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Abstract

In using eye movements to develop cognitive models,
researchers typically analyze eye movement protocols with
aggregate measures and test models with respect to these
measures. Because aggregate analyses sometimes conceal
informative low-level behavior, protocol analyses
comparing model predictions to individual trial protocols
are frequently desirable; however, protocol analysis for eye
movement data is often tedious and time-consuming. We
describe how to automate the protocol analysis of eye
movements using hidden Markov models. Working with
data from an equation-solving task, we demonstrate two
methods of tracing eye movement data—that is, mapping
eye movements to the sequential predictions of a cognitive
process model. We evaluated these tracing methods in an
experiment where participants were instructed to execute
given equation-solving strategies. = When coding the
experimental protocols in terms of the given strategies,
the automated tracing methods performed as well as human
expert coders in a fraction of the time.

Introduction

In the cognitive sciences, the study of eye movements has
become increasingly popular for the investigation of human
problem-solving behavior. Eye movements provide
numerous clues to underlying cognitive processes and their
interactions with the outside world, helping to determine
how and when people encode information, what information
they use or ignore, and how they interleave encoding and
computation. Many researchers have utilized eye
movements to develop and test cognitive models in various
domains. Typically, eye movements are analyzed in terms
of aggregate measures—for instance, the number of fixations
on an item or the total time spent fixating an item—and
cognitive models are developed and tested with respect to
these measures. This methodology has led to highly
successful cognitive models in numerous domains, including
reading (Just & Carpenter, 1980; Rayner, 1995) and
arithmetic (Suppes, 1990).

While aggregate analyses help to understand aggregate
behavior, they sometimes conceal additional informative
aspects of behavior that appear in single trial protocols.
Recognizing this problem, researchers often find it desirable
to perform protocol analyses that compare model predictions
directly to individual trial protocols, as is common with
verbal protocols. Unfortunately, protocol analysis for eye
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movements is often extremely tedious. Several trials from
even the simplest tasks can generate massive eye movement
protocols which must be coded into a more convenient form
for analysis. In addition, these protocols typically suffer
from significant amounts of noise due to variability in both
human scanning behavior and eye-tracking equipment.
Because of the size and complexity of the data, it is often
implausible for humans to analyze more than a few eye
movement protocols in close detail without sacrificing
consistency, accuracy, and large amounts of time.

Automated Eye Movement Protocol Analysis

This paper describes an automated approach to the analysis
of eye movement protocols. Previous work on automated
protocol analysis systems has concentrated primarily on
verbal protocols (e.g., Waterman & Newell, 1971) and
generic-action protocols (e.g., Ritter & Larkin, 1994).
These systems use a process of fracing to map observed
actions to the sequential predictions of a cognitive model
(Ohlsson, 1990). Unfortunately, we have found that these
systems do not generalize well to eye movement data, which
can be collected at a very fine temporal grain size and often
include significant individual and equipment variability. Our
approach exploits the special characteristics of these data to
allow for fast and accurate tracing of eye movement
protocols. The proposed methods can analyze protocols in a
fraction of the time needed by humans while achieving
comparable, if not better, accuracy in their analyses.

The automated analysis of eye movement protocols has
numerous significant applications in the real world. The
methods can be used off-line to code larger, more complex
eye movement data sets than human coders could manage.
In addition, they can help evaluate fits of low-level cognitive
models to large data sets at the level of trial protocols. The
methods can also be used on-line to control eye-based input
devices for user interfaces. They could also help intelligent
tutoring systems disambiguate solution strategies which
cannot be inferred solely from student responses.

Eye Movements and Hidden Markov Models

The proposed methods perform eye movement protocol
tracing by means of hidden Markov models (HMMs). For
years HMMs have been widely employed in implementing
recognition systems for speech and handwriting. In many
ways, the analysis of eye movements has much in common
with speech and handwriting recognition. These recognition
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Figure 1: Sample equation-solving problem screens with eye movement protocols and target value labels.

systems take a person's speech or handwriting input and
determine the most likely interpretation of this input given a
model of the person's possible intentions. Our automated
algorithms perform the analogous task for eye movements,
taking a person’s eye movements and determining the most
likely sequence of intended fixations.

Several researchers have explored possibilities for
applying HMMs, and more generally Markov models, to eye
movement data. The most common use of Markov models
has appeared in analyses of transition probabilities from one
fixation target area to another (e.g., Stark & Ellis, 1981;
Suppes, 1990). Although such analyses begin to shed light
on the sequential nature of eye movement protocols, they
ignore more global information by assuming that transitions
do not depend on the prior sequence of fixations. Other
researchers have used HMMs to represent velocity
distributions in smooth eye movements (Kowler, Martins,
& Pavel, 1984) and to model explicit foveal sequences
(Rimey & Brown, 1991). We use ideas from such work as a
basis for developing a more complete process model
approach to tracing eye movements.

Tracing Eye Movements

Before discussing the details of the proposed methods for
tracing eye movements with HMMs, we motivate these
methods by illustrating the tracing process for a sample task
and showing the difficulties that can arise in the process.
Our sample task involves solving equations of the form:

bxlac=bd/a

The terms a and b represent integers in the interval [2,9], and
ac and bd represent the product of a and b with other integers
c and d in [2,9], respectively. In the task, subjects must
determine the value of the unknown quantity x, which in all
cases equals the product cd. Thus, the process for solving
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the problems involves dividing ac by a to compute c,
dividing bd by b to compute d, and multiplying ¢ and d to
compute the answer. For instance, for the sample problem

4x/45=32/5

the answer can be computed by finding ¢ = 45/5=9,
d=32/4=8, and finally cd =9-8=72. For a single
trial, eye movement data were collected while the subject
solved the on-screen problem and typed her response into the
answer box.

The tracing process requires a cognitive process model for
the task which describes the steps taken in encoding items
and computing results. The model may be implemented
within a theory of cognition such as ACT-R (Anderson &
Lebiere, 1998), but need only generate sequences of predicted
actions for the task. Let us consider a sample model which
can generate two distinct strategies for solving equations in
the task: a left-to-right strategy (b ac bd a) and a paired-lefi-
to-right strategy (b bd ac a). In the left-to-right strategy,
items are encoded in order and intermediate results are
computed at the earliest possible time—that is, d is
computed after fixating bd and c is computed after fixating a.
[n the paired-left-to-right strategy, items are encoded in pairs
as needed for intermediate results, decreasing working
memory load. Both strategies assume that the structure of
the equations has already been intemalized, making fixations
on the variable and operators unnecessary. Each strategy
thus represents a cognitive process for solving the equations
which manifests itself in a unique fixation ordering.

Using this sample model, we can trace a given protocol
by mapping observed eye movements to predicted fixations.
Figure la shows a sample problem screen for the above
equation along with the subject’s eye movement protocol,
sampled every 8.3 ms; the protocol points are shaded and
sized such that later samples appear lighter and lower-
velocity samples appear larger. To trace the protocol with



our sample model, we must map the observed data points to
the best matching model strategy—in this case, the paired-
left-to-right strategy (b bd ac a). In this mapping, the final
two observed fixations on ac and answer cannot be mapped
to the model since our simple model does not predict them.
Note that the subject had already solved many similar
problems and had leamed this very efficient strategy for
solving them.

Unfortunately, tracing eye movement protocols is rarely
as simple as this example might imply. Figure 1b shows a
similar protocol that exhibits the same (b bd ac a) strategy.
However, the first fixation for this protocol lies
ambiguously between several target areas; while humans
may be able to resolve this ambiguity, a naive analysis
algorithm that maps fixations to their closest targets might
interpret the fixation as being on / or ac rather than its more
likely interpretation, b. Figure lc illustrates a protocol that
presents serious difficulty for human and automated analysis
alike; the protocol contains blinks and many ambiguous
fixations that seriously degrade its readability. A successful
automated analysis system must make intelligent global
decisions to help resolve local ambiguities, making HMMs
an excellent tool for tracing eye movements.

Tracing Eye Movements with HMMs

We now describe two automated methods for tracing eye
movement protocols. The tracing algorithms take three
inputs: eye movement tuples, target areas, and model
strategies. The eye movement tuples comprise sampled
points of the form <x, y, v>, where x and y indicate the
location of the point and v indicates the velocity at that
point; velocities can be calculated as adjacent point-to-point
distances. The target areas include the name and location of
possible fixation targets on the experiment screen; for the
equation-solving task, the target areas would include the four
values (b, ac, bd, c}, assuming we ignore possible
fixations on the variable and operators. The model strategies
comprise a set of possible fixation sequences predicted by
some process model, such as the left-to-right and paired-left-
to-right strategies discussed earlier. The tracing algorithms
produce two outputs: a model trace and a model evaluation.
The model trace represents a mapping from eye movement
data points to the fixation sequence predicted by the best
corresponding model strategy. The model evaluation
represents the probability of the model trace, which can be
used to evaluate the fit of the model to the data.

Both tracing methods trace eye movements by means of
hidden Markov models (HMMs). HMMs are essentially
probabilistic finite state machines: transition probabilities
determine the likelihood of taking the transition from one
state to the next, and observation probabilities determine the
likelihood of seeing a particular observation in the state.
More information on HMMs and their applications can be
found in Rabiner (1989).

Saccade-Fixation Submodel (SFS) Tracing

The first tracing algorithm, saccade-fixation submodel (SES)
tracing, begins with the construction of a saccade-fixation
submodel for each target area. Each submodel is itself an

saccade

Figure 2: Saccade-fixation submodel for target bd.

» bd * a

Figure 3: Sample SFS tracer model.

HMM which represents a model of the possible observations
generated when a person intends to fixate that target. A
sample saccade-fixation submodel for the bd target area is
shown in Figure 2. The submodel has two states with three
observation probability distributions: an x and y coordinate
distribution and a v velocity distribution. The first state
models points that represent saccades; its velocity
distribution is weighted toward high velocities to model
high-velocity saccadic movement, and its x and y
distributions are uniform to show that saccades to this target
can come from any location. The second state models
points that represent fixations; its velocity distribution is
weighted toward low velocities to model near-stationary
fixations, and its x and y distributions have means over the
center of the target area. Thus, as we attempt to find the
most likely interpretation for a given protocol, high-velocity
saccade points will likely match to the first state of the
submodel, while low-velocity fixation points near the target
area will likely match to the second state. The submodel’s
transition probabilities can be trained using the data set;
however, we have simply chosen values that work well with
our particular eye movement data.

Next, we use the submodels to construct a fracer model
that incorporates the predicted fixation sequences of the
model strategies. We use the model strategies to build the
tracer model as follows. For each strategy, substitute each
predicted fixation with its corresponding submodel and link
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the submodels serially. Then, link these strategy HMMs
together in parallel to form the composite tracer model
HMM. Figure 3 shows a sample tracer model for the left-
to-right and paired-left-to-right strategies described earlier;
the square boxes representing the predicted fixations are
replaced by corresponding submodels, as shown.

Finally, given this tracer model, we can produce a model
trace for a given protocol. We first determine the most
likely state sequence for the protocol’s eye movement tuples
using the Viterbi HMM decoding algorithm (see Rabiner,
1989). Conceptually, this decoding process is analogous to
laying out the tuple sequence onto the HMM such that the
probability of the sequence (including observation and
transition probabilities) is maximized. The decoded state
sequence links the data points to predicted fixation targets,
thus producing a model trace that maps the observed eye
movements to the model’s predictions. Note that the model
trace describes both which model strategy was most likely
executed and the most likely assignment of data points to
their corresponding predicted fixations.  The decoding
process also provides the model evaluation value as the
probability of the most likely sequence.

The primary cost of SFS tracing comes from decoding the
eye movement protocol with the tracer model. The Viterbi
decoding algorithm uses dynamic programming to decode
sequences in O(N°T) time, where N is the number of HMM
states and 7 is the length of the decoded sequence (see
Rabiner, 1989). For SFS tracing, N depends crucially on
the strategies predicted by the cognitive model—more
strategies with longer sequences will increase the size of the
tracer model and thus increase N. The length of the decoded
sequence T corresponds to the length of the eye movement
protocol being analyzed.

Centroid Submodel (CS) Tracing

SFS tracing, as we will soon see, works well in tracing
various eye movement protocols. One problem with SFS
tracing, however, is its speed: the number of possible states
in the tracer model and the potential length of the point
sequence can make SFS tracing somewhat slow. The second
tracing algorithm, centroid submodel (CS) tracing, alleviates
this problem by tracing eye movements in two stages: first,
it finds the centroids of each fixation in the protocol; and
second, it generates a model trace by mapping the fixation
centroids onto the model’s predicted fixations. Though this
two-stage process is faster, it has the disadvantage of
incurring a loss of information between the two stages:
while the SFS tracer model can influence where fixations are
identified and to which targets they correspond, the CS tracer
model can only influence to which targets the given
centroids correspond. We will discuss this tradeoff further in
the next section.

The first step of CS tracing involves producing a sequence
of fixation centroids for the given protocol. We perform
this task using an HMM similar to the SFS-tracing saccade-
fixation submodels, except without positional x and y
distributions. The HMM, shown in Figure 4, has a saccade
state and a fixation state as before, but the two states are
linked together to form a circular path between them. Thus,
this HMM models repeated saccades and fixations around the
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Figure 6: Sample CS tracer model.

screen without making predictions about where these actions
occur. The parameters shown in Figure 4 work well for our
particular eye movement data; in general, however, both
observation and transition probabilities can be leamed using
HMM parameter reestimation over a set of training
protocols (see Rabiner, 1989).

Given this HMM, we produce the desired centroid
sequence as follows. First, we create a sequence of velocity-
only point data by removing location information from the
eye movement tuple data. Next, we decode the most likely
state sequence through the HMM. Finally, we take the
resulting state sequence, remove saccade points
corresponding to the first state, and collapse fixation points
corresponding to the second state. As we collapse the
fixation points, we calculate the centroid of each fixation
(using location information from the original point data),
yielding the desired sequence of fixation centroids.'

! There are various other methods of separating fixations and
saccades—for instance, using a strict velocity cutoff or moving



After computing fixation centroids, we now generate a
model trace by mapping the centroid sequence onto the
predictions of the model. The process of finding a model
trace in CS tracing is identical to that in SFS tracing except
for the submodels used. Instead of saccade-fixation
submodels, CS tracing uses cenrroid submodels that model
the distribution of where centroids can occur for each target
area. Figure 5 illustrates one possible submodel for the bd
target, with the means of the x and y distributions over the
center of the bd target area. To account for skipped or extra
fixations, the submodel allows the state to be bypassed or
repeated with the given probabilities. Once the centroid
submodels are constructed, we proceed to produce a tracer
model and decode the most likely model trace as before. A
sample tracer model with simple centroid submodels is
illustrated in Figure 6.

Because CS tracing uses the Viterbi algorithm in both
stages of analysis, the complexity of CS tracing is the same
as that of SFS tracing, namely O(N’T). In practical
application, however, the two stages of CS tracing can run
much faster than SFS tracing. In the first stage, CS tracing
uses a two-state HMM to decode fixations and find fixation
centroids. Although 7, the length of the decode sequence,
may be large, N remains small, namely N =2. In the
second stage, CS tracing decodes centroids using its tracer
model. Here, N may be large (depending on the model
strategies), but 7 is much smaller than in SFS tracing, since
T represents the number of fixation centroids rather than the
number of data points. Thus, both stages of CS tracing can
operate more efficiently than the one stage in SFS tracing.

Testing the Tracing Methods

The SFS and CS tracing methods provide an automated
mechanism for mapping eye movements to their underlying
thought processes. Because we can never be sure what a
person was thinking while executing a particular eye
movement pattern, we cannot possibly describe the
“accuracy” of these methods with absolute certainty. We can,
however, provide strong support for the methods in two
ways: evaluating the methods on protocols collected in what
we call an “instructed-strategy” paradigm, and comparing the
methods’ interpretations of protocols to that of human
expert coders.

The instructed-strategy paradigm has subjects executing a
specific strategy when solving a task. Before starting the
task, the subject is instructed to solve the task using a
specific strategy that describes a strict order of accessing
information and computing intermediate results. Of course,
we cannot guarantee that the subject perfectly executes the
given strategy, but we make it clear to subjects that they are
to use the strategy as diligently as possible. Using this
paradigm, we can show support for the tracing methods by
comparing their interpretations to the subjects’ given
strategies; the paradigm gives us a “correct” interpretation
with which we can test the tracing algorithms.

Because subjects may not execute the given strategies as
instructed, it is reasonable to expect that the tracing methods

windows with a given dispersion. We use the two-state HMM
method to illustrate similarities with SFS submodels.
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will not interpret some number of the protocols “correctly.
However, since the tracing methods automate an analysis
task that is typically performed by humans, our primary
interest is to know how well the tracing methods perform in
comparison with human coders. Our goal is to have the
tracing methods interpret protocols as well as or better than
human coders.

Data Collection and Human Coding

Using the instructed-strategy paradigm, we collected
protocols from five Camegie Mellon students performing
the equation-solving task. Each subject solved 24 problems
per session for five sessions. On the first session, subjects
were given the equations with no instruction and asked to
solve for the unknown quantity. On each of the four
following sessions, subjects were given a single strategy and
asked to execute this strategy as faithfully as possible in
solving the problems. The four strategies given to subjects
included the order with which to fixate equation elements and
the time at which to compute intermediate results. The
fixation orderings, representative of the strategies entailed by
these orderings, were: left-to-right, (b ac bd a); paired-left-
to-right, (b bd ac a); right-to-left, (a bd ac b); and paired-
right-to-left, (a ac bd b). Due to extreme noise in the
protocols, data from one subject were omitted from analysis.

We gave a subset of the collected protocols to human
expert coders to compare their performance to that of the
tracing methods. The test protocols comprised the last two
protocols from each session for each of the four subjects (32
protocols in all) and were given to the coders in displays
similar to those in Figure 1, with additional information
describing the sequence of fixations. The human coders then
classified each protocol as one of the four given strategies.
Both human coders (a professor and graduate student in the
cognitive sciences) were highly experienced in examining
such displays and in working with cognitive process models.

Results

We ran both tracing methods on all the protocols and had
them determine which of the four given strategies best fit
each protocol. We first compare the tracing methods’
performance to that of human coders on the 40 test
protocals. We then evaluate the tracing methods over the
entire data set with respect to the given instructed strategies.
Table 1 shows the percent agreement between the
classifications of the two tracing methods (SFS and CS), the
classifications of the two human coders (HC1 and HC2), and
the given strategies for all subjects. The tracing algorithms
show the highest agreement with the given strategies (90.6-
93.7%), while the human coders exhibit somewhat lesser
agreement (78.1-90.6%). Both human coders show
predominantly equal or higher agreement with the tracing
methods (HC1-CS, 81.2%; HC2-CS, 87.5%; HC2-SFS,
90.6%) than with each other (HC1-HC2, 81.2%). Also,
while the first human coder agrees more with CS tracing
than SFS tracing, the second agrees more with SFS tracing.
In summary, performance for the tracing methods is almost
indistinguishable from human coder performance.
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Table 1: Percent agreement between tracing
methods, human coders, and given strategies.

CS SFS HCI HC2 | Given
CS 100.0 96.9 81.2 87.5 90.6
SFS 100.0 78.1 90.6 93.7
HCI 100.0 81.2 78.1
HC2 100.0 90.6

Table 2: Average time to code a protocol, in seconds.

CS SFS HCl HC2
0.2 5.8 67.5 60.0

The above results show the similarity between tracing
method and human coder performance but, because of the
small size of the test set, they say little about how the
tracing methods compare to each other. To answer this
question, we evaluated each method over the entire data set
for the second through fifth sessions. Both tracing methods
performed extremely well, with SFS tracing performing
only slightly better: SFS tracing agreed with 93.8% of the
given strategies, while CS tracing agreed with 91.3%. The
loss of information in CS tracing between its two stages—
namely, the strict decision in the first stage as to what is a
fixation—does not seem to sacrifice performance
significantly; that is, deciding to which targets fixations
correspond is more important than deciding where fixations
occur.

While the tracing methods and human coders performed
similarly in tracing the test protocols, the tracing methods
completed the task significantly faster. Table 2 shows the
average time in seconds needed to code one protocol for each
tracing method and human coder, where tracing method
times were collected on a 200 MHz Power Macintosh.
While the human coders required approximately one minute
per protocol, the tracing methods performed at least an order
of magnitude faster: SFS tracing coded the protocols
approximately 10 times faster and CS tracing coded them
approximately 300 times faster.

Conclusions and Future Work

Overall, the results for SFS and CS tracing on the equation-
solving protocols are very encouraging. Both tracing
methods can successfully analyze protocols in a fraction of
the time needed by human expert coders. The resulting
traces and evaluations can be used by researchers to explore
many aspects of task behavior, including frequencies of
strategy use, meta-strategies over time, and process model
fits to data. The tracing methods’ speed also makes them
amenable to real-time applications such as intelligent
tutoring systems and eye-based input devices.

This study only addresses a few of the vast possibilities
for analyzing eye movements with HMMs. We are now
investigating some of these other possibilities, including:

¢ creating more efficient HMMs using model strategies
with a hierarchical subgoal structure

« incorporating time information such that submodels
predict both fixation duration and location
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* optimizing submodel probabilities by means of HMM
parameter reestimation

We also plan to apply these tracing techniques to different
task domains in an effort to evaluate their usability as
general-purpose sequential data analysis tools.
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