in the set defined by (3.1) using the projection proj : Rn2+n+1 → Rn2+n+1

defined by the solution of a quadratic optimization problem:

proj(θ(k)) =

argminθ′∈Rn2+n+1 ∥θ′ − θ(k)∥2

s.t. s′w′
ij ≥ 0, i, j ∈ {1, . . . , n}, i ̸= j

1 + s′w′
iiDσ ≥ 0, i ∈ {1, . . . , n}

, (3.5)

where θ′ = (s′,W ′, b′) is the variable we optimize over (note that b′ does not appear in the con-

straints, so can always be taken as b′ = b(k)). Since the constraints (3.1) are independent for each

layer, the parameters of each layer can be independently projected. Although problem (3.5) is non-

convex, many efficient heuristics exist for solving quadratic programs, see [PB17] and references

therein. Furthermore, we note that the optimal W ′ can be computed explicitly for a given fixed s′,

so that the projection can be recast as a single-variable non-linear optimization problem.

Let now Θ be the full set of parameters of the network Θ = (θ(1), . . . , θ(ℓ+1), θ(ℓ+2)). Any

iterative training algorithm can be written in the form:

Θi+1 = ψ(Θi),

for a suitably defined ψ (that we assume here to encode all the information about the problem, such

as the available training data), and modified to:

Θ̃i+1 = ψ(Θi)

Θi+1 = (proj(θ̃i+1(1)), proj(θ̃i+1(2)), . . . , proj(θ̃i+1(ℓ+ 1)), θ̃i+1(ℓ+ 2)),

so that the parameters θ at each iteration satisfy the constraints (3.1). Even though we do not

plan to dwell on this topic here, it is worth pointing out that the projected gradient descent has

convergence properties similar to those of normal gradient descent [ABS13]. In fact, constraining

the weights in neural networks is a recurring idea in the literature, see, e.g., [CZ14, DV10].

13

As a concluding remark, it is interesting to note that penalizing the magnitude of κ during

training, (that would typically be done for purposes of regularization), can be justified on the basis

of Theorem 3.1, where |κ| appears in the final approximation guarantee, indicating a potential

tradeoff between training and test errors.

14

CHAPTER 4

Revisiting Universal Approximation

The bound (3.3) provided in Theorem 3.1 provides information about the approximation error

based on the training error. However, we do not know if low training error is achievable when the

constraints (3.1) on the inputs are enforced. We will show this to be the case by building upon the

results of [TG20].

In analogy with (3.2), we present the following control system, where x(t) ∈ Rn+1, x1(t) ∈

Rn, and x2(t) ∈ R:

ẋ(t) = (ẋ1(t), ẋ2(t)) = (s(t)Σ(W (t)x1(t) + b(t)), 0) . (4.1)

Like in the discrete case, the dynamics are split into two independent parts, with the first a control

system of form (2.2), while the second has no dynamics. We denote respectively by X t
1 and X t

2 the

flows of the first and second part of (4.1).

We first introduce a variant of Corollary 4.5s of [TG20].

Theorem 4.1. Let n > 1 and suppose that Assumption 2.1 holds. Then, for every continuous

function f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time

τ ∈ R+ and an input (s,W, b) : [0, τ]→ R× Rn×n × Rn satisfying:

s(t)wij(t) ≥ 0 ∀i, j ∈ {1, 2, . . . , n}, i ̸= j, t ∈ [0, τ], (4.2)

so that the flow X t : Rn+1 → Rn+1 of (4.1) under the said input satisfies:

∥f − β ◦Xτ ◦ α∥L∞(E) ≤ ε,

where α : Rn → Rn+1 is given by α(x) = (x,111Tx), and β : Rn+1 → Rn is given by β(x, y) =

x+ κ111y as in Theorem 3.1.

15

Note that this result differs from Theorem 2.2, as it places additional constraints (4.2) on the

inputs, and assumes that the flowXτ obeys (4.1). However, the proof of Theorem 2.2 only requires

minor modifications to account for (4.1) and (4.2).

Proof. We first consider the flow of the first component Xτ
1 only. Proposition A.4 and Theorem

4.4 of [TG20] will still hold for Xτ
1 , provided that there exist choices of inputs (s,W, b) satisfying

the constraints (4.2) that induce the same set of vector fields used in their proofs. The vector fields

used in Proposition A.4 are:
X+

i = σ(c) ∂
∂xi
, X−

i = −X+
i

Y +
i = σ(xi)

∂
∂xi
, Y −

i = −σ(xi) ∂
∂xi

, i ∈ {1, 2, . . . , 2n},

for some c such that σ(c) ̸= 0. Respectively, these can be realized in our case by the choices

(s,W, b) = (±1, 0, cei) and (s,W, b) = (±1, Eii, cei), where ei is the vector with 1 in its i-th entry

and 0 in every other entry, and Eij is the matrix with 1 in its ij-th entry and 0 in all other entries

(note that the constraints (4.2) only apply to off-diagonal entries). An additional class of vector

fields that is used in Theorem 4.4 of [TG20] is given by

Zij = σ(xj)
∂

∂xi
, i, j ∈ {1, . . . , 2n}.

Note that these vector fields are realizable in our case by the choice (s,W, b) = (1, Eij, 0).

This ensures that Proposition A.4 and Theorem 4.4 hold for Xτ
1 . Consequently, Corollary 4.5

of [TG20] will hold for the complete flow Xτ establishing this result.

We can now establish that the training error can be made as small as desired, provided that the

network depth is large enough, by Euler discretization of the continuous-time input from Theo-

rem 4.1.

Theorem 4.2. Consider the discrete-time control system (3.2), modeling a deep residual network,

and suppose that Assumption 2.1 holds. Then, for every continuous function f : Rn → Rn with

n > 1, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time ℓ ∈ N and an input

16

(s,W, b) : {0, 1, . . . , ℓ} → R × Rn×n × Rn satisfying (3.1), so that the flow Zk : Rn+1 → Rn+1

of (3.2) under the said input satisfies:

∥f − β ◦ Zℓ+1 ◦ α∥L∞(E) ≤ ε, (4.3)

where α : Rn → Rn+1 is given by α(x) = (x,111Tx), and β : Rn+1 → Rn is given by β(x, y) = x+ κ111y

as in Theorem 3.1.

Proof. . According to Theorem 4.1, there exist a β : Rn+1 → Rn and a piecewise constant

control input1 (s,W, b) for (4.1) satisfying (4.2) inducing a flow X t so that ∥f − h∥L∞(E) ≤
ε
2

with h defined by h(x) = β ◦Xτ ◦α(x). Consider now the function g(x) = β ◦Zℓ+1 ◦α(x), where

Zk is the flow induced by (3.2) under some input. Then, for any x ∈ E:

∥f(x)− g(x)∥∞ ≤ ∥f(x)− h(x)∥∞ + ∥h(x)− g(x)∥∞

≤ ε

2
+
∥∥Xτ

1 (x) + κ111111Tx− Zℓ+1
1 (x)− κ111111Tx

∥∥
∞

≤ ε

2
+
∥∥Xτ

1 (x)− Zℓ+1
1 (x)

∥∥
∞ . (4.4)

Let (s,W, b) be the continuous-time input for (4.1) that results in the continuous-time flow X t.

We now construct a discrete-time input (s′,W ′, b′) for (3.2), so that the resulting flow Zk satisfies:∥∥Xτ
1 (x)− Zℓ+1

1 (x)
∥∥
∞ ≤

ε

2
. (4.5)

By Euler forward integration (see [Atk08]), there exists a sufficiently small T ∈ R+, so that the

flow of (2.1) under the input (s′(k),W ′(k), b′(k)) = (Ts(kT),W (kT), b(kT)), k ∈ {1, 2, . . . , ⌊τ/T ⌋}

satisfies (4.5) with ℓ = ⌊τ/T ⌋, provided the solution of (2.2) has bounded second derivative and

the right-hand side of (2.2) is Lipschitz continuous in the state variable. Since the input (s,W, b)

is piecewise constant, the solution of (2.2) can be seen as the composition of analytic flows (the

right-hand side of (2.2) is analytic for constant inputs in virtue of Assumption 2.1), one per each

constant component of the input. Since the solution is defined on the compact [0, τ], its second

derivative is bounded.

1The controllability results of [TG20] only rely on being able to switch between a finite set of vector fields which
is achieved by piecewise constant inputs.

17

By combining (4.4) with (4.5) we obtain inequality (4.3), and hence to conclude the proof it

suffices to show that the inputs (s′,W ′, b′) satisfy (3.1). The first requirement in (3.1):

s′(k)w′
ij(k) ≥ 0,

is immediately satisfied, since ∀t ∈ [0, τ] we have that s(t)wij(t) ≥ 0. In order to show that the

second requirement in (3.1) is satisfied, we first let:

s̄ = max
[0,t]
|s(t)|, w̄ij = max

[0,t]
|wij(t)| ,

and select T such that:

T ≤ min
i,j∈{1,...,n}

(s̄w̄ijDσ)
−1 .

Therefore, we have that:

1 + Ts(kT)wii(kT)Dσ = 1 + s′(k)w′
ii(k)Dσ ≥ 0 .

18

CHAPTER 5

Neural Networks in Control Loops

Neural network architectures with deterministic error bounds, such as that presented in the previous

chapters, have an immediate application in a control setting. This property can be exploited to

develop control applications that involve machine learning components in the loop, while retaining

provable safety and stability guarantees.

5.1 Motivation

The resurgence of neural networks in the last decade, especially with the advent of deep learn-

ing [LBH15], has facilitated progress on notoriously difficult problems such as image classifica-

tion [LKB17] and natural speech processing [YHP18]. This progress naturally led to widespread

use of deep neural networks in the perception pipeline of autonomous systems [Ack17, LHA20].

Given the safety-critical nature of such systems, it is imperative to provide formal safety, stability,

and robustness certificates when deep neural networks are used in a closed-loop control system.

Incorporating neural networks in closed-loop control has been extensively studied [Son93],

typically with the underlying assumption that the neural network can produce arbitrarily small ap-

proximation errors [SMO04, LJY99]. However, this is often unrealistic and unless the approxima-

tion errors are appropriately quantified and their impact on safety and stability is studied [ZPZ00],

the analysis of the resulting closed-loop systems remains incomplete. We address the current gap

in analysis by providing safety and stability guarantees when deep neural networks are used in the

perception pipeline with a suitably robust control law.

Existing techniques to establish the stability of closed-loop systems containing neural net-

19

works [AGS13,YSA20,JL20] are based on estimates of the neural network’s Lipschitz constant by,

for instance, imposing incremental quadratic type constraints during training [FRH19]. Moreover,

most results focus on L2 type estimates, whereas we target guarantees in the uniform norm, which

are necessary to exploit ISS properties and provide safety and stability certificates. Other recent

approaches consist of performing output range and reachability analysis of the networks [KL20,

DJS18, XTR18] by solving an optimization problem or performing formal verification, or rely on

special dynamic network structure [SP99].

In this work, we consider a neural network acting as either a state observer or an output feed-

back control law for a dynamical system. Our main contribution consists in bridging the gap

between the classical notion of input-to-state stability and newly established worst-case guaran-

tees for neural networks, providing concise, hard guarantees on the resulting closed-loop system

behavior.

5.2 Problem statement

Consider the nonlinear control system:

ẋ(t) = f(x(t), u(t), d(t)) (5.1)

y(t) = h(x(t)), (5.2)

where t ∈ R≥0, x(t) ∈ Rn is the system state, u(t) ∈ Rm the control input, d(t) ∈ Ro the

disturbance, y(t) ∈ Rp the output, and f : Rn × Rm × Ro → Rn and h : Rn → Rp are smooth

maps.

Although we focus on using output measurements to provide a reliable state estimate x̂ for the

controller, suppose for the moment that a feedback controller u = k(x) has been designed under

the assumption that the state x is known. We will then consider two scenarios. In the first, the

controller is used with a state estimate provided by a deep neural network. In the second scenario,

the deep neural network directly provides the control input and the controller is used in the training

of such network. The state estimate of the state x(t) at time t provided by the neural network, in

20

the first scenario, is computed from a finite sequence of ℓ + 1 outputs and ℓ inputs. To this end,

consider the measurements:

Smeas(t, ℓ) = (y(t), y(t− τ), . . . , y(t− ℓτ), y(t),u(t− τ), . . . , u(t− ℓτ)),

with sampling time τ ∈ R>0. The next definition describes our observability assumption.

Definition 5.1. The control system (5.1)-(5.2) is said to be ℓ-observable if there exists a map

r : Rp(ℓ+1) × Rmℓ → Rn satisfying:

r(Smeas(t, ℓ)) = x(t), (5.3)

for any solution x(t) of (5.1)-(5.2).

This notion of observability is restatement of the notion of uniform observability on compact

sets provided in [Han09].

Given the unknown continuous function r : Rp(ℓ+1) × Rmℓ → Rn returning the current state

from current and past inputs and outputs, we want to build a neural network implementing the

function ψ : Rp(ℓ+1) × Rmℓ → Rn approximating r with respect to the L∞ norm. The function ψ

is to be constructed only from the data Smeas(t, ℓ) and the evaluation of r on Smeas(t, ℓ).

For simplicity of presentation, and in the interest of space, we assume the sampling time τ

is small enough so that we can neglect the effect of only having state estimates produced at the

time instants qτ , q ∈ Z≥0. In other words, we assume that state estimates are produced for every

t ∈ R≥0 and, consequently, control inputs are also produced at every t ∈ R≥0. Eliminating this

simplifying assumption can be done, e.g., by resorting to the sampled-data techniques described

in [NT04] and would not substantially alter the results.

We can now formalize the first problem addressed in this work.

Problem 1. (Deep neural network observer design): Design a deep neural network to implement

the map ψ : Rp(ℓ+1) × Rmℓ → Rn producing the state estimate x̂ from the sequence of inputs and

outputs Smeas(t, ℓ) so that the closed-loop system:

ẋ = f(x, k(x̂), d),

21

is safe and/or stable.

When a deep neural network is used to directly provide control inputs, it instead implements

the function ψ : Rp(ℓ+1) × Rmℓ → Rn approximating k ◦ r with respect to the L∞ norm. Once

again, ψ is to be constructed only from the data Smeas(t, ℓ) and the evaluation of k ◦ r on Smeas(t, ℓ).

With this formalism, we now introduce the second problem addressed in this work.

Problem 2. (Deep neural network controller design): Design a deep neural network to imple-

ment the map ψ : Rp(ℓ+1) × Rmℓ → Rm producing the control input û from the sequence of inputs

and outputs Smeas(t, ℓ) so that the closed-loop system:

ẋ = f(x, û, d),

is safe and/or stable.

In the next sections we provide some key details on the approximation power of deep residual

neural networks in preparation to address these problems in Sections 7.2 and 7.3.

To train a neural network under this setup we require samples from the map r in (5.3). Although

this may seem restricting, several practical scenarios fit this setup. For example, a drone with a

mounted camera or LiDAR could rely on a neural network to implement the map from perception

data to the attitude of the drone. The samples of the map r can be built through experiments

in a controlled scenario where the true state of the drone is separately obtained from a camera

localization system. Once the neural network is trained on this data, however, the drone would be

able to operate purely from perception data.

22

CHAPTER 6

Deterministic Generalization Guarantees

It was established in the previous chapters that, under suitable monotonicity assumptions, we can

provide a generalization error with a deterministic upper bound, and the generalization guarantees

are based on the set of samples ES providing “good coverage” of the set E. To formalize this idea,

we use the abbreviation w.r.t. of with respect to and introduce the notion of δ-cover w.r.t. ⪯.

Definition 6.1. (δ-cover w.r.t. ⪯): Let ES and E be subsets of Rn. The set ES is a δ-cover of E

w.r.t. the partial order ⪯ for some δ ∈ R≥0, if for any x ∈ E, there exist x, x ∈ ES such that:

x ∈ [x, x] and ∥x− x∥∞ ≤ δ.

Recalling that ES is a finite set of samples, we call ES a finite δ-cover of E w.r.t. ⪯.

The following key result from Theorem 3.1 provides the desired upper bound, provided the

approximating function ϕ can be decomposed as the sum of a monotone and a linear function. For

convenience, we restate a version of the result in the lemma below.

Lemma 6.1. (Generalization Lemma): Let g : Rn → Rn be a continuous function, let E ⊂ Rn

be a compact set, and let ES be a finite δ-cover of E w.r.t. to ⪯. For any function ψ : Rn → Rn

of the form ψ = ϕ + A, where ϕ : Rn → Rn is a monotone function and A : Rn → Rn is a linear

map, the generalization error is upper bounded by:

∥g − ψ∥L∞(E) ≤ 3∥g − ψ∥L∞(ES) + 2ωg(δ) + 2∥A∥∞δ, (6.1)

where ωg is a modulus of continuity of g on E and ∥A∥∞ is the operator∞-norm of the map A.

23

The assumption provided by the equality ψ = ϕ+A immediately raises three questions: 1) are

there deep neural networks that implement such functions? 2) would implementing such functions

prevent the neural network from having a small training error? 3) are there training algorithms that

enforce the desired monotone plus linear assumption?

The first two questions were addressed in [TG20] for the class of deep residual neural networks.

It was shown that for any continuous function g : Rn → Rn there exists a deep residual neural

network with n + 1 neurons per layer implementing an approximating function of the desired

form ϕ + A and achieving arbitrarily small training error (see Theorem 4.4 and Corollary 4.5

in [TG20]). The third question was addressed in the previous chapters by showing that most

training algorithms can be modified with a projection step to enforce certain constraints on the

network weights, thereby satisfying the desired monotonicity properties.

24

CHAPTER 7

Safety and Stability Guarantees

In Section 7.2, we use Lemma 6.1 to establish local Input-to-State Stability for the closed-loop

system. Finally, in Section 7.3, we leverage this result to prove safety of the closed-loop system,

expressed as local Input-to-State Safety.

7.1 From density to the δ-cover property

The major requirement in Lemma 6.1, in addition to monotonicity, is that the set of sample points

ES ⊆ Rn is a finite δ-cover of E w.r.t. ⪯. This condition can be hard to verify in practice, as it

involves the relative position of the samples and the points in the set E, as governed by the partial

order.

Alternatively, we provide a condition that relies only on how densely the points of ES fill

E, which we can then use to verify the finite-δ cover w.r.t. ⪯ condition for a subset E ′ ⊂ E.

Ideally, we would like the δ-property to be verified for the whole E, so that we can claim the error

guarantee in as much of the space as possible. As the density of samples increases, the subset

where our guarantee holds, E ′, approaches the whole set E, as desired.

Lemma 7.1. Let E ⊆ Rn be a compact set and ES be a finite η-cover of E, i.e., there exists an

η ∈ R≥0 such that for any x ∈ E there exists an xs ∈ ES satisfying ∥x− xs∥∞ ≤ η. Further

assume that E contains a ball of radius 2η in the infinity-norm and let E ′ ⊂ E be the set:

E ′ =

{
x ∈ E : inf

x′ /∈E
∥x− x′∥∞ ≥ 2η

}
. (7.1)

Then E ′ ̸= ∅, and ES is a finite δ-cover, with δ = 4η, of E ′ w.r.t. to ⪯.

25

Proof. Observe that, since E contains a ball of radius 2η, the center of this ball belongs to E ′ thus

implying non-emptiness of E ′. If x is a point in E ′, the set:

{x′ ∈ E : x′ ⪯ x, ∥x− x′∥∞ ≤ 2η},

is an ℓ∞ ball of radius η. Because E is a finite η-cover of E, this ℓ∞ ball contains a point x ∈ ES

such that x ⪯ x. A dual argument follows to construct x, and by the triangle inequality we find:

∥x− x∥∞ ≤ ∥x− x∥∞ + ∥x− x∥∞ ≤ 4η.

Because x was arbitrary, this holds for all of E ′, thus ES is a finite δ-cover w.r.t. to ⪯ of E ′ for

δ = 4η.

7.2 Closed-loop stability guarantees

We start by discussing the case where the deep neural network produces state estimates and the

controller u = k(x) enforces Input-to-State Stability (ISS) w.r.t. state estimation errors and distur-

bances (Problem 1). This means the solution x(t) of the closed-loop control system:

ẋ = f(x, k(x+ e), d), (7.2)

where the disturbance input d and the state estimate error e = x̂− x are assumed to be essentially

bounded, satisfies:

∥x(t)∥ ≤ β(∥x(0)∥, t) + γd
(
∥d∥L∞(R≥0)

)
+ γe

(
∥e∥L∞(R≥0)

)
, (7.3)

for all t ∈ R≥0, some class KL function β and class K functions1 γd and γe. In (7.3) we used the

notation ∥x∥ to denote any norm in Rn and ∥d∥L∞(R≥0) to denote the uniform norm defined as:

∥d∥L∞(R≥0) ≜ sup
t∈R≥0

∥d(t)∥.

1A class K function γ : R → R is strictly increasing with γ(0) = 0. A class KL function β : R × R → R is a
continuous function such that β(·, s) ∈ K and β(r, ·) is strictly decreasing with lims→∞ β(r, s) = 0.

26

An alternative setting that we will later use consists of designing a controller u = k(x) that

enforces ISS with respect to disturbance d and the actuation error e for the closed-loop system:

ẋ = f(x, k(x) + e, d), (7.4)

implying the same inequality (7.3) with this new definition of e and different β, γd, and γe. This

second perspective will allow us to provide results when using a deep neural network to produce

the control input u instead of the state (Problem 2).

The key observation is that by combining the ISS assumption (7.3) with the generalization

bound in Lemma 6.1, we obtain local ISS w.r.t. the disturbance d. Local ISS (LISS) only requires

the ISS inequality (7.3) to hold for sufficiently small disturbances d and initial conditions x(0). The

LISS property, following [SW96], is defined in reference to a zero-invariant compact set G ⊂ Rn,

where zero-invariance means that trajectories of (5.1) with the disturbance d identically zero and

x(0) ∈ G remain inside G for all future times. A formal definition of LISS is provided below,

where we use ∥·∥G to denote the distance to the set G w.r.t a chosen norm ∥·∥.

Definition 7.1. (Local input-to-state stability (LISS) to a set): The control system (5.1), with

u(t) = k(x(t)), for some choice of controller k : Rn → Rm, is locally input-to-state stable (LISS)

w.r.t. d to a compact zero-invariant set G ⊂ Rn, if there exist ρ ∈ R≥0, γ ∈ K, and β ∈ KL s.t.

for any x(0), d, and t satisfying ∥x(0)∥ ≤ ρ, ∥d∥L∞(R≥0) ≤ ρ, and t ≥ 0 we have:

∥x(t)∥G ≤ β (∥x(0)∥G , t) + γ
(
∥d∥L∞(R≥0)

)
. (7.5)

In our scenario, we consider a compact region F ⊂ Rn of the state space containing a ball cen-

tered at the equilibrium to be stabilized, which we take to be the origin without loss of generality.

We define h(F) as the set:

h(F) = {y ∈ Rp | y = h(x), x ∈ F},

and let E be (h(F))ℓ+1 × (k(F))ℓ, where (h(F))ℓ+1 is the ℓ + 1 fold Cartesian product of h(F)

with itself, and therefore contains all the sequences of ℓ+1 outputs corresponding to sequences of

states remaining in F . Similarly, the set (k(F))ℓ contains all the sequences of ℓ inputs.

27

We assume ES is a finite η-cover of E, representing the available samples for training. Using

Lemma 7.1, this set of samples is a finite 4η-cover w.r.t. ⪯ of some E ′ ⊆ E, defined as in (7.1).

We then require that r(E ′), the set of states for which Lemma 6.1 applies with r as introduced in

Definition 5.1, contains a neighborhood of the origin, with the intention of proving LISS to a subset

of r(E ′). Lemma 6.1 technically requires r to have the same domain and co-domain, whereas we

are interested in mapping sequences of outputs and inputs in (h(F))ℓ+1×(k(F))ℓ ⊂ Rp(ℓ+1)×Rmℓ

to states in F ⊂ Rn. However, we can always embed Rn in Rp(ℓ+1) × Rmℓ so that the domain and

co-domain are of the same dimension and the lemma’s conditions are satisfied.

For convenience, we define the radius ∥S∥ of a compact set S ⊂ Rn containing the origin,

w.r.t. a norm ∥·∥ as:

∥S∥ ≜ sup
ζ∈R≥0

{x∈Rn : ∥x∥≤ζ}⊆S

ζ. (7.6)

We are now in a position to state one of the main results.

Theorem 7.1. Let ψ : Rp(ℓ+1) × Rmℓ → Rp(ℓ+1) × Rmℓ be the map producing state estimates

from observations, assumed to be the sum of a monotone function ϕ and linear function A, and

let (7.3) be satisfied. Then, there exist µ, η̄ ∈ R≥0 such that if ∥r − ψ∥L∞(ES)
≤ µ and ES is a

finite η-cover of E ⊂ Rp(ℓ+1) × Rmℓ with η ≤ η̄, the control system (7.2) in closed-loop with the

controller u(t) = k(ψ(Smeas(t, ℓ))) is LISS w.r.t. the disturbance input d to a non-empty compact

set G ⊂ F containing the origin.

Proof. Because ES is a finite η-cover of E, by Lemma 7.1, ES is a finite 4η-cover w.r.t. ⪯ of the

set E ′ ⊂ E. Further, by Lemma 6.1, the function ψ satisfies ∥r − ψ∥L∞(E′) ≤ ξ, where:

ξ = 3∥r − ψ∥L∞(ES) + 2ωr(4η) + 8∥A∥∞η.

Consider any solution x(t) of (7.2) with initial condition x(0) satisfying:

β(∥x(0)∥ , 0) + γd
(
∥d∥L∞(R≥0)

)
+ γe(ξ) < ∥r(E ′)∥ . (7.7)

28

This solution will remain in r(E ′) for at least some time t1 ∈ R>0, since the set of initial conditions

satisfying (7.7) defines a strict open subset of r(E ′). Moreover,

∥x− x̂∥L∞([0,t1]) = ∥e∥L∞([0,t1]) ≤ ξ, (7.8)

and by the ISS properties of the controller in (7.3), we have:

∥x(t)∥ ≤ β(∥x(0)∥, t) + γd
(
∥d∥L∞([0,t1])

)
+ γe(ξ). (7.9)

Therefore, the solution will remain in r(E ′) for all t ∈ R>0, by iteratively considering the state

x(t1) as a new initial condition satisfying (7.7).

We now verify that there exist µ, η̄ such that the set of initial conditions satisfying (7.7) is not

empty. In particular, for any µ and η̄ satisfying:

3µ+ 2ωr(4η̄) + 8∥A∥∞η̄ ≤ γ−1
e (∥r(E ′)∥),

we have:

ξ ≤ γ−1
e (∥r(E ′)∥). (7.10)

Hence, (7.7) will be satisfied as long as:

∥x(0)∥ ≤ ρ and ∥d∥L∞(R≥0) ≤ ρ, (7.11)

for some ρ that satisfies:

β(ρ, 0) + γd (ρ) < ∥r(E ′)∥ − γe(ξ). (7.12)

The constant ρ is guaranteed to exist since the left hand side is a class K function of ρ, and the

right hand side is non-negative by virtue of (7.10). Let us now denote the solution of (7.2) at time

t, with initial condition x0 and zero disturbance, by x(t, x0, 0), and let:

O(B(γe(ξ))) = {z ∈ Rn : z = x(t, x0, 0), t ∈ R≥0, x0 ∈ B(γe(ξ))},

where B(γe(ξ)) denotes the closed ball, for the ∥·∥ norm, of radius γe(ξ) centered on the origin.

Note that (7.9) conforms to the definition of ISpS in Proposition VI.3 of [SW96], noting that the

results only hold when (7.11) is satisfied, we conclude that the system is locally ISS to the set

G = O(B(γe(ξ)), the topological closure of O(B(γe(ξ)).

29

Theorem 7.1 establishes LISS for the closed-loop system (7.2) when a neural network is used

for state estimation. Moreover, the size of the setG, towards which trajectories converge, is directly

related to the error in the neural network’s training, which can in principle be made arbitrarily

small [TG20]. We note that the LISS result only holds for sufficiently small training error µ and

sufficiently high sample density (i.e., sufficiently small η in the finite η-cover ES) and, although

the result is stated existentially, concrete values and conditions are given in the proof for µ, η, ρ,

and G.

If we directly estimate the stabilizing input from observations, we have a similar result.

Theorem 7.2. Let ψ : Rp(ℓ+1) × Rmℓ → Rp(ℓ+1) × Rmℓ be the map producing approximate inputs

from observations, assumed to be the sum of a monotone function ϕ and linear function A, and

let (7.4) be satisfied. Then, there exist µ, η̄ ∈ R≥0 such that if ∥k ◦ r − ψ∥L∞(ES)
≤ µ and ES is a

finite η-cover of E ⊂ Rp(ℓ+1) × Rmℓ with η ≤ η̄, the control system (7.4) in closed-loop with the

controller u(t) = ψ(Smeas(t, ℓ)) is LISS w.r.t. the disturbance input d to a non-empty compact set

G ⊂ F containing the origin.

The proof of this statement is completely analogous to that of Theorem 7.1, with the exception

that r is replaced by k◦r in the argument and we reference the dual ISS condition of (7.3) involving

e = û− k(x).

Choosing whether to use a neural network to estimate the system state and apply Theorem

7.1, or to use a neural network directly as a controller and instead use Theorem 7.2, may depend

on the achievable training errors in each regime, and the modulus of continuity ωr versus ωk◦r.

This comparison, however, assumes one can construct a stabilizing nominal controller k that is

ISS with respect to measurement errors and actuation errors for the same system. In practice, it

may be easier to design a controller that is ISS with respect to actuation errors than measurement

errors [Fre95]. In particular, for control-affine systems there are general methods to construct a

globally asymptotically stabilizing control law ISS with respect to actuation errors [Son89], but no

(general) such techniques exist for measurement errors.

30

7.3 Closed-loop safety guarantees

In the previous section, we formally established stability of closed-loop systems using deep neural

networks. Of equal importance, however, is the notion of safety, interpreted here as the forward

invariance of some set of safe states C ⊂ Rn. In this section we study Problems 1 and 2 in regards

to safety.

We assume again that an a priori controller u = k(x) is designed, but this time to enforce

Input-to-State Safety (ISSf) of a set of safe states C ⊂ Rn. The ISSf notion was first introduced

in [RJ16] and later studied in the context of control barrier functions in [KA19]. Even though the

definition of ISSf in [KA19] only calls for forward invariance of an inflation of C, it is known from

the results in [XTG15] that existence of barrier functions, and a fortiori of ISSf barrier functions,

implies stability of such sets. Having this in mind, we directly define ISSf by requiring stability of

the inflated sets.

The closed-loop control system (7.2), with u = k(x) for some choice of controller k : Rn →

Rm, is Input-to-State Safe (ISSf) w.r.t to: 1) the set of safe states C ⊂ Rn, assumed to be compact;

2) the state estimation error e and; 3) the disturbance d, if every solution of (7.2) satisfies:

∥x(t)∥C ≤ β(∥x(0)∥C , t) + γd

(
∥d∥L∞(R≥0)

)
+ γe

(
∥e∥L∞(R≥0)

)
, (7.13)

for all t ∈ R≥0 and for some class KL function β and class K functions γd and γe.

Because of ISSf’s close relationship to ISS, we can also define it locally, where we say the

system is locally ISSf (LISSf) w.r.t. the disturbance d to a compact, zero-invariant safe set G,

if there exists a ρ ∈ R≥0 such that the system is ISSf w.r.t. d to G for any x(0), d, satisfying

∥x(0)∥G ≤ ρ, ∥d∥L∞(R≥0)
≤ ρ, for all t ∈ R≥0. Note that this definition is identical to LISS in

Definition 7.1, with G a safe set.

Given a safe set C ⊂ Rn and an ε ∈ R≥0, we define the inflated sets:

BC(ε) = {x ∈ Rn : ∥x∥C ≤ ε} . (7.14)

From (7.13), if the estimation error e is zero, then the state will converge to the inflated set

31

BC

(
γd(∥d∥L∞(R≥0)

)
)
. As established in [KA19], the size of this inflated set increases mono-

tonically with the magnitude of the disturbance d.

We again consider a compact region F ⊂ Rn containing the set C and let E be (h(F))ℓ+1 ×

(k(F))ℓ, the set of all sequences of ℓ + 1 outputs and inputs of the system from states in F . We

assume Es is a finite η-cover of E, which represents a finite set of samples for training that, by

Lemma 7.1, is a 4η-cover w.r.t. ⪯ of some E ′ ⊂ E, as defined in (7.1). We further require that

C ⊆ r(E ′), since r(E ′) is the region where formal guarantees can be made about the quality of the

state estimates produced by a deep neural network.

Analogously to the definition of the radius of a compact set in (7.6), we define the radius of

some compact subset S ⊂ Rn containing C w.r.t. the safe set C ⊂ Rn, ∥S∥C as:

∥S∥C ≜ sup
ζ∈R≥0

{x∈Rn : ∥x∥C≤ζ}

ζ. (7.15)

We now make a statement parallel to Theorem 7.1 for safety.

Theorem 7.3. Let ψ : Rp(ℓ+1) × Rmℓ → Rp(ℓ+1) × Rmℓ be the map producing state estimates

from observations, assumed to be the sum of a monotone function ϕ and a linear function A, and

let (7.13) be satisfied. Then, there exist µ, η ∈ R≥0 such that if ∥r − ψ∥L∞(ES)
≤ µ, and ES is a

finite η-cover of E ⊂ Rp(ℓ+1) × Rmℓ with η ≤ η, the control system (7.2) in closed-loop with the

controller u(t) = k(ψ(Smeas(t, ℓ))) is LISS (or equivalently, locally ISSf) w.r.t. d to a non-empty

compact set C ′ containing C.

Proof. The proof is identical to the proof of Theorem 7.1 once we replace ∥x(t)∥with ∥x(t)∥C , re-

place ∥r(E ′)∥ with ∥r(E ′)∥C as defined in (7.15), and replace B(γe(ξ)) with BC(γe(ξ)) as defined

in (7.14). Because of its similarity to the previous proof, we omit the details here.

Although the statement of Theorem 7.3 gives an existential result for C ′, the size of this set

when compared to C can be bounded using an inequality of the same form as (7.9) (with ∥·∥ re-

placed by ∥·∥C), thus scaling in size with ∥d∥L∞(R≥0) and ξ. In addition, when the disturbance d and

32

estimation error e are absent, we recover the ISSf property corresponding to the ideal controller,

implying C ′ = C.

Theorem 7.3 establishes that when using a neural network as a state estimator, we can still en-

sure the local ISS of a slightly larger set of safe states. The result can be viewed as a generalization

of Theorem 7.1, since the latter ensues by taking the safe set C to be the singleton containing the

origin.

As before, we make a statement similar to Theorem 7.3 for neural networks directly producing

control inputs.

Theorem 7.4. Let ψ : Rp(ℓ+1) × Rmℓ → Rp(ℓ+1) × Rmℓ be the map producing approximate inputs

from observations, assumed to be the sum of a monotone function ϕ and a linear function A, and

let (7.13) be satisfied. Then, there exist µ, η ∈ R≥0 such that if ∥k ◦ r − ψ∥L∞(ES)
≤ µ and ES is

a finite η-cover of E ⊂ Rp(ℓ+1) × Rmℓ with η ≤ η, the control system (7.4), in closed-loop with

the controller u(t) = ψ(Smeas(t, ℓ)) is LISS (or equivalently, locally ISSf) w.r.t. d to a non-empty

compact set C ′ containing C.

33

CHAPTER 8

Conclusions

In this part, we showed how to modify existing training algorithms for deep residual networks so

that approximation bounds can be given in the supremum norm. These results are different from

the typical approximation guarantees in the literature in that they are deterministic and are based

on the sample set used for training. They are applicable to scenarios where the domain of the

function to be learned is known and can be appropriately sampled. Although not all applications

satisfy these requirements, we regard these results as useful first steps to obtain hard guarantees

with a view towards integrating deep networks within a control loop.

Further, we proposed a suite of results ensuring safety and stability of closed-loop systems with

deep neural networks in the perception pipeline. Our findings most crucially hinge on the prior

results on uniform approximation and generalization capabilities of deep residual neural networks.

We believe it is possible to build upon these approximation and generalization results to provide

even stronger guarantees.

34

Part II

Formal Error Bounds for LiDAR

Localization

35

LiDAR is a widely used sensor for self-localization and SLAM algorithms. One key step

in using LiDAR data for localization is the alignment of two LiDAR scans taken from different

poses, a process called scan-matching or point cloud registration. Most existing algorithms for

this problem are heuristic in nature and local, meaning they may not produce accurate results

under poor initialization. Moreover, existing methods give no guarantee on the quality of their

output, which can be detrimental for safety-critical tasks. In this work, we present PASTA (Provably

Accurate Simple Transformation Alignment), a low-complexity global point registration method

that is suitable for point clouds generated from LiDAR scans. This algorithm is global and does

not rely on point-to-point correspondences, which are typically absent in LiDAR data. Moreover,

and to the best of our knowledge, we offer the first point cloud registration algorithm with provable

error bounds and verify experimentally the effectiveness of our method.

36

CHAPTER 9

Introduction

LiDAR1 sensing is quickly becoming commonplace in autonomous vehicles and robots. LiDAR

sensors are accurate, inexpensive, and provide rich environment data, enabling a wealth of success-

ful work in localization and Simultaneous Localization and Mapping (SLAM) [HKR16, CCC16,

DV20,CCL18]. To use LiDAR data effectively, these works typically rely on a crucial sub-routine

for solving the point cloud registration problem.

Point cloud registration, also referred to as scan-matching, asks for the appropriate transforma-

tion relating two measurements of the same environment to one another. Typically, this transfor-

mation is simply a rotation and translation, but some more general settings also consider scaling

and warps as well [YSC20]. This problem has a standard closed-form solution when the point

clouds from each measurement are also equipped with point-to-point correspondences, or when

the point clouds are uniformly spaced with no noise [Hor87]. In LiDAR sensor data, however, the

associated point clouds have very non-uniform spacing and rarely contain perfect correspondences

between points.

Other point cloud registration algorithms we might use for localization fall into one of three

categories: local (iterative), global, or learning-based. While we refrain from listing all existing

methods in detail (see [PCS15] for an excellent review), we provide some remarks to contextualize

our work.

Arguably the most well-known local method for point cloud registration is Iterative Closest

Point (ICP) [BM92]. The algorithm follows a simple loop of choosing correspondences (using

1Light Detection and Ranging.

37

nearest neighbors under the estimated transformation) then using them to estimate a new associ-

ated transformation. Since its inception, countless variants of ICP have been developed to handle

more structured environments [SHT09]. All of these ICP variants, however, rely on the same

alternating optimization approach, meaning they converge to an incorrect transformation when

initialized poorly. Moreover, when the correspondences (point-wise, planar, or otherwise) fail to

exist, such as in point clouds from LiDAR data, ICP-based methods may fail entirely.

In contrast, global algorithms require no initialization to estimate a transformation. These

methods are typically based on branch-and-bound techniques to solve the ICP problem [YLJ13],

or on random-sampling consensus [RBB09]. While global methods can have performance that is

superior even to well-initialized local algorithms, they often suffer from prohibitively long runtimes

or rely on carefully crafted features persisting between measurements.

Various machine learning algorithms have also been developed to solve the point cloud registra-

tion problem. In particular, machine learning methods are well-suited for extracting features from

raw point cloud data [QSM17], or even for finding correspondences between features in multiple

point clouds [GZW19]. The identified features or correspondences can then be directly handed

to any of the aforementioned local or global algorithms [YSC21]. The major downfall of these

methods is their need for large amounts of labeled data coming from the deployment environment

and the inherent brittleness of learned features.

Despite their practical success, these algorithms cannot be used in safety-critical applications,

as guaranteed safe control requires the state to be either known exactly, or formal bounds on its

uncertainty. [DTC21]. To the authors’ knowledge, only one other point cloud registration algo-

rithm, TEASER++ [YSC21], provides formal guarantees, but relies on the presence of at least a

few point-to-point correspondences that may be absent in LiDAR point clouds. While this problem

can be circumvented by extracting point-features from the data, most scenarios require significant

feature engineering.

In this work, we present a new algorithm named PASTA (Provably Accurate Simple Transfor-

mation Alignment), which has precisely these missing guarantees. Moreover, it operates without

38

requiring the existence of point correspondences, making it ideal for low-density LiDAR data. In

our analysis of PASTA, we prove that its simple, globally valid algorithm has an explicit bound

on the error between its output and the true transformation relating two point clouds. As already

pointed out, these bounds may be instrumental, for example, in guaranteeing the safety of au-

tonomous systems, but also in defining a supervisor for other heuristic and learning-based meth-

ods.

9.1 Notation

We begin by introducing some notation and concepts. The results we prove hold in Rn for any

n ∈ N, but when dealing with point clouds coming from LiDAR data, n will be 2 or 3.

1. A point cloud is a finite set with d ∈ N elements:

X = {x(1), x(2), . . . , x(d)}, (9.1)

where x(i) ∈ Rn for each i ∈ {1, 2, . . . , d}.

2. Given a point cloud X , its convex hull is given by:

H =

{
x =

m∑
i=1

λix
(i)

∣∣∣∣∣
m∑
i=1

λi = 1, λi ≥ 0

}
. (9.2)

3. Given a compact set H ⊂ Rn, and the Lebesgue measure µ on Rn, we denote the volume of

H as:

|H| = µ(H) =

∫
H

dµ, (9.3)

and define its radius as:

ρ(H) = min
q∈Rn

max
x∈H
∥x− q∥ . (9.4)

4. We define the first moment of a compact set H ⊂ Rn as:

c = |H|−1

∫
x∈E

x dµ. (9.5)

39

5. We define the second moment of a compact set H ⊂ Rn relative to its first moment c as:

Σ = |H|−1

∫
x∈H

(x− c)(x− c)T dµ. (9.6)

6. Given an orthornormal matrix R ∈ SO(n) and a set H ⊂ Rn, we denote the rotated set as

RH ⊂ Rn:

RH = {z ∈ Rn | z = Rx, x ∈ H}. (9.7)

7. Given two compact sets H1, H2 ⊂ Rn of non-zero measure, we introduce a notion of “over-

lap” between them. This overlap is represented by a number δ ∈ [0, 1], and is defined as

follows:

δ =
|H1 ∩H2|

max {|H1|, |H2|}
. (9.8)

Intuitively, when δ = 0, H1 and H2 are disjoint, and when δ = 1, H1 = H2.

8. Integral expressions without a specified domain are interpreted as over all of Rn.

Note that for a convex hull H constructed from a (non-empty) point cloud, the moments are

well-defined. Moreover, by partitioning H into a set of disjoint simplices (triangles in R2, tetra-

hedrons in R3), we can compute the moments of H as a weighted sum of the moments of these

simplices, using just the coordinates of their vertices (see Appendix).

9.2 Problem statement

Given a point cloud {r(i)1 }m1
i=1, r(i)1 ∈ Rn coming from a LiDAR sensor located2 at the pose (p1, R1),

and a second point cloud {r(i)2 }m2
i=1 from a pose (p2, R2) (both in some global coordinate frame)

estimate the relative translation vector p̂ and rotation matrix R̂ that transforms the first pose into

the second, i.e., such that R̂R1 = R2 and p̂ = RT
1 (p2 − p1).

2A pose is a pair (p,R) ∈ Rn × SO(n), where p denotes a translation vector and R denotes a rotation matrix
between a fixed reference frame and a frame fixed to the LiDAR. The location of the LiDAR frame is the origin of the
rays used by the sensor to perform the distance measurements.

40

CHAPTER 10

PASTA: Provably Accurate Simple Transformation Alignment

Our approach draws inspiration from methods for 2D image alignment based on principal com-

ponent analysis [SB11, RL18]. The intuition behind these methods is as follows: the eigenvectors

of the covariance matrix of a cloud of points span the principal axes of the data set. If the point

clouds are related by a simple rotation and translation, these axes undergo the same rotation. As a

consequence, it is possible to reconstruct the rotation between two point clouds by simply match-

ing the eigenvectors of their covariance matrices. Once the rotation is known, we can easily find

the translation by matching the first moments of the data sets.

This idea does not directly apply to point clouds generated by a LiDAR sensor, as even without

occlusions the points are not related by a pure rotation and translation. This issue arises because

the point clouds from LiDAR measurements are not uniformly distributed over the environment

when the sensor changes pose, shown more clearly in Figure 10.1. To avoid this problem, PASTA

first generates the convex hull of the point cloud, and then computes its first and second moment,

rather than using the points alone.

10.1 Ideal case

PASTA is most easily understood for two compact sets H1, H2 ⊂ Rn that are perfectly related by a

rigid transformation H2 = RH1 + p. Under this relationship, the first and second moments of H1

and H2 are related by the expressions:

c2 = Rc1 + p

Σ2 = RΣ1R
T .

(10.1)

41

Figure 10.1: Top row: LiDAR rays from different positions in a 2D environment. Bottom row:

corresponding distance measurements converted into a point cloud. The average of the points

(green cross) differs between the two measurements.

These equations can easily be obtained by directly computing c2 and Σ2, using the change of

variables x = Rz + p:

c2 =

∫
H2
x dµ∫

H2
dµ

=

∫
H1
(p+Rz)det(R) dµ∫

H1
det(R) dµ

= p+R|H1|−1

∫
H1

z dµ

= p+Rc1,

(10.2)

noting that det(R) = 1 by the orthonormality of R. Similarly:

Σ2 =

∫
H2
(x− c2)(x− c2)T dµ∫

H2
dµ

=

∫
H2
(x− (p+Rc1))(x− (p+Rc1))

T dµ∫
H2

dµ
.

(10.3)

42

Using the change of variables x = p+Rz, we obtain:

Σ2 =

∫
H1
R(z − c1)(z − c1)TRT dµ∫

H1
dµ

= RΣ1R
T .

(10.4)

PASTA’s estimate is then defined as the solution of (10.1) in terms of (p,R). In particular, the

solution is given by

R = V2V
T
1

p = c2 −Rc1,
(10.5)

where V1, V2 ∈ Rn×n are the matrices whose columns are the unit-eigenvectors of Σ1,Σ2 respec-

tively. We can verify this solution by direct substitution, noting that because R is orthogonal,

Eq. (10.1) implies that Σ1 and Σ2 have the same eigenvalues, and thus their eigenvalue decompo-

sitions are:
Σ1 = V1Λ1V

T
1 = V1ΛV

T
1

Σ2 = V1Λ2V
T
1 = V2ΛV

T
2 ,

(10.6)

where Λ ∈ Rn×n is the diagonal matrix containing the eigenvalues of Σ1 and Σ2. It is then

straightforward to verify that (10.1) is satisfied by the solution (10.5).

10.2 Algorithm

Before proceeding further, we clarify some technical details regarding the solution (10.5). First,

there is a sign ambiguity on the eigenvectors of R, (note that both V2V T
1 and −V2V T

1 are valid

solutions of (10.1)). This ambiguity can be resolved by using additional information about the

sets H1 and H2. Let v ∈ Rn be one of the eigenvectors of R, and let signH2
(v) denote a function

determining the choice of sign for the vector v given the convex hull H . Some examples of such a

function are:

43

• Comparing the maximum and minimum values in the eigenvector directions:

signH(v) =

+1, if |maxi v

T r̃(i)| > |mini v
T r̃(i)|

−1, else,
(10.7)

where r̃(i) := r(i) − c.

• Determining the direction of positive skewness (i.e., the third moment):

signH(v) =

+1, if

∫
x∈H(vT (x−c))

3
dµ∫

x∈H dµ > 0

−1, else.
(10.8)

Second, in order for Λ1 = Λ2 = Λ to hold in (10.6), we need to fix an ordering for the eigen-

values of the second moments. To define this ordering, we require the eigenvalues of Σ1 and Σ2 to

be simple. These eigenvalues characterize the magnitude of variations along the principal axes of

H1 and H2, so this assumption essentially requires the environment to be sufficiently asymmetric.

With these considerations, given two compact sets H1 and H2, we define the output of PASTA

as:

(p̂, R̂) = PASTA(H1, H2) =
(
c2 − V2V T

1 c1, V2V
T
1

)
, (10.9)

whose operation is summarized in Algorithm 1.

10.3 Non-ideal case

As shown above, PASTA’s output is exact when the sets H1, H2 are exactly related by a rigid

transformation. We now explore what happens when trying to reconstruct (p,R) using (10.9)

when this is no longer the case.

In practice, the sets H1 and H2 are constructed by computing the convex hulls of point clouds

corresponding to LiDAR scans of some shape or environment. These scans typically do not sample

the same points and are affected by noise, as shown in Fig. 10.2. Consequently, the relationship

H2 = RH1 + p will not hold. Instead we will have H ′
2 = RH ′

1 + p, where H ′
2 is the rigid

44

Algorithm 1 PASTA

Input: Point clouds {r(i)1 }m1
i=1, {r(i)2 }m2

i=1

Output: Transformation R̂, p̂

for each point cloud i do

Hi ← convex hull of {r(j)i }
mi
j=1

ci,Σi ← first and second moments of Hi

end for

R̂← closed-form solution of Σ2 = RΣ1R
T .

p̂← closed-form solution of c2 = Rc1 + p

Summary of the PASTA algorithm. Note that the rotation equation may have multiple solutions, and we must choose

one properly, as explained in Section 10.2.

transformation of the “perturbed” convex hull H ′
1, with the perturbation caused by the difference

in sampled points and noise.

Given the convex hulls H1, H
′
1, and H ′

2, we consider their respective second moments Σ1, Σ′
1,

and Σ′
2, with eigenvalue decompositions defined by:

Σ1 = V1Λ1V
T
1 , Σ′

1 = V ′
1Λ

′V ′T
1 , Σ′

2 = V ′
2Λ

′V ′
2 .

Applying (10.9) to the sets H1 and H ′
2, i.e. (p̂, R̂) = PASTA(H1, H

′
2), the estimated rotation R̂ is:

R̂ = V ′
2V

T
1 . (10.10)

Note that the following relationship holds:

Σ′
2 = RΣ′

1R
T

V ′
2Λ

′V ′T
2 = RV ′

1Λ
′V ′T

1 RT ,
(10.11)

implying that V ′
2 = RV ′

1 and R̂ = RV ′
1V

T
1 .

If we define V ′
1 = EV1 for some error rotation matrix E ∈ SO(n) (which always exists since

45

V1, V
′
1 ∈ SO(n)) , we arrive at

R̂ = REV1V
T
1 = RE. (10.12)

Consequently, since R preserves the Frobenius norm, we can write the distance between R̂ and the

real rotation R as: ∥∥R̂−R∥∥ = ∥RE −R∥ = ∥R(E − I)∥ = ∥E − I∥ , (10.13)

which captures how close the error rotation E is to the identity (the null rotation).

Similarly, under these non-ideal conditions, the translation vector estimated by PASTA is:

p̂ = c′2 − R̂c1, (10.14)

and if we define e = c′1− c1 as the difference in the first moments of H ′
1 and H1, we can bound the

difference between the estimated and the real translation vector as:

∥p̂− p∥ =
∥∥c′2 − R̂c1 − c2 +Rc1

∥∥
= ∥p+Rc′1 −REc1 − p−Rc1 +Rc1∥

= ∥R(c1 + e)−REc1∥

= ∥R((I − E)c1 + e)∥

= ∥(I − E)c1 + e∥ ≤ ∥I − E∥ ∥c1∥+ ∥e∥ ,

(10.15)

where the first equality holds due to the relationships H2 = RH1 + p and H ′
2 = RH ′

1 + p, and the

final equation holds because R is norm preserving.

In Chapter 11, we provide bounds on ∥e∥ = ∥c′1 − c1∥ and ∥I − E∥ =
∥∥I − V ′

1V
T
1

∥∥, parame-

terized by how “close” H ′
1 is to H1 in a manner described next. Note again that the “closeness” of

H ′
1 and H1 is determined by occlusions, measurement noise and non-uniform sampling effects in

the LiDAR sensor.

10.4 Perturbation measure

The bounds that we will provide are expressed as functions of the size of H1 and H ′
1, described

by ρ(H1 ∪H ′
1), and an overlap parameter δ defined in (9.8) that describes how close H1 is to H ′

1.

46

Fig. 10.2 illustrates how point clouds generated from LiDAR measurements in different positions

of a rectangular room sample different points, resulting in these different and non-overlapping

convex hulls. Moreover, as the LiDAR resolution increases and its measurement noise lowers,

there is greater overlap between H1 and H ′
1.

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

Figure 10.2: Top row: LiDAR rays from different positions in a 2D environment. Bottom left:

point clouds corresponding to the two measurements (blue is the first measurement, red is the

second). Bottom right: hulls of the two point clouds and their intersection (hatched region). Here,

δ is the surface area of the hatched region divided by the greatest of the areas of the two hulls.

47

CHAPTER 11

Theoretical Analysis

PASTA uses the unit eigenvectors of the second moments to estimate the relative rotation between

frames. We are therefore interested in bounding the change in these eigenvectors as a function

of the perturbation of the second moment. We prove precisely this bound in the following result.

In this section we present our main theoretical result, a new and tighter bound on the error in

PASTA’s estimates (p̂, R̂). This error is a function of how “closely” a compact setH and a perturbed

version of H–here denoted by H ′–are related by some true rotation and translation, as measured

in variations of their second moments. In the following, we use ∥ · ∥ to refer to the ℓ2 norm on Rn

and its induced norm on Rn×n and use λi(A) to denote the ith eigenvalue of a symmetric matrix

A. For compactness, we also define:

∆λ(A) = max
i ̸=j
|λi(A)− λj(A)|

∆λ(A) = min
i ̸=j
|λi(A)− λj(A)| .

(11.1)

11.1 Eigenvector perturbation bounds

The second moment (9.6) corresponds to a symmetric and positive definite covariance matrix, and

assuming distinct eigenvalues, this matrix has a set of orthogonal eigenvectors. If we additively

perturb any symmetric matrix A with another symmetric matrix B, the eigenvectors of A will be

perturbed by some angle. The following lemma bounds the magnitude of this angle as a function

of the norm of B, and is a stepping stone for a stronger result to follow.

Theorem 11.1 (Symmetric Matrix Eigenvector Perturbation). Let A,B ∈ Rn×n be symmetric

matrices, whereA has simple eigenvalues. Let λi and γi, i = 1, ..., n, be the ordered eigenvalues of

48

A and A+B respectively, with corresponding unit eigenvectors ri and si. If ∥B∥ < 1
2
mini ̸=j |λi−

λj|, the angle θk between rk and sk satisfies:

|θk| ≤ sin−1

(
2 ∥B∥

mini ̸=j |λi − λj|

)
. (11.2)

Proof: A and B are symmetric, thus their sum C = A + B is also symmetric and we can

write the eigenvalue decompositions A = RΛRT and C = SΓST . Note that Λ and Γ are diagonal

matrices whose ith entries are the ith eigenvalues of A and C, respectively, in ascending order.

Similarly, R and S are orthonormal matrices whose ith columns ri and si are the eigenvectors

associated to λi and γi, respectively.

Consider the following for any unit-eigenvector sk of C:

sTk (A− C)T (A− C)sk

= sTk
(
RΛRT − SΓST

)T (
RΛRT − SΓST

)
sk

=
(
sTkRΛR

T − γksTk
) (
RΛRT sk − γksk

)
= sTk

(
n∑

i=1

λ2i rir
T
i

)
sk − 2γks

T
k

(
n∑

i=1

λirir
T
i

)
sk + γ2k

=
n∑

i=1

(
λ2i − 2λiγk

)
sTk rir

T
i sk + γ2k

n∑
i=1

sTk rir
T
i sk

=
n∑

i=1

(λi − γk)2 sTk rirTi sk,

where the fifth equality holds because sk has unit norm, implying
∑

i s
T
k rir

T
i sk =

∑
i

(
rTi sk

)2
= 1.

Further, note:

min
i ̸=k

(λi − γk)2
∑
i ̸=k

sTk rir
T
i sk =

∑
i ̸=k

min
i ̸=k

(λi − γk)2sTk rirTi sk

≤
∑
i ̸=k

(λi − γk)2sTk rirTi sk ≤ sTk (A− C)T (A− C)sk

= sTkB
TBsk ≤ ∥B∥2 ,

implying that as long as λi − γk ̸= 0, we have that∑
i ̸=k

sTk rir
T
i sk ≤

∥B∥2

mini ̸=k (λi − γk)2
. (11.3)

49

Because
∑

i s
T
k rir

T
i sk = 1, we can rewrite (11.3) as:∑

i ̸=k

sTk rir
T
i sk = 1− sTk rkrTk sk = 1− cos2 θk

= sin2 θk ≤
∥B∥2

mini ̸=k (λi − γk)2
.

(11.4)

Finally, by the triangle inequality,

|λi − γk| ≥ |λi − λk| − |λk − γk|

and since |λk − γk| ≤ ∥B∥ and ∥B∥ ≤ 1
2
mini ̸=j |λi − λj| by assumption, we conclude that:

|λi − γk| ≥
1

2
min
i ̸=j
|λi − λj|.

Then, we can rewrite the bound (11.4) and find:

sin2 θk ≤
4 ∥B∥2

mini ̸=j (λi − λj)2
,

⇒ |θk| ≤ sin−1

(
2 ∥B∥

mini ̸=j |λi − λj|

)
. ■

The bound above is expressed in terms of the norm of the perturbation B and the difference

in the eigenvalues of A. We can exploit this result to obtain a separate and strictly tighter bound

expressed in terms of the maximum eigenvalue separation of B.

Corollary 1. Under the same assumptions of Theorem 11.1, the angle θk between the kth eigen-

vector of A and A+B is bounded by:

|θk| ≤ sin−1

(
maxi ̸=j |ζi − ζj|
mini ̸=j |λi − λj|

)
, (11.5)

where ζi is the ith eigenvalue of B.

Proof : First, note that adding a multiple of the identity kI to a matrix does not alter its eigen-

vectors, and shifts all its eigenvalues by k. Thus, the eigenvectors of A + B are the same as those

of the matrix

A+B − 1

2

(
λ(B) + λ(B)

)
I

50

where λ(B) and λ(B), respectively, denote the maximum and minimum eigenvalues of B.

Accordingly, we may consider the equivalent perturbation B̂ = B − 1
2

(
λ(B) + λ(B)

)
I . By

construction, then, λ(B̂) and λ(B̂) are:

λ(B̂) =
1

2

(
λ(B)− λ(B)

)
=

1

2
max
i,j
|ζi − ζj| ,

λ(B̂) = −1

2

(
λ(B)− λ(B)

)
= −1

2
max
i,j
|ζi − ζj| .

Therefore, the induced ℓ2 norm of B̂ is:∥∥B̂∥∥ =
1

2
max
i,j
|ζi − ζj| , (11.6)

and by Theorem 11.1, since perturbing by B̂ and B produces the same eigenvalue perturbation to

A, we conclude that for the kth eigenvector angle:

|θk| ≤ sin−1

(
maxi ̸=j |ζi − ζj|
mini ̸=j |λi − λj|

)
. ■

For a symmetric matrix B it always holds that maxi ̸=j |ζi − ζj| ≤ 2 ∥B∥, making this a tighter

bound than that in Theorem 11.1. Intuitively, Corollary 1 minimizes the bound (11.2) over all

matrices B̂ that produce the same eigenvectors as A+B.

11.2 From overlap to eigenvalue separation

First, we need a measure of how “close” two sets H and H ′ are. To characterize this, we recall the

following notions of size ρ and overlap δ:

ρ(H,H ′) = min
q∈Rn

max
x∈H∪H′

∥x− q∥, (11.7)

δ(H,H ′) =
|H ∩H ′|

max{|H|, |H ′|}
. (11.8)

Note that ρ(H,H ′) describes the radius of the smallest ℓ2-ball containing both H and H ′, while

δ(H,H ′) is a measure of geometric similarity.

Remark 1. When using PASTA, the definitions of δ and ρ do not apply directly to the sets H1 and

H2 = RH1 + p, which will not overlap in general. Instead, we are interested in how similar the

51

(noisy) observed set H2 is to the reference set H1 under the true rotation R and translation p. This

is equivalent to using δ and ρ to compare a “perturbed” version of the set H1, which we call H ′
1,

which is defined by H2 = RH ′
1 + p. Note that H1 ̸= H ′

1 in general because of occlusions, LiDAR

resolution, and noise. In the following, δ quantifies the overlap between H1 and H ′
1.

We first need to prove a bound for the perturbation of the first moment:

Theorem 11.2 (First moment perturbation). Let H,H ′ ⊂ Rn be compact sets of non-zero mea-

sure, and let their first moments be c, c′ ∈ Rn respectively. Further, let the overlap between H and

H ′ be δ ∈ [0, 1]. Then:

∥c′ − c∥ ≤ 2(1− δ)ρ(H ∪H ′). (11.9)

Proof. First, let the vector b ∈ Rn be such that:

b ∈ argmin
b∈Rn

max
x∈H∪H′

∥x− b∥ , (11.10)

which exists by compactness of H ∪H ′. Then, we write:

∥c′ − c∥ = ∥c′ − b− (c− b)∥

=

∥∥∥∥ 1

|H ′|

∫
x∈H′

(x− b) dµ− 1

|H|

∫
x∈H

(x− b) dµ
∥∥∥∥ . (11.11)

Before computing the bound, we observe that the first moment of a compact set is the expected

value of a uniform probability distribution with that set as a support. To simplify the following

expressions we define the indicator function:

1H(x) =

1, x ∈ H

0, else.
(11.12)

Then, we can write the uniform distribution over H ′ evaluated at any point x ∈ Rn as:

1H′(x)

|H ′|
=

1H′(x)

|H ′|
+

1H(x)

|H|
− 1H(x)

|H|
+

1H∩H′(x)

max{|H|, |H ′|}
− 1H∩H′(x)

max{|H|, |H ′|}

=
1H(x)

|H|
+ f+(x)− f−(x),

(11.13)

52

where we have defined f+ and f− as:

f+(x) =
1H′(x)

|H ′|
− 1H∩H′(x)

max{|H|, |H ′|}

f−(x) =
1H(x)

|H|
− 1H∩H′(x)

max{|H|, |H ′|}
.

Observe that f+ and f− are non-negative, and by definition of δ enjoy the following property:∫
f+(x) dµ =

∫
f−(x) dµ ≤ 1− δ. (11.14)

We can now directly compute:

∥c′ − c∥ =
∥∥∥∥∫ (x− b) 1H′

|H ′|
dµ−

∫
(x− b) 1H

|H|
dµ

∥∥∥∥
=

∥∥∥∥∫ (x− b) (f+ − f−) dµ
∥∥∥∥

≤
∫
∥x− b∥ (|f+|+ |f−|) dµ

≤ 2(1− δ)ρ(H ∪H ′).

(11.15)

Following, we prove a bound for the eigenvalue difference of the covariance perturbation:

Theorem 11.3. Let H,H ′ ⊂ Rn be compact sets of non-zero measure, and let their second mo-

ments be Σ,Σ′ ∈ Rn×n respectively. If their size is ρ(H,H ′) and their overlap is δ(H,H ′) ∈ [0, 1],

then:

λ(Σ′ − Σ)− λ(Σ′ − Σ) ≤
(
2(1− δ) + 4(1− δ)2

)
ρ2, (11.16)

where λ(·) and λ(·) again denote the maximum and minimum eigenvalues of a symmetric matrix.

Proof. Let c and c′ be the first moments of H and H ′ respectively, and let us define ∆c = c′ − c.

Then, the following holds:

Σ′ − Σ =

∫
(x− c′)(x− c′)Tf+(x) dµ−

∫
(x− c′)(x− c′)Tf−(x) dµ+∆c∆cT , (11.17)

where f+ and f− are non-negative and satisfy:∫
f+(x) dµ =

∫
f−(x) dµ ≤ 1− δ. (11.18)

Note that Σ′ − Σ is the sum of three terms such that:

53

1.
∫
(x−c′)(x−c′)Tf+(x) dµ is positive definite with minimum eigenvalue zero and maximum

eigenvalue:

λ

(∫
(x− c′)(x− c′)Tf+(x) dµ

)
=

∥∥∥∥∫ (x− c′)(x− c′)Tf+(x) dµ
∥∥∥∥

≤
∫ ∥∥(x− c′)(x− c′)T∥∥ f+(x) dµ

≤ (1− δ)ρ2.

2. Analogously, −
∫
(x − c′)(x − c′)Tf−(x) dµ is negative definite with maximum eigenvalue

zero and minimum eigenvalue:

λ

(
−
∫

(x− c′)(x− c′)Tf+(x) dµ
)
≥ −(1− δ)ρ2.

3. The eigenvalues of ∆c∆cT are all zero except for λ(∆c∆cT) = ∥∆c∥2 ≤ 4(1 − δ)2ρ2.

Where the inequality holds by Theorem 11.2.

Consequently, the eigenvalues of Σ′ − Σ are bounded as:

λ(Σ′ − Σ) ≤ (1− δ)ρ2 + 0 + 4(1− δ)2ρ2,

λ(Σ′ − Σ) ≥ 0− (1− δ)ρ2 + 0.

Taking the difference, we recover:

λ(Σ′ − Σ)− λ(Σ′ − Σ) ≤ (1− δ)ρ2 + 4(1− δ)2ρ2 −
(
−(1− δ)ρ2

)
=
(
2(1− δ) + 4(1− δ)2

)
ρ2.

11.3 Pose estimate error bound

With Theorem 11.3 in hand, we can finally express an error bound on the pose estimate as a

function of δ(H,H ′) and ρ(H,H ′).

54

Theorem 11.4 (PASTA error bound). Let H,H ′ ⊂ Rn be non-empty compact sets of non-zero

measure with an overlap of δ(H,H ′) ∈ [0, 1]. Let c, c′ and Σ,Σ′ be the first and second moments

of H,H ′, and define the constants:

ec = 2(1− δ)ρ(H,H ′),

eΣ =
(
2(1− δ(H,H ′)) + 4(1− δ(H,H ′))2

)
ρ2(H,H ′).

Let (R, p) be the true transformation relating H to RH ′ + p, and
(
R̂, p̂

)
= PASTA(H,RH ′ + p)

be the transformation estimated by PASTA. Then, if mini,j |λi − λj| > 2eΣ, where λi is the ith

eigenvalue of the second moment of H , the following holds:∥∥R̂−R∥∥ ≤ √n eΣ
∆λ(Σ)

∥p̂− p∥ ≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ec.
(11.19)

Proof. By the analysis in Section 10.3, it holds that:

∥R̂−R∥ =
∥∥V ′V T − I

∥∥ = ∥V ′ − V ∥ , (11.20)

where V and V ′ are the eigenvector matrices of the covariance matrices of H and H ′ respectively.

Then, note that by simple trigonometry if a vector v ∈ Rn is rotated by an angle θ into the vector

v′, their distance is ∥v′ − v∥ = 2 ∥v∥
∣∣sin θ

2

∣∣. Therefore, by Theorem 1 and Theorem 11.3:

∥∥R̂−R∥∥2 = ∥V ′ − V ∥2 ≤ ∥V ′ − V ∥2F ≤
n∑

i=1

∥v′i − vi∥
2

≤
n∑

i=1

(
2 sin

(
1

2
sin−1

(
∆λ(Σ

′ − Σ)

∆λ(Σ)

)))2

≤
n∑

i=1

(
2 sin

(
sin−1 1

2

(
∆λ(Σ

′ − Σ)

∆λ(Σ)

)))2

≤ n

(
∆λ(Σ

′ − Σ)

∆λ(Σ)

)2

≤ n

(
eΣ

∆λ(Σ)

)2

.

55

As for the position error, also by the analysis in Section 10.3 and Theorem 11.2, it holds that:

∥p̂− p∥ ≤
∥∥R̂−R∥∥ ∥c∥+ ∥c′ − c∥

≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ∥c′ − c∥

≤
√
n

eΣ
∆λ(Σ)

∥c∥+ ec.

The bounds in (11.19) depend on the size of the environment (described by ρ) and the achiev-

able overlap (described by δ). While these bounds are always valid, it should be noted that in

practice δ can be especially low in non-convex environments, because different parts of the envi-

ronment are visible from different positions. Note that there is an additional dependence on the

minimum separation in the eigenvalues of Σ. This quantity depends on how “asymmetric” the

environment is. For example, a very long but thin room would have a high minimum separation.

Some additional remarks are in order. We note that explicitly computing the bounds requires

knowledge of the parameter δ. One open question is if one can obtain a bound on the errors which

only depends on knowledge of the size and shape of the environment, resolution of the LiDAR,

and bounds on the measurement noise. In practice, an estimate for δ can easily be obtained via

a calibration-like experiment, where the LiDAR sensor is used to collect point cloud data from

multiple positions, and the overlaps of their hulls are evaluated. Empirically, we observe that the

lowest overlaps – and therefore worst associated guarantees – occur at poses where the sensor is

close to walls and corners.

Remark 2. PASTA’s theoretical guarantees can be applied to other algorithms with a supervisory

approach. First run PASTA, which produces an estimate with worst-case guarantees. Then, run

any other algorithm to find a new estimate. The triangle inequality immediately provides a naive

guarantee on the estimate provided by this new algorithm.

Remark 3. Theorem 11.4 depends on the similarity, δ, between the two convex hulls H1 and H2.

Occlusions or non-convex geometry cause dramatic changes in these shapes, and the overlap δ

56

naturally reduces and the estimation error increases according to (11.19). Note that when the

shapes are sufficiently different and δ is very small, the measurements have so little in common

that it is unrealistic to expect any algorithm to correctly solve the localization problem.

Remark 4. PASTA’s error bound can be computed through either ∆λ(B) or the geometric param-

eters (δ, ρ). This flexibility raises the question of which quantity to use in a practical setting. Either

set of parameters can be estimated by performing calibration experiments in an environment with

access to the ground truth poses by computing the true ∆λ(B) or δ at these poses, then estimating

their worst-case values outside. Note that the bound computed directly from an estimate of ∆λ(B)

provides a significantly tighter bound (see Fig. 13.3). δ and ρ, however, have a clearer physical

interpretation and are easier to reason about during the calibration and subsequent worst-case

estimation.

57

CHAPTER 12

Simulations

In this section, we illustrate the effectiveness of PASTA as a localization method in a simple simu-

lated closed-loop trajectory tracking task. Together with the simulation results, we show a numer-

ical evaluation of the pose estimate bounds according to the theoretical analysis above.

Our simulation consists of a simple robot moving within a convex 2D environment that extends

approximately 6m horizontally and 3m vertically. The robot possesses three degrees of freedom

(horizontal position, vertical position, and angle) and obeys simple double integrator dynamics in

each state,where ux, uy, uω ∈ R are positional and angular acceleration control inputs. The system

does not have access to the state, but instead receives a point cloud constructed from LiDAR

measurements at the current pose.

In the experiment, the LiDAR data is produced with a resolution of 1◦ (360 rays), and the

distance measurements are affected by zero mean Gaussian noise with a standard deviation of

1cm. The values are picked to be comparable to the performance of available real-world LiDAR

sensors.

The system is simulated using zero-order hold control inputs generated at a frequency of

100Hz. The controller consists of a simple full state feedback linear controller acting on a state

estimate provided by a Luenberger observer. The Luenberger observer operates using only the

pose estimate generated by PASTA from the LiDAR data.

We then ask the system to track a sinusoidal trajectory within the environment. A visualization

of the environment and the trajectories is shown in Fig. 12.1.

We initialized the state of the system at a position within 0.75m and 45◦ of the reference tra-

jectory with zero velocity. Similarly, the initial state estimate is chosen within 0.25m and 15◦ from

58

−3 −2 −1 0 1 2 3
x (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)

Reference trajectory
Actual trajectory
Initial position

Figure 12.1: Visualization of the environment, the reference and actual position trajectories in the

closed-loop simulation.

the real initial state.

In Fig. 12.2, we show the error in state estimation when the Luenberger observer uses the pose

estimate provided by PASTA as opposed to the true pose of the system. Notably, the errors are

almost identical, with steady state errors in the order of centimeters and fractions of a degree.

We also evaluate the numerical bounds for the pose estimate provided by PASTA along the

trajectory, together with its actual incurred error, plotted using different scales, in Fig. 12.3. Note

that the error bound on the norm of the rotation matrix is converted to a bound on the corresponding

rotation angle for ease of interpretation. As expected, the worst case bound is conservative, with

the actual error being at least an order of magnitude lower.

59

0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

er
ro

r (
m

)

Position
real pose
estimated pose

0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

er
ro

r (
m

/s
)

Velocity
real pose
estimated pose

0.4 0.6 0.8 1.0
time (s)

0.0

0.2

0.4

er
ro

r (
de

g)

Angle
real pose
estimated pose

0.4 0.6 0.8 1.0
time (s)

0

2

4

6

8

er
ro

r (
de

g/
s)
Angular velocity

real pose
estimated pose

Figure 12.2: Norm of the trajectory tracking error over time for the closed-loop control task with

the observer fed by the real pose and the pose estimated by PASTA. We do not plot the initial

transient for ease of visual comparison.

60

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

bo
un

d
(m

)

Position error norm
bound
error

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

10.0

12.5

15.0

17.5

bo
un

d
(d

eg
)

Angle error norm
bound
error

0.00

0.01

0.02

0.03

0.04

er
ro

r (
m

)

0.0

0.1

0.2

0.3

0.4

er
ro

r (
de

g)

Figure 12.3: Norms of the actual error of the pose estimated by PASTA along the trajectory com-

pared with the error bound guaranteed by Theorem 11.4. Note the bound scale (left-hand side)

differs from the actual error scale (right-hand side).

61

CHAPTER 13

Experiments

While the bounds from Corollary 1 and Theorems 11.2 and 11.4 hold in theory, we now establish

that they are reasonably tight and behave as expected in extreme settings.

We equipped a small wheeled robot with a 360◦ 2D LiDAR with 0.5◦ of angular resolution

(i.e., each LiDAR point cloud consists of 720 points in the plane). We placed the robot in a closed

indoor environment with several obstacles, measuring both ground truth poses and LiDAR sensor

measurements as the robot constantly moved around the environment. See Fig. 13.1 for a sample

LiDAR measurement and the robot’s trajectory in the environment.

Remark 5. We use a 2D LiDAR sensor in this regime since we are considering the indoor naviga-

tion setting, where 2D LiDAR is often sufficient. The theory developed for PASTA extends naturally

to three dimensions.

For a given pair of scans from the experiment, we compute the error bounds in two ways: i)

We use the ground truth measurements to align the convex hulls of LiDAR point clouds in the

two compared scans, then we compute the size and overlap parameters ρ and δ, and the error

bound via Theorem 11.4; ii) Since both scans are now aligned with the true transformation, we

can also directly compute the perturbations to the second moments ∆λ(Σ
′ − Σ) = ∆λ(B), which

characterizes the bound in Corollary 1. The first approach is equivalent to first computing an upper

bound for ∆λ(Σ
′ − Σ) from δ and ρ, and then using this upper bound in Corollary 1.

For each LiDAR scan at index i, we align it with the scan at index i+ k, and plot the computed

error bounds along the trajectory for three different values of “lag” k ∈ N, displayed in Fig. 13.3.

Generally, with higher k the scans we compare are taken from poses further apart along the trajec-

62

−2 −1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

finish
start

Figure 13.1: Sample LiDAR scan and trajectory (left) and image (right) of the robot from the

experimental setup.

0 20 40 60 80 100 120
−2

0

2

X
po

sit
io

n
(m

) pasta pose
true pose
pasta bound

0 20 40 60 80 100 120
−1

0

1

2

Y
po

sit
io

n
(m

)

0 20 40 60 80 100 120
Time (s)

−200

0

200

An
gl

e
(d

eg
)

Pose Estimates

Figure 13.2: Comparison of the estimated pose vs the true pose of the robot. The green band shows

the magnitude of the error bound in Corollary 1 (orange) for a lag value of 15.

63

EXPERIMENT SUMMARY

Lag k Bound from δ, ρ Bound from ∆λ(Σ
′ − Σ) PASTA error

1 13.0◦, 99.1% 1.4◦, 100% 0.6◦, n/a

10 27.9◦, 80.5% 4.4◦, 100% 1.9◦, n/a

50 38.8◦, 50.0% 9.0◦, 100% 4.1◦, n/a

For each lag and error type, we list the mean error over the experiment and the fraction of data

points that satisfy the necessary assumptions.

tory, thus more likely to be different, with the expectation of a worse bound and estimation error.

Other variations naturally occur depending on the obstacles and their relative location to the robot,

seen as small spikes in Fig. 13.3. We only show angular error bounds, as translation error bounds

are a simple affine function of this value. For a given pair of scans, PASTA provides two candidate

estimated angles separated by 180 degrees. We plot the error for the correct choice, as there are

multiple ways to reliably select the correct one, and the bounds only apply to this “correct choice”.

Missing values in the plot correspond to scan pairs where mini,j |λi − λj| > 2eΣ fails to hold,

violating the assumptions for our results.

We observe that the perturbation bound in Corollary 1 is very tight, and most of the difference

between the bound in Theorem 11.4 and the actual estimation error comes from upper bounding

∆λ(Σ
′ − Σ) via knowledge of δ and ρ. As expected, larger distances between poses (as measured

by the “lag” k) lead to higher error bounds. To counteract these effects, one may need a weak cor-

respondence method that identifies common measured regions of both scans, which is a direction

of current research.

64

0 100 200 300 400 500 600
Lidar Scan Index

0

25

50

75

An
gl

e
er

ro
r (

de
g)

Lag: 1
Bound from δ, ρ
Bound from Δλ(B)
PASTA

0 100 200 300 400 500 600
Lidar Scan Index

0

25

50

75

An
gl

e
er

ro
r (

de
g)

Lag: 10

0 100 200 300 400 500 600
Lidar Scan Index

0

25

50

75

An
gl

e
er

ro
r (

de
g)

Lag: 50

Figure 13.3: Comparison of the error bound in Corollary 1 (orange) and Theorem 11.4 (blue) and

the empirical error of PASTA (green) on real LiDAR data. Increased “lag” implies larger times

between compared LiDAR measurements.

65

CHAPTER 14

Conclusions

In this work, we presented a LiDAR localization algorithm called PASTA and derived new theoret-

ical worst-case bounds on its estimation error. These worst-case bounds are crucial for interfacing

robotic systems using LiDAR for localization with safety-critical control algorithms. We also pro-

vided experimental evidence highlighting the tightness of the bounds and where improvements

could be made.

66

Part III

Generative Models in Closed-Loop

Learning

67

Improvement and adoption of generative machine learning models is rapidly accelerating, as

exemplified by the popularity of LLMs (Large Language Models) for text, and diffusion models for

image generation. As generative models become widespread, data they generate is incorporated

into shared content through the public web. This opens the question of what happens when data

generated by a model is fed back to the model in subsequent training campaigns. This is a question

about the stability of the training process, whether the distribution of publicly accessible content,

which we refer to as “knowledge”, remains stable or collapses.

Small scale empirical experiments reported in the literature show that this closed-loop training

process is prone to degenerating. Models may start producing gibberish data, or sample from only

a small subset of the desired data distribution (a phenomenon referred to as mode collapse). So far

there has been only limited theoretical understanding of this process, in part due to the complexity

of the deep networks underlying these generative models.

The aim of this work is to provide insights into this process (that we refer to as “generative

closed-loop learning”) by studying the learning dynamics of generative models that are fed back

their own produced content in addition to their original training dataset. The sampling of many of

these models can be controlled via a “temperature” parameter. Using dynamical systems tools, we

show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial

temperature leads the model to asymptotically degenerate. In fact, either the generative distribution

collapses to a small set of outputs, or becomes uniform over a large set of outputs.

68

CHAPTER 15

Introduction

Generative models have exploded in popularity in recent years, primarily driven by the adoption

of diffusion models [Cao24] for image generation, and so-called LLMs (Large Language Mod-

els) [Zha23] for textual generation. With this explosion, came renewed concerns about AI, espe-

cially tied to the generative nature of these models. Large scale neural networks underlie most of

these models, including, for example, Llama 2 which is trained on 2 trillion tokens [Tou23]. As

these models generate data that is published on the internet, they pollute their own training datasets

with synthetic data, possibly leading to a spiraling decay of the quality of these models and of the

internet by extension.

We are concerned with the setting where a generative model is iteratively trained, and the

outcome of each iteration is dependent on the current data distribution encoded by the model

(typically by including samples generated by the model in the training set). Serious concerns about

decay of such a training process arose first in GANs (Generative Adversarial Networks), where the

problem of “mode collapse” [TT20] was identified. Analogous issues seem to be a general feature

of violating distributional assumptions about the training dataset, even for non-GAN models. One

way of framing such violations is as “data poisoning” [BNL12], a problem that is likely to become

more common, as models trained from public domain internet data are especially susceptible to

data poisoning attacks [Car24]. This is also related to the notion of “distribution shift” [Koh21],

although most existing work focuses on the distribution shift occurring at test time and coming

from an external source. In our setting the shift occurs at training time and has an internal origin.

As this is such a new development, there is still only partial understanding of the phenomenon,

and much published work is empirical in nature. In [Mar23a] and [Mar23b], the authors train image

69

diffusion models, iteratively including synthetic samples, and show significant degradation of the

quality of the produced images. In [Shu23], it is shown, both theoretically and experimentally, that

generative Gaussian models undergo degenerative collapse. A case of closed-loop learning when

the sampling of the model is biased (samples may be taken closer to the mean) under a variety of

synthetic data policies is studied in [Ale24]. In their results, non-degeneration could be ensured

only by introducing a sufficient fraction of fresh data at each training iteration. This aligns with the

results in [Ber24], where the authors establish (theoretically and experimentally) that maintaining

a high enough fraction of fresh data is a sufficient condition to prevent degeneration.

Most generative models include a way to modulate their sampling probabilities through “tem-

perature”, typically as a way to make the outputs more or less random. In this work, we focus on

the effect of temperature on the closed-loop learning dynamics of generative models, a perspective

that received little attention so far. In particular: 1) We define a class of “generative closed-loop

learning models with temperature” that captures many real-world scenarios. 2) We perform a

theoretical analysis of the resulting closed-loop learning dynamics, and establish that modulating

sampling with temperature leads to degeneration of the learning process. 3) We characterize the

type of degeneration depending on one of three possible temperature regimes. As the models de-

generate (for any amount of temperature modulation), so do their datasets, consequently losing any

knowledge they originally contained, if not explicitly preserved and re-introduced. When applied

to the internet, this predicts that unless a copy of the pre-generative-models Internet is preserved,

eventually no model will be able to be trained effectively using the internet as a data source. Our

results share some similarities with [Ale24,Ber24], and are compatible with their conclusions, but

in contrast to those papers we use tools and techniques from dynamical and control systems for the

analysis.

15.1 Notation

• We denote by ei the i-th element of the standard basis of Rn, i.e., the vector of all zeroes

except for a one in its i-th entry.

70

• The symbol 1 denotes the vector x ∈ Rn with all elements equal to one.

• We define ∆n as the n-dimensional probability simplex ∆n = {x ∈ Rn |
∑n

i=1 xi = 1, xi ≥ 0},

and its restriction to strictly positive probabilities as ∆n
>0. An element of ∆n is called a

“probability vector”. The boundary of ∆n is denoted by ∂∆n.

• Given some X ∈ ∆n, we say that the random variable Y is sampled according to X , or

Y ∼ X , to mean that for all i ∈ {1, 2, . . . , n} we have P (Y = ei) = Xi.

• If X(k) is a stochastic process, Fk denotes the filtration adapted to the stochastic process up

to time k. We say an event happens a.s. to mean “almost surely”, i.e., with probability 1

(w.p. 1).

• Unless otherwise noted, ∥·∥ denotes the usual vector 2-norm over Rn, and d(x, y) = ∥x− y∥

with x, y ∈ Rn is the distance between x and y. If one of the arguments is a set Ω ⊆ Rn, it

denotes the distance from a point to that set d(x,Ω) = infy∈Ω d(x, y).

• The notation f(x) −−→
x→a

Ω, with Ω a set means limx→a d (f(x),Ω) = 0.

• We normally use capitalized letters to denote random variables, and lower-case when they

are deterministic, or when the randomness is not relevant (i.e., X vs x).

• A continuous function α : [0, a)→ R≥0, with a ∈ R≥0 ∪{+∞}, is said to be of class kappa

(α ∈ K) if it is strictly increasing and α(0) = 0.

71

CHAPTER 16

Closed-Loop Learning

We describe a generative model as a parameterized family of probability distributions over a finite

set of n ∈ N possible elements Y = {Y1,Y2, . . . ,Yn}1. We denote such family as ϕ : Rp → ∆n,

a map from a parameter vector w ∈ Rp to a probability vector ϕ(w) ∈ ∆n for the elements Y .

These are the outputs that the model can generate when sampled. Without loss of generality, we

identify each Yi with the i-th vector of the standard basis of Rn. These elements can be interpreted

differently depending on the specific generative model, e.g., for a language model each Yi could

be a word, token, sentence, or sentence class from a large but finite set.

16.1 Model sampling with temperature control

For a trained generative model, letting Y be the output of the model when sampled, we denote by

Θ = ϕ(w) the “nominal” probability of generating each of the possible elements of Y . Specif-

ically, the probability of generating the i-th element corresponds to the i-th entry of the vector

Θ. However, when sampled, the actual generation probabilities are filtered through a temperature

function τ : ∆n → ∆n. Therefore, for i ∈ {1, 2, . . . , n}, the sampled output Y ∈ Y satisfies:

P (Y = Yi) = τ (Θ)i , (16.1)

where a subscripted index i denotes the i-th vector element. For our results to hold, we require the

temperature function to satisfy some assumptions (see Chapter 17). We show that these assump-

1This family is a subset of the set of categorical distributions over n categories. In general we do not require that
the family of distributions expressible by the model is the full set of categorical distributions, which is unrealistic for
very high n (for example, if the outcomes Y are rgb-images).

72

tions hold for the temperature function induced by the softmax operation, typically used in deep

learning.

16.2 Learning process

We use the term “generative closed-loop learning”, or just “closed-loop learning”, to refer to a

generative model trained on data that includes its own output from prior runs. When a generative

model learns from its own output, the probability vector Θ becomes a stochastic process Θ(k)

evolving over (discrete) time k ∈ Z≥0. We assume that a model is initially trained on some

externally provided dataset of some size ℓ ∈ N:

D(ℓ) = {Y (1), Y (2), . . . , Y (ℓ)} ,

where we use Y (k) with k ≤ ℓ to denote the externally provided data, i.e., training only starts

at time k = ℓ. Similarly, for each time k ≥ ℓ we have a parameter vector w(k) and its associ-

ated probability vector Θ(k) = ϕ(w(k)). Finally, let the training be represented by a (in general

stochastic) function2 f that maps a parameter vector w and training data D to a “retrained” param-

eter f(w,D). Then, for each time k ∈ Z≥0, k ≥ ℓ, the closed-loop learning stochastic process

unfolds as follows:
Y (k + 1) ∼ τ (Θ(k))

D(k + 1) = D(k) ∪ {Y (k + 1)}

w(k + 1) = f(w(k), D(k + 1))

Θ(k + 1) = ϕ(w(k + 1)),

(16.2)

where D(k) ∪ {Y (k + 1)} models “adding” the generated output sample to the current set of

training data3. For some initial dataset of ℓ samples, the process has the initial conditions w(ℓ) =

2While the retraining function here takes the current parameters as an argument, it can also represent a form of
retraining where the model is “reset” and trained from scratch over a new dataset by ignoring w.

3For notational simplicity, in (16.2), the process retrains the model after each generated sample, however our results
hold even in the case where some variable but bounded number of samples N ≥ 1 is generated and added to the dataset
before retraining.

73

f(w0, D(k)), and Θ(ℓ) = ϕ(w(ℓ)) for some w0 ∈ Rp. The recursive process (16.2) induces a

probability distribution for each Θ(k). Like for the temperature function τ , in Chapter 17 we will

require that the process (16.2) satisfies some general properties.

16.3 Problem statement

Given the closed-loop learning process (16.2), we want to know what are the long term properties

of the probability vector Θ(k), i.e., what is the asymptotic behavior of Θ(k) as time increases?

Since Θ(k) describes the probability of generated data, the asymptotic behavior of Θ(k) determines

the ultimate composition of the dataset D(k) as well. For example, if Θ(k) were to converge to

a point independent of the initial dataset D(ℓ), any initial knowledge encoded by the dataset is

eventually lost.

74

CHAPTER 17

A common class of models

In the previous section we presented an abstracted notion of closed-loop learning. We now give

specific conditions on the temperature function τ and the behavior of the training algorithm rep-

resented by f and ϕ in (16.2), and show that they are realistic for common closed-loop learning

models.

17.1 Temperature

We assume that the class of temperature functions τ as defined in Chapter 16 satisfies a few prop-

erties:

Assumption 17.1. The temperature function τ : ∆n → ∆n in (16.2) is assumed to satisfy the

following properties:

1. It is continuous and strictly element-wise order preserving, i.e., for any θ ∈ ∆n and i, j ∈

{1, 2, . . . , n}:
θi < θj =⇒ τ(θi) < τ(θ)j

θi = θj =⇒ τ(θi) = τ(θj).
(17.1)

2. Given an index set I ⊆ {1, 2, . . . , n}, let VI : ∆n → R≥0 be defined as1:

VI(θ) = max
i∈I

{
θi∑
j∈I θj

}
−min

i∈I

{
θi∑
j∈I θj

}
. (17.2)

Then, τ satisfies exactly one of the properties:

1VI will be used as a Lyapunov function later in the analysis.

75

(a) It is the identity: τ(θ) = θ.

(b) For any index set I ⊆ {1, 2, . . . , n} where mini∈I θi > 0 and maxi∈I θi > mini∈I θi:

VI(τ(θ))− VI(θ) < 0.

(c) For any index set I ⊆ {1, 2, . . . , n} where mini∈I θi > 0 and maxi∈I θi > mini∈I θi:

VI(τ(θ))− VI(θ) > 0.

Intuitively, case 2.b represents a “contracting” τ , and case 2.c an “expanding” τ . The function

VI quantifies how close a probability vector θ ∈ ∆n is to uniform when conditioned to a specific

subset of variables. Note that when an index set I includes all non-zero elements of θ, the renormal-

izing term
∑

j∈I θj in (17.2) is equal to one, and (17.2) reduces to VI(θ) = maxi∈I θi −mini∈I θi.

The notion of temperature typically used in generative models satisfies the requirements listed

above. In fact, this is the case for the softmax temperature, as we now show. Many machine

learning models do not directly output a set of probabilities, but a vector of so-called logits z ∈ Rn

that is converted into a probability vector via the softmax function and a positive temperature

parameter T > 0 as follows:

θT = softmax
(
zT−1

)
=

1∑n
i=1 exp

(
zi
T

) [exp (z1
T

)
. . . exp

(
zn
T

)]⊤
.

(17.3)

Note that τ , as defined in Chapter 16, is a map between probability vectors, but (17.3) maps logits

to probabilities. Consider a logit vector z ∈ Rn. While (17.3) is not a valid τ , it induces a

unique map transforming θ = softmax(z) (the “nominal” probabilities associated to z) to θT =

softmax (T−1z) (the “temperature filtered” probabilities associated to the same z). Defining Z =

76

∑n
i=1 exp(zi) we have:

θT = softmax
(
zT−1

)
= softmax

(
T−1

([
ln (θ1) . . . ln (θn)

]⊤
+ 1 ln(Z)

))
= softmax

(
T−1

[
ln (θ1) . . . ln (θn)

]⊤)
=

1∑n
i=1 θ

1
T

[
θ

1
T
1 . . . θ

1
T
n

]⊤
,

(17.4)

where the third equality holds because softmax is invariant to addition of the same constant

(T−1 ln(Z)) to all input entries. This induced map τ(θ) = θT satisfies exactly one of the three

requirements previously introduced. We formalize this in the following Lemma:

Lemma 17.1. Consider the function τ : ∆n → ∆n defined by τ(θ) = softmax (T−1 ln(θ)), with

T ∈ R>0. The function τ satisfies Assumption 17.1. In particular, it satisfies properties 2.a, 2.b,

and 2.c for T = 1, T > 1, and T < 1 respectively.

Proof. Since τ takes the form (17.4), and x 7→ x
1
T is a continuous strictly monotone increasing

function, it is immediate that τ is also continuous (the denominator in (17.4) is always bounded

away from zero) and preserves the order of the elements of θ. Further, note that if θi = 0, then

τ(θ)i = 0.

For the case T = 1, it is immediate to see that τ becomes the identity function (Note that∑n
i=1 θi = 1).

For the cases where T ̸= 1, let I ⊆ {1, 2, . . . , n} be as in Assumption 17.1, then, VI(τ(θ)) <

VI(θ). To see that this is true, let M,m ∈ I be respectively the (not necessarily unique) indices

of the greatest and smallest non-zero elements of θ, and consider the derivative with respect to the

77

temperature parameter T of VI(τ(θ)):

∂

∂T
VI(τ(θ)) =

∂

∂T

 θ
1
T
M∑

j∈I θ
1
T
j

− θ
1
T
m∑

j∈I θ
1
T
j

= −T−2

[
θ

1
T
M∑

j∈I θ
1
T
j

∑
i∈I

(
θ

1
T
i∑

j∈I θ
1
T
j

(log(θM)− log(θi))

)

− θ
1
T
m∑

j∈I θ
1
T
j

∑
i∈I

(
θ

1
T
i∑

j∈I θ
1
T
j

(log(θm)− log(θi))

)]
.

The sums are convex combinations of non-negative terms for the first and non-positive for the

second summation, as log(θM) ≥ log(θi) and log(θm) ≤ log(θi) for all i ∈ I . Further, by As-

sumption 17.1 maxi∈I θi > mini∈I θi, therefore the sums are strictly positive and strictly negative

respectively, and ∂
∂T
VI(τ(θ)) < 0. Then, fixing some specific temperature T :

VI(τ(θ))− VI(θ) =
∫ T

T=1

∂

∂T
VI(τ(θ)) dT, (17.5)

where (17.5) is negative for T > 1, and positive for T < 1.

17.2 Closed-loop learning dynamics

For a training dataset D(ℓ) = {Y (1), Y (2), . . . , Y (ℓ)}, “learning” a generative model is usually

framed in a maximum-likelihood sense, i.e., we want to find the set of parameters w ∈ Rp whose

associated probability vector Θ = ϕ(w) maximizes the log-probability of the observed data:

w∗ = argmax
w∈Rp

1

ℓ

ℓ∑
i=1

n∑
j=1

1Y (i)=Yj
log (ϕ(w)j)

= arg min
w∈Rp

−
n∑

j=1

(
1

ℓ

ℓ∑
i=1

1Y (i)=Yj

)
log (ϕ(w)j)

= arg min
w∈Rp

−
n∑

j=1

Θ∗
j log (ϕ(w)j)

= arg min
w∈Rp

H (Θ∗, ϕ(w)) ,

(17.6)

78

where 1(·) is the indicator function (takes value 1 if the subscript expression is true and 0 other-

wise), H is the cross-entropy between probability vectors, and Θ∗ = 1
ℓ

∑ℓ
i=1 Y (i) is the “empiri-

cal” probability vector associated to the data D (remember that with no loss of generality we take

Yj to be the j-th standard basis element of Rn). Therefore, although usually not expressed in this

way, learning the model is also equivalent to minimizing the cross entropy with respect to Θ∗. Note

that if ϕ is surjective (where its codomain is ∆n), there always exists a w∗ such that ϕ(w∗) = Θ∗

and is thus the optimal solution of (17.6).

When ϕ is surjective, Θ = Θ∗, thus we study the behavior of Θ∗ under the closed-loop learning

dynamics. Consider the process (16.2), and let Θ∗(k) = 1
k

∑k
i=1 Y (i) be the empirical probability

vector corresponding to the dataset at time k, D(k). When a new sample Y (k+1) is generated by

the model, Θ∗ evolves as:

Θ∗(k + 1) =
1

k + 1

k+1∑
i=1

Y (i)

=
k

k + 1
Θ∗(k) +

1

k + 1
Y (k + 1)

= Θ∗(k) +
1

k + 1
(Y (k + 1)−Θ∗(k)) .

(17.7)

Since Y (k + 1) is a random variable, we perform a Martingale decomposition [LS89]:

Θ∗(k + 1) = Θ∗(k) +
1

k + 1

(
E [Y (k + 1)|Fk]−Θ∗(k) + Y (k + 1)− E [Y (k + 1)|Fk]

)
= Θ∗(k) +

1

k + 1

(
τ(Θ(k))−Θ∗(k) + U(k + 1)

)
,

where U(k+1) = Y (k+1)−E [Y (k + 1)|Fk] is a bounded Martingale difference sequence, and

the second equality holds because E [Y (k + 1)|Fk] = τ(Θ).

Then, if the update function f in (16.2) is the maximum-likelihood optimization (17.6):

w(k + 1) = f(w(k), D(k + 1))

= argmax
w∈Rp

H (Θ∗(k + 1), ϕ(w)) ,
(17.8)

and ϕ is surjective on ∆n, at each step Θ(k) = ϕ(w(k)) = Θ∗(k), leading to the following

dynamics:

Θ(k + 1) = Θ(k) +
1

k + 1
(τ(Θ(k))−Θ(k) + U(k + 1)) .

79

An actual model is unlikely to have enough expressivity as to represent any element of ∆n,

especially for very high dimension n. However, we assume the model is able to approximate a

probability vector with some small finite accuracy:

Assumption 17.2. There exists some δ ∈ R≥0 such that for all k ∈ Z≥0 the process (16.2) satisfies:

∥Θ∗(k)−Θ(k)∥ = ∥Θ∗(k)− ϕ(w∗(k))∥ ≤ δ. (17.9)

Under Assumption 17.2, the dynamics of Θ∗(k) obey:

Θ∗(k + 1) = Θ∗(k) +
1

k + 1
(τ(Θ(k))−Θ∗(k) + U(k + 1)) . (17.10)

If we now define the perturbation ε(k) = τ(Θ)− τ(Θ∗), recalling that a continuous function on a

compact set is uniformly continuous, we have the following inequality, where η is the modulus of

continuity of τ :

∥ε(k)∥ = ∥τ(Θ)− τ(Θ∗)∥ ≤ η(δ). (17.11)

Then, the dynamics of Θ∗(k) become a stochastic approximation (see [Bor23]) of the form:

Θ∗(k + 1) = Θ∗(k) +
1

k + 1
(τ (Θ∗(k))−Θ∗(k) + ε(k) + U(k + 1)). (17.12)

If we understand the behavior of (17.12), we automatically understand the behaviour of Θ(k),

since by (17.9) Θ(k) is always within a distance δ from Θ∗(k).

80

CHAPTER 18

Asymptotic Dynamics

We now present the main results describing the asymptotic behavior of (17.12) (and hence of Θ(k)

up to error δ). This asymptotic behavior is important, as it determines the long-term composition

of the dataset D(k), and how much it may diverge from its initial distribution. The results are

different depending on which of the three conditions (2.a, 2.b, 2.c) in Assumption 17.1 is satisfied

by τ , therefore we split the analysis in three different cases.

18.1 Identity temperature leads to Martingale-like behavior

This case is the most straightforward and does not require any machinery beyond standard anal-

ysis tools of stochastic processes. If condition 2.a of Assumption 17.1 is satisfied, the stochastic

process (17.12) reduces to:

Θ∗(k + 1) = Θ∗(k) +
1

k + 1
(U(k + 1) + ε(k)) , (18.1)

and we state the following formal result.

Theorem 18.1. Consider the closed-loop learning stochastic process (16.2), where τ satisfies As-

sumption 17.1 with property 2.a (τ is the identity), and Assumption 17.2. Then it holds that:

E [Θ(k + 1) | Fℓ] = Θ(ℓ) +
k∑

i=ℓ

1

i+ 1
E [ε(i) | Fℓ] + eδ(k + 1),

where eδ : Z≥0 → Rn is such that ∥eδ(k)∥ ≤ δ. In addition, if ε is a Martingale difference

sequence, there is a constant b ∈ R≥0 such that the asymptotic variance is bounded as:

lim
k→∞

var (Θ(k)−Θ(ℓ)) ≤ b

(
∞∑
i=ℓ

(
1

i+ 1

)2

+ δ2

)
. (18.2)

81

Proof. If τ is the identity function, Θ∗ : Z≥0 → ∆n satisfies (18.1). Then, because U is a Martin-

gale difference sequence:

E [Θ∗(k + 1) | Fk] = E
[
Θ∗(k) +

1

k + 1
(U(k + 1) + ε(k))

∣∣∣∣ Fk

]
= Θ∗(k) +

1

k + 1
ε(k),

and by the tower property of expectation:

E [Θ∗(k + 1) | Fk−1] = E [E [Θ∗(k + 1) | Fk] | Fk−1]

= E
[
Θ∗(k) +

1

k + 1
ε(k)

∣∣∣∣ Fk−1

]
= Θ∗(k − 1) +

1

k
ε(k − 1) +

1

k + 1
E [ε(k) | Fk−1] .

Finally, by recursion we arrive at:

E [Θ∗(k + 1) | Fℓ] = Θ∗(ℓ) +
k∑

i=ℓ

1

i+ 1
E [ε(i) | Fℓ] ,

and the statement is obtained once we take into account that Θ(k) is always within a distance δ

from Θ∗(k).

In addition, if ε is a Martingale difference sequence, the whole Θ∗(k) process reduces to a sum

of bounded Martingale differences, and it immediately follows that its variance is bounded by a

term of the order of the converging sum
∑∞

i=ℓ (i+ 1)−2.

Theorem 18.1 states that in this case Θ(k) is essentially a Martingale biased by the perturbation

ε. In general the asymptotic behavior can be arbitrary as it is dominated by the behavior of ε(k).

However, if ε is also a Martingale difference sequence, with probability one Θ(k) will only drift

a finite amount from its initial value. The magnitude of this drift depends on the converging sum∑∞
i=ℓ (i+ 1)−2, which is smaller the greater the initial dataset size ℓ is. This shows that in this

case the initial data distribution of the dataset is not necessarily lost. However, this condition

requires hard to verify assumptions on the training behavior (captured by ε(k)) and, if the training

dataset is shared by multiple generative models, that no model is biasing their own sampling via

temperature. We consider this especially unlikely for data on the public web. From a control

82

perspective, the behavior with identity temperature is similar to that of a marginally stable system,

and any arbitrarily small perturbation ε(k) can destabilize it.

18.2 High temperature leads to uniformly generated data

While the analysis of the previous case is relatively straightforward, we need to introduce addi-

tional machinery for the remaining two. Let us define a vector field F : ∆n → T∆n over the prob-

ability simplex as F (θ) = τ(θ) − θ. The behavior of stochastic approximations in the long-term

approaches that of a continuous-time ODE (ordinary differential equation) or differential inclusion

(see [Bor23]). Thus, under our assumptions, the limit sets of Θ∗(k) in (17.12) are determined by

the attractors of:

θ̇(t) = F (θ(t)) + ε(t). (18.3)

Then, we introduce two families of sets, parameterized by a ∈ R≥0 and an index set I ⊆

{1, 2, . . . , n}, that will be used to characterize the attractors and basins of attraction of (18.3):

ΩI(a) =
{
θ ∈ ∆n

∣∣ VI(θ) ≤ a
}

ΩI(a) =

{
θ ∈ ∆n | min

i∈I
θi ≤ a

}
.

(18.4)

With respect to the subset of variables indexed by I , the set ΩI(a) is a compact neighborhood

of the uniform probability vector (all θi are equal), while ΩI(a) is a compact neighborhood of

the boundary of the probability simplex (at least one θi is zero). We can now state the following

lemma:

Lemma 18.1. Consider the continuous-time ODE:

θ̇(t) = F (θ(t)) + ε(t), (18.5)

where θ ∈ ∆n, ∥ε∥ ≤ η ∈ R≥0, and F (θ) = τ(θ)− θ. Let τ : ∆n → ∆n satisfy Assumption 17.1

and property 2.b (contractive τ). Then, for any index set I ⊆ {1, 2, . . . , n} there exists κ ∈ K such

that for any t0 ∈ R:

θ(t0) ̸∈ ΩI(κ(η)) (18.6)

83

implies:

θ(t) −−−→
t→∞

ΩI(κ(η)). (18.7)

Proof. Consider a point θ ∈ ∆n, and an index set I ⊆ {1, 2, . . . , n} where mini∈I θi > 0 (note

that the lemma only makes a claim for index sets such that θ(t0) ̸∈ ΩI(κ(η)), which satisfy this

condition). Let M,m ∈ I be the (not necessarily unique) indices of the greatest and smallest

elements of {θi | i ∈ I}. The time derivative of VI at some point θ is:

V̇I(θ) =
d

dt

(∑

i∈I

θi

)−1(
max
i∈I

θi −min
i∈I

θi

)
= −

(∑
i∈I

θi

)−2(∑
i∈I

θ̇i

)
(θM − θm) +

(∑
i∈I

θi

)−1 (
θ̇M − θ̇m

)
≤
∑

i∈I τ(θ)i∑
i∈I θi

(
τ(θ)M − τ(θ)m∑

i∈I τ(θ)i
− θM − θm∑

i∈I θi

)
+ bη

≤ c (VI(τ(θ))− VI(θ)) + bη,

where the second equality holds because τ preserves the indices of the maximum and minimum

elements of θ by its order preserving property, guaranteeing that the derivative of VI is well-defined.

In the last two inequalities b, c ∈ R>0 are finite positive constants, as the sums that appear are

always positive and bounded from above and below.

We now seek to establish that for η small enough, there is some a ∈ R≥0 such that the set

difference B(a) = ∆n \ (ΩI(a) ∪ ΩI(a)) is a basin of attraction for ΩI(a). Remember that by

property 2.b in Assumption 17.1, VI(τ(θ)) − VI(θ) < 0 over points that lie in B(0) (i.e., points

that are not the uniform probability vector over I and with no zero elements). Consider the closure

of the set B(a) for some a > 0, and let us define the “worst-case” decrease of VI for points in

clo(B(a)) as:

β(a) = sup
θ∈clo(B(a))

{VI(τ(θ))− VI(θ)} . (18.8)

By continuity, and because for a > 0, the set B(a) always excludes an open neighborhood of the

region where VI(τ(θ)) − VI(θ) = 0, we have that β(a) < 0. Then, for any B(a) ̸= ∅, as long as

η < −cb−1β(a), the term V̇I(θ) is strictly negative for all θ ∈ B(a).

84

Observe that β(·) is decreasing, since B(a2) ⊆ B(a1) for a2 > a1, and β(0) = 0. Then, we can

define κ ∈ K as any strictly increasing continuous function such that:

κ(η) > inf
{
a ∈ R≥0

∣∣∣ η < −cb−1β(a)
}
, (18.9)

for any η where this inf is finite, which is guaranteed for any η smaller than some finite threshold.

Then, any initial condition in the basin θ(t0) ∈ B(κ(η)) guarantees that V̇I(θ) < 0, and θ(t) will

converge to Ω(κ(η)).

This lemma essentially claims that the solutions of the limiting ODE (18.3) over a subset of

indices whose elements are sufficiently away from zero converge to a neighborhood of the uniform

probability vector conditioned over that subset of indices. This key result allows us to then claim

the following theorem:

Theorem 18.2. Consider the closed-loop learning stochastic process (16.2), where τ satisfies As-

sumption 17.1 with property 2.b (τ is contractive), and Assumption 17.2. Then, for any index set

I ⊆ {1, 2, . . . , n} there exists σ ∈ K such that:

Θ(k) −−−→
k→∞

ΩI(σ(δ)) ∪ ΩI(σ(δ)) w.p. 1. (18.10)

Further, for a given time k0 ∈ Z≥0:

P
(
Θ(k) −−−→

k→∞
ΩI(σ(δ))

∣∣∣ Θ(k0) ̸∈ ΩI(σ(δ))
)
−−−−→
k0→∞

1.

Proof. Under these conditions, Θ∗(k) satisfies the stochastic approximation (17.10). Then, by

Corollary 4 (Chapter 5) of [Bor23], the iterates of Θ∗(k) converge a.s. to a closed connected

internally chain transitive invariant set of the continuous-time differential inclusion:

θ̇(t) ∈ {x ∈ ∆n | ∥x− F (θ(t))∥ ≤ η(δ)} , (18.11)

where F (θ) = τ(θ)− θ.

85

Lemma 18.1 characterizes the solutions of (18.11), thus, letting a = κ(η(δ)), any solution

that enters B(a) = ∆n \ (ΩI(a) ∪ ΩI(a)) will converge to ΩI(a). Then, the set L of limit points

of (18.11) is contained in:

L ⊆ ΩI(a) ∪ ΩI(a), (18.12)

In turn, any internally chain transitive set A of (18.11) is contained in the closure of the limit set

L:

A ⊆ clo(L) ⊆ clo
(
ΩI(a) ∪ ΩI(a)

)
= ΩI(a) ∪ ΩI(a),

so that w.p. 1: Θ∗(k) −−−→
k→∞

A ⊆ ΩI(a)∪ΩI(a). Finally, because ∥Θ(k)−Θ∗(k)∥ ≤ δ, we know

that

Θ(k) −−−→
k→∞

ΩI(σ(δ)) ∪ ΩI(σ(δ)),

with σ(δ) = a+ 2δ = κ(η(δ)) + 2δ.

Because any point θ ̸∈ ΩI(a) either is in ΩI(a), or is in B(a), which is an open basin of

attraction for ΩI(a), the last result holds by [YB19, Theorem III.2], noting that the stochastic

recursion (17.10) satisfies assumptions A1-3. In fact, the theorem gives explicit bounds for this

probability.

The result essentially states that as long as the learning model is sufficiently powerful, and the

training sufficiently good (low δ), every set of elements of Θ will either converge to a neighbor-

hood of the uniform probability vector conditioned over that subset, or at least one of its elements

remains trapped close to zero. The reason this second possibility can occur, is that the vector field

induced by the temperature function may vanish at the boundary ∂∆n, so that some small pertur-

bation ε over the process can keep it trapped. However, the greater the size of the initial dataset,

the higher the probability of the process converging towards the uniform probability.

Either way, regardless of the size of the initial dataset (for small δ, and iterating the result

over all sets I), any information it originally contained is lost as k → ∞. Some subset of output

probabilities will approach zero, and the rest will approach their (conditioned) uniform distribution.

86

In summary, in the limit, as k increases, the set of possible outputs is partitioned into the outcomes

that will (almost) never be generated, and the outcomes that will be (almost) uniformly generated.

Remark 6. While we are considering the setting where there is only a fixed amount of external

initial data D(ℓ), our results hold even when some limited amount of external data is introduced

at each training iteration.1 To see this, let λ ∈ [0, 1] be the fraction of external data we introduce

at each time step. Then (17.12) becomes:

Θ∗(k + 1) = Θ∗(k) +
1

k + 1

(
τ (Θ∗(k))−Θ∗(k)+

+ λ
(
Ỹ (k)− τ (Θ∗(k))−Θ∗(k)

)
+ ε(k) + U(k + 1)

)
,

where Ỹ (k) is the external data point at time k. Because Ỹ is bounded, the term λ(Ỹ (k) −

τ (Θ∗(k))−Θ∗(k)) is bounded and can be absorbed into ε(k).

Remark 7. It may be the case that for very high dimensional outputs (n >> 1), the assumption that

δ is sufficiently small for every output probability is unrealistic. However, the assumption may still

hold over a “coarse-grained” model, where we group outputs {Y1, . . . ,Yn} into a set of m < n

categories
{
Ŷ1, . . . , Ŷm

}
. In this case the result would reduce to some categories disappearing,

and others appearing uniformly randomly as k →∞.

18.3 Low temperature leads to mode collapse

The low temperature case is identical to the high temperature one, but with the roles of Ω and Ω

swapped, so we only state the corresponding theorem. In the proof, the direction of the Lyapunov

inequalities is swapped and the sign inverted.

Theorem 18.3. Consider the closed-loop learning stochastic process (16.2), where τ satisfies As-

sumption 17.1 with property 2.c (τ is expanding), and Assumption 17.2. Then, for any index set

1These two scenarios are analogous to the “synthetic augmentation loop” and “fresh data loop” in [Ale24]. In the
first one, the amount of external data is fixed at the start, so that over time the proportion of synthetic data dominates
the dataset. In the second one, some proportion λ of external data is introduced at each step (this may be additional
copies of samples from the initial dataset), guaranteeing that the proportion of synthetic data is always less than 1−λ.

87

I ⊆ {1, 2, . . . , n} there exists σ ∈ K such that:

Θ(k) −−−→
k→∞

ΩI(σ(δ)) ∪ ΩI(σ(δ)) w.p. 1. (18.13)

Further, for a given time k0 ∈ Z≥0:

P
(
Θ(k) −−−→

k→∞
ΩI(σ(δ))

∣∣∣ Θ(k0) ̸∈ ΩI(σ(δ))
)
−−−−→
k0→∞

1.

Just like for the high temperature case, any information in the original dataset is lost, with data

generated by the asymptotic behavior of Θ(k) dominating the dataset. Unlike the high temperature

case, with high probability Θ will converge to a region where most outputs have very low prob-

ability mass, and only a few outputs are likely to be sampled. In the limit of δ → 0, for almost

every initial condition the generative probabilities of every output approach zero except for a single

output element, that will completely dominate the dataset.

88

CHAPTER 19

Conclusions

We have shown that when a generative model is trained on the data it generates, and this generation

is biased by temperature (no matter how small the biasing), there is a dichotomy between the ac-

curacy of the learning model and preserving the initial distribution of the dataset unless that initial

dataset is preserved and re-injected purposefully. A model capable of accurately reproducing the

distribution of a training dataset (low δ in (17.9)) will inevitably degenerate into never producing

some outputs and producing the rest uniformly randomly.

Our theoretical analysis adds to the increasing concern about data self-ingestion, especially in

the current age where large scale deep networks are trained on data scraped from the internet, and

data generated by these models inevitably finds its way back to their training processes.

89

Part IV

Appendix

90

APPENDIX A

Fast Computation of Simplex Moments

The pose estimation method presented in Part 8 relies on the computation of first and second

moments as integral quantities over a set, rather than a summation over a set of points. In the

case of sets H1 and H2 defined as convex hulls of finite collections of points, the resulting sets are

polytopes, and as such can be partitioned into a set of simplices. The first and second moments

can then be computed via weighted summation of the moments of the separate simplices. The

first and second moments of a simplex can be easily computed as linear and quadratic functions,

respectively, of the vertex coordinates, making fast and exact computation of them feasible.

A.1 Auxiliary results

We begin by introducing an auxiliary result that is necessary for the following theorem.

Lemma A.1. For all k, a, b ∈ N and x1, x2, . . . , xk−1 ∈ R the following holds:

∫ 1−
∑k−1

i=1 xi

xk=0

xak

(
1−

k−1∑
i=1

xi − xk

)b

dxk =

a!b!

(b+a+1)!

(
1−

∑k−2
i=1 xi − xk−1

)b+a+1

, if k > 1

a!b!
(b+a+1)!

, if k = 1.

(A.1)

Proof. We first prove the case for k > 1. The proof follows directly from integration by parts.

91

First, note that we can write:∫ 1−
∑k−1

i=1 xi

xk=0

xak

(
1−

k−1∑
i=1

xi − xk

)b

dxk

=

−xak
(
1−

∑k−1
i=1 xi − xk

)b+1

b+ 1

1−

∑k−1
i=1 xi

xk=0

+
a

b+ 1

∫ 1−
∑k−1

i=1 xi

xk=0

xa−1
k

(
1−

k−1∑
i=1

xi − xk

)b+1

dxk

=
a

b+ 1

∫ 1−
∑k−1

i=1 xi

xk=0

xa−1
k

(
1−

k−1∑
i=1

xi − xk

)b+1

dxk.

(A.2)

Then, repeatedly integrating by parts until the exponent on xk is zero, we arrive at:∫ 1−
∑k−1

i=1 xi

xk=0

xak

(
1−

k−1∑
i=1

xi − xk

)b

dxk

=
a(a− 1) . . . 1

(b+ 1)(b+ 2) . . . (b+ a)

∫ 1−
∑k−1

i=1 xi

xk=0

(
1−

k−1∑
i=1

xi − xk

)b+a

dxk

=
a(a− 1) . . . 1

(b+ 1)(b+ 2) . . . (b+ a)

−
(
1−

∑k−1
i=1 xi − xk

)b+a+1

b+ a+ 1

1−

∑k−1
i=1 xi

xk=0

=
a(a− 1) . . . 1

(b+ 1)(b+ 2) . . . (b+ a+ 1)

(
1−

k−1∑
i=1

xi

)b+a+1

=
a!b!

(b+ a+ 1)!

(
1−

k−2∑
i=1

xi − xk−1

)b+a+1

.

(A.3)

Following the same computations, we can prove the case for k = 1.

We now prove a closed form expression for a family of multidimensional integrals. This ex-

pression will be used to calculate a set of coefficients used in the computation of the moments of a

simplex.

Theorem A.1. For all k ∈ N, and for all n1, n2, . . . , nk ∈ N, the following holds:∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑k−1
i=0 xi

xk=0

xn1
1 x

n2
2 . . . xnk

k dxk dxk−1 . . . dx1 =

∏k
i=0 ni!

(k +
∑k

i=0 ni)!
. (A.4)

92

Proof. We first note that we can rewrite the integral as:∫ 1

x1=0

xn1
1

∫ 1−x1

x2=0

xn2
2 · · ·

∫ 1−
∑k−1

i=0 xi

xk=0

xnk
k dxk dxk−1 . . . dx1. (A.5)

Then, we apply Lemma A.1 to the inner integral 1 and obtain:∫ 1

x1=0

xn1
1

∫ 1−x1

x2=0

xn2
2 · · ·

∫ 1−
∑k−1

i=0 xi

xk=0

xnk
k dxk dxk−1 . . . dx1

=

∫ 1

x1=0

xn1
1

∫ 1−x1

x2=0

xn2
2 · · ·

∫ 1−
∑k−2

i=0 xi

xk=0

x
nk−1

k−1

nk!

(nk + 1)!

(
1−

k−2∑
i=1

xi − xk−1

)nk+1

dxk−1 . . . dx1

=
nk!

(nk + 1)!

∫ 1

x1=0

xn1
1

∫ 1−x1

x2=0

xn2
2 · · ·

∫ 1−
∑k−2

i=0 xi

xk=0

x
nk−1

k−1

(
1−

k−2∑
i=1

xi − xk−1

)nk+1

dxk−1 . . . dx1.

(A.6)

Applying the lemma repeatedly until we exhaust the integrals we arrive at:∫ 1

x1=0

xn1
1

∫ 1−x1

x2=0

xn2
2 · · ·

∫ 1−
∑k−1

i=0 xi

xk=0

xnk
k dxk dxk−1 . . . dx1

=
nk!

(nk + 1)!
× nk−1!(nk + 1)!

(nk−1 + nk + 2)!
× · · · × n1!(n2 + · · ·+ nk + (k − 1))!

(n1 + n2 + · · ·+ nk + k)!

=
n1!n2! . . . nk!

(n1 + n2 + · · ·+ nk + k)!

=

∏k
i=1 ni!

(k +
∑k

i=1 ni)!
.

(A.7)

In addition, to simplify some of the following notation, we define:

Definition A.1. For any k ∈ N, and n1, n2, . . . , nk ∈ N we define Mn1,n2,...,nk
as:

M(n1, n2, . . . , nk) =

∏k
i=1 ni!

(k +
∑k

i=1 ni)!
. (A.8)

1Note that xnk

k = xnk

k

(
1−

∑k−1
i=0 xi − xk

)0
.

93

A.2 Closed-form expressions for moments

We can now proceed with the computation of the moments of a simplex. The computation relies on

a change of coordinates that will be used to compute the necessary integrals. Consider a simplex

S ⊂ Rn, determined by n+1 vertices v0, v1 . . . , vn ∈ Rn. Let us introduce the change of variables

g : Rn → Rn:

g(x) = g(x1, x2, . . . , xn)

= v0 + x1(v1 − v0) + x2(v2 − v0) + · · ·+ xn(vn − v0)

=
[
z1 z2 . . . zn

]T
= z.

(A.9)

Then, defining V =
[
v1 − v0 v2 − v0 . . . vn − v0

]
, the Jacobian of g is:

∂g

∂x
(x) = V. (A.10)

Then, any integral over S of some function f can be rewritten as:∫
z∈S

f(z) dµ =

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

f(v0 + V x)det(V) dxn dxn−1 . . . dx1

= det(V)

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

f(v0 + V x) dxn dxn−1 . . . dx1.

(A.11)

A.2.1 Volume

The volume of a simplex is:∫
z∈S

dµ = det(V)

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

dxn dxn−1 . . . dx1. (A.12)

Then, we can apply Theorem A.1:

det(V)

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

dxn dxn−1 . . . dx1 = det(V)M(0, 0, . . . , 0)

=

∏n
i=1 0!

(n+
∑n

i=1 0)!

=
1

n!
det(V).

(A.13)

94

A.2.2 First moment

The first moment of a simplex is:∫
z∈S z dµ∫
z∈S dµ

=
n!

det(V)
det(V)

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

(v0 + V x) dxn dxn−1 . . . dx1

= n!
(
v0M(0, . . . , 0) + (v1 − v0)M(1, . . . , 0)

+ (v2 − v0)M(0, 1, . . . , 0) + · · ·+ (vn − v0)M(0, . . . , 1)
)

= n!

(
1

n!
v0 +

1

(n+ 1)!

n∑
i=1

(vi − v0)

)

= v0 +
1

n+ 1

n∑
i=1

(vi − v0)

=
1

n+ 1

n∑
i=0

vi.

(A.14)

A.2.3 Second moment

The second moment of a simplex, relative to a point q ∈ Rn is:∫
z∈S(z − q)(z − q)

T dµ∫
z∈S dµ

=
n!

det(V)
det(V)

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

(v0 + V x− q)(v0 + V x− q)T dxn dxn−1 . . . dx1

= n!

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

(v0 + V x− q)(v0 + V x− q)T dxn dxn−1 . . . dx1

= n!

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

[
v0 − q V

]1
x

[1 xT
](v0 − q)T

V T

 dxn dxn−1 . . . dx1

= n!
[
v0 − q V

] ∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

1 xT

x xxT

 dxn dxn−1 . . . dx1

(v0 − q)T
V T

=
[
v0 − q V

]
K

(v0 − q)T
V T

 ,
(A.15)

95

where the matrix K ∈ R(n+1)×(n+1) is defined as:

K = n!

∫ 1

x1=0

∫ 1−x1

x2=0

· · ·
∫ 1−

∑n−1
i=1 xi

xn

1 xT

x xxT

 dxn dxn−1 . . . dx1. (A.16)

Exploiting Theorem A.1, the entries of K follow the pattern:

k0,0 = n!M(0, . . . , 0) = n!
1

n!
= 1

ki,0 = k0,i = n!M(0, . . . , 1, . . . , 0) = n!
1

(n+ 1)!
=

1

n+ 1
, i > 0

ki,j = n!M(0, . . . , 1, . . . , 1, . . . , 0) = n!
1

(n+ 2)!
=

1

(n+ 1)(n+ 2)
, i, j > 1, i ̸= j

ki,i = n!M(0, . . . , 2, . . . , 0) = n!
2

(n+ 2)!
=

2

(n+ 1)(n+ 2)
, i > 1.

(A.17)

96

REFERENCES

[AB09] M. Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations.
Cambridge University Press, 2009.

[ABS13] H. Attouch, J. Bolte, and B. F. Svaiter. “Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods.” Mathematical Programming, 137(1-2):91–129,
2013.

[Ack17] E. Ackerman. “How Drive.ai is Mastering Autonomous Driving with Deep Learn-
ing.” https://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-
is-mastering-autonomous-driving-with-deep-learning, 2017. IEEE. Accessed: March
2021.

[AGS13] A. Aswani, H. Gonzalez, S. S. Shankar, and C. Tomlin. “Provably safe and robust
learning-based model predictive control.” Automatica, 49(5):1216–1226, 2013.

[Ale24] S. Alemohammad et al. “Self-consuming generative models go mad.” International
Conference on Learning Representations (ICLR), 2024.

[ALS19] Y. Abbasi-Yadkori, N. Lazic, and C. Szepesvari. “Model-Free Linear Quadratic Con-
trol via Reduction to Expert Prediction.” In Proceedings of the Twenty-Second Inter-
national Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings
of Machine Learning Research, pp. 3108–3117. PMLR, 2019.

[AS20] A. Agrachev and A. Sarychev. “Control in the Spaces of Ensembles of Points.” SIAM
Journal on Control and Optimization, 58(3):1579–1596, 2020.

[Atk08] K. E. Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2008.

[Ber24] Q. Bertrand et al. “On the stability of iterative retraining of generative models on their
own data.” International Conference on Learning Representations (ICLR), 2024.

[BM92] P. J. Besl and N. D. McKay. “Method for registration of 3-D shapes.” In Sensor fusion
IV: control paradigms and data structures, volume 1611, pp. 586–606. Spie, 1992.

[BNL12] B. Biggio, B. Nelson, and P. Laskov. “Poisoning attacks against support vector ma-
chines.” In Proceedings of the 29th International Conference on Machine Learning,
ICML’12, p. 1467–1474, 2012.

[Bor23] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint, volume 48
of Texts and Readings in Mathematics. Springer, 2023.

[Bro07] R. W. Brockett. “Optimal control of the Liouville equation.” AMS IP Studies in Ad-
vanced Mathematics, 39:23, 2007.

97

[Cao24] H. Cao et al. “A survey on generative diffusion models.” IEEE Transactions on Knowl-
edge and Data Engineering, 2024.

[Car24] N. Carlini et al. “Poisoning Web-Scale Training Datasets is Practical.” In IEEE Sym-
posium on Security and Privacy (SP), 2024.

[CCC16] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J.J.
Leonard. “Past, Present, and Future of Simultaneous Localization And Mapping: To-
wards the Robust-Perception Age.” IEEE Transactions on Robotics, 32(6):1309–1332,
2016.

[CCL18] L. Cheng, S. Chen, X. Liu, H. Xu, Y. Wu, M. Li, and Y. Chen. “Registration of Laser
scanning point clouds: A review.” Sensors, 18(5):1641, 2018.

[COM19] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. “End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks.” In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3387–3395,
2019.

[CZ14] J. Chorowski and J. M. Zurada. “Learning understandable neural networks with non-
negative weight constraints.” IEEE Transactions on Neural Networks and Learning
Systems, 26(1):62–69, 2014.

[DJS18] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. “Learning and verification of
feedback control systems using feedforward neural networks.” IFAC-PapersOnLine,
51(16):151–156, 2018.

[DMM19] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. “On the sample complexity of
the linear quadratic regulator.” Foundations of Computational Mathematics, pp. 1–47,
2019.

[DMR20] S. Dean, N. Matni, B. Recht, and V. Ye. “Robust Guarantees for Perception-Based
Control.” In Proceedings of the 2nd Conference on Learning for Dynamics and Con-
trol, volume 120 of Proceedings of Machine Learning Research, pp. 350–360. PMLR,
2020.

[DTC21] S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames. “Guaranteeing Safety of
Learned Perception Modules via Measurement-Robust Control Barrier Functions.” In
Proc. of the 2020 Conference on Robot Learning, volume 155 of PMLR, pp. 654–670,
16–18 Nov 2021.

[DV10] H. Daniels and M. Velikova. “Monotone and partially monotone neural networks.”
IEEE Transactions on Neural Networks, 21(6):906–917, 2010.

[DV20] C. Debeunne and D. Vivet. “A review of visual-LiDAR fusion based simultaneous
localization and mapping.” Sensors, 20(7):2068, 2020.

98

[Fre95] R. Freeman. “Global internal stabilizability does not imply global external stabi-
lizability for small sensor disturbances.” IEEE Transactions on Automatic Control,
40(12):2119–2122, 1995.

[FRH19] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas. “Efficient and ac-
curate estimation of Lipschitz constants for deep neural networks.” In Advances in
Neural Information Processing Systems, pp. 11423–11434, 2019.

[GZW19] Z. Gojcic, C. Zhou, J.D. Wegner, and A. Wieser. “The Perfect Match: 3D Point Cloud
Matching With Smoothed Densities.” In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

[Han09] S. Hanba. “On the “Uniform” Observability of Discrete-Time Nonlinear Systems.”
IEEE Transactions on Automatic Control, 54(8):1925–1928, 2009.

[HKR16] W. Hess, D. Kohler, H. Rapp, and D. Andor. “Real-time loop closure in 2D LIDAR
SLAM.” In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1271–1278. IEEE, 2016.

[Hor87] B. Horn. “Closed-form solution of absolute orientation using unit quaternions.” Jour-
nal of the Optical Society of America, 4(4):629–642, 1987.

[HR17] E. Haber and L. Ruthotto. “Stable architectures for deep neural networks.” Inverse
Problems, 34(1), 2017.

[HS06] Morris W Hirsch and Hal Smith. “Monotone dynamical systems.” In Handbook of dif-
ferential equations: ordinary differential equations, volume 2, pp. 239–357. Elsevier,
2006.

[HS14] Uwe Helmke and Michael Schönlein. “Uniform ensemble controllability for one-
parameter families of time-invariant linear systems.” Systems & Control Letters,
71:69–77, 2014.

[JL20] M. Jin and J. Lavaei. “Stability-certified reinforcement learning: A control-theoretic
perspective.” IEEE Access, 8:229086–229100, 2020.

[KA19] S. Kolathaya and A. D. Ames. “Input-to-State Safety With Control Barrier Functions.”
IEEE Control Systems Letters, 3(1):108–113, 2019.

[KL20] B. Karg and S. Lucia. “Stability and feasibility of neural network-based controllers
via output range analysis.” In 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 4947–4954. IEEE, 2020.

[Koh21] P. W. Koh et al. “Wilds: A benchmark of in-the-wild distribution shifts.” In Pro-
ceedings of the 29th International Conference on Machine Learning, ICML’21, pp.
5637–5664, 2021.

99

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” Nature, 521(7553):436–444,
2015.

[LCT17] Q. Li, L. Chen, C. Tai, and E. Weinan. “Maximum principle based algorithms for deep
learning.” The Journal of Machine Learning Research, 18(1):5998–6026, 2017.

[LHA20] M. Lechner, R. Hasani, A. Amini, T. A. Henzinger, D. Rus, and R. Grosu. “Neural cir-
cuit policies enabling auditable autonomy.” Nature Machine Intelligence, 2(10):642–
652, 2020.

[LJY99] F. W. Lewis, S. Jagannathan, and A. Yesildirak. Neural network control of robot ma-
nipulators and non-linear systems. CRC press, 1999.

[LK06] J. S. Li and N. Khaneja. “Control of inhomogeneous quantum ensembles.” Physical
Review A, 73(3):030302, 2006.

[LKB17] G. Litjens, T. Kooi, B.E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken, and C. I. Sánchez. “A survey on deep learning in
medical image analysis.” Medical image analysis, 42:60–88, 2017.

[LS89] R. Liptser and A. N. Shiryayev. Theory of Martingales, volume 49 of Mathematics
and its Applications. Springer, 1989.

[LZL18] Y. Lu, A. Zhong, Q. Li, and B. Dong. “Beyond Finite Layer Neural Networks: Bridg-
ing Deep Architectures and Numerical Differential Equations.” In International Con-
ference on Machine Learning, pp. 3276–3285, 2018.

[Mar23a] G. Martínez et al. “Combining generative artificial intelligence (AI) and the internet:
heading towards evolution or degradation?” arXiv preprint arXiv:2303.01255, 2023.

[Mar23b] G. Martínez et al. “Towards understanding the interplay of generative artificial intelli-
gence and the internet.” arXiv preprint arXiv:2306.06130, 2023.

[NT04] D. Nesic and A. R. Teel. “A framework for stabilization of nonlinear sampled-data
systems based on their approximate discrete-time models.” IEEE Transactions on Au-
tomatic Control, 49(7):1103–1122, 2004.

[OK17] O. K. Oyedotun and A. Khashman. “Deep learning in vision-based static hand gesture
recognition.” Neural Computing and Applications, 28(12):3941–3951, 2017.

[PB17] J. Park and S. Boyd. “General heuristics for nonconvex quadratically constrained
quadratic programming.” arXiv preprint arXiv:1703.07870, 2017.

[PCS15] F. Pomerleau, F. Colas, and R. Siegwart. “A review of point cloud registration algo-
rithms for mobile robotics.” Foundations and Trends® in Robotics, 4(1):1–104, 2015.

100

[QSM17] C. Qi, H. Su, K. Mo, and L. Guibas. “PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation.” In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, July 2017.

[RBB09] R. Rusu, N. Blodow, and M. Beetz. “Fast Point Feature Histograms (FPFH) for 3D
registration.” In 2009 IEEE International Conference on Robotics and Automation,
pp. 3212–3217, 2009.

[RGP17] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother. “Detecting unexpected
obstacles for self-driving cars: Fusing deep learning and geometric modeling.” In IEEE
Intelligent Vehicles Symposium (IV), pp. 1025–1032. IEEE, 2017.

[RJ16] M. Romdlony and B. Jayawardhana. “On the new notion of input-to-state safety.” In
2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6403–6409. IEEE,
2016.

[RL18] H. Rehman and S. Lee. “Automatic image alignment using principal component anal-
ysis.” IEEE Access, 6:72063–72072, 2018.

[SB11] C. Solomon and T. Breckon. Fundamentals of Digital Image Processing: A practical
approach with examples in Matlab, pp. 247–262. John Wiley & Sons, 2011.

[SB14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

[SFP20] J.ob H. Seidman, M. Fazlyab, V. M. Preciado, and G. J. Pappas. “Robust Deep Learn-
ing as Optimal Control: Insights and Convergence Guarantees.” In Proceedings of the
2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings of
Machine Learning Research, pp. 884–893. PMLR, 2020.

[SHT09] A. Segal, D. Haehnel, and S. Thrun. “Generalized ICP.” In Robotics: science and
systems, volume 2, p. 435. Seattle, WA, 2009.

[Shu23] I. Shumailov et al. “The curse of recursion: Training on generated data makes models
forget.” arXiv preprint arXiv:2305.17493, 2023.

[SMO04] J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino. Stable adaptive con-
trol and estimation for nonlinear systems: neural and fuzzy approximator techniques,
volume 43. John Wiley & Sons, 2004.

[Son89] E. D. Sontag et al. “Smooth stabilization implies coprime factorization.” IEEE trans-
actions on automatic control, 34(4):435–443, 1989.

[Son93] E. D. Sontag. “Neural networks for control.” In Essays on Control, pp. 339–380.
Boston, MA, USA: Birkhäuser, 1993.

101

[SP99] E. N. Sanchez and J. P. Perez. “Input-to-state stability (ISS) analysis for dynamic
neural networks.” IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 46(11):1395–1398, 1999.

[SW96] E. D. Sontag and Y. Wang. “New characterizations of input-to-state stability.” IEEE
transactions on automatic control, 41(9):1283–1294, 1996.

[TG20] P. Tabuada and B. Gharesifard. “Universal Approximation Power of Deep Residual
Neural Networks via Nonlinear Control Theory.” arXiv preprint arXiv:2007.06007v3,
2020. To appear in 9th International Conference on Learning Representations.

[TMP20] A. Tsiamis, N. Matni, and G. Pappas. “Sample Complexity of Kalman Filtering for
Unknown Systems.” In Proceedings of the 2nd Conference on Learning for Dynamics
and Control, volume 120 of Proceedings of Machine Learning Research, pp. 435–444.
PMLR, 2020.

[Tou23] H. Touvron et al. “Llama 2: Open foundation and fine-tuned chat models.” arXiv
preprint arXiv:2307.09288, 2023.

[TT20] H. Thanh-Tung and T. Tran. “Catastrophic forgetting and mode collapse in GANs.” In
International Joint Conference on Neural Networks (IJCNN), 2020.

[VDD18] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. “Deep learning
for computer vision: A brief review.” Computational Intelligence and Neuroscience,
2018.

[Wei17] E. Weinan. “A Proposal on Machine Learning via Dynamical Systems.” Communica-
tions in Mathematics and Statistics, 5, 2017.

[XTG15] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. “Robustness of Control Bar-
rier Functions for Safety Critical Control.” IFAC-PapersOnLine, 48(27):54–61, 2015.
Analysis and Design of Hybrid Systems.

[XTR18] W. Xiang, H. Tran, J. A. Rosenfeld, and T. T. Johnson. “Reachable set estimation and
verification for a class of piecewise linear systems with neural network controllers.” In
American Control Conference (ACC), invited session on Formal Methods in Controller
Synthesis, 2018.

[YB19] V. G. Yaji and S. Bhatnagar. “Analysis of stochastic approximation schemes with set-
valued maps in the absence of a stability guarantee and their stabilization.” IEEE
Transactions on Automatic Control, 65(3):1100–1115, 2019.

[YHP18] T. Young, D. Hazarika, S. Poria, and E. Cambria. “Recent trends in deep learning based
natural language processing.” IEEE Computational Intelligence Magazine, 13(3):55–
75, 2018.

102

[YLJ13] J. Yang, H. Li, and Y. Jia. “Go-ICP: Solving 3D Registration Efficiently and Globally
Optimally.” In 2013 IEEE International Conference on Computer Vision, pp. 1457–
1464, 2013.

[YSA20] H. Yin, P. Seiler, and M. Arcak. “Stability analysis using quadratic constraints for
systems with neural network controllers.” arXiv preprint arXiv:2006.07579, 2020.

[YSC20] H. Yang, J. Shi, and L. Carlone. “Teaser: Fast and certifiable point cloud registration.”
IEEE Transactions on Robotics, 37(2):314–333, 2020.

[YSC21] H. Yang, J. Shi, and L. Carlone. “TEASER: Fast and Certifiable Point Cloud Registra-
tion.” IEEE Transactions on Robotics, 37(2):314–333, 2021.

[Zha23] W. X. Zhao et al. “A survey of large language models.” arXiv preprint
arXiv:2303.18223, 2023.

[ZPZ00] Y. Zhang, P. Peng, and Z.Jiang. “Stable neural controller design for unknown nonlinear
systems using backstepping.” IEEE Transactions on Neural Networks, 11(6):1347–
1360, 2000.

103

