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Three-dimensional gravity modelling and focusing inversion

using rectangular meshes

Michael Commer

Lawrence Berkeley National Laboratories

Earth Sciences Division

1 Cyclotron Road, MS 90-1116

Berkeley, CA 94720

USA

(March 17, 2011)

ABSTRACT

Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies,

owing to their flexibility in constructing complex models. The straightforward handling of

cubic cells in gravity inversion algorithms allows for a flexible imposition of model regulariza-

tion constraints, which are generally essential in the inversion of static potential field data.

The first part of this paper provides a review of commonly used expressions for calculating

the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas

of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical

for implementation. In the second part, a weighting scheme for resolution enhancement

at depth is presented. Modeling the earth using highly digitized meshes, depth weighting

schemes are typically applied to the model objective functional, subject to minimizing the

data misfit. The scheme proposed here involves a non-linear conjugate gradient (NLCG)
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inversion scheme with a weighting function applied to the NLCG scheme’s gradient vector

of the objective functional. The low depth resolution due to the quick decay of the gravity

kernel functions is counteracted by suppressing the search directions in the parameter space

which would lead to near-surface concentrations of gravity anomalies. Further, a density

parameter transformation function enabling the imposition of lower and upper bounding

constraints is employed. Using synthetic data from models of varying complexity and a field

data set, it is demonstrated that, given an adequate depth weighting function, the gravity

inversion in the transform space can recover geologically meaningful models requiring a

minimum of prior information and user interaction.
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Introduction

Gravity instruments measure the vertical component of the Earth’s gravitational attrac-

tion. Gravity gradiometry measures the gradient of a gravity field. Simulations of both

types of measurements over complex model geometries can be accomplished with relatively

little effort using highly digitized rectangular grids. Three-dimensional (3D) regularized

pixel-based inversions where right rectangular prisms define unknown density parameters

have been a popular approach (Li and Oldenburg, 1998; Boulanger and Chouteau, 2001;

Zhdanov et al., 2004; Dias et al., 2009). Much effort has gone into inversion algorithms

that counteract the effects due to the poor depth resolution of gravity data while producing

sharp images which at the same time exhibit the true source depths of gravity anoma-

lies. Early approaches involve modeling gravity anomalies by means of bodies with uniform

density, where geometric shape parameters are to be optimized either interactively or au-

tomatically (Zidarov and Zhelev, 1970; Oldenburg, 1974; Pedersen, 1977); along these lines

are also compactness (minimum volume) criteria (Last and Kubik, 1983). With sufficient

background information, one can initiate the inversion process such that anomaly depths

and structures are systematically expanded consistent with known geology (Rene, 1986; Ca-

macho et al., 2000; Bosch et al., 2006). With limited prior knowledge, focusing stabilizers

are beneficial (Zhdanov et al., 2004). Alternatively, an interpreter-guided inversion (Silva

and Barbosa, 2006) can still produce sharp images by initializing multiple inversions with

compact anomaly sources in a trial-and-error way or by using adaptive-learning techniques

(Dias et al., 2009).

The combination of Tikhonov regularization methods with procedures that penalize

near-surface mass concentrations, have the large advantage of requiring a minimum of prior
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knowledge (Li and Oldenburg, 1998). The approach described here aims at producing phys-

ically realistic density models with a minimum amount of prior information and a minimum

set of user-defined control parameters. The obvious drawback of producing rather diffuse

images is accepted in exchange for the method’s simplicity. Two types of applications

are considered. First, to deliver starting models for interpreter-guided gravity inversions,

where sharp boundaries may be introduced. Second, gravity data are often included into

joint inversion frameworks with different geophysical attributes. A popular method for

the joint inversion of gravity data with data types that are sensitive to different geophysi-

cal attributes, for example magnetic properties, involves equality constraints for structural

similarity resemblance (Fregoso and Gallardo, 2006). Seeking to identify structural resem-

blance between different attributes, subject to fitting all included data types, it may not be

desirable to impose structural constraints which are justified by only the gravity data.

For completeness, the first part of this paper presents the various formulas for calculat-

ing gravity and gradiometry right rectangular prism contributions in a practical way that

facilitates implementation. A class of direct methods exists for calculating gravity anoma-

lies of more complex uniform polyhedral bodies, which have been analyzed thoroughly and

improved to alleviate limitations due to numerical rounding errors (Holstein and Ketteridge,

1996). Most 3D gravity inversions, including the one presented here, employ prismatic ele-

ments. Li and Chouteau (1998) present a comprehensive history of the different derivations

of analytical formulas for right rectangular prisms, with an emphasis on their validity and

singularity issues. I chose to focus on the formulas of Plouff (1976) and Forsberg (1984),

since they cause less difficulties with singularities for interior points. After first revisiting

the approximate formulations typically used in 3D pixel-based inversions, corresponding

exact analytical formulas are summarized. It is also shown in the appendix that Forsberg’s
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expressions for the off-diagonal gradiometry tensor elements may be recast into a more

compact formula.

The second part of this paper introduces the two main components of the presented

gravity inversion method. The first is a method for enhancing model resolution by re-

weighting the gradient of the data misfit objective functional in a gradient-based inversion

method. Stabilized gradient-based inversion methods have proved to be efficient for 3D

imaging problems with highly parametrized models. The principal difference of the pro-

posed gradient weighting scheme to other approaches (Li and Oldenburg, 1998; Zhdanov,

2002) is that it re-weights, in a mathematically less rigorous way, the data misfit objective

functional gradient vector, rather than re-weighting the stabilizing counterpart. Second, a

parameter transformation function originally employed in inversions for electrical conduc-

tivity (Commer and Newman, 2008), is adapted for the straightforward imposition of lower

and upper density bounds. In the application part of this paper, the effectiveness of the

gradient weighting method in counteracting the tendency of concentrating anomalies near

observation points is demonstrated on synthetic data from simple models and a more com-

plex large-scale model from the Gulf of Mexico. Also, inverting in the transformed space is

analyzed on synthetic models. Finally, the method’s usefulness is tested on a field data set

from the mining industry.

Right rectangular prism solutions

Consider a rectangular cell with edge coordinates (x1, x2), (y1, y2), and (z1, z2) along the

x, y, and z axes of a right-handed Cartesian system, where the z-axis points downward.

Its vertical gravitational attraction contribution at an observation point r = (x, y, z) is
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represented by the integral (Zhdanov, 1988)

g(r) = γ

∫ z2

z1

∫ y2

y1

∫ x2

x1

̺(r′)
r′ − r

|r′ − r|3
dx′ dy′ dz′. (1)

In (1), γ is Newton’s gravitational constant and ̺(r′) is the density distribution at the

position r′ = (x′, y′, z′). The density is assumed to be constant over the cell volume.

Considering the vertical gravity contribution gz of an infinitesimal volume element, dV ′, (1)

becomes

gz = γ̺
z′ − z

|r′ − r|3
dV ′. (2)

By substituting a = x′ − x, b = y′ − y, and c = z′ − z, the following triples are introduced:

ℓ = 1 : (a, b, c)1 = (y′ − y, z′ − z, x′ − x), (3)

ℓ = 2 : (a, b, c)2 = (z′ − z, x′ − x, y′ − y), (4)

ℓ = 3 : (a, b, c)3 = (x′ − x, y′ − y, z′ − z), (5)

and will be reused further below. Denoting gz as gℓ with ℓ = 3, a more general notation for

(2) is

gℓ = γ̺
c

|r′ − r|3
dV ′. (6)

In other words, gx = g1 (ℓ = 1) is equivalent to the vertical gravity, when the x coordinate

becomes the vertical coordinate, and the other two coordinates in (3) shift accordingly to

the left. Similarly, one obtains gy = g2 (ℓ = 2) when shifting the triple entries twice to the

left. Obviously, a shift of 3 for ℓ = 3 has no effect. This scheme is proposed here for an

easy numerical implementation using array index shifting, and might be more useful for the

gradiometry tensor elements (Zhdanov et al., 2004)

gℓℓ = γ̺

[

3c2

|r′ − r|5
−

1

|r′ − r|3

]

dV ′, (7)

gℓℓ′ = γ̺
3ab

|r′ − r|5
dV ′, ℓ 6= ℓ′, (8)
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where, as before, ℓ, ℓ′ = 1, 2, 3 refers to the x, y, and z coordinates, respectively.

The closed-form for the integral (1) has been derived by several authors (Nagy, 1966;

Okabe, 1979; Plouff, 1976) in order to compute the vertical gravity component gz. Holstein

et al. (1999) provide a comprehensive comparison between representative closed formulas

applicable to polyhedral density anomalies. For this work, the representation given by

Plouff is adapted, taking advantage of its straightforward implementation,

gz = γ̺

∫ z2

z1

∫ y2

y1

∫ x2

x1

z′ dx′ dy′ dz′

r3

= γ̺
2

∑

i=1

si

2
∑

j=1

sj

2
∑

k=1

sk

[

zk arctan
xi yj

zk rijk

− xi ln(rijk + yj) − yj ln(rijk + xi)

]

, (9)

with s1 = −1, s2 = +1. The indices i, j, and k refer to the cell corners along the x, y,

and z coordinates. For simplicity, the observation point is at the origin in this formulation.

Then, one has rijk =
√

x2
i + y2

j + z2
k, the distance from the observation point to a corner

(i, j, k). The similar formula of Okabe (1979) also involves an arc-tangent expression in the

first term within brackets in (9). The equivalent of (9) derived earlier by Nagy (1966) leads

to an arc-sine expression, where in his paper the terms resulting from the integration over

the cube volume are explicitly written out∗.

Plouff’s formulation, now written with respect to an observation point r = (x, y, z), can

be generalized similarly to (6) in order to facilitate an implementation including all three

gravity components (ℓ = 1, 2, 3):

gℓ = γ̺

∫ a2

a1

∫ b2

b1

∫ c2

c1

c dz dy dx

r3

= γ̺
2

∑

i=1

si

2
∑

j=1

sj

2
∑

k=1

sk

[

ck arctan
ai bj

ck rijk

− ai ln(rijk + bj) − bj ln(rijk + ai)

]

, (10)

∗When adapting Nagy’s integration written out over 16 lines in his equation (8), note that the equation’s

first arc-sine argument (3rd equation line) should read y2r instead of y
2

2r in the enumerator. Further, the last

square root expression in line 13 of the same equation should read
√

x
2

1
+ y

2

1
+ z

2

2
instead of

√

x
2

1
+ y

2

2
+ z

2

1
.
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where now rijk =
√

a2
i + b2

j + c2
k. In equation (10), the coefficients a, b, and c are distances

from the prism corners to the observation point r. Again, putting these coefficients into

a triple, (an, bn, cn)ℓ with n = 1, 2, the three values gℓ can be easily computed by a cyclic

shift,

ℓ = 1 : (an, bn, cn)1 = (y − yn, z − zn, x − xn), (11)

ℓ = 2 : (an, bn, cn)2 = (z − zn, x − xn, y − yn), (12)

ℓ = 3 : (an, bn, cn)3 = (x − xn, y − yn, z − zn). (13)

The same scheme can be applied to the diagonal gradiometry tensor components, which

were introduced by Forsberg (1984), see also Li and Chouteau (1998). With gxx = g11,

gyy = g22, and gzz = g33, and the shifting rules (11)-(13), one obtains

gℓℓ = γ̺
2

∑

i=1

si

2
∑

j=1

sj

2
∑

k=1

sk arctan
ai bj

ck rijk

. (14)

Similarly, the off-diagonal gradiometry tensor elements can be written as (ℓ, ℓ′ = 1, 2, 3 and

ℓ 6= ℓ′)

gℓℓ′ = −γ̺
2

∑

i=1

si

2
∑

j=1

sj

2
∑

k=1

sk ln(ck + rijk), (15)

where gyz = g23 uses rule (11), gxz = g13 uses rule (12), and gxy = g12 uses rule (13), and

further gℓℓ′ = gℓ′ℓ. For the discussion of a singularity issue arising for gℓℓ′ , and a more

compact representation, the reader is referred to the appendix.

Figure 1 illustrates the gravity effect for gz (a) and the gradiometry effect for gzz (b)

and gxy (c) using the standard cubic model of Li and Chouteau (1998). The cube has

the unit density of 1 g
cm3 over a volume defined by the corner positions ±10 m for each

Cartesian coordinate. The figure also shows where the effects are zero, indicated by the

dotted planes in (a) and (c), and the diagonal dotted lines in (b), connecting opposite
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corners of the shown volume. A FORTRAN90 double precision implementation was used

for these calculations. The extremal gravities occur at the center of each cube face and are

gℓ=1,2,3 = +/− 346.561 µGal for x, y, z = −/+10 m. The same value can be obtained from

formula (6), where the standard cube model was recursively split into smaller sub cubes

until the absolute difference between (6) and (10) dropped below 2 · 10−10 µGal. Using

their implementation of (10), Li and Chouteau (1998) report an extremum of 346.426 µGal

for these positions. Exemplified for gzz in Figure 1b, the positive extrema occur close

to the corner points, while the negative extrema occur when approaching the centers of

the horizontal prism edges. Further, the extremal values of gxy are encountered when

approaching the prism corners (c).

Employing (6) without splitting cells located in the vicinity of the observation point can

cause a high approximation error. The numerical error is quantified in Figure 1 (d-f). All

calculated positions with a difference of at least 10 % between the values obtained from

the approximations (6), (7), and (8) and their respective closed form solutions (10), (14),

and (15) are shown, where only absolute values of gℓ, gℓℓ, and gℓℓ′ with a magnitude of at

least 10 % of the extreme are considered. The figure shows that the numerical error only

becomes an issue within approximately a cell diameter. However, this has to be taken into

account when for example modeling near-surface anomalies or borehole gravity.

3-D gravity least-squares inversion

The gravity inverse problem is formulated by the minimization of the Tikhonov parametric

functional to be minimized

Φ = Φd + λΦm =
1

2
[D(do − dp)]2 +

1

2
λ(Wm)2 → min. (16)
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This functional for real-valued data vectors, d, where the superscripts o and p refer to

observed and calculated (or predicted) data, respectively, has been adapted from a non-

linear conjugate gradient (NLCG) optimization scheme for complex electromagnetic data

(Newman and Alumbaugh, 1997; Commer and Newman, 2008). The calculated data are

obtained through a forward modeling operator F (m) = dp, where the model vector m rep-

resents either absolute densities or density anomalies with respect to a background density.

To calculate dp, the formulations (10), (14), and (15) were used for all shown results. The

relatively high computing effort caused by the arc-tan and logarithmic functions in these

formulations, aggravated when using highly digitized finite-difference meshes, is addressed

by a parallel implementation of the forward modeling algorithm. Using the Message Passing

Interface, a Cartesian communicator topology is used such that each parallel task computes

a sub-cube of the model domain. The parallel forward modeling algorithm only requires

message passing when summing up the gravity contributions from each sub cube. Simi-

larly, the only inter-process communication required by the NLCG method is given by a

few global dot products for updating the NLCG search directions.

During the iterative inversion process, the diagonal weighting matrix D is applied to

the differences between observed and calculated data in order to eliminate the influence of

data below noise level. Following Li and Oldenburg (1998), uncorrelated Gaussian noise of

0.05 mGal and 2 percent of the datum’s absolute value has been added to the synthetic

inversion studies of this work.

The second term of (16) contains the regularization parameter λ, for weighting the

stabilizing term, Wm, where W approximates a Laplacian operator on the finite-difference

grid (Newman and Alumbaugh, 1997). For inverse problems with uncertain noise estimates,

one can determine a proper value of λ using generalized cross-validation and L-curve criteria
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(Li and Oldenburg, 2003; Farquharson and Oldenburg, 2004).

Gradient depth weighting for focusing inversion

To counteract the quickly decaying model resolution with depth in gravity inversions, dif-

ferent approaches have been developed, such as depth weighting of the regularizer (Li and

Oldenburg, 1998) and re-weighted conjugate gradient methods with focusing stabilizers (Zh-

danov, 2002). These methods basically operate on the stabilizing functional Φm of (16). In

contrast, the method proposed here applies a 3D weighting function to the data misfit func-

tional gradient ∇Φd. Therefore, the Laplacian stabilizer chosen here is not further altered,

and a regularization parameter λ = 1 is used in all following inversion studies.

Before entering the NLCG line-search algorithm, the data functional’s gradient is aug-

mented by a depth weighting function f(z) such that the alternated gradient has the form

f(z)∇Φd. The weighting function is chosen in a way that the inherently high sensitivities

of the model grid cells near the surface, i.e. in the proximity of measurement stations, are

damped. Considering the vertical coordinate, where the surface (z = 0) defines the up-

per boundary of the vertical inversion domain, it is desired that f(z) ≈ α < 1 near the

surface, and with increasing depth z > 0, f(z) → 1, in order to ease the down-weighting

behaviour. Effectively, less weight is thus given to over-sensitive model parameters. A

number of preparatory studies, not documented further here, on the undesired effects of

this scheme have revealed that the main risk caused by an overly rigorous down-weighting

appears to be a premature convergence of the NLCG method to a local minimum. This

may be aggravated by noisy data if the signals from deep model parameters are below noise

level. However, the scheme was not observed to introduces significant artifacts at depth,
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which can be explained by the fact that the weights of less sensitive parameters at depth

are not altered.

While a variety of weighting functions can be considered, the function of (21) was found

to deliver the desired damping behaviour. By rewriting (21) to

f(z) =
α + exp

[

r
dz

(z − zc)
]

1 + exp
[

r
dz

(z − zc)
] , (17)

the depth range over which f changes from α to 1, and thus the steepness of the function

increase, can be chosen by the value of zc. An empirical value of α = 0.001 was found to

deliver satisfactory results for the presented inverse problems. Note that f(z = zc) = α+1

2
.

The choice of zc has to be with respect to the vertical inversion domain, dz. Further, the

factor r serves as a scaling factor enforcing that f(z = 0) ≈ α.

The depth weighting effect of (17) is demonstrated on the cube model used above,

where the anomalous density cube is buried at three different depths (Li and Oldenburg,

1998). Figure 2 shows the reproduced cube models, where both vertical gravity data (a-c)

and vertical gradiometry data (d-f) was inverted. The corresponding gradient weighting

functions are plotted below the inversion results (g-i). For each cube a different value for zc

was used, where zc = z1+z2

2
, and z1 and z2 are the upper and lower cube boundaries. The

vertical inversion domain extends from z = 0 m to z = 500 m (dz = 500). Also given in

each plot title (a-f) is the number of inversion iterations needed to reach a target misfit of

Φd = 1.

All inversions recover the anomalies well within the true depths, however with a less

exact location of the upper anomaly bounds. One observes a trend to larger depths, which

is accompanied, due to equality, by slight overshoots of ∆ρ, with maxima of 1.5 (a), 1.1

(b and c), 1.7 (d and e), and 1.3 (f). Nevertheless, the lower bounds of the reconstructed
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anomalies are well matched, indicating the desired depth focusing behaviour. Carrying trial

runs with values of zc < z1+z2

2
, yielded inferior results in terms of locating the lower cube

boundary.

This basic study indicates that the chosen weighting parameters produce similar results

for gravity and gradiometry data types. While not further pursued in this work, it is

suggested that the joint inversion of gravity and gradiometry data could involve a data-

dependent weighting, specifically

f(z)∇Φd = fgz
(z)∇Φgz

+ fgzz
(z)∇Φgzz

.

Defining the weighting behaviour by data type, i.e. zgz
c > zgzz

c , the information contained

in the gradiometry data can be activated for shallow structures, while the gravity data

contributes to the deeper model resolution.

Inversion parameter constraints

To restrict potential field data inverse solutions to geologically meaningful ones, it has been

recognized that, in addition to using focusing stabilizers, imposing lower and upper bounds

on the recovered density contrast is beneficial (Li, 2001). Cardarelli and Fischanger (2006)

show that the use of bounding constraints facilitates the inversion of electrical resistivity

tomography data, because one becomes less dependent on the time-consuming choice of a

proper Lagrange multiplier controlling the influence of a prior model guess. Kim and Kim

(2008) also suggest that inverting in a transformed parameter space may produce sharper

image rendering if the transformation function enforces tight bounds that are selected from

a priori information. This was demonstrated for controlled-source electromagnetic data

inversions for bounded electrical conductivity parameters, using the same NLCG inversion
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framework as employed here (Commer and Newman, 2008).

The class of hyperbolic and logarithmic transformation functions typically used in elec-

trical conductivity imaging appear to provide similar benefits for gravity inversion. Such

functions map a parameter m, bounded by

a < m < b,

with lower and upper bounds a and b, to an unbounded domain in the transform space. For

the class of parameter transformations employing inverse hyperbolic tangent functions, the

transformed parameters x are related to the original density parameters m by

x = f(m,p) =
2

p
artanh

(

2m − b − a

b − a

)

. (18)

The corresponding back-transformation reads

m =

(

b − a

2

)

tanh

(

px

2

)

+
b + a

2
; −∞ < x < ∞. (19)

Note that because of artanh(z) = 1

2
ln(1+z

1−z
) and by substituting z = 2m−b−a

b−a
, it can be

shown that (Kim and Kim, 2008)

x = f(m,p) =
1

p
ln

m − a

b − m
, (20)

which in turn yields an expression equivalent to (19)

m =
a + b exp(px)

1 + exp(px)
; −∞ < x < ∞. (21)

Imposing bounds ]a, b[, positivity or negativity of m can be enforced given adequate prior

information. The function parameter p controls the behaviour in the region near x = 0 of

the transformed space, where m = (a + b)/2. While the bounding property has the large

benefit of preventing density parameter overshoots, care has to be taken in choosing the

function’s shape by means of p, as shown in the following using the cube model of Figure 2a.
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Figure 3 illustrates f(m, p) for four different values of p. In principal, p controls the

steepness of f(m, p) in the region where f behaves rather linear. Furthermore, with increas-

ing p, f approaches a step-like function. A step function being discontinuous, it follows that

the mapping from x to m becomes unstable for large values of p, i.e. m approaches one of

the bounds a or b within a short interval of x. In the other extreme, p → 0, m stays rather

invariant towards changes in x. The effects of four choices for the parameter p on the cube

model are shown in Figure 4. For all four inversions, the bounds were set to a = −0.5 and

b = 2.5 in order to have an equal difference between the cube’s true density anomaly of 1

g
cm3 and each bound. Further, the weighting function of Figure 2g was employed.

The first inversion (a) was carried out using p = 1.35, assuming that a transformation

function with a slope of approximately one around x = 0 should account for a well-behaved

mapping within a relatively large range of x, while still enforcing sufficient influence of the

bounding constraints. The corresponding image shows that the true density of 1 g
cm3 is

approached within a large area of the true anomaly (outlined by the black box), with the

maximum recovered cell anomaly of ρ = 1.5 g
cm3 . The next inversion result (b), generated by

p = 2, also leads to a satisfactory image. The reproduction is slightly improved in the upper

part of the cube, yet at the expense of a weaker rendering in the bottom part. Here, the

maximum anomaly in the image reaches ρ = 1.3 g
cm3 . The extreme p = 0.45 (c) produced

an image which only indicates the upper structure of the anomaly. The maximum density

contrasts (ρ = 0.13 g
cm3 ) achieved by this inversion are far below the true value, which is

in accordance with the function behaviour described above for the limit case p → 0. It

was observed that smaller values of p led to a failure in the NLCG algorithm’s line-search

procedure. At last, another extreme, p = 4, was tested. The outcome appears to be

satisfying in terms of reproducing the anomaly’s shape. The larger density overshoots, with
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a maximum of ρ = 1.7 g
cm3 observed in this result, indicate the increasingly erratic behaviour

of f when p → ∞.

The results confirm that the parameter transformation function employed here is well-

behaved, i.e. approximates a linear mapping within the bounds, as long as the extremes,

obviously not recommended, are avoided. All inversions carried out in the following employ

a value of p = 1.35 in the implementation of (18) and (19)

Synthetic subsalt inversion study

In the following, the gradient weighting scheme is tested on more realistic gravity inversion

examples. Synthetic vertical gravity data is produced from a large-scale marine model

adapted from a subsalt magnetotelluric imaging study of the Mahogany prospect in the

Gulf of Mexico (Newman et al., 2002). The data consists of 405 observation points along

diagonal profiles, indicated by dots above the rendered salt structures in the lower Figure 5,

and covers an area of approximately 30 km × 30 km. The employed model grid covering

the inversion domain has 104× 100× 70 cells with a horizontal size of 250 m and a vertical

size of 100 m. In a first simple case, the salt bodies were given a negative density anomaly

with respect to a homogeneous host rock. Bathymetry effects and near-surface anomalies,

normally of importance in such a case, are not considered here, because it shall be focused

on the method’s capability of assessing the salt bodies geometry and location. The true host

rock density is 2.45 g
cm3 , and 2.125 g

cm3 for the salt bodies, with a small random variation

(≈ 1%) imposed on both. The upper Figure 5 shows the gravity anomalies, calculated with

respect to a reference homogeneous model with a rock density of 2.45 g
cm3 . The effect of the

salt bodies is obvious in the region between y = 5 and y = 10 km. A second case involves
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the challenging situation of salt bodies embedded in a layered background with a vertical

density gradient from 1.9 g
cm3 below station level to 2.6 g

cm3 at z = 6 km. This gradient

causes the salt bodies to have a small negative anomaly below z = 3 km, whereas above,

their density blends in with the background. The middle Figure 5 shows the corresponding

gravity anomaly.

The two inversion results are shown in Figure 6. The gradient weighting is characterized

by a value of zc = 2.5 km in both cases, and a parameter transformation function with the

values a = −1.0 and b = 1 (Equation 18) was used. The first inversion result clearly displays

both a pro and con of the method. On the one hand, both location and extent of the salt

bodies is recovered to a fairly good degree (Figure 6a), without using a starting model with

prior information. On the other hand, the model smoothing constraints produce a rather

diffuse image. The second inversion basically reconstructs the vertical density gradient of

the host rock. The gravity map of this scenario (middle Figure 5) already indicated a de

facto positive density anomaly in the center region. Figure 6b shows that the inversion tries

to recover this situation by concentrating slightly more mass in the center region (middle

slice).

Field data inversion

Finally, a field data inversion carried out earlier by Li and Oldenburg (1998) is repeated here

for demonstrating the usefulness of the gradient weighting approach. The reader is referred

to their article for more geological details about the survey. The vertical gravity data was

collected at Heath Steele Mines, a copper, lead and zinc mine (operation closed in 1999)

in northern New Brunswick (Canada). Figure 7 (upper) contours the Bouguer anomalies,
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which comprise 443 stations depicted by the dots on the surface (z = 0) of the model

volume (lower). The maximum positive anomaly corresponds to a massive sulphide ore

body embedded in gabbroic intrusions. This inversion used the transformation parameters

a = −1, b = 1, a gradient weighting defined by zc = 0.2 km, and a grid of size 50 × 50 × 20

with 25 m cell size to cover the 1 km × 1 km survey area. Figure 8 shows three cross-sections

of the reconstructed density. The large positive anomaly in the upper section pertains to a

large meta-gabbro intrusion, which appears to be connected (middle section) to the sulphide

body to the east (lower section). This spatial distribution becomes also clear in the lower

part of Figure 7, where the reproduced density anomalies exceeding 0.3 g
cm3 are rendered.

No significant negative densities were produced by the inversion, although negativity was

enabled by the chosen bounds. The result demonstrates that a relatively detailed model,

suitable for subsequent studies, can be obtained without a prior model.

CONCLUSIONS

A method for the inversion of gravity data using a minimum amount of prior information

has been presented. It is often favorable to reconstruct compact gravity sources by allow-

ing sharp density boundaries in an inversion. On the other hand, a rather unconstrained

method has the advantage of an unbiased model assessment in the presence of uncertain

prior information. Moreover, the method presented here is proposed for a joint inversion

framework for gravity and other geophysical data. Rectangular meshes provide a flexible

way of incorporating equality constraints for structural resemblance in complex models be-

tween different geophysical attributes which are not joined through the different data types.

While the hypothesis of structural resemblance may not hold for all types of attributes, the

joint inversion of electrical/electromagnetic data for example, sensitive to electrical con-
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ductivity  anomalies  due to  fluids,  with  gravity  data  has the  potential  of producing less 

ambiguous reservoir (hydrocarbon or geothermal) images. 

 

The class of hyperbolic parameter transformation functions employed here appear fa- 

vorable for gravity inversions since positivity or negativity can be enforced, if one has such 

prior knowledge.  The synthetic study illustrated that it is preferable to keep a well-behaved 

(linear) mapping between parameter space and transformed space, in order to reduce the 

risk for parameter over- or undershoots in an inversion.  Weighting the data gradient of the 

objective functional provides a straightforward way of counteracting the natural decay of 

the gravity  kernels with depth.  Using a uniform model regularization  operator,  the only 

parameters are given by the degree and steepness of the weighting function, i.e. α and zc  in 

(17). Similar to cooling methods used for regularization parameter assessment, a series of 

inversions approaching a desired target misfit could be used for refinement of the weighting 

parameter zc. The method does not prohibit reconstruction of near-surface gravity sources 

per se.  Suggested here is a ”sweep”-approach  involving multiple  inversion  steps.  A first 

step, focusing on deeper model regions, provides the starting model for subsequent 

inversion sweeps, with their focus regions moving towards the surface by decreasing zc. 
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APPENDIX

Singularities for gℓℓ′

For the off-diagonal tensor gradient components gℓℓ′ , singularities are encountered when the

argument ck + rijk of the logarithmic function of (15) becomes zero. This happens when

both ck → 0 and rijk → 0, i.e. an observation point approaches one cube corner (i, j, k). A

method proposed by Pohánka (1988) for his formulation developed for a polyhedral body in

principal adds a small quantity ε to the argument of the logarithm, where ε is chosen such

that it is very small relative to the polyhedron’s characteristic dimension. The singularity

also occurs when, for a given cell corner (i, j, k) and coordinate orientation corresponding

to k, ck = −rijk. If a field point is right above the corner (assuming here that k refers

to the vertical), the logarithm in (15) becomes unbounded due to a2
i + b2

j = ε with ε ≪ 1

and rijk → |ck| for ε → 0. For this singularity case, an alternative to Pohánka’s method

is proposed, because it also reduces the number of logarithms to be calculated. Taking the

exponential of the summation part of equation (15), one obtains

g̃ℓℓ′ = exp





2
∑

i=1

si

2
∑

j=1

sj

2
∑

k=1

sk ln(ck + rijk)





=
2

∏

i=1

2
∏

j=1

2
∏

k=1

exp [sisjsk ln(ck + rijk)] . (A-1)

For a fixed pair (i, j) the product sisjsk always has a different sign for k = 1 and k = 2.

Assuming for example, that the argument of the exponential function is positive/negative

for k = 1/k = 2, the product of g̃ℓℓ′ over k can be further rewritten to

2
∏

k=1

exp [sisjsk ln(ck + rijk)] =
rij1 − |c1|

rij2 − |c2|
(A-2)
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The geometrical relationship between the vector lengths in equation (A-2) is illustrated in

Figure 9. For the shown geometries it can be seen that

rij1 − |c1|

rij2 − |c2|
=

|c1|
(

1

cos α1
− 1

)

|c2|
(

1

cos α2
− 1

) .

The singularity caused by α2 → 0 in the denominator, as r approaches the corner, can be

removed by substituting each term within parentheses by its second order Taylor series,

specifically

1

cos α
− 1 ≈

α2

2

for α ≪ 1. Moreover, one has for the two arc lengths |c1|α1 and |c2|α2

|c1|α1 ≈ |c2|α2.

Applying both these approximations yields

rij1 − |c1|

rij2 − |c2|
≈

|c1|

|c2|

α2
1

α2
2

≈
|c2|

|c1|
. (A-3)

The exact representation given by the left hand side in (A-3) can be used as long as both

enumerator and denominator are representable by the given machine precision. In practice,

it is recommended to base the criterion for switching between the exact representation

and its approximation, |c2|
|c1|

, on a threshold value for ε = a2
i + b2

j . The validity of the

approximation depends on the length of c1 (Figure 9). Using the standard cubic model,

Figure 10 compares the left hand side of (A-3), with the corresponding approximations |c2|
|c1|

,

shown as horizontal lines, for three different values of c1. All lengths are given in fractions

of a prism cell size of ∆ = 20 m. The results show that the ratio approaches the value

|c2|
|c1|

when ε < 0.1|c1|. The difference between the left and right hand side of equation A-3

quickly decreases with ε. The annotated percentages in Figure 10 denote the percentage

difference for a value of ε = 10−7.
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To conclude, the number of logarithmic functions in equation (15) is reduced in the

alternative form

gℓℓ′ = −γ̺ ln





2
∏

i=1

2
∏

j=1

rij1 − |c1|

rij2 − |c2|



 .

A potential singularity for a given field point and the prism corner (i, j, k) where ε =

a2
i + b2

j → 0 (rijk → |ck|), is removed by approximating the factor
rij1−|c1|
rij2−|c2|

by the factor |c2|
|c1|

.

It is suggested to base a criterion for switching between the two factors by evaluating the

distance |ck|. Using the standard cube model, it was calculated that the error due to the

approximation is below one percent if ε < 0.1|ck |.
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LIST OF FIGURES

1 The 3-D gravity effect in µGal for the gravity components gz (a) and the gra-

diometry components gzz (b) and gxy (c) calculated for the standard cubic model of Li

and Chouteau (1998) using equations (10), (14), and (15), respectively. The cube of size

20 m× 20 m× 20 m (corners are at ±10 m) has the (unit) density of ρ = 1.0 g
cm3 . The dots

in the plane z = 0 (a), along the diagonals in (b) and in the planes through x = 0 and y = 0

(c) indicate the regions where the gravity/gradiometry effect is zero. The calculated ranges

of values are [-24.07,38.43] in (b) and [-84.80,84.80] in (c). Note that for better visibility

only the range [-15,15] is shown in (c). The subplots (d-f) depict the numerical error caused

by using the approximating formulae (6), (7), and (8).

2 Gravity (a-c) and gradiometry (d-f) data produced from a cube with anomalous

density at three different depths are inverted using weighting functions (g-i) applied to the

gradient of the data objective functional. The true geometry of the cubic anomaly is out-

lined by the black lines. The anomaly top is at (in m) z1 = 50, z1 = 100, and z1 = 150,

for cube 1, 2, and 3, respectively; the anomaly bottom is z2 = z1 + 200. The number of

inversion iterations carried out to reach Φd = 1 is given in each plot title of (a-f).

3 Graph of four different hyperbolic parameter transformation functions character-

ized by the parameter p in equation (18).

4 The effect due to different parameter transformation functions. The effect of the

parameter p in (18) is shown here for four different values. All inversions used a similar

gradient weighting scheme as employed for the results of Figure 2

5 The synthetic gravity data field gz created from a model from Newman et al.

(2002) for the Mahogany prospect (Gulf of Mexico), where electrically resisitive salt struc-

tures were given densities of 2.125 g
cm3 . The first inversion study involves a homogeneous
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background density of 2.45 g
cm3 , producing the gravity anomalies shown in the upper figure.

The anomalies below are produced from a background with a vertical density increase from

1.9 to 2.6 g
cm3 . The salt bodies are rendered in the lower figure, with the 405 measurement

locations indicated by the dots at z = 0.

6 Inversion of the gz data shown in Figure 5 using gradient depth weighting. (a)

Inversion of data produced from the salt bodies embedded in a homogeneous background.

Rendered are anomalies with inversion grid cell values ∆ρ < −0.05 g
cm3 . (b) Inversion of

data produced from a background with vertical density increase, causing the salt bodies to

be partly hidden.

7 Vertical gravity data from a survey at Heath Steele Mines (New Brunswick), and

inversion result. Shown are the Bouguer anomalies produced by intrusive mafic igneous

rocks containing a sulphide ore body. The contours in the lower figure display recon-

structed density anomalies ∆ρ > 0.3 g
cm3 , with a maximum of 0.51 g

cm3 . The three dotted

lines in the Bouguer anomaly map indicate the positions of three sections analyzed by Li

and Oldenburg (1998).

8 Cross-sections from the Heath Steele Mines data inversion corresponding to the

three profile lines in the upper Figure 7. The sections exhibit similar features as observed

by Li and Oldenburg (1998). Their UTM Easting coordinates are given for reference in

each plot title.

9 Computation of gℓℓ′ : Illustration of the geometrical relationships used for approx-

imating unbounded expressions in the formula for gℓℓ′ by a bounded term for the case

a2
i + b2

j = ε ≪ 1.

10 Computation of gℓℓ′ : Plot of the ratio r =
rij1−|c1|
rij2−|c2|

against ε = a2
i + b2

j for the three

different values |c1| = 10−4∆z, 10
−5∆z, 10

−6∆z (∆z =vertical cell size). With decreasing ε,
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r converges to the approximation (straight lines) given by (A-3).
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Figure 1: The 3-D gravity effect in µGal for the gravity components gz (a) and the gra-

diometry components gzz (b) and gxy (c) calculated for the standard cubic model of Li

and Chouteau (1998) using equations (10), (14), and (15), respectively. The cube of size

20 m× 20 m× 20 m (corners are at ±10 m) has the (unit) density of ρ = 1.0 g
cm3 . The dots

in the plane z = 0 (a), along the diagonals in (b) and in the planes through x = 0 and y = 0

(c) indicate the regions where the gravity/gradiometry effect is zero. The calculated ranges

of values are [-24.07,38.43] in (b) and [-84.80,84.80] in (c). Note that for better visibility

only the range [-15,15] is shown in (c). The subplots (d-f) depict the numerical error caused

by using the approximating formulae (6), (7), and (8).

29



400
600400

600

0

200

400

y (m)

a) g
z
 for cube 1, iterations: 22

x (m)

z (m)

400
600400

600

0

200

400

y (m)

b) g
z
 for cube 2, iterations: 21

x (m)

z (m)

400
600400

600

0

200

400

 

y (m)

c) g
z
 for cube 3, iterations: 30

x (m)
 

z (m)

0

0.2

0.4

0.6

0.8

1

400
600400

600

0

200

400

y (m)

d) g
zz

 for cube 1, iterations: 90

x (m)

z (m)

400
600400

600

0

200

400

y (m)

e) g
zz

 for cube 2, iterations: 88

x (m)

z (m)

400
600400

600

0

200

400

y (m)

f) g
zz

 for cube 3, iterations: 58

x (m)

z (m)

0 200 400 600
0

0.2

0.4

0.6

0.8

1

z (m)

f(z
)

g) cube 1: z
c
=150, α=0.001

0 200 400 600
0

0.2

0.4

0.6

0.8

1

z (m)

f(z
)

h) cube 2: z
c
=200, α=0.001

0 200 400 600
0

0.2

0.4

0.6

0.8

1

z (m)

f(z
)

i) cube 3: z
c
=250, α=0.001

∆ρ (g/cm3)

Figure 2: Gravity (a-c) and gradiometry (d-f) data produced from a cube with anomalous

density at three different depths are inverted using weighting functions (g-i) applied to

the gradient of the data objective functional. The true geometry of the cubic anomaly is

outlined by the black lines. The anomaly top is at (in m) z1 = 50, z1 = 100, and z1 = 150,

for cube 1, 2, and 3, respectively; the anomaly bottom is z2 = z1 + 200. The number of

inversion iterations carried out to reach Φd = 1 is given in each plot title of (a-f).
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Figure 3: Graph of four different hyperbolic parameter transformation functions character-

ized by the parameter p in equation (18).
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Figure 4: The effect due to different parameter transformation functions. The effect of the

parameter p in (18) is shown here for four different values. All inversions used a similar

gradient weighting scheme as employed for the results of Figure 2
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Figure 5: The synthetic gravity data field gz created from a model from Newman et al.

(2002) for the Mahogany prospect (Gulf of Mexico), where electrically resisitive salt struc-

tures were given densities of 2.125 g
cm3 . The first inversion study involves a homogeneous

background density of 2.45 g
cm3 , producing the gravity anomalies shown in the upper figure.

The anomalies below are produced from a background with a vertical density increase from

1.9 to 2.6 g
cm3 . The salt bodies are rendered in the lower figure, with the 405 measurement

locations indicated by the dots at z = 0.
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Figure 6: Inversion of the gz data shown in Figure 5 using gradient depth weighting. (a)

Inversion of data produced from the salt bodies embedded in a homogeneous background.

Rendered are anomalies with inversion grid cell values ∆ρ < −0.05 g
cm3 . (b) Inversion of

data produced from a background with vertical density increase, causing the salt bodies to

be partly hidden.

34



Figure 7: Vertical gravity data from a survey at Heath Steele Mines (New Brunswick), and

inversion result. Shown are the Bouguer anomalies produced by intrusive mafic igneous

rocks containing a sulphide ore body. The contours in the lower figure display reconstructed

density anomalies ∆ρ > 0.3 g
cm3 , with a maximum of 0.51 g

cm3 . The three dotted lines in

the Bouguer anomaly map indicate the positions of three sections analyzed by Li and

Oldenburg (1998).
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Figure 8: Cross-sections from the Heath Steele Mines data inversion corresponding to the

three profile lines in the upper Figure 7. The sections exhibit similar features as observed

by Li and Oldenburg (1998). Their UTM Easting coordinates are given for reference in

each plot title.
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Figure 9: Computation of gℓℓ′ : Illustration of the geometrical relationships used for ap-

proximating unbounded expressions in the formula for gℓℓ′ by a bounded term for the case

a2
i + b2

j = ε ≪ 1.
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Figure 10: Computation of gℓℓ′ : Plot of the ratio r =
rij1−|c1|
rij2−|c2|

against ε = a2
i + b2

j for

the three different values |c1| = 10−4∆z, 10
−5∆z, 10

−6∆z (∆z =vertical cell size). With

decreasing ε, r converges to the approximation (straight lines) given by (A-3).
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