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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Identification:
Identification of Dependent Multidimensional Unobserved Variables in a System of Linear
Equations
Identification and Estimation for Regressions with Errors in All Variables

Identification of Nonparametrically Distributed Random Coefficients in Linear Panel Data

Models

Dan Ben-Moshe
Doctor of Philosophy in Economics
University of California, Los Angeles, 2012

Professor Rosa Liliana Matzkin, Chair

In Chapter 1, I extend the techniques in Li and Vuong (1998), Schennach (2004a), and
Bonhomme and Robin (2010) to identify nonparametric distributions of unobserved variables
in a system of linear equations with more unobserved variables than outcome variables and
with subsets of statistically dependent unobserved variables. I construct estimators of the
distributions of unobserved variables and derive their uniform convergence rates. In Chapter

2, I develop a method for identification and estimation of coefficients in a linear regression

i



model with measurement error in all the variables. The method is extended to identification
in a system of linear equations in which only some of the coefficients on the unobserved
variables are known. The estimator uses an assumption that is testable in the data and
is in the class of Extremum estimators. The asymptotic distribution of the estimator is
derived. In Chapter 3, I identify the nonparametric joint distribution of random coefficients
in a linear panel data regression model. The distributions of the coefficients can depend on
covariates, coefficients can be statistically dependent or equal in distribution, and there can
be more coefficients than the fixed number of time periods. I construct estimators from the
identification proofs. In finite sample simulations all the estimators have tight confidence

bands around their theoretical counterparts.
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Preface

This thesis is concerned with identification in the system of linear equations

Yo ailr ... Qim Un

Yor ar o aru Unmr

where Y, = (Yoi, ..., Yor) € RT, ljn(Um, oo Unn) € RM and A is a T x M matrix with
entries {a, }.!

Assume for now that the matrix A is known, the vector }7” is known, and the vector (7”
is unknown. If the dimension of Y, is smaller than the dimension of U, (i.e. M >T), then
for any given value of }7“ there is in general no unique solution to Un Usually, a system with
fewer equations than unknown variables does not have a unique solution.

Now assume that [7”, n =1,...,N, are independent and identically distributed copies
of an underlying nonparametrically distributed random vector U. In this thesis I show that
even when M = P(P +1)/2,

i. The joint distribution of U can be identified (“unique”) and

ii. Some of the coefficients in the matrix A can be identified despite being unknown.

Kotlarski (1967) is the first person to identify nonparametric distributions in a system
of linear equations with more unobserved variables than outcome variables. Consider
Y = Ui +U;
(1)
Yo = U+ Us
He shows that if the distribution of ¥ = (¥;,Y3) is known and U = (Uy,Us.Us) is an

unobserved independent random vector then U is identified.

IThe subscript n represents the n*" observation or individual in the sample.
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In Chapter 1, I prove that in a system of linear equations with 2 outcome variables,
the maximum number of unobserved variables that are identified wihtout any additional
information is 3. In Chapter 2, however, I show that the system in Equation (1) is still

identified when it includes an unknown coefficient. Consider

Yi=U +U,

Yo =0U; + Us

where Y = (¥1,Y,) is an observed random vector, U = (Uy, Us.Us) is an unobserved inde-
pendent random vector, and b is an unknown coefficient. I show that b and the distribution

of U are identified. In Chapter 3, I consider

Yi=Ui+Uy+Us

}/VQZCZU1+U2+U4 a27é1

Assume that a is known and make the additional assumption that Us 4 Uy, then I show

that all the distributions are still identified.

Chapter 1: Identification of Dependent Multidimensional Unob-

served Variables in a System of Linear Equations

In Chapter 1, I study the system of linear equations
Y = AU

where Y € R” is an observed random vector, U € RM is an unobserved random vector, and
Ais a P x M matrix of known coefficients.

I identify the nonparametric distributions of the unobserved variables and explain the

xiil



tradeoffs between the number of outcome variables, the number of unobserved variables, and
the statistical dependence of the unobserved variables.

To illustrate the identification strategy I consider an earnings dynamics model from Bon-
homme and Robin (2010) that is modeled as a system of linear equations with mutually
independent unobserved variables. I relax various assumptions from Bonhomme and Robin
(2010) and show identification. First, I allow a subset of unobserved variables to be ar-
bitrarily dependent. Second, I assume that subsets of the unobserved variables are mean
independent (but otherwise arbitrarily dependent). Third, I show that without adding ad-
ditional equations or restrictions it is possible to include more unobserved variables and still

identify all of the distributions.

Chapter 2: Identification and Estimation for Regressions with Er-

rors in All Variables

In Chapter 2, I study the system of linear equations

A

~u
I
)

where Y € RTa*75 ig an observed random vector, U € RM is an unobserved random vector,
Ais a Ty x M matrix of known coefficients, and B is a Tg x M matrix of unknown coefficients.
In this chapter, I identify the coefficients in the matrix B.

I identify coefficients in three models:

1. Errors-in-Variables model:

Y=00+65X +...+8uXy te

X = X5 + U m=1,...,.M

Xiv



11.

111.

where (Y, Xy,..., X)) is an observed random vector and (X7,..., X}, Uy,..., Uy, ¢)
is an unobserved mutually independent random vector. I identify (fo, ..., ) without
any additional information.

Moving-average process of order 1:

}/1261—980

%262—051

where (Y7, Y3) is an observed random vector and €g, €1, and 5 are unobserved mutually
independent random variables. I identify # without assuming that ¢y, €1, and &5 have
equal variances.

Simultaneous equations model:

Yi=0Yo+ 51X +e

Yo =02Y1 + 9

where (Y7,Y3, X) is an observed random vector and gy and £; are conditionally inde-
pendent unobserved random variables. I assume F [Xey] = 0 but do not place any

restriction on the dependence of £; on X. I identify the coefficients ¢, d2, and ;.

Chapter 3: Identification of Nonparametrically Distributed Ran-

dom Coefficients in Linear Panel Data Models

In Chapter 3, I identify nonparametrically distributed random coefficients in the linear

regression panel data model:

Y=Xp+c¢

where Y € R” is an observed random vector, X is a P x M matrix of covariates, e € R” is

a vector of errors, and [ is a vector of random coefficients.

XV



I identify the nonparametric joint distribution of the coefficients under various assump-
tions about the statistical dependence of coefficients on covariates, the conditional statistical
relationship of coefficients (allowing them to be statistically dependent or equal in distribu-
tion), and the number of time periods per individual relative to the number of coefficients

I show how to identify random coefficients in a cross-sectional regression model with
coefficients that are independent of covariates, in a panel data regression model with coeffi-
cients that are dependent on covariates, in a fixed effects regression model, and a first-order

autoregressive panel data regression model.
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Chapter 1

Identification of Dependent
Multidimensional Unobserved
Variables in a System of Linear

Equations

1.1 Introduction

Kotlarski (1967) studies identification of the unobserved variables in the system of linear
equations
an = XT*L + En1

(1.1)
XTL2 = X;:_‘_gnQ

where (X1, X,2) € R? is a vector of observed outcomes and (X, &,1,&,2) € R? is a vector of
unobserved variables.! This system has more unobserved variables than outcome equations

so that for any observed (X1, X,2) there is no unique solution of (X* &,1,€,2).2 More

IThe subscript n represents the n'" observation or individual in the sample.

2The solutions lie on the line €,,1 — €2 = Xp1 — X2 in R3.
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generally, for any system of linear equations with fewer equations than unknowns there are
no unique solutions of the unknowns.

Kotlarski (1967), however, proved that if (X}, €,1,€,2) are independent and identically
distributed copies of an underlying independent random vector (X*, e1,¢5), then its non-
parametric distribution is identified (“uniquely determined”) from the distributions of the
observed outcome variables. In this paper I generalize Kotlarski (1967) in two ways:

i. Instead of a linear system with two outcome variables and three unobserved variables, I
consider a general linear system with fewer outcome variables than unobserved variables;
ii. Instead of mutually independent unobserved variables, I allow the unobserved variables
to be mean independent or arbitrarily dependent.
My aim is to identify the nonparametric distributions of the unobserved variables and to
understand the tradeoffs between the number of outcome variables, the number of unobserved
variables, and the statistical dependence of the unobserved variables.

To understand the tradeoffs I present three theorems. The first theorem extends the
identification strategy in Li and Vuong (1998) from the system in Equation (1.1) with mu-
tually independent unobserved variables to a system of equations with subsets of arbitrarily
dependent unobserved variables.> The second theorem relaxes the mutual independence as-
sumption from Bonhomme and Robin (2010) by providing necessary and sufficient conditions
for identification in a system of linear equations in which subsets of the unobserved variables
are arbitrarily dependent. The third theorem extends Schennach (2004a) from identification
in the system in Equation (1.1) with mean independent unobserved variables to a system of
equations.

My contributions are demonstrated in an earnings dynamics model from Bonhomme and
Robin (2010) in which the unobserved variables are mutually independent permanent and

transitory income shocks.* I solve this model relaxing various assumptions. First, I allow the

3Li and Vuong (1998) use the same identification strategy as Kotlarski (1967).

With the exceptions of Horowitz and Markatou (1996) and Bonhomme and Robin (2010), the earnings
dynamics literature assumes that the income shocks are jointly normal mutually independent unobserved
variables. See Meghir and Pistaferri (2011) for a review of the earnings dynamics literature.



transitory shocks to be arbitrarily dependent. Second, I assume that the transitory shocks
are mean independent (but otherwise arbitrarily dependent) and the permanent shocks are
mean independent (but otherwise arbitrarily dependent). Third, I show that without adding
additional equations or restrictions it is possible to include more unobserved variables and
still identify all of the distributions.

The identification strategy takes advantage of the linearity of the system by a log char-
acteristic function (CF) transformation. The result is an equation that expresses the log CF
of a linear combination of the outcome variables in terms of additively separated log CF's of
unobserved variables. Identification is achieved by taking partial derivatives and choosing a
linear combination of outcome variables so that a single log CF of an unobserved variable is
expressed in terms of observed quantities.

The estimators have closed form solutions coming from the identification results and are
obtained by replacing population quantities with their sample analogs. I provide results
on the uniform convergence rates of these estimators; similar to the estimators in Carroll
and Hall (1988) and Fan (1991), these are relatively slow and depend on the smoothness of
distributions of observed and unobserved variables.

In a Monte Carlo simulation, I compare several estimators of the distribution of X* in
Equations (1.1). The finite sample properties are encouraging with strong indications that
the estimators should perform well in practice even with sample sizes of the outcome vector
that are less than 100.

The literature on identification in models with more unobserved variables than outcome
variables was initiated by Kotlarski (1967) and continued by Khatri and Rao (1968), Rao
and Székely (2000), and others. Based on these papers, Li and Vuong (1998), Schennach
(2004a,b), Bonhomme and Robin (2010), and others construct estimators.

The measurement error literature relaxes the additivity assumption by studying iden-

tification in nonlinear models.” Hu and Schennach (2007) are at the cutting edge of this

®See Schennach (2011) for a review of the measurement error literature in nonlinear models.



literature, using general operators to identify densities of unobserved variables. They use a
completeness condition that requires strong restrictions on the dimension of the unobserved
variables relative to the outcome variables.

This paper is organized as follows. Section 1.2 presents identification in an earnings
dynamics model that explains the main identification ideas. Section 1.3 presents the general
model, the assumptions, and the three main identification theorems. Section 1.4 presents
an extension of the earnings dynamics model. Section 1.5 presents a few more illustrative
examples that show how to use the identification theorems. Section 1.6 constructs the
estimators and establishes their asymptotic properties. Section 1.7 presents Monte Carlo
simulations. Section 1.8 concludes. The Appendix contains detailed solutions of the examples
from Sections 1.2, 1.4, and 1.5 (Appendix A), the identification proofs from Section 1.3

(Appendix B), and proofs of the uniform convergence rates from Section 1.6 (Appendix C).

1.2 Example 1A: Earnings Dynamics Model

To explain the main identification ideas of this paper and compare them to the existing
literature, consider the earnings dynamics model from Bonhomme and Robin (2010) on pages

494 and 495:

we=f+y +yi t=1,2,34
yf:yf—1+5t t>2
y;f:m

m=mns=0

where w; is the residual of a regression of individual log earnings on a set of strictly exogenous
regressors, f is the unobserved fixed effect, y!” is the unobserved persistent component, y! is

the unobserved transitory shock, and ¢; and 7, are unobserved innovations that are mutually



independent and independent over time. The system in matrix notation is

f

2
w1 1 001 00O

3
Wo 1 101100

= yf (1.2)

w3 1 011110

€2
Wy 1 001111

€3

€4

The fixed effect f and the persistent component yI’, which are represented by the first and
fourth columns in the matrix on the right of Equation (1.2), cannot be separately identified so
Bonhomme and Robin (2010) difference out these effects. Let Y = (wo— w1, w3 —we, wy—w3)’

and U = (m2,m3,€2,€3,€4)". The system of equations on page 495 from Bonhomme and Robin

(2010) is
Uy
Y 1 0 100 U,
Yo [=] -1 1 010 Us (1.3)
Ys 0 -1 00 1 Uy
Us

where Y7, Y5, and Y3 are observed random variables and Uy, Us, Us, Uy, and Us are unobserved
random variables with expected values equal to 0. Bonhomme and Robin (2010) assume that
the unobserved random variables are mutually independent.

The first difference between the existing literature and my paper is that I relax the mutual
independence assumption. Assume that U; and U, are arbitrarily dependent and (Uy, Us),
Us, Uy, and Us are mutually independent.

I now solve for the joint distribution of the unobserved vector U in two ways. Solution



1, like Kotlarski (1967) and Li and Vuong (1998), uses first-order partial derivatives of log
CFs. Solution 2, like Bonhomme and Robin (2010), uses second-order partial derivatives of

log CFs.

Log CF transformation: The log CF of the observed vector (Y1, Ys,Y3) € R? in terms

of log CF's of unobserved variables is

In E [exp (it1 Y7 + itaYs + it3Y3)]

= In E [exp (ity (U1 + Us) + ita(—Uy + Us + Uy) + its(—Us + Us))]
= In E [exp (iU1(t1 — t2) 4+ iUs(ta — t3) + iUsty + iUsts + iUsts)]
= In F [exp (iU1(t1 — t2) + iUa(t2 — t3))]

+ In E [exp (iUst1)] 4+ In E [exp (iUst2)] + In E [exp (iUst3)] (1.4)

where the first equality follows by substituting ¢,Y; = t1(U; + Us), taYs = to(—=Uy + U+ Uy),
and t3Y3 = t3(—Us + Us) and the last equality follows by the independence assumption.

The log CFs of the unobserved variables are additively separated because of the linearity
in Equation (1.4) and the mutual independence of (Uy,Us), Us, Uy, and Us. The random
variables U; and U, are dependent so that their CFs cannot be separated and remain together
in a multidimensional CF.

The notation I use in this paper is

Ouy v, (T — ta,ta — t3) = In E [exp (¢U; (t1 — t2) + iUs(ta2 — t3))]
Yus (1) = In E [exp (iUst1)]
pu, (t2) = In E [exp (iUstz)]
pus (t3) = In E [exp (iUst3)]

Using this notation

In E [exp (it1 Y1 + it2Ya + it3Y3)] = v, v, (1 — ta, t2 — t3) + vy (t1) + @u, (t2) + us (t3)  (1.5)



For any (sy, S9, 83, 84, 55) € R® there are in general no solutions (¢y,ts,t3) € R? that satisfy

In & [exp (zt1Y1 + Zt23/2 + Ztgi/},)} = PUL,Us (81, 52) + PUs (83) + Pu, <S4) + PUs (85).

1.2.1 Solution 1: First-Order Partial Derivatives

First-order partial derivative: The partial derivative of Equation (1.5) with respect to

tl is

aln E [eit1Y1+it2Y2+it3Ygi| 1B [Yleitlyl+it2Y2+it3Y3}

atl E [eit1Y1 +it2Y2+it3Y3]

- Qv () + gl (1) (1.6

O (t1—t2,ta—t3)

Equation (1.6) has fewer functions than Equation (1.5). Only the log CFs containing U,
and Us remain because of the substitution t1Y; = t;(U; + U;) into Equation (1.4). The
log CF's of Uy and Us vanish because of the additivity in Equation (1.5) and because their
arguments do not contain ¢;. The first-order partial derivative with respect to ¢, reduces the
equation to only contain log CFs of unobserved variables in the p** equation. Hence, I refer
to the partial derivative with respect to t, as a “derivative with respect to the p' equation.”
The effectiveness of the partial derivative depends on exclusion restrictions of unobserved
variables from an equation.

Next, I show that for any (si, s, s3) € R3 there exists (¢1,ts,t3) € R? such that

iE [Y'leitlY1+it2Y2+it3Y3} 590U17U2 (w1, wg)

E [eitYi+itaYartitsYa] - Oy o + <P,U3 (s3)
This means that (t1, s, t3) € R3 solves
/
t— t 1 0 1 t s
th—ts | =] =1 1 0 =1 s (1.7)
t 0 —1 0 s s



This matrix is the transpose of the first three columns of the matrix in Equation (1.3). These

columns contain the coefficients of Uy, Us, and Us.

Choose (ty,ts,t3): For any s3 € R choose (1, ta,t3) = (s3, 83, 53) so that

/

t1 — 1o 1 0 1 S3 0
to — 13 = -1 1 0 S3 = 0
tl O —1 0 S3 S3

Substitute (t1,ts,t3) = (s3, S3, 53) into Equation (1.6)

iE[Y1exp (isY) 4 isYs +isY3)]  Opu, v, (W1, wa)
Elexp (isY] +isYs +isYs)] Owq

+ oy, (83)
(0,0)

= oy, (s3)
. Opu, U, (W1,w2) . .
where the last equality follows from ——-72—— 00 iE [U;] and the assumption that
0,0
The derivative of ¢y, is now expressed in terms of observed quantities. The CF of Us is

identified by integration:

, B E[Yyexp (iu (Y1 + Yo+ Y3
e il =om ([ S o )
6
The strategy in Solution 1 uses a first-order partial derivative of the log CF of Y. The
main assumption, Assumption 1i in Section 1.3, is that the image of the matrix transfor-
mation in Equation (1.7) contains either (sq,s2,0)" or (0,0, s3)" where (s1,s5) € R? and

SgER.

6 Appendix A identifies the rest of U.



1.2.2 Solution 2: Second-Order Partial Derivatives

Second-order partial derivatives: The second-order partial derivative of Equation (1.5)

with respect to t; and t, is

O?In E [exp (it Y1 + itaYs + it3Y3)] _ v, U, (w1, w2) N 0ou, U, (w1, wa)

Ot10t> Ow?

8W1 ng

(t1—t2,ta—t3) (t1—t2,ta—13)

The log CF's of Us, Uy, and Us vanish because of the additivity in Equation (1.5) and because

their arguments do not contain ¢; and ¢5. The second-order partial derivative with respect
to t,, and t,, reduces the equation to only contain log CFs of unobserved variables in both
the pi* and p* equations.

All the second-order partial derivatives are

62 In E [eitl Y1+itoYo+itsYs ]

ot? )
0’InE [eitly1+it2y2+it3Y3] 1 0 0 100 %22(“’1’“’2) ( |
1 t1—ta,ta—t3
0t10t9 200, 17, (w1.02)
0’lnE [eitlyﬁitzyﬁit?’y‘d’] o 0000 B (t1—t2,ta—t3)
Ot10t3 o -1 0000 W
9?nE [eit1Y1+it2Y2+it3Y3] - L 9 1 010 1 (t1—t2,ta—t3)
ot2 e, (t1)
62 InE [eit1Y1+it2Y2+it3Y3] 0 1 -1 0 0 0 @64 (t2)
Ot20t3 0 0 1 0 0 1 o ()
2nE [eit1Y1+it2Y2+it3Y3] Us
ot

(1.8)

It is instructive to set (t1, t2, t3) = (0,0, 0) because the vector on the left hand side of Equation
(1.8) will equal the vector of observed covariances, Cov(Y,,,Y,,), and the vector on the right
hand side of Equation (1.8) will equal the vector of unobserved covariances, Cov(Up,,, Upn,)-
Hence, the entries in the matrix on the right hand side of Equation (1.8) are the same as

the entries of the matrix that expresses Cov(Y,,,Y,,) in terms of Cov(Up,, Uy,,). Further, if



U, and U, are independent, then

%o, v, (Wi, ws)
Ow?

a2()0U1,U2 (wh w?)
Ow1 0wy

= @, (t1 — t2)

(t1—t2,ta—t3)

=0 (1.9)

(t1—t2,t2—t3)

6290U1 , Uz (wl ) w2)
Ow3

= @1y, (ta — t3)
(t1—t2,ta—t3)

Equation (1.9) evaluated at (t1,t2,t3) = (0,0,0) becomes Cov(Uy,Us) = 0. The difference
between Solution 2 and the solution from Bonhomme and Robin (2010) can be understood
as the difference between allowing for Cov(Uy, Us) # 0 and assuming Cov(Uy, Us) = 0.7 The
matrix in Equation (1.8) incorporates cross-partial derivatives and is the first step to dealing
with the statistically dependent unobserved variables.

The matrix in Equation (1.8) is invertible so that all the second-order partial derivatives
of log CFs of unobserved variables can be expressed in terms of observed quantities. For

example,

82 ln E [eit1Y1 +it2Y2+it3Y3:| 82 ln E [eitl Y1 +it2YQ+it3Y3:|

0t10ty O0t10t3

angUl,Uz (wla WQ)
Ow?

(t1—t2,ta—t3)

(1.10)
Next, I show that for any (sq, sg) € R? there exists (1,2, t3) € R? that

O*pu, v, (Wi, ws)
Ow?

82 ln E [eitl Yi+itaYs +it3Y3:| 82 ln E [eitl Yi+itaYs +it3Y3:|

Ot10t, Ot10t5

(s1,52)

"The matrix in Equation (1.8) is the same as the one from Bonhomme and Robin (2010) when the
unobserved variables are mutually independent.
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This means that (t1, s, t3) € R3 solves

/

1 0 ty
1 —to S1
N e (111)
log — 13 S92
0 -1 ts

The matrix is the transpose of the first two columns of the matrix in Equation (1.3). These
columns contain the coefficients of U; and Us.

Choose (t1,ts,13): For any (si, s2) € R? choose (t1,ts,t3) = (51,0, —s2) so that

!/

1 0 S1
t1 — 1o S1
= -1 1 0 =
lo — 13 S92
0 -1 —S9

Substitute (¢, ta,t3) = (s1,0, —s2) into Equation (1.10)

82 ln E I:eitl Y: +it2Y2+it3Y3]
Ot10t9

82 ln E [eitlyl +it2Y2+it3Y3:|
Ot10t3

82<PU1,U2 (w17w2)
3&1%

(s1,52)

(81,0,—s2) (81,0,—s2)

The CF's of the unobserved variables are identified by integration. For example,

a290U U. w1>w2)
¢U1 U2<817 82 = exp </ / 176201

J/P d/f81 69299(]1 Uz cdl? OJQ)
8W1WQ

dudv

(u,

2
dudv—l—/ / 0 %52 (r, w2)
uU C’L)Q

dudv)
(0,u)

The strategy in Solution 2 uses the second-order partial derivatives of the log CF of

[]8

Y. The main assumptions, Assumptions 2i and 2ii in Section 1.3, are that the matrix in
Equation (1.8) of all second-order partial derivatives is invertible and that the image of the

matrix transformation in Equation (1.11) spans R2.

8 Appendix A identifies the rest of U.
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1.3 Identification in the General Setup

An important aspect of this paper is that subsets of unobserved variables can be statisti-
cally dependent. To make this explicit, let U = (U7, ..., ﬁj’w)’ where U, = (Upi, - .., Uni,.)
is a vector of arbitrarily dependent real random variables. Assume that the vectors
U € REm m =1,..., M are mutually independent. Let Y € R? and consider the system

of equations

1 1 M M
}/1 all e alKl Ull all “e. alK]M U]\/[l
= oo : +...F oo : (1.12)
1 1 M M
Yp Gpy .- aPK1 U1K1 aPl aPKM UMKM

P,Kn,

or Y = AUy +...+ AyUy = AU where A,, is the P x K,, matrix with entries {az}c}p’zl b1

M
and A = (Ay,..., Ay ) is a partition of the P x Y K, matrix A.

m=1

Define

a (Allo* Aﬁ}) - (AlI (U@ﬁo) Ay (U@fﬁo))
k k

the matrix that includes the matrix A,, if and only if at least one of the columns of A,, has a
nonzero coefficient in the p*** row.?”!° The image of AP is a subspace with dimension equal
to the number of unobserved variables that are dependent with unobserved variables in the
p*" equation. Assumption 1i, the main identifying assumption, is a condition on the span
of the image of AP".

If A is the matrix from the model in Equation (1.3) and U = (Uy, Us, Uy, Us) where

9The function I(E) is the indicator function.
10Zero columns are removed from all matrices in this paper.

12



U, = (Uy,U,) (the same dependence structure as in Example 1A), then

1 0 1 1 0 0 1 0 0
A= -1 1 o0 A= -1 1 1 A= -1 1 o0
0 -1 0 0 -1 0 0 —1 1

A' is the same matrix as in Equation (1.7) and contains the first three columns of A because

U, and Us; have nonzero coefficients in the 1%¢ row.

Assumption 1. There ezists pp- € {1,..., P}, and tpe = (tme1,... tmep) for k* =

1,..., Ky~ such that
Prx! 1 0.
Al tm* OZm<m* Km
- g . g
1. Apk tm* - : — Sm*
iy 0.

i. a™., =0 for all k # k*

D
where 0; = (0,...,0) is a column vector with J zeros and Sps = (Sm1, -+, Smek, ) M
Assumption 1i implies that the image of AP+’ spans (0,...,0,8 .,0,...,0) where 5, €

REm* . Assumption 1ii implies that coefficients of unobserved variables that are dependent
with U,,«; are zero in the p*™* equation.'? Assumption 1lii is always satisfied when all the

unobserved variables are mutually independent (i.e. K, =1 for all m).

" Assumption 1i can be replaced by several other assumptions. For example, if Rank(AP+) >
Zn]\le I(ap,.m # 0) then the marginal distributions of ay, . mUm, m =1,..., M are identified.
1 0 1
2In Solution 1: A! = ( -1 1 0 ) and Assumption 1 was satisfied by (t1,t2,t3) = (53,83, 83) S0

0 -1 0
1 0
that -1 1
(v

)(2)-(2)

O O
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Sk
Theorem 1. If | ‘(E lexpi (Up181 + -« + Uprr—18k—1 + Um*kuk)])_ll duy, < oo for all fized
0

Sty s6_1 and all s in the support of the CF of U,ye, E [|Unmsk|] < o0, and U has zero mean
then the joint distribution of Uy is identified when Assumption 1 holds.'3> The CF of U,

18

Kne /k iE [Yp exp (n?’ (A7) (O geaste e Skt 0, 0,05 Km)’)}
exp — duy,
Gpek J0

E [exp (z}}’ (Aps) T (sz<m* KopsS1ye-vrSk—1,Uk,0,...,0, 62m>m* K,,) ]

(1.13)

where (AP)* s the Moore-Penrose pseudoinverse of APx+ 14

Remark 1. Identification ofUt 15 achieved sequentially by:

(1) Using Theorem 1 to identify unobserved variables,

(2) Mowving the unobserved variables that are identified in step (1) (and that mutually in-
dependent of the other unobserved variables) to the left hand side of the equation and
treating them as part of Y.

Remark 2. Using Equation (1.13), the mean and variance of Uy, are

Ay,
Var (Uni) = ik( Y, V] - B, B[V

This implies that if p # p* then expectations and variances of estimators based on p and
p* may differ. Furthermore, if Y, #* Y't,, then variances of estimators based on Yt
and Y't,, may differ. Hence, if the dependence structure of the unobserved wvariables is

misspecified then an estimator of the distribution of Upy based on Equation (1.13) will in

13The condition that U has zero mean can be weakened to knowing or identifying
az}lﬂ*kE[Umk].
(m,k)#(m* k*)
4 The proofs of the theorems in this section are in Appendix B.
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general be inconsistent.
Remark 3. The CF of U, is overidentified if AP+ ort,, are not unique.'® Overidentification
suggests the possibility for testing and opens the possibility for a “best” estimator. Neither

of these topics are studied in this paper.

The theorem that follows relies on an assumption about a matrix that has the same

coefficients as the matrix representation of the covariance of Y in terms of the covariance of

—

U:

M Kmy M Km,
Cov(Yps Y) = Cov | > > apii,Umitas D D i Uk
mi1=1k;=1 ma=1ko=1
M K.,
= (Z ap! 0, Cov(Uni, Upi) + Y (apty, alty, + aptyanty, )cou(U,nkl,Umk2)>
m k=1 k1<kz
(1.14)
where the second equality follows because Cov(Up,k,s Umyk,) = 0 when my; # ms and
Cov(Unmky, Umiky) = Cov(Upmiy, Ui, )- The coefficients are: a7t yar ) and a?y ar) +ay ar .
Let A, = (AT",..., A% ) be a partition of the matrix A4, where A} is the k"™ column
of A,,. Define the matrix multiplication
A, x Ay =
(AT®A§”7 AT®A;”+A3L®AT7a ZL®AZL7’ Z/L®A'Ircn+3+ Z:LJ(X)AZL?aATI?m@AT;(Lm)

where ® is the Kronecker product and 1 < j < K,, — k. The matrix A,, x A,, has dimension

P? x K (K +1)/2.16

15 Another reason for overidentification is that the system of equations Y = AU is first transformed to

Y = BY = BAU = AU and then unobserved variables are identified.
16The matrix A, * A has some repeated rows because the order of the scalar multiplication does not

matter, that is aj, a;’, = ap, aly  so for calculation purposes I remove repeated rows and define the

matrix A,, * A, as the matrix A, * A,, without repeated rows so that a typical row looks like

m o m m m m m m m
[aplaerjl v Opky Opyjky + Aptjhoy Tpg 5> ameap+ij]

where 0 < j < P — p.The matrix A,, * A,, has dimension (P + 1)P/2 x K,(K,, +1)/2.

15



Let A = (A, ..., Ay ) be a partition of the matrix A and define the matrix multiplication
ACA = (A1 xA ..., AyxAy)

The matrix A ® A has dimension P? x Z%zl Kn(K,, +1)/2.17

When K,, = 1 then all the unobserved variables are mutually independent and

A, =AT = (a]y ... dpy)
Ay x A= (A, @A)

AOA=(A1 Q@A ,..., Ay ® Ay)

A ® A is the same as the matrix ) from Bonhomme and Robin (2010) and the central
part of their identification strategy. As mentioned earlier one of the contributions beyond

Bonhomme and Robin (2010) is to show how to deal with dependent unobserved variables.
If A is the matrix from the model in Equation (1.3) and U = (U, Us, Uy, Us) where
U, = (Uy,U,) (the same dependence structure as in Example 1A), then

1 0 0 1 0 0

-1 1 0 0 0 0

_ 0 -1 0 0 0 O
A A=

1 -2 1 010

0 1 -1 0 0 0

0 0 1 0 0 1

A ® A is the same matrix as in Equation (1.8). Inversion of this matrix was one of the steps

towards identification in Solution 2.

I"The matrix A ® A has some repeated rows so for calculation purposes define
AéA: (Al;A17 ey AM;AM)

This matrix A ® A has dimension P(P +1)/2 x Y"M_ K, (K +1)/2

16



Assumption 2.
i. Rank(A® A) =M Ko (K, +1)/2
ii. Rank(A,,) = K,, for allm

Theorem 2. If fskg Sky ( [exp( Zk 1 Unisi + iU, ug, +7,Umk2uk2>]> dug, dug, <
oo for all fized sy, ..., Sg,—1 and all sy, , Sk, in the support of the CF of Um, E (| Upkey Uiy |] <
00, and U has zero mean then the joint distribution of U,, is identified if and only if

Assumption 2 holds. The CF of U,, is

v b
¢Gm(5m) = exp Z/ / <Pm wm dugdoy,
mk ,,,,, ug,0,...,0)
/ / 0 (@m) dug, duy, (1.15)
8W7nklawfnk2 (815-38k1 —15Ukq ,0,---,0,upy,0,...,0)
where
’ i
890771 (wm) a(pgn (‘Bm) (A @ A)+ aZ@Y(j 82@)7 (E)
o w2, |y T 0wt | ot3 U ot
mo 1§ (a)" s, (AL 5m
and'®
9y () E [Yplei?/(Ai")Wm} E szei?/(A'/"L)+5M} E [YplY})zeW (4,)"s m}
Ot Oty (A7) 5, (E [ei?'(Azn)WmDZ) E [eiY%A:n)*s?m}

Assumptions 2i and 2ii are necessary and sufficient conditions for identification. They
provide the connection between the number of outcome equations, P, the number of subsets
that have arbitrarily dependent unobserved variables, M, and the number of unobserved
variables in each subset, K1, ..., K.

The number of linearly independent rows in A® A is at most P(P+1)/2 and the number

of linearly independent rows in A,, is at most P so by Assumptions 2i and 2ii respectively,

18(A® A)* is the Moore-Penrose pseudoinverse of A ® A.
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M Kp(K,, +1) < P(P+1)and K,, < Pforallm. But % K,,(K,, +1) < P(P +1)
implies K,, < P for all m. So for a given number of outcome variables, P, the number

of subsets that have arbitrarily dependent unobserved variables, M, and the number of

unobserved variables in each subset, K7, ..., K, must satisfy
N Kp(Kp+1) _ P(P+1)
Y T S (1.16)

m=1

When all the unobserved variables are mutually independent, for example, then K,, = 1
for all m and M must satisfy M < w for identification. The earnings dynamics model
in Equation (1.2) has P = 4 so a maximum of P(P + 1)/2 = 10 mutually independent
unobserved variables can be identified. After differencing to the model in Equation (1.3)
P = 3 so a maximum of P(P + 1)/2 = 6 mutually independent unobserved variables can
be identified. In Section 1.4 I extend the earnings dynamics model in Equation (1.2) from
Bonhomme and Robin (2010) by identifying 10 mutually independent unobserved variables,

the maximum number that is possible with P = 4.19/20

Remark 4. The matrices AP" and A® A are connected. Assume for this discussion that all

the unobserved variables are mutually independent (K, = 1 for all m) then

A" = (AY AT ) = (AL (g £0) .. AT}, £0))

and

A0A=(A1®A,...,AM®AM) = | ap A1 ... apmAu

19Ty Example 1A, P = 3 and U = ((Uy1,U12), Uz, Us, Us). So K1 =2, Ky = 1, K3 = 1, and K, = 1.
S Kn(Ky +1)/2=P(P+1)/2=6.
29There are some combinatorial questions that might be of interest. For example, for a given P, how

many subsets {K7, K»,...} of positive integers with K < K» < ... satisfy 2%21 Ky (K, +1)=P(P+1)?
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= | ap Al (a}a*l #0) ... a;)vflAlI (a%l #0)

= 1 gp" M_gp"
ap A7 o aye Ay

The part of A ® A that is visible, call it (A® AP = (azl,*lAIf* agflAf\;), is different
from AP = (Af* e A};\;) only by multiplication of each column by a nonzero constant. The
properties of (A ® A)p* and AP are identical. Hence, Assumption 1i, which is a condition on
AP" | can be replaced by an equivalent condition on (A ® A)p*.

Identification in Theorem 1 uses the information contained in the partial derivatives sep-

arately and sequentially while Theorem 2 uses the information from all the partial derivatives
together.?*
Remark 5. Theorems 1 and 3 provide sufficient conditions for identification while Theorem
2 provides necessary and sufficient conditions for identification. The drawback of Theorem
2 s that it uses second-order partial derivatives of the log CF instead of first-order partial
deriwatives of the log CF.

Setting up a system of equations of third-order (or higher-order) partial derivatives of
the log CF leads to more equations and can identify partial derivatives of more unobserved
variables. The problem is that integrating out the derivatives requires knowing higher order

moments of the unobserved variables.??

21The spatial model from Bonhomme and Robin (2010)

U1
Y; 1 pp 100 (6]]2
Y, |=lp 1 p 010 U3
4
Y3 p p 1 0 0 1 Us
Us

is identified using Theorem 2 but not using Theorem 1.

22Tn Theorem 2, the assumption that U has zero mean is used to undo derivatives: the mean is the value
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Remark 6. When K, = 1 for all m then Equation (1.15) simplifies to the solution from

Bonhomme and Robin (2010):

GOm(Sm) = exp (/Osm /Ovm o (Um) dumdvm)

The next Theorem identifies marginal distributions when arbitrary dependence is re-
placed by mean independence. Mean independence is a strong assumption that implies zero
covariance but allows for the unobserved variables to be dependent in other ways. This
theorem extends Theorem 1 in Schennach (2004a) and Theorem 1 in Cunha, Heckman and

Schennach (2010) from the system in Equation (1.1) to a general system in Equation (1.12).
Let A= (A, ..., Auk,,) be a partition of A where A, is the k* column of the matrix
A,, and define

At = (ar A ) = (AnT (e £ 0} U{m =13) o Awi, I ({ad,, # 0} U{m* = M}))

the matrix that excludes the column A,,; if it has a zero coefficient in the p*** row and U,
and Ugky- are independent. The additional part in the Indicator function, {m* = m}, will
be used to condition on unobserved variables and lead to some terms vanishing because of
mean independence.

Assumption 3. There exists a p* € {1,..., P} and a vector ﬁmk)* = (t(mk)m .. ,t(mk)*P)/,

where (mk)* :== > K, +k* is an indez, such that

m<m*

at the limit of an integral at 0. If higher-order moments are used for identification then the value of the
integral at its limit is a variance (or higher-order moment).

In Theorems 1 and 3 the assumption that U has zero mean serves a different purpose: the value of the
first-derivative of a log CF at 0 is its mean.

20



*m*l—»

7;. Ap*m*lf(mk)* — — g(mk)*

Kok [ —

AL iy

ii. B [Uni|U—(miy] = 0.2

Assumption 3i implies that the image of AP spans (0,...,0,s,0,...,0) where s € R is in
the (mk)*th coordinate. Assumption 3ii is the mean independence assumption.?> It replaces
Assumption 1ii that required a;l; = 0 for all k # k* i.e. coefficients of dependent unobserved
variables equal zero in the p*** equation.
S(mk)* 1
Theorem 3. If [ )(E [exp (iU(mk)*u)]) ‘ du < oo for all sgmry- in the support of the CF
0
Of U(mk;)*; E HU(mk:)*
8 holds. The CF of Ugppy- is

} < 00, and U has zero mean then Ulmiy s identified when Assumption

L s 1B [Yp* exp (iuy' (A 5(mk)*>}
Pmky (S(mry<) = = exp | ——— — - d
0 E [exp (@'uY’ (Ap™m™7) 5(mk)*>]

ap*k*

u (1.17)

Remark 7. Several papers analyze the regularity conditions that impose restrictions on the
CFs. The early measurement error literature (and literature on deconvolution) followed the
Kotlarski (1967) assumption of nonvanishing CFs; Fan (1991) and Li and Vuong (1998)
assume nonvanishing CFs on finite support while Schennach (2004a, 2004b) assumes nonva-
nishing CF's on infinite support. Bondesson (1974) was the first to prove identification when
CFs satisfy a “short gap” condition, which meant that the CFs do not vanish on intervals of

length L for all L > 0. More recently, Delaigle, Hall and Meister (2008), Carrasco and Flo-

23The standard basis is denoted by Emky- = (0,...,0,1,0,...,0)" where 1 is in the (mk)*t" coordinate.

U_ k) = (Uim1ys - - - Umk—1), Umbt1)s - - > Umic,n))
25 Assumption 3ii can be weakened by keeping track of the unobserved variables with zero coefficients in
the p*** row.
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rens (2010) and Evdokimov and White (2011) restrict some of the CFs to have a countable
number of isolated zeros on unbounded support and other CFs to have no regularity restric-
tions.2 In Theorems 1, 2, and 3, I impose an integrability condition that is motivated by the
closed form expressions for the CFs of the unobserved variables.’” The closed form solutions
suggest that the weakest reqularity condition would be based on the absolute continuity of a

CF of an unobserved variable with respect to a CF of outcome variables.

1.4 Example 1B: An Extension of the Earnings Dy-
namics Model

In this section I identify unobserved variables in an Earnings Dynamics model that ex-
tends the model from Bonhomme and Robin (2010) that was replicated in Equation (1.2).
By conceding that the fixed effect and the persistent component are not separately identified,
[ show (without differencing) how to identify 10 unobserved variables instead of just 5.

Consider,

wy = f+yl +my+y! t=1,2,3,4

y =yate t>2

my = 1

y?:Ct_elgt—l_QQCt—Q (1=G=0u=
ns =0

The differences between this model and the one from Bonhomme and Robin (2010) are:

26 Allowing for a countable number of zeros is important because some commonly used parametric dis-
tributions have CFs that cross the x-axis (for example the uniform and gamma distributions) but none of
these disappear on a set of nonzero Lebesgue measure and then reappear.

2"In Theorem 1, for example, in order for the CF of Uy in Equation (1.13) to be defined, I impose
Sk

!

(E[expi (... Uperug . )]) " dug, < 0o
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-yl is relabeled m; and now represents measurement error,
-yl follows a moving-average process of order 2,
- 11 is no longer restricted to be equal to zero.
Let Y = (wy,ws, w3, wy) and U = (f + yF' €9, €3, €4, 71, 12, 03, Co, €1, C2)’ then in matrix

notation

Assume E[U,,] = 0 and assume all the unobserved variables are mutually independent.

Set p* = 1. Then

11 -6 1
| o -
10 0 —0
10 0 0

where A' consists of the first, fifth, eighth, and ninth columns of A. When t; = s;(0,0,0,1)

then A''t; = sé; where s € R so Assumption 1i is satisfied. Using Equation (1.13), the CF

of Ny r is

sraron e (| SRS )

Appendix A identifies the rest of U.28

28The parameters 6; and 6, can be identified using Ben-Moshe (2012a).
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1.5 A Few More Illustrative Examples

In this section I solve the earnings dynamics model one last time allowing for mean
independence. I then provide two further examples to show that the methods in this paper

can be used in a variety of settings and can allow for covariates.?

1.5.1 Example 1C: The Earnings Dynamics Model with Mean In-

dependence

Consider the earnings dynamics model from Equation (1.3). Assume U, = (Uy1,Uy2) and
Uy = (Uai1, Usg, Usz) are independent and assume E[U,,i|U_ (i) = 0] for all k and m.

Set p* =2 and m* = 1. Then

1 0 0
At=1 1 1 1
0 -1 0

When #;; = s11(1,0,0) then A2 = 5,,&;; where s1; € R so Assumption 3i is satisfied. Using

Equation (1.17) the CF of Uy is

dunton) =o ([ ot )

Appendix A identifies the rest of U.

1.5.2 Example 2: Difference-in-Differences Model

Consider a difference-in-differences model with two periods and two groups. In the first
period all individuals are in state 0 and in the second period individuals in group g € {C, T’}

(where C' stands for control and 7' stands for treatment) go to state g. Hence, there are

29Gee also Ben-Moshe (2012b) for identification of random coefficients in linear regression models.
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three states t € {0,C,T}. Let Yy be the outcome for an individual in group g in state t.

Assume that outcomes are represented by

Yoo = me(Xe, ac) + ho(Wo, Bo) + €co
Yro = mq(Xr, ar) + ho(Wo, Bo) + €10
Yoo = me(Xe, ac) + he(We, Be) + ece

Yrr = me(Xr, ar) + he(Wr, Br) + err

where m¢ and mp are nonparametric production functions of individuals in groups C' and T’
respectively, and hg, h¢c and hp are nonparametric production functions of states 0, C' and
T respectively. The covariates X, and W, are observed variables, the random variables ay
and 3; are unobserved heterogeneity, and €, is an unobserved idiosyncratic shock.

If an individual in the control group had instead been treated in the second period then

the unobserved counterfactual outcome is assumed to be

Yir = me(Xe,ac) + he(Wr, Br) + ccr

If an individual that is treated had instead been a part of the control group then the unob-

served counterfactual outcome is assumed to be

Yie = mre(Xr, ar) + he(We, Be) + erc

I focus on identifying the distribution of (Y, Y/-), the counterfactual outcomes, which

are the objects of interest in the difference-in-differences literature.3%/3!

30For a review on the difference-in-differences literature see Angrist and Krueger (2000) and Blundell and
MaCurdy (2000).

31Bonhomme and Sauder (2011) consider a similar model and apply it to compare the effects of different
education systems. In their setup all students attend the same type of primary school but two different
types of secondary schools. The outcome variables are test scores, one source of unobserved heterogeneity is
child-specific ability that may be distributed differently for children in different groups, and another source of
heterogeneity is a school-specific effect that may be distributed differently depending on the type of school.
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Condition on X := (X, Xp, Wy, We, Wr) = (z¢,xr, wo, we,wr) =: T and let Y =

7 32
(YC'07 YT07 YCC7 YTT)/ and U - (mC7 mr, h07 hCa h’T7 €c0,€10,ECC, 8TT),- Then

(@)
—
—
o
o
(@]
—
(@]
o o O

Assume E[U,,] = 0 and assume Uy, Us, Us, Uy, Us, (Us,Uz) and (Us,Uy) are mutually
independent.?3

As a preliminary step towards identifying counterfactuals, Uy, Uy, Uy + Ug and Us + Uy
are identified.?*:3> With one additional assumption that is defined later, the distribution of
(Y, Yic) is identified.

Set p* = 1. Then

Al =

where A® consists of the first, third, sixth, and seventh columns of A. When #; = $1(0,0,1,0)

then A'#; = s, where s; € R so Assumption 1i is satisfied (Assumption 1ii follows imme-

32To save on notation I denote mc(zc, ac) by me, mr(zr, ar) by mr, ho(wo, Bo) by ho, he(we, Be)
by hc and hT(wT,ﬂT) by hT.

33The unobservables Us and U; are arbitrarily dependent. The unobservables Ug and Uy are arbitrarily
dependent.

34Tt is impossible to separately identify U, and Us since they appear only once and in the same equation.
Similarly, Us and Ug are not separately identified.

35The distributions of Us and (Ug, Uz) are also identified but not needed for this example.
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diately from mutual independence). Using Equation (1.13), the CF of m¢(z¢, ac¢) is

s11F [YCO exXp (ichc) ‘X = .f:|

b (51X = ) = exp / du

0 E [exp (iuYee) | X = f]

In Appendix A I identify the distributions of my and (he + ecc, hr + err) and the
counterfactual joint distribution of (Y2, Y/-) with one of two possible assumptions
i. The joint distribution of (ecr, e7¢) is the same as (err, ecc) or

ii. The joint distribution of (ecr,erc) is the same as (epr — €10 + €co, €cc — €co + €10)

Remark 8. Ezample 2 is related to models on wage decomposition in which an individual

in group g € {1,...,G} and job t € {1,...,T} has wage
Wer = A% (my(Xy, ag) + he(Ws, B) + £g1)

where A9 is a known invertible function, m, and hy are nonparametric production functions,
Xy and Wy are observed covariates, oy and By are unobserved heterogeneity, and €4 is an
tdiosyncratic shock. This can be used to estimate distributions of counterfactual wages for
individuals in the same group but with different jobs like in an occupational choice model
or for individuals in different groups but with the same job as in Juhn, Murphy, and Pierce

(1991) who consider black-white wage differentials.

1.5.3 Example 3: Measurement Error Model With Three Mea-

surements

Consider the measurement error model with three measurements

X1:X*+€1

XQZX*+€2
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XgZX*+53

where (X7, Xy, X3) is observed and X* and (g1, €9, £3) are unobserved.

Let Y = (X1, X9, X3) and U= (X*, e1,69,e3)" then

1100
Y=|1010|U

1 001

Assume E[U,,] = 0 and assume (U;,Us), Us and U, are mutually independent (X* and &;

are arbitrarily dependent). Then

1 2100
1 1.0 00

11 0 0
_ 1 10 00

Ai=|10 Ay=1] 1 As=| 0 A A=

1 00 10

10 0 1
1 0 000
1 00 01

Ki=2Ky=1,and K3 =150y | Kpn(Kn+1)/2=(2x3)/2+1+1 =5. Rank(A ® A) =
550 (A®A) =32 | K, (K,+1)/2="5and Assumption 2i is satisfied. Rank(A4,) = K, =
2, Rank(A;) = Ky = 1, and Rank(A;) = K3 = 1 so Assumption 2ii is satisfied. Using
Equation (1.15) the CF of (X*, &) is

s1 92
Gx+e1 (50, 51) = exp / / Poxearlt ), dv+/ / T (,0) 44,
Owi o Jo Owiw

S1 S2 82 . e 0 S2 v 82 . 0
/ / Foxoa(O) 440+ / / Foxea(0.1) 4 g,
Ow10ws o Jo w3

Appendix A identifies the rest of U.
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Remark 9. Let X, = X* +¢,, p=1,...,P, and P > 2. X, is the p"™ measurement of
the unobserved variable X*. Assume all the unobserved variables are mutually independent.
Then a solution for the CF of X* that uses all the observations is

siE [Xl exp (iuﬁ 2522 Xp)}

bx-(5) = exp / R

Remark 10. The measurement error model with repeated measurements can be extended to

a model with more than one unobserved covariate as follows

M
X, = Z Xo (X, € {Measurement p’s information set}) + ¢, p=1,...,P
m=1
where X,,, p=1,..., P are P observed measurements, X, m =1,..., M are M unobserved

covariates, I (X}, € { Measurement p’s information set}) is an indicator that X, is included

in equation p, and €,, p=1,..., P are measurement errors.>

1.6 Estimation and Asymptotics

In this section estimators for densities are constructed using the closed form solutions

from Theorems 1, 2, and 3. I show that the estimators are uniformly consistent.

36Li, Perrigne and Vuong (2000) use the results of the measurement literature and a solution mechanism
in a first price auction to identify distributions when each bidder has valuation Uy + Ay, p = 1,..., P where
Up is the common value, and A, is a private value. This can be extended to a model with more than one
common value. Consider,

M
Y, = Z UnI (X, € {Bidder p’s information set}) + A4, p=1,...,P
m=1
where Y, is the observed bid of bidder p, U,, m = 1,...,M are unobserved common values,
I(X;, € {Bidder p’s information set}) is an indicator that bidder p’s valuation includes the common value
Un and Ap, p=1,..., P are unobserved private values.
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Denote

0o (t) _ 1a o .
¢Hf:1 YP (7?) = W = illp H Y, exp (zY t)
p=1 P p=1
and estimate it by
5 DIl ( 5) P L3 z' af X S
- TY\T o ap 2% ap Y/
12 f) H et =1YEy U Y)” exp (zY t> H Y, exp <zYnt)
p=1 n=1 p=1
where a = (a,...,ap) is a multi-index of nonnegative integers with norm |a| = 25:1 Q.

When |o| = 0 then the expression is the CF of ¥ denoted by
s =E [exp <z§7'f>]

and estimated by

N
—a 1 o
;) =En [exp <2Y/t)] = El exp (erit)

Assume that U,,- is a scalar. The CF of U,,» in Theorems 1 and 3, up to a constant and

for some t, is

- sE|:Y;)* exp(z'u?’f}]
o =er i o (199

du (1.18)

and is estimated by

R s En [Yp* exp <u?’t_>]
? / du
0

P (5) = exp Eyn [exp (zu?’f)]
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The CF of U,,~ in Theorem 2, up to a constant and for some ¢, is 37

y E qu’ E [Y;,Q eiu?’t_] E [}/;71 }/302 equ’ :|
O (8) = exp / / 5 — ——dudv (1.19)
ezu? 1?:| ) B |:67luY’t:|

and is estimated by

—

. EN qu’ :| EN |:Y;,26 t:| EN |:Y1'31 YZDQ ewY t:|
¢ = exp / / — dudv

|:€iu)7’t_] )2 EN [eiu?’t_‘:|

The density of U,,- is obtained by inverting the CF using the inverse Fourier transfor-

mation

fnr(u) = %/eisuqu*(s)ds

This integral does not converge when the CF is replaced by its sample analog so the integral

is weighted by the Fourier transform of a kernel. The density of U, is estimated by

~ 1 PN
fnr(u) = By /e‘”“qﬁm*(s)qﬁ;{ (shy)ds
T
where ¢k (s) = [exp(isu)H (u)du is the Fourier transform of a kernel K supported on [—1, 1]
and hy = <= is the bandwidth of the kernel. The kernel leads to relatively slow convergence

SN

rates but solves any irregularity problems by smoothing the estimator. I use the commonly

37To be more exact the CF is

v E o, equ t |:Y , ezu?'t_} E {an/l }/p/2 eiu?'t_}
p1p2 / / - dudv

O () = exp (& [ ])’ B o]

but assume for clarity that Cy; ;- = 1 when p} = p; and py = pa and Cpy py = = 0 otherwise.
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used second-order kernel®

= S50 (15 absint) ;5

mut

whose Fourier transform 1is

Ox(s) = (1—s")1(s € [-1,1])

Lemma 1. Let F' denote the cumulative distribution function of Y and Fy the empirical
cumulative distribution function corresponding to a sample (Y1,...,Yy) of N independent

identically distributed random draws from F. Assume E [H;;l |Y;O|2%} < 00. Let

Ty = CN®/? 0<$é
N\ ?
ey = Clpsplnr, ve)) | v

where C' > 0 and C(P,é,E[]‘[le v, [2e0]) > 0 is a constant that may depend on the arguments in

the subscript. Then

P P
sup Ex H Y exp (z’?'t_) - F H Y exp (if’f) <en a.s.
{E[—TN,TN}P p=1 p=1
39,40

when N tends to infinity.

As N — oo, Lemma 1 uniformly bounds the estimation error on the compact interval

[—Tn, Tn)" by O (BF)? provided that Ty does not grow faster than some power of N.*!

38See Delaigle and Gijbels (2002).

39To simplify notation I suppress the subscript ¢ € [~Tn, Tn]F in SUDFe[— Ty, Tw]P unless there is some
ambiguity or the sup is not over this region.

40The proofs of the lemma and theorems in this section are in Appendix C.

17Zn = O (ay) is Big-O notation and means that there exists C > 0 such that Zy < Cay.
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The strategy in the proof is standard for finding uniform convergence rates in the empirical

processes literature:*2

1. Use the truncation trick to divide the random variable into Ey H§=1 Y}f‘” exp (237’ fﬂ <
kyn and the tail, Ey H§:1 Y, exp (z?’ fﬂ > Ky, Where Ky is a truncation parameter to
be chosen later,

2. Use Chebyshev’s inequality to estimate the tail,

3. Use symmetrization, the L; covering number, and Bernstein’s inequality to estimate the
component that is smaller than the truncation parameter,

4. Combine the two components and use the Borel-Cantelli lemma to show that the sample

analog approaches the population mean uniformly almost surely.

Theorem 4. Choose ey and Ty according to Lemma 1. Assume LSS ————du < oo and

(¢5 “3)
E [|Y;32|] < 00. The CF from Theorems 1 and 3, in Equation (1.18), is uniformly bounded
by
_ ¢Y Uf) /S uf)
S;Vlzfr)SN ‘¢m* om (S)‘ B sE[—S;}E/),SN] op ( 0 ¢y UB > o ( 0 UE)| )‘

SN
ol [ i)
—ON v u

sdu < oo, E[|Y2]] < 00, E[|Y2]] < oo, and E [[Y2Y2|] < co. The

P17 p2

s
Assume f_gN

o5 f)l
CF from Theorems 2, in Equation (1.19), is uniformly bounded by

SUD P+ (8) — P (8)
s€[-SN,SnN]
/ / cbym uf>¢yp2 uﬂ O ()
= sup exp dudv
86[—51\7,31\7 0 U-E) ¢Y u{)

¢Yp1 Uf)¢yp2 Uf) ¢YP1YP2( j
—exp<// ¢Yuf) ¢Yu{> dd)'

42The argument can be found in Pollard (1986) or Van den Geer (2006) and is used by Hu and Ridder
(2012), Evdokimov (2011), Bonhomme and Robin (2010), and others.
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=0 (e BVl + BN+ B [ et

Theorem 5. Choose ey and Ty according to Lemma 1 and assume the convergence rates

from Theorem 4 apply. Then

SUp | Fe () = fir (1)

~ SN
=0( s [ouels) ~oue()] + s m(s) A [ sl (s)ds

se[fSN,SN] SE[*l,l

+/_jN |¢m*(8)lds+[gj\¢m*(3)‘ds)

The first term in the convergence rate of fm (u), in Theorem 5, comes from the estimation
error of ¢,,«, from Theorem 4. The second, third and fourth terms in the convergence rate
of frus (u) in Theorem 5 come from the Fourier transform inversion, and depend on the
smoothing kernel ¢, and its bandwidth Ay, the limits of integration —Sy and Sy, and the
CF of the unobserved variable, ¢,,-.%3

The uniform bounds on the convergence rates in Theorems 1 and 3 suggest that estimators
based on first-order partial derivatives converge faster than estimators based on second-order
partial derivatives. The bounds in these Theorems are worse than Li and Vuong (1998) who

obtain O (22X ) but assume bounded support.**

43The constant in the big-O notation does not depend on the dimension of the vector of unobserved
variables, M, but depends on the dimension of the outcome vector, P.

44The literature has so far only found upper bounds on convergence rates of estimators based on partial
derivatives of CF and so at this stage the bounds are only suggestive about which estimators have the fastest
convergence rates. Schennach (2004) and Schennach, White, and Chalak (2010) find asymptotic distributions
for these types of estimators, which may be a good way to find the best estimators.
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1.7 Monte Carlo Simulations: Measurement Error
Model with a Repeated Measurement

This section presents a Monte Carlo study of the finite sample properties of three esti-

mators of the density of X* in the measurement error model with a repeated measurement:

an = X:; + En

Xng = Xr*z —+ €n2

where X,,; and X2 are observed measurements, X is an unobserved variable, and ¢,; and
€no are errors forn = 1,..., N. Assume samples are independent and identically distributed.

Two of the estimators for the density of X* are based on first-order partial derivatives
and one of the estimators is based on second-order partial derivatives. All the estimators
perform very well in the simulations with the median estimates almost indistinguishable
from the underlying theoretical density of X*. This is evidence that these estimators should
perform well in practice.

The data is generated from one of the following specifications of the distributions of X*,

€1, and E9

Experiment I Jar Jes
1 Norm(0,1) Norm(0,1) | Norm(0,1)
2 Gamma(5,1) Norm(0,1) | Norm(0,1)
3 sN(=2,1)+ 3N (2,1) | Norm(0,1) | Norm(0,1)
4 Unif(0,2) 0 0
5 Norm(0,1) Norm(0,2*?) | Norm(0,1)

where z*? (the variance of &1 in Experiment 5) is the square of the value that is attained by

the random variable X* in each trial. I compare three estimators of ¢x«:
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Estimator

A | G (5) = exp (f el gy,

~ b, (s ~ s iEN[(X1—X2) exp(iuX:
¢X*(S) = q’;:%((g)) where ¢€1 (t) = exp (fO : N[(EN[epr(iilel,;l(;]u )]du)

O (5)

_ s pv [ AEN[XiXaexp(B(X1+X2))] | En[Xiexp((X14+X2))] En[Xzexp( (X1 +X2))]
= exp (fo fo( T Joep (2 (X1 2))] Exlon( % (0 1%))]  Enfemn(E %)) ) dudv

where the first two estimators are constructed using Equation (1.13), and the third using
Equation (1.15). The first estimator is used by Li and Vuong (1998), the second estimator
has not been used to my knowledge, and the third estimator is used by Bonhomme and Robin
(2010). I present evidence that all three estimators have good finite sample properties.

I generate 100 simulations of sample size N = 100, N = 1,000 and N = 10,000. The
grid on the x-axis is divided into 1,000 equidistant grid points for integration in both the
CF and density domains.

The results are summarized graphically in Figures 1.1 to 1.5. Figure 1.1 reports the
outcomes of 100 simulations of sample size 100 where the data is generated according to
Experiment 1. The first column represents the real part of the CF, the second column
represents the imaginary part of the CF, and the third column represents the density. On
each graph the solid red line represents population quantities, the solid blue line represents
the median of the simulations and the dotted blue lines represent the 10-90% pointwise
confidence bands. The first row depicts the results of Estimator A, the second row depicts
the results of Estimator B, and the third row depicts the results of Estimator C. Figures 1.2
to 1.5 are the same as Figure 1.1 except for Experiments 1.2 to 1.5.

To provide an indication of relative finite sample efficiencies of the estimators, Tables 1.1,
1.2 and 1.3 report the mean integrated squared error (MISE) of each estimator for N = 100,

N = 1,000 and N = 10,000 respectively where

MISE = E { / (fX*(x) . fX*(x))zd:U]
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The median estimates do very well, lying almost on top of the theoretical CFs and den-
sities. As expected, only Estimator A is consistent in Experiment 5 (due to the dependence
structure of unobserved variables). The MISE values suggest that Estimator C, which is

based on second-order partial derivatives is the least robust.

1.8 Conclusion

I consider a system of linear equations in which each observed outcome variable is a
linear combination of unobserved variables. I present techniques to identify nonparamet-
ric distributions of unobserved variables. The system has more unobserved variables than
outcome variables and subsets of the unobserved variables can be statistically dependent
(either arbitrarily dependent or mean independent). I establish a relationship between the
number of outcome variables, the number of unobserved variables, and the dependence of
the unobserved variables. The identification strategy involves taking partial derivatives of
log CFs to reduce the number of log CFs of unobserved variables and using the arguments
of a log CF of a linear combination of outcome variables to express log CFs of unobserved
variables in terms of observed quantities. I analyze the identification strategy in an earnings
dynamics model from Bonhomme and Robin (2010). The identification proofs are construc-
tive so estimators replace population quantities with sample analogs. The estimators are
part of a general class of estimators that use partial derivatives of log CFs. I show that
these estimators are consistent. In finite sample simulations, estimators closely match their

theoretical counterparts.
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1.9 Appendix A

1.9.1 Example 1A: Earnings Dynamics Model (Solution 1)

As mentioned earlier the unobserved variables are identified sequentially. Following the proof for iden-

tification of Us, the log CF of (Y7,Y3,Y3) is
InE [exp (itlyl + itaYs + ’ithg)] = PU,,Us (fl —to,10 — tg) + vu, (tl) + vu, (tz) + pu, (tg)

The CF of U,: The partial derivative with respect to ts is

B [YQ exp (itlyl + 'LtQ}/é + Zthg)] _ (9(,0[]17[]2 (wl, WQ)
FE [eXp (itlyl + Z't23/2 + it3Y3>] awl

dpu, U, (w1, w2)

+ 8&)2

(t1—t2,ta—t3)

+¢p, (t2)
(t1—t2,ta—t3)

Set (t17t2,t3) = (84,84,34). Then

iE [Yoexp (is4Y1 + i84Y2 + i54Y3)] Ovu, U, (Wi, ws)

Elexp (isgY1 +issYs +issYs)] Owy

L i (W1 w2)

+ / s4) = / S
00) Do 80U4( 1) ‘PU4( 4)

(0,0)

where the last equality follows from ¢, (0) = iE [Us] and the assumption that £ [Uy] = 0.

_ B % iE [Yaexp (iu (Y1 + Yo + Y3))]
E [exp (iUys4)] = exp (/0 Z [jxp (. erz i Y3);’] d )

The CF of Us: The partial derivative with respect to ts is

) [Yg exp (itlyl + itQYQ + Zthvg)] _ 84,0U1,U2 (wl, UJQ)
E [exp (itlyl + Z'tQYé + it3Y3)] awg

+ o, (t3)
(t1—t2,t2—t3)

Set (t17t27t3) = (53,53,53). Then

iE[Yyexp (issY1 +is3Ya +is3Y3)]  Opu,u, (wi,we)

/ N/
E [exp (iS3Y1 + ngYQ + ngYg)] - 8w2 + (pUS (53) - §0U5 (83)

(0,0)

where the last equality follows from ¢, (0) = iE [Us] and the assumption that £ [Us] = 0.

, B % GE [Ysexp (iu (Y1 + Yo + Y3))]
E [exp (iUss3)] = exp (/o Z [e3xp (% erz i Yg);] d )
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The CF of (U, Uz): The partial derivative with respect to t; is

1B [Yl exp (itlyl + itQYQ =+ Zthg)] _ 8<pU17U2 (wl,u)g)
E [exp (’it1Y1 + itoYs + it3Y3)] Oowq

+ v, (t1)
(t1—t2,t2—t3)

Set (tl,tz,tg) = (O, —S1, —81). Then

IE [Y1 exp (—isl (Y2 + Yg))] _ 6(,0[]17(]2 (w17w2)
Elexp (—isy (Y2 +Y3))] dwr

8§0U Uy (W1, W
by, (0) = 2ovta (1,0)
(8170) 1 (51’0)

where the last equality follows from ¢y, (0) = iE [Us] and the assumption that £ [Us] = 0.

The partial derivative with respect to t3 is

Elexp (it1Y1 + itaYa + itsY3)] Ouws

B [Yg exp (itlyl + thYé + Zthé)] . a(p[]h(]2 (wl, WQ)

+ oy, (t3)
(t1—t2,ta—t3)

Set (tl,tz,tg) = (81 + 82,82,0). Then

B [Yyexp (iYa (s1+ s2) +is2Y2)] 0w, v, (Wi, ws)
FE [exp (ZYl (81 + 82) + iSQYQ)} awg

_ 9vus v, (w1, w2)
aWQ

+ ¢, (0) =

(81,82) (81,52)

where the last equality follows from ¢, (0) = iE [Us] and the assumption that E [Us] = 0. Integration leads

to

E [GXp (iU1$1 + iUQSQ)]

Cexp ([ EMiexp (Cim (Vo + Vo)) 7B [V exp (i) (51 — up) 4 iuaYa)]
= €xp (/0 E [exp (—iug (Ya + Y3))] duy /0 E [exp (Y1 (s1 + u2) + iugY2)] ‘ 2)

where I used

dUQ

(s1,u2)

. 8¢U1,U2(w17w2)
U,,U 51,8 = —_—
Yu, 2( 1 2) /0 8(4)1

duy + /82 a(pUlvlg (wl’WQ)
(u1,0) 0 w2

1.9.2 Example 1A: Earnings Dynamics Model (Solution 2)

The log CF of (Y1,Y>,Y3) is

InFE [exp (itlyl + 1taYs + ithg)] = QU,,U, (tl —to,10 — tg) + YU, (tl) + ¢u, (tg) + @u, (tg)
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All the second-order partial derivatives are

92 In B [eit1YititaYaritsYs]
ot?
0?InE [eit1Y1+it2Y2+u3y3]
Ot10t
0?lnFE [eitlYl +it2Yz+it3Y3]
Ot10t3
82 In E [eitrYiit2YaritsYs]
ot3
92 In B [eit1YititaYaritsYs]
Oto0t3
0’lnE [eitlyl+it2Y2+it3Y3]

ot3

The inverse is

0% pu, Uy (w1,w2)
Ow?

(t1—t2,t2—t3)
029y, Uy (W1,w2)
(90.)1 60.)2

(t1—t2,t2—t3)

029y, U, (W1,w2)
Ow?

(t1—t2,ta—t3)
e, (t1)

o7, (ta2)

e, (t3)

1 0
-1 1
0 -1
1 -2
0 1
0 0
0 -1
0 O
0 0
1 1
0 1
0 0

0 1 0 0
0 0 0 0
0 0 0 O
1 010
-1 0 0
1 0 0 1
-1 0 0 O
-1 0 0 O
-1 0 -1 0
1 0 0 O
0 1 1 0
1 0 1 1

U, U, (w1,w2)
U, Uy (w1,w2)

U, Uy (w1,w2)

p)
Owy (t1—t2,t2—t3)

Bwl ng

(t1—t2,t2—t3)

p)

Owi (t1—t2,ta—t3)
1"

PUs (tl)

e, (t2)

©7, (t3)

0?’InE [eitlyl +it2Ya +it3Y3]
ot?
82 In B [ertrYititaYaritsYs]
Ot1 0t
0?’InE [e”l Y1 +it2Yg+it3Y3]
Ot10t3
0?InE [eitl Yi+itaYa+itsYs ]
ot2
0?’InE [e“lyl +it2Ya +it3Y3]
Ot 0t3
0?InE [e”l Y1 +it2Y2+it3Y3]
ot3

All the second-order partial derivatives of the log CF of unobserved variables are solved for in terms of

observed quantities.

For any (s1,s2) € R? choose (t1,ts,t3) = (51,0,

—52). Then

v, U, (w1, w2) O InE [eit1Y1+it2Y2+it3Y3]
B2 (51.50) - Ot10to (51.0,—32)

D% ou, U, (wi,w2) _ Ik [eitlyﬁitﬂﬁmn]
Ow10ws (s1,52) o Ot 0ts (51,0,—82)

O pu, U, (wi,w2) ”InE [eit1Y1+it2Y2+it3Y3]
w2 (ore2) Ot10t3 T
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82 ln E [eitlyl +it2Y2+it3Y3}

62 ln E [eitlyl +7;t2Y2+it3Y3}

Ot10ts

(81,0,—s2)

Ota0ts

(81,0,—s2)



Integrating out

S1 v 692 Wi, w
bu, U, (51, 82) = exp (/ / Pu, U, (W1, w2)
0 0

+/S2 /U 82(,0[]17(]2((&11,(&]2)
o Jo Ows

2
ow;

dudv>
(0,u)

o 62(:0U1,U2 (wl ) w2)

s2
dudv + / /
(u,0) 0 0

Owiwo (w0)

dudv

Slmllarly for U3 let (t17t27t3) = (537070) , for U4 let (t17t27t3) = (0, 8470), and for U5 let (tl,tg,tg) = (O, 0, 85).

Then
@, (83) =
?InE [eit1Y1+ith2+it3Y3]
ot?
©p, (54) =
92 In B [eit1YititaYaritsYs)
Ot10ts

o, (s5) =

82 1n E [eit1Y1+it2Y2+it3Y3]

0t10t3

Integrating out

(83,0,0)

(0,54,0)

(0,0,s5)

bu, (53) = exp (

du, (s4) = exp (

Pus (s4) = exp (/0 3/O o, (v) dudv

02In E [eitiYititaYotits¥s]
Ot10ts

92nE [eit1Y1+it2Y2+it3Y3]
2
ot3

(0,54,0)

82 ln E [eit1Y1+it2Y2+it3Y3:|

O0t20t3

(0,0,s5)

S2 v

S3 v

S— >—
o— —

(83,0,0)

@, (v) dudv

¢, (v) dudv

82 lnE I:eit1Y1+it2Y2+it3Y3]

Ot10ts

82 InE [eitlYl +it2Yg+it3Y3]

Ota0ts

82 lnE [eit1Y1+it2Y2+it3Y3:|

ot?

(s3,0,0)

(0,54,0)

(0,0,s5)

1.9.3 Example 1B: Extension of the Earnings Dynamics Model

To identify Uy, Us, Ug and Ug set p* = 1. Then

11 -6, 1
a_|ro e -n
1o o0 -a

10 0 0
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9, 03+62  07—0102+03+0> 1 61 62-9
Set t1:51(0707031),t5:55( 7797;3 19% y 1 9% 2 at8:58 0375797%3 2951 ,and

! - / - / — /
tg = s9 (0,0,—9—12, é) where s1, 85, 5,89 € R. Then A''t; = 5181, Al'ts = 5565, Al tg = s3é5 and Al'tg =

s9€y so Assumptionli is satisfied. Using Equation (1.13), the CFs of f + yf 1, (o and (; are

Gpyyr(s1) =exp </081 iE]E[}[zX?EiZ$4})/A]})]dU)

/55 iE [Yl exp (Qﬂ (Y103 — Y2040 + Y302 + Yaby — Y102 + Yy0105 — Y403 — Y492))]
0

du

$ny (s5) = exp ,
E |:6Xp (% (Y19% — }/20102 + }/39% + Y392 — Y49% + }/49102 — Y49% — Y4Q2)):|

oy i [Yl exp (_aﬂ (Yol — Y30y + Yify — Y492))]
01Jo E [exp (_9& (Yab — Yaby + Y — Y492))}

/59 iE {1’1 exp (*% (Y3 — Y4))]
e (i os )]

du

¢y (s8) = exp

du

¢ (s9) = exp

The unobserved variables U, Ug, Ug and Uy are identified and satisfy independence assumptions that

allow a rearrangement of the system so that the identified unobserved variables can be treated as part of Y.

Let
Us
000 O0O0 O Us
~ , , , , 1 001 0 1 Uy —
Y:Y—AlUl—ASUg,—ASUs—AgUg: = AU
1100 1 -6 Us
1 110 0 —6 Uz
Uio
To identify Us, Ug and Ujg set p* = 2. Then
00 O
2 11 1
1 0 -6,
1 0 —6

_ _ 6, 01 _ 140, 146, _ 1 1
Set ty = s2 (0,0, 755 91_92), ts = S (0,1, 765 91_92> and t19 = S10 (0,0, a0, 91_92) where

ol - ol — ~To! - . P . .
$9,56,510 € R. Then A%ty = 591, A% tg = sg€» and A%ty = s10€3 so Assumption 1i is satisfied. Using
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Equation (1.13), the CF's of (3, £2 and 79 are

B 2 i [Yaexp (=it (Yals — Ya0n) )] .
Gey(52) = €xp /0 - {eXp< - le))} du / <¢f+y{’ (52) P, <91 — 02)>

¢772 (86) =
%6 0B [Yz exp (g7 (Y (01 —02)+Y5 (1402)+ Y2 (1401)) )| 01(02—01)—02(1+05)
d /( ( 1(62—01)—02 (1465 ))
P </0 E[exp( it (Ya (61— 92)+y3(1+02)+y4(1+91)))] u Priyp (56) Di 56 0,—0;

510 iE [YQ exp( (Vi + n))] 1065
E {exp( - (—Y3 —|—Y4)ﬂ du /(z)Cl (91 —092)

G (510) = exp /

The unobserved variables Uy, Us, Us, Ug, Us, Uy and Uy, are identified and satisfy independence as-

sumptions so that 3, 4 and 73 are identified in a similar way to the unobserved variables above

e % {E Y3 exp (tuYy)] " . . 0os
buntoa) = oxp ([ ORI ) /0 (50) 6 (50) 0, (~0250)

S4B Y, Y1)
duato) = oo ([ LI /(61 5) s 55) 6y (52) 0 (~025)

B *iF Y3 exp (tu(Ys — Y3))] " los ges .
Pny(s) =e P(/O Eoxp (u(Ys — Y2))] d )/(¢<1( 0253) pc, (0183 + b253))

1.9.4 Example 1C: Earnings Dynamics Model with Mean Inde-

pendence

Set p* =2 and m* = 1. Then

1 0 0
A= 1 1 1
0 -1 0

When #;; = $11(1,0,0) then A2 = s11€11 where s11 € R so Assumption 3i is satisfied. Using Equation

¢uy, (s11) = exp (/OSM iEE[}[;QX?Z£Z$§}I)} du)

When t15 = $11(0,0,—1) then A2V = 51,85 where 515 € R s0 Assumption 3i is satisfied. Using Equation

bontony) =esp ([ EDaO i)

(1.17) the CF of Uy is

(1.17) the CF of Ujs is

In Example 1B, it was possible to move identified unobserved variables to the left hand side of the

equation because of the mutual independence assumption. In Example 1C, this is not possible because
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the joint distribution of ﬁl is not identified (only the marginal distributions U;; and Ujs are identified).

Identification comes from first manipulating the system from Equation (1.3) as follows

Uy

Yi 1 0 1 0 0 U,
Y1+Ye+Y; = 0 0 1 1 1 Us
Ys 0 -1 0 0 1 Uy

Us

or v = AU

Set p* =2 and m* = 2. Then

10 0
AZ=| 1 1 1
00 1

When 521 = $21(1,0,0) then A2 = 521%21 where so; € R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of Us, is

o ([ B0+ Ys + Ys) exp (uYy)]
o) = sp [ AN Ve (7))

When t3s = s95(—1,1,—1) then A22 — s55t0, where 595 € R 50 Assumption 3i is satisfied. Using

Equation (1.17) the CF of Uy is

_ 2B [(Yh +Ys + Ys) exp (iu(=Y; + Y3 — V3))]
P, (S22) = exp (/0 E [exp (iu(—Y; 1 Ys — ¥3))] du)

When fo3 = $23(0,0,1) then A2 = 8233623 where so3 € R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of Uss is

1.9.5 Example 2: Difference-in-Differences Model

As a preliminary step I identify Uy, Us, Uy + Ug and Us + Ug. With one additional assumption that is

defined later, the distribution of (Y4, Y7) is identified.
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To identify U; set p* = 1 and #; = (0,0,1,0). Then

1 110
Al 01 01
1 0 00
00 0O

and At = s, so Assumption 2 is satisfied for identification of U;. Using Equation (1.13), the CF of m¢

is

s1 1B [YCO exp (iuYee

N—
>
I
8|
o,

¢mc(sl|X =T) =exp / -
0 E {exp (iuYeoe) | X = :E’]

Similarly, Us is identified by setting p* = 2 and #5 = (0,0,0,1). Then

01 10

A 11 01
N 0 0 0O

1 0 0 0

A%y = 595 s0 Assumption 2 is satisfied for identification of U. Using Equation (1.13) the CF of mrp

is

s2 1E [YTO exp (iuYrr) |)? = f}
ex / d
0

e (521X = &) = =
E {exp (iuYprr) | X = f}

Next, identify (Uy + Ug, Us + Uy) by

¢YCC‘7YTT (547 S5|*X = f) = ¢mc+hc+€cc7 mr+hr+err (54a 55|X = f)

= ¢mc (34|X = f) : ¢mT (35|X = f) : ¢hc+€cc, hT+€TT(s47 85|X = f)

where the second equality follows from the independence assumptions. I already identified m¢e and mp so

by rearranging the above equation ho + ecc, hr + epr is identified by

¢YCC7YTT (547 35‘X = f)
Pme (84| X = @) - (55| X = T)

¢hc+€cc, hr+err (845 S5|X = f) =
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Finally, the distribution of (Y, Y}~) is identified with one of two possible assumptions

i. Assume (ecr,erc) has the same distribution as (err,ecc), then

PYer Yio (54,85|X = f)

= Pmeo+hrteor, mr+hoterc (547 85|X = f)

= Omo (54|X = T) - Oy (551X = Z) - Ony (54X = Z) - 01 (551X = D) - Gecrr, ero (50,55 X = T)
= Omo (54|X = T) - Oy (551X = T) - Ony (54X = F) - 01 (551X = T) - berr, co0 (50, 55) X = )
= ¢mc (84|X = f) : ¢mT (35|X = 5) . ¢hT+5TT7 hc+ecc (54’ 85|X = f)

where the second and fourth equalities follow by independence, and the third equality follows from the
assumption that (ecr,erc) and (err,ecc) are equally distributed. We already identified me, mp and

(he +ecc,hr +err) so (Y, Y o) is also identified.

ii. Assume (ecr,erc) has the same distribution as (epr — 7o + £co, €cc — €co + €10), then

Oy, Vi <S4,85|X = f)

P

= ¢mc+hT+ECT7 mr+hc+erc (347 55| = 3?)

) : ¢ECT, ETc(54755|X = f)

8

= d)mc-‘rhT (54|X = f) : ¢mT+hC (55‘X =
= Omothr (54|X = f) “Omrtho (55‘X = f) : ¢5TT—5T0+5007 Ecc—Eco+sTo(S4v 55|X = f)
= Qmethrterr—erotece, mrthoteco—ecotero (54, 85|X = )

= ¢(mT+hT+5TT)—(mT+h0+5TO)+(mC+hO+ECO)7 (mC+hC+ECC)_(mC+hO+ECO)+(mT+h0+€T0)(84’ 55|X = :E)

= ¢YTT*YTO+YCO, Yoo —Yco+Yro (84, 85|X = f)

where the second and fourth equalities follow by independence, and the third equality follows from the

assumption that (5TT — &0+ E€co, Ecc —Eco + ET()). The distribution of (YTT — Y7o+ Yoo, Yoo —

Yoo + Yro) is observed so (Yip, Yiio) is identified.
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1.9.6 Example 3: Measurement Error Model with Three Mea-

surements

1 2 1 00
1 1.0 00
_ 1 1.0 00
AOA=
1 0 0 10
1 0 0 0
1 0 0 01
The second-order partial derivatives are
OPpx-ei(s0,51) _ oy (t)
Ow? ~ Oty0t
w1 277 (s0—51,51,0,0)
Pox- e (s0,51) _ 005 (D) Py (D
,e1 (20521 _ Q)OY _ QOY
0 Ot ot Ota0t
W1w2 1 2 (80751751,070) 2 3 (50751,81,0,0)
0%*px- e, (s0,51)  0Ppp(t) _, Pes® 8oy (1)
) o8 ot 0t L0t
Wik ! (s0—s51,51,0,0) 12 (s0—51,51,0,0) 2073 (s0—51,51,0,0)
S (55) = 2oy (2) _ Pep(d)
©2 ot3 Ota0ts
(0,0,52,0) (0,0,s2,0)
o (s5) = §240) _ Pep(d
e3 \73 ot3 Dty0ts
(0,0,0,s3) (0,0,0,s3)

Using these relationships and Equation (1.15), the CFs are

s1 92
¢X* 61(50a81 €xp </ / 8 PX e u 52 dudv+/ / 8 ¥x El )d dv
8"‘]1 0 0 80.)1(,02
S1 s2 92 So v 02
+//an€10uddv+//390X510u)ddv)
0 0 aw18w2 0 0 aw2
st ([ [ ot 0y
0 0
(/ / @53 dudv)
0 0
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1.10 Appendix B

1.10.1 Proof of Theorem 1

Let ¢v,,... v, denote the CF of Y and qﬁﬁm denote the CF of ljm for 1 < m < M. Then,

¢)Y1,--«7YP (tl, ey tp) =F [exp (ZY1t1 + ...+ ’LthP)]

E [exp (Z'(Cthn + ...+ a%(MUMKM)tl +...+ i(a}glUn + ...+ G%IKMUMKM)tp)]
E [exp (i(agyts + ...+ apytp)Un + ... + i(alfe, i+ ...+ ag[KMtp)UMKM)]

M P P
= H E |f)xp (iUml Z apity + ...+ iUnk,, Z a;nKmtp>

m=1 p=1 p=1

M

oy UMK, and the fourth equality

where the second equality follows by substituting Y, = a},l Ui1+...4+a
follows from the independence assumptions.

Let ¢y () = ovi,...vp(t1, ..., tp) = In ¢y (t) and
Om (Gm) = QU Ui, (Wi, Wk, ) = I Eexp (iUniwmi + ... + iUnk,, wmk,, )]

then

M P P M B M )
@g(f) = Z Om (Za;”ltp,...,Za;"Kmtp> = Z om (AT'E, .. .,A?:ﬂf) = Z ©m ((A;,f) )
p=1 p=1 m=1 m=1

m=1

where A = (A1, ..., Ap) partitions A. The partial derivative with respect to ¢, is

QP (&m)
&umk

(Ar,7)

In matrix notation the first-order partial derivatives are

6¢? ({) 8§0m (Qm)

m m
ot afi ... afk, Owm1 (A7)

M
m=1

m &Pm (Qm)

Dy (F) m
a .oa
P1 PK,, Owmk,, (A7)’

Otp

The new system of equations is identical to Equation (1.12) except the unobserved random variable U,
Ipm (‘EM)

is replaced by the first-order partial derivative .
&umk (A;n{),
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The first-order partial derivative with respect to t,,. is

Opy(®) _ S~R2m 0om (@)
Oty W;kzzlap’“*k Owmk (A7)
= i i“ﬁk %em o)
m=1 k=1 Omi (I (Uk 4 lﬂéo) (A;n{),)

oy v Owmk | aze='p)’

where APx* = (AVF ... ARE") partitions APk,

By Assumption 1i, there exists ,,~ such that APt*'f,,. = O, for all m # m* and AP T, = 8- €

o o ’
REm . One solution is tms = (Apk* )+ (OZ K. s E*m* , OIX: K ) . To save on notation I denote this
m<m* rm m>m* “hm

solution as £~ = (AP* )" (07, ,.,0')". Then

K= N K, -
a(p? (5) — Z am* 8<pm* (wm*) + Z Z 630171 (wm)
Otp,. s AL R S~ Bwmr g
(APR* ) (0/’sm* 07y k=1 m m#m* k=1 K

m* Opmx (D)

apk* ko*

Km
+ > Ay B [Uni]

&um* fo* g, k=1
* a@m* (‘zjm*)
g 1.20
Clpk*k awm*k* g ( )

where the second equality follows from Assumption lii that ag:;k = 0 for all k # k* and the last equality

because E [Upi| = 0.

The CF of U,,~ is expressed in terms of its first-order partial derivatives

K x Sk 8 —
N Ormx (WD *
¢m*(sm*):exp(z Ja— duk>
k=10 m*k (815040586 —1,Uk,0,...,0)
- K 1 /Sk a<p? (E) s
- m*
k=1 apkk 0 atpk (Apk*)+(6’,s1

----- Sk—1,Uk,0,...,0,0")

Kne s OlnE {exp (Z?’f)]
= exp pooy / duk
—1 Yk JO Otp,.
kil Pk P (Apk* )+(6’,Sl ,,,,, sk,l,uk,O,...,O,G’)’

1 /s;c 1E [ka* exp (z?’ (AP )T (0, 51, .., Sp—1, Uk, 0, ..., 0, 6’)’)]
agfk 0 E [exp (257’ (Apk*)+ (07,81, ..., 8k—1,Ur,0,...,0, 6’)’)]

= exp

duk

where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by

substituting Equation (1.20).
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The CF of U,,- is defined by bounding;:

duk
(8150++,8K—1,Uk,0,...,0)

/Sk 4(?@7”* (Qm* )
0

awm*k

duk

. /Sk iE [Um*k exp i (Um*lsl + .o+ Uprp—1Sk—1 + Um*kuk)]
0 E [expi (Um*lsl + .o+ Upsg—18k—1 + Um*kuk)]

Sk 1
] /0 |E [expi (Up=181 + ... + Unrk—15k—1 + Ui ug)]]

duk

< 0

where the first inequality follows from the triangle inequality and |exp(-)] < 1 and the second inequal-

(Elexpi (Um» 181+ -« + Umrk—18k—1 —I—Um*kuk)])_l dup, < oo and

Sk
ity follows from the assumptions |
0

E HUm*k

|]<oofork=1,...,Kp-.
This shows that the CF of U,,- is identified. The joint density of U,,- is identified using the bijection

between densities and CFs by the inverse Fourier transform

1
T oor

Fone (W) / e e Tmr (8 )5,y

1.10.2 Proof of Theorem 2

The CF of Y is

¢Y1,...,Yp (tl, e 7tp) = E [exp (’LYltl + . + ’LYpfp)]
= E[exp (i(a1,Ur1 + ... + atk,, Unky )t + .. +i(ap Ui + ... + aPr,, Unk, )tr)]

=F [exp (i(ahtl + ..+ a}altp)Un +...+ i(a%Mh + .+ a'yKMtP)UMKM)]

M P P
= H E |exp (iUml Z apity + ... +iUnrk,, Z a;”Kmtp>
m=1 p=1 p=1
where the second equality follows by substituting Y, = a;ﬂ Ui +...+ a%(M Unk,, and the fourth equality
follows from the independence assumptions.
Let o3 (f) = ovi....vp(t1,- - tp) = n ¢y (f) and
Om (Bm) = QUi Ui, Winds ooy Wik, ) = N E[exp (iUpiwmi + - .. + iUk, Wmk,, )]
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then
M P P M M )
90}7({) = Z Om <Z apitp, - - .,Za;”Kmtp> = Z om (ATVE, ... ,A%nf) = Z Om ((A;,f) )
m=1 p=1 p=1 m=1 m=1

where A = (A44,..., Ap) partitions A.
Necessity: Assume Assumption 2i does not hold. Let [71, ceey (NJM and (_jl, ey Un be observationally

equivalent. Then

pp(t) = Zﬂij Pm ((Ainf)') = zﬂé Gm ((A;J)’)

where ¢, is the log CF of l'jm and @, is the log CF of (NJm form=1,...,M. Then

M ) M ,
> e (48)) = 32 &n ((400)) =0
m=1 m=1
The partial derivative with respect to ¢, is
M Km ~ —
m [ OPm (Gm) O (&)
Z Apk B ) =0
m=1 k=1 Wmk (ag,0) Wmk (a,0)
In matrix notation the first-order partial derivatives are
9o 0py
~ Ow11 Ow11
m m a(pm — 8(,0m N
M aiy N ale awml 8wm1 . _ 0
S . . Opm  Oom
Z : . : : =(Ay - App) — -
~ awmk awmk
m=1 o o Opm  O0Pm : 0
P1 e PKp, 8me7n 8mew1 N »
dpm dpm

0wMKM &uMKM

where for clarity of notation the arguments of the CFs are omitted. The second-order partial derivative with

respect to t,, and t,, is

M Ky, Kom ~
8(‘0%(2‘:) _ Z Z am Z amk < 82S0m o 8280771, )
Otpitp, S A2 ik 2 \ 0wk, Ok, Owmi, O,
M Kp ~ M Ky ~
_ Z alaly, (82§0m _ 8290m) + Z Z Ayt ey Qe g < 82(*07” _ aQ@m >
= 2 2
vt PETRRE Ow?,,  Ows . o Phr il PIRLTP2E2 \ Qg OWmks  OWmky OWimk,
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_ al K"" m m 8290177/ 8 @m
N Zzamkamk 8w72nk Ow?

m=1 k=1 mk
Km 2 2~
+§ § kpk+a’k;)nk)( 8<Pm _ 3<Pm >
p1k1 " p2k2 p1k2 "p2ka
=1 ky <k» 8wmk1 8wmk2 8wmk16wmk2
2 2
Fom  Opm

where the third equality follows because . In matrix notation the second-order

3wmk1 awka 8wmk2 5‘wmk1
partial derivatives are

P -~ 041
ow?  Ow?
: 0
P om om
AGA - = : 1.21
( © ) awmkl awka awmkl awka ’ ( )
: 0
om _ oM
Owlir, Ok,
where k1 < ks.
The matrix (A ® A) is of dimension P? x E K (K, 4+ 1)/2. If Assumption 2i does not hold

then Rank(A ® A) < Zm:l K (K + 1)/2 and there are nonzero solutions to Equation (1.21). Say

2 25
0 om 0% om = Corrky then ¢ (ZP amt ZP a™. t ) and
— = Cmkiko m =1 1psy s =1 K., "pP
OWmk, OWmky  OWmk; OWmks, p=1r p=p

~ P m P m P m
Pm <Zp=1 apitp, .-+ Zp 19k, tp ) = Om (szl apitp, .- -, szl ap, tp) — Zkl,kz Crnky ko bhy Ly, ATE ObSET-

vationally equivalent. This implies that ¢,,(t) is observationally equivalent to gm(f) = () exp(Cn +

one such solution is

>k Cmkt + Zk’l,k2 Crky kol thy ) (2 shift by some polynomial of degree two) and hence that 5’1, . C:TM and
171, ... Uy are observationally equivalent.

The matrix A,, is of dimension P X K,,. If Assumption 2ii does not hold then Rank(A,,) < K,, for
some m. Without loss of generality let Assumption 2ii not hold when m = m™*, then there exists a nonzero

5 € REm* that satisfies

Zk T al 0
Apeb = : _

Zk 1 aPk 0

Let (Ut - Umeic,,. ) i= (Unet + 01Umet, oo, U e + 0K, Une1). The CF of ¥ is

¢y (t) = E [exp (i(alyt1 + ... + apytp)Unn + ... +i(alk, t1 + ... + aPu, tP)Uniky )]
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Il
=
=

m=1 k=1 p=1
M P
= 1] ¢m (Z azzt,,>
m= p=
- Ko P
L k=1 p=1 m#m*
Ko p* P K P
=F|exp|i Uk akt —l—Ulet Zapk(Sk)] H E exp(iZUmea;’};tp>]
L k=1 p=1 p= m#m* k=1 p=1

Ko P
exp (2 Z Uik Z aﬁt,,)}
m#m* k=1 p=1
Ko,
exp ( Z Uk Z apkt )]

=
Il
—

p=1

Um*kZaz}C )] II &

=
b

)

=F |exp

r K P
= E |exp (z (Um*k—kUm*lék)Zaﬁ;tp)} IT E

—

]
[
_

A

- J1o (35

where the fifth equality follows because Zf:’"f a;’}: dr = 0 for all p and the second to last equality holds from

M

£

%
<

]
Il
—

—

the definition of (ﬁm*l, cel ﬁm*Km*). Hence the CF's of ((71, e l}m*, e le) and ((71, e (jm*,. .. ,le)
are observationally equivalent, which implies that (ﬁl, e U e ﬁNl) and (le, ce Uy e U'M) are
observationally equivalent.

Sufficiency: Assume Assumption 2 holds. The second-order partial derivatives of cp};(f) are

oy (f) %(2‘31)
ot Qi gy

0%y (t) ¢ (@)

ot gt - (A © A) aw’mkj awmkg (A’ f‘)’
pP1~7"p2 m
8t%9 8w§/[KM (AGWF)/

k1 < ka.

By Assumption 2i

O¢t @) Ok (@) oAt <52w(5 a?w<ﬂ>’

T TR i FpY o T ot

By Assumption 2ii, for all 5,, € R¥m there exists a trn € RY that solves A;nfm = S,. One solution is
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/
a@?n (Wrm) a@?n (&) _ + 0? Py ({) 0? Py (5
.. 8 2 PICECIEY a 2 e —_— (A @ A) T PICECIEEY T
Wit s YmKn g, bolag)ta, U CURLES
where
i}_;/ m zY/ ;n S zY m Sm

62(,0}7(5 _ E |:Yp1€ } [ } _ E [Ypl }/;,26 ( ) }

Ot 0% | 4y yrs., (E [ezY (AL,)* 3 D E [eiY%Am*s*m}

The CF of U, is expressed in terms of second-order partial derivatives
dukdvk

vk
ool —eXp<Z/ / awm wm
(0,...,ug,0,...,0)
8<pm wm)
* Z / / awmklawmkg

k1 <ko

(815387 —15Ukq ,0,---,0,up,,0,...,0)

The CF of U, is defined by bounding:

02 Pm Wm)
awmkl 8wmk2

dukl duk2

(consUeq seeesUhin 5eer)

% 221:;1 Um,k5k+iU7nk1uk1+iU7nk2 ’U.k2:| E |:Umk2 61' 221:11 Umk5k+l'Um,k1 Uy +7:Um,k2’u.k2:|

/ / mk €
_ , , 2
(E [ei ST Uk sk iUy wiy +1Umk2m-,2})

E |:Umk Uni et 221:;1 Umksk+iUmk1uk1+iU”lk2uk2:|
1 2

— duk duk
R — ; ) 1 2
E |:el Sl Uk Sk+iUmpk, Uk, +1Umk2uk2]

1
E Uk, Uk, | / / )Qduklduk2

ki1
exp iy oy UnmiSk + iUk, uk, + zUmkzukz)

where the first inequality follows from the triangle inequality and |exp(-)] < 1 and the second inequality
follows from the assumptions f% Sk ( {exp( Zk 1 Upksk + iUk, Uk, + iUmk2uk2>])7 dug, dug, <
oo and F [|Upk, Unk,|] < 0o for ki, ko =1,..., K,,.

This shows that the CF of U, is identified. The joint density of U, is identified using the bijection

between densities and CFs by the inverse Fourier transform



1.10.3 Proof of Theorem 3

The CF of Y is

¢)Y1, LY, (tl,,tp):E[eXp(ZY1t1+—‘r’LYPtP)}

E |exp (z aj U+ ...+ CL%(MUMKM)IH +... 4i(ap U +...+ ayKMUMKM)tp)]

E [exp (i(ajyts + ...+ apytp)Uin + ... +i(alf, t1+ ...+ a%[KMtp)UMKM)]

M P
= H E |f}Xp (iUml Z apity + ..+ iUnk,, Z a;”Kmtp>
p=1

m=1 p=1

where the second equality follows by substituting Y, = a},l Upp + ... +aM Uk, and the fourth equality

pKm

follows from the independence assumptions.

Let (p?(fj = Vv,,..,Yp (tl, - ,tp) =In (Z)}-;(F) then

M P P
(f) = Z InFE [exp (iUml Z apity + ...+ iUnk,, Z azTKmtp>1
m=1 p=1

p=1

The first-order partial derivative with respect to ¢, is

8<p~(f) . M K m E{ mkeXP< Ek 1 mep 1 Gpitp )}
8;;* _ZmZ:l;ap*k [exp( Zk . Zp:l aﬁtp)}

By Assumption 3i, there exists ﬂmk)* such that Agjm*’{(mk)* = GKm for all m # m* and Aﬁ:f"”*/f(mk)* =

€x+. This means that

A ({0 # 0} U {m® = m}) s
=I({apy # 0} U{m™ =m}) Z apit i)

1 ifm=m*and k =k*

0 otherwise

One solution is £(,p)- = (AP"™ ’)+ €(mky*- Let (- € R, then

8?;/ (t_) (1.22)
" (Ap*m*/) Elmk)* S(mk)*
B Ui €Xp ('LU(mk)*S(mk) )]
=1 Z al’ "“ exp (ZU(mk)*S(mk‘)*)]
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Ko [ mk €XP ( >ilt Ui ({a"ik = 0}) et a%(mk)*p)]
2T o (st ([ =) S i)

E[E [Un+k|Utni)-] X (iU (miy+) ]

P E [exp (iU(miy» S(miy- )]

_ K B B UnblUil exp (i 200 Ui ({at = 0}) S0 ity )|
m#m* k=1 {exp( Zk " Umil ({ 0}) 51 pkt(mk) )]

_ zaka*E [U(mk)* exp (@U(mk)*s(mk)*)] (123)
E [exp (Ump)- 5(mi)+)]

where the first equality follows from 3i, the second equality follows by assuming, with out loss of generality,
that aZZE = 0, and the third equality by Assumption 3ii (mean independence). Let @(yk) (S(mk)~) be the
log CF of U(pp)~, then

. . OlnE [exp (iU(mk)*S(mk)*)]
m / — ™M
Ut o Py (b)) = Qs 08 (mk)*

ng*k*E [U(mk)* exp (iU(mk)*S(mk)*)]
E [exp (iU(mk)*S(mk)*)}
_ Oy (1)
dt,

(Ap*m*/)+€(nlk)*s(7nk)*

. . V) *m*n T »

iE {Y* exp (zs(mk)*Y (APTmT) e(mk)*):|
E [eXp (ZS(me’ (Apmmery* e(mk)*ﬂ

(1.24)

where the last equality follows by substituting in Equation (1.23). By the Second Fundamental Theorem of

Calculus:

S(mk)*
D)= (S(mr)y=) = €XD (P(m)= (S(mk)=)) = €xp (‘P(mk)*(o) +/0 %mk)*(u)du>

S(mk)*
(lp*k* (Ap*m*/)+€(mk)*u
. S Artmrn Tt o
1 S(mryx 110 [Yp* exp (qu (AP m ) e(mk)*ﬂ
=exp | == / U
Apekx J0 E [exp (ZUY/ (Apemiyt g E(mk)* )]

where the second equality follows by substituting in Equation (1.24) and ¢(,,,)- (0) In E[exp(0)] = 0.
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The CF of Ugy,py« is defined by bounding:

S(mk)* S(mk)* ¢ F) * ) *
‘/( k) gozmk)*(u)du _ /< L2 [U(mk) e}.(P (ZU(mk) u)]du
0 0 E [exp (iUnk)-u)]
< B [|Upniy- ]/ " 1 du
0 |E [exp (iUgnr)-u)] |
< o0

where the first inequality follows from the triangle inequality and |exp(:)] < 1 and the second inequality
S(mk)*

follows from the assumptions [ ‘(E [exp (iU(mk)*u)])fl du < oo and E [|U( ) *
0

]<oo.

This shows that the CF of Uy~ is identified. The marginal density of U,,)- is identified using the

bijection between densities and CFs by the inverse Fourier transform

1

Fimmy=(u(miy=) = %/e‘“<mk>*“<m’”*¢(mk)*(8(mk)*)d8(mk)*

1.11 Appendix C

1.11.1 Proof of Lemma 1

Let g(Y Y) = Hp LY, exp (zY t)

Pr (sup |En (97 — E [g97]] > ¢)
,

[Tl

p=1

= Pr (sup |En 971 — E'lgi| > €| En

P
n) - Pr <EN
p=1

H [Yp|*" | > “)
P
H |V, |

fir] <o) oo
)

P
[Tl

p=1

+ Pr <SUP|EN l9d — Elgdl > ¢ | En

H)
En

Pr <EN

=A;+ Ay

P
1T vl
p=1

P
/<a> +Pr <Sup |En (97 — Elgill > ¢ H Yol

(i) Consider Ay

P
Pr (EN
p=1

I 1Yl

)<Yoz ]) el

K2 - Nk?
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where the first inequality follows by Chebyshev’s inequality.
(ii) To bound As I will use an argument that is similar to Pollard (1984) and Van De Geer (2006) but
instead of using Hoeffding’s inequality I use Bernstein’s inequality as in Evdokimov (2010).
Define the Li-covering number, Ny(g, Q,G), as the smallest L for which there exist functions ¢; ..., gL
such that min; Egllg — gi|| < € for all ¢ € G (e.g. Pollard (1984)).%5 T show that Ni(e,Pnr,G) <

TEN[[T5_, |Yp|?*P] . . . . )
— where Py is the empirical probability measure and G is the class of functions defined

as G = {gp(Y) : T € [-T,T]"} where as before g{¥) = H§:1 Y, exp (z?’t_) exp (z?t_’), p=1,...,PA6

ATPEN[[TE, 1Y 12°7]
€

Discretize [T, T]F into L = < ) points, #,...,tr, by cutting [T, T] in each dimen-

sion into equidistant segments of length W. Let gl(?) = H5:1 Y,'"” exp (z?’ f) exp (z?ﬂ) for
p=11¥p

t1,...,t chosen above. For any t € [-T,T]" there exists an [ such that
P P
En H Y, exp <2Yt_’> - H Y,'® exp (ZYt_;)
p=1 p=1
P P P P
= B |[] v cos (V) i [ viewsin (V) = T Vv cos (V1) — i [T vie sin (V)
p=1 p=1 p=1 p=1
P P P P
< En H Y, cos (YF) - H Y, cos (Yﬂ) + En|i H Y, sin (Y??) —i H Y, sin (Y??l)
p=1 p=1 p=1 p=1

§2Pmlax{’f—ﬁ|}-EN

P
[T
p=1

<e

~ I3

P 2ap
It follows that the Li-covering number satisfies Ny (e, Py, G) < <TEN[H”1YP|]>

As is now bounded using a symmetrization argument (e.g. Pollard (1984)), Bernstein’s inequality, and

<)

the Li-covering number:

Pr (sup |En g7l — Elgill > ¢ | En

P
[T 1y
p=1

N 2
<8N (¢/8, Pn,G)exp (6 <2E

459 is a probability measure and G is a class of functions in £!(Q)
46 Zn < ay means that there exists C > 0 such that Zy < Cay.
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For N large enough the bounds for A; and As imply
Pr (sup | Ex (9 — Elggl] > ) < Ay + Ao
P a
< E |:Hp:1 ‘YP|2 p:| Tk P NEQ oF
~ Nk2 7)) 7w

(iii) The last step is to apply the Borel-Cantelli Lemma. Index e, T and k by N and let

P

[T vl

p=1

N = CN6/2 0<é
In N
N = Cps bz, voi20)) |
~n=(N*InN)? 0<d,<1

where C’( Po.E[TIE, 1Y, 2*0)) is a constant that may depend on the arguments in the subscript. To simplify

the notation a little denote F [H5:1 |Yp\2%} by ¢? and C'(P(”E[l—[}i1 ¥, [200]) by C.. For N large enough

Pr(sup [En [g7] — E'[g7]| > en)

o2 Tyven o Ne2 2
< =N 202 4+ =2
St () e (S5 (24 G

2 T, N 2
= NU + exp (P In ( NHN) gN (202 + 36]\[%]\[))
1
C (NON?- 1nN)§ N (C21n ) ) In N
< N1+5 N + exp (Pln ( — 1 (20 + CEN(ISR)/2>
C?InN 2 In N
_ (54+6,+1)/2 ) _ LDV 2 4 IV
N1+5M1 N+exp (Pln (C’EN > o (20 +3O€N(16~)/2>)
C C?InN
< Pl | = N@+oe+)/2) _ e MV
= N1+6M1 N TP ( " (CE 128(0% 1 1)
C (0+1) C?
Pln( — - S In N
N1+5M my P ( " (C) [ 128(c2 + 1)} " )
(6+5K +1) C?
< _ g
~(PS B[ 1Yy IZ“P]) Nl N ({ 2 128(02 + 1) N
O'

T Nt In N N1+/3

where ’S(P-,&E[Hf:l ¥, [20p]) TEANS that the constant depends on P, §, and E [H5:1 |Yp\2%} and C? is chosen

so that 8 = —P(6+§”+1) + 128(?,%“) — 1> 0 so that C. depends on P, 4, J,, and E {H;}:l |Yp|2O‘P]
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For the above choices of ey, T, and Ky

o] (o] 1
3 Pr(ou B lod - Blodl > <) §N21(N1+5 ) <

The Borel-Cantelli lemma then implies that

sup |En [97] — E'lgfl| <en  as

for N large enough.

1.11.2 Proof of Theorem 4

I use Lemmas 1 and 2 and a Taylor expansion. For N large enough

S |G (5) = 69

—SnN,SN]
= sup exp ’ $Y (uf) du | —exp s uf)d
s€[-SNn,SN] 0 qﬁy(uf) 0 ng uf)
= sup exp p(uﬂdu ¢Y uf)d T o, (v 3d
s€[-Sn,SN] 0 (bff(uﬂ 0 ¢5y uﬂ 0 ¢y Ut_)
+o A P A CO PN
0 ¢y US 0 ¢Y UE)
_ (0
([ 5) { n-i

- /OS (sz(ut—}g (A;?(Uf) - ¢?(U5) du

- (ud)
/Osd) == (v 08) — o u)) au] + | [ M (fp () — 65 (u)) du

g (ut))

o

)

ST (e ] A B LR s X R I
sel-sn.sx1Jo |op(ul)] [-sn.5n1 /o (¢y
t
< sup ’¢y uf) oy, uf)‘/ du + sup ‘ > uf) o uf))/ |¢Y U3|
SE[—SN,SN] u{) SG[—SN,SN} Ut—>)
(R p—
SenE[Y, / —du
~sx (¢ (ut))

where the second equality uses the Taylor expansion e” = e™ + e (x — () 4+ e*0 0|z — x|, the third equality

uses the Taylor expansion § = ¢ + ylo (x — x0) — i—g(y —yo)+ o0 (| (x — )| + \z" (y — y0)|>, the first <

Yo
s v, (ul)
D)

by the triangle inequality, ‘eXp ( f du)‘ < 1 because it is a CF, and the implications of the little-o
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notion, and the last inequality from Lemma 1.%7

As before, use Lemmas 1 and 2 and a Taylor expansion. For N large enough

sup ‘q@m* (8) — P~ (5)’
SE[—SN,SN]
— s e / / oy, U5¢Yp2 (ut) ¢Yp1Yp2( ut) dude

SE[—SN,SN] 0 'U/E) d)Y u{)

(/ /‘¢ u5¢n2u5 By, v, (ud) )’
dudv
¢y u{) (bY uﬂ

= sup ex (/ / ov, uf}¢yp2 (uf) ¢Y”1Y”2( jdudv) X

s€[—Sn,SN] ¢>Y uf) oy ( UE)

’U’E)¢sz u{) ¢YP1YP2 E)
(by u{) oy ( (ut)

U{) ¢Yp2 (ut) ¢Yp1 v,, (U

// Py, uf>¢yp2 (ut) ¢YmYp2 f) //qzﬁ uf)¢yp2 (ut) by v, (u 3dudv
0

0 uf) ¢y u{j
= sup

UE) ¢Y (uf) “ﬂ oy ( “75}
e(//¢ w%ﬂﬂ¢mmﬁh®>
s€[-SN,Sn] ¢Y ut) Py ( ut)
v oy, ( v gy, (ut)
—2— t) ) dudv + —n t)) dud
[/ (by ’U,—) m j ¢Y u_> udv / ¢Y 'u,f) (¢Yp2 _> ¢Yp2 u‘j) uav
— / /0 m (prlsz UE) - (bymyp2 uf)) dudv

61,1, 0) _ 20, (00, ()
/ / < QI)Y UE) (¢Y UF)) > ((by Ltj o7 uf}) dudv

[ /ov( uﬂ;) (i D) = g, () e + ¢Ymu?

¢>Yp1yp2 (ut) — DY, vy, (uf)) dudv

dud

(i

d

¢Y,,2 (ut) — Py, (uf}) dudv

o@ﬁ
by, v, uf) 20y, (ut)oy (uf)) . )H
p1 pz P1 P2 ¢~(ut—> — (ﬁ—»(ut_j dudv
( ¢y UL:) ((by uf))?’ ( Y Y )
“b ’¢
S dud dud
Nse[_sgf,SN] [/ ‘(b u‘)’ ‘¢Yp1 _> ¢Ypl Ulr)‘ U U—l—/ ’¢ u_)| ‘(prZ ‘) ¢Yp ut‘)‘ udw

+ /08 /Ov M ‘qbymym (ut) — by, v, (uf)‘ dudw
%

4Tdn = o(en) is Little-o notation and means that for every § > 0 there exists N large enough so that
d, < de, for all n > N.
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u5| |¢Yp1 (u{)| |¢YP (uﬂ ’ ) - ]
= ¢z (ut) — ¢ (ut)| dudv
S |¢Yuf>l ot ) 00 =050

|6, (u 7| |6, (u
</ /|Z () o] /f; ut~>| e f /|¢Yumd“d”
uf}l . 19w, ()| [dv,,, (uD)|
/ /<|¢y w?)\ oy () )dudv>
Y, ]+ E[[Yl + E[Y, / / um 1w

where the second equality uses the Taylor expansion e* = €% 4 ¢*°(x — x) + e 0(x — x9), the third equality

Sen (]

uses the Taylor expansion § = ¢ + i(az — xg) — @(y —yo)+o (| (x —x0)| + \”0 (y — yo)|>7 the first <

by the triangle inequality,

v Oy, (ub)py, uf) By, Yy, (ut) .
exp <f0 p1(¢ (uﬂ")z oy ”25 du dv)’ < 1 because it is a CF, and the

implications of the little-o notion, and the inequality from Lemma 1.

1.11.3 Proof of Theorem 5

For all w in the support of U,,~ and for N large enough

[ Fon (W) = fone ()

= % 6725u¢ ( )¢K(5hN ds——/ 7zsu¢ )
_ % e (G (5)61c (shay) — b ()61 (5hav) + Guns ()¢ (sh) — e () ) s
- % e oK (shy) ($m (s) = P (s)) ds + %/e_““qu* (s) (b (shy) — 1) ds

IN

or [ 106 B (5) = 6 0)] 4 5 [l (9] 0 (sha) = 1]

Sy 1 [Sw
< G (5) = 0 @) ds 5 [ o (9] [mlshi) ()| ds
N 21 J sy
Ty TR
2 Jop m{8)1 48 21 J_ o m 5148
SN
Sy [Gue(e) = g )] ¢ s I [ e (9t
SN,SN 86[71,1] —SN

—SnN oo
+ / (e (3)|ds + /S (e (5)]dls

where the second inequality follows because |9k (s)| < 1, dx(s) =1+ m(s)s? for s € [-1,1] and ¢ (s) =0

otherwise and m(s) is continuous for s € [—1,1].
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Figure 1.1: Experiment 1: X* ~ Normal(0, 1), €; ~ Normal(0,1), 3 ~ Normal(0, 1) with
N =100

The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.2: Experiment 2: X* ~ Gamma(5,1), &1 ~ Normal(0,1), €2 ~ Normal(0, 1) with
N =100

The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.3: Experiment 3: X* ~ $N(—=2,1) 4+ 3N (2,1) (Bimodal), &; ~ Normal(0,1), e, ~
Normal(0, 1) with N = 100

The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.4: Experiment 4: X* ~Unif(0, 1), &1 =0, e = 0 with N = 100

The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.5: Experiment 5: X* ~ Normal(0,1) (X* and &; dependent), ¢, ~ Normal(0, z*?),
g9 ~ Normal(0, 1) with N = 100

The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Table 1.1: Comparing Estimators in Measurement Error Model With a Repeated Measurement
with N=100

’ Experiment Estimator A Estimator B Estimator C ‘
Norm(0,1) MISE 0.0429 0.0672 0.0391
Gamma(5,1) MISE 0.2104 0.0393 >1,000
Bimodal MISE 0.0326 0.0324 >1,000
Norm(0,1) (Depend) MISE 0.0404 0.0348 >1,000
Unif(0,1) MISE 0.0292 0.0300 0.0195

Table 1.2: Comparing Estimators: Measurement Error Model With a Repeated Measurement with
N=1,000

’ Experiment Estimator A Estimator B Estimator C ‘
Norm(0,1) MISE 0.0066 0.0071 0.0025
Gamma(5,1) MISE 0.0365 0.0048 >1,000
Bimodal MISE 0.0124 0.0024 >1,000
Norm(0,1) (Depend) MISE 6.3110 0.0201 >1,000
Unif(0,1) MISE 0.0039 0.0155 0.0058

Table 1.3: Comparing Estimators: Measurement Error Model With a Repeated Measurement with
N=10,000

’ Experiment Estimator A Estimator B Estimator C ‘
Norm(0,1) MISE 0.0008 0.0007 0.0004
Gamma(5,1) MISE 0.0127 0.0007 >1,000
Bimodal MISE 13.9634 0.0003 >1,000
Norm(0,1) (Depend) MISE >1,000 0.0187 >1,000
Unif(0,1) MISE 0.0005 0.0148 0.0044
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Chapter 2

Identification and Estimation for

Regressions with Errors in All

Variables

2.1 Introduction

In this paper I study identification of the coefficients, 31, ..., B, in the linear regression

model with measurement error in all the variables

X, = X:+Up, m=1,.... M

(2.1)

where Y is an observed outcome, X,, is an observed measurement of the unobserved ex-
planatory variable X, and € and U,, are measurement errors.

Estimation techniques that ignore the measurement errors in the explanatory variables,
such as Ordinary Least Squares, lead to biased estimates of the coefficients. Solutions in the
literature have focused on using additional information such as repeated measurements (Li

and Vuong (1998), Schennach (2004a)), instrumental variables (Hausman, Ichimura, Newey,

5



and Powell (1991), Carroll and Stefanski (1996)), signal-to-noise ratio (Fuller (1986)), known
measurement error distributions (Hu and Ridder (2012)) validation data (Chen, Hong, and
Tamer (2005)), or bounding the coefficients (Klepper and Leamer (1984)).

I develop a new method that identifies the coefficients under an assumption about a char-
acteristic function (CF) that is testable in the data.! This method uses a CF transformation
of the data, which contains more information than the moments of the observed variables.
The main idea is to view the partial derivatives of a log CF as a moment adjusted by a direc-
tion. Thus, instead of the moment E[Y X;] I use E[Y X et Tis1X1] where (soY + s1X1) is
the direction of the moment. The coefficients are identified by minimizing a distance between
two of these partial derivatives evaluated at two different choices of (s, s1).

I show how to use this method to identify the coefficients in the Errors-in-Variables
model from Equation (2.1) without additional information, the parameter in a moving-
average process in a panel data with only two time periods and without restricting shocks to
have equal variance, and the coefficients in a simultaneous equations model from Hausman
and Taylor (1983) without restricting one of the error terms to be mean independent. I then
extend the methods to identification of coefficients in a system of linear equations in which
only some of the coefficients on the unobserved variables are known.

The estimator is in the class of Extremum estimators. I show that the estimator is
consistent and derive its asymptotic distribution. In finite sample simulations of the Errors-
in-Variables model in Equation (2.1), the estimates have small variances and are close to the
values of the underlying coefficients.

This paper is organized as follows. Section 2.2 proves identification in the Errors-in-
Variables model. Section 2.3 proves identification in a moving-average process of order 1.
Section 2.4 proves identification in a simultaneous equations model. Section 2.5 presents
identification in the general setup. Section 2.6 presents the asymptotic results. Section

2.7 presents Monte Carlo simulations. Section 2.8 concludes. Appendix A contains the

!Consistent with Klepper and Leamer (1984) and Schennach and Hu (2007), the assumption fails when
the unobserved variables are jointly normal.
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identification proofs and Appendix B contains proofs of the asymptotic results.

2.2 Errors-in-Variables Model

In this section I identify the coefficients in the Errors-in-Variables model

Y=00+5X +...+BuXy+e¢

Xm =X, +Upn m=1,...,M
where (Y, Xi,..., Xy) is an observed random vector, (X7,..., X5, Ur,...,Up,€) is an un-
observed mutually independent random vector, and (fy, ..., y) are unknown nonzero co-

efficients.

Assumption 4. There exists U C R with nonzero Lebesque measure such that for all uw € U

and all b # B,

o (bu) # o (Bmu)

where

v 0*InElexp (iuX;,)]
’m(u) - 8“2
_ (E [ X* exp (qu%)])Q £ [(X,*n)Zexp (1uX},)]
E lexp (1uX?)] E lexp (1uX?)]

is the second derivative of the log CF of X},.

Theorem 6. If ¢! (Bnu) < oo for all w € U and B, # 0, then B, is identified when

Assumption 1 holds and is the unique solution to

%oy 2 (5
beR u 05005,

(0,-.,0,b21,0,...,0) (,0,...,0)

7



where w(u) is a weight function that satisfies [, w(u)du =1 and

82(,0}/’)‘(‘(5’) o 62 lnE[eXp (iSoY-ﬁ-Z’Sle + ... —i—’iSMX]V[)]
asoasm o 38085m
E I:YeiSOY+i31X1+...+1;S]\/[X1u] E [XmeiSUY+i51X1+...+’L'S]ijMj| E' [YXm€i50Y+ile1+...+iS]\/1XM}

(E [eisoY +is1 Xit...Fisn Xar])? ~ E[eisoY i Xat tism X
is the second-order partial derivative of the log CF of (Y, X1, ..., Xyr) with respect to sy and
Sm-

The main insight in this paper is that for all u € R

O*In E lexp (1uf, X)) 0°InE[exp (isY + i85, X))

ou? 0500 m (5058m)=(0,B1m 1)
_ PInElexp (is0Y + i5m X)) (2.2)
05005, (50,8m)=(u,0) |

This has two important implications: First, 92 In E [exp (iu83,X},)]/Ou? is expressed in terms
of observables. Second, 8% In E [exp (isoY + 8, X, )] /05008, is the same when evaluated in

the two directions: (1) (so, Sm) = (0, Bnu) and (2) (s, Sm) = (u,0).

Remark 11. If ¢ (u) = a for allu € R then Assumption 4 fails (and Equation (2.2) equals

a constant) because ¢! (bu) = ¢ (Bmu) for all b € R.

o' (u) =a = FEl[exp (iuX,,)] = exp(au® + bu + c)

Let a = —0?/2, b = ipu and ¢ = 0, then E [exp (iuX,,)] = exp(ipu — o*u?/2) is the CF of
a Normal distribution with mean p and variance 0. Let a = 0, b = iu, and ¢ = 0, then
E [exp (1uX,,)] = exp(iuu) is the CF of a Degenerate distribution with mass at p.

This is consistent with Klepper and Leamer (1984) and Schennach and Hu (2007) who
show that coefficients are not identified when unobservables are jointly normal.

While Assumption 4 fails when X, is normal or has a point mass, it is satisfied, for
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exzample, when X, is Gamma(5,1), Uniform(0,1) or Laplace(0,1) (see Figure 2.1).
Assumption 8 in the Estimation and Asymptotics section is an alternative to Assumption

4 that can be checked in the data.

Remark 12. The unobserved covariates X, can be identified using Bonhomme and Robin

(2010) or Ben-Moshe (2012a).

Remark 13. Let M =1 and relabel the variables so that the model is

Wy = pW*+ U,

Wy =W*+ U,

which is a measurement error model with repeated measurements without the assumption that

B is known.

2.3 Moving-Average Process of Order 1

In this section I identify the parameter 6 in the moving-average model

Y1:€1—9€()

Yo =9 — Oy

where (Y7,Y53) is an observed random vector, €y, €1, and €5 are unobserved mutually inde-

pendent random variables, and 6 is an unknown nonzero coefficient.?

2When X7 is Laplace(0,1) then Assumption 4 is modified to ¢ (bu) # ¢!”(Bmu) and Theorem 6

m m
minimizes a third-order partial derivative (see Section 2.5 for details).

3A common way to identify @ is by the system of second-order moments

E[Y2] = E[}] + 02E[}]
EY1Ys] = —0E[e}]
E[Y}] = E[e3) + 6 El}]

which does not work without an additional assumption about the variances of the unobserved variables and
Jor T >2.
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Assumption 5. There exists U C R with nonzero Lebesque measure such that for all uw € U

and all b # 0

L, (bu) # &7, (Bu)

where

o () = *InE [;};) (iuey)]
_ <E [e1 exp (iual)])Z KB [e12 exp (iuey )]
E [exp (iuey)] E [exp (iue)]

is the second derivative of the log CF of €.

Theorem 7. If ¢! (6u) < oo for allu € U and 6 # 0, then 0 is identified when Assumption

2 holds and is the unique solution to

6 = argmin/ <a2¢YhY2 (51, 82)
u

_ Poviy (51,82)
(bu,0) 881882

beR 051059

2
) w(u)du
(O,u)

where w(uw) is a weight function that satisfies [, w(u)du =1 and

Py vs(51,52)  0°In E[exp (is1Y] + i5:Y5)]

881632 651882
B E [Y’leis1Yl+iszY2:| E [}/’261’515’14—1’52}’2} E [}q}/zeilel—&-ingg]
N (E [eis1Yi+isY2])? T E[eisMitinY]

is the second-order partial derivative of the log CF of (Y1,Y2) with respect to s; and s;.

Remark 14. The distributions of €1 and €5 can be estimated using Bonhomme and Robin
(2010) or Ben-Moshe (2012a).
Remark 15. The techniques can also be applied to a times-series with the additional as-

. d
sSumption €; = €¢_o.
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Remark 16. The same techniques can be used to identify v, and 6,, in a moving-average

process of order (p,q)

p q
th =ct+e+ Z’me;f—m + Zemgt—m

m=1 m=1

See Ben-Moshe (2012b) for identification in an Autoregressive Process of order 1.

2.4 Simultaneous Equations Model
Consider the simultaneous equations model in Hausman and Taylor (1983)

Yi=0Yo+ 51X+

Yo =021 + e

where (Y7, Y5, X) is an observed random vector and €y and £; are unobserved random vari-
ables. Hausman and Taylor (1983) identify the coefficients &1, do, and f; under the as-
sumptions F [Xei| = 0, E[Xey] = 0, and E'[g165] = 0. T allow €; and X to be arbitrarily
dependent, T assume E [Xey] = 0, and I assume £; and &5 are mutually independent condi-

tional on the scalar X.

Assumption 6. There ezxists U C R with nonzero Lebesque measure such that for allu € U

and all b # 0,
" bu " ou
e (1 — 5152) 7 Pes (1 - 5152)

where

o () = LB i)
_ (E [e2 exp (mg)]y  E[(22)" exp (iusy)]
E[exp (iug2)] E exp (iues)]

is the second derivative of the log CF of €.
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Theorem 8. If E[XY;] # 0, then 6y is identified. Furthermore, if ©5(6bu) < oo for all
u €U, 0109 # 1, and 6y # 0, then &1 is identified when Assumption 2 holds and is the unique

solution to

. 8903/1,Y2|X(51> $2) 8@2Y1,Y2|X(317 52)
0 = argmin g - 95 — 950
beR  Juy 51 (w.0) 51082 (w.0)
2
. 5 . 890%/1,Y2|X(817 82) - a(p%hYﬂX(Sl’ 82) w(u)du
2 @S% 881882
(0,bu) (0,buw)
where w(u) is a weight function that satisfies [, w(u)du =1 and
D*0y, v, (51, $2) _ 0?In E [exp (i51Y1 + 152Y53)]
051085 051059
E [}/'leislyl—‘riszyé} E [1/267;511/1—‘,-7:821/2} E [}/’1}/261'313/1—0—7;32}’2]
N (E [eis1Yitisa2))? T B [eYitisY]
00y, v, (51, 89) _ O*In E [exp (is1Y1 + is9Y5)]
ds? ds?

E |:Y'16i81Y1+’iSQY2:| 2 E I:Y'126i81Y1+i82Y2:|
= E [6i81Y1+’i82Y2] - E [eislyl-i-’iSQYQ]

is the second-order partial derivative of the log CF of (Y1,Y3) with respect to s; and ss.
Furthermore, if Ele;] =0 and E[X] # 0, then B, is identified.

Remark 17. Identification of 0 and 6y is still possible when By is a random coefficient.

2.5 Identification in the General Setup

Let U,, € R, m = 1,..., M be unobserved mutually independent random variables, let

A be a Ty x M matrix of nonzero known coefficients, let B be a Tg x M matrix of unknown
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nonzero coefficients, and consider the observed vector Y € RT4*75 such that

Y, an ... Gm
U
YTA ar,1 ... ar,Mm
Yr, 1 bii ... bim
Unm
Y1, 415 brg1 .. brgm
. A 4
which can be represented as Y = U.
Define the matrix A” by
Ty oy Ty oy
t=1%1 - =1 G
AP =
Ty off Ta off
t=1 1 - t=1 QM
where D is a nonnegative integer and (af, ..., af,) is a vector of nonnegative integers such

that D = of + ... +af, forr = 1,...,R and (of,...,ap,) # (ag/,...,ang) for r # 1.
The matrix AP contains all products of entries in the same column of A with the restriction

that the sum of the exponents is exactly equal to D. The matrix A” has dimension R =
D+Ty—1
4 X M.
D

Assumption 7. There exists a positive integer D and a subset U C R of nonzero Lebesgue
measure such that

1. Rank(AD) =M

4The assumptions that entries are nonzero and that known coefficients can be separated from unknown
coefficients, into matrices A and B respectively, are done for clarity. The proof is similar if for every by,
that is unknown, and is to be identified, there is at least one coefficient in the m** column that is known
and nonzero. The proof fails when an a coefficient is unknown and equal to 0.
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it. For alluw € U and all b # by,
o7 (bu) # ot (bprmu)

where @1 (u) = P E [exp(iU,u)]/0u? is the j™ derivative of pp,.”

Theorem 9. If [, (¢2+7= (bt*mu))2 w(u)du < oo and by, # 0, then the unknown coefficient

by is 1dentified when Assumption 7 holds. The unknown coefficient satisfies

R D+Tg
: D+ 8g0 ( °)
bt*m = argm?/n mr TA CVt
beR  Ju \ T 121 08y t:1 5 05T+t (54,88)=(bus’y ,0)
2
D+TB(§)
— w(u)du

4952 TTEE, Os 5
Z t:l Tatt(54,5p)=(0uém)

where 8g0D+TB( 5) /T2, syt [1/2, 0sr, 1 is a partial derivative of oy (5) = In Elexp(iY'5)],
{aPt},.. are the entries in (AP)T, the Moore-Penrose pseudoinverse of AP, &, =

(0,...,1,0,...,0) with 1 in the m'™ coordinate, and w(u) is a weight function that satis-

fies [, w(u)du =1.°

The proof sets up a system of equations of all D + Tpg-order partial derivatives of
InE [exp(z’?’ §)]. In parametric settings this is analogous to setting up a system of equa-
tions of all D + Tg-order moments (i.e. all moments of the form E tT;‘l Ytaf tTfl YTA+t]

where Ztle of = D). By Assumption 7i this system can be inverted to solve for ¢2+75.

®Identification is also possible under the weaker condition: For some nonzero % € R and all b # by=,,
P 1B (bu) # @ (bpem)

but for estimation this is harder to use.
5Instead of the Ly norm in Theorem 3 other measures of distance can be used.
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This implies that

D+T5(.) = linear combination of observed partial derivatives of In E[exp(iY'5)]
Two different choices of directions: (1) (54,58) = (bus',0) and (2) (54,58) = (0,ué,,)
correspond to different choices of linear combinations of Y3,..., Yy, y7,. By Assumption 7ii
L D+Tg 890§+TB (5)
H bim @ (bermtt) = =7 o 1175
t=1 t=1 ast Ht:l aSTA-H (§A,§B)=(bu§"£,5)
D+Tp
_ 890}7+ 2(5)
T oy 77171
til s, Htfl OST,+¢ (54,58)=(0,uém)

for all u € R if and only if b = by,

Remark 18. If (1) pP¥15 (u) = a for a € R then Assumption 7ii fails for all b € R and if
(2) P+ (u) = P15 (qu) for a € R then Assumption 7ii fails for all b = a® by, where K
18 an integer.

Remark 19. Assumption 7it can be modified as follows: Let D = 1,2, ... and assume that

forueUu? cR

o P (bu) = o (b )

if only if b € BP. Then by, € NpBP. Assumption 8 in the next section can be used to
check which of these conditions holds in the data and once this is established different D’s
can be used simultaneously to make estimators more robust, test the validity of an estimator,
or tighten a partially identified set.

Remark 20. Theorem 9 can be modified to allow for subsets of unobservables to be sta-
tistically dependent. This somewhat complicates the proof because dependent unobservables

cannot be separated into different CFs that are added together. Ben-Moshe (2012a) solves

85



this problem by keeping dependent unobservables in a single multidimensional CF and in-
cluding another rank condition on the matrices of coefficients of dependent unobservables. A

similar approach is possible here.

2.6 Estimation and Asymptotics

In this section I show that an estimator of (,, in the Errors-in-Variables model considered
in Section 2.2 is consistent and asymptotically normal. Deriving the asymptotic properties
of estimators of coefficients in the general setup in Section 2.5 is similar but more tedious. I

also show that Assumption 4 can be checked using the data.
Let {Y,, Xu1,... ,)(n]u}f:;1 denote independent identically distributed observations of
the random vector (Y, X1,..., Xy) € RM*L and let 8,, € B C R denote the parameter of

interest. Let

( Ex [Yeiqum] Ex [ X,, eiqum] ~ Exn [Y X,, eiqum]>

(Ex [ebuXm])? Ey [etuXm]

Ex [Ye¥] By [Xpe®”] By [YXpme?]\]? »
_ (EN [emy])z - En [eiuY] w(u)aw

where w(u) is a positive bounded weight function that satisfies fu w(u)du = 1, U is compact,

and
1 N
o 1s0Y +ism Xm 1 a 150 Yn+18m Xnm
Ey [YoX],e' = n§1 YOX] %o a,y€{0,1,2,...}

is the sample analog of the population quantity £ [Y*X) e*s0¥ FismXm],

The Extremum estimator I consider is defined as

~

By = argmin Qu (b)
beB

Its consistency and asymptotic normality are proved by checking the conditions listed by

Newey and McFadden (1994):
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Condition 1. (Consistency)

(1) Qo(b) is uniquely minimized at b = B, where

Qo(b) = /u

(E [eiqum])Q T E [e70u%Xm]

(E [Yeiqum] E [Xmeiqum} E [YXmeibUXm} >

(E[Ye"]E[Xue™]  E[YX.e]\] o
(E[ei“Y])2 E[em] w(u)du

(11) B € B where B C R is a compact set
(111) Qo(b) is continuous

(iv) Qn(b) converges uniformly in probability to Qy(b)

Theorem 10. (Consistency) Assume FE[Y? < oo, F[X2%] < oo, E[(YX,)?] < oo,
J | E [e™] |75w(u)du < o0, [, |E [e®Xm] |75w(u)du < oo for all b € B, Assumption 4

holds, and (U, B) C R? is compact, then B\m 5B,

Assumption 4 is assumed to hold. Then by Theorem 6 Qy(b) = 0 if and only if b = f,,,.
Hence, condition 1(i) is satisfied. Condition 1(ii) is assumed to hold. Condition 1(iii) is
satisfied because of the bounds on the moments so that QQy(b) < oo and continuity is checked.
Condition 1(iv) is shown to hold in the Appendix by linearization through a Taylor series

expansion.

Condition 2. (Asymptotic Normality) Suppose Em 2 B, and
(i) Bm is an interior point of B

(i1) @N(b) 18 twice continuously differentiable in a neighborhood of [,
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(iii) VNQy(Bm) % N(0,2(5))

"

(iv) H,(b) :== Q% (b) converges uniformly in probability to Hy(b) and Hy(By) is nonsingular

Theorem 11. (Asymptotic Normality) Assume E[Y?] < oo, E[X5] < oo,
BI(YX3)"] < oo, [y ulE[e™ )74 B[P X[ w(u)du < oo, [, ulEle % ]|~ w(u)du <
00, [, u?|E[e™]|2|Ele® X ]|~ w(u)du < oo, [,u?|E[e™ ]| TSw(u)du < oo for all
b € B, Assumption 4 holds, and (U,B) C R? is compact, then \/N(Em — Bm) 4
N(0, (Ho(Bm))*(Bm)) where

QBm) =0 (/ / uv [Cov (Yewm“Xm, YeiBm”Xm) +...4+Cov (ei“Y,ei”Y)] w(u)w(v)dudv)
uJu

and7

Ho(Bm) = —2/

’ (E [ermea])? (B [er#nen])?

Bt Xm iBmuXm1) 2 2 iBmuXml\ 2
2B Ve ] (E[Xme ) E[YXZe ]> w(w)d

) <2E [YXmeiBmUXm] E [XmezﬂmuXm] E [YeiﬁmUXm} E [aneiﬁmUXm}
Uu

(B [eiomun])? (B[]

B\m % B because the conditions for Theorem 10 hold. Condition 2(i) is assumed to
hold. Condition 2(ii) is satisfied because of the bounds on the moments so that Qg(b) < oo
and continuity is checked. Condition 2(iii) is shown to hold in the Appendix by linearization
through a Taylor series expansion. The linear terms satisfy the central limit theorem while
higher order terms are negligible. Condition 2(iv) is proved in a similar way to condition
1(iv).

This estimation procedure only works as long as Assumption 4 holds. Assumption 4
places a condition on an unobserved variable so consider instead the following alternative
assumption whose validity can be checked in the data.

Assumption 8. There exist compact sets U CR and B C R such that for all u € U and

"Zx = O (ay) is Big-O notation and means that there exists C' > 0 such that Zy < Cay.
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82905/,)2‘<§)
85083m

82903/,)‘5(5)
8508sm

,,,,,,,, (bu,0,...,0)

Assumption 8 checks that the function 82<pY7 <(5)/0500s,, is not constant or log periodic.

Assumption 8 implies Assumption 4 as follows:

Py (5 Py, 2(5 _
—SDY’X( ) # —SOY’X( ) Yuel,be B
05008, 05008,
(u,0,...,0) (bu,0,...,0)
= Binom (Bmtt) # By, (bu) YuelU,beB

where the first “=” follows from Equation (2.2) and the last “=" by letting S, = U.

2.7 Monte Carlo Simulations: Errors-in-Variables

This section presents a Monte Carlo study on the finite sample properties of estimators

of 1 in the Errors-in-Variables model

Y = 6o+ 51 X7 + B X5 + 85X + ¢

X = X5 + Uy, m=1,2,3

where (Y, X1, Xo, X3) is observed, (X7, X5, X3, Uy, Uy, Us, €) is an unobserved mutually inde-
pendent random vector, and (5o, 51, B2, B3) are unknown coefficients. The random variables
e and Up,, m =1,2,3 are i.i.d N(1,1).

The data is generated using the following four configurations
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Experiment (fxr fxz fxs) (Bo, B1, B2, B3)
i X2, Unif(0,1), Unif(0,1) (3,2,1,-1)
i1 exp(1), Unif(0,1), Norm(1,1) (3,2,—1,-1)
i Gamma(5,1), exp(1), Poiss(1) (3,—-2,1,1)
iv Gamma(5,1), Norm(1,1), Norm(1,1) | (3,-2,—1,1)

I estimate @1 as the solution to

B ] / E [Yeiqu1] E [Xmeiqul] E [YXmeiqul]
1 = argmin - — g
be[—4,4] J[-0.3,0.3] (E [eibuXi])? EeituX]

(E[emY])? ElenY]

. <E Ve B [Xie] B[V Xie] )] (e

I generate 100 simulations of sample size N = 100, N = 1,000 and N = 10,000. The
x-axis is divided into 100 equidistant grid points. The results are summarized in Tables 2.1,
2.2, and 2.3. The estimates of Bl are close to (4 in all the experiments.

Figure 2.2 shows that Assumption 8 is satisfied by plotting 0%py ¢(5)/05005m, and

Brgk: (Bru) for a Gamma(5,1) distribution using the configuration in Experiment iv with

N = 100.

2.8 Conclusion

I minimize the distance between partial derivatives of log CF's in two different directions

to identify the coefficients of the matrix B in the system of linear equations

A

=~
I
]
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where Y € R74*+75 ig an observed random vector, U € R™ is an unobserved random vector,

Ais a Ty x M matrix of known coefficients, and B is a T’g x M matrix of unknown coefficients.

1.

11.

111.

I show how to use the identification strategy in three models:

Errors-in-Variables model:

Y=00+60X+...+8uXy te

X = X5 + U, m=1,...,.M

where (Y, Xy,..., X)) is an observed random vector and (X7,..., X}, Uy,..., Uy, ¢)
is an unobserved mutually independent random vector. I identify (fo, ..., ) without
any additional information.

Moving-average process of order 1:

Y1:€1—6)€0

%:82—961

where (Y7, Y3) is an observed random vector and eq, €1, and 5 are unobserved mutually
independent random variables. I identify # without assuming that ¢y, €1, and &5 have
equal variances.

Simultaneous equations model:

Yi=0Yo+ 51X +e

Yo =02Y1 + e

where (Y7,Y3, X) is an observed random vector and gy and £; are conditionally inde-
pendent unobserved random variables. I assume F [Xey] = 0 but do not place any

restriction on the dependence of €1 on X. I identify the coefficients ¢, d2, and ;.
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2.9 Appendix A

2.9.1 Proof of Theorem 6

Let ¢y, x, ... x,, denote the CF of (Y, X1,...,Xn), ¢x+m the CF of X7 for 1 <m < M, ¢y,, the CF of
Up, for 1 <m < M, and ¢. the CF of . Then,

OV, X1, Xar (50,81, 5M)
= FElexp (iYso+iX181 + ... +iXnrsp)]
=F [exp (Z(ﬁo + BlXik + ...+ BMX}\k/[ + E)S() + l(Xf + U1)81 + ...+ l(X?\} + U]W)SM)]

=F [expi (5050 + (5150 + Sl)X* + ...+ (BMSO + SM)XJT/I + 51U+ ...+ spUp + 806)]

M M
= exp (ipso) E [exp (is0€) H E[exp (i (Bmso + sm) X)) H E [exp (ismUm)]
m=1 m=1

M
= exp (iBoso) P (s0) H = (BmSo + 8m) H ou,,, (5m)

m=1
where the second equality follows by substituting Y = gy + 81 X7 +...+ B X, +¢€ and X,,, = X}, + U, for
m=1,..., M and the fourth equality follows from the mutual independence of the unobserved variables.
Let ¢y ¢ (5) = @v,x1.., X0 (S0, 81, -5 sm) = Iy, 5 (5), om(u) = Indx; (), pu,, (u) = Inéy,, (u), and

©e(u) = In ¢ (u) where € RM+! and u € R, then

M

¢y x(8) = iBoso + < (s0) + Z Pm (Bmso + $m) + Y _ @u,, (5m)
m=1 m=1
The second-order partial derivative with respect to sg and s~ is
a2§ay)?(§)
L = B0 (B e 2.3
05008~ B @ (B 50+ $m-) (2.3)

where

8 <‘OYX(§) E [YezsoY+1le1+ +1SMXM] E [Xmei50Y+ile1+...+isMXM] E [YXmeiSOY_‘—iSle+"'+iSMXM}

88068m - (E [6230Y+151X1+'”+iSMX]\/1])2 B E[eisoY-i-ilel+~--+isMXM]

S (Bl epux))\? B[ ew X))
g”’"(“):( E[expgux;;)] ) T Blep (iuXy,)]
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Evaluate Equation (2.3) at (0,...,0,bu,0,...,0) and (u,0...,0)

82Q0y)?(§)
N = B+ P (bu) (2.4)
0% | 0,...,0,6u,0,...,0)
Py £(3)
W = B+ P (Brm=u) (2.5)
0&om (u,0,...,0)
where by assumption ¢}, (8y,+) < oo for all u € U. Define
D, (5 o, (5
Rulbou) : = ¢y.x(3) Py (3
83083771* 6808Sm*
(0,...,0,bu,0,...,0) (1,0,...,0)

= B2 (gl (bu) — @lhe (Brew))?

where the second equality follows by substituting in Equations (2.4) and (2.5).
Let b = By, then Ro(Bm=,u) = 0 for all u € U and by Assumption 4 Ry(b,u) > 0 for all b # S,,« and

all u € U. The coefficient 3,,~ is identified as the unique solution to

B = argmin/ Ro(b,u)w(u)du
veR  Ju

Assume E[e] = E[U;] = ... E[Uy] = 0, then after identifying {,6’,,1}%21

M M
Bo=E[Y]= Y BmE[X;]=E[Y]- Y BnE[Xy]
2.9.2 Proof of Theorem 7
The log CF of (Y1,Ys) is

InFE [eXp (iY181 + iYQSQ)] =InFE [exp (i(€1 — 960)51 + i(ég — 961)82)}
=InFE [exp (—i03180 +1 (81 — 982) g1+ ngEg)]

= In E [exp (—i0s1€0)] + In E [exp (i (s1 — Os2) €1)] + In E [exp (is2¢2)]

where the first equality follows by substituting Y7 = e; — 0g¢ and Yo = €5 — 01 and the last equality follows

from the mutual independence of the unobserved variables.
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Let ¢y, .y, denote the log CF of (Y1,Y>) and ¢y, the log CF of ,,. Then

©Ov1,Ys (51,52) = o (=0s1) + 1 (51 — 052) + @2 (52)

The second-order partial derivative with respect to s; and s is

o2 ,
%(;152) = —0¢7 (51 — O2) (2:6)

where

8290}/ v (81 82) E [Yleile1+iszY2] E [Y’QeilehLiszYz] E [Y1Y2eile1+iszY2]
1,Y2 ) _ _

051052 (E [eile1+iSQY2])2 E [eis1V1+isYz]

y ([ Elerexp (iuey)] 2 _E [£1% exp (iueq)]
ve, () = < E [exp (iueq)] ) E [exp (iueq))

Evaluate Equation (2.6) at (0, bu) and (u,0)

Povi,y, (51,8
%QYT(S;Q) — 0y (bu) (2.7)
(0,bu)
2
u,0

where by assumption ¢/ (6u) < oo for all u € U. Define

B a2905’1,3/2 (517 52)

2
Robu) : = ( 2Prie(s1,52)
(0,bu) 05105

881882

2
(u,O))

= 0% (] (bu) — ¢ (0u))?

where the second equality follows by substituting in Equations (2.7) and (2.8).
Let b =0, then Ry(0,u) =0 for all u € U and by Assumption 5 Ry(b,u) > 0 for all b # 6 and all u € Y.

The parameter 6 is identified as the unique solution to

0= argmin/ Ro(b, v)w(u)du
beR  Ju

2.9.3 Proof of Theorem 8

The parameter 02 = E [XY5] /E [X Y] is identified using the condition 0 = E[Xe3] = E[XY, — X02Y1].
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The structural system is now rewritten in its reduced form

X 1 01
y, = . . .
O S M T
62X 52 1
Y, — 2% . .
2= T s, T T T e,

Let # = 1/(1 — 6192). The log CF of (Y7,Y3) conditional on X = z is

In E [exp (iY151 + iYas2) | X = ]
=InF [eXp (z(XHﬂl + 0gy + 51952)31 + 'L(X(SQGBl + 090e1 + 962)82) |X = Z‘]
= i$9(81 + 5282)B1 +InFE [exp (19(81 —+ 5282)81 + i9(8151 + 82)82) |X = JL‘]

=i20(s1 + 9282) 01 + In E [exp (i0(s1 + d282)e1) | X = x] + In E [exp (i6(d151 + s2)e2) | X = «]

where the first equality follows by substituting Y7 = X051 4 0c1 + d10e2 and Yo = X201 + d20e1 + 0o and
the last equality follows from the mutual independence of the unobserved variables.

Let ¢y, v,|x denote the log CF of (Y1,Y2|X = z) and ¢, x the log CF of €,,|X = x. Then

Oy, va|x (81, 82) = iw0(s1 + 0282) 81 + ©01)x (051 + 00252) + o x (00151 + Os2)

where the equality follows from the independence assumptions. The second order partial derivatives are

6‘?%/173/2\)((51752)

88% 92 925% )
6@%’171@‘)((31732) 9262 9261 SOHX (981 —|—96252)
081082 v o5 )
@y x (0151 + Os2)
a‘pgq,yﬂx(sl, 52) 0253 2 21X
0s3
Hence,®
6902 > (81; 52) 8@2 2 (sl’ 32)
dg - Yl,Ya‘;(Q — Y1,(;’S|1);S2 =026, (6102 — 1) 90,2/\)( (06151 + O55) (2.9)
1
where

. . 2 . .
8290Y1,Y2 (517 82) B E [Y16131Y1+152Y2] E [Y126151Y1+132Y2]
83% o E [ei81Y1 +’i82Y2] o E [eisl Y1+i32Y2]

80ther identification strategies are possible.
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62S0Y1,Y2 (517 52) B E [Yleile1+i32Y2] E [Y26i31Y1+i32Y2] E [Y'ly2eile1+i32Y2]
051059 o (E [eilelJrisQYz])z E [eis Y1 tisY2]

i _ E [5 exp (iue )] > E [522 exp (iusg)]
#al )_( E[ZXP (iU€2)2] ) ~ Elexp (iuey)]

Evaluate Equation (2.9) at (u,0) and (0, du)

8@2 (517 52) 6()02 (51’ 32)
2 - Y1,Y28|X2 _ Ylgzl)(; = 0201 (6169 — 1) cpg‘X (061u) (2.10)
51 51059
(,0) (1,0)
8902 (817 82) 8@2 (517 52)
O - Yl,YB‘;; _ Ylg;\)(; — 92(51 ((5152 — 1) 90/2/\X (Qbu) (2.11)
1 1052
(0,bu) (0,bu)
where by assumption ¢4 (6bu) < oo for all u € Y.
Define
Rbow) = | [ 8- 8@%1,y2|x(81782) B 890%/1,‘/2|X(51752)
’ - ’ as% 881882
(u,0) (u,0)
2
1) 890%’1’}/2‘)((81,52) 8¢%’1,Y2‘X(517'§2)
— 102" 5 _
831 (0,bu) 881882 (0,6u)

2
= 052 (6,05 — 1) (wgﬂx (061u) — ¢, (ebu))

where the second equality follows by substituting in Equations (2.10) and (2.11).
Let b = 41, then Ry(d1,u) = 0 for all u € U and by Assumption 6 Ro(b,u) > 0 for all b # ¢; and all

u € U. The parameter d; is identified as the unique solution to

01 = argmin/ Ro(b, v)w(u)du
beR  Ju

Assume Ele1] = 0 and E[X] # 0, then 81 = 1 — 6102/ E[X].

2.9.4 Proof of Theorem 9

The CF of (Y1,...,Yr) is

¢Y17---7YT (31, ) ST) =F [exp (inSl +.o. iYTA"PTB STA"FTB)]

=F [exp (i(allUl + ...+ alMUM)sl + ... +i(bTBlU1 +...+ bTBMUM)STA+TB))]
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= Flexp (i(a1151 + ... + brg1574475)U1 + ... +i(arps1 + .-« + brgmsra+rs ) Uni)]

M
H E exp almsl +...+ bTBmSTA"FTB)Um)]

where the second equality follows by substituting Y; = a;1Uy + ... + a;p Uy and the fourth equality follows
from the mutual independence of the unobserved variables.
Let ©3(5) = ¢vi,...vr(51,...,57) = In ¢y (5) and ¢, (u) = Indy,, (u) = In E'[exp (iuly,)], m=1,..., M

where § € RT and u € R. Then

M
v(8) = Z Pm (Z tm St + thmSTA+t> = Z ©m (Al 54 + Bl 5B)

m=1 m=1

where A,, is the m!" column of A, B,, is the m!* column of B, 54 = (s1,...,57,) and §p =
!
(STA+1ﬂ AR STA+TB) :
Let (af,...,a},) be a multi-index T4-tuple of nonnegative integers. The norm of the multi-index is

defined by |a"| = aj + ...+ af,. For all multi-indexes with |a"| = D the partial derivative of ¢ (5) with

t to s T i
respect t0 811, ... S, STut1, -y STA4Ts 18

D+Tg M T
D" 7 (3) Ao
Y _ [e D+T - ! =
R =>_ I Hbt ? (An8a + BL5B)
[1:2,0s. " T1,:2) OsTatt mziica =

where @7 (-) is the j*® derivative of ¢, (-). This is represented in matrix notation by

6<PE)+TB(§‘)
Y 1
T 17 Ta oy Ta at D+Tgp /= =
[1,2, 05, Htjl OST,+1 t=1%1 - lli=1 %y [1:2, baet (A154 + B15B)
HpP+Ts Ty aF Ta of Tg D+Ts [ o1 = r o
T by 9 1210 - 12 4y IT.2 beneons 2 (AhySa + BiySe)
A
Ht:185t Ht:l OST,+1
D+Ty—1
where R =
D
By Assumption 7i
Dot e (5)
B D+Tg Al B Ta oy - Ta a}; Tr
Ht 100107 (A15a + B13B) 21a Ht 1atM thlﬁstfntzlasTAH
D+Tg
T D+T, ;= = Ta _of TA aff 0
[L:2 bemepny 2 (A Sa + BiySB) =1 Gyl e ypg oy (5)

T
| e 83t Ht:l 0T, +1
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where (AD )+ is the Moore-Penrose pseudoinverse of AP with entries {al}},, ..

Let &7 satisfy A/, 5 =1. Foru e R,b e R

R a D+Tp T
ot 3
Ut % ) = [ bemel ™ (bu) (2.12)
r=1 IT:2 155 Ht "1 O5Tatt (F4,88)=(busp 0) t=1
R D+T T
> abt ") = ﬁ bim@ Pt TE (byepptr) (2.13)
mr T 5o P) tm Pom, tm .
r=1 Ht:l St Ht:l STa+t |(54,55)=Ouey) t=1
where €, = (0,...,0,1,0,...,0) with 1 in the m** coordinate.
Define
R b D+Tp
Py 7(5)
QO(b) ::/ ZG”DJ_ Ta 0}; T
U \r=1 t=1 ast Ht:l aSTA+t (Fa,55)=(bus? ,0)
2
D+Tp
8<,OY ® w(u)du

B B
| 83 Ht 1057, 41 (54,55)=(0,uém)
where w(u) is a weight function that satisfies [, w(u)du = 1.

I show that Qg (b)) = 0 and Qg(b) > 0 for all b # by,

R b D+Tp
P S
Qo(bt*m) = / aﬂDTj_ Ta a}; TB(_)
u [1:2, 05" [1,2) OsTat

r=1

(8a,8B)=(b» mudy ,0)
D2 t1E(5)
T qTa of 118
[1:2: 05" 11,21 Osrase

TB TB 2
- / (H bim@p 8 (bs ) — H bempm TP (bt*mu)> w(u)du
u

t=1 t=1

=0

where the second equality follows by substituting in Equations (2.12) and (2.13) and the last equality follows

by the assumption that [, (o575 (bt*mu))z w(u)du < oo.

R D+T
B . pi P (S)
QO(b) e Qe Ta oct
U \r=1 1_[75:1a t Ht:laSTA+t (84,88)=(bus? ,0)
2
D2 e (5)
e ;,; - w(u)du
Ht:l Osy! Ht:l D574t (34,58)=(0,uém)
Tp 2
/ (Hbtm<pm+TB bu Hbtm4pD+TB (bt*mu)> w(u)du
u t=1
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Ts 2
- (H btm) /R (o2 (bu) — o2 (bt*mu))2 w(uw)du

>0

where the second equality follows by substituting in Equations (2.12) and (2.13) and the last inequality

follows by Assumption 7ii. Hence, by, uniquely minimizes @)y and is identified.

2.10 Appendix B

2.10.1 Proof of Condition 1(iv): @Qn(b) Converges Uniformly in

Probability to Qy(b)

Lemma 2. Let F denote the cumulative distribution function of (Y, X1,...,Xn) and Fy the empirical
cumulative distribution function corresponding to a sample {Yn, Xp1,. .. ,)(n]\/f}r[:[:1 of N independent iden-

tically distributed random draws from F. Assume E [YZO‘X,%]] < oo. Let

InN 3
o = Clnplyexi)) \

where C > 0 and C(M Bly2ax2)) > 0 is a constant that may depend on the arguments in the subscript. Then

sup ’EN [Y”‘Xﬂneis"yﬂs’"x"‘] —-F [Y“X;{leis"yﬂs’"x"b] < &N a.s.
(50,8m)€E[—50,50]X[—Sm ,Sm]
when N tends to infinity.
Proof: See Lemma 1 in Ben-Moshe (2012a).
Let
Ro(b, u)
, ) . ) ) ) 2
E [Yelqum] E [Xmezqum] E [YXmezqum] E [YeluY] E [Xmequ} E [YXmequ}
(E [eibuXm])? E [etbuXm] (E [eY])? E [e™Y]
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and

. B EN [Yeiqum] EN [)(meiqu7 ] EN YX elqu
RN(b, U) == < (EN [eib“XmDQ EN ezqum
Ex [Ye™] By [Xme"] By [YXpe]\]’
(Ex [eY])? En [eY]
Then

Qg(b):/uRo(b,u)w(u)du
QN(b)—/uRN(b,u)w(u)du

Expand the brackets in Ry (b, u) and use a Taylor expansion

Ry (b, u)
(Ew [Yeiqum,]>2 (En [Xmeiqum])2 2By [YeituXn] Ey [Xpe?Xm] Ey [V X,peitXm]
(Ex [einXn])! ) (Ew [
2y [V Xe] By [Xne ] By [Ve] By [Xe™ ]
(Ex [eXn])? (Ey [eY])?
| 2B [Ye o] By [Xpe® o] By [Y X (B [V Xe™])’
(B [eXn])” By [e] (Ey [em])*
_2Bx [V By [Xpe] By [Y Xe™] | 2By [YXmeib"Xm] Ey [Ye™] Ey [Xpne™]
(Ex o))’ Ex [0 ] (Ey [eV])?
_ 2B [V XX B [VXne™] | (By [Ve¥])* (By [Xne™])" | (Bn [Y Xne X))
Ey [e®Xm] Ey [V ] (Ex [ewy]) (Ex [eiqumDQ

= Ro(b,u) + g5 (b,u) (En [V ¥ ] — E[Ye X)) + g5 (b,u) (En [Xme™* ¥ ] — B [X,pe®¥m])

+g3(b,u) (Bx [Y Xpe™ ¥ ] — B [Y Xy ¥ ]) + g3 (b, u) (En [¢7*F ] — B [e™Xm])
+g0(b,u) (B [Ye™Y ] — E [Ye™]) + g4(b,u) (Ex [Xme™ | = E [Xme™])
+g0(b,u) (En [YXe™ ] — E[YXne™]) + g§(b,u) (En [e™Y] — E [e™])

N
+o[lgo(b,u) (BEx [Ye ] = E[Ye™ r])[ 4.+ |g5(b,u) (Ex [¢"7] = B [e"V])]
where the second equality follows by a Taylor expansion and

gé (b7 u) =

2B [ X' ] EIV X ] (B [ Xn\2 B[] — B[V E[X. ¢ (E [¢buXm])?
e (B ] (B B ] - B Ve B [, ] (B
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_E [YXmeib“X""] E [eiqum} (E [¢™] )2 +E [Yeiqum] E [Xmeiqu,,,L} (E [e"] )2)

9o(b,u) =
2F [Yeitu&m]
(B etwXn]) (Blen])?
B [V X e] B[] (B []) + B [y e o] BX,e 0] (£[e])°)

(B[ Xpe™] (B [e7Xn])* B[] = B [Ye™ ] B [Xpe™] (B [e*X])°

gg(b7 u) =
—2
(B o]} (B[]

_E [YXmeib"Xm] E [eiqum} (E [eiuYD2 +E [Yeiqum] E [Xmeiqum} (E [emy])2)

(E [YXmei“Y] (E [eibuxm])QE [eiuY] _E [yeiuY] B [Xmemy] (E [eiqum])Q

gg(b7 u) =
2
(B o] (B o)

(B[ Xne™ ] (B [¢™X])* B[] = B[V ] B [Xpe™] (E [e™X])*

(E [YXmelqum] E I:eib’u.Xm} —9F [Yeibuxm] E [Xmeiquij) %

—E [meez'qum] E [eiqum} (E [eiuYD2 +E [Yeiqum] E [Xmeiqum} (E [eiuY])2)
95(b,u) =
_92E [XmeiuY]
(E [eiXm])? (B [eY])!
_E [YXmeib“X"”] E [eiqum} (E [eiuYD2 +E [Yeiqum] E [Xmeiqum} (E [eiuy])Q)

2

(B [ Xne™ ] (B [¢™X])* B[] = B[V ] B [Xpe™] (B [e"X])

g0 (b, u) =
—2E [Ye™Y]
(B[ X)) (B e ])!
-E [YXmeib"Xm] E [eiqum} (E [eiuYD2 +E [Yeiqum] E [Xmeiqum} (E [ei“Y])2)

(E [YXmei“Y] (E [eiqum])QE [emy] _E [Yemy] E [Xme“‘y] (E [eiqum])Q

gg(b7 u) =
2
(E [eibuXm])® (E [eiY])?

_E [YXmeib"Xm] E [eiqum} (E [eiuYDZ +E [Yeiqum] E [Xmeiqum} (E [6my])2)

(E [YXmei“Y] (E [eib“Xm])zE [emy] _E [yeiuY] E [Xmemy] (E [eiqum])Q

gg(b7 u) =
2 ] 4 ' -
_ (E [e’iqu”m])Q (E [eiuy})‘a (E [YXme“lY] E [eﬂty] —_9E [Yequ] E [Xmem}/}) %

(B [y Xne™ ] (B [¢™X])* B[] = B[V ] B [Xpe™] (E [e"X])?

B [V X e] B[] (B [e])? 4 B [Ye o] B [X,,e ] (2 [0])?)
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Substitute Ry (b, u) into sup,, ‘@N(b) — Qo(b)’

sup )@N(b) - Qo(b)‘

= sup
b

/u (]TEN(IL u) — Ry(b, u)) w(u)du

= Sl;p / g(l)(b, u) (EN [Yeib“X””] - F [Yeibux"”}) + gg(b7 u) (EN [Xmeib“X""] ) [Xmeibux"”})

R (0,) (B [¥ XX ] — B Y X)) 4 gb(b,u) (B [e] — B [e])
+go(b,u) (Ey [Ye™ ] = E[Ye™]) + g5 (b, u) (En [Xme™ ] — E [Xme™Y])

+gB(0,) (B [Y X ] = B Y X ]) + g80,0) (Ex V] = B [*V])

+o [|gs(b,u) (En [V X ] — B [Ve®™ X))+ ...+ g5 (b,u) (En [e™Y] — E [¢™Y])]] w(u)dul

Sezv/u(Igé(b,U)l+Igg(b,’w)l+IgS’(b,u)l+|g§(b,U)|+Igé’(b’U)l+Igg(b,U)l+Igg(b,U)l+|93(b,u)|)w(U)du

S (55) B+ EIX0+ B XD [ ( s 5>w<u>du

B[] |B[eiuXn]]

where the “<”s follow by Lemma 2.° By the assumptions E [YQ] < oo, E [X?n] < oo, B [(YXm)Q] < 00,
J/ |E [e™Y] ‘_5w(u)du < o0, and [, |E [e®"*m] |_5w(u)du < oo for all b € B so Qn(b) converges uniformly

to Qo(b).

2.10.2 Proof of Condition 2(iii): VNQ)(8x) = N(0,Q(Bx))
The derivative Q' (Bym) is

@?\/v (/67”)

2‘/ En [Yemmuxm} En [Xme’:ﬁm“XM] N [YXmeiBm'“Xﬂ
=0 u — -
u (En [6iﬁmuXmD2 En [eZﬂmuXm]

En [Yeiuy] En [Xmeiuy] En [YXmei“Y]
(En [ei“Y})Q En [eiuY]
" <2EN [YXmeiﬁmuxm] En [Xmewmuxm] En [Yeiﬁmuxwl] En [X,Q,leiﬁmuxf“]

(B [ePmn]) (En o]
2EN [Yeiﬂnluxm] (EN I:XmeiBmUXrn])2 EN [YX?nleleUan} ( )d
— — wlu)au
(B [etBmuXm])® (B [emuXm])?

9Zn < ay means that there exists C' > 0 such that Zy < Cay.
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Let

Eyn [Yemm“Xm] En [Xmeiﬁmuxm] En [YXmemm“Xm]
(En [eiﬁmuXm])Q En [eiﬂmuXm}

ﬁN(/Bm,yu) == <

By [Ye ] By [Xpe™] By [YXmewY]>

(En [emy])2 En [eiuY]
" <2EN [YXmeiBm“Xﬂ En [Xmeiﬂ7n“XM] En [Yewmuxﬂ En [leeiﬂmuxm]

(Bx [ o)) (Ex [ n])?
2By [YeifrntXn] (Ey [XeBnuXn])? By [Y X2 eifnuXn]
(Ex [e#91%0])f (B et 1%0])?
and
PO(BWU U)
E [YefntXn] B [X,,efntXn]  E[YX,efniXn] B[V ]E [Xpe™]  E[YXpeiY]
(E [eiBmUXm])2 E [elﬁmuxm] (E [eiuy])2 E [Gluy}
y 2E [Y X,petfmuXm] B [X,,etfmuXm] N E [YeifmuXm] B [X2 eifmuXm]
(B [eionun]? (B [eiomun]?
2F [YeilnuXn] (B [X,,efnuXn])? B[V X2 eifnuXn]
(B [eibnuXn])? (B [eibnvn])?
[ 9Py x(5) ¢y 5(3) <2E [V X, eifrvXm] B [X,,eBmuXn]
05005m (0,...,0,Bm u,0,...,0) 05005m (u,0,..., 0) (B [ewmuxm])Q

E [YefnuXn] B [X2efnuXn]  2F [YeibnuXn] (B [X,efnuXn])? B[y X2 eifnuXn]
(B [e#omuXm])? . (B [eiPmuXm))?  (BlemeXn])? )
2F [Y X ePmtXm] B [ X, etPmuXm]
(E [e?fmuXn])®
E [YeifnuXn] B [X2efnuXn]  2F [YeibntuXn] (B [X,,efrtXn])? B[y X2 eifnuXn]
(B [eimXn))? . (B [eiBnXn])? (B )

= (Bm®m (Bmt) = By, (Bmu)) - (

where the third equality follows from Equations (2.4) and (2.5).

Expand the brackets of ]SN(Bm, u) and se a Taylor expansion

ﬁN(Bmau)

E [Y X,,efmuXm] B [Y X2 emuXm] _2E [Yeiﬂm“X""]2 E [ X, e fmuXm]
E [eiﬁmuxm]2 B [eiﬁmuXm]5

3
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| 2B [XpeBntXn] B [Y XpefrvXn]® B [YeintXn] B [XpyeifrntXn] B [Y X2,ePmuXn]

E [eiﬂmuXm]?’ 43
E [YebnvXn] B [Y X,eifntXn] B [X2emuXn] [y X2ebnuXn] B [V | B [Xe]
E [eifmuXm]? + E [eifmuXm] E [eiuY]?
E [YeifruXn]? B [X,,eifnXn] B [X2efnuXn] B[y X2eBntXn] E[Y XeY ]
BleitmXn]" B e n] B[]
E [YefntXn] B [X,,efntXn]® B[V X6 ] 2E [X,,einuXn] B [Y X,,einuXn] B[V X,,eiY ]
E [eiBmnuXm]® B [eiuY] " E [eiBmuXm)? B [eiuY]
L E [VeibmuXm] B [X2ePmuXm] B Y X,e™Y ] LA [YeinuXn] B [X,,enuXm])? B [V X,,eifmtXn]
E [ewmuxm]Q E [eiwY] E [eiﬁmuxm]4

E [YeiBnuXn] B [X,,eifnuXn)? B [V Y] E [X,,eY ]
E [eiBmuXm]® B [eiwY]?
2F [ X, efmvXm] B [Y X, etfmuXn] B [Ye™Y| E [X,,e™Y]
E [eifmuXm]? F [eiuY]?
E [YehnuXn] B [X2ePmvXm] E[Ye"Y] E [Xne™Y]
E [¢ifmuXm]? E [eiuY]?

=Fh (ﬂﬂh u)
ZBmuX ] E [YeiﬂmuijD + h(z)(ﬁm’u) (EN [XmeiﬂmuXm] _E I:XmeiBmuXm])

En [Y XpePmtXm] — B[V XpePm" X ]) 4+ h§ (B, u) (En [P Xm] — E [ePmuXm])

EN X2 1BmuXm ] E[X2 1BmuXm ])

'HL

u) (En [Y
u) (En [

+ 1By u) (En [Y X2, efmuXm] — B[V X2 eifmuXn])
u) (En [
u) (Ex [Ye™Y] = E[Ye™ ]) + hi(Bm, v) (Ex [Xme™ ] = E [Xpne™])
u) (B [

) By [YXone™] = B [Y Xine"]) 4 b (B, w) (B 7] = E [e"7])

+ (B + EIX,0 + E[Y X7, H)( : L F— )x

|E [eY)|* |E [eifmuXm]|®  |B [eifmuXm]|”
O [(By [YerXn] - B [yebnXn])® .
By [Pee] = B[] | B [Kne™] = B [ ]| 4
+|Ey [YePmuXn] — B [yefruXn]| | By [Y X2 ePmuXn] — B[V X2ePmuXn]| + .

+ (B[] = B [¢"7])?]

where the second equality follows by a Taylor expansion and

1 , . 3 .
he(Bm,u) = — , - — (4B [YePmuXr] B [ X ePmeXm]” (B [e™Y
Bst) =~ e (P 2l ] (B [e])

+ 2 [V X,,¢™Y ] B [X,,e#mtXn]? (B [¢BnuXn])? B [eY]

2
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_9F [YeiuY] E [XmeiuY] E [Xmeiﬁmuxm]z (E [eiBmUXm} )2

—AE [Y XX ] B [X,,etfriXn]? B [enuXn] (B [evY])?

+ B [Y X200 ] B [Xpe! P Xe] (B [ePmXn])* (B [eV])7

— 2B [YeifruXn] B [X2ifnuXn] B [X,,enXn] B [¢BnuXn] (B [¢Y])?
— E[XZ2e#muXn] B[V X, ] (B [¢nXn])’ B [eY]

+ E (X2, Xn] B [Y ™| B [X,e™ ] (B [¢0meXm])?

HE [V X PreXe] B [X2,e0mXn] (B [ X0])? (B [e47])°)

1 ; 2 ) 9 )
6E [YeibmnuXm]® B XmezBmuXm E [eiwY
(E [eiﬂmuxm])5 (E [eiuY])2 ( [ } [ } ( [ ])

_E [anemmuxm] E [YeiﬁmuXm]z E [ezﬁmuXm] (E [eiuy])Q

2

=8B [V X0] B [Xe 0] B [Y X mee] B [ Xe] (B [e])?
HAE [Y X,pe™Y ] E [V etfrtXn] B [X,,efmuXn] (B [e#muXn])? B e ]
—4E [Ye"Y| E [X,e™Y ] B [V Xm] B [X,,efmuXn] (B [ewmuxm])z
BV X ] [yt ] (B [0 n]) (8 [0])°

+2E [V X0 uXn]? (B [¢BnXn])? (E [eY])?

=28 [ X ] B[ XX (1 [ X ) [o]

12E [V ] E [X,e™] E[Y X e Xn] (E [ewm“XW])3>
1
B[eXe])* (B[]

hg (B, ) = (4E [V eiPneXn] B [X,,e0nXn]? (B [¢7Y])?

(B
1+ 92FE YXmequ] [XmeiﬁmuXm} (E [ez’ﬁmuXmDQ E [eiuY}

[

|
—2E [Y "] E [Xpne'™Y ] E [XpneifriXn] (E [eiﬁmuxm])z
_AE [YX eBPmuXm ] E [Xmeiﬂmuxm] E [emmuxm] (E [emy])2
+ B[V X3N] (5 [ ) (5 [

_E [Yeiﬂmuxﬂ E [aneiﬁmuXm] E [eiﬁmuXm] (E [emy])?)
1
(BlemeXe])F (B en])?
_4AF [X?nei,ﬁmUXm] E [Y@iﬂmuXm}Q E [XmeiﬂmuXm} E [eiﬁmuXm] (E [eiuy])Q

7o (B ) = (108 [yeomn]? B X0 (2 [eY])?

—16B [YifrtXn] B [X,, e uXn]? B [V X, e0ntXn] B [¢BniXn] (B [¢Y])
H6E [Y X, | B [V eBruXn] B [X,, e Xn]? (B [¢ifnvXn])? B o]

—G6E [YeiuY] E [XmeiuY} E [Yeiﬁmuxm] B [Xmeiﬁ’"“X""} 2 (E [eiﬁmuXm])z

105



hg(ﬁmv u)

hg(ﬁmv u) =

hg(ﬂrm u)

hg(ﬂrm u)

hg(ﬁfm u) =

hcllo(ﬂmv u)

+3E [Y X2,¢PmuXn] B [YelfntXn] B [X,,emuXn] (E [¢ifnuXn])? (E [¢

Ve tnin] B [Y XpeP 0] (B [P n])? (B [60V])*
Y Xe Y] B [Vetnen] (B [eifniXn] ) p o]
Y] B [X,ne™ ] E [YeifnuXn] (B [¢ifnuXn])?
VXt ( [ ) (B[]
—4E [Y X e"Y ]| E [ XX ] B[V X e fmeXm] (B [ePmuXm ]) [“LY]
i)
)’

Ye' ] [(Xpe™Y] B [ X e Xm] B[V X, e'fmuXm] (E [

]
E [Yanei/imuxm] E[YXne™] (E [eiﬁmuxm})‘l E[em]

—E [YX2 P Xn| B Y™ B [Xne™Y ] (B [eiﬁmuXm])‘*)

E [YeifmuXm]

B (E [eiﬁmuxm])4 (E [eiuY])2 (E [YXmeiuY] (E [eiﬂmuer])2 E [eiuY]

_E [YeiuY} E [XmeiuY] (E [eiﬁmuXm])2 _E D/Xmeiﬁmuxm] E [eiﬁmuxm] (E [emy])2

+E [YelbrXn] B [X,e X0 ] (B [eV])%)
1 , , 9 ,
— E Y XY (E [ePmuXmn )" B [eY
Bl P (& WX E e e
— E[Ye"Y] E [Xpe™] (E [0 Xn])” - E [Y X, &0 B [¢meXn] (B [Y])?
+E [YelbrXn] B [X, e X0 ] (B [eV])%)
E[X eiuY]

_ m PBmuXm iBomuXom 2
(B [emuXn])® (B [ ]) (25 [ve | E [Xpe ]

+E [YXTQneiﬁmuXm] (E [ezﬂmuXm])2 _9E [YXmeiBmuXm] E [Xmewm,uxm] E [eiﬁmuXm]
—E [YefmuXm] B [X2 ePmuXm] B [efmuXm])
E [YeiuY}

= iBmuXm B X2
(B [efmuXn])® (B e ]) (25 [ve | E [Xpe ]

+ E[YX2,emuXn] (B [e#nuXn])? Z2F [V X,,emXn] B [X,,efmuXn] E [e#fnuXn]

—E [YelfmuXm] B [X2 ePmuXm] B [efmuXm])
-1
(E [ewmuxm])?’ E [eY]

(28 [y ePrXn] B [Xp e )?

E [Y X2,/ Xn] (E [¢#ntXn])® Z 2 [Y X et Xn] B [X,uefriXn] F [¢ifniXn]

_E [YeiﬁmuXm} E [anei,@muXm] E [eiBmuXm])
— _ E YXm iuY E Y| 2B Y Y E Xm Y
(E [eiﬁmUXm])d (E [eZU’Y])S ( [ e ] l:e ] [ e :I [ e :|) X
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(2 E [Y ezﬂv”ux,n] E [ X, eiﬁ,,,LuXm] 2_op [Y X,, eiﬂmuxm] E [ X,, ewmuxm] E [eiﬂmu X]

+E [Yxfneiﬁmuxm] (E [eiﬁmuxm])2 B [Yeiﬁmuxm] E [aneiﬁmuXm] E [eiﬁmuXm])
Substitute Py (B, u) and Py(Bpm, u) = 0 into \/N@?V(,Bm)

VNQN (Bm) = Qi/uul?’N(ﬁm,u)w(u)du
— WZZ'/ w{hy (B ) (Ex [YeiPniXn] — B [yeifnuXn])

+ B2 (Brs 1) (B [Xime?m5%Xm] — B [Xpem5%Xm]) 4 B3 (B ) (Exy [Y Xne'PntXm] — B [Y X,peifmuXm])
+ 15 (B w) (B [P Xn ] — B [ePm"X]) 4 (B, u) (B [Y XppePmXm] — B [Y X7, &0 X ])

+ WS (B, ) (B [X2ePneX0] — B [X2,e04%0]) 4 BT (B, ) (Ey [YeY] — B [YeY])

) (B (X ] — B [ ]+ K ) (B [¥ X ] — B [V Xpe])

h (B, u) (En [e™Y] = E [e™Y]) } w(u)du
Vw2 | u{(E[|Y|]+E[|X3n1+E[|YX$1>( e THN )

4 3 7
‘E [equH ‘E [ez,ﬁmuXmH |E' [ezﬁmuXmH

O [ (En [ye?niXe] = B yefnXn])® 4
+|Ey [e9m0n] = B [e80050] || By [Xe™] = B [ ]| 4.
+|Ey [YePmuXm] — B [YePmuXn]| |Ey [Y X2 P Xm] — B [Y X2 ePmuXm]| + ..

+ (Bn [Y] = B [e])*] } w(w)du

o QZ\/i Z/ {hO B, (Y eBmuXnm _ B [Yeiﬁmuxm])

=1
+ h2(By 1) (X e Pt Xom — B[ X, eifruXon])

13 By w) (Y Xpme Pt Xom — B [V X, e Xm]) 4 B (B, 1) (5m@Xnm — B [¢ifmuXnm])

+ 1y (B u) (Yo X2, ePmeXnm — B Y X2, e Xm]) + h§(Bm, u) (X2,,e P Xnm — B [X2 ePmuXm])
+ 13 (B w) (Yae™™ = B [Y €™ ]) 4 1 (B, 0) (Xone™™™ — E [Xne™])

+h) (B u) (Y Xnme™ ™ — E[Y Xne™]) + hi? (B, u) (e — E [e™Y]) } w(u)du + o(1)

i g
— 21\/]VN ;G(Yn, Xn; Bm) + 0(1)
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where I denoted!?

G(Yna Xn; Bm) =

/ (1 (B 1) (Yo Bt Xonm — B [Y eBnXm]) 4 B2 (B, 1) (X Xem — B [ XpeifntXum])

+ 13 (Bms ) (Y X X0 — B [Y Xy P50 ]) 4 i (B w) (175 — B [P ])
(B <Y X PmXom — B[V X7, e X0 ]) 4 b (B, ) (X7 e Xnm — B (X, et0mXn])
1B ) (Yo B [Ye"™]) 4+ h§(Bms v) (Xume™™™ = B [Xne™])

00 (B ) (Yo Xnme™™ ™ = E[Y X" ]) + b’ (B, ) (" — E [e"]) }w(u)du

the second equality follows because Py(f;,,u) = 0 and the Taylor expansion of JSN(ﬂm, u), the third equality

follows by using the linearity of Ey = + 25:1 and

2 1 L
\/>/ { Y]+ E[lX5)+ E[Y X)) <|E[emy]|4|E[eiBm“X’"]|3 i E[ew’"“XmH?) "

O [(By [yeinXn] - B [yelfniXn])® .
+|Ex [P Xm] — B [P X ]| |Ey [Xme™Y ] — E [Xpne™ ]|+ ...
+|Ey [YePmuXm] — B yelfmuXn] +...

+ (EN [eiuY] _E [eiuYDQ}

2 2 2 1 1
VNex (E[[Y[]+ E[I X2 + E[Y X2,]1) (IE G B[] | B e 7> } w(u)du

<lnN
- VN

=o(1)

|En [V X2 e0muin] — B[y X2 ePmuXm]

IA

9 9 1 1
(EIV]] + EIX2[] + E[YX2]) /Mu <|E AT [ewmuxm”?) w(u)du

where the second inequality follows by Lemma 2 and the last equality follows because % "2 0 and the
assumptions E [Y?] < oo, E [X}] < 00, E [(YX2)?] < o0, [, u|E [¢™Y] ‘_4 |E [eiPmuXm] |_3w(u)du < 00,
Jy u|E [ePmmXm] |77w(u)du < 00, and [, u?|E [ePmuXm] |76w(u)du < 0.

Therefore v N @Q\,(ﬁm) is the sample average of independent identically distributed random variables

multiplied by a constant so by the Classical Central Limit

VNQy(Bm) 5 N(0,492(8,))

0dy = o(en) is Little-o notation and means that for every 6 > 0 there exists N large enough so that
d, < de, for all n > N.
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where by linearity and the Dominated Convergence theorem E [G(Y,,, X,; Bm)] = 0 and

Q(ﬂm) =F [G(Kan; ﬂm)ﬂ
- / / wv {1 (B s W (B, v)Cov (YelPmuXm [y etfmvXm)
uJu
+ 1By )2 (B, v)Cow (Y eiPmuXm X, cibmvXm) |
+ hg(ﬁm, u)hé(ﬂ,m U)Coru (YeiuY’ eiﬁvam) + o

1% (B w) g (B, v)Cov (™, ™) } w(w)w(v)dudv

2.10.3 Proof of Condition 2(iv): Q% (b) Converges Uniformly in

Probability to Hy(b) and Hy(3,,) is Nonsingular

To prove that @’](, (Bm) converges uniformly to Hy(b) use a Taylor expansion and Lemma 2 along with the
assumptions E [Y?] < oo, E [X{] < 00, E[(YX3)?] < o0, [, u*|E [e™Y] ’_2 |E [eftuXm] |_4w(u)du < 00,
f u?|E [etXm] |76w(u)du < oo for all b € B (The proof is similar to the proof of 1(iv). A detailed proof is
available upon request).

Finally,

Ho(Bm) := Jim_ QR (5m)

5 1 ) 2FN [YXmei,BmuXm] Ex [XmeiﬁmuXm} N En [Yei,BmuXm] Ex [XrgnewmuXm}
= — 1m u
N—oo [y (En [eiﬁmuxm])2 (En [eiﬂmuXm])Q

iBmuXom iBmuXm])2 2 ifmuXm]\
_2EN [Ye } (EN [Xmse ]) B En [YXme . ] w(u)du
(Bx [ei#muXn]) (Ey [e#PreXn])

N 2‘/ ) Enx [YeiﬁmuXm] Ex [XmeiﬁmuXm] Ex [YXmeiﬁmuXm]
1 u _ i
u (EN [ezﬂmuXm])Q EN [ez,li’muXm]

Ey [Ye"Y]| Ey [Xpne™]  En [YXmeiuY]> )
(Ey [eY])? Ex [evY]
0 <2EN [YXmeiqum] En [Xmeiqum] Ex [Yeiqum] Ex [XTZneiqum}
0b (En [eibuxm])Q (Ex [eiqum])2
2Ey [V ] (En [Xmeib“X’"}f En [YX%Ieiqum]>
(En [eiqum])?) (Ex [eiqum])2
_ 72/ ¥ <2E [V X, etfmuXm] B [X,,eifmuXm] .\ E [YeifnuXn] [ [X2,¢8muXn]
u (B [eifmuXn])? (B [¢1fmuXon] 2

w(u)du
b=PBm

O [YeimuXn] (E [XpeifntXn])? B[y X2e0nuXn] )’ .
— (E [eiﬁynuxm])g - (E [eiﬁﬂlu/xm,])Q w(u) U
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where the last equality follows because of uniform convergence and

E [YefnuXn] B [X,eifmeXn]  E[YX,efmXn]  BYE"Y ] E[Xpe™]  E[YXpe™Y]

_ & + : o i
(B[] B e (Blen])? Bl
05008, (0,..4,0,Bm 1,0,...,0) 05005m (u,0,...,0)

= ﬁm‘p:{a (/Bmu) - Bm%pxl

=0

where the second equality follows from Equations (2.4) and (2.5).
The assumption [, u?(E [eiﬂ’"“X'"])%w(u)du < oo implies that 0 < Hy(By) < 0o so Ho(B) is non-
singular and

VYN (B = ) 4 N (0. (Ho(B)) > 2(B)
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Figure 2.1: Top graph: ¢!, (u) = —5/(iu — 1)* when X,. ~ Gamma(5, 1)
Middle graph: ¢ . (u) = (2i + it?e® — 2ie® — 2te') /t3 when X ~ Uniform(0, 1)
Bottom graph: ¢!”. (u) = —4u(u® — 3)/(u* + 1)* when X}, ~ Laplace(0, 1)

The real parts are the red lines and the imaginary parts are the blue lines.
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Figure 2.2: Errors-in-Variables. Experiment iv: (fxik,fxg,fxg):((}amma(&l), Norm(1,1),
Norm(1,1)) and (5o, 51, e, B3) = (3, —2,—1,1) with N =100
The top and bottom graphs depict the real and imaginary parts respectively of (3, 90/)/(1« (Bru)

(black solid line), the median of 82<,0YX'(§’)/83083,”‘ s (blue dotted line), its 10-90% con-
’ (0,8u

fidence bands (blue dotted line with x’s), the median of 0%p, ¢(5)/0s00sp,
line), and its 10-90% confidence bands (red dashed line with x’s).

(red dashed

(u,0

112



Table 2.1: Estimates for £, in the Errors-in Variables Model with N=100

| Experiment (fx:. fxz fxz) (Bo, 1, B2, B5)  Mean(B1) Stdev(B) |
i X2, Unif(0,1), Unif(0,1) B3.2.1-1) 2.0008  0.1645
i exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 2.0066 0.1787
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9708 0.2084
v Gamma(5,1), Norm(1,1), Norm(1,1)  (3,-2,-1,1) 1.9636  0.1225

Table 2.2: Estimates for £, in the Errors-in Variables Model with N=1,000

| Experiment (fx:. fxz fxs) (Bo, 1, B2, B5)  Mean(B1) Stdev(B) |
i 2, Unif(0,1), Unif(0,1) (3.2.1-1) 1.9961 0.0385
ii exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 1.9977 0.0515
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9963 0.0484
iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,-2,-1,1) -1.9968 0.0352

Table 2.3: Estimates for £, in the Errors-in Variables Model with N=10,000

| Experiment (fx:. fxz fxz) (Bo, B1, B2, B5)  Mean(B1)  Stdev(B) |
i X2, Unif(0,1), Unif(0,1) B.21-1) 1.9996 _ 0.0085
ii exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 1.9983 0.0143
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9994 0.0139
iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,-2,-1,1) -2.0002 0.0128
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Chapter 3

Identification of Nonparametrically
Distributed Random Coefficients in

Linear Panel Data Models

3.1 Introduction

In this paper I consider the panel data linear regression model
Ynt:Xr:ltBn_l_gnt tzl,,T TL:]_,...,N (31)

where Y,,; is an outcome variable, X, is a vector of covariates, ¢,; is an error, and 3, is
a vector of coefficients. My main objective is to show that identification is possible even
when the coefficients are not fixed across individuals (3, = b for all n) and instead are non-
parametrically distributed random variables. To illustrate this, I identify nonparametrically
distributed random coefficients in a cross-sectional regression model, a panel data regression
model, a fixed effects regression model from Maddala (1971), Chamberlain (1982), Arellano
and Bover (1995), and Wooldridge (2005), and a first-order autoregressive panel data regres-

sion model from Alvarez and Arellano (2002), Bond and Windmeijer (2002)., and Arellano
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and Bonhomme (2011).

I identify the nonparametric joint distribution of the coefficients under various assump-
tions about the statistical dependence of coefficients on covariates, the conditional statistical
relationship of coefficients (allowing them to be statistically dependent or equal in distribu-
tion), and the number of time periods per individual relative to the number of coefficients.

Linear regression models with fixed coefficients include unobserved heterogeneity only
through the scalar error term. On the other hand, linear regression models with random
coefficients can have multiple sources of unobserved heterogeneity through the random coef-
ficients. In contrast to linear regression models with fixed coefficients, and more in line with
reality, these random coefficients allow observationally equivalent individuals to respond dif-
ferently to identical changes in covariates. For example, Card (2001) analyzes returns to
schooling using a linear regression model with random coefficients. One of the aims of his
research is to show that the marginal returns to schooling, as reflected by the random coeffi-
cient on education, are heterogeneous across the population. The focus in Foster and Hahn
(2000) is not the distribution of unobserved heterogeneity but rather the expected value of
consumer surplus, E[S(3,-)] = [, S(b,-)fs(b)db. In order to estimate this expected value
they first estimate the density of the coefficients, f3.

Beran, Feuerverger, and Hall (1996) and Hoderlein, Klemela, and Mammen (2010) study
linear models with nonparametrically distributed random coefficients that are independent
of covariates. They use a Radon transform to estimate the distributions of coefficients. I take
another approach to identification (and estimation) of the nonparametric distributions that
uses the derivative of a log characteristic function (CF) of outcome variables with respect to
a covariate. This is analogous to identification of a fixed coefficient by taking the derivative
of an expected outcome variable with respect to a covariate. Identification is possible even
when the data comes from a cross-section of the population and there are a countably infinite
number of coefficients.

Arellano and Bonhomme (2011) “regard individual specific parameters as random draws
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from an unrestricted conditional distribution given regressors.”! I deal with the dependence
of the coefficients on the covariates by either introducing an instrumental variable or using
the variation across time for each individual within a panel dataset. My contributions
relative to Arellano and Bonhomme (2011), who use the panel data approach, are: (i) to
allow coefficients to be statistically related either because they are conditionally arbitrary
dependent or because they come from the same underlying distributions (for example, error
terms in different periods can be modeled as homogeneous), and (ii) to allow the number of
coefficients to be larger than the number of time periods.

The identification strategy uses a CF transformation to take advantage of the linear
structure of the model. The main identification steps are to: 1) take partial derivatives of
a log CF of a linear combination of outcome variables and 2) choose the arguments of this
log CF. Specifically, the linearity in Equation (3.1) is exploited by a log CF transformation

that retains the additivity:

log CFs~y,. (1) = log CFg (+) +log CFg,(-) + ...,

The separability of the log CFpg, (-)’s is exploited by partial derivatives with respect to
covariates or arguments. This reduces the number of log CFpg, (-)’s on the right side of the
equation. Then choices of arguments remove all but one of the log CF's of coefficients on the
right hand side. This log CF is now expressed in terms of an observed partial derivative of
alog CFsy,.(¢).

Estimators are constructed from the identification proofs by replacing population quanti-
ties with sample analogs. The estimators are related to deconvolution estimators, which have
slow convergence rates because of an ill-posed inverse problem and requirement of uniform

convergence rates, and the Nadaraya-Watson kernel estimator, which is a locally weighted

! Arellano and Bonhomme (2011) view this method as a fixed effects approach because there are no
restrictions on the distributions of the coefficients conditioned on covariates. Graham and Powell (2011)
view this method as a correlated random coefficients approach because the ‘random’ coefficients can vary
across individuals and the covariates can be ‘correlated’ with coefficients.
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estimator that suffers from the curse of dimensionality.? Evdokimov (2011) shows that these
estimators are consistent but optimal rates of convergence and asymptotic distributions as of
yet have not been derived. The finite sample properties of the estimators are tested in Monte
Carlo simulations and have tight confidence bands around their theoretical counterparts.

The literature on linear models is extensive. Linear panel data models with random
coefficients are primarily concerned with expectations and variances (see Hsiao and Pesaran
(2008) for a good review). Linear panel data models with fixed effects are analyzed by
Maddala (1971), Mundlak (1978), and Chamberlain (1982). Linear panel data models with
correlated random coefficients are analyzed by Graham and Powell (2011), who identify
the expected value of the coefficients but not their distributions. Hoderlein, Nesheim, and
Simoni (2012) analyze identification of nonparametrically distributed parameters conditioned
on covariates in nonlinear models. They use a completeness condition that requires strong
restrictions on the dimensionality of parameters relative to outcome variables.

The identification framework of this paper is based on the literature on linear models
with multidimensional unobservables. The first paper in this literature is Kotlarski (1967).
Subsequent papers include Khatri and Rao (1968), Székely and Rao (2003), Bonhomme and
Robin (2011), and Ben-Moshe (2012a). In these papers the covariates are fixed across indi-
viduals and they do not show how to deal with unobserved variables that are homogeneous.

This paper is organized as follows. Section 3.2 presents the model, its assumptions,
and the identification results. Section 3.3 presents examples that illustrate how to use the
identification techniques from Section 2. Section 3.4 constructs the estimators. Section 3.5
presents Monte Carlo simulations. Section 3.6 concludes. Appendix A contains all the proofs

from Section 2 and Appendix B contains detailed solutions to the examples in Section 3.

2When coefficients and covariates are dependent and covariates are continuous I believe the curse of
dimensionality is unavoidable without additional restrictions. The reason is that the procedure is local so
that estimating the density of 8|X = Z requires a lot of data near Z.
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3.2 Identification

Consider the linear panel data model,

Y = X8

where Y € R” is an observed vector of outcomes, 3 € RM is an unobserved random vector
of coefficients, and X is a T' x M matrix of observed covariates. The goal in this paper is to
identify the nonparametric joint distribution of 3.3 4

A general setup used in the handbook chapter of econometrics on panel data mod-
els by Arellano and Honoré (2001) is to let g = (v/,0,,...,0p, a,e1,...,e7) and X; =

(W{,0,...,0,7;,0,...,0,1,0,...,0,1,0,...,0)". The model is then rewritten as

Y, =Wy + Z/6, + a+¢ t=1,...,T

where the unobservables 7 and « are realized in T equations (per individual) while the

unobservables 6, and ¢; are realized in just a single equation (per individual).

3.2.1 Identification Using the Change of Variables Theorem

In this subsection I establish identification of the joint distribution of # using the well-
known change of variables theorem. This method allows the components of 8 to be arbitrarily
dependent but requires 8 to be independent of X and dim(f3) < T.

Recall the change of variables theorem: Let 3 € RM be an unobserved arbitrarily depen-

dent random vector, let g : RM — R” be a known, bijective, and differentiable function, and

3Each individual makes a random draw from the random matrix {Y, X, 3}. The matrix {Y,L,Xn}nN:1

is observed while the vector {ﬁn}gzl is unobserved. For identification purposes, the joint distribution of
{Y, X} and the linear relationship Y = X3 is assumed known.
4Some of the covariates can be intercepts so that the model is rewritten as Y = X3 + ¢.
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consider the observed vector Y € R” such that

Y = g(f)

then the change of variables formula for the density of ( is

dy
det
()

where y = ¢(b) and }det (%H is the absolute value of the determinant of the Jacobian.

f3(0) = fv (y)

The following is a straightforward modification of the change of variables theorem
Proposition 1. Let 3 € RM be an unobserved arbitrarily dependent random wvector, let

g; : RM — R be known, bijective, and differentiable functions, and consider the observed

vectors Y; € R such that

then the density of B can be expressed as

dy;
) |det | —2

where y; = ¢;(b) and ‘det <dy3)‘ is the absolute value of the determinant of the Jacobian.

};%O—ny

Consider the linear panel data model

where Y; € R” is a vector of observed outcomes, 3 € R is a vector of arbitrarily dependent
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unobserved random coefficients, and X is a T x M matrix of observed covariates.
Corollary 1. Assume X = (X1,...) and B are independent.® If X;, j = 1,... are square

wnvertible matrices, then

J
Fo(b) = tim =37 £y, (X0) [det (X;)|

J—>ooJ‘

Corollary 1 follows immediately from Proposition 1.

3.2.2 Identification Using Characteristic Functions

In this subsection I establish identification of the distribution of 5 conditioned on X
using CF transformations. These methods allow § to be dependent on X and T < dim(f).
I first explicitly describe the dependence of the unobserved coefficients 5. Let [ =
(B,,...,B%;) and assume that conditional on X the unobserved vectors f3,, € REm m =
1,..., M are mutually independent but 5,, = (Bun1,---,0mk,,) are arbitrarily dependent.
Let X = (Xq,...,Xy) with X, a T' x K, matrix of observed covariates, and consider the

observed vector Y € R such that

}/]_ X%l oo XllKl /B]_]_ X{\{ “ e X]{\g(]\/[ 5M1

1 1 M M
YT XTl e XTKl /BlKl XTI “ e XTK]\,{ ﬂMKM

(3.2)

which can be represented as Y = X 681 + ... + Xy Bu.
The following theorem uses the partial derivative of the log CF of a linear combination
of outcome variables with respect to 2., t = 1,..., T, which exploits the independence

of coefficients and covariates. This method allows the dimension of the coefficients to be

°If X and j are dependent then identification is possible by first conditioning on conditioning X; = z
and then applying the change of variables theorem.
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countably infinite and subsets of 3 to be arbitrarily dependent but requires that the covariates
and ( be independent.

Condition on X = (Xy,..., Xy) = (21,...,20) =2

Assumption 9.
i. X and B are independent

ii. Span(x),.) = Kp»

Theorem 12. If E[|Bnk

U
] < oo and [|(Elexpi(Bpawr + ... + Bprg—rug—1 +
0
Borvr)]) " Hdve < 0o for all fived uy, ..., up_1 and all ug in the support of the CF of B+,
then B, is identified when Assumption 9 holds. The CF of B, is

T Kme up B [exp ()7’ (fv’m*)Jr (ul,...,uk_l,vk,(),...,())’) %ﬂ‘ff(l)]
Y Elew (Y / L, || wie)
0

iy STmekt E [exp (17’ () )Y (ua, .. up—1, 08,0, .., 0)’) | X = x}

where w(t) is a weight function that satisfies Zthl w(t) =1 and w(t) > 0.

The theorem uses the partial derivative of the log CF of Y with respect to X/},
d1n Elexp(iY 5)] /X and the independence of X and . This is analogous to S =
OE[Y:]/0X]} in the fixed coefficient framework. This approach no longer works if the unob-
served heterogeneity (e in the fixed coefficients framework and [ in the random coefficients
framework) depends on X}}. When § is dependent on X} then the partial derivative of the
log CF of Y with respect to X%, includes two terms: (1) the effects of the change on Y and

(2) the effects on the density of

0pp, . 1x (St Xprm) O E [exp (iBmsTpe St )]
l.St*E [ﬂm* exp (iﬁm*xt*m* St*> X = Z’]
E [eXp (iﬁm*ﬁt*m*st*) ‘X = SU]
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E eXp (iﬁm*xt*m* St*)
E [exp (iﬁm*xt*m*st*) |X = ZL’]

Oln fg . x(b)
8wt*m* X =T

+

When X and ( are independent then the second term equals 0 and Theorem 12 follows.
When X and [ are dependent then the second term is not 0 and different techniques need
to be used. Corollary 2 identifies S by an instrumental variable approach and Theorems 13,
14, and 15 identify S by using partial derivatives with respect to s;, which will not include

the second term.

Corollary 2. Assume S, is dependent on X' = (X7}, ..., XJ.) but there exists an in-
strumental variable Z = (Zy,...,Zr)" such that X" = Z~v where v € R. If v and [ are
independent and (Z, X{,..., X", X, ,X%M) is independent of v and 3, then the joint
distribution of [,, is identified. If (,, is dependent on more covariates then B can still

wdentified if there are more instrumental variables.

Before stating Theorem 13 the following definition is needed:®” 7 8
2t = (asﬁ a:}fw) = (a:lI (U Tl # 0) ooyl (U x, # 0))
k k

Assumption 10. There erists a tj- € {1,..., T}, and a vector 3p = (Spe1, ..., Smer) for

k*=1,..., K, such that

tk*,—’ ~
xl Sm* Zm<m* K’m
. a5 = : = Sy
tk*/—’ =
Tpp S 0% s s Km

6The function I(E) is the indicator function.

"Zero columns are removed from all matrices in this paper.

8Theorems 13 and 14 are very similar to theorems in Ben-Moshe (2012a), who has some further details
and discussion on these theorems.
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. a’tzrk =0 for all k # k*

where 0y = (0,...,0)" is a column vector with J zeros and Sy« = (Sme1, - -, Smekc, ) -

Theorem 13. If E[|Gn

U
] < oo and [|(Elexpi(Bpaaur + ... + Bpep—1up—1 +
0
Brrvr)]) Hdup < oo for all fived uy, ..., ux_y and all uy in the support of the CF of B,
then B, is identified when Assumption 10 holds. The CF of By« is

up, ZE Ytk* exp <zY’( tk*)+(6’,u1,...,uk_l,vk,O,...,O,ﬁ’)’)}

e x (i) = exp z = |
tkk’

_ eXp ZY/ (fL’tk*) (6’7 ULy .oy Uk—1, Uk, 07 ey 07 6/)/>:|

- Z DY Z Ty B (Bt | X = x])

tkk m#Em* k'=1

Remark 21. The distributions of the coefficients in Corollary 1, Theorem 12, and Theorem

18 can be a point mass. This is the fized coefficient linear regression model.

Theorem 14 establishes identification of the joint distribution of § by solving a system
of equations of second-order partial derivatives of the log CF of a linear combination of
outcome variables. This method allows X and [ to be arbitrarily dependent and K,, > 1,
m = 1,..., M so that conditional on X subsets of § can be arbitrarily dependent. The

model is described as in Equation (3.2), Y = 51 X1 + ... + By Xy
Condition on X = (Xi,...,Xu) = (21,...,2n) = x. Let z,, = (27",..., 2% ) be a

partition of the matrix z,, where 27" is the k%" column of x,,. Define the matrix multiplication

T * Ty, 1=

m m m m m m m m m m m m m m
(ml Qxy, Ty DTy + Ty DTy 5.ovny Tp QTp y.vny T QT +Tp ) QT ..o, :cKm®:L‘Km)

where ® is the Kronecker product and 1 < 57 < K,,, — k. The matrix z,, * z,, has dimension

T? x Kpn(K,, +1)/2. Now, let = (x1,...,2)) be a partition of the matrix z and define
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the matrix multiplication
TOx:=(Ty%Ty ..., Tpr*Tpy)

where x ® x is has dimension T? x K,,(K,, +1)/2.

Assumption 11.
i. Rank(z ©x) =M K (K +1)/2
ii. Rank(x,,) = K, for all m

-2
Theorem 14. If fuk? W (E [exp (z 221:_11 Bkt + Bk, Uiy + iﬁmkzv@)}) dog, dvg, <
oo for all fived si,...,Sk,-1 and all Sk, Sk, in the support of the CF of ﬁm and
E[|Bimk, Bk |] < 00 for ki, ko =1,..., Ky, then the joint distribution of B conditional on X
is identified when Assumption 11 holds. The CF of By is

dvkdwk

W a<me Wm
S () = exp (z/ R e
(0,..,0,0,..., 0)
ury 92 o (&
T m|X \m m)
* Z / / awmklawka (
uy

k1<ko
+ZukE Bk | X = m])

k=1

d’l)k1 dka

Let K,, =1, m =1,..., M so that each matrix X,, = (X{},..., X/},..., X7%)" has only

one column. The system is represented as

Y Xu Xim B
Yr X11 . Xrm B
where 1, ... , By—1, and [y are mutually independent.
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In Theorem 4, I allow coefficients conditioned on X to be equal in distribution.” This

allows homogeneity in the unobservables so that unobserved variables are drawn

from the

same distributions but do not need to be identical. To be specific define the equivalence

classes

85 = { B+ B L B }

where "3, 4 B " means f3,, is equal in distribution to (55

J3m1x(0) = fa1x (D) VbeR
Let {[51] yeees [51\7} } be the equivalence classes, which are disjoint and partition (/,
Now, condition on X := (Xy,..., Xy) = (z1,...,2py) =z and let z = (24, ..

a partition of  where z,, is the m** column of x and define!® !

= (T7 .. 2) = (@ I(B € [Ba)) .- aml(Bu € [Br)))

2N
I
N
20
2
S|
N—

M M ~ ~
Trii= Y @ ez, Y a el

m=1 m=1

Assumption 12.

i. K =1 so B is mutually independent

9A similar kind of relationship structure on 3 can be used to modify Theorem 12.
0Columns of Z™ equal to the zero vector are removed.

o )

., Zy) be

'The matrix T« has some repeated rows because the order of the scalar multiplication does not matter,
that is ¢, mTtym = TtymTt,m, S0 for calculation purposes I remove repeated rows and define the matrix zxx

as the matrix z x  without repeated rows so that a typical row looks like

M M
E Tt1Tt451 5« E TtmTt4jm
m=1 m=1

where 0 < j < T — t. The matrix x,,*x,, has dimension (T + 1)T/2 x M.
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ii. The equivalence classes [Bm|n_, are known

1i. There exists a vector § € RT such that

rs=u
where U = (17111, . ,17]\7[]\7)/ € RM, uz € R with uz and wq not necessarily distinct
and Uz = (1,...,1) is a column vector of 1’s of dimension |[Bz]| x 1 with |[Bz]] =

SM_ T (B € [Br)) is the size of the equivalence class.

iv. Rank(T %) = M

Theorem 15. If E[f2] < oo and [;"™ [ (E [exp (ivBm)]) *dvdw < oo for all ug in the
support of B, then the joint distribution of 5 conditional on X is identified when Assumption
12 holds. The CF of B is

bmix (um) = exp </ m/ Pmix (V) dvdw + uzs B [Ba] X = x])

Remark 22. Assumption 12ii can be generalized by B, 2 Zammﬁm but more caution is

needed because equivalence classes might not be disjoint.

Theorems 13, 14, and 15 assume that the conditional expectations of some unobservables
are known. This is a strong assumption. There are at least two ways to deal with this:
(1) Assume some unobservables have known expectations and use the formula E[f|X] =
E[(X’X)7'X'Y|X] to identify the other expectations. As a rule of thumb the number of
expectations that can be identified is less than or equal to the number of outcome variables
(so that Xhas a pseudoinverse). Graham and Powell (2011), however, identify conditional
expectations in a similar model under weaker condition can also be used (2) Concede that the

expectations are not identified; and instead assume E[$|X]| = 0 and identify the parameter
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b= E[Y]in the model Y = b+ Xf (or E[¢|X]| = E[Y|X] in the model Y = X + ¢), which
is similar to not being able to identify both the intercept and mean of the error in a fixed

coefficient linear regression model.

3.3 Illustrative Examples

The following illustrative examples demonstrate how to use the Theorems in Section

3.2.2.12

3.3.1 Example 1: Cross Sectional and Panel Data Model

Consider the linear panel data model with random coefficients!?
YVi=a+X/f+¢ t=1,...,T
i. Let T =1 and B8 € RM so that the data comes from a cross section of the population
Yi=a+ X[ +¢

Assume X and ( are independent, and («a, (1, .. ., B, €1) is independent. Using Theo-

rem 12,

61nfy1|X

W E {exp (iY1v/21m)
on, () =exp | E |1 [ ek
Brm ™ o vE [exp (iYiv/z1,,)]

dv m=1,...,M

I2More detailed explanations of the examples are in Appendix B.
13Some of the papers that consider this setup are: Maddala (1971), Chamberlain (1982), Arellano and
Bover (1995), and Wooldridge (2005).
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The unobservables o and €; are not separately identified but

(ﬁyﬂx(U)
ate (W) = B 7
Puser) [Hm ¢ﬁm<xlmu>]

ii. Asin Example 1i,let T=1 and 8 € RM. Assume X =iy, (the M x 1 vector of 1s)
Yi=a+p1+...0u+¢

Assume (o, By, ..., Bu,€1) is independent but « £ b1 £ £ By = €1 and assume
without loss of generality that E[a] = E[f1] = ... = E[fu] = E[e1] = 0 (otherwise
normalize by subtracting E[Y7]).

The CF of 5, is

B (51) = [bw; (51)] 777

Remark 23. When Y, = a + e1 then this is the deconvolution problem with the as-
sumption that o < g1. When M — oo then this is the start of the proof of the central
limat theorem, which uses a Taylor expansion of the CF and further assumptions about

existence of higher order moments.

iii. Let T =2and g € R

Yi=a+ X6 +e

Yo =a+ Xofh + &2

Assume & 2 9| X and (v, 81, €1, £2) are mutually independent conditional on X, assume

Ele1|X] = E[e3|X] = 0, and assume X and 3 are arbitrarily dependent.'* When z; # x5

14 As mentioned earlier E[e1]|X] = E[e3]|X] = 0 is a strong assumption (notice E[a|X] # 0 and E[f1]X] #
0). This can be replaced with other perhaps weaker assumptions. Graham and Powell (2011) analyze the
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then the expectation of («, 1) conditional on X is

a __m  _m Y,
xr1—x xr1—x
E X =z| = O X =z

xr1—I2 T1—T2

Let (517527/6&64) = (aa61a€17€2)7 then

b
Y 1 X, 10 Do
Y5 - 1 Xy 01 Bs
Ba

I now check Assumptions 12iii and 12iv. The details and explicit formulas for the CFs

are left to Appendix B.

1 x 10
7= 7= =
1 T2 01
1 22 1
T = 1 zy20 O
1 22 1

~3,:

Set 5= (1,1) then ZY5 = 1, %5 = 1 + x5, 35 = 7¥5 = (1,1)’ so Assumption 12iii is
satisfied. Assume |z # |z5| then Rank(zxx) = 3 and Assumption 12iv holds. Theorem

15 identifies the joint distribution of («, £, €1, €2).

Remark 24. By relabeling the variables Fxample 1iit can be viewed as an extension of

same system of equations with e5 = 0.
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a measurement error model with a repeated measurement®

X1:X*+W*+€1

Xo=X*"+aW* + ey a’® #1

where X, and Xy are two observed measurements. X* and W* are unobserved true
variables, €1 and €5 are independent and identically distributed measurement errors, and

a 1s a known constant.

3.3.2 Example 2: First-Order Autoregressive Process

The approach in this paper can be used under the more general formulation
Y = A(X,8)8

where A(+) is a T' x M matrix of continuously differentiable functions that are known up to
a vector of unknown common parameters 9.

Consider, for example, the first-order autoregressive panel data model
Vi =0Y, 1+ X{f+ & 0] <1

This model is considered, for example, by Maddala (1971), Alvarez and Arellano (2002),
Bond and Windmeijer (2002), and Arellano and Bonhomme (2011). These papers assume §
and f are fixed parameters, T' > 3, and F [e169] = F [X¢e;| = F [Xeg] = 0. I assume that J is
a fixed parameter, ( is a random variable, and T' = 2. I require €; and €5 to be independent

. d
conditional on X and g; = &y X .16

15The measurement error model with repeated measurements is analyzed for example by Kotlarski (1967)
and Li and Vuong (1998).
16¢, and €1 do not need to be equal in distribution for identification of 8.
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To be specific assume X; is a scalar and T' = 2, then

Yi=X161+ Yo+

Yy = Xof1 + 6 X181 + 62Yy + g1 + &2

where 0 is an unknown fixed parameter and (; is a nonparametrically distributed random
coefficient. Assume & 4 g9| X and (f31, Yy, e1,2) are random variables that are mutually
independent conditional on X, assume E[e1|X] = F[e3|X] = 0, and assume X and f; are
arbitrarily dependent.'” The fixed parameter is identified in Appendix B using a technique
from Ben-Moshe (2012b).

When x5 # 0, then

E[Ys|X] — 6E[Yi[X]

BB X] =
T2
ElYs|X] = (29 + 210)E[Y1| X] — 21 E[Y3| X]
I25
Let (81, B2, B3, B1) = (B1, Yo, €1, €2) then
6]}
Y Xo+0X, 6% 6 1 B
Ys X 0 1 0 Jo
Ba
I now check Assumptions 12iii and 12iv
x ) 10
7= 1 P = 7 =
T + 51‘1 52 5 1

1"Despite E[e1|X] = E[e2|X] = 0, the covariates can be dependent with €; and &5 in other ways.
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a3 52 1
TXT = (LEQ + 5%1) T (53 )

($2 + 5%1)2 54 52 +1

Set §= (u(1—9),u) then TV5 = u(x) + z2) , ¥¥5=ud , T¥s = ¥3's = u so Assumption 12iii
is satisfied. Assume x; # 0,29 # 0,0 # 0 then Rank(z#2) = 3 and Assumption 12iv holds.
Theorem 15 identifies the joint distribution of (/3, Yy, €1, €2).

Remark 25. Similar techniques can be used to identify fized parameters and unobserved

distributions when Yy follows an Autoregressive Process of order P (see for example Maddala

(1971))

P
=) 6,Yi,+X/B+e

p=1

3.4 Estimation

N
n=1"

Given i.i.d observations {Y,,, X, } estimators use the identification results by replacing
population quantities with sample analogs.
When X and § are independent and 7' = Dim/(f) then an estimator is based on Corollary

1. Estimate Fj(b) by the empirical distribution function

This method is attractive when it can be used because estimators use densities of observed
variables rather than CF's, which suffer from slow convergence rates and unknown asymptotic
distributions.

When X and f are independent and T' < Dim((3) then an estimator is based on Theorem
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12. Estimate ¢g,,,. (u) by replacing population quantities with sample analogs

N E exp (ivY’s(mk)*) —8 In frjx
G () 1 1 /u ’ Oz ]
Blomke)* u) = exp -— eyRY — ;
(mt) N~ si*x’? 0 vE [exp (ivY’sggmk) ﬂ

where for a function g(z,y)

Bl = S

is the Nadaraya-Watson kernel estimator and Kx is a Kernel that weights the observations
x, based on how close they are to x.
The density is identified using the inverse Fourier transformation and is estimated by a

nonparametric kernel deconvolution estimator

£ 1 —iub
fﬂ(mk)*|X(b) = % / ¢K(UhN>e b¢,3(mk)*|x(u)du

where ¢ is the Fourier transform of a kernel K supported on [—1, 1] and Ay is the bandwidth

of the kernel. In the Simulations section I use a second-order kernel'®

K(b) = 48 cos(b) (1 15) _ 144sin(b) (2_2)

bt 2 mhd b2

whose Fourier transform 1is
Or(u) = (1 —u?)*T(u € [-1,1])

Estimators based on Theorems 13 to 15 replace population quantities with sample analogs
and are constructed in a similar way to the estimator above for Theorem 12.

I do not prove consistency, which can be obtained from the existing literature. In par-

18See Delaigle and Gijbels (2002).

139



ticular, Evdokimov (2011) derives uniform convergence rates for a conditional distribution
using partial derivatives of CFs.!® Estimators that use deconvolutions are well-known to
have slow convergence rates (see Carroll and Hall (1988) and Fan (1991)). The kernel-based
estimator is a local estimator that weights data around z and will suffer from the curse of

dimensionality.

3.5 Simulations

In this section, I study the finite sample behavior of the estimators obtained from Corol-
lary 1, Theorem 12, and Theorem 15. The estimators of the densities have tight confidence

bands around their underlying counterparts.

3.5.1 Estimator Using Corollary 1

Consider the linear panel data model with random coefficients,

Y, = 51X + B Xuo

Yo = 81 Xo1 + B2 Xoo

Assume (X711, X12, Xo1, Xoo) and S are independent and

X1y 5 1 03 03 03

By 0 1 05 X1 5 03 1 03 03
~ N , ~ N ,

Ba 0 0.5 1 Xo1 5 0.3 03 1 03

X 5 0.3 03 03 1

Based on Corollary 1, I estimate the marginal densities of 5; and (3, by generating 100

simulations each of sample size 100 and I estimate the joint density of (51, 52) by generating

9Consistency in models without covariates can be found in, for example, Bonhomme and Robin (2010)
and Ben-Moshe (2012a).
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100 simulations each of sample size 500. The results are summarized graphically in Figures
3.1 and 3.2. Figure 3.1 represents the results for the marginal densities and figure 3.2

represents the results for the joint density.

3.5.2 Estimator Using Theorem 12

Consider the cross-sectional linear regression model with random coefficients

Yi =B Xy + B Xo + &4

Assume (X7, Xo) and (1, f2) are independent and

o3 0 10 X, 5 1 0.3
~ N : ~ N , 51~N(O,1)

Ba 0 0 1 X5 5 03 1

Based on Theorem 12, I estimate the marginal densities of $; and Sy by generating 100

simulations each of sample size 500. The results are summarized graphically in Figure 3.3.

3.5.3 Estimator Using Theorem 15

Consider the linear panel data model with random coefficients as in Example 1iii,

}/1:Oé+BX1+€1

}/2:@+,8X2+62
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Assume

a (o] [ 1 0 03 03]
B 0 1 0303 e~ N (0,1)
X 51 03 03 1 03 gy ~ N (0,1)
X, (10] |03 03 03 1 |

so that (X7, X5) and (a, 8) are dependent, the distributions of a and § are mutually inde-
pendent conditional on X;, and £; and e, are equally distributed and independent of X7,
X5, a, and (.

Based on Theorem 15, I estimate the marginal density of S by generating 100 simulations

each of sample size 500. The result is summarized graphically in Figure 4.

3.6 Conclusion

I study a linear model with nonparametrically distributed random coefficients. I identify
the nonparametric distributions of these coefficients. The distributions of the coefficients
can depend on covariates, coefficients can be conditionally statistically dependent or have
homogeneous distributions, and the number of coefficients can be larger than the number of
time periods per individual. I present examples to illustrate how the identification results
can be used in practice and test their finite sample properties using Monte Carlo simulations,

which suggest a practical estimation procedure.

142



3.7 Appendix A

3.7.1 Proof of Proposition 1

det (% b L S” 130) = 746
et ()| = Jim 530120 = 1500

Jim 530 h )
2

where the first equality follows by the change of variables theorem.

3.7.2 Proof of Theorem 12

Let ¢y|x denote the CF of Y conditioned on X := (Xi,...,Xy) = (21,...,20m) = x and let § =
($1,...,87). Then

(ﬁy‘X(g) =F [exp (insl +...+ iYTST) |X = J?]

E [exp (i(x]1811 + ... + 21k, Bika)S1 + - +i(@h Bi1 + .. + 2k, Buky )st) | X = 2

M
:HE
m=1

E [exp (i(z}y81 + ... + 2y s7)Bi1 + .. +i(alh, 51+ ... + 24, 57) By ) | X = x)

T
- m - m
exp (zﬁml g st + ..+ iBmk,, g a:thst>]
t=1 t=1

where the second equality follows by substituting Y; = 2}, 811 +. . .—|—x%<M Bunrk,, and the last equality follows
from the independence assumptions on 3 and the independence of X and f.

Let @y |x(5) = In ¢y |x (5) and

Om (Gm) = LBt gy, @Wmls- - Wik, ) = N E [exp (iBmiwWmt + - - . + ifmk,, Wmk,, )]
then
T M M
oy|x(5) = Z ©Om (Z TS, - - .,Zx?}(mst) = Z Om (gﬂlﬂlg', .. .,z?:ﬂE’) = Z Om ((‘T;ng)/)
t=1 m=1 m=1
where & = (z1,..., ) partitions « and z}* = (27}, ... 735%6)/ is the k" column of z,,.

The partial derivative with respect to x;’,}k is

3<PY\X(§) 0P (Gm+)
—_— = St* X — =
8m§’$k awk

!
’
(w *s)
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By Assumption 9i, span(z),.) = K~ so for any @, € REm* there exists &, ., € RT that solves

/

— = . PR _ / + -
x),+ 8z, k= Um~. One solution is 5, .p = (2),)" Wp+. Then

a<PY|X (5)

—
Ozt

N o

The CF of (3, is expressed in terms of its first-order partial derivatives
K » Sk a =
N w (W *
¢[3m* (’an*) = exp Z / % dvk
0 Wk (U1, Uk —1,0%,0,...,0)

K, *
m 1 Uk 8 S
= exp (Z / @83’|i*(_) dvk>
0 Tk (I;n*)+(ul,-~-"Ufk—17'0k707-~~:0)/

Sxm* kt*
Kme u, OInFE {exp (?’5’) | X = x}
= exp / dvy,
0

m*
i1 Skt oz, N
(ZL’;"*) (u1,...,uk_l,vk,O,.u,O)’

t*k

Enx /uk E [exp (17’ (x!, )" (ul,...,uk,l,vk,O,...,O)’> %"'ff(z)]
dvk
0

Sy x kt* E [exp (Y’ (), ) (w1, up—1, 0,0, . .. ,0)’) | X = x}

where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by
substituting Equation (3.3).

For estimation purposes, expectation is taken over X and weighted for each ¢

_. Oln x
Kme 4 /uk E [exp (Y’ (x’m*)"_ (ul,...,uk_l,vk,O,...,O)’) (9];;/7;{5()}
0

E [exp (17’ (x )T (ul,...,uk_l,vk,o,...,O)’) | X = x}

dug | | w(t)
=1 1 Sz« kt

where w(t) is a weight function that satisfies Zthl w(t) =1 and w(t) > 0.

The CF of U,,- is bounded using the regularity conditions: E [| Bk

73
] < ooand [ |(Elexpi(Bm=1u1 +
0
oot Bm*k,luk,l + ﬁm*kvk)])’1|dvk < oo for k = 1,..., K.
This shows that the CF of g,,« is identified. The density of 3,,~ is identified using the bijection between

densities and CFs by the inverse Fourier transform

g ]. ./ e
Foe () = 5 / e 6 (e Y-

This identifies the joint distribution of 3, for all m and in turn the joint distribution of 8 by the mutual
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independence assumption.

3.7.3 Proof of Corollary 2

The proof uses Theorem 12 twice and the Change of Variables Theorem: The distribution of v € R is

identified from X} = Z+~ using Theorem 12. Substitute X;* = Z~ into

Y = X8

= (Xll""’Xl?AL—hZ’XI?-L&-Ia'"7XIA(4M)(611V-~7Bmk—1a’75mkvﬁmk+la---;ﬁMKM)/

The joint distribution of (81, - - -, Bmk—1:VBmks Bmk+1s - « - » Bmk,, ) is identified using Theorem 12. The joint
distribution of 3,, is identified from the joint distribution of (81, - ., Bmk—1,YBmks Bmk+1s - - - » Bmk,, ) and

~ using their independence and the Change of Variables Theorem.

3.7.4 Proof of Theorem 13

Let ¢y|x denote the CF of Y conditioned on X := (Xi,...,Xy) = (21,...,70) = = and let § =

(s1,...,87). Then

¢Y\X(§) =F [exp (iY151 + ...+ iYTST) |X = I}
exp (i(z11 811 + ... + 2k, Biky )s1 + - +i(@p fi1 + -+ 2h, Buky )st) | X =z

exp (i(z1181 4 .. + 2y 87) 811 + ... i@, 51+ -+ T, 57) Brky ) | X = 7]

M T T
= H E |exp (iﬂmlzxﬂst+...+i,BmeZz?]’(mst> |Xx]
t=1 t=1

m=1

where the second equality follows by substituting Y; = 2}, 811 +. . .—i—x%{M Bunri,, and the last equality follows

from the independence assumptions.

Let ¢y |x(5) = In ¢y x(5) and

X) =l E[exp (ifmiwmi + - .. + iBmk,, Wwmk,,)

Pm|X ("Um) = PBmise-sBmKm (wml’ sy WK, X = x]

then

M T T M M
_ m m _ ml = ml =\ / /
‘leX(g) - E Pm| X E Lg1Sts -« E Tir,, St | = E Pm|X (xl Su"'vmeS) = E Pm|X ((xmgj )
m=1 t=1 t=1 m=1

m=1
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oy ! .
where @ = (z1,...,x)) partitions z and 2 = (273, ..., 2%,)" is the k" column of x,,.

The first-order partial derivative with respect to s;,. is

M K ~
aQOYlX(g) _ Z me 890m|X (Wm)
~Qa. = L Y
Osty. o e Owmk (a7
M K -
m 890le (Wm)
=D wh — g
m=1k=1 mk (1(Us o2, o #0) (@1,5))
M Kn, -
. Z 2 890m|X (Wm)
= teek T N
m=1k=1 Ok (z:,’f* 5‘)
b (78] tyx ip: ty
where z'+* = (:51 ey Tpy ) partitions x
By Assumption 10i, there exists 5« such that z'+*'5,,. = O, for all m # m* and 2415, = - €
. /
RE=. One solution is §,,» = (xtk*)"’ ( /Zm<m* K, o We O’Zm>m* Km) . Denote this solution as §y,» =
(zt+ )" (07, @,,.,0). Then
aSDY\X (57 390m*\x (wm*) 8SDm|X Wm
T | q—Zw*q 3> o |-
tg* (ztk*) (,a, .0 =1 i mk 0%

m* m#m* k=1

m

m* a<)0m*|X (gm*)
=Tkt T o L

K
+ Y > Al G E Bkl X =] (3.4)

2 m#m* k=1

m*k*

where the second equality follows from Assumption 10ii that x;”:k = 0 for all £ # k*, and the assumption
> e S o1 T 1 [Bmi| X = 2] is previously identified or assumed known. The CF of 3,,-|x is expressed

in terms of its first-order partial derivatives

¢m*\X ﬁm*
j -
e (3 [ PoEn) b
= k
k=1 Y0 Ok (w1, Uk —1,V%,0,...,0)

(]

Koy
8<PY|X (5)
= exp dvy,
xtkk 0S¢,

k=1

(ﬂitk* )Jr(a',ul s Uk —1,U5,0,...,0,07)

K,
— ULk Z Z x;Zk/E[Bmk"X = .’E]

m#mM* k/=1

d'l)k

Uk
— exp (Z L OlnE| exp (1Y'3)]

k=1 tkk pk*
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Bme /uk 1E [Y}k* exp (iY’ (b )+ (0, ug, ..., up—1,0,0,...,0, (7)')}
0 E [eXp (iY’ (zte)T (07, uq, . .., uk—1, 05,0, ...,0, _”)’)}

K,,

Z =y Z 2 B Bt | X = ]

kk m#m* k/=1

where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by
substituting Equation (3.4).
The CF of 8,,~ is bounded using the regularity conditions: E [|Bpm«k|] < co and T}k |(Elexp i(Bm=1u1 +
oot B k—1uk—1 + Bmervr)]) "Hdog < oo for k=1,..., K. ’
This shows that the CF of 3,,«|X is identified. The density of 8,,+|X is identified using the bijection

between densities and CFs by the inverse Fourier transform

7 1 Gy * — -
frnex (b)) = %/e me b e x (U ) Al >

3.7.5 Proof of Theorem 14

Let ¢y|x denote the CF of Y conditioned on X := (Xi,...,Xn) = (21,...,20) := 2 and let 5 =
(s1,-.-,87). Then

(ﬁy‘X(g) =F [exp (insl +...+ iYTST) |X = .17]
= E [exp (i(z11 811 + - + 1%, Brrca )81 + -« -+ i@ fun + .+ 2, Bury)st) | X = ]

= [exp ( i(xlys1 4 ...+ xhysT)frn ...+ i(x%(Msl + ...+ a:%(MsT)BMKM) | X = x}

M T T
T E e (W S allsit oot i, Zx;nif{,,Lst) X = x]
m=1

t=1 t=1

where the second equality follows by substituting Y; = 2}, 811 +. . .—|—x%[(M Bunrk,, and the last equality follows

from the independence assumptions.

Let oy |x(5) = In¢y|x(5) and
Pm|X (Gm) = PBmtse s BmKm (Wm1s -y Wk, | X) = In Eexp (iBmiwm1 + - .. + iBmk,, Wmk,,) | X = 7]

then

T M
Py |x(5) = Z Pm|X <Z$t15t,---,z$ﬁ<m5t> = Z Pm|X (x’f”si-- $K S Z Pm| X ( ) 5))
t=1 m=1
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oy ! .
where @ = (z1,...,x)) partitions z and 2 = (273, ..., 2%,)" is the k" column of x,,.

The second-order partial derivatives of ¢y |x(5) are

390?|x (&)

oy x(5) |
85% (wls)
Povix(3) | O x (&)
Dsom, | (z©x) Qb O |,
2
?ﬁ%@dﬁ, 0% x (@)
ST 8w]2\4KM ’ /
(IM’?)

k1 < ko.
By Assumption 11i

/
3@%){ (@)
Ow?,

a@?wx (@)

it
O

82cpy (S, 82(py (S) '
+ |X
=(z o) ( 52 ey 2 )

’
;o
(“’MS)

By Assumption 11ii, for all @, € R%m there exists a 5,, € R that solves 2/, 5,, = i@,,. One solution is
S = (] )+ Up,. Then

m

/

— — /
89072n|X (Gm) 590,2,1\)( (wm) _ (JJ o .7;)+ 82@y|x(§) 82<py|X(§‘)
' Ow? T Ow? N 0s? N 0s2 _
W1 _, WinK,, 51 (@) i T (&) T
where
oy x(5)
85t188t2 (min)Jrﬁm
E [Eleiyl(w:n)Jrﬁm‘X — mi| E |:Y;261’Y’(I:n)+ﬁm|X _ xi| E [Klnzeiy/(x:'L)JrﬁnL'X — J/':|
(E [eiY’(w;,L)+ﬁnL|X _ x})z E [eiY’(zin)+ﬁm,|X _ x}
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The CF of U, is expressed in terms of second-order partial derivatives

K
= a<p7n\X wm)
G| x () = exp E dvgdwy,
(0,...,v%,0,...,0)
Ukq 8§D IPmx W) wm)
+ E P 9 dvkldvk2
(09) (09
k1<k2 mky Cmks (U1,5eesUeg —1,Vk ,0,..,0,Vk ,0,...,0)

" fuw Bkl X = x})

k=1

The CF is defined using the regularity conditions: E[|Bmk, Bmk,|] < 0o and [ [ (Elexp(i SR Bkt
Bk Uiy + 1By Uiy )]) ~2dvg, dvg, < 00 for ki ko =1,..., K.
This shows that the CF of f,,|X is identified. The density of §,,|X is identified using the bijection

between densities and CFs by the inverse Fourier transform

- 1 a7 N .
fm|X(bm) = g/e zThn'bm(brnp((’LLWL)d’U/m

3.7.6 Proof of Theorem 15

The CF of Y conditioned on X = x is

dy|x(51,--.,87) = Elexp (iY151 + ... +iYps7) | X = 1]
=F [exp( (.1111,31 + ...+ -TlMﬁM)Sl + ...+ i(JUTlﬂl 4+ ... +-77TM/BM)ST) |X = J,‘]

= FElexp (i(x1181 + ...+ xris7)f1+ ... +ilxipmst + ... + xrarsT)Bu) | X = 2]

M T
= H E |exp <iﬁm2xtmst> | X = x]
m=1 t=1

where the second equality follows by substituting Y; = 4181 + ... + x:a 8y and the last equality follows

from mutual independence.

Let @y |x(5) = In ¢y x (5) and @y x (Um) = In E [exp (iBmum) |X = 2], m =1,..., M then

M T M
90Y|X(§) = Z Pm|X (Z xtm3t> = Z Pm| X (xlmg)
m=1 t=1 m=1

!/ .
where x,, = (T1m, ..., 2T7y) is the m column of z.
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The second-order partial derivative with respect to s;, and sy, is

0? Py |Xx (5)
T, mz“lm%m%'x o

=1
M M

=2 2" 1B € Bal) sumttsm@layx (1 (B € [57]) 2709)
oy

where the second equality follows by Assumption 12ii.2°
By Assumption 12iii there exists 5 € RT such that Tz 5= Um where U € R. uz and uz do not need
to be distinct. One solution is 5 = (') & Then

M

M
_ 2 : 2 :~77L ~m " ~
- xtlmxtgm CIOT?I,‘X (um)
m=1 \m=1

8290Y|X(5_7
(%tl 88752

@)ta

In matrix notation the second-order partial derivatives can be represented as

Povix(3)
Ost @)t oY x (1)
; = (T+2) :
32<PY\X(§) ~
T2 | s i (07)
T (5/)-%—5
By Assumption 12iv
/ y [ Povix(® Doy x () ’
e (W), ..., '1I~):E*5 —_— ey ———"
(@ux( 1) Prr|x (u5r) (T *7) B |y o
where
82<PY|X(§) E [Ytleiy’(i/)+ﬁ|x _ x} E [ngeiy/(-’f/)*ﬁ\X _ m} E {nlnzeiyl(il)+ﬁ|){ _ x}
3St1 83152 (g/)ﬁ-i (E |:€Z'Y/(E/)+i|X _ :L':|)2 E |:eiY’(ff/)+i|X — xil

20For all B, € [Bm]

o5 (@m) = In ( JE fﬁmx<b>db> —In ( [ exp i) fﬁmxwdb) = pax (wm)

where the second equality follows because fg, |x(b) = f3.,x(b) for all b € R.
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Applying the Second Fundamental Theorem of calculus twice

bm|x (um) = exp (/O " /O Pmix (v) dvdw + um E [Bm] X = :c])

The CF is defined using the regularity conditions: E [5%] < oo and [;'™ [ (E [exp (ivf7)]) “dvdw < cc.
This shows that the CF of 85 |X is identified. The density of 8;|X is identified using the bijection

between densities and CFs by the inverse Fourier transform

1 it b
fﬁz|X(bﬁz) = %/eiwmbmd)ﬁﬂx(urﬁ)d%%

3.8 Appendix B

3.8.1 Example 1i: Cross-Sectional Linear Regression Model

The log CF of Y conditional on X is

M

Pyi1x(51) = Pater (1) + Y @m(@1ms1)
m=1

Ponx(o1) _ o ot (i)

D1 1Pm* (T1m=S1

where the first equality follows by the linearity, mutual independence, and independence of X and 8. The

result now follows by the Second Fundamental Theorem of Calculus.

3.8.2 Example 1lii: Cross-Sectional Linear Regression Model with

only Intercepts

The log CF of Y is

oy, (81) = @a (51) + g, (51) + -+ ©py (51) + ey (51)

= (M +2)pp,, (s1)
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where the first equality follows from the mutual independence assumption and the second equality follows

from the equality in distribution assumption. Then

bp,. (s1) = [py, (s1)]/ M2

3.8.3 Example liii: Panel Data Linear Regression Model

The log CF of Y conditional on X is

Py |x(51,82) = Paix (51 + 52) + @p, | x (T151 + T282) + ¥e, |x (51) + Pey| x (52)

1
9% x (51,52) 1 9 1 0 </7a|x(81+82)
— 827 x] ,
9% x (s1,52) _ ‘Pﬁl|x(51$1 + so2)
—%s05, — | T | 1 w2 00 ,
99%x(51,52) L2 01 e 1x (51)
85% Zo

o 1 (52)
Set 51 = s = u then by the equality in distribution assumption o.,|x(u) = ., x (u). Hence,

84’3/\)((51732)
0s?

[\S]
—

(u,u) L P (2u)

93| x (s1,52)

951052 () = 1 zz2 O @Zl\x((ﬂh + z2)u)
2 ilnon) 1 &} 1 #Lyx (W)
0s3
(u,u)
Under the assumption that x2 # x3,
39"%’\){(51»52)
1" T1T2 T1T2 38%

Pagx (2) e R = ()

1 o 1 1 390%/\)((51»52)
Lpﬁ”X((-'I?l + .'172)U) - m 0 _H 081082 ()

2

¥l () nim L mm DevxGuee)

’ (w,u)
SO
" () 122 a‘p%/|x<31752) 8803/\)((51732) 6@,0%/‘)((81782)
()OQ‘X u)=— 2 _ .2 ) 2 — — X3
i 2 881 (u/2,u/2) 881882 (u/2,u/2) 682 (u/2,u/2)
") = 1 vy x (51, 52) 1 93 x (51, 52)
Poux ()= x3 — 13 0s? xi — a3 0s3
(u/(z14z2),u/(x1+22)) (u/(z1+x2)u/ (T +22))
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1 &ng\x(slv@)

o ) 8903/|X(517 82) )
Ty + T2 Ds2

T1 + T 0s?

 09%x(s1,82)
881882

90/5/1 |X (u) =

(u,u) (u,u) (u,u)

and now use the Second Fundamental Theorem of Calculus to obtain the CF's

G| x (u) = exp </ / ‘P%ﬂx (v) dvdw + iuE[ Bz~ X}) m* = a, f1,€1,€2
0o Jo

3.8.4 Example 2: First-Order Autoregressive Process

The log CF of Y conditional on X is

oy ix(s1,52) = g, x (2151 + (T2 + 021)82) + Py x (51 + 0752) + @, |x (51 4 052) + @ey x(52)

where the equality follows from the independence assumptions. The second order partial derivatives are

2% x (s1,52) 2 52 Py x (@181 + (22 + 021)52)
052 1 9 )
2 S1,S . o) (581 + ) 82)
Qogxtenss) = | (g4 m)ey 60 50 o ( ) (3.5)
2 x (51,8 ) S1+ 059
&0”375(21)2) (z2 +0z1)? 6% 6% 1 ailX
3 @ 5 (52)
To identify the parameter § I employ a technique from Ben-Moshe (2012b). For all d € R
a‘ng X(Slv 52) &Pff X(Sh 52)
d- ‘352 - 8‘51852 = (dxy — 021 — x2)219%, | x (2151 + (22 + 21)52)
1
+(d0? = 6%)p x (051 + 0%52) + (d — 6)pl, | x (51 + s2) (3.6)
Define
Rdu) = (4. 2Pix(onse) _ vix(sum)
7 . 88% 381882
((z2+dx1)u,0) ((z2+dz1)u,0)

9¢Y x(s1,82)
ds3

vy x (51, 52)
881852

(0,z1u) (0,z1u)

= (dx1 — 631 — 22)21 (@,,BlllX (z1 (22 + dx1)u) — gpgllx ((z2 + 5xl)$1u))

o (d8% = 8%) (i, x (O + da)u) = @ (%a1) ) + (d = ) (i x (@2 + dwr)u) — ¢, x (9211) )

where the second equality follows by substituting in Equation (3.6) evaluated in two directions: (s1,s2) =
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((x2 + dz1)u,0) and (s1,s2) = (0, z1u).
Notice that R(d,u) = 0. Assume there exists Y C R with nonzero Lebesgue measure such that for all

u€eU and all d# ¢
R(d,u) #0
The coefficient 6 # 0 is identified as the unique solution to

6:ar§£in/u(R(d, w))” w(u)du

where w(u) is a weight function that satisfies [, w(u)du = 1.
In Equation (3.5) set s1 = u, s = u(1 — J) then by the equality in distribution assumption ¢, x(u) =

©ey)x (u). Hence,

003 x (s1,52)

957
e u(1-6),u 3 2 1 e, x (@1 + @2)u)

3@%/\)((51»52)

051052 e(1—8) = (z2 4 0z1)z1 6° 0 <PI{/U|X<5U)
399%;(;1,82) (vo +0z1)% 0% 62 +1 90/5,1|X(u)
82
u(1-68),u

Assume z1 # 0, 22 # 0, and § # 0. Then

2 5 1 83%
¢, x (@1 + 22)u) ~ T 0 2 I
o o (Bu) = —8’zywoton—dxitwimy  —ai420mizatal 1 &ﬁgxit(;l,éz)
Yo|X 82xwo 52z 172 32 51052 (=5
1 218% 4358 _ mp420xy B2+ (51,5
@EﬂX(u) T1 1 1 %
2 u(1-96),u
Then
5 093 x(5) 92 (3)
P () = = o 1L %o
B1lX T1T2 88% 120 951059
u(1=0)/(@1+22),u/(21-+2) w(1=8) /(w1 +22) u/ (21-+2)
2 2
Yolx (1) —0°w1wp + 023 — 02 + mzs 9Py x(S) a2 — 26a120 — 23 0%y x(5)
Py, x \U) = . 5 — .
ol 02x1x0 0s7 Wis) 522119 95105 s
5 ’ 8 5 .
2
1 a(pY\X(g')
-
J 852 u(1=%) u
5 ’5
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o () = 2162 + x20 3¢§/|X(§) o + 20271 &ng\x(g) a@%qx(;)
e1]X - ’ 2 - : — K593
1 881 u(1-98),u 1 681882 u(1=6),u 882 u(1=96),u
and now use the Second Fundamental Theorem of Calculus to obtain the CFs
P x (u) = exp </ / @%*\X (v) dvdw + iuE B X]) m* = f1,Yo, €1
o Jo
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Figure 3.1: The marginal densities of 5, and Ss using Corollary 1
The left graph depicts the marginal distribution of [, and the right graph depicts the

marginal distribution of [s.

The solid red lines are the underlying theoretical distribu-

tions, the solid blue lines are the medians of the estimates and the dotted black lines are the
10-90% confidence bands of the estimates. The mean squared error of the marginal density
of 51 is 0.0175. The mean squared error of the marginal density of 55 is 0.0252.
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Figure 3.2: The joint density of (81, 32) using Corollary 1

The left graph depicts the median of the estimates for the joint distribution of (51, 52) and
the right graph depicts the underlying theoretical joint distribution of (1, f2). The mean
squared error of the joint density of (31, 52) is 0.0629.
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Figure 3.3: The marginal densities of 5, and S5 using Theorem 12
The left graph depicts the marginal distribution of [, and the right graph depicts the

marginal distribution of [s.

The solid red lines are the underlying theoretical distribu-

tions, the solid blue lines are the medians of the estimates and the dotted black lines are the
10-90% confidence bands of the estimates. The mean squared error of the marginal density
of 51 is 0.0087. The mean squared error of the marginal density of 55 is 0.0092.
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Figure 3.4: The marginal density of 8 using Theorem 15

The graph depicts the marginal distribution of . The solid red line is the underlying
theoretical distribution, the solid blue line is the median of the estimates and the dotted
black lines are the 10-90% confidence bands of the estimates. The mean squared error of the
marginal density of g is 0.0025.
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