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Probabilistic modeling of Diabetic Nephropathy progression
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Abstract

Diabetic Nephropathy (DN) progression is stratified into several stages with different levels of 

proteinuria, albuminuria, and physical characteristics as observed by pathologists. These physical 

changes are primarily visible within a patient’s glomeruli which function as filtration units for 

blood returning for oxygenation. As DN stage increases, it is possible to observe the thickening of 

the glomerular basement membrane, expansion of the mesangium, and development of nodular 

sclerosis. Classification of different stages of DN by pathologists is based on semi-qualitative 

assessments of these characteristics on an individual glomerulus basis. Being able to 

probabilistically infer stage membership of individual glomeruli based on a combination of easily 

observable and hidden image features would be an invaluable tool for furthering our understanding 

of the drivers of DN progression. Markov Particle filters, included in the bnlearn package in R, 

were used to query a Bayesian Network (BN) constructed using the structural Hill-Climbing 

algorithm on a set of glomerular features. These features included both traditional characteristics 

such as glomerular area and number of mesangial nuclei as well as more abstract features derived 

from Minimum Spanning Trees (MST) to quantify spatial distribution of mesangial nuclei. Our 

results using images from multiple institutions suggest that these abstract features exercise a 

variable influence on DN stage membership over the course of disease progression. Further 

research incorporating clinical data will give nephrologists a “white box” visual of quantitative 

factors present in DN patients.

Keywords

Bayesian network; diabetic nephropathy; probabilistic graphical modelling; minimum spanning 
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1. INTRODUCTION

Understanding how individual factors influence the chances of disease progression is one of 

the many ways in which we can understand underlying cellular mechanisms that contribute 

to worsening health outcomes. In the case of diabetic nephropathy (DN), failure to respond 
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to advancement in a timely manner can increase a patient’s chances of kidney failure and 

end-stage renal disease (ESRD). This is especially difficult in the case of kidney disease due 

to the fact that early stages exhibit no outward symptoms and are often undetected. Around 

42% of cases of ESRD have a co-diagnosis of DN in the United States[1]. Classification of 

DN is traditionally performed by needle biopsy analysis by a pathologist on an individual 

glomerulus basis, which is slow and susceptible to inter-observer variability[2]. Our lab 

recently developed a recursive neural network based method to conduct automatic diagnosis 

of DN on a whole biopsy[3]. In this work we developed an alternative method based on 

graph theory to visualize features which contribute to DN staging. Further, in order to better 

understand the causes for DN progression, statistical representations of glomerular image 

features were generated and tested with simulated data for probability of higher stages 

membership. Quantitative hidden patterns describing individual glomerulus images were 

calculated and input into a structural Hill-Climbing algorithm to generate a Bayesian 

Network (BN) from which conditional probability of DN stage is determined. Features used 

in the BN included both readily visible features such as glomerular cross sectional area and 

the number of nuclei present in the mesangium, and features calculated from Minimum 

Spanning Trees (MST) to quantify nuclear packing. MSTs are graphical method defined as a 

set of straight lines connecting a set of points in such a way that all of the points are 

connected, no closed loops are formed, and the sum of the total edge lengths is 

minimized[4]. In the context of digital pathology image analysis, MSTs are used to 

quantitatively understand spatial distribution of sub-visual cellular compartments in an 

image[5]. Our results suggest that our set of feature values was proficient at classifying the 

simulated data belonging to samples from more advanced stages. Adding further features 

related to clinical data will provide a machine learning framework that is more relatable to 

medical professionals and will aid them in the early diagnosis of patients with kidney 

disease.

2. METHODS

Human data:

Biopsy samples from human DN patients with chronic kidney disease stages II and III were 

collected from Kidney Translational Research Center at Washington University School of 

Medicine via collaborator Dr. Sanjay Jain and from Vanderbilt University Medical Center 

(VUMC) via collaborator Dr. Agnes Fogo. Total n = 21 DN biopsy cases and n = 8 control 

biopsy cases were used. Control cases were obtained from nephrectomies of renal cell 

carcinoma patients, and tissue samples with no apparent abnormalities were used. Additional 

n = 9 images of DN biopsies were received from Dr. Washington Luis Conrado of the 

Universidade Federal da Bahia (UFBA). Human data collection procedure followed a 

protocol approved by the Institutional Review Board at all participating institutions.

Imaging and data preparation:

Tissue staining and imaging are conducted as discussed in our other work[6].
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Ground-truth annotation and segmentation:

Individual glomeruli were segmented from whole slide kidney biopsy images using our 

developed human-artificial-intelligence-loop method[7]. Ground-truth annotations of DN 

structural disease state was performed by the co-author Dr. Kuang-Yu Jen.

Feature generation:

From the segmented images, all nuclei within each glomerulus were isolated using a 

combination of color deconvolution and intensity thresholding[8]. Manual segmentation was 

used to exclude nuclei located along the endothelium and not allow an expansive Bowman’s 

space to artificially inflate glomerular area measurements. The remaining nuclei were used 

as root nodes for constructing MSTs on a per-glomerulus basis[9]. The output of MST 

generation is a set of each of the edge weights between specific nuclei nodes from which 

feature values are calculated.

Non-MST Features:

The first set of features calculated from the image set are those not specifically related to 

MSTs. These are the number of nuclei and the glomerular area. The number of nuclei 

present within the mesangium, excluding those present along the endothelium, are an 

indicator of the degree of cellularity within that glomerulus. Mesangial hypercellularity and 

expansion are known to be general indicators of glomerular injury and traditionally are 

associated with the progression of DN between stages I and II[2].

Nuclei Spread:

To quantify the degree in which the nuclei are spread over the cross-sectional area of the 

glomerulus, we used the MST edge length and eccentricity. To better understand the total 

distribution of edge lengths for each glomerulus, both the mean and standard deviation of 

edge lengths were recorded and used for comparisons. Eccentricity in this case refers to the 

graph eccentricity, i.e., the graph distance between one node and the furthest node away. In 

the same way as with the edge lengths, we recorded both the mean and standard deviation of 

graph eccentricity as well as the maximum node eccentricity, known as the graph diameter.

Nuclei Proximity:

In order to capture each node’s connectedness/clustering with nearby nodes, we calculated 

betweenness centrality, degrees per node, and leaf fraction. Betweenness centrality is a 

measure of node importance to the overall structural integrity of the graph[10]. To 

meaningfully capture the distinctive differences between different MSTs originated from 

glomeruli with different DN stages, we chose to record both the maximum rank as well as 

the number of nodes within 10% of the maximum rank. In this way we can determine if 

there is an uneven distribution of nodes within one graph or if they are uniformly spread out. 

A node’s degree is determined by the number of branches that extend from it. For example, 

a node that has one branch going into it and then another branch going to another node 

would have a degree of two. If a graph has a degree per node value that is close to two we 

can infer that the nodes are fairly sparse. A node that has only one branch entering it is 

known as a terminal or ‘leaf’ node. The leaf fraction is calculated by taking the number of 
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leaf nodes present in the graph divided by the total number of nodes[11]. A low leaf fraction 

would be indicative of a densely packed MST.

MST Shape:

The final feature values calculated from the MSTs were used to distinguish between multiple 

different shapes and structures of different MSTs. We employed a metric proposed by 

Rainbolt et al. for analyzing Large Hadron Collider (LHC) output[5]. The normalized edge 

length is calculated by computing the natural logarithm of each edge length and dividing it 

by the average edge length of each graph. Again, to preserve the differences that are present 

in the shape of the distribution, both the mean and standard deviation of the normalized edge 

length are saved as individual feature values.

Bayesian Networks:

Bayesian Networks are a subset of probabilistic graphical models used to represent 

conditional dependencies of either discrete or continuous variables describing a dataset[12]. 

By describing the relationships between individual feature values, it is possible to 

probabilistically infer missing values. The organization of nodes, or feature variables, in 

Bayesian Networks can be determined through a variety of different methods focusing on 

generating a model that most accurately describes the dataset used to create it. In this study, 

we employed a score-based structural Hill-Climbing algorithm included in the ‘bnlearn’ 
package for R[13]. This approach generates a set of models, calculates the Bayesian 

Information Criterion (BIC) score, and then uses gradient descent to find the structure with 

the lowest score. The resulting graph contains all of the nodes and edges necessary to most 

accurately represent the input data. Conditional probability queries of this model are 

computed by generating individual samples that represent the posterior probability of certain 

observations and randomly sampling from these according to their individual likelihood 

weighting, this process is known as applying a Particle Filter[14]. It is especially useful when 

the underlying posterior probabilities of a system are unknown and we must make use of 

noisy observations.

3. RESULTS

Data from feature vectors was used to generate a BN using the method described above and 

the resulting network is shown in Figure 2. Each of the nodes were modeled as Gaussian 

distributions of the full range of values for each feature. This is opposed to employing 

discretization techniques to represent the feature ranges as a series of levels. Edges present 

in this network range in strength from 0.5–1.0 as all edges below 0.5 were removed from the 

completed graph. This way, only the most significant interactions were preserved for 

querying. Querying in this network was performed using bnlearn’s built-in conditional 

probability querying function which uses Monte Carlo particle filters to randomly sample 

from the provided distribution and return the likelihood of the event given a set of evidence 

ranges.

The differential influence of certain image features on probabilistic prediction of DN Stage 

was best observed through individual queries of the constructed model. Choosing a selection 
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of features and varying the value by a set amount within the range of observed values 

resulted in the graphs above. These queries can also be altered to measure the probability 

that individual samples come from earlier stages of DN. For the later stages, it is known that 

the amount of mesangial expansion and hypercellularity decreases as the glomerulus loses 

significant function[2]. These well-documented relationships are supported by the probability 

predictions for increasing numbers of nuclei and area measurements. MST features such as 

the standard deviation of normalized edge length and average eccentricity exhibit a larger 

range in probability prediction as the feature is increased. Feature values where the 

probability estimate range increases as the value range is also increased are more helpful in 

making accurate distinctions between different samples.

In order to test the robustness of our feature set and feature generation pipeline, we also 

separated the data based on the institution which they were obtained from. In this way we 

are hoping to make up for any potential minor stain variabilities that the pipeline may have 

encountered and ensure that the relationships between features are preserved. Ideally, all of 

the BNs would have the same nodes and edge weights because all of the features were 

calculated the same way and from patients with the same disease.

An independent BN was constructed based on the separated data sets using the same method 

as with the combined data set. When these three different networks were compared it was 

discovered that most of the fundamental relationships were preserved. The large variation in 

sample size could account for the varying edge weights between the different models but 

overall they were very similar. To quantify the differences between the four BNs, we used 

the Structural Hamming Distance metric (SHD). The SHD can be thought of as the total 

edge permutations necessary to transform one graph skeleton into the other.

Initial holdout predictions were based off of the network constructed using 70% of the total 

dataset. At each round of cross-validations, a random sampling of the full dataset was 

selected and a new BN was fit according to that dataset. The bnlearn in-built ‘predict’ 

function was used to combine the test sample’s feature values and the network’s learned 

parameters. The results of 10-fold cross-validation are shown in Fig. 8. The average absolute 

error across all folds ended up being 1.27.

It is not always necessary to input a value for each of the nodes in the network. This is 

advantageous if we are including a feature that is difficult to measure. Another reason this 

could be a boon is if we wanted to prune the network to a few select nodes without 

negatively impacting performance. The first step in determining which combination of nodes 

provides the most efficient performance is to list all of the possible networks that can be 

constructed. The total number of different combinations depends on the number of nodes 

one is working with.

# com = ∑
n = 1

N
C1

N + C2
N + C3

N + ⋯ + CN
N
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Equation 1: Number of possible networks from known number of nodes.

This equation takes the number of nodes (N) and determines the number of networks needed 

to be constructed and tested.

From the equation above, it is easy to see how the possible number of combinations can 

shoot upwards if there are more than 10 nodes. For that reason, we selected a subset of 

eleven nodes to construct the sub-networks from based on their proximity to the Markov 

blanket of the DN stage node. The Markov blanket is a term used to describe the parents of a 

node, the children of a node, and the other parents of those children. Because DN stage is a 

terminal node (without children) then this subset contains only nodes that are parents of DN 

stage or strongly associated with those parents. To determine which combination is the best, 

we have to iterate through each of the possible combinations and test that network on the 

combined dataset. We used 10-fold cross-validation again for each of the sub-networks.

The sub-network with the minimum measured MSE included the nodes: Leaf Fraction, 

Degrees/node, Edge Length average and standard deviation, Normalized Edge Length, and 

Eccentricity. All of these features are derived from the glomerular MSTs. The network 

including only these nodes also exhibited very similar behavior to the full network over a 

wide range of sample sizes.

4. DISCUSSION

Deep learning methods have an astronomical potential in medical image analysis, however, 

when it comes to understanding underlying mechanisms of disease progression they fall 

short in their interpretability. When designing computational tools with the goal of aiding 

clinicians, our first goal should always be to build off of the knowledge that decades of 

previous research has led to and Bayesian networks (BN) are advantageous in this regard. In 

this way we can pursue paths of research with validated methods and give better direction 

for treatment options. Another benefit of BN models is that they use simple probabilistic 

relationships with language that is very familiar to medical professionals.

5. CONCLUSION AND FUTURE WORK

By employing the MST for quantifying hidden features of glomerulus images, we can be 

sure that the same classifying criterion are applied to every sample. In this way, we can 

greatly reduce the amount of variability that appears in DN stage classification. Through the 

use of BN, we can determine the most important features for classification and focus on 

those features for developing queries. The resulting probabilistic queries can give clinicians 

an initial estimate for the likelihood of stage membership. Bayesian Networks are a very 

accessible form of “deep learning” methods due to their inclusion of user-defined features 

which are more readily translatable to a biological setting than latent space features of other 

methods. In regards to future work on this subject, we plan include clinical data into another 

model from which we have kidney biopsy images. With this model it will be possible to see 

the changing influence of variables such as eGFR, proteinuria, and albuminuria and how 

these compare to individual and grouped glomerular features. Being able to merge 

traditional measures for severity of DN progression with image features is an exciting field 
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of research. Incorporating quantitative characteristics of patients’ glomeruli will give 

clinicians a new perspective of formerly imprecise diagnostic criteria.

ACKNOWLEDGEMENT

The project was supported by the faculty startup funds from the Jacobs School of Medicine and Biomedical 
Sciences, University at Buffalo; Buffalo Blue Sky grant, University at Buffalo; NIDDK Diabetic Complications 
Consortium grant U24 DK076169; NIDDK grant R01 DK114485 & DK114485 02S1; and NIDDK CKD 
Biomarker Consortium grant U01 DK103225.

REFERENCES

[1]. Corey Magee DJG, Chris J Watson, Derek P Brazil, Diabetic Nephropathy: a Tangled Web to 
Unweave. Cardiovascular Drugs and Therapy, 2017 31(5–6): p. 13.

[2]. Tervaert TWC, et al., Pathologic Classification of Diabetic Nephropathy. Journal of the American 
Society of Nephrology, 2010 21: p. 556–563. [PubMed: 20167701] 

[3]. Brandon Ginley BL, Kuang-Yu Jen, Agnes Fogo, Sanjay Jain, Avi Rosenberg, Vignesh 
Walavalkar, Gregory Wilding, Tomaszewski John E., Yacoub Rabi, Giovanni Maria Rossi, Pinaki 
Sarder, Computational Segmentation and Classification of Diabetic Glomerulosclerosis. Journal 
of the American Society of Nephrology, 2019: p. 17.

[4]. Gower JC and Ross GJS, Minimum Spanning Trees and Single Linkage Cluster Analysis. Journal 
of the Royal Statistical Society. Series C (Applied Statistics), 1969 18(1): p. 54–64.

[5]. Jessica Lovelace Rainbolt MS, The Use of Minimal Spanning Trees in Particle Physics. Journal of 
Instrumentation, 2017 12(2): p. 29.

[6]. Ginley B, et al., Computational segmentation and classification of diabetic glomerulosclerosis. 
Journal of the American Society of Nephrology : JASN, To appear.

[7]. Lutnick B, et al., An integrated iterative annotation technique for easing neural network training in 
medical image analysis. Nature Machine Intelligence, 2019 1(2): p. 112–119.

[8]. Ruifrok Arnout C., D.A.J., Quantification of histological staining by color deconvolution. 
Analytical and Quantitative Cytology and Histology, 2001 23: p. 8.

[9]. Simon O, et al., Examining structural changes in diabetic nephropathy using inter-nuclear 
distances in glomeruli: a comparison of variously automated methods. Proceedings of SPIE 
(SPIE Medical Imaging 2018: Digital Pathology), 2018 10581: p. 105810B: 1–10.

[10]. Freeman LC, A Set of Measures of Centrality Based on Betweenness. Sociometry, 1977 40(1): p. 
6.

[11]. Twarie P, E.v.D., Hillebrand A, Stam CJ, The minimum spanning tree: An unbiased method for 
brain network analysis. NeuroImage, 2015 104: p. 11.

[12]. Koski Timo J. T., J.M.N., A Review of Bayesian Networks and Structure Learning. Mathematica 
Applicanda, 2012 40(1): p. 50.

[13]. Scutari M, Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical 
Software, 2010 35(3): p. 21.

[14]. Moral PD, Nonlinear filtering: Interacting particle resolution. Comptes Rendus de l’Académie 
des Sciences, 1997 325(6): p. 5.

Border et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: MST Construction Pipeline.
(A) Initial PAS stained images stain channels separated using color deconvolution. (B) 

Nuclei isolated and input into Prim’s Algorithm as graph nodes. (C) MST used to calculate 

feature values.
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Figure 2: Bayesian Network with Separated Feature Categories.
BN constructed using structural Hill-Climbing method in bnlearn using feature values from 

795 glomerular MSTs. Color of arrows corresponds to normalized edge weight. (Blue = 

0.95–1.0, Green = 0.9–0.95, Red = 0.8–0.9, Yellow=0.5–0.8).
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Figure 3: Conditional Probability Query Results.
(A, B, C, D) Line graph showing change in probability of DN stage greater than or equal to 

three as feature value increases. Individual probabilities calculated using Monte Carlo 

particle filters of data distributions.
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Figure 4: Boxplot of Mean Absolute Error values during 10-fold Cross Validation:
Plot depicting the absolute error in predicted DN stage for one test set for full network 

trained on all samples.
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Figure 5: MAE with Increasing Sample Size:
This graph shows the impact of increasing sample size on the classification accuracy of both 

the full network as well as the minimum MAE sub-network. Using only a fraction of the 

nodes, the sub-network had similar performance with similar response to increasing sample 

size.
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Table 1:

Different sources of data. Table shows the three different institutions from which the glomeruli images were 

derived as well as the number of samples from each.

Institution Number of Glomeruli

Universidade Federal da Bahia
(UFBA) 58

Kidney Translational Research Center
(KTRC) 783

Vanderbilt University Medical Center
(VUMC) 286
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Table 2:

Structural Hamming Distances between network pairs: Table containing the different SHD values for each pair 

of networks. The largest value (57) corresponds to the comparison between UFBA and the Combined datasets.

Institution Combined KTRC VUMC UFBA

Combined 0

KTRC 38 0

VUMC 44 47 0

UFBA 57 50 35 0
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