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Single-cell Hi-C (scHi-C) techniques have significantly advanced our understanding of the 3D genome organization, 
providing crucial insights into the spatial genome architecture within individual nuclei. Numerous computational 
and statistical methods have been developed to analyze scHi-C data, with embedding methods playing a key role. 
Embedding reduces the dimensionality of complex scHi-C contact maps, making it easier to extract biologically 
meaningful patterns. These methods not only enhance cell clustering based on chromatin structures but also 
facilitate visualization and other downstream analyses. Most scHi-C embedding methods incorporate strategies 
such as normalization and imputation to address the inherent sparsity of scHi-C data, thereby further improving 
data quality and interpretability. In this review, we systematically examine the existing methods designed for 
scHi-C embedding, outlining their methodologies and discussing their capabilities in handling normalization 
and imputation. Additionally, we present a comprehensive benchmarking analysis to compare both embedding 
techniques and their clustering performances. This review serves as a practical guide for researchers seeking to 
select suitable scHi-C embedding tools, ultimately contributing to the understanding of the 3D organization of 
the genome.
1. Introduction

Over the past two decades, researchers have extensively investigated 
the three-dimensional (3D) organization of the genome [1–5]. Within 
the confined 3D space of the cell nucleus, DNA—the genetic material of 
the cell—is intricately compacted and organized [5]. The development 
of chromatin conformation capture (3C) technology [6] marked a signif-

icant breakthrough, enabling the inference of spatial proximity between 
genomic loci based on the frequencies of chromatin contacts within the 
nuclei. This innovation paved the way for various 3C-based techniques, 
such as 4C [7], 5C [8], Hi-C [9,10], Micro-C [11,12], ChIA-PET [13,14], 
and Hi-ChIP [15]. These techniques were developed to profile chromatin 
contacts in a higher-throughput manner and have been instrumental in 
revealing the multi-scale organization of the 3D genome, offering pro-

found insights into nuclear architecture and gene expression regulation 
[16,17].

Among the various 3C-based techniques, Hi-C has been widely em-

ployed to study the 3D genome architecture. However, the variability 
in chromatin contacts across cells, even within a functionally homoge-

neous population, arises from the stochastic nature of chromatin con-

* Corresponding authors at: University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA.

formation and spatial genome organization [18]. Consequently, while 
Hi-C effectively captures the spatial arrangements of complex chro-

matin structures, relying solely on Hi-C data is considered insufficient 
for depicting the diversity of higher-order chromosome structures at 
the single-cell level. To address this limitation, several single-cell Hi-C 
(scHi-C) techniques [19–28] have been developed. These advancements 
have enabled the investigation of multi-scale spatial genome organiza-

tion at the single-cell level, yielding invaluable insights into the dynam-

ics and variability of the 3D genome [17,18,29].

Single-cell 3D mapping techniques, developed to study the 3D 
genome architecture at the single-cell level, can be broadly catego-

rized into the following three groups [16,17]: imaging-based protocols 
[18,30,31], proximity ligation-based protocols [19–25], and ligation-

free protocols [32]. The imaging-based methods visualize chromatin 
targets within cells as fluorescently labeled spots, thereby detecting 
chromatin contacts based on the spatial positions of imaged loci. The 
proximity ligation-based techniques, including the aforementioned 3C-

based methods, measure the frequencies of chromatin contacts between 
genomic loci by digesting crosslinked DNA with enzymes, ligating 
restriction fragments, and quantifying the sheared and purified frag-
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Fig. 1. Single-cell Hi-C analysis workflow. (A) A simplified workflow of scHi-C data analysis; (B) Typical scHi-C embedding workflow: scHi-C contact maps serve as 
input and often undergo normalization and/or imputation prior to dimensionality reduction. This process extracts important features and outputs latent embeddings 
for further analysis, such as clustering.
ments through high-throughput paired-end sequencing. In contrast, the 
ligation-free approaches, such as the “single-cell split-pool recognition 
of interactions by tag extension” (scSPRITE), provide novel insights into 
3D genome topology. Additionally, single-cell simultaneous profiling 
techniques have been developed to investigate the correlation between 
chromatin contact frequencies and functional characteristics, such as 
DNA methylation [26–28] and gene expression [33,34]. Among these 
single-cell 3D mapping approaches, scHi-C, a proximity ligation-based 
technique, has been extensively employed to explore the heterogeneity 
and dynamics of 3D genome organization.

Recently, several embedding methods [35–43] have been developed 
to improve the analysis and interpretation of scHi-C data. Embedding, 
synonymous with dimensionality reduction, extracts lower-dimensional 
features from the original 2D chromatin contact maps, which represent 
genomic interaction. This process seeks to capture essential patterns 
while eliminating redundant or noisy information, thereby enhancing 
computational efficiency and the effectiveness of subsequent analyses, 
such as clustering, visualization, and differential analysis. ScHi-C em-

bedding methods are particularly useful for distinguishing different cell 
(sub)types, identifying clusters of cells of the same (sub)type, and vi-

sualizing cell separation and clustering. By revealing cell-type-specific 
features, these methods help uncover underlying patterns in complex, 
large-scale single-cell datasets.

In contrast to one-dimensional genomic sequencing data, such as 
single-cell RNA-seq (scRNA-seq) or single-cell ATAC-seq (scATAC-seq), 
scHi-C data presents complex, hierarchical information within a 2D con-

tact map, adding complexity to the embedding task. Additionally, scHi-C 
contact maps exhibit significantly higher sparsity compared to those of 
the traditional Hi-C or other single-cell genomic datasets. While assays 
like scRNA-seq and scATAC-seq typically reflect approximately 70% of 
the genome, scHi-C is often limited to less than 5% of all possible con-

tacts [44]. To address the challenges posed by this sparsity, as well as 
to mitigate systematic biases and reduce experimental noise, various 
strategies have been developed, including normalization and imputation 
[36,38,39,42,43,45]. When applied prior to embedding, these strategies 
can significantly enhance the performance of scHi-C embedding, clus-

tering, and other downstream analyses.

In this review article, we summarize ten recently developed com-

putational methods designed to improve the embedding of scHi-C con-

tact maps. We outline their methodologies and discuss their capabil-

ities in normalization, imputation, and batch effect correction by fo-

cusing on their strengths and limitations. Additionally, we present a 
comprehensive benchmarking analysis that evaluates and compares the 
4028

performances of these embedding techniques and their impact on the 
subsequent clustering results. This review aims to guide researchers in 
selecting the most appropriate methods for their studies.

2. ScHi-C embedding methods

Starting with the sequencing reads generated by scHi-C experiments, 
several pre-processing steps are required to create the 2D scHi-C contact 
maps. First, the paired-end reads are mapped to the reference genome to 
identify the loci of interacting chromatin fragments. Next, a quality con-

trol assessment is performed on the mapped reads to remove duplicates 
and erroneous pairs. In addition to this read filtering, cell filtering can 
be performed by excluding low-quality cells based on sequencing depth 
and the ratio of intra-chromosomal contacts to inter-chromosomal con-

tacts. Following both read- and cell-level filtering, the remaining read 
pairs are used to construct the matrices of scHi-C contact frequencies by 
binning contacts with a fixed bin size (referred to as “resolution”) for 
each cell. These scHi-C contact matrices serve as the foundation for vari-

ous analytical tasks, including embedding, clustering, and investigating 
3D genome features, such as A/B compartment identification, TAD-like 
boundary detection, and loop calling (Fig. 1A).

Recently, embedding methods have been developed for scHi-C con-

tact maps to facilitate cell clustering and other downstream analyses. 
These methods take scHi-C contact matrices as input, extract important 
features, and output a latent embedding matrix with cell-by-feature di-

mensions, thereby reducing the complexity of the scHi-C data (Fig. 1B). 
The resulting embeddings can then be further reduced and projected 
onto a lower-dimensional subspace, typically visualized in a 2D scat-

ter plot, where each dot symbolizes an individual cell. Similar to other 
single-cell genomics data, such as scRNA-seq and scATAC-seq, this 2D 
projection helps researchers differentiate and cluster cells for subse-

quent cell-type-specific and differential analyses.

To date, ten published computational methods have been specifi-

cally designed for the embedding of scHi-C data, including HiCRep/MDS 
[35], scHiCluster [36], Topic Modeling [37], scHiCTools [38], Higashi 
[39], scHiCExplorer [40], scHiCEmbed [41], BandNorm [42], scVI-3D 
[42], and Fast-Higashi [43]. These methods can be broadly categorized 
into two main groups: (1) deep learning-based methods, such as Hi-

gashi, scHiCEmbed, and scVI-3D, and (2) statistical methods, which in-

clude the remaining seven methods. These embedding methods employ 
various approaches by using either statistical techniques or neural net-

works, to generate latent embeddings from scHi-C datasets. Researchers 
can then apply conventional dimensionality reduction techniques, such 
as Uniform Manifold Approximation and Projection (UMAP) [46] and 

t-Distributed Stochastic Neighbor Embedding (t-SNE) [47], to project 
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Table 1

Summary of scHi-C embedding tools. This table outlines the core methodologies of each scHi-C embedding tool and summarizes their 
capabilities, including features such as contact matrix normalization, imputation, and batch effect removal.

Tools Embedding strategies Normalization Imputation Batch effect removal

BandNorm [42] PCA on Combined Bin-pairs ✓ ✓
Fast-Higashi [43] Tensor Decomposition ✓ ✓ ✓
Higashi [39] Hyper-SAGNN ✓ ✓ ✓
scHiCExplorer [40] MinHash-kNN graph followed by PCA ✓
scHiCluster [36] Two-step PCA ✓
scHiCEmbed [41] Two-step PCA ✓
HiCRep/MDS [35] Pairwise Similarity followed by MDS ✓
scHiCTools [38] Pairwise Similarity followed by One Dimensional Reduction Method ✓ ✓
scHi-C Topics [37] Latent Dirichlet Allocation followed by PCA

scVI-3D [42] Non-linear Latent Factor Model ✓ ✓ ✓
these embeddings onto a lower-dimensional subspace for visualization 
of further analysis.

To address the challenges in scHi-C data analysis, various embedding 
tools incorporate normalization and/or imputation into their pipelines 
to improve feature extraction. Normalization adjusts technical variabil-

ity, such as differences in sequencing depth and library size across 
cells, ensuring that chromatin contacts are comparable throughout the 
dataset. Imputation helps recover missing or low-frequency chromatin 
contacts to address the inherent sparsity of scHi-C data. Additionally, 
some tools integrate batch effect removal to account for non-biological 
variations, such as differences in laboratory conditions, ensuring that 
the clustering results reflect true biological differences rather than tech-

nical artifacts. Below, we briefly discuss the scHi-C embedding tools and 
summarize their functions and strategies provided in Table 1.

2.1. HiCRep/MDS

Liu et al. [35] were the first to investigate the feasibility of em-

bedding scHi-C data using methods originally developed for bulk Hi-

C analysis. The authors evaluated one custom-designed Hi-C distance 
measure and three existing Hi-C similarity measures (HiCRep [48], 
GenomeDISCO [49], and HiC-Spector [50]) by combining each with the 
Multidimensional Scaling (MDS) [51] embedding method. Combining 
HiCRep with MDS was shown to effectively embedd scHi-C data into 
a low-dimensional space, revealing biological variations of 3D chro-

matin organization, even in datasets with low sequencing depth. While 
this similarity-based embedding approach effectively captures cell cy-

cle dynamics, it struggles with forming distinct clusters of cell types 
and differentiating between chromatin structures [36]. Additionally, the 
method is computationally demanding due to the need for smoothing 
and pairwise comparisons among individual cells [37].

2.2. scHiCluster

scHiCluster, introduced by Zhou et al. [36], is one of the initial tools 
specifically designed for clustering scHi-C data. Its imputation approach 
combines linear convolution with random walk, thereby effectively ad-

dressing the inherent sparsity of scHi-C data and enabling accurate clus-

tering of single cells and the identification of cell-type-specific features 
of 3D genome organization, such as TAD-like structures. The method 
first utilizes linear convolution to smooth each bin-pair with its neigh-

bors and then employs a random walk with restart (RWR) algorithm 
[52] to effectively capture both the local and global information of the 
scHi-C contact maps. To mitigate coverage bias, scHiCluster selects only 
the top 20% of contacts before applying Principal Component Anal-

ysis (PCA) to project the data into a low-dimensional subspace. This 
approach preserves essential features while reducing data complexity, 
thereby facilitating the differentiation of various cell types even within 
the same cell cycle stage. Although scHiCluster does not include a built-

in batch effect removal feature, the use of Harmony [53], a tool widely 
4029

used for integrating scRNA-seq data, has been suggested to manage 
batch effects. Furthermore, although scHiCluster did not explicitly detail 
their downstream feature calling functions in the paper, their GitHub 
repository offers users commands for calling compartments, domains, 
and loops using, which are derived from other published methods.

2.3. scHi-C topics

scHi-C Topics, introduced by Kim et al. [37], leverages Latent Dirich-

let Allocation (LDA) topic modeling, by providing a novel approach for 
scHi-C data embedding. Topic modeling has been widely used in natural 
language processing to uncover latent structures in large-scale, sparse, 
and discrete datasets. The application of LDA to scHi-C data builds on 
its successful use in scATAC-seq data for learning latent-space repre-

sentations [54]. This method treats individual cells as “documents” and 
locus-pair contacts as “words” to generate two relationship matrices: 
(1) topics and cells; (2) topics and locus pairs. This is to identify topics 
that represent the distinctive features of different cell types. Specifically, 
Kim et al. successfully applied LDA to decompose the cell-by-locus pair 
matrix—derived from locus pairs within a 10 Mb genomic distance for 
each cell—into a cell-by-topic matrix and a topic-by-locus pair matrix. 
These topics facilitate the discovery of crucial locus pairs responsible 
for functional and structural differences across various cell types. By 
analyzing these cell-type-specific topics, the authors demonstrated the 
ability to reveal significant compartmental patterns, enrichment, and 
the finer dynamics of 3D genome topology. Furthermore, this scHi-C 
Topics method was shown to effectively cluster cells by type and sepa-

rates cell cycle effects from 3D chromatin organization in scHi-C data.

2.4. scHiCTools

Among various methods, scHiCTools [38] stands out as a highly 
versatile toolkit that offers a variety of imputation and embedding ap-

proaches specifically tailored for scHi-C data. The core concept of scHiC-

Tools is to effectively derive latent embeddings by leveraging pairwise 
cell similarity. This software supports a wide range of input formats 
for scHi-C contact maps, such as pre-processed matrices, edge lists, hic 
files, and cool files, as well as tools to summarize the quality of data. To 
address the inherent sparsity of scHi-C data, scHiCTools offers several 
user-selectable normalization strategies such as observed/expected (OE) 
normalization [9], Knight-Ruiz (KR) normalization [55], and Vanilla 
coverage (VC) normalization [9]. It also offers several imputation op-

tions, including linear convolution, random walk, network enhancing. 
Linear convolution smooths chromatin contacts over neighboring ele-

ments, while random walk captures both local and global signals across 
the genome. Network enhancing is a special type of random walk that 
was initially developed for bulk Hi-C data to enhance the contact map 
and improve the detection of TAD boundaries [56].

Following imputation, scHiCTools computes the cell-to-cell similar-

ity matrix using Hi-C similarity measures, such as InnerProduct, fastHi-

CRep (a faster version of HiCRep [48]), and Selfish [57], to generate 
the latent embeddings. The software also incorporates multiple cluster-
ing approaches for comprehensive analysis. By projecting cells onto a 
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Table 2

Software tools of scHi-C embedding methods and their computational efficiency. This table summarizes the computational performance of various 
embedding tools, including CPU and GPU utilization, and the approximate runtime for analyzing two scHi-C datasets at the 500kb-resolution with 
different numbers of cells and sequencing depths for method comparison. The programming languages and software websites used for implementing 
these tools are also listed.

Tools CPU GPU Runtime (Nagano et al.) Runtime (Tan et al.) Programming languages Software URLs

BandNorm [42] ✓ ∼ 15 min ∼ 25 min R github.com/keleslab/BandNorm

Fast-Higashi [43] ✓ ✓ ∼ 6 min (on GPU) ∼ 10 min (on GPU) Python github.com/ma-compbio/Fast-Higashi

Higashi [39] ✓ ✓ ∼ 8.5 hrs (on GPU) ∼ 8 hrs (on GPU) Python github.com/ma-compbio/Higashi

scHiCExplorer [40] ✓ ∼ 12 min ∼ 25 min Python github.com/joachimwolff/scHiCExplorer

scHiCluster [36] ✓ ∼ 1.5 hrs ∼ 2 hrs Python github.com/zhoujt1994/scHiCluster

scHiCEmbed [41] ✓ ✓ R & Python dna.cs.miami.edu/scHiCEmbed

scHiCTools [38] ✓ ∼ 45 min ∼ 2 hrs Python github.com/liu-bioinfo-lab/scHiCTools

scHi-C Topics [37] ✓ ∼ 4.5 hrs ∼ 7 hrs R github.com/khj3017/schic-topic-model

scVI-3D [42] ✓ ✓ ∼ 2.5 hrs (on GPU) ∼ 6 hrs (on GPU) Python github.com/yezhengSTAT/scVI-3D
lower-dimensional subspace, scHiCTools facilitates the investigation of 
structural heterogeneity across scHi-C contact maps. Linear convolution 
has been demonstrated to effectively handle dropout events in sparse 
matrices better than other imputation approaches. Comparative analy-

ses have shown that InnerProduct, combined with effectively computes 
pairwise similarities, accurately projects the Nagano et al. dataset, pre-

serving global pairwise distances.

2.5. Higashi

Diverging from traditional linear convolution and random walk 
methods, Higashi [39] integrates embedding and imputation into a deep 
learning-based framework. For this appraoach, a novel hypergraph rep-

resentation of scHi-C data was introduced, where nodes correspond 
to genomic loci and cells, while hyperedges represent interactions be-

tween a cell node and two corresponding genomic bin nodes. Higashi 
was built on Hyper-SAGNN [58], a generic hypergraph neural network 
framework, to capture the higher-order topological properties of the 
data, learning node embeddings and predicting hyperedges. Further-

more, in Higashi, global structural information is shared among cells 
in close proximity in the embedding space, as determined by their k-

nearest neighbors. This approach leverages latent correlations between 
cell embeddings to improve the accuracy of imputation. For imputa-

tion, Higashi constructs a cell-dependent graph that integrates the Hi-C 
contact maps of the target cell and its k-nearest neighbors. The graph, 
along with the attributes of the genomic bin nodes, serves as inputs for 
the trained hypergraph neural network, which imputes missing edges 
while maintaining the unique features of each cell. Additionally, Hi-

gashi developed analysis methods for computing compartment scores 
and detecting TAD-like domain boundaries of imputed single-cell con-

tact maps, enhancing the analysis of 3D genome structures at single-cell 
resolution.

2.6. scHiCExplorer

While scHiCluster provides tools for smoothing and clustering scHi-C 
data, it lacks a comprehensive toolbox for the entire analysis work-

flow, from raw data processing to cell clustering, matrix construction, 
and quality control. Additionally, previous methods’ requirements to 
store contact matrices in text files can be space-consuming and com-

plicate data sharing. In contrast, scHiCExplorer [40] addresses these 
challenges by offering a comprehensive software suite that supports the 
analysis of scHi-C data from raw FASTQ files to the final results desired 
by researchers. Specifically, scHiCExplorer includes functionalities for 
demultiplexing sequencing data by barcodes and mapping sequencing 
reads for individual cells. Similar to scHiCTools, scHiCExplorer also pro-

vides an option to generate quality control reports.

For embedding purposes, scHiCExplorer converts each single-cell 
contact matrix into a vector format and concatenates these vectors into 
a cell-by-bin-pair contact matrix. To overcome the curse of dimension-
4030

ality, it computes similarity using a k-nearest neighbors (kNNs) graph 
based on the Jaccard index approximated by MinHash [59] before ap-

plying PCA to derive the latent embeddings. It has been claimed that the 
Jaccard index is particularly suitable for distinguishing contacts from 
non-contacts, compared to typical Euclidean distance, as it focuses on 
the features shared by cells. In this approach, scHiCExplorer calculates 
the similarity between two cells by tallying collisions across all MinHash 
functions, where each non-zero interaction is assigned a hash value. 
Cells that share more common features are considered more similar, 
while those with fewer shared features are considered less similar. Addi-

tionally, scHiCExplorer offers an option to apply KR normalization [55]

to account for coverage bias. By employing the kNNs graph, scHiCEx-

plorer achieves efficient runtime and memory utilization, making it a 
robust tool for scHi-C data analysis.

2.7. scHiCEmbed

Previous methods have demonstrated their effectiveness in smooth-

ing scHi-C matrices, leading to improved cell type clustering compared 
to raw scHi-C matrices. ScHiCEmbed [41] further improves this aspect 
by employing an unsupervised approach to enhance contacts in scHi-C 
matrices, using bin-specific embedding on graph-structured data. Specif-

ically, scHiCEmbed can take either raw or imputed scHi-C contact maps 
(e.g., imputed maps from scHiCluster) as an adjacency matrix and re-

construct the contact maps by performing bin-specific embedding using 
a graph auto-encoder. In this process, the encoder is designed to embed 
each bin into a higher-dimensional space while the decoder reconstructs 
the input scHi-C matrix using the bin-specific embeddings. After obtain-

ing reconstructed contact maps, scHiCEmbed concatenates the reduced 
contact maps of all chromosomes and performs an additional round of 
dimensionality reduction via PCA.

Notably, the bin-specific embedding matrix learned by the encoder 
for each scHi-C map can be further used to reconstruct 3D genome 
structures and detect TADs. The optimal bin-by-3 embedding matrix 
learned by scHiCEmbed represents the 3D coordinates of the recon-

structed single-cell structures. It has been demonstrated that chromatin 
can continue to expand in 3D space during the interphase state by us-

ing these reconstructed 3D structures from scHiCEmbed. Furthermore, 
this bin-specific embedding matrix can be used to generate a dissimi-

larity matrix, enabling the identification of TADs through constrained 
hierarchical clustering.

2.8. BandNorm

Zheng et al. [42] introduced BandNorm to tackle key challenges in 
scHi-C analysis, such as genomic distance bias, batch effect, and variabil-

ity in sequencing depth. BandNorm specifically addresses the genomic 
distance bias associated with band effects [6] and normalizes sequencing 
depth between cells to enhance data quality for downstream analyses.

In Hi-C matrices, diagonals and off-diagonals are referred to as 

bands. The contact frequencies on the same band are expected to be 

https://github.com/keleslab/BandNorm
https://github.com/ma-compbio/Fast-Higashi
https://github.com/ma-compbio/Higashi
https://github.com/joachimwolff/scHiCExplorer
https://github.com/zhoujt1994/scHiCluster
http://dna.cs.miami.edu/scHiCEmbed
https://github.com/liu-bioinfo-lab/scHiCTools
https://github.com/khj3017/schic-topic-model
https://github.com/yezhengSTAT/scVI-3D
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uniform across the dataset, as these contacts involve loci with similar ge-

nomic distances. The band effect indicates that with closer proximity to 
the diagonal of the Hi-C matrix, locus pairs generally display higher con-

tact frequencies. BandNorm normalizes scHi-C matrices based on these 
principles. Given the symmetry of scHi-C matrices, BandNorm processes 
only the upper triangular part of given matrices. It constructs a band ma-

trix by aggregating the bands from all cells and then normalizes contact 
frequencies of each band by dividing them by the band mean of the cor-

responding cell. Each band is then scaled by the average band mean 
across all cells.

BandNorm provides a fast and effective normalization approach that 
addresses band effects and sequencing depth variability. It also incor-

porates Harmony to remove batch effects in the latent embeddings, 
thereby improving the ability to distinguish between various cell sub-

types and facilitating subsequent cell-subtype-specific analysis. Com-

pared to methods like Higashi, scHiCluster, and scVI-3D, BandNorm 
excels in detecting TAD-like structures, showing the highest accuracy 
among these methods [42]. However, it does not address the issue of 
sparsity in scHi-C data.

2.9. scVI-3D

Alongside BandNorm, Zheng et al. [42] introduced scVI-3D, a deep 
generative model designed to effectively handle sparse band matrices. 
scVI-3D uses a zero-inflated negative binomial distribution to model 
the input band matrices and utilizes a denoising variational autoen-

coder (VAE) framework to address issues related to library sizes and 
batch effects. The software leverages the VAE implementation from 
the scvi-tools library [60]. Notably, scVI-3D explores various pooling 
strategies that concatenate several band matrices from different chro-

mosomes. This pooling approach aims to enhance the robustness of cell 
embeddings and improve clustering performance, although results can 
vary depending on the pooling strategy used.

scVI-3D is robust and excels in clustering and preserving chromatin 
structures, such as TADs and A/B compartments. It demonstrates high 
recovery rates for TAD-like boundaries and maintains high consistency 
in bulk data. Additionally, the processed contact maps from scVI-3D can 
facilitate the recovery of cell-type relationships and the identification of 
significant interactions. However, similar to Higashi, scVI-3D is compu-

tationally demanding. A distinct VAE is trained for each band matrix and 
each chromosome, resulting in a large number of deep neural network 
models to train. Furthermore, scVI-3D assumes spatial independence be-

tween neighboring locus pairs, even though they are often correlated in 
reality.

2.10. Fast-Higashi

To improve scalability and model interpretability, the authors of 
Higashi introduced Fast-Higashi [43]. Unlike the deep learning ap-

proach used in Higashi, Fast-Higashi employs a tensor decomposition-

based method to accelerate computations. Inspired by the concept 
of metagenes in scRNA-seq analysis, Fast-Higashi introduces “meta-

interactions” to enhance interoperability in single-cell 3D genome anal-

yses.

Fast-Higashi implements a random walk-based strategy to address 
data sparsity, similar to scHiCluster, but with increased efficiency. 
Rather than performing RWR on the entire matrix before tensor decom-

position, it integrates these steps and conducts RWR in batches. The 
model applies the core-PARAFAC2 tensor decomposition model [61] to 
decompose the tensor representation of scHi-C data into four compo-

nents: meta-interactions, a weight matrix, a cell embedding matrix, and 
a transformation matrix.

It has been demonstrated that meta-interactions can effectively cap-

ture cell-type-specific 3D chromatin features in both simulated datasets 
and complex tissues. By integrating meta-interactions with cell em-
4031

beddings, Fast-Higashi offers a novel approach to studying differential 
Computational and Structural Biotechnology Journal 23 (2024) 4027–4035

3D chromatin structures across various cell types. Additionally, meta-

interactions are promising for multi-omics data integration. Fast-Higashi 
is significantly faster than scVI-3D and Higashi, respectively, while also 
achieving state-of-the-art cell clustering results.

3. Performance evaluation of scHi-C embedding methods

In this section, we compared the performances of the aforementioned 
scHi-C embedding methods, with a primary focus on their effectiveness 
in supporting downstream clustering analysis. We evaluated the fol-

lowing eight methods: BandNorm, Fast-Higashi, Higashi, scHiCExplorer, 
scHiCluster, scHiCTools, scHi-C Topics, and scVI-3D. scHiCEmbed was 
excluded from this analysis due to its focus on 3D structure reconstruc-

tion rather than clustering.

For this analysis, we used two scHi-C datasets, both at a 500-kb res-

olution: (1) a mouse cell-cycle dataset from Nagano et al. [20], compris-

ing 1171 cells with approximately 350 million total sequencing reads, 
including 320 million intra-chromosomal reads; and (2) a developing 
mouse brain dataset from Tan et al. [25], comprising 1954 cells with 
approximately 780 million total sequencing reads, including 620 mil-

lion intra-chromosomal reads. The performance of each method was 
evaluated using the Adjusted Rand Index (ARI) and Normalized Mutual 
Information (NMI) scores, which were computed based on the clustering 
results obtained from the Kmeans++ algorithm applied to the final 2D 
embeddings produced by each method. ARI measures the similarity be-

tween the predicted clustering and the ground truth, where a score of 1 
indicates perfect clustering and a score of 0 indicates random clustering. 
NMI assesses clustering quality by measuring the mutual information be-

tween the predicted clusters and the ground truth, normalized to yield 
a score between 0 and 1, with 1 indicating perfect alignment.

For the Nagano et al. dataset, we were particularly interested in as-

sessing whether a low-dimensional embedding could capture the circu-

lar dynamics of the cell cycle. Fig. 2 shows that BandNorm, FastHigashi, 
Higashi, and scHiCTools clearly presented the circular cell-cycle pattern. 
In contrast, scHiCluster, scVI-3D, and scHi-C Topics depicted the cell-

cycle trajectory, but without the distinct circular structure. However, 
scHiCExplorer failed to exhibit a discernible cell-cycle manifold.

Next, we evaluated whether the embeddings can effectively differ-

entiate the four cell-cycle stages. Using both ARI and NMI scores, we 
assessed the clustering performance for these stages. Fig. 4 demonstrates 
that scHiCExplorer performed poorly in terms of ARI and NMI scores, 
while the remaining eight methods performed well and yielded compa-

rable results. Notably, scVI-3D and scHiCluster emerge as the top two 
methods in terms of clustering the Nagano et al. dataset, followed by 
FastHigashi, scHiCTools, and Higashi.

In addition to using the Nagano et al. dataset, which featured a 
pronounced cell-cycle pattern, we also analyzed the Tan et al. dataset, 
consisting of 13 cell types from the developing mouse brain. Due to the 
presence of numerous neuron subtypes, this dataset presented greater 
challenges for clustering, resulting in generally lower scores than those 
observed with the Nagano et al. dataset. Fig. 3 shows that all meth-

ods, except for scHiCExplorer, achieved effective cell-type separation. 
It is important to note that some cells lacking cell-type annotations and 
are labeled as “Unknown,” and these cells were excluded from the clus-

tering performance evaluation. Among the tested methods, BandNorm, 
FastHigashi, Higashi, scHiCTools, and scVI-3D delivered particularly 
competitive clustering results (Fig. 4).

Lastly, we recorded the runtime for each method to assess and 
compare their computational efficiency (Table 2). Three methods—

BandNorm, FastHigashi, and scHiCExplorer—demonstrated signifi-

cantly faster runtime than the other methods across both datasets. 
Among these, FastHigashi delivered the fastest performance when as-

sisted with GPUs, while BandNorm and scHiCExplorer provided com-
petitive performance with only CPUs used.
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Fig. 2. Visualization and clustering of Nagano et al. dataset. This set of scatterplots provides 2D visualizations of the embeddings from the Nagano et al. dataset, 
obtained using UMAP with two components. Each dot represents an individual cell, with different colors indicating four cell-cycle stages.

Fig. 3. Visualization and clustering of Tan et al. dataset. This set of scatterplots provides 2D visualizations of the embeddings from the Tan et al. dataset, obtained 
using UMAP with two components. Each dot represents an individual cell, with different colors indicating 13 cell subtypes.

Fig. 4. Clustering performances of scHi-C embedding methods. The clustering scores were derived from the 2D UMAP embeddings of (A) the mouse cell-cycle 
dataset (Nagano et al.) and (B) the mouse developmental brain dataset (Tan et al.). The x-axis represents NMI scores and the y-axis represents ARI scores. Each point 
4032

represents the results of a scHi-C embedding method, with different colors and labels indicating the specific method used.
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Fig. 5. Clustering performances with and without normalization/imputation. (A) Comparison of the clustering results with and without normalization. (B) Comparison 
of the clustering results with and without imputation. Each panel includes two barplots (left: ARI; right: NMI), displaying clustering scores based on 2D embeddings 
derived from the following methods: BandNorm, scHiCluster, and scHiCTools. Note that scHiCTools offers three normalization options: observed/expected (OE), 
Vanilla coverage (VC), and Knight-Ruiz (KR), as well as three imputation options: linear convolution (CN), random walk (RW), and network enhancing (NE). For 
each method, scores for non-normalized/imputed and normalized/imputed data are shown side-by-side. Rounded scores are annotated above each bar for clarity.
4. Effects of normalization and imputation on scHi-C embedding 
and clustering

Normalization and imputation play crucial roles in improving the 
quality and interpretability of scHi-C data. Due to the inherent spar-

sity of scHi-C contact matrices and heterogeneous sequencing depths 
across different cells, these pre-processing steps are essential for accu-

rate downstream analyses. Normalization techniques aim to account for 
coverage biases and variability in library sizes across cells and experi-

ments, resulting in more balanced contact matrices. This process helps 
ensure that contact frequencies are comparable within and across differ-

ent datasets. In Section 2, we reviewed various embedding methods that 
incorporate different normalization techniques during pre-processing. 
Some methods use standard normalization techniques. For example, 
scVI-3D normalizes scHi-C contacts per million within each cell, fol-

lowed by log transformation, while Higashi and FastHigashi normalize 
contacts by the total read count (i.e., coverage). Other methods adapt 
normalization techniques from bulk Hi-C analysis. For example, scHiC-

Tools provides three normalization options—OE normalization, VC nor-

malization, and KR normalization—while scHiCExplorer only uses KR 
normalization. Notably, BandNorm employs a scHi-C-specific band nor-

malization approach to address unique challenges in scHi-C data.

Imputation methods, on the other hand, are designed to address 
sparsity in scHi-C data by recovering low-frequency or missed con-

tacts in scHi-C matrices. The aforementioned scHi-C embedding meth-

ods employ various imputation strategies, including linear convolution 
(used by scHiCluster and scHiCTools), random walk (used by scHi-

Cluster, scHiCTools, and Fast-Higashi), network enhancing (used by 
scHiCTools), and scHi-C-specific neural networks (used by Higashi and 
scVI-3D). While these imputation methods can significantly enhance 
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downstream embedding and clustering performance, over-imputation 
may result in over-smoothed contact matrices, potentially obscuring im-

portant structural features, such as chromatin loops.

Our evaluation results in Section 3 showed that the embedding meth-

ods incorporating normalization and/or imputation, such as BandNorm, 
FastHigashi, and Higashi, demonstrated improved clustering perfor-

mance and more robust embeddings compared to the methods that do 
not include these pre-processing steps (e.g., scHi-C Topics). However, 
the extent of this improvement depends on the dataset, the specific char-

acteristics of the embedding method, and the choice of normalization 
and imputation techniques.

Among these scHi-C embedding tools, three allow users to choose 
whether to include normalization or imputation in pre-processing. Band-

Norm offers a band normalization option; scHiCluster incorporates both 
linear convolution and random work imputation; and scHiCTools pro-

vides a comprehensive list of normalization options (OE, VC, VC SQRT) 
and imputation options (linear convolution, random work, and network 
enhancing).

To further illustrate the effects of normalization and imputation, 
we applied these three methods, BandNorm, scHiCluster, and scHiC-

Tools, to the Nagano et al. dataset and compared their clustering perfor-

mances with and without the normalization/imputation steps. As shown 
in Fig. 5A, the band normalization strategy in BandNorm significantly 
improved clustering performance. On the other hand, in scHiCTools, 
only the OE-normalized data produced competitive results compared to 
the raw data. The other bulk Hi-C normalization techniques (VC and VC 
SQRT) surprisingly yield worse performances.

As for imputation, the strategies used in scHiCluster (linear convo-

lution and random work) notably enhanced the clustering performance. 
However, the three imputation approaches integrated into scHiCTools 
yielded only marginal improvements. This can be attributed to the qual-

ity of the Nagano et al. dataset, which was already being sufficient for 

the “innerproduct” similarity approach in scHiCTools. This observation 
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aligns with the findings in the scHiCTools paper, where the authors 
noted that the “innerproduct” approach is robust across various down-

sampling and dropout levels [38].

5. Discussion

ScHi-C techniques have been widely utilized to study 3D genome or-

ganization, uncovering the spatial and dynamic patterns within the cell 
nuclei. Embedding methods have emerged as powerful tools for biolo-

gists to cluster and annotate scHi-C data, promoting the investigation of 
cell-type-specific characteristics. However, due to the technical limita-

tions of scHi-C techniques, the data are often extremely sparse, posing 
challenges in revealing genome architecture. Additionally, unlike 1D ge-

nomics data, scHi-C data are in a 2D format with a complex, hierarchical 
structure presented in contact maps, which further complicates the data 
analyses and requires substantial computational resources and time. To 
facilitate cell clustering and other downstream analyses, various meth-

ods have been developed to handle the embedding of scHi-C data and 
address these challenges. These methods employ diverse strategies to 
reduce the high dimensionality of scHi-C data, including transforma-

tion, decomposition, neural networks, and graph-based approaches. In 
addition, they often incorporate pre-processing techniques such as con-

tact matrix normalization, contact imputation, and batch effect removal, 
which greatly help extract important and meaningful features from the 
scHi-C data.

Given the large-scale nature of scHi-C datasets, many methods prior-

itize computational efficiency and memory usage over previously pub-

lished methods. For researchers seeking fast embedding results, Fast-

Higashi and BandNorm are particularly recommended. Our comprehen-

sive benchmarking demonstrated that BandNorm and FastHigashi excel 
in time efficiency while achieving competitive clustering performance. 
Both methods complete their tasks within half an hour for the two se-

lected datasets (Table 2). Moreover, Fast-Higashi was notably faster than 
other deep learning-based methods on GPU implementation [43], and 
our runtime analysis has shown its impressive time efficiency, achiev-

ing results for approximately 2000 cells at 500-kb resolution in just 10 
minutes. For CPU implementations, BandNorm can process a large-scale 
dataset of over 4000 cells at 1-Mb resolution in under 15 minutes on a 
single-core CPU [42]. Furthermore, our evaluation further demonstrated 
that BandNorm completes a dataset of 2000 cells at 500-kb resolution 
in less than half an hour; in contrast, scHiCluster requires at least 2 
hours on a 23-core CPU, and scHi-C Topics needs at least 7 hours on a 
single-core CPU.

Despite the advancements, current scHi-C embedding methods still 
have limitations. Normalization strategies, although effective in ad-

dressing coverage discrepancies, may introduce additional biases. Impu-

tation techniques may lead to over-smoothing that affects the extraction 
of structural features due to inaccurate estimation of chromatin interac-

tions [17]. For example, Zheng et al. [42] demonstrated that Higashi 
and scHiCluster face issues of over-smoothing and blurriness, which 
obscure chromatin structures, compared to scVI-3D and BandNorm. Fur-

thermore, while current models excel at distinguishing between cell 
subtypes, they fall short of differentiating rare cell populations at a finer 
scale. Therefore, the development of more advanced tools for processing 
and analyzing scHi-C data is critical to address these limitations.

By summarizing current embedding methods for scHi-C data, we aim 
to make this review a valuable resource for researchers studying the 
3D genome architecture as well as those developing new embedding 
techniques. Our review provides a comprehensive overview of exist-

ing embedding methods, detailing their underlying strategies, strengths, 
and limitations, as well as their ability to address challenges such as 
data sparsity, high dimensionality, and the complex hierarchical struc-

tures inherent in scHi-C contact maps. We hope to assist researchers in 
selecting the most suitable techniques for their specific needs, thereby 
fostering further advancements in the study of 3D genome architec-
4034

ture.
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