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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Identification:

Identification of Dependent Multidimensional Unobserved Variables in a System of Linear

Equations

Identification and Estimation for Regressions with Errors in All Variables

Identification of Nonparametrically Distributed Random Coefficients in Linear Panel Data

Models

by

Dan Ben-Moshe

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Rosa Liliana Matzkin, Chair

In Chapter 1, I extend the techniques in Li and Vuong (1998), Schennach (2004a), and

Bonhomme and Robin (2010) to identify nonparametric distributions of unobserved variables

in a system of linear equations with more unobserved variables than outcome variables and

with subsets of statistically dependent unobserved variables. I construct estimators of the

distributions of unobserved variables and derive their uniform convergence rates. In Chapter

2, I develop a method for identification and estimation of coefficients in a linear regression
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model with measurement error in all the variables. The method is extended to identification

in a system of linear equations in which only some of the coefficients on the unobserved

variables are known. The estimator uses an assumption that is testable in the data and

is in the class of Extremum estimators. The asymptotic distribution of the estimator is

derived. In Chapter 3, I identify the nonparametric joint distribution of random coefficients

in a linear panel data regression model. The distributions of the coefficients can depend on

covariates, coefficients can be statistically dependent or equal in distribution, and there can

be more coefficients than the fixed number of time periods. I construct estimators from the

identification proofs. In finite sample simulations all the estimators have tight confidence

bands around their theoretical counterparts.
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Preface

This thesis is concerned with identification in the system of linear equations


Yn1

...

YnT

 =


a11 . . . a1M
...

. . .
...

aT1
... aTM




Un1
...

UnM


where ~Yn = (Yn1, . . . , YnT )′ ∈ RT , ~Un(Un1, . . . , UnM)′ ∈ RM and A is a T ×M matrix with

entries {atm}.1

Assume for now that the matrix A is known, the vector ~Yn is known, and the vector ~Un

is unknown. If the dimension of ~Yn is smaller than the dimension of ~Un (i.e. M > T ), then

for any given value of ~Yn there is in general no unique solution to ~Un. Usually, a system with

fewer equations than unknown variables does not have a unique solution.

Now assume that ~Un, n = 1, . . . , N , are independent and identically distributed copies

of an underlying nonparametrically distributed random vector ~U . In this thesis I show that

even when M = P (P + 1)/2,

i. The joint distribution of ~U can be identified (“unique”) and

ii. Some of the coefficients in the matrix A can be identified despite being unknown.

Kotlarski (1967) is the first person to identify nonparametric distributions in a system

of linear equations with more unobserved variables than outcome variables. Consider

Y1 = U1 + U2

Y2 = U1 + U3

(1)

He shows that if the distribution of ~Y = (Y1, Y2) is known and ~U = (U1, U2.U3) is an

unobserved independent random vector then ~U is identified.

1The subscript n represents the nth observation or individual in the sample.
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In Chapter 1, I prove that in a system of linear equations with 2 outcome variables,

the maximum number of unobserved variables that are identified wihtout any additional

information is 3. In Chapter 2, however, I show that the system in Equation (1) is still

identified when it includes an unknown coefficient. Consider

Y1 = U1 + U2

Y2 = bU1 + U3

where ~Y = (Y1, Y2) is an observed random vector, ~U = (U1, U2.U3) is an unobserved inde-

pendent random vector, and b is an unknown coefficient. I show that b and the distribution

of ~U are identified. In Chapter 3, I consider

Y1 = U1 + U2 + U3

Y2 = aU1 + U2 + U4 a2 6= 1

Assume that a is known and make the additional assumption that U3
d
= U4, then I show

that all the distributions are still identified.

Chapter 1: Identification of Dependent Multidimensional Unob-

served Variables in a System of Linear Equations

In Chapter 1, I study the system of linear equations

~Y = A~U

where ~Y ∈ RP is an observed random vector, ~U ∈ RM is an unobserved random vector, and

A is a P ×M matrix of known coefficients.

I identify the nonparametric distributions of the unobserved variables and explain the

xiii



tradeoffs between the number of outcome variables, the number of unobserved variables, and

the statistical dependence of the unobserved variables.

To illustrate the identification strategy I consider an earnings dynamics model from Bon-

homme and Robin (2010) that is modeled as a system of linear equations with mutually

independent unobserved variables. I relax various assumptions from Bonhomme and Robin

(2010) and show identification. First, I allow a subset of unobserved variables to be ar-

bitrarily dependent. Second, I assume that subsets of the unobserved variables are mean

independent (but otherwise arbitrarily dependent). Third, I show that without adding ad-

ditional equations or restrictions it is possible to include more unobserved variables and still

identify all of the distributions.

Chapter 2: Identification and Estimation for Regressions with Er-

rors in All Variables

In Chapter 2, I study the system of linear equations

~Y =

 A

B

 ~U

where ~Y ∈ RTA+TB is an observed random vector, ~U ∈ RM is an unobserved random vector,

A is a TA×M matrix of known coefficients, and B is a TB×M matrix of unknown coefficients.

In this chapter, I identify the coefficients in the matrix B.

I identify coefficients in three models:

i. Errors-in-Variables model:

Y = β0 + β1X
∗
1 + . . .+ βMX

∗
M + ε

Xm = X∗m + Um m = 1, . . . ,M

xiv



where (Y,X1, . . . , XM) is an observed random vector and (X∗1 , . . . , X
∗
M , U1, . . . , UM , ε)

is an unobserved mutually independent random vector. I identify (β0, . . . , βM) without

any additional information.

ii. Moving-average process of order 1:

Y1 = ε1 − θε0

Y2 = ε2 − θε1

where (Y1, Y2) is an observed random vector and ε0, ε1, and ε2 are unobserved mutually

independent random variables. I identify θ without assuming that ε0, ε1, and ε2 have

equal variances.

iii. Simultaneous equations model:

Y1 = δ1Y2 + β1X + ε1

Y2 = δ2Y1 + ε2

where (Y1, Y2, X) is an observed random vector and ε0 and ε1 are conditionally inde-

pendent unobserved random variables. I assume E [Xε2] = 0 but do not place any

restriction on the dependence of ε1 on X. I identify the coefficients δ1, δ2, and β1.

Chapter 3: Identification of Nonparametrically Distributed Ran-

dom Coefficients in Linear Panel Data Models

In Chapter 3, I identify nonparametrically distributed random coefficients in the linear

regression panel data model:

Y = Xβ + ε

where Y ∈ RT is an observed random vector, X is a P ×M matrix of covariates, ε ∈ RT is

a vector of errors, and β is a vector of random coefficients.
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I identify the nonparametric joint distribution of the coefficients under various assump-

tions about the statistical dependence of coefficients on covariates, the conditional statistical

relationship of coefficients (allowing them to be statistically dependent or equal in distribu-

tion), and the number of time periods per individual relative to the number of coefficients

I show how to identify random coefficients in a cross-sectional regression model with

coefficients that are independent of covariates, in a panel data regression model with coeffi-

cients that are dependent on covariates, in a fixed effects regression model, and a first-order

autoregressive panel data regression model.
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Chapter 1

Identification of Dependent

Multidimensional Unobserved

Variables in a System of Linear

Equations

1.1 Introduction

Kotlarski (1967) studies identification of the unobserved variables in the system of linear

equations

Xn1 = X∗n + εn1

Xn2 = X∗n + εn2

(1.1)

where (Xn1, Xn2) ∈ R2 is a vector of observed outcomes and (X∗n, εn1, εn2) ∈ R3 is a vector of

unobserved variables.1 This system has more unobserved variables than outcome equations

so that for any observed (Xn1, Xn2) there is no unique solution of (X∗n, εn1, εn2).
2 More

1The subscript n represents the nth observation or individual in the sample.
2The solutions lie on the line εn1 − εn2 = Xn1 −Xn2 in R3.

1



generally, for any system of linear equations with fewer equations than unknowns there are

no unique solutions of the unknowns.

Kotlarski (1967), however, proved that if (X∗n, εn1, εn2) are independent and identically

distributed copies of an underlying independent random vector (X∗, ε1, ε2), then its non-

parametric distribution is identified (“uniquely determined”) from the distributions of the

observed outcome variables. In this paper I generalize Kotlarski (1967) in two ways:

i. Instead of a linear system with two outcome variables and three unobserved variables, I

consider a general linear system with fewer outcome variables than unobserved variables;

ii. Instead of mutually independent unobserved variables, I allow the unobserved variables

to be mean independent or arbitrarily dependent.

My aim is to identify the nonparametric distributions of the unobserved variables and to

understand the tradeoffs between the number of outcome variables, the number of unobserved

variables, and the statistical dependence of the unobserved variables.

To understand the tradeoffs I present three theorems. The first theorem extends the

identification strategy in Li and Vuong (1998) from the system in Equation (1.1) with mu-

tually independent unobserved variables to a system of equations with subsets of arbitrarily

dependent unobserved variables.3 The second theorem relaxes the mutual independence as-

sumption from Bonhomme and Robin (2010) by providing necessary and sufficient conditions

for identification in a system of linear equations in which subsets of the unobserved variables

are arbitrarily dependent. The third theorem extends Schennach (2004a) from identification

in the system in Equation (1.1) with mean independent unobserved variables to a system of

equations.

My contributions are demonstrated in an earnings dynamics model from Bonhomme and

Robin (2010) in which the unobserved variables are mutually independent permanent and

transitory income shocks.4 I solve this model relaxing various assumptions. First, I allow the

3Li and Vuong (1998) use the same identification strategy as Kotlarski (1967).
4With the exceptions of Horowitz and Markatou (1996) and Bonhomme and Robin (2010), the earnings

dynamics literature assumes that the income shocks are jointly normal mutually independent unobserved
variables. See Meghir and Pistaferri (2011) for a review of the earnings dynamics literature.

2



transitory shocks to be arbitrarily dependent. Second, I assume that the transitory shocks

are mean independent (but otherwise arbitrarily dependent) and the permanent shocks are

mean independent (but otherwise arbitrarily dependent). Third, I show that without adding

additional equations or restrictions it is possible to include more unobserved variables and

still identify all of the distributions.

The identification strategy takes advantage of the linearity of the system by a log char-

acteristic function (CF) transformation. The result is an equation that expresses the log CF

of a linear combination of the outcome variables in terms of additively separated log CFs of

unobserved variables. Identification is achieved by taking partial derivatives and choosing a

linear combination of outcome variables so that a single log CF of an unobserved variable is

expressed in terms of observed quantities.

The estimators have closed form solutions coming from the identification results and are

obtained by replacing population quantities with their sample analogs. I provide results

on the uniform convergence rates of these estimators; similar to the estimators in Carroll

and Hall (1988) and Fan (1991), these are relatively slow and depend on the smoothness of

distributions of observed and unobserved variables.

In a Monte Carlo simulation, I compare several estimators of the distribution of X∗ in

Equations (1.1). The finite sample properties are encouraging with strong indications that

the estimators should perform well in practice even with sample sizes of the outcome vector

that are less than 100.

The literature on identification in models with more unobserved variables than outcome

variables was initiated by Kotlarski (1967) and continued by Khatri and Rao (1968), Rao

and Székely (2000), and others. Based on these papers, Li and Vuong (1998), Schennach

(2004a,b), Bonhomme and Robin (2010), and others construct estimators.

The measurement error literature relaxes the additivity assumption by studying iden-

tification in nonlinear models.5 Hu and Schennach (2007) are at the cutting edge of this

5See Schennach (2011) for a review of the measurement error literature in nonlinear models.
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literature, using general operators to identify densities of unobserved variables. They use a

completeness condition that requires strong restrictions on the dimension of the unobserved

variables relative to the outcome variables.

This paper is organized as follows. Section 1.2 presents identification in an earnings

dynamics model that explains the main identification ideas. Section 1.3 presents the general

model, the assumptions, and the three main identification theorems. Section 1.4 presents

an extension of the earnings dynamics model. Section 1.5 presents a few more illustrative

examples that show how to use the identification theorems. Section 1.6 constructs the

estimators and establishes their asymptotic properties. Section 1.7 presents Monte Carlo

simulations. Section 1.8 concludes. The Appendix contains detailed solutions of the examples

from Sections 1.2, 1.4, and 1.5 (Appendix A), the identification proofs from Section 1.3

(Appendix B), and proofs of the uniform convergence rates from Section 1.6 (Appendix C).

1.2 Example 1A: Earnings Dynamics Model

To explain the main identification ideas of this paper and compare them to the existing

literature, consider the earnings dynamics model from Bonhomme and Robin (2010) on pages

494 and 495:

wt = f + yPt + yTt t = 1, 2, 3, 4

yPt = yPt−1 + εt t ≥ 2

yTt = ηt

η1 = η4 = 0

where wt is the residual of a regression of individual log earnings on a set of strictly exogenous

regressors, f is the unobserved fixed effect, yPt is the unobserved persistent component, yTt is

the unobserved transitory shock, and εt and ηt are unobserved innovations that are mutually

4



independent and independent over time. The system in matrix notation is



w1

w2

w3

w4


=



1 0 0 1 0 0 0

1 1 0 1 1 0 0

1 0 1 1 1 1 0

1 0 0 1 1 1 1





f

η2

η3

yP1

ε2

ε3

ε4



(1.2)

The fixed effect f and the persistent component yP1 , which are represented by the first and

fourth columns in the matrix on the right of Equation (1.2), cannot be separately identified so

Bonhomme and Robin (2010) difference out these effects. Let ~Y = (w2−w1, w3−w2, w4−w3)
′

and ~U = (η2, η3, ε2, ε3, ε4)
′. The system of equations on page 495 from Bonhomme and Robin

(2010) is


Y1

Y2

Y3

 =


1 0 1 0 0

−1 1 0 1 0

0 −1 0 0 1





U1

U2

U3

U4

U5


(1.3)

where Y1, Y2, and Y3 are observed random variables and U1, U2, U3, U4, and U5 are unobserved

random variables with expected values equal to 0. Bonhomme and Robin (2010) assume that

the unobserved random variables are mutually independent.

The first difference between the existing literature and my paper is that I relax the mutual

independence assumption. Assume that U1 and U2 are arbitrarily dependent and (U1, U2),

U3, U4, and U5 are mutually independent.

I now solve for the joint distribution of the unobserved vector ~U in two ways. Solution
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1, like Kotlarski (1967) and Li and Vuong (1998), uses first-order partial derivatives of log

CFs. Solution 2, like Bonhomme and Robin (2010), uses second-order partial derivatives of

log CFs.

Log CF transformation: The log CF of the observed vector (Y1, Y2, Y3) ∈ R3 in terms

of log CFs of unobserved variables is

lnE [exp (it1Y1 + it2Y2 + it3Y3)]

= lnE [exp (it1(U1 + U3) + it2(−U1 + U2 + U4) + it3(−U2 + U5))]

= lnE [exp (iU1(t1 − t2) + iU2(t2 − t3) + iU3t1 + iU4t2 + iU5t3)]

= lnE [exp (iU1(t1 − t2) + iU2(t2 − t3))]

+ lnE [exp (iU3t1)] + lnE [exp (iU4t2)] + lnE [exp (iU5t3)] (1.4)

where the first equality follows by substituting t1Y1 = t1(U1 +U3), t2Y2 = t2(−U1 +U2 +U4),

and t3Y3 = t3(−U2 + U5) and the last equality follows by the independence assumption.

The log CFs of the unobserved variables are additively separated because of the linearity

in Equation (1.4) and the mutual independence of (U1, U2), U3, U4, and U5. The random

variables U1 and U2 are dependent so that their CFs cannot be separated and remain together

in a multidimensional CF.

The notation I use in this paper is

ϕU1,U2 (t1 − t2, t2 − t3) = lnE [exp (iU1(t1 − t2) + iU2(t2 − t3))]

ϕU3 (t1) = lnE [exp (iU3t1)]

ϕU4 (t2) = lnE [exp (iU4t2)]

ϕU5 (t3) = lnE [exp (iU5t3)]

Using this notation

lnE [exp (it1Y1 + it2Y2 + it3Y3)] = ϕU1,U2 (t1 − t2, t2 − t3) + ϕU3 (t1) + ϕU4 (t2) + ϕU5 (t3) (1.5)
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For any (s1, s2, s3, s4, s5) ∈ R5 there are in general no solutions (t1, t2, t3) ∈ R3 that satisfy

lnE [exp (it1Y1 + it2Y2 + it3Y3)] = ϕU1,U2 (s1, s2) + ϕU3 (s3) + ϕU4 (s4) + ϕU5 (s5).

1.2.1 Solution 1: First-Order Partial Derivatives

First-order partial derivative: The partial derivative of Equation (1.5) with respect to

t1 is

∂ lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1

=
iE
[
Y1e

it1Y1+it2Y2+it3Y3
]

E [eit1Y1+it2Y2+it3Y3 ]

=
∂ϕU1,U2 (ω1, ω2)

∂ω1

∣∣∣∣
(t1−t2,t2−t3)

+ ϕ′U3
(t1) (1.6)

Equation (1.6) has fewer functions than Equation (1.5). Only the log CFs containing U1

and U3 remain because of the substitution t1Y1 = t1(U1 + U3) into Equation (1.4). The

log CFs of U4 and U5 vanish because of the additivity in Equation (1.5) and because their

arguments do not contain t1. The first-order partial derivative with respect to tp reduces the

equation to only contain log CFs of unobserved variables in the pth equation. Hence, I refer

to the partial derivative with respect to tp as a “derivative with respect to the pth equation.”

The effectiveness of the partial derivative depends on exclusion restrictions of unobserved

variables from an equation.

Next, I show that for any (s1, s2, s3) ∈ R3 there exists (t1, t2, t3) ∈ R3 such that

iE
[
Y1e

it1Y1+it2Y2+it3Y3
]

E [eit1Y1+it2Y2+it3Y3 ]
=
∂ϕU1,U2 (ω1, ω2)

∂ω1

∣∣∣∣
(s1,s2)

+ ϕ′U3
(s3)

This means that (t1, t2, t3) ∈ R3 solves


t1 − t2

t2 − t3

t1

 =


1 0 1

−1 1 0

0 −1 0


′

t1

t2

t3

 =


s1

s2

s3

 (1.7)
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This matrix is the transpose of the first three columns of the matrix in Equation (1.3). These

columns contain the coefficients of U1, U2, and U3.

Choose (t1, t2, t3): For any s3 ∈ R choose (t1, t2, t3) = (s3, s3, s3) so that


t1 − t2

t2 − t3

t1

 =


1 0 1

−1 1 0

0 −1 0


′

s3

s3

s3

 =


0

0

s3


Substitute (t1, t2, t3) = (s3, s3, s3) into Equation (1.6)

iE [Y1 exp (isY1 + isY2 + isY3)]

E [exp (isY1 + isY2 + isY3)]
=
∂ϕU1,U2 (ω1, ω2)

∂ω1

∣∣∣∣
(0,0)

+ ϕ′U3
(s3)

= ϕ′U3
(s3)

where the last equality follows from
∂ϕU1,U2

(ω1,ω2)

∂ω1

∣∣∣
(0,0)

= iE [U1] and the assumption that

E [U1] = 0.

The derivative of ϕU3 is now expressed in terms of observed quantities. The CF of U3 is

identified by integration:

E [exp (iU3s3)] = exp

(∫ s3

0

iE [Y1 exp (iu (Y1 + Y2 + Y3))]

E [exp (iu (Y1 + Y2 + Y3))]
du

)

6

The strategy in Solution 1 uses a first-order partial derivative of the log CF of ~Y . The

main assumption, Assumption 1i in Section 1.3, is that the image of the matrix transfor-

mation in Equation (1.7) contains either (s1, s2, 0)′ or (0, 0, s3)
′ where (s1, s2) ∈ R2 and

s3 ∈ R.

6Appendix A identifies the rest of ~U .
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1.2.2 Solution 2: Second-Order Partial Derivatives

Second-order partial derivatives: The second-order partial derivative of Equation (1.5)

with respect to t1 and t2 is

∂2 lnE [exp (it1Y1 + it2Y2 + it3Y3)]

∂t1∂t2
= − ∂2ϕU1,U2

(ω1, ω2)

∂ω2
1

∣∣∣∣
(t1−t2,t2−t3)

+
∂2ϕU1,U2

(ω1, ω2)

∂ω1∂ω2

∣∣∣∣
(t1−t2,t2−t3)

The log CFs of U3, U4, and U5 vanish because of the additivity in Equation (1.5) and because

their arguments do not contain t1 and t2. The second-order partial derivative with respect

to tp1 and tp2 reduces the equation to only contain log CFs of unobserved variables in both

the pth1 and pth2 equations.

All the second-order partial derivatives are



∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t21

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t22

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t23



=



1 0 0 1 0 0

−1 1 0 0 0 0

0 −1 0 0 0 0

1 −2 1 0 1 0

0 1 −1 0 0 0

0 0 1 0 0 1





∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω1∂ω2

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

ϕ′′U3
(t1)

ϕ′′U4
(t2)

ϕ′′U5
(t3)



(1.8)

It is instructive to set (t1, t2, t3) = (0, 0, 0) because the vector on the left hand side of Equation

(1.8) will equal the vector of observed covariances, Cov(Yp1 , Yp2), and the vector on the right

hand side of Equation (1.8) will equal the vector of unobserved covariances, Cov(Um1 , Um2).

Hence, the entries in the matrix on the right hand side of Equation (1.8) are the same as

the entries of the matrix that expresses Cov(Yp1 , Yp2) in terms of Cov(Um1 , Um2). Further, if
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U1 and U2 are independent, then

∂2ϕU1,U2 (ω1, ω2)

∂ω2
1

∣∣∣∣
(t1−t2,t2−t3)

= ϕ′′U1
(t1 − t2)

∂2ϕU1,U2 (ω1, ω2)

∂ω1∂ω2

∣∣∣∣
(t1−t2,t2−t3)

= 0 (1.9)

∂2ϕU1,U2 (ω1, ω2)

∂ω2
2

∣∣∣∣
(t1−t2,t2−t3)

= ϕ′′U2
(t2 − t3)

Equation (1.9) evaluated at (t1, t2, t3) = (0, 0, 0) becomes Cov(U1, U2) = 0. The difference

between Solution 2 and the solution from Bonhomme and Robin (2010) can be understood

as the difference between allowing for Cov(U1, U2) 6= 0 and assuming Cov(U1, U2) = 0.7 The

matrix in Equation (1.8) incorporates cross-partial derivatives and is the first step to dealing

with the statistically dependent unobserved variables.

The matrix in Equation (1.8) is invertible so that all the second-order partial derivatives

of log CFs of unobserved variables can be expressed in terms of observed quantities. For

example,

∂2ϕU1,U2 (ω1, ω2)

∂ω2
1

∣∣∣∣
(t1−t2,t2−t3)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

−
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

(1.10)

Next, I show that for any (s1, s2) ∈ R2 there exists (t1, t2, t3) ∈ R3 that

∂2ϕU1,U2 (ω1, ω2)

∂ω2
1

∣∣∣∣
(s1,s2)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

−
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

7The matrix in Equation (1.8) is the same as the one from Bonhomme and Robin (2010) when the
unobserved variables are mutually independent.
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This means that (t1, t2, t3) ∈ R3 solves

 t1 − t2

t2 − t3

 =


1 0

−1 1

0 −1


′

t1

t2

t3

 =

 s1

s2

 (1.11)

The matrix is the transpose of the first two columns of the matrix in Equation (1.3). These

columns contain the coefficients of U1 and U2.

Choose (t1, t2, t3): For any (s1, s2) ∈ R2 choose (t1, t2, t3) = (s1, 0,−s2) so that

 t1 − t2

t2 − t3

 =


1 0

−1 1

0 −1


′

s1

0

−s2

 =

 s1

s2



Substitute (t1, t2, t3) = (s1, 0,−s2) into Equation (1.10)

∂2ϕU1,U2
(ω1, ω2)

∂ω2
1

∣∣∣∣
(s1,s2)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∣∣∣∣∣
(s1,0,−s2)

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(s1,0,−s2)

The CFs of the unobserved variables are identified by integration. For example,

φU1,U2(s1, s2) = exp

(∫ s1

0

∫ v

0

∂2ϕU1,U2(ω1, ω2)

∂ω2
1

∣∣∣∣
(u,0)

dudv

+

∫ s2

0

∫ s1

0

∂2ϕU1,U2(ω1, ω2)

∂ω1ω2

∣∣∣∣
(u,v)

dudv +

∫ s2

0

∫ v

0

∂2ϕU1,U2(ω1, ω2)

∂ω2
2

∣∣∣∣
(0,u)

dudv

)

8

The strategy in Solution 2 uses the second-order partial derivatives of the log CF of

~Y . The main assumptions, Assumptions 2i and 2ii in Section 1.3, are that the matrix in

Equation (1.8) of all second-order partial derivatives is invertible and that the image of the

matrix transformation in Equation (1.11) spans R2.

8Appendix A identifies the rest of ~U .

11



1.3 Identification in the General Setup

An important aspect of this paper is that subsets of unobserved variables can be statisti-

cally dependent. To make this explicit, let ~U = (~U ′1, . . . , ~U
′
M)′ where ~Um = (Um1, . . . , UmKm)′

is a vector of arbitrarily dependent real random variables. Assume that the vectors

~Um ∈ RKm , m = 1, . . . ,M are mutually independent. Let ~Y ∈ RP and consider the system

of equations


Y1
...

YP

 =


a111 . . . a11K1

...
. . .

...

a1P1 . . . a1PK1




U11

...

U1K1

+ . . .+


aM11 . . . aM1KM

...
. . .

...

aMP1 . . . aMPKM




UM1

...

UMKM

 (1.12)

or ~Y = A1
~U1 + . . .+AM ~UM = A~U where Am is the P ×Km matrix with entries

{
ampk
}P,Km
p=1,k=1

and A = (A1, . . . , AM) is a partition of the P ×
M∑
m=1

Km matrix A.

Define

Ap
∗

=
(
Ap
∗

1 . . . Ap
∗

M

)
=

(
A1I

(⋃
k

a1p∗k 6= 0

)
. . . AMI

(⋃
k

aMp∗k 6= 0

))

the matrix that includes the matrix Am if and only if at least one of the columns of Am has a

nonzero coefficient in the p∗th row.9′10 The image of Ap
∗′ is a subspace with dimension equal

to the number of unobserved variables that are dependent with unobserved variables in the

p∗th equation. Assumption 1i, the main identifying assumption, is a condition on the span

of the image of Ap
∗
.

If A is the matrix from the model in Equation (1.3) and ~U = (~U1, U3, U4, U5) where

9The function I(E) is the indicator function.
10Zero columns are removed from all matrices in this paper.
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~U1 = (U1, U2) (the same dependence structure as in Example 1A), then

A1 =


1 0 1

−1 1 0

0 −1 0

 A2 =


1 0 0

−1 1 1

0 −1 0

 A3 =


1 0 0

−1 1 0

0 −1 1


A1 is the same matrix as in Equation (1.7) and contains the first three columns of A because

~U1 and U3 have nonzero coefficients in the 1st row.

Assumption 1. There exists pk∗ ∈ {1, . . . , P}, and ~tm∗ = (tm∗1, . . . , tm∗P )′ for k∗ =

1, . . . , Km∗ such that

i. Apk∗ ′~tm∗ =


Apk∗ ′1

~tm∗

...

Apk∗ ′M
~tm∗

 =


~0∑

m<m∗ Km

~sm∗

~0∑
m>m∗ Km


ii. am

∗

pk∗k
= 0 for all k 6= k∗

where ~0J = (0, . . . , 0)′ is a column vector with J zeros and ~sm∗ = (sm∗1, . . . , sm∗Km∗ )
′.11

Assumption 1i implies that the image of Apk∗ ′ spans (0, . . . , 0, ~s′m∗ , 0, . . . , 0)′ where ~sm∗ ∈

RKm∗ . Assumption 1ii implies that coefficients of unobserved variables that are dependent

with Um∗k are zero in the p∗th equation.12 Assumption 1ii is always satisfied when all the

unobserved variables are mutually independent (i.e. Km = 1 for all m).

11Assumption 1i can be replaced by several other assumptions. For example, if Rank(Apk∗ ) ≥∑M
m=1 I (apk∗m 6= 0) then the marginal distributions of apk∗mUm, m = 1, . . . ,M are identified.

12In Solution 1: A1 =

 1 0 1
−1 1 0
0 −1 0

 and Assumption 1 was satisfied by (t1, t2, t3) = (s3, s3, s3) so

that

 1 0 1
−1 1 0
0 −1 0

′ s3

s3

s3

 =

 0
0
s3

.
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Theorem 1. If
sk∫
0

∣∣(E [exp i (Um∗1s1 + . . .+ Um∗k−1sk−1 + Um∗kuk)])
−1∣∣ duk <∞ for all fixed

s1, . . . , sk−1 and all sk in the support of the CF of ~Um∗, E [|Um∗k|] <∞, and ~U has zero mean

then the joint distribution of ~Um∗ is identified when Assumption 1 holds.13 The CF of ~Um∗

is

φm∗(~sm∗) =

exp

Km∗∑
k=1

1

am
∗

pkk

∫ sk

0

iE
[
Ypk∗ exp

(
i~Y ′ (Apk∗ )

+
(~0∑

m<m∗ Km
, s1, . . . , sk−1, uk, 0, . . . , 0,~0∑

m>m∗ Km
)′
)]

E
[
exp

(
i~Y ′ (Apk∗ )

+
(~0∑

m<m∗ Km
, s1, . . . , sk−1, uk, 0, . . . , 0,~0∑

m>m∗ Km
)′
)] duk


(1.13)

where (Apk∗ )+ is the Moore-Penrose pseudoinverse of Apk∗ .14

Remark 1. Identification of ~U is achieved sequentially by:

(1) Using Theorem 1 to identify unobserved variables,

(2) Moving the unobserved variables that are identified in step (1) (and that mutually in-

dependent of the other unobserved variables) to the left hand side of the equation and

treating them as part of Y .

Remark 2. Using Equation (1.13), the mean and variance of Umk are

E [Umk] = i−1φ′mk(0) =
E [Yp∗ ]

amp∗k

Var (Umk) =
1

amp∗k

(
E
[
Yp∗ ~Y

′~tm

]
− E [Yp∗ ]E

[
~Y ′~tm

])

This implies that if p̃ 6= p∗ then expectations and variances of estimators based on p̃ and

p∗ may differ. Furthermore, if ~Y ′~̃tm 6= ~Y ′~tm then variances of estimators based on ~Y ′~̃tm

and ~Y ′~tm may differ. Hence, if the dependence structure of the unobserved variables is

misspecified then an estimator of the distribution of Umk based on Equation (1.13) will in

13The condition that ~U has zero mean can be weakened to knowing or identifying∑
(m,k)6=(m∗,k∗)

ampk∗kE [Umk].

14The proofs of the theorems in this section are in Appendix B.

14



general be inconsistent.

Remark 3. The CF of Umk is overidentified if Apk or ~tm are not unique.15 Overidentification

suggests the possibility for testing and opens the possibility for a “best” estimator. Neither

of these topics are studied in this paper.

The theorem that follows relies on an assumption about a matrix that has the same

coefficients as the matrix representation of the covariance of ~Y in terms of the covariance of

~U :

Cov(Yp1 , Yp2) = Cov

 M∑
m1=1

Km1∑
k1=1

am1

p1k1
Um1k1 ,

M∑
m2=1

Km2∑
k2=1

am2

p2k2
Um2k2


=

M∑
m=1

(
Km∑
k=1

amp1ka
m
p2kCov(Umk, Umk) +

∑
k1<k2

(
amp1k1a

m
p2k2 + amp1k2a

m
p2k1

)
Cov(Umk1 , Umk2)

)
(1.14)

where the second equality follows because Cov(Um1k1 , Um2k2) = 0 when m1 6= m2 and

Cov(Umk1 , Umk2) = Cov(Umk2 , Umk1). The coefficients are: amp1ka
m
p2k

and amp1k1a
m
p2k2

+amp1k2a
m
p2k1

.

Let Am = (Am1 , . . . , A
m
Km

) be a partition of the matrix Am where Amk is the kth column

of Am. Define the matrix multiplication

Am ∗Am :=(
Am1 ⊗Am1 , Am1 ⊗Am2 +Am2 ⊗Am1 , . . . , Amk ⊗Amk , . . . , Amk ⊗Amk+j +Amk+j ⊗Amk , . . . , AmKm ⊗A

m
Km

)

where ⊗ is the Kronecker product and 1 ≤ j ≤ Km− k. The matrix Am ∗Am has dimension

P 2 ×Km(Km + 1)/2.16

15Another reason for overidentification is that the system of equations ~Y = A~U is first transformed to
~̃
Y = B~Y = BA~U = Ã~U and then unobserved variables are identified.

16The matrix Am ∗ Am has some repeated rows because the order of the scalar multiplication does not
matter, that is amp1k1a

m
p2k2

= amp2k2a
m
p1k1

so for calculation purposes I remove repeated rows and define the

matrix ¯Am ∗Am as the matrix Am ∗Am without repeated rows so that a typical row looks like[
amp1a

m
p+j1 , . . . , a

m
pk1a

m
p+jk2 + amp+jk1a

m
pk2 , . . . , a

m
pKma

m
p+jKm

]
where 0 ≤ j ≤ P − p.The matrix ¯Am ∗Am has dimension (P + 1)P/2×Km(Km + 1)/2.
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Let A = (A1, . . . , AM) be a partition of the matrix A and define the matrix multiplication

A� A := (A1 ∗ A1 , . . . , AM ∗ AM)

The matrix A� A has dimension P 2 ×
∑M

m=1Km(Km + 1)/2.17

When Km = 1 then all the unobserved variables are mutually independent and

Am = Am1 = (am11 . . . amP1)
′

Am ∗ Am = (Am ⊗ Am)

A� A = (A1 ⊗ A1 , . . . , AM ⊗ AM)

A � A is the same as the matrix Q from Bonhomme and Robin (2010) and the central

part of their identification strategy. As mentioned earlier one of the contributions beyond

Bonhomme and Robin (2010) is to show how to deal with dependent unobserved variables.

If A is the matrix from the model in Equation (1.3) and ~U = (~U1, U3, U4, U5) where

~U1 = (U1, U2) (the same dependence structure as in Example 1A), then

¯A�A =



1 0 0 1 0 0

−1 1 0 0 0 0

0 −1 0 0 0 0

1 −2 1 0 1 0

0 1 −1 0 0 0

0 0 1 0 0 1


¯A� A is the same matrix as in Equation (1.8). Inversion of this matrix was one of the steps

towards identification in Solution 2.

17The matrix A�A has some repeated rows so for calculation purposes define

¯A�A :=
(

¯A1 ∗A1, . . . , ¯AM ∗AM
)

This matrix ¯A�A has dimension P (P + 1)/2×
∑M
m=1Km(Km + 1)/2
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Assumption 2.

i. Rank(A� A) =
∑M

m=1Km(Km + 1)/2

ii. Rank(Am) = Km for all m

Theorem 2. If
∫ sk2
0

∫ sk1
0

(
E
[
exp

(
i
∑k1−1

k=1 Umksk + iUmk1uk1 + iUmk2uk2

)])−2
duk1duk2 <

∞ for all fixed s1, . . . , sk1−1 and all sk1 , sk2 in the support of the CF of ~Um, E [|Umk1Umk2|] <
∞, and ~U has zero mean then the joint distribution of ~Um is identified if and only if

Assumption 2 holds. The CF of ~Um is

φm(~sm) = exp

(
Km∑
k=1

∫ sk

0

∫ vk

0

∂ϕ2
m (~ωm)

∂ω2
mk

∣∣∣∣
(0,...,uk,0,...,0)

dukdvk

+
∑
k1<k2

∫ sk2

0

∫ sk1

0

∂ϕ2
m (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣
(s1,...,sk1−1,uk1 ,0,...,0,uk2 ,0,...,0)

duk1duk2

)
(1.15)

where

(
. . .

∂ϕ2
m (~ωm)

∂ω2
m1

∣∣∣∣
~s′m

, . . . ,
∂ϕ2

m (~ωm)

∂ω2
mKm

∣∣∣∣
~s′m

. . .

)′
= (A�A)

+

 ∂2ϕ~Y (~t)

∂t21

∣∣∣∣∣
(A′1)

+
~sm

, . . . ,
∂2ϕ~Y (~t)

∂t2P

∣∣∣∣∣
(A′m)+~sm

′

and18

∂2ϕ~Y (~t)

∂tp1∂tp2

∣∣∣∣∣
(A′m)+~sm

=
E
[
Yp1e

i~Y ′(A′m)
+
~sm
]
E
[
Yp2e

i~Y ′(A′m)
+
~sm
]

(
E
[
ei~Y

′(A′m)+~sm

])2 −
E
[
Yp1Yp2e

i~Y ′(A′m)
+
~sm
]

E
[
ei~Y

′(A′m)+~sm

]

Assumptions 2i and 2ii are necessary and sufficient conditions for identification. They

provide the connection between the number of outcome equations, P , the number of subsets

that have arbitrarily dependent unobserved variables, M , and the number of unobserved

variables in each subset, K1, . . . , KM .

The number of linearly independent rows in A�A is at most P (P +1)/2 and the number

of linearly independent rows in Am is at most P so by Assumptions 2i and 2ii respectively,

18(A�A)
+

is the Moore-Penrose pseudoinverse of A�A.
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∑M
m=1Km(Km + 1) ≤ P (P + 1) and Km ≤ P for all m. But

∑M
m=1Km(Km + 1) ≤ P (P + 1)

implies Km ≤ P for all m. So for a given number of outcome variables, P , the number

of subsets that have arbitrarily dependent unobserved variables, M , and the number of

unobserved variables in each subset, K1, . . . , KM must satisfy

M∑
m=1

Km(Km + 1)

2
≤ P (P + 1)

2
(1.16)

When all the unobserved variables are mutually independent, for example, then Km = 1

for all m and M must satisfy M ≤ P (P+1)
2

for identification. The earnings dynamics model

in Equation (1.2) has P = 4 so a maximum of P (P + 1)/2 = 10 mutually independent

unobserved variables can be identified. After differencing to the model in Equation (1.3)

P = 3 so a maximum of P (P + 1)/2 = 6 mutually independent unobserved variables can

be identified. In Section 1.4 I extend the earnings dynamics model in Equation (1.2) from

Bonhomme and Robin (2010) by identifying 10 mutually independent unobserved variables,

the maximum number that is possible with P = 4.19′20

Remark 4. The matrices Ap
∗

and A�A are connected. Assume for this discussion that all

the unobserved variables are mutually independent (Km = 1 for all m) then

Ap
∗

=
(
Ap
∗

1 . . . Ap
∗

M

)
=
(
A1I

(
a1p∗1 6= 0

)
. . . AMI

(
aMp∗1 6= 0

))
and

A�A = (A1 ⊗A1 , . . . , AM ⊗AM ) =


...

...
...

ap∗1A1 . . . ap∗MAM
...

...
...



19In Example 1A, P = 3 and ~U = ((U11, U12), U2, U3, U4). So K1 = 2, K2 = 1, K3 = 1, and K4 = 1.∑4
m=1Km(Km + 1)/2 = P (P + 1)/2 = 6.
20There are some combinatorial questions that might be of interest. For example, for a given P , how

many subsets {K1,K2, . . .} of positive integers with K1 ≤ K2 ≤ ... satisfy
∑M
m=1Km(Km + 1) = P (P + 1)?
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=


...

...
...

a1
p∗1A1I

(
a1
p∗1 6= 0

)
. . . aMp∗1A1I

(
aMp∗1 6= 0

)
...

...
...



=


...

...
...

a1
p∗1A

p∗

1 . . . aMp∗1A
p∗

M

...
...

...



The part of A � A that is visible, call it (A� A)p
∗

:= (a1p∗1A
p∗

1 . . . aMp∗1A
p∗

M), is different

from Ap
∗

= (Ap
∗

1 . . . Ap
∗

M) only by multiplication of each column by a nonzero constant. The

properties of (A� A)p
∗

and Ap
∗
are identical. Hence, Assumption 1i, which is a condition on

Ap
∗
, can be replaced by an equivalent condition on (A� A)p

∗
.

Identification in Theorem 1 uses the information contained in the partial derivatives sep-

arately and sequentially while Theorem 2 uses the information from all the partial derivatives

together.21

Remark 5. Theorems 1 and 3 provide sufficient conditions for identification while Theorem

2 provides necessary and sufficient conditions for identification. The drawback of Theorem

2 is that it uses second-order partial derivatives of the log CF instead of first-order partial

derivatives of the log CF.

Setting up a system of equations of third-order (or higher-order) partial derivatives of

the log CF leads to more equations and can identify partial derivatives of more unobserved

variables. The problem is that integrating out the derivatives requires knowing higher order

moments of the unobserved variables.22

21The spatial model from Bonhomme and Robin (2010)

 Y1

Y2

Y3

 =

 1 ρ ρ 1 0 0
ρ 1 ρ 0 1 0
ρ ρ 1 0 0 1




U1

U2

U3

U4

U5

U6


is identified using Theorem 2 but not using Theorem 1.

22In Theorem 2, the assumption that ~U has zero mean is used to undo derivatives: the mean is the value
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Remark 6. When Km = 1 for all m then Equation (1.15) simplifies to the solution from

Bonhomme and Robin (2010):

φm(sm) = exp

(∫ sm

0

∫ vm

0

ϕ′′m (um) dumdvm

)

The next Theorem identifies marginal distributions when arbitrary dependence is re-

placed by mean independence. Mean independence is a strong assumption that implies zero

covariance but allows for the unobserved variables to be dependent in other ways. This

theorem extends Theorem 1 in Schennach (2004a) and Theorem 1 in Cunha, Heckman and

Schennach (2010) from the system in Equation (1.1) to a general system in Equation (1.12).

Let A = (A11, . . . , AMKM ) be a partition of A where Amk is the kth column of the matrix

Am and define

Ap
∗m∗ =

(
Ap
∗m∗

11 . . . Ap
∗m∗

MKM

)
=
(
A11I

({
a1
p∗1 6= 0

}
∪ {m∗ = 1}

)
. . . AMKM I

({
aMp∗KM 6= 0

}
∪ {m∗ = M}

))

the matrix that excludes the column Amk if it has a zero coefficient in the p∗th row and Umk

and U(mk)∗ are independent. The additional part in the Indicator function, {m∗ = m}, will

be used to condition on unobserved variables and lead to some terms vanishing because of

mean independence.

Assumption 3. There exists a p∗ ∈ {1, . . . , P} and a vector ~t(mk)∗ =
(
t(mk)∗1, . . . , t(mk)∗P

)′
,

where (mk)∗ :=
∑

m<m∗
Km + k∗ is an index, such that

at the limit of an integral at 0. If higher-order moments are used for identification then the value of the
integral at its limit is a variance (or higher-order moment).

In Theorems 1 and 3 the assumption that ~U has zero mean serves a different purpose: the value of the
first-derivative of a log CF at 0 is its mean.
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i. Ap
∗m∗′~t(mk)∗ =


Ap
∗m∗

1

′~t(mk)∗

...

Ap
∗m∗

M

′~t(mk)∗

 = ~e(mk)∗.
23

ii. E
[
Umk|U−(mk)

]
= 0.24

Assumption 3i implies that the image of Ap
∗′ spans (0, . . . , 0, s, 0, . . . , 0)′ where s ∈ R is in

the (mk)∗th coordinate. Assumption 3ii is the mean independence assumption.25 It replaces

Assumption 1ii that required am
∗

p∗k = 0 for all k 6= k∗ i.e. coefficients of dependent unobserved

variables equal zero in the p∗th equation.

Theorem 3. If
s(mk)∗∫

0

∣∣∣(E [exp
(
iU(mk)∗u

)])−1∣∣∣ du <∞ for all s(mk)∗ in the support of the CF

of U(mk)∗, E
[∣∣U(mk)∗

∣∣] <∞, and ~U has zero mean then U(mk)∗ is identified when Assumption

3 holds. The CF of U(mk)∗ is

φ(mk)∗(s(mk)∗) = = exp

 1

am
∗

p∗k∗

∫ s(mk)∗

0

iE
[
Yp∗ exp

(
iu~Y ′

(
Ap
∗m∗′)+ ~e(mk)∗)]

E
[
exp

(
iu~Y ′ (Ap∗m∗′)+ ~e(mk)∗

)] du

 (1.17)

Remark 7. Several papers analyze the regularity conditions that impose restrictions on the

CFs. The early measurement error literature (and literature on deconvolution) followed the

Kotlarski (1967) assumption of nonvanishing CFs; Fan (1991) and Li and Vuong (1998)

assume nonvanishing CFs on finite support while Schennach (2004a, 2004b) assumes nonva-

nishing CFs on infinite support. Bondesson (1974) was the first to prove identification when

CFs satisfy a “short gap” condition, which meant that the CFs do not vanish on intervals of

length L for all L > 0. More recently, Delaigle, Hall and Meister (2008), Carrasco and Flo-

23The standard basis is denoted by ~e(mk)∗ = (0, . . . , 0, 1, 0, . . . , 0)′ where 1 is in the (mk)∗th coordinate.
24U−(mk) =

(
U(m1), . . . , U(mk−1), U(mk+1), . . . , U(mKm)

)
25Assumption 3ii can be weakened by keeping track of the unobserved variables with zero coefficients in

the p∗th row.
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rens (2010) and Evdokimov and White (2011) restrict some of the CFs to have a countable

number of isolated zeros on unbounded support and other CFs to have no regularity restric-

tions.26 In Theorems 1, 2, and 3, I impose an integrability condition that is motivated by the

closed form expressions for the CFs of the unobserved variables.27 The closed form solutions

suggest that the weakest regularity condition would be based on the absolute continuity of a

CF of an unobserved variable with respect to a CF of outcome variables.

1.4 Example 1B: An Extension of the Earnings Dy-

namics Model

In this section I identify unobserved variables in an Earnings Dynamics model that ex-

tends the model from Bonhomme and Robin (2010) that was replicated in Equation (1.2).

By conceding that the fixed effect and the persistent component are not separately identified,

I show (without differencing) how to identify 10 unobserved variables instead of just 5.

Consider,

wt = f + yPt +mt + yTt t = 1, 2, 3, 4

yPt = yPt−1 + εt t ≥ 2

mt = ηt

yTt = ζt − θ1ζt−1 − θ2ζt−2 ζ−1 = ζ3 = ζ4 = 0

η4 = 0

The differences between this model and the one from Bonhomme and Robin (2010) are:

26Allowing for a countable number of zeros is important because some commonly used parametric dis-
tributions have CFs that cross the x-axis (for example the uniform and gamma distributions) but none of
these disappear on a set of nonzero Lebesgue measure and then reappear.

27In Theorem 1, for example, in order for the CF of ~Um∗ in Equation (1.13) to be defined, I impose
sk∫
0

∣∣∣(E [exp i (. . . Um∗kuk . . .)])
−1
∣∣∣ duk <∞
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- yTt is relabeled mt and now represents measurement error,

- yTt follows a moving-average process of order 2,

- η1 is no longer restricted to be equal to zero.

Let Y = (w1, w2, w3, w4)
′ and U = (f + yP1 , ε2, ε3, ε4, η1, η2, η3, ζ0, ζ1, ζ2)

′ then in matrix

notation

Y =



1 0 0 0 1 0 0 −θ1 1 0

1 1 0 0 0 1 0 −θ2 −θ1 1

1 1 1 0 0 0 1 0 −θ2 −θ1

1 1 1 1 0 0 0 0 0 −θ2


U

Assume E[Um] = 0 and assume all the unobserved variables are mutually independent.

Set p∗ = 1. Then

A1 =



1 1 −θ1 1

1 0 −θ2 −θ1

1 0 0 −θ2

1 0 0 0


where A1 consists of the first, fifth, eighth, and ninth columns of A. When t1 = s1(0, 0, 0, 1)

then A1′t1 = s~e1 where s ∈ R so Assumption 1i is satisfied. Using Equation (1.13), the CF

of ηf+yP1 is

φf+yP1 (s1) = exp

(∫ s1

0

iE [Y1 exp (iuY4)]

E [exp (iuY4)]
du

)

Appendix A identifies the rest of ~U .28

28The parameters θ1 and θ2 can be identified using Ben-Moshe (2012a).
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1.5 A Few More Illustrative Examples

In this section I solve the earnings dynamics model one last time allowing for mean

independence. I then provide two further examples to show that the methods in this paper

can be used in a variety of settings and can allow for covariates.29

1.5.1 Example 1C: The Earnings Dynamics Model with Mean In-

dependence

Consider the earnings dynamics model from Equation (1.3). Assume ~U1 = (U11, U12) and

~U2 = (U21, U22, U23) are independent and assume E[Umk|U−(mk) = 0] for all k and m.

Set p∗ = 2 and m∗ = 1. Then

A21 =


1 0 0

−1 1 1

0 −1 0


When ~t11 = s11(1, 0, 0) then A21′ = s11~e11 where s11 ∈ R so Assumption 3i is satisfied. Using

Equation (1.17) the CF of U11 is

φU11(s11) = exp

(∫ s11

0

iE [Y2 exp (iuY1)]

E [exp (iuY1)]
du

)

Appendix A identifies the rest of ~U .

1.5.2 Example 2: Difference-in-Differences Model

Consider a difference-in-differences model with two periods and two groups. In the first

period all individuals are in state 0 and in the second period individuals in group g ∈ {C, T}

(where C stands for control and T stands for treatment) go to state g. Hence, there are

29See also Ben-Moshe (2012b) for identification of random coefficients in linear regression models.
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three states t ∈ {0, C, T}. Let Ygt be the outcome for an individual in group g in state t.

Assume that outcomes are represented by

YC0 = mC(XC , αC) + h0(W0, β0) + εC0

YT0 = mT (XT , αT ) + h0(W0, β0) + εT0

YCC = mC(XC , αC) + hC(WC , βC) + εCC

YTT = mT (XT , αT ) + hT (WT , βT ) + εTT

where mC and mT are nonparametric production functions of individuals in groups C and T

respectively, and h0, hC and hT are nonparametric production functions of states 0, C and

T respectively. The covariates Xg and Wt are observed variables, the random variables αg

and βt are unobserved heterogeneity, and εgt is an unobserved idiosyncratic shock.

If an individual in the control group had instead been treated in the second period then

the unobserved counterfactual outcome is assumed to be

Y ∗CT = mC(XC , αC) + hT (WT , βT ) + εCT

If an individual that is treated had instead been a part of the control group then the unob-

served counterfactual outcome is assumed to be

Y ∗TC = mT (XT , αT ) + hC(WC , βC) + εTC

I focus on identifying the distribution of (Y ∗CT , Y
∗
TC), the counterfactual outcomes, which

are the objects of interest in the difference-in-differences literature.30′31

30For a review on the difference-in-differences literature see Angrist and Krueger (2000) and Blundell and
MaCurdy (2000).

31Bonhomme and Sauder (2011) consider a similar model and apply it to compare the effects of different
education systems. In their setup all students attend the same type of primary school but two different
types of secondary schools. The outcome variables are test scores, one source of unobserved heterogeneity is
child-specific ability that may be distributed differently for children in different groups, and another source of
heterogeneity is a school-specific effect that may be distributed differently depending on the type of school.
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Condition on ~X := (XC , XT ,W0,WC ,WT ) = (xC , xT , w0, wC , wT ) =: ~x and let ~Y =

(YC0, YT0, YCC , YTT )′ and ~U = (mC ,mT , h0, hC , hT , εC0, εT0, εCC , εTT )′. Then32

Y =



1 0 1 0 0 1 0 0 0

0 1 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 1


U

Assume E[Um] = 0 and assume U1, U2, U3, U4, U5, (U6, U7) and (U8, U9) are mutually

independent.33

As a preliminary step towards identifying counterfactuals, U1, U2, U4 + U8 and U5 + U9

are identified.34,35 With one additional assumption that is defined later, the distribution of

(Y ∗CT , Y
∗
TC) is identified.

Set p∗ = 1. Then

A1 =



1 1 1 0

0 1 0 1

1 0 0 0

0 0 0 0


where A1 consists of the first, third, sixth, and seventh columns of A. When ~t1 = s1(0, 0, 1, 0)

then A1′~t1 = s1~e1 where s1 ∈ R so Assumption 1i is satisfied (Assumption 1ii follows imme-

32To save on notation I denote mC(xC , αC) by mC , mT (xT , αT ) by mT , h0(w0, β0) by h0, hC(wC , βC)
by hC and hT (wT , βT ) by hT .

33The unobservables U6 and U7 are arbitrarily dependent. The unobservables U8 and U9 are arbitrarily
dependent.

34It is impossible to separately identify U4 and U8 since they appear only once and in the same equation.
Similarly, U5 and U9 are not separately identified.

35The distributions of U3 and (U6, U7) are also identified but not needed for this example.
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diately from mutual independence). Using Equation (1.13), the CF of mC(xC , αC) is

φmC (s1| ~X = ~x) = exp

∫ s1

0

iE
[
YC0 exp (iuYCC) | ~X = ~x

]
E
[
exp (iuYCC) | ~X = ~x

] du


In Appendix A I identify the distributions of mT and (hC + εCC , hT + εTT ) and the

counterfactual joint distribution of (Y ∗CT , Y
∗
TC) with one of two possible assumptions

i. The joint distribution of (εCT , εTC) is the same as (εTT , εCC) or

ii. The joint distribution of (εCT , εTC) is the same as (εTT − εT0 + εC0, εCC − εC0 + εT0)

Remark 8. Example 2 is related to models on wage decomposition in which an individual

in group g ∈ {1, . . . , G} and job t ∈ {1, . . . , T} has wage

Wgt = Λgt (mg(Xg, αg) + ht(Wt, βt) + εgt)

where Λgt is a known invertible function, mg and ht are nonparametric production functions,

Xg and Wt are observed covariates, αg and βt are unobserved heterogeneity, and εgt is an

idiosyncratic shock. This can be used to estimate distributions of counterfactual wages for

individuals in the same group but with different jobs like in an occupational choice model

or for individuals in different groups but with the same job as in Juhn, Murphy, and Pierce

(1991) who consider black-white wage differentials.

1.5.3 Example 3: Measurement Error Model With Three Mea-

surements

Consider the measurement error model with three measurements

X1 = X∗ + ε1

X2 = X∗ + ε2
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X3 = X∗ + ε3

where (X1, X2, X3) is observed and X∗ and (ε1, ε2, ε3) are unobserved.

Let ~Y = (X1, X2, X3)
′ and ~U = (X∗, ε1, ε2, ε3)

′ then

Y =


1 1 0 0

1 0 1 0

1 0 0 1

U

Assume E[Um] = 0 and assume (U1, U2), U3 and U4 are mutually independent (X∗ and ε1

are arbitrarily dependent). Then

A1 =


1 1

1 0

1 0

 A2 =


0

1

0

 A3 =


0

0

1

 ¯A� A =



1 2 1 0 0

1 1 0 0 0

1 1 0 0 0

1 0 0 1 0

1 0 0 0 0

1 0 0 0 1


K1 = 2, K2 = 1, and K3 = 1 so

∑3
m=1Km(Km+1)/2 = (2×3)/2+1+1 = 5. Rank( ¯A� A) =

5 so ( ¯A� A) =
∑3

m=1Km(Km + 1)/2 = 5 and Assumption 2i is satisfied. Rank(A1) = K1 =

2, Rank(A2) = K2 = 1, and Rank(A3) = K3 = 1 so Assumption 2ii is satisfied. Using

Equation (1.15) the CF of (X∗, ε1) is

φX∗,ε1(s0, s1) = exp

(∫ s1

0

∫ v

0

∂2ϕX∗,ε1(u, s2)

∂ω2
1

dudv +

∫ s2

0

∫ s1

0

∂2ϕX∗,ε1(u, v)

∂ω1ω2

dudv

+

∫ s1

0

∫ s2

0

∂2ϕX∗,ε1(0, u)

∂ω1∂ω2

dudv +

∫ s2

0

∫ v

0

∂2ϕX∗,ε1(0, u)

∂ω2
2

dudv

)

Appendix A identifies the rest of ~U .

28



Remark 9. Let Xp = X∗ + εp, p = 1, . . . , P , and P ≥ 2. Xp is the pth measurement of

the unobserved variable X∗. Assume all the unobserved variables are mutually independent.

Then a solution for the CF of X∗ that uses all the observations is

φX∗(s) = exp

∫ s

0

iE
[
X1 exp

(
iu 1

P−1
∑P

p=2Xp

)]
φ( 1

P−1

∑P
p=2Xp)

(u)
du


Remark 10. The measurement error model with repeated measurements can be extended to

a model with more than one unobserved covariate as follows

Xp =
M∑
m=1

X∗mI (X∗m ∈ {Measurement p’s information set}) + εp p =1, . . . , P

where Xp, p = 1, . . . , P are P observed measurements, X∗m, m = 1, . . . ,M are M unobserved

covariates, I (X∗m ∈ {Measurement p’s information set}) is an indicator that X∗m is included

in equation p, and εp, p = 1, . . . , P are measurement errors.36

1.6 Estimation and Asymptotics

In this section estimators for densities are constructed using the closed form solutions

from Theorems 1, 2, and 3. I show that the estimators are uniformly consistent.

36Li, Perrigne and Vuong (2000) use the results of the measurement literature and a solution mechanism
in a first price auction to identify distributions when each bidder has valuation U0 +Ap, p = 1, . . . , P where
U0 is the common value, and Ap is a private value. This can be extended to a model with more than one
common value. Consider,

Yp =

M∑
m=1

UmI (X∗m ∈ {Bidder p’s information set}) +Ap p =1, . . . , P

where Yp is the observed bid of bidder p, Um, m = 1, . . . ,M are unobserved common values,
I (X∗m ∈ {Bidder p’s information set}) is an indicator that bidder p’s valuation includes the common value
Um and Ap, p = 1, . . . , P are unobserved private values.
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Denote

φ∏P
p=1 Y

αp
p

(~t) =
∂|α|φ~Y (~t)∏P
p=1 ∂

αptp
= i|α|E

[
P∏
p=1

Y αp
p exp

(
i~Y ′~t

)]

and estimate it by

φ̂∏P
p=1 Y

αp
p

(~t) =
̂∂|α|φ~Y (~t)∏P
p=1 ∂

αptp
= i|α|EN

[
P∏
p=1

Y αp
p exp

(
i~Y ′~t

)]
=
i|α|

N

N∑
n=1

P∏
p=1

Y αp
np exp

(
i~Y ′n~t

)

where α = (α1, . . . , αP ) is a multi-index of nonnegative integers with norm |α| =
∑P

p=1 αp.

When |α| = 0 then the expression is the CF of ~Y denoted by

φ~Y (~t) = E
[
exp

(
i~Y ′~t

)]

and estimated by

φ̂~Y (~t) = EN

[
exp

(
i~Y ′~t

)]
=

1

N

N∑
n=1

exp
(
i~Y ′n~t

)

Assume that Um∗ is a scalar. The CF of Um∗ in Theorems 1 and 3, up to a constant and

for some ~t, is

φm∗(s) = exp

i ∫ s

0

E
[
Yp∗ exp(iu~Y ′~t)

]
E
[
exp

(
iu~Y ′~t

)] du

 (1.18)

and is estimated by

φ̂m∗(s) = exp

i∫ s

0

EN

[
Yp∗ exp

(
u~Y ′~t

)]
EN

[
exp

(
iu~Y ′~t

)] du


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The CF of Um∗ in Theorem 2, up to a constant and for some ~t, is 37

φm∗(s) = exp

∫ s

0

∫ v

0

E
[
Yp1e

iu~Y ′~t
]
E
[
Yp2e

iu~Y ′~t
]

(
E
[
eiu~Y ′~t

])2 −
E
[
Yp1Yp2e

iu~Y ′~t
]

E
[
eiu~Y ′~t

] dudv

 (1.19)

and is estimated by

φ̂m∗(s) = exp

∫ s

0

∫ v

0

EN

[
Yp1e

iu~Y ′~t
]
EN

[
Yp2e

iu~Y ′~t
]

(
EN

[
eiu~Y ′~t

])2 −
EN

[
Yp1Yp2e

iu~Y ′~t
]

EN

[
eiu~Y ′~t

] dudv


The density of Um∗ is obtained by inverting the CF using the inverse Fourier transfor-

mation

fm∗(u) =
1

2π

∫
e−isuφm∗(s)ds

This integral does not converge when the CF is replaced by its sample analog so the integral

is weighted by the Fourier transform of a kernel. The density of Um∗ is estimated by

f̂m∗(u) =
1

2π

∫
e−isuφ̂m∗(s)φK (shN) ds

where φK(s) =
∫

exp(isu)H(u)du is the Fourier transform of a kernel K supported on [−1, 1]

and hN = 1
SN

is the bandwidth of the kernel. The kernel leads to relatively slow convergence

rates but solves any irregularity problems by smoothing the estimator. I use the commonly

37To be more exact the CF is

φm∗(s) = exp

∑Cp′1p′2m∗

∫ s

0

∫ v

0

E
[
Yp′1e

iu~Y ′~t
]
E
[
Yp′2e

iu~Y ′~t
]

(
E
[
eiu~Y ′~t

])2 −
E
[
Yp′1Yp′2e

iu~Y ′~t
]

E
[
eiu~Y ′~t

] dudv


but assume for clarity that Cp′1p′2m∗ = 1 when p′1 = p1 and p′2 = p2 and Cp′1p′2m∗ = 0 otherwise.
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used second-order kernel38

K(u) =
48 cos(u)

πu4

(
1− 15

u2

)
− 144 sin(u)

πu5

(
2− 5

u2

)

whose Fourier transform is

φK(s) = (1− s2)3I(s ∈ [−1, 1])

Lemma 1. Let F denote the cumulative distribution function of Y and FN the empirical

cumulative distribution function corresponding to a sample (Y1, . . . , YN) of N independent

identically distributed random draws from F . Assume E
[∏P

p=1 |Yp|2αp
]
<∞. Let

TN = CN δ/2 0 < δ

εN = C(P,δ,E[
∏P
p=1 |Yp|

2αp ])

(
lnN

N

) 1
2

where C > 0 and C(P,δ,E[
∏P
p=1 |Yp|

2αp ]) > 0 is a constant that may depend on the arguments in

the subscript. Then

sup
~t∈[−TN ,TN ]P

∣∣∣∣∣EN
[

P∏
p=1

Y αp
p exp

(
i~Y ′~t

)]
− E

[
P∏
p=1

Y αp
p exp

(
i~Y ′~t

)]∣∣∣∣∣ < εN a.s.

when N tends to infinity.39′40

As N → ∞, Lemma 1 uniformly bounds the estimation error on the compact interval

[−TN , TN ]P by O
(
lnN
N

) 1
2 provided that TN does not grow faster than some power of N .41

38See Delaigle and Gijbels (2002).
39To simplify notation I suppress the subscript ~t ∈ [−TN , TN ]P in sup~t∈[−TN ,TN ]P unless there is some

ambiguity or the sup is not over this region.
40The proofs of the lemma and theorems in this section are in Appendix C.
41ZN = O (aN ) is Big-O notation and means that there exists C > 0 such that ZN ≤ CaN .
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The strategy in the proof is standard for finding uniform convergence rates in the empirical

processes literature:42

1. Use the truncation trick to divide the random variable into EN

[∏P
p=1 Y

αp
p exp

(
i~Y ′~t

)]
≤

κN and the tail, EN

[∏P
p=1 Y

αp
p exp

(
i~Y ′~t

)]
> κN , where κN is a truncation parameter to

be chosen later,

2. Use Chebyshev’s inequality to estimate the tail,

3. Use symmetrization, the L1 covering number, and Bernstein’s inequality to estimate the

component that is smaller than the truncation parameter,

4. Combine the two components and use the Borel-Cantelli lemma to show that the sample

analog approaches the population mean uniformly almost surely.

Theorem 4. Choose εN and TN according to Lemma 1. Assume
∫ SN
−SN

1

(φ~Y (u~t))
2 du <∞ and

E
[
|Y 2
p |
]
< ∞. The CF from Theorems 1 and 3, in Equation (1.18), is uniformly bounded

by

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣ = sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

φ̂Yp(u~t)

φ̂~Y (u~t)
du

)
− exp

(∫ s

0

φYp(u~t)

|φ~Y (u~t)|
du

)∣∣∣∣∣
= O

(
εNE [|Yp|]

∫ SN

−SN

1(
φ~Y (u~t)

)2 du

)

Assume
∫ SN
−SN

1

|φ~Y (u~t)|3 du < ∞, E
[
|Y 2
p1
|
]
< ∞, E

[
|Y 2
p2
|
]
< ∞, and E

[
|Y 2
p1
Y 2
p2
|
]
< ∞. The

CF from Theorems 2, in Equation (1.19), is uniformly bounded by

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣
= sup

s∈[−SN ,SN ]

∣∣∣∣∣∣∣exp

∫ s

0

∫ v

0

φ̂Yp1 (u~t)φ̂Yp2 (u~t)(
φ̂~Y (u~t)

)2 −
φ̂Yp1Yp2 (u~t)

φ̂~Y (u~t)
dudv


− exp

(∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

)∣∣∣∣∣
42The argument can be found in Pollard (1986) or Van den Geer (2006) and is used by Hu and Ridder

(2012), Evdokimov (2011), Bonhomme and Robin (2010), and others.
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= O

(
εN (E [|Yp1|] + E [|Yp2|] + E [|Yp1Yp2 |])

∫ SN

−SN

∫ v

0

1∣∣φ~Y (u~t)
∣∣3dudv

)

Theorem 5. Choose εN and TN according to Lemma 1 and assume the convergence rates

from Theorem 4 apply. Then

sup
u

∣∣∣f̂m∗(u)− fm∗(u)
∣∣∣

= O

(
sup

s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣+ sup
s∈[−1,1]

|m(s)|hqN
∫ SN

−SN
|s|q|φm∗(s)|ds

+

∫ −SN
−∞

|φm∗(s)|ds+

∫ ∞
SN

|φm∗(s)|ds
)

The first term in the convergence rate of f̂m∗(u), in Theorem 5, comes from the estimation

error of φm∗ , from Theorem 4. The second, third and fourth terms in the convergence rate

of f̂m∗(u) in Theorem 5 come from the Fourier transform inversion, and depend on the

smoothing kernel φK and its bandwidth hN , the limits of integration −SN and SN , and the

CF of the unobserved variable, φm∗ .
43

The uniform bounds on the convergence rates in Theorems 1 and 3 suggest that estimators

based on first-order partial derivatives converge faster than estimators based on second-order

partial derivatives. The bounds in these Theorems are worse than Li and Vuong (1998) who

obtain O
(
ln lnN
N

) 1
2 but assume bounded support.44

43The constant in the big-O notation does not depend on the dimension of the vector of unobserved
variables, M , but depends on the dimension of the outcome vector, P .

44The literature has so far only found upper bounds on convergence rates of estimators based on partial
derivatives of CF and so at this stage the bounds are only suggestive about which estimators have the fastest
convergence rates. Schennach (2004) and Schennach, White, and Chalak (2010) find asymptotic distributions
for these types of estimators, which may be a good way to find the best estimators.
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1.7 Monte Carlo Simulations: Measurement Error

Model with a Repeated Measurement

This section presents a Monte Carlo study of the finite sample properties of three esti-

mators of the density of X∗ in the measurement error model with a repeated measurement:

Xn1 = X∗n + εn1

Xn2 = X∗n + εn2

where Xn1 and Xn2 are observed measurements, X∗n is an unobserved variable, and εn1 and

εn2 are errors for n = 1, . . . , N . Assume samples are independent and identically distributed.

Two of the estimators for the density of X∗ are based on first-order partial derivatives

and one of the estimators is based on second-order partial derivatives. All the estimators

perform very well in the simulations with the median estimates almost indistinguishable

from the underlying theoretical density of X∗. This is evidence that these estimators should

perform well in practice.

The data is generated from one of the following specifications of the distributions of X∗,

ε1, and ε2

Experiment fX∗ fε1 fε2

1 Norm(0,1) Norm(0,1) Norm(0,1)

2 Gamma(5,1) Norm(0,1) Norm(0,1)

3 1
2
N(−2, 1) + 1

2
N(2, 1) Norm(0,1) Norm(0,1)

4 Unif(0,2) 0 0

5 Norm(0,1) Norm(0,x∗2) Norm(0,1)

where x∗2 (the variance of ε1 in Experiment 5) is the square of the value that is attained by

the random variable X∗ in each trial. I compare three estimators of φX∗ :
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Estimator

A φ̂X∗(s) = exp
(∫ s

0
iEN [X1 exp(iuX2)]
EN [exp(iuX2)] du

)
B φ̂X∗(s) =

φX1
(s)

φ̂ε1 (s)
where φ̂ε1(t) = exp

(∫ s
0
iEN [(X1−X2) exp(iuX1)]

EN [exp(iuX1)] du
)

C φ̂X∗(s)

= exp

(∫ s
0

∫ v
0

(
− iEN [X1X2 exp( iu2 (X1+X2))]

EN [exp( iu2 (X1+X2))]
+

EN [X1 exp( iu2 (X1+X2))]
EN [exp( iu2 (X1+X2))]

EN [X2 exp( iu2 (X1+X2))]
EN [exp( iu2 (X1+X2))]

)
dudv

)

where the first two estimators are constructed using Equation (1.13), and the third using

Equation (1.15). The first estimator is used by Li and Vuong (1998), the second estimator

has not been used to my knowledge, and the third estimator is used by Bonhomme and Robin

(2010). I present evidence that all three estimators have good finite sample properties.

I generate 100 simulations of sample size N = 100, N = 1, 000 and N = 10, 000. The

grid on the x-axis is divided into 1, 000 equidistant grid points for integration in both the

CF and density domains.

The results are summarized graphically in Figures 1.1 to 1.5. Figure 1.1 reports the

outcomes of 100 simulations of sample size 100 where the data is generated according to

Experiment 1. The first column represents the real part of the CF, the second column

represents the imaginary part of the CF, and the third column represents the density. On

each graph the solid red line represents population quantities, the solid blue line represents

the median of the simulations and the dotted blue lines represent the 10-90% pointwise

confidence bands. The first row depicts the results of Estimator A, the second row depicts

the results of Estimator B, and the third row depicts the results of Estimator C. Figures 1.2

to 1.5 are the same as Figure 1.1 except for Experiments 1.2 to 1.5.

To provide an indication of relative finite sample efficiencies of the estimators, Tables 1.1,

1.2 and 1.3 report the mean integrated squared error (MISE) of each estimator for N = 100,

N = 1, 000 and N = 10, 000 respectively where

MISE = E

[∫ (
f̂X∗(x)− fX∗(x)

)2
dx

]
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The median estimates do very well, lying almost on top of the theoretical CFs and den-

sities. As expected, only Estimator A is consistent in Experiment 5 (due to the dependence

structure of unobserved variables). The MISE values suggest that Estimator C, which is

based on second-order partial derivatives is the least robust.

1.8 Conclusion

I consider a system of linear equations in which each observed outcome variable is a

linear combination of unobserved variables. I present techniques to identify nonparamet-

ric distributions of unobserved variables. The system has more unobserved variables than

outcome variables and subsets of the unobserved variables can be statistically dependent

(either arbitrarily dependent or mean independent). I establish a relationship between the

number of outcome variables, the number of unobserved variables, and the dependence of

the unobserved variables. The identification strategy involves taking partial derivatives of

log CFs to reduce the number of log CFs of unobserved variables and using the arguments

of a log CF of a linear combination of outcome variables to express log CFs of unobserved

variables in terms of observed quantities. I analyze the identification strategy in an earnings

dynamics model from Bonhomme and Robin (2010). The identification proofs are construc-

tive so estimators replace population quantities with sample analogs. The estimators are

part of a general class of estimators that use partial derivatives of log CFs. I show that

these estimators are consistent. In finite sample simulations, estimators closely match their

theoretical counterparts.
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1.9 Appendix A

1.9.1 Example 1A: Earnings Dynamics Model (Solution 1)

As mentioned earlier the unobserved variables are identified sequentially. Following the proof for iden-

tification of U3, the log CF of (Y1, Y2, Y3) is

lnE [exp (it1Y1 + it2Y2 + it3Y3)] = ϕU1,U2 (t1 − t2, t2 − t3) + ϕU3 (t1) + ϕU4 (t2) + ϕU5 (t3)

The CF of U4: The partial derivative with respect to t2 is

iE [Y2 exp (it1Y1 + it2Y2 + it3Y3)]

E [exp (it1Y1 + it2Y2 + it3Y3)]
= − ∂ϕU1,U2 (ω1, ω2)

∂ω1

∣∣∣∣
(t1−t2,t2−t3)

+
∂ϕU1,U2 (ω1, ω2)

∂ω2

∣∣∣∣
(t1−t2,t2−t3)

+ϕ′U4
(t2)

Set (t1, t2, t3) = (s4, s4, s4). Then

iE [Y2 exp (is4Y1 + is4Y2 + is4Y3)]

E [exp (is4Y1 + is4Y2 + is4Y3)]
= − ∂ϕU1,U2

(ω1, ω2)

∂ω1

∣∣∣∣
(0,0)

+
∂ϕU1,U2

(ω1, ω2)

∂ω2

∣∣∣∣
(0,0)

+ ϕ′U4
(s4) = ϕ′U4

(s4)

where the last equality follows from ϕ′U4
(0) = iE [U4] and the assumption that E [U4] = 0.

E [exp (iU4s4)] = exp

(∫ s4

0

iE [Y2 exp (iu (Y1 + Y2 + Y3))]

E [exp (iu (Y1 + Y2 + Y3))]
du

)

The CF of U5: The partial derivative with respect to t3 is

iE [Y3 exp (it1Y1 + it2Y2 + it3Y3)]

E [exp (it1Y1 + it2Y2 + it3Y3)]
= − ∂ϕU1,U2

(ω1, ω2)

∂ω2

∣∣∣∣
(t1−t2,t2−t3)

+ ϕ′U5
(t3)

Set (t1, t2, t3) = (s3, s3, s3). Then

iE [Y3 exp (is3Y1 + is3Y2 + is3Y3)]

E [exp (is3Y1 + is3Y2 + is3Y3)]
= − ∂ϕU1,U2

(ω1, ω2)

∂ω2

∣∣∣∣
(0,0)

+ ϕ′U5
(s3) = ϕ′U5

(s3)

where the last equality follows from ϕ′U5
(0) = iE [U5] and the assumption that E [U5] = 0.

E [exp (iU5s3)] = exp

(∫ s3

0

iE [Y3 exp (iu (Y1 + Y2 + Y3))]

E [exp (iu (Y1 + Y2 + Y3))]
du

)
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The CF of (U1, U2): The partial derivative with respect to t1 is

iE [Y1 exp (it1Y1 + it2Y2 + it3Y3)]

E [exp (it1Y1 + it2Y2 + it3Y3)]
=
∂ϕU1,U2

(ω1, ω2)

∂ω1

∣∣∣∣
(t1−t2,t2−t3)

+ ϕ′U3
(t1)

Set (t1, t2, t3) = (0,−s1,−s1). Then

iE [Y1 exp (−is1 (Y2 + Y3))]

E [exp (−is1 (Y2 + Y3))]
=
∂ϕU1,U2

(ω1, ω2)

∂ω1

∣∣∣∣
(s1,0)

+ ϕ′U3
(0) =

∂ϕU1,U2
(ω1, ω2)

∂ω1

∣∣∣∣
(s1,0)

where the last equality follows from ϕ′U3
(0) = iE [U3] and the assumption that E [U3] = 0.

The partial derivative with respect to t3 is

iE [Y3 exp (it1Y1 + it2Y2 + it3Y3)]

E [exp (it1Y1 + it2Y2 + it3Y3)]
= − ∂ϕU1,U2

(ω1, ω2)

∂ω2

∣∣∣∣
(t1−t2,t2−t3)

+ ϕ′U5
(t3)

Set (t1, t2, t3) = (s1 + s2, s2, 0). Then

iE [Y3 exp (iY1 (s1 + s2) + is2Y2)]

E [exp (iY1 (s1 + s2) + is2Y2)]
= − ∂ϕU1,U2 (ω1, ω2)

∂ω2

∣∣∣∣
(s1,s2)

+ ϕ′U5
(0) = − ∂ϕU1,U2 (ω1, ω2)

∂ω2

∣∣∣∣
(s1,s2)

where the last equality follows from ϕ′U5
(0) = iE [U5] and the assumption that E [U5] = 0. Integration leads

to

E [exp (iU1s1 + iU2s2)]

= exp

(∫ s1

0

iE [Y1 exp (−iu1 (Y2 + Y3))]

E [exp (−iu1 (Y2 + Y3))]
du1 −

∫ s2

0

iE [Y3 exp (iY1 (s1 − u2) + iu2Y2)]

E [exp (iY1 (s1 + u2) + iu2Y2)]
du2

)

where I used

ϕU1,U2
(s1, s2) =

∫ s1

0

∂ϕU1,U2
(ω1, ω2)

∂ω1

∣∣∣∣
(u1,0)

du1 +

∫ s2

0

∂ϕU1,U2
(ω1, ω2)

∂ω2

∣∣∣∣
(s1,u2)

du2

1.9.2 Example 1A: Earnings Dynamics Model (Solution 2)

The log CF of (Y1, Y2, Y3) is

lnE [exp (it1Y1 + it2Y2 + it3Y3)] = ϕU1,U2 (t1 − t2, t2 − t3) + ϕU3 (t1) + ϕU4 (t2) + ϕU5 (t3)
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All the second-order partial derivatives are



∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t21

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t22

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t23



=



1 0 0 1 0 0

−1 1 0 0 0 0

0 −1 0 0 0 0

1 −2 1 0 1 0

0 1 −1 0 0 0

0 0 1 0 0 1





∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω1∂ω2

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

ϕ′′U3
(t1)

ϕ′′U4
(t2)

ϕ′′U5
(t3)



The inverse is



∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω1∂ω2

∣∣∣
(t1−t2,t2−t3)

∂2ϕU1,U2
(ω1,ω2)

∂ω2
1

∣∣∣
(t1−t2,t2−t3)

ϕ′′U3
(t1)

ϕ′′U4
(t2)

ϕ′′U5
(t3)


=



0 −1 −1 0 0 0

0 0 −1 0 0 0

0 0 −1 0 −1 0

1 1 1 0 0 0

0 1 0 1 1 0

0 0 1 0 1 1





∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t21

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t22

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t23


All the second-order partial derivatives of the log CF of unobserved variables are solved for in terms of

observed quantities.

For any (s1, s2) ∈ R2 choose (t1, t2, t3) = (s1, 0,−s2). Then

∂2ϕU1,U2
(ω1, ω2)

∂ω2
1

∣∣∣∣
(s1,s2)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∣∣∣∣∣
(s1,0,−s2)

−
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(s1,0,−s2)

∂2ϕU1,U2
(ω1, ω2)

∂ω1∂ω2

∣∣∣∣
(s1,s2)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(s1,0,−s2)

∂2ϕU1,U2 (ω1, ω2)

∂ω2
2

∣∣∣∣
(s1,s2)

= −
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(s1,0,−s2)

−
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∣∣∣∣∣
(s1,0,−s2)
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Integrating out

φU1,U2
(s1, s2) = exp

(∫ s1

0

∫ v

0

∂2ϕU1,U2
(ω1, ω2)

∂ω2
1

∣∣∣∣
(u,0)

dudv +

∫ s2

0

∫ s1

0

∂2ϕU1,U2
(ω1, ω2)

∂ω1ω2

∣∣∣∣
(u,v)

dudv

+

∫ s2

0

∫ v

0

∂2ϕU1,U2(ω1, ω2)

∂ω2
2

∣∣∣∣
(0,u)

dudv

)

Similarly for U3 let (t1, t2, t3) = (s3, 0, 0) , for U4 let (t1, t2, t3) = (0, s4, 0), and for U5 let (t1, t2, t3) = (0, 0, s5).

Then

ϕ′′U3
(s3) =

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t21

∣∣∣∣∣
(s3,0,0)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∣∣∣∣∣
(s3,0,0)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(s3,0,0)

ϕ′′U4
(s4) =

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t2

∣∣∣∣∣
(0,s4,0)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t22

∣∣∣∣∣
(0,s4,0)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∣∣∣∣∣
(0,s4,0)

ϕ′′U5
(s5) =

∂2 lnE
[
eit1Y1+it2Y2+it3Y3

]
∂t1∂t3

∣∣∣∣∣
(0,0,s5)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t2∂t3

∣∣∣∣∣
(0,0,s5)

+
∂2 lnE

[
eit1Y1+it2Y2+it3Y3

]
∂t23

∣∣∣∣∣
(0,0,s5)

Integrating out

φU3
(s3) = exp

(∫ s2

0

∫ v

0

ϕ′′U3
(v) dudv

)
φU4 (s4) = exp

(∫ s3

0

∫ v

0

ϕ′′U4
(v) dudv

)
φU5

(s4) = exp

(∫ s3

0

∫ v

0

ϕ′′U5
(v) dudv

)

1.9.3 Example 1B: Extension of the Earnings Dynamics Model

To identify U1, U5, U8 and U9 set p∗ = 1. Then

A1 =



1 1 −θ1 1

1 0 −θ2 −θ1

1 0 0 −θ2

1 0 0 0


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Set t1 = s1(0, 0, 0, 1), t5 = s5

(
1,− θ1θ2 ,

θ21+θ2
θ22

,− θ
2
1−θ1θ2+θ22+θ2

θ22

)
, t8 = s8

(
0,− 1

θ2
, θ1
θ22
, θ2−θ1

θ22

)
, and

t9 = s9

(
0, 0,− 1

θ2
, 1
θ2

)
where s1, s5, s8, s9 ∈ R. Then A1′t1 = s1~e1, A1′t5 = s5~e2, A1′t8 = s8~e3 and A1′t9 =

s9~e4 so Assumption1i is satisfied. Using Equation (1.13), the CFs of f + yP1 η1, ζ0 and ζ1 are

φf+yP1
(s1) = exp

(∫ s1

0

iE [Y1 exp (iuY4)]

E [exp (iuY4)]
du

)

φη1(s5) = exp

∫ s5

0

iE
[
Y1 exp

(
iu
θ22

(
Y1θ

2
2 − Y2θ1θ2 + Y3θ

2
1 + Y3θ2 − Y4θ

2
1 + Y4θ1θ2 − Y4θ

2
2 − Y4θ2

))]
E
[
exp

(
iu
θ22

(Y1θ2
2 − Y2θ1θ2 + Y3θ2

1 + Y3θ2 − Y4θ2
1 + Y4θ1θ2 − Y4θ2

2 − Y4θ2)
)] du


φζ0(s8) = exp

− 1

θ1

∫ s8

0

iE
[
Y1 exp

(
− iu
θ22

(Y2θ2 − Y3θ1 + Y4θ1 − Y4θ2)
)]

E
[
exp

(
− iu
θ22

(Y2θ2 − Y3θ1 + Y4θ1 − Y4θ2)
)] du


φζ1(s9) = exp

∫ s9

0

iE
[
Y1 exp

(
− iuθ2 (Y3 − Y4)

)]
E
[
exp

(
− iuθ2 (Y3 − Y4)

)] du


The unobserved variables U1, U6, U8 and U9 are identified and satisfy independence assumptions that

allow a rearrangement of the system so that the identified unobserved variables can be treated as part of Y .

Let

Ỹ = Y −A′1U1 −A′5U5 −A′8U8 −A′9U9 =



0 0 0 0 0 0

1 0 0 1 0 1

1 1 0 0 1 −θ1

1 1 1 0 0 −θ2





U2

U3

U4

U6

U7

U10


= ÃŨ

To identify U2, U6 and U10 set p∗ = 2. Then

Ã2 =



0 0 0

1 1 1

1 0 −θ1

1 0 −θ2



Set t2 = s2

(
0, 0,− θ2

θ1−θ2 ,
θ1

θ1−θ2

)
, t6 = s6

(
0, 1, 1+θ2

θ1−θ2 ,−
1+θ1
θ1−θ2

)
and t10 = s10

(
0, 0,− 1

θ1−θ2 ,
1

θ1−θ2

)
where

s2, s6, s10 ∈ R. Then Ã2′t2 = s2~e1, Ã2′t6 = s6~e2 and Ã2′t10 = s10~e3 so Assumption 1i is satisfied. Using
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Equation (1.13), the CFs of ζ2, ε2 and η2 are

φε2(s2) = exp

∫ s2

0

iE
[
Y2 exp

(
− iu
θ1−θ2 (Y3θ2 − Y4θ1)

)]
E
[
exp

(
− iu
θ1−θ2 (Y3θ2 − Y4θ1)

)] du

/(φf+yP1
(s2)φζ1

(
−s2θ

2
2

θ1 − θ2

))

φη2(s6) =

exp

(∫ s6

0

iE
[
Y2 exp

(
iu

θ1−θ2
(Y2(θ1−θ2)+Y3(1+θ2)+Y4(1+θ1))

)]
E
[
exp
(

iu
θ1−θ2

(Y2(θ1−θ2)+Y3(1+θ2)+Y4(1+θ1))
)] du

)/(
φf+yP1

(s6)φζ1

(
s6
θ1(θ2−θ1)−θ2(1+θ2)

θ1−θ2

))

φη2(s10) = exp

∫ s10

0

iE
[
Y2 exp

(
iu

θ1−θ2 (−Y3 + Y4)
)]

E
[
exp

(
iu

θ1−θ2 (−Y3 + Y4)
)] du

/φζ1 (−s10θ2

θ1 − θ2

)

The unobserved variables U1, U2, U5, U6, U8, U9 and U10 are identified and satisfy independence as-

sumptions so that ε3, ε4 and η3 are identified in a similar way to the unobserved variables above

φε3(s3) = exp

(∫ s3

0

iE [Y3 exp (iuY4)]

E [exp (iuY4)]
du

)/
(φε1 (s3)φε2 (s3)φε2 (−θ2s3))

φε4(s4) = exp

(∫ s4

0

iE [Y4 exp (iuY4)]

E [exp (iuY4)]
du

)/(
φf+yP1

(s)φε2 (s4)φε3 (s4)φε2 (−θ2s4)
)

φη3(s) = exp

(∫ s

0

iE [Y3 exp (iu(Y3 − Y4))]

E [exp (iu(Y3 − Y4))]
du

)/
(φζ1 (−θ2s3)φζ2 (−θ1s3 + θ2s3))

1.9.4 Example 1C: Earnings Dynamics Model with Mean Inde-

pendence

Set p∗ = 2 and m∗ = 1. Then

A21 =


1 0 0

−1 1 1

0 −1 0


When ~t11 = s11(1, 0, 0) then A21′ = s11~e11 where s11 ∈ R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of U11 is

φU11
(s11) = exp

(∫ s11

0

iE [Y2 exp (iuY1)]

E [exp (iuY1)]
du

)
When ~t12 = s11(0, 0,−1) then A21′ = s12~e12 where s12 ∈ R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of U12 is

φU12(s12) = exp

(∫ s12

0

iE [Y2 exp (−iuY3)]

E [exp (iu− Y3)]
du

)
In Example 1B, it was possible to move identified unobserved variables to the left hand side of the

equation because of the mutual independence assumption. In Example 1C, this is not possible because
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the joint distribution of ~U1 is not identified (only the marginal distributions U11 and U12 are identified).

Identification comes from first manipulating the system from Equation (1.3) as follows


Y1

Y1 + Y2 + Y3

Y3

 =


1 0 1 0 0

0 0 1 1 1

0 −1 0 0 1





U1

U2

U3

U4

U5



or
~̃
Y = Ã~U .

Set p∗ = 2 and m∗ = 2. Then

Ã22 =


1 0 0

1 1 1

0 0 1


When ~t21 = s21(1, 0, 0) then Ã22′ = s21

~~e21 where s21 ∈ R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of U21 is

φU21(s21) = exp

(∫ s21

0

iE [(Y1 + Y2 + Y3) exp (iuY1)]

E [exp (iuY1)]
du

)

When ~t22 = s22(−1, 1,−1) then Ã22′ = s22
~~e22 where s22 ∈ R so Assumption 3i is satisfied. Using

Equation (1.17) the CF of U22 is

φU22(s22) = exp

(∫ s22

0

iE [(Y1 + Y2 + Y3) exp (iu(−Y1 + Y2 − Y3))]

E [exp (iu(−Y1 + Y2 − Y3))]
du

)

When ~t23 = s23(0, 0, 1) then Ã22′ = s23
~~e23 where s23 ∈ R so Assumption 3i is satisfied. Using Equation

(1.17) the CF of U23 is

φU23
(s23) = exp

(∫ s23

0

iE [(Y1 + Y2 + Y3) exp (iuY3)]

E [exp (iuY3)]
du

)

1.9.5 Example 2: Difference-in-Differences Model

As a preliminary step I identify U1, U2, U4 + U8 and U5 + U9. With one additional assumption that is

defined later, the distribution of (Y ∗CT , Y
∗
TC) is identified.
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To identify U1 set p∗ = 1 and ~t1 = (0, 0, 1, 0). Then

A1 =



1 1 1 0

0 1 0 1

1 0 0 0

0 0 0 0


and A1′~t1 = s1~e1 so Assumption 2 is satisfied for identification of U1. Using Equation (1.13), the CF of mC

is

φmC (s1| ~X = ~x) = exp

∫ s1

0

iE
[
YC0 exp (iuYCC) | ~X = ~x

]
E
[
exp (iuYCC) | ~X = ~x

] du


Similarly, U2 is identified by setting p∗ = 2 and ~t2 = (0, 0, 0, 1). Then

A1 =



0 1 1 0

1 1 0 1

0 0 0 0

1 0 0 0


A2′~t2 = s2~e2 so Assumption 2 is satisfied for identification of U2. Using Equation (1.13) the CF of mT

is

φmT (s2| ~X = ~x) = exp

∫ s2

0

iE
[
YT0 exp (iuYTT ) | ~X = ~x

]
E
[
exp (iuYTT ) | ~X = ~x

] du


Next, identify (U4 + U8, U5 + U9) by

φYCC ,YTT (s4, s5| ~X = ~x) = φmC+hC+εCC , mT+hT+εTT (s4, s5| ~X = ~x)

= φmC (s4| ~X = ~x) · φmT (s5| ~X = ~x) · φhC+εCC , hT+εTT (s4, s5| ~X = ~x)

where the second equality follows from the independence assumptions. I already identified mC and mT so

by rearranging the above equation hC + εCC , hT + εTT is identified by

φhC+εCC , hT+εTT (s4, s5| ~X = ~x) =
φYCC ,YTT (s4, s5| ~X = ~x)

φmC (s4| ~X = ~x) · φmT (s5| ~X = ~x)
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Finally, the distribution of (Y ∗CT , Y
∗
TC) is identified with one of two possible assumptions

i. Assume (εCT , εTC) has the same distribution as (εTT , εCC), then

φY ∗CT ,Y ∗TC

(
s4, s5| ~X = ~x

)
= φmC+hT+εCT , mT+hC+εTC (s4, s5| ~X = ~x)

= φmC (s4| ~X = ~x) · φmT (s5| ~X = ~x) · φhT (s4| ~X = ~x) · φhC (s5| ~X = ~x) · φεCT , εTC (s4, s5| ~X = ~x)

= φmC (s4| ~X = ~x) · φmT (s5| ~X = ~x) · φhT (s4| ~X = ~x) · φhC (s5| ~X = ~x) · φεTT , εCC (s4, s5| ~X = ~x)

= φmC (s4| ~X = ~x) · φmT (s5| ~X = ~x) · φhT+εTT , hC+εCC (s4, s5| ~X = ~x)

where the second and fourth equalities follow by independence, and the third equality follows from the

assumption that (εCT , εTC) and (εTT , εCC) are equally distributed. We already identified mC , mT and

(hC + εCC , hT + εTT ) so (Y ∗CT , Y
∗
TC) is also identified.

ii. Assume (εCT , εTC) has the same distribution as (εTT − εT0 + εC0, εCC − εC0 + εT0), then

φY ∗CT ,Y ∗TC

(
s4, s5| ~X = ~x

)
= φmC+hT+εCT , mT+hC+εTC (s4, s5| ~X = ~x)

= φmC+hT (s4| ~X = ~x) · φmT+hC (s5| ~X = ~x) · φεCT , εTC (s4, s5| ~X = ~x)

= φmC+hT (s4| ~X = ~x) · φmT+hC (s5| ~X = ~x) · φεTT−εT0+εC0, εCC−εC0+εT0
(s4, s5| ~X = ~x)

= φmC+hT+εTT−εT0+εC0, mT+hC+εCC−εC0+εT0
(s4, s5| ~X = ~x)

= φ(mT+hT+εTT )−(mT+h0+εT0)+(mC+h0+εC0), (mC+hC+εCC)−(mC+h0+εC0)+(mT+h0+εT0)(s4, s5| ~X = ~x)

= φYTT−YT0+YC0, YCC−YC0+YT0
(s4, s5| ~X = ~x)

where the second and fourth equalities follow by independence, and the third equality follows from the

assumption that (εTT − εT0 + εC0, εCC − εC0 + εT0). The distribution of (YTT − YT0 + YC0, YCC −

YC0 + YT0) is observed so (Y ∗CT , Y
∗
TC) is identified.
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1.9.6 Example 3: Measurement Error Model with Three Mea-

surements

¯A�A =



1 2 1 0 0

1 1 0 0 0

1 1 0 0 0

1 0 0 1 0

1 0 0 0 0

1 0 0 0 1


The second-order partial derivatives are

∂2ϕX∗,ε1(s0, s1)

∂ω2
1

=
∂2ϕ~Y (~t)

∂t2∂t3

∣∣∣∣∣
(s0−s1,s1,0,0)

∂2ϕX∗,ε1(s0, s1)

∂ω1ω2
=
∂2ϕ~Y (~t)

∂t1∂t2

∣∣∣∣∣
(s0−s1,s1,0,0)

−
∂2ϕ~Y (~t)

∂t2∂t3

∣∣∣∣∣
(s0−s1,s1,0,0)

∂2ϕX∗,ε1(s0, s1)

∂ω1ω2
=
∂2ϕ~Y (~t)

∂t21

∣∣∣∣∣
(s0−s1,s1,0,0)

− 2
∂2ϕ~Y (~t)

∂t1∂t2

∣∣∣∣∣
(s0−s1,s1,0,0)

+
∂2ϕ~Y (~t)

∂t2∂t3

∣∣∣∣∣
(s0−s1,s1,0,0)

ϕ′′ε2 (s2) =
∂2ϕ~Y (~t)

∂t21

∣∣∣∣∣
(0,0,s2,0)

−
∂2ϕ~Y (~t)

∂t2∂t3

∣∣∣∣∣
(0,0,s2,0)

ϕ′′ε3 (s3) =
∂2ϕ~Y (~t)

∂t31

∣∣∣∣∣
(0,0,0,s3)

−
∂2ϕ~Y (~t)

∂t2∂t3

∣∣∣∣∣
(0,0,0,s3)

Using these relationships and Equation (1.15), the CFs are

φX∗,ε1(s0, s1) = exp

(∫ s1

0

∫ v

0

∂2ϕX∗,ε1(u, s2)

∂ω2
1

dudv +

∫ s2

0

∫ s1

0

∂2ϕX∗,ε1(u, v)

∂ω1ω2
dudv

+

∫ s1

0

∫ s2

0

∂2ϕX∗,ε1(0, u)

∂ω1∂ω2
dudv +

∫ s2

0

∫ v

0

∂2ϕX∗,ε1(0, u)

∂ω2
2

dudv

)
φε2 (s2) = exp

(∫ s2

0

∫ v

0

ϕ′′ε2 (v) dudv

)
φε3 (s3) = exp

(∫ s3

0

∫ v

0

ϕ′′ε3 (v) dudv

)
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1.10 Appendix B

1.10.1 Proof of Theorem 1

Let φY1,...,YP denote the CF of ~Y and φ~Um denote the CF of ~Um for 1 ≤ m ≤M . Then,

φY1,...,YP (t1, . . . , tP ) = E [exp (iY1t1 + . . .+ iYP tP )]

= E
[
exp

(
i(a1

11U11 + . . .+ aM1KMUMKM )t1 + . . .+ i(a1
P1U11 + . . .+ aMPKMUMKM )tP

)]
= E

[
exp

(
i(a1

11t1 + . . .+ a1
P1tP )U11 + . . .+ i(aM1KM t1 + . . .+ aMPKM tP )UMKM

)]
=

M∏
m=1

E

[
exp

(
iUm1

P∑
p=1

amp1tp + . . .+ iUmKm

P∑
p=1

ampKmtp

)]

where the second equality follows by substituting Yp = a1
p1U11 + . . . + aMpKMUMKM and the fourth equality

follows from the independence assumptions.

Let ϕ~Y (~t) = ϕY1,...,YP (t1, . . . , tP ) = lnφ~Y (~t) and

ϕm (~ωm) = ϕUm1,...,UmKm
(ωm1, . . . , ωmKm) = lnE [exp (iUm1ωm1 + . . .+ iUmKmωmKm)]

then

ϕ~Y (~t) =

M∑
m=1

ϕm

(
P∑
p=1

amp1tp, . . . ,

P∑
p=1

ampKmtp

)
=

M∑
m=1

ϕm
(
Am1
′~t, . . . , Am′Km

~t
)

=

M∑
m=1

ϕm

((
A′m~t

)′)

where A = (A1, . . . , AM ) partitions A. The partial derivative with respect to tp is

∂ϕ~Y (~t)

∂tp
=

M∑
m=1

Km∑
k=1

ampk
∂ϕm (~ωm)

∂ωmk

∣∣∣∣
(A′m~t)

′

In matrix notation the first-order partial derivatives are


∂ϕ~Y (~t)

∂t1
...

∂ϕ~Y (~t)

∂tP

 =

M∑
m=1


am11 . . . am1Km
...

. . .
...

amP1 . . . amPKm





∂ϕm (~ωm)

∂ωm1

∣∣∣∣
(A′m~t)

′

...

∂ϕm (~ωm)

∂ωmKm

∣∣∣∣
(A′m~t)

′


The new system of equations is identical to Equation (1.12) except the unobserved random variable Umk

is replaced by the first-order partial derivative
∂ϕm (~ωm)

∂ωmk

∣∣∣∣
(A′m~t)

′
.
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The first-order partial derivative with respect to tpk∗ is

∂ϕ~Y (~t)

∂tpk∗
=

M∑
m=1

Km∑
k=1

ampk∗k
∂ϕm (~ωm)

∂ωmk

∣∣∣∣
(A′m~t)

′

=

M∑
m=1

Km∑
k=1

ampk∗k
∂ϕm (~ωm)

∂ωmk

∣∣∣∣(
I
(⋃

k a
m
pk∗k

6=0
)
(A′m~t)

′
)

=

M∑
m=1

Km∑
k=1

ampk∗k
∂ϕm (~ωm)

∂ωmk

∣∣∣∣
(A

pk∗ ′
m ~t)

′

where Apk∗ = (Apk∗1 , . . . , Apk∗M ) partitions Apk∗ .

By Assumption 1i, there exists ~tm∗ such that Apk∗ ′m
~tm∗ = ~0Km for all m 6= m∗ and Apk∗ ′m∗

~tm∗ = ~sm∗ ∈

RK∗m . One solution is ~tm∗ = (Apk∗ )
+
(
~0′∑

m<m∗ Km
, ~s′m∗ , ~0

′∑
m>m∗ Km

)′
. To save on notation I denote this

solution as ~tm∗ = (Apk∗ )
+

(~0′, ~s′m∗ ,~0
′)′. Then

∂ϕ~Y
(
~t
)

∂tpk∗

∣∣∣∣∣
(Apk∗ )+(~0′,~s′

m∗ ,
~0′)′

=

Km∗∑
k=1

am
∗

pk∗k

∂ϕm∗ (~ωm∗)

∂ωm∗k

∣∣∣∣
~sm∗

+
∑
m6=m∗

Km∑
k=1

∂ϕm (~ωm)

∂ωmk

∣∣∣∣
~0′Km

= am
∗

pk∗k∗
∂ϕm∗ (~ωm∗)

∂ωm∗k∗

∣∣∣∣
~sm∗

+
∑
m6=m∗

Km∑
k=1

ampk∗kE [Umk]

= am
∗

pk∗k∗
∂ϕm∗ (~ωm∗)

∂ωm∗k∗

∣∣∣∣
~sm∗

(1.20)

where the second equality follows from Assumption 1ii that am
∗

pk∗k
= 0 for all k 6= k∗ and the last equality

because E [Umk] = 0.

The CF of Um∗ is expressed in terms of its first-order partial derivatives

φm∗(~sm∗) = exp

(
Km∗∑
k=1

∫ sk

0

∂ϕm∗(~ωm∗)

∂ωm∗k

∣∣∣∣
(s1,...,sk−1,uk,0,...,0)

duk

)

= exp

Km∗∑
k=1

1

am
∗

pkk

∫ sk

0

∂ϕ~Y
(
~t
)

∂tpk

∣∣∣∣∣
(Apk∗ )+(~0′,s1,...,sk−1,uk,0,...,0,~0′)′

duk


= exp

Km∗∑
k=1

1

am
∗

pkk

∫ sk

0

∂ lnE
[
exp

(
i~Y ′~t

)]
∂tpk∗

∣∣∣∣∣∣
(Apk∗ )+(~0′,s1,...,sk−1,uk,0,...,0,~0′)′

duk


= exp

Km∗∑
k=1

1

am
∗

pkk

∫ sk

0

iE
[
Ypk∗ exp

(
i~Y ′ (Apk∗ )

+
(~0′, s1, . . . , sk−1, uk, 0, . . . , 0,~0

′)′
)]

E
[
exp

(
i~Y ′ (Apk∗ )

+
(~0′, s1, . . . , sk−1, uk, 0, . . . , 0,~0′)′

)] duk


where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by

substituting Equation (1.20).
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The CF of ~Um∗ is defined by bounding:

∣∣∣∣∣
∫ sk

0

∂ϕm∗(~ωm∗)

∂ωm∗k

∣∣∣∣
(s1,...,sk−1,uk,0,...,0)

duk

∣∣∣∣∣
=

∣∣∣∣∫ sk

0

iE [Um∗k exp i (Um∗1s1 + . . .+ Um∗k−1sk−1 + Um∗kuk)]

E [exp i (Um∗1s1 + . . .+ Um∗k−1sk−1 + Um∗kuk)]
duk

∣∣∣∣
≤ E [|Um∗k|]

∫ sk

0

1

|E [exp i (Um∗1s1 + . . .+ Um∗k−1sk−1 + Um∗kuk)]|
duk

<∞

where the first inequality follows from the triangle inequality and | exp(·)| ≤ 1 and the second inequal-

ity follows from the assumptions
sk∫
0

∣∣∣(E [exp i (Um∗1s1 + . . .+ Um∗k−1sk−1 + Um∗kuk)])
−1
∣∣∣duk < ∞ and

E [|Um∗k|] <∞ for k = 1, . . . ,Km∗ .

This shows that the CF of ~Um∗ is identified. The joint density of ~Um∗ is identified using the bijection

between densities and CFs by the inverse Fourier transform

fm∗(~um∗) =
1

2π

∫
e−i~s

′
m∗~um∗φm∗(~sm∗)d~sm∗

1.10.2 Proof of Theorem 2

The CF of ~Y is

φY1,...,YP (t1, . . . , tP ) = E [exp (iY1t1 + . . .+ iYP tP )]

= E
[
exp

(
i(a1

11U11 + . . .+ aM1KMUMKM )t1 + . . .+ i(a1
P1U11 + . . .+ aMPKMUMKM )tP

)]
= E

[
exp

(
i(a1

11t1 + . . .+ a1
P1tP )U11 + . . .+ i(aM1KM t1 + . . .+ aMPKM tP )UMKM

)]
=

M∏
m=1

E

[
exp

(
iUm1

P∑
p=1

amp1tp + . . .+ iUmKm

P∑
p=1

ampKmtp

)]

where the second equality follows by substituting Yp = a1
p1U11 + . . . + aMpKMUMKM and the fourth equality

follows from the independence assumptions.

Let ϕ~Y (~t) = ϕY1,...,YP (t1, . . . , tP ) = lnφ~Y (~t) and

ϕm (~ωm) = ϕUm1,...,UmKm
(ωm1, . . . , ωmKm) = lnE [exp (iUm1ωm1 + . . .+ iUmKmωmKm)]
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then

ϕ~Y (~t) =

M∑
m=1

ϕm

(
P∑
p=1

amp1tp, . . . ,

P∑
p=1

ampKmtp

)
=

M∑
m=1

ϕm
(
Am1
′~t, . . . , Am′Km

~t
)

=

M∑
m=1

ϕm

((
A′m~t

)′)

where A = (A1, . . . , AM ) partitions A.

Necessity: Assume Assumption 2i does not hold. Let
~̃
U1, . . . ,

~̃
UM and ~U1, . . . , ~UM be observationally

equivalent. Then

ϕ~Y (~t) =

M∑
m=1

ϕm

((
A′m~t

)′)
=

M∑
m=1

ϕ̃m

((
A′m~t

)′)

where ϕm is the log CF of ~Um and ϕ̃m is the log CF of
~̃
Um for m = 1, . . . ,M . Then

M∑
m=1

ϕm

((
A′m~t

)′)− M∑
m=1

ϕ̃m

((
A′m~t

)′)
= 0

The partial derivative with respect to tp is

M∑
m=1

Km∑
k=1

ampk

(
∂ϕm (~ωm)

∂ωmk

∣∣∣∣
(A′m~t)

′
− ∂ϕ̃m (~ωm)

∂ωmk

∣∣∣∣
(A′m~t)

′

)
= 0

In matrix notation the first-order partial derivatives are

M∑
m=1


am11 . . . am1Km
...

. . .
...

amP1 . . . amPKm




∂ϕm
∂ωm1

− ∂ϕ̃m
∂ωm1

...

∂ϕm
∂ωmKm

− ∂ϕ̃m
∂ωmKm

 = (A1 · · · AM )



∂ϕ1

∂ω11
− ∂ϕ̃1

∂ω11
...

∂ϕm
∂ωmk

− ∂ϕ̃m
∂ωmk

...

∂ϕM
∂ωMKM

− ∂ϕ̃M
∂ωMKM


=


0

...

0



where for clarity of notation the arguments of the CFs are omitted. The second-order partial derivative with

respect to tp1 and tp2 is

∂ϕ2
Y (t)

∂tp1tp2
=

M∑
m=1

Km∑
k1=1

amp1k1

Km∑
k2=1

amp2k2

(
∂2ϕm

∂ωmk1∂ωmk2
− ∂2ϕ̃m
∂ωmk1∂ωmk2

)

=

M∑
m=1

Km∑
k=1

amp1ka
m
p2k

(
∂2ϕm
∂ω2

mk

− ∂2ϕ̃m
∂ω2

mk

)
+

M∑
m=1

Km∑
k1 6=k2

amp1k1a
m
p2k2

(
∂2ϕm

∂ωmk1∂ωmk2
− ∂2ϕ̃m
∂ωmk1∂ωmk2

)
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=

M∑
m=1

Km∑
k=1

amp1ka
m
p2k

(
∂2ϕm
∂ω2

mk

− ∂2ϕ̃m
∂ω2

mk

)

+

M∑
m=1

Km∑
k1<k2

(
amp1k1a

m
p2k2 + amp1k2a

m
p2k1

)( ∂2ϕm
∂ωmk1∂ωmk2

− ∂2ϕ̃m
∂ωmk1∂ωmk2

)

where the third equality follows because
∂2ϕm

∂ωmk1∂ωmk2
=

∂2ϕm
∂ωmk2∂ωmk1

. In matrix notation the second-order

partial derivatives are

(A�A)



∂2ϕ1

∂ω2
11

− ∂2ϕ̃1

∂ω2
11

...

∂2ϕm
∂ωmk1∂ωmk2

− ∂2ϕ̃m
∂ωmk1∂ωmk2

...

∂2ϕM
∂ω2

MKM

− ∂2ϕ̃M
∂ω2

MKM


=


0

...

0

 (1.21)

where k1 ≤ k2.

The matrix (A � A) is of dimension P 2 ×
∑M
m=1Km(Km + 1)/2. If Assumption 2i does not hold

then Rank(A � A) <
∑M
m=1Km(Km + 1)/2 and there are nonzero solutions to Equation (1.21). Say

one such solution is
∂2ϕm

∂ωmk1∂ωmk2
− ∂2ϕ̃m
∂ωmk1∂ωmk2

= cmk1k2 then ϕm

(∑P
p=1 a

m
p1tp, . . . ,

∑P
p=1 a

m
pKm

tp

)
and

ϕ̃m

(∑P
p=1 a

m
p1tp, . . . ,

∑P
p=1 a

m
pKm

tp

)
= ϕm

(∑P
p=1 a

m
p1tp, . . . ,

∑P
p=1 a

m
pKm

tp

)
−
∑
k1,k2

cmk1k2tk1tk2 are obser-

vationally equivalent. This implies that φm(t) is observationally equivalent to φ̃m(~t) = φm(~t) exp(c̃m +∑
k c̃mktk +

∑
k1,k2

c̃mk1k2tk1tk2) (a shift by some polynomial of degree two) and hence that
~̃
U1, . . .

~̃
UM and

~U1, . . . ~UM are observationally equivalent.

The matrix Am is of dimension P × Km. If Assumption 2ii does not hold then Rank(Am) < Km for

some m. Without loss of generality let Assumption 2ii not hold when m = m∗, then there exists a nonzero

δ ∈ RKm∗ that satisfies

Am∗δ =


∑Km∗
k=1 am

∗

1k δk
...∑Km∗

k=1 am
∗

Pk δk

 =


0

...

0



Let
(
Ũm∗1, . . . Ũm∗Km∗

)
:= (Um∗1 + δ1Um∗1, . . . , Um∗Km∗ + δKm∗Um∗1). The CF of ~Y is

φ~Y (~t) = E
[
exp

(
i(a1

11t1 + . . .+ a1
P1tP )U11 + . . .+ i(aM1KM t1 + . . .+ aMPKM tP )UMKM

)]
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=

M∏
m=1

E

[
exp

(
i

Km∑
k=1

Umk

P∑
p=1

ampktp

)]

=

M∏
m=1

φm

(
P∑
p=1

ampktp

)

= E

[
exp

(
i

Km∗∑
k=1

Um∗k

P∑
p=1

am
∗

pk tp

)] ∏
m 6=m∗

E

[
exp

(
i

Km∑
k=1

Umk

P∑
p=1

ampktp

)]

= E

[
exp

(
i

Km∗∑
k=1

Um∗k

P∑
p=1

am
∗

pk tp + Um∗1

P∑
p=1

tp

Km∗∑
k=1

am
∗

pk δk

)] ∏
m 6=m∗

E

[
exp

(
i

Km∑
k=1

Umk

P∑
p=1

ampktp

)]

= E

[
exp

(
i

Km∗∑
k=1

(Um∗k + Um∗1δk)

P∑
p=1

am
∗

pk tp

)] ∏
m 6=m∗

E

[
exp

(
i

Km∑
k=1

Umk

P∑
p=1

ampktp

)]

= E

[
exp

(
i

Km∗∑
k=1

Ũm∗k

P∑
p=1

am
∗

pk tp

)] ∏
m 6=m∗

E

[
exp

(
i

Km∑
k=1

Umk

P∑
p=1

ampktp

)]

=

M∏
m=1

φ̃m

(
P∑
p=1

ampktp

)

where the fifth equality follows because
∑Km∗
k=1 am

∗

pk δk = 0 for all p and the second to last equality holds from

the definition of
(
Ũm∗1, . . . , Ũm∗Km∗

)
. Hence the CFs of (~U1, . . . ,

~̃
Um∗ , . . . , ~UM ) and (~U1, . . . , ~Um∗ , . . . , ~UM )

are observationally equivalent, which implies that (~U1, . . . ,
~̃
Um∗ , . . . , ~UM ) and (~U1, . . . , ~Um∗ , . . . , ~UM ) are

observationally equivalent.

Sufficiency: Assume Assumption 2 holds. The second-order partial derivatives of ϕ~Y (~t) are



∂2ϕ~Y (~t)

∂t21
...

∂2ϕ~Y (~t)

∂tp1∂tp2
...

∂2ϕ~Y (~t)

∂t2P


= (A�A)



∂ϕ2
1 (~ω1)

∂ω2
11

∣∣∣∣
(A′1~t)

′

...

∂ϕ2
m (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣
(A′m~t)

′

...

∂ϕ2
M (~ωM )

∂ω2
MKM

∣∣∣∣
(A′M~t)

′


k1 ≤ k2.

By Assumption 2i

 ∂ϕ2
1 (~ω1)

∂ω2
11

∣∣∣∣
(A′1~t)

′
, . . . ,

∂ϕ2
M (~ωM )

∂ω2
MKM

∣∣∣∣
(A′M~t)

′

′ = (A�A)
+

(
∂2ϕ~Y (~t)

∂t21
, . . . ,

∂2ϕ~Y (~t)

∂t2P

)′

By Assumption 2ii, for all ~sm ∈ RKm there exists a ~tm ∈ RP that solves A′m~tm = ~sm. One solution is
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~tm = (A′m)
+
~sm. Then

(
. . .

∂ϕ2
m (~ωm)

∂ω2
m1

∣∣∣∣
~s′m

, . . . ,
∂ϕ2

m (~ωm)

∂ω2
mKm

∣∣∣∣
~s′m

. . .

)′
= (A�A)

+

 ∂2ϕ~Y (~t)

∂t21

∣∣∣∣∣
(A′m)+~sm

, . . . ,
∂2ϕ~Y (~t)

∂t2P

∣∣∣∣∣
(A′m)+~sm

′

where

∂2ϕ~Y (~t)

∂tp1∂tp2

∣∣∣∣∣
(A′m)+~sm

=
E
[
Yp1e

i~Y ′(A′m)
+
~sm
]
E
[
Yp2e

i~Y ′(A′m)
+
~sm
]

(
E
[
ei~Y

′(A′m)+~sm

])2 −
E
[
Yp1Yp2e

i~Y ′(A′m)
+
~sm
]

E
[
ei~Y

′(A′m)+~sm

]
The CF of Um is expressed in terms of second-order partial derivatives

φm(~sm) = exp

(
Km∑
k=1

∫ sk

0

∫ vk

0

∂ϕ2
m (~ωm)

∂ω2
mk

∣∣∣∣
(0,...,uk,0,...,0)

dukdvk

+
∑
k1<k2

∫ sk2

0

∫ sk1

0

∂ϕ2
m (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣
(s1,...,sk1−1,uk1 ,0,...,0,uk2 ,0,...,0)

duk1duk2

)

The CF of ~Um is defined by bounding:

∣∣∣∣∣
∫ sk2

0

∫ sk1

0

∂2ϕm(~ωm)

∂ωmk1∂ωmk2

∣∣∣∣
(...,uk1 ,...,uk2 ,...)

duk1duk2

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ sk2

0

∫ sk1

0

E
[
Umk1e

i
∑k1−1

k=1 Umksk+iUmk1uk1+iUmk2uk2

]
E
[
Umk2e

i
∑k1−1

k=1 Umksk+iUmk1uk1+iUmk2uk2

]
(
E
[
ei
∑k1−1

k=1 Umksk+iUmk1uk1+iUmk2uk2

])2

−
E
[
Umk1Umk2e

i
∑k1−1

k=1 Umksk+iUmk1uk1+iUmk2uk2

]
E
[
ei
∑k1−1

k=1 Umksk+iUmk1uk1+iUmk2uk2

]
 duk1duk2

∣∣∣∣∣∣
≤ E [|Umk1Umk2 |]

∫ sk2

0

∫ sk1

0

1(
E
[
exp

(
i
∑k1−1
k=1 Umksk + iUmk1uk1 + iUmk2uk2

)])2 duk1duk2

<∞

where the first inequality follows from the triangle inequality and | exp(·)| ≤ 1 and the second inequality

follows from the assumptions
∫ sk2

0

∫ sk1
0

(
E
[
exp

(
i
∑k1−1
k=1 Umksk + iUmk1uk1 + iUmk2uk2

)])−2

duk1duk2 <

∞ and E [|Umk1Umk2 |] <∞ for k1, k2 = 1, . . . ,Km.

This shows that the CF of ~Um is identified. The joint density of ~Um is identified using the bijection

between densities and CFs by the inverse Fourier transform

fm(~um) =
1

2π

∫
e−i~s

′
m~umφm(~sm)d~sm
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1.10.3 Proof of Theorem 3

The CF of ~Y is

φY1,...,YP (t1, . . . , tP ) = E [exp (iY1t1 + . . .+ iYP tP )]

= E
[
exp

(
i(a1

11U11 + . . .+ aM1KMUMKM )t1 + . . .+ i(a1
P1U11 + . . .+ aMPKMUMKM )tP

)]
= E

[
exp

(
i(a1

11t1 + . . .+ a1
P1tP )U11 + . . .+ i(aM1KM t1 + . . .+ aMPKM tP )UMKM

)]
=

M∏
m=1

E

[
exp

(
iUm1

P∑
p=1

amp1tp + . . .+ iUmKm

P∑
p=1

ampKmtp

)]

where the second equality follows by substituting Yp = a1
p1U11 + . . . + aMpKMUMKM and the fourth equality

follows from the independence assumptions.

Let ϕ~Y (~t) = ϕY1,...,YP (t1, . . . , tP ) = lnφ~Y (~t) then

ϕ~Y (~t) =

M∑
m=1

lnE

[
exp

(
iUm1

P∑
p=1

amp1tp + . . .+ iUmKm

P∑
p=1

ampKmtp

)]

The first-order partial derivative with respect to tp∗ is

∂ϕ~Y (~t)

∂tp∗
= i

M∑
m=1

Km∑
k=1

amp∗k

E
[
Umk exp

(
i
∑Km
k=1 Umk

∑P
p=1 a

m
pktp

)]
E
[
exp

(
i
∑Km
k=1 Umk

∑P
p=1 a

m
pktp

)]
By Assumption 3i, there exists ~t(mk)∗ such that Ap

∗m∗′
m

~t(mk)∗ = ~0Km for all m 6= m∗ and Ap
∗m∗′
m∗

~t(mk)∗ =

~ek∗ . This means that

AmkI
({
amp∗k 6= 0

}
∪ {m∗ = m}

)
~t(mk)∗

= I
({
amp∗k 6= 0

}
∪ {m∗ = m}

) P∑
p=1

ampkt(mk)∗p

=

 1 if m = m∗ and k = k∗

0 otherwise

One solution is ~t(mk)∗ =
(
Ap
∗m∗′)+ ~e(mk)∗ . Let s(mk)∗ ∈ R, then

∂ϕ~Y
(
~t
)

∂tp∗

∣∣∣∣∣
(Ap∗m∗′)

+
~e(mk)∗s(mk)∗

(1.22)

= i

Km∗∑
k=1

am
∗

p∗k

E
[
Um∗k exp

(
iU(mk)∗s(mk)∗

)]
E
[
exp

(
iU(mk)∗s(mk)∗

)]
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+ i
∑
m 6=m∗

Km∑
k=1

amp∗k

E
[
Umk exp

(
i
∑Km
k=1 UmkI

({
amp∗k = 0

})∑P
p=1 a

m
pkt(mk)∗p

)]
E
[
exp

(
i
∑Km
k=1 UmkI

({
amp∗k = 0

})∑P
p=1 a

m
pkt(mk)∗p

)]

= i

Km∗∑
k=1

am
∗

p∗k

E
[
E
[
Um∗k|U(mk)∗

]
exp

(
iU(mk)∗s(mk)∗

)]
E
[
exp

(
iU(mk)∗s(mk)∗

)]
+ i

∑
m 6=m∗

Km∑
k=1

amp∗k

E
[
E [Umk|Umk̄] exp

(
i
∑Km
k=1 UmkI

({
amp∗k = 0

})∑P
p=1 a

m
pkt(mk)∗p

)]
E
[
exp

(
i
∑Km
k=1 UmkI

({
amp∗k = 0

})∑P
p=1 a

m
pkt(mk)∗p

)]

=
iam

∗

p∗k∗E
[
U(mk)∗ exp

(
iU(mk)∗s(mk)∗

)]
E
[
exp

(
iU(mk)∗s(mk)∗

)] (1.23)

where the first equality follows from 3i, the second equality follows by assuming, with out loss of generality,

that am
p∗k̄

= 0, and the third equality by Assumption 3ii (mean independence). Let ϕ(mk)∗(s(mk)∗) be the

log CF of U(mk)∗ , then

am
∗

p∗k∗ϕ
′
(mk)∗(s(mk)∗) = am

∗

p∗k∗
∂ lnE

[
exp

(
iU(mk)∗s(mk)∗

)]
∂s(mk)∗

=
iam

∗

p∗k∗E
[
U(mk)∗ exp

(
iU(mk)∗s(mk)∗

)]
E
[
exp

(
iU(mk)∗s(mk)∗

)]
=
∂ϕ~Y

(
~t
)

∂tp∗

∣∣∣∣∣
(Ap∗m∗′)

+
~e(mk)∗s(mk)∗

=
iE
[
Yp∗ exp

(
is(mk)∗

~Y ′
(
Ap
∗m∗′)+ ~e(mk)∗

)]
E
[
exp

(
is(mk)∗

~Y ′ (Ap∗m∗′)
+
~e(mk)∗

)] (1.24)

where the last equality follows by substituting in Equation (1.23). By the Second Fundamental Theorem of

Calculus:

φ(mk)∗(s(mk)∗) = exp
(
ϕ(mk)∗(s(mk)∗)

)
= exp

(
ϕ(mk)∗(0) +

∫ s(mk)∗

0

ϕ′(mk)∗(u)du

)

= exp

 1

am
∗

p∗k∗

∫ s(mk)∗

0

∂ϕ~Y
(
~t
)

∂tp∗

∣∣∣∣∣
(Ap∗m∗′)

+
~e(mk)∗u

du


= exp

 1

am
∗

p∗k∗

∫ s(mk)∗

0

iE
[
Yp∗ exp

(
iu~Y ′

(
Ap
∗m∗′)+ ~e(mk)∗

)]
E
[
exp

(
iu~Y ′ (Ap∗m∗′)

+
~e(mk)∗

)] du


where the second equality follows by substituting in Equation (1.24) and ϕ(mk)∗(0) lnE[exp(0)] = 0.
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The CF of U(mk)∗ is defined by bounding:

∣∣∣∣∫ s(mk)∗

0

ϕ′(mk)∗(u)du

∣∣∣∣ =

∣∣∣∣∣
∫ s(mk)∗

0

iE
[
U(mk)∗ exp

(
iU(mk)∗u

)]
E
[
exp

(
iU(mk)∗u

)] du

∣∣∣∣∣
≤ E

[∣∣U(mk)∗
∣∣] ∫ s(mk)∗

0

1

|E
[
exp

(
iU(mk)∗u

)]
|
du

<∞

where the first inequality follows from the triangle inequality and | exp(·)| ≤ 1 and the second inequality

follows from the assumptions
s(mk)∗∫

0

∣∣∣(E [exp
(
iU(mk)∗u

)])−1
∣∣∣du <∞ and E

[∣∣U(mk)∗
∣∣] <∞.

This shows that the CF of U(mk)∗ is identified. The marginal density of U(mk)∗ is identified using the

bijection between densities and CFs by the inverse Fourier transform

f(mk)∗(u(mk)∗) =
1

2π

∫
e−is

′
(mk)∗u(mk)∗φ(mk)∗(s(mk)∗)ds(mk)∗

1.11 Appendix C

1.11.1 Proof of Lemma 1

Let g~t(
~Y ) =

∏P
p=1 Y

αp
p exp

(
i~Y ′~t

)

Pr (sup |EN [g~t]− E [g~t]| > ε)

= Pr

(
sup |EN [g~t]− E [g~t]| > ε EN

[
P∏
p=1

|Yp|αp
]
≥ κ

)
· Pr

(
EN

[
P∏
p=1

|Yp|αp
]
≥ κ

)

+ Pr

(
sup |EN [g~t]− E [g~t]| > ε EN

[
P∏
p=1

|Yp|αp
]
< κ

)
· Pr

(
EN

[
P∏
p=1

|Yp|αp
]
< κ

)

≤ Pr

(
EN

[
P∏
p=1

|Yp|αp
]
≥ κ

)
+ Pr

(
sup |EN [g~t]− E [g~t]| > ε EN

[
P∏
p=1

|Yp|αp
]
< κ

)

= A1 +A2

(i) Consider A1

Pr

(
EN

[
P∏
p=1

|Yp|αp
]
≥ κ

)
≤
V ar

(
EN

[∏P
p=1 |Yp|αp

])
κ2

≤
E
[∏P

p=1 |Yp|2αp
]

Nκ2
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where the first inequality follows by Chebyshev’s inequality.

(ii) To bound A2 I will use an argument that is similar to Pollard (1984) and Van De Geer (2006) but

instead of using Hoeffding’s inequality I use Bernstein’s inequality as in Evdokimov (2010).

Define the L1-covering number, N1(ε,Q,G), as the smallest L for which there exist functions g1 . . . , gL

such that minlEQ||g − gl|| ≤ ε for all g ∈ G (e.g. Pollard (1984)).45 I show that N1(ε,PN ,G) .(
TEN [

∏P
p=1 |Yp|

2αp ]
ε

)P
where PN is the empirical probability measure and G is the class of functions defined

as G = {g~t(~Y ) : ~t ∈ [−T, T ]P } where as before g~t(
~Y ) =

∏P
p=1 Y

αp
p exp

(
i~Y ′~t

)
exp

(
i~Y ~t′

)
, p = 1, . . . , P .46

Discretize [−T, T ]P into L =

(
4TPEN [

∏P
p=1 |Yp|

2αp ]
ε

)P
points, ~t1, . . . ,~tL, by cutting [−T, T ] in each dimen-

sion into equidistant segments of length ε
2PEN

∏P
p=1 |Yp|

2αp
. Let gl(~Y ) =

∏P
p=1 Y

αp
p exp

(
i~Y ′~t

)
exp

(
i~Y ~t′l

)
for

~t1, . . . ,~tL chosen above. For any ~t ∈ [−T, T ]P there exists an l such that

EN

∣∣∣∣∣
P∏
p=1

Y αpp exp
(
i~Y ~t′

)
−

P∏
p=1

Y αpp exp
(
i~Y ~t′l

)∣∣∣∣∣
= EN

∣∣∣∣∣
P∏
p=1

Y αpp cos
(
~Y ~t′
)

+ i

P∏
p=1

Y αpp sin
(
~Y ~t′
)
−

P∏
p=1

Y αpp cos
(
~Y ~t′l

)
− i

P∏
p=1

Y αpp sin
(
~Y ~t′l

)∣∣∣∣∣
≤ EN

∣∣∣∣∣
P∏
p=1

Y αpp cos
(
~Y ~t′
)
−

P∏
p=1

Y αpp cos
(
~Y ~t′l

)∣∣∣∣∣+ EN

∣∣∣∣∣i
P∏
p=1

Y αpp sin
(
~Y ~t′
)
− i

P∏
p=1

Y αpp sin
(
~Y ~t′l

)∣∣∣∣∣
≤ 2P max

l

{∣∣~t− ~tl∣∣} · EN [ P∏
p=1

|Yp|2αp
]

≤ ε

It follows that the L1-covering number satisfies N1(ε, PN ,G) .

(
TEN [

∏P
p=1 |Yp|

2αp ]
ε

)P
.

A2 is now bounded using a symmetrization argument (e.g. Pollard (1984)), Bernstein’s inequality, and

the L1-covering number:

Pr

(
sup |EN [g~t]− E [g~t]| > ε EN

[
P∏
p=1

|Yp|2αp
]
< κ

)

≤ 8N1 (ε/8, PN ,G) exp

(
−Nε

2

64

/(
2E

[
P∏
p=1

|Yp|2αp
]

+
2

3
εκ

))

.

(
Tκ

ε

)P
exp

(
−Nε

2

64

/(
2E

[
P∏
p=1

|Yp|2αp
]

+
2

3
εκ

))

45Q is a probability measure and G is a class of functions in L1(Q)
46ZN . aN means that there exists C > 0 such that ZN ≤ CaN .
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For N large enough the bounds for A1 and A2 imply

Pr (sup |EN [g~t]− E [g~t]| > ε) ≤ A1 +A2

.
E
[∏P

p=1 |Yp|2αp
]

Nκ2
+

(
Tκ

ε

)P
exp

(
−Nε

2

64

/(
2E

[
P∏
p=1

|Yp|2αp
]

+
2

3
εκ

))

(iii) The last step is to apply the Borel-Cantelli Lemma. Index ε, T and κ by N and let

TN = CNδ/2 0 < δ

εN = C(P,δ,E[
∏P
p=1 |Yp|

2αp ])

(
lnN

N

) 1
2

κN =
(
Nδκ lnN

) 1
2 0 < δκ < 1

where C(P,δ,E[
∏P
p=1 |Yp|

2αp ]) is a constant that may depend on the arguments in the subscript. To simplify

the notation a little denote E
[∏P

p=1 |Yp|2αp
]

by σ2 and C(P,δ,E[
∏P
p=1 |Yp|

2αp ]) by Cε. For N large enough

Pr (sup |EN [g~t]− E [g~t]| > εN )

.
σ2

Nκ2
N

+

(
TNκN
εN

)P
exp

(
−Nε

2
N

64

/(
2σ2 +

2

3
εNκN

))
=

σ2

Nκ2
N

+ exp

(
P ln

(
TNκN
εN

)
− Nε2

N

64

/(
2σ2 +

2

3
εNκN

))

≤ σ2

N1+δκ lnN
+ exp

P ln

C (NδNδκ lnN
) 1

2

Cε
(

lnN
N

) 1
2

− N
(
C2
ε

lnN
N

)
64

/(
2σ2 +

2

3
Cε

lnN

N (1−δκ)/2

)
=

σ2

N1+δM lnN
+ exp

(
P ln

(
C

Cε
N (δ+δκ+1)/2

)
− C2

ε lnN

64

/(
2σ2 +

2

3
Cε

lnN

N (1−δκ)/2

))
≤ σ2

N1+δM lnN
+ exp

(
P ln

(
C

Cε
N (δ+δκ+1)/2

)
− C2

ε lnN

128(σ2 + 1)

)
=

σ2

N1+δM lnN
+ exp

(
P ln

(
C

Cε

)
+

[
P (δ + 1)

2
− C2

ε

128(σ2 + 1)

]
lnN

)
.(P,δ,E[

∏P
p=1 |Yp|

2αp ])
σ2

N lnN
+ exp

([
P (δ + δκ + 1)

2
− C2

ε

128(σ2 + 1)

]
lnN

)
=

σ2

N1+δκ lnN
+

1

N1+β

where .(P,δ,E[
∏P
p=1 |Yp|

2αp ]) means that the constant depends on P , δ, and E
[∏P

p=1 |Yp|2αp
]

and C2
ε is chosen

so that β = −P (δ+δκ+1)
2 +

C2
ε

128(σ2+1) − 1 > 0 so that Cε depends on P , δ, δκ, and E
[∏P

p=1 |Yp|2αp
]
.
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For the above choices of εN , TN , and κN

∞∑
N=1

Pr (sup |EN [g~t]− E [g~t]| > εN ) .
∞∑
N=1

(
σ2

N1+δκ lnN
+

1

N1+β

)
<∞

The Borel-Cantelli lemma then implies that

sup |EN [g~t]− E [g~t]| ≤ εN a.s

for N large enough.

1.11.2 Proof of Theorem 4

I use Lemmas 1 and 2 and a Taylor expansion. For N large enough

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣
= sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

φ̂Yp(u~t)

φ̂~Y (u~t)
du

)
− exp

(∫ s

0

φYp(u~t)

φ~Y (u~t)
du

)∣∣∣∣∣
= sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

φYp(u~t)

φ~Y (u~t)
du

)[(∫ s

0

φ̂Yp(u~t)

φ̂~Y (u~t)
du−

∫ s

0

φYp(u~t)

φ~Y (u~t)
du

)

+o

(∫ s

0

φ̂Yp(u~t)

φ̂~Y (u~t)
du−

∫ s

0

φYp(u~t)

φ~Y (u~t)
du

)]∣∣∣∣∣
= sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

φYp(u~t)

φ~Y (u~t)
du

)[∫ s

0

1

φ~Y (u~t)

(
φ̂Yp(u~t)− φYp(u~t)

)
du

−
∫ s

0

φYp(u~t)(
φ~Y (u~t)

)2 (φ̂~Y (u~t)− φ~Y (u~t)
)

du

+o

(∣∣∣∣∣
∫ s

0

1

φ~Y (u~t)

(
φ̂Yp(u~t)− φYp(u~t)

)
du

∣∣∣∣∣+

∣∣∣∣∣
∫ s

0

φYp(u~t)(
φ~Y (u~t)

)2 (φ̂~Y (u~t)− φ~Y (u~t)
)

du

∣∣∣∣∣
)

du

]∣∣∣∣∣
. sup
s∈[−SN ,SN ]

∫ s

0

1

|φ~Y (u~t)|

∣∣∣φ̂Yp(u~t)− φYp(u~t)
∣∣∣du+ sup

s∈[−SN ,SN ]

∫ s

0

|φYp(u~t)|(
φ~Y (u~t)

)2 ∣∣∣φ̂~Y (u~t)− φ~Y (u~t)
∣∣∣du

≤ sup
s∈[−SN ,SN ]

∣∣∣φ̂Yp(u~t)− φYp(u~t)
∣∣∣ ∫ SN

−SN

∣∣∣∣∣ 1

φ~Y (u~t)

∣∣∣∣∣ du+ sup
s∈[−SN ,SN ]

∣∣∣φ̂~Y (u~t)− φ~Y (u~t)
∣∣∣ ∫ SN

−SN

|φYp(u~t)|(
φ~Y (u~t)

)2 du

. εNE [|Yp|]
∫ SN

−SN

1(
φ~Y (u~t)

)2 du

where the second equality uses the Taylor expansion ex = ex0 + ex0(x−x0) + ex0o|x−x0|, the third equality

uses the Taylor expansion x
y = x0

y0
+ 1

y0
(x − x0) − x0

y20
(y − y0) + o

(
| 1
y0

(x− x0)|+ |x0

y20
(y − y0)|

)
, the first .

by the triangle inequality,
∣∣∣exp

(∫ s
0

φYp (u~t)

φ~Y (u~t)
du
)∣∣∣ ≤ 1 because it is a CF, and the implications of the little-o
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notion, and the last inequality from Lemma 1.47

As before, use Lemmas 1 and 2 and a Taylor expansion. For N large enough

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣
= sup
s∈[−SN ,SN ]

∣∣∣∣∣∣∣exp

∫ s

0

∫ v

0

φ̂Yp1 (u~t)φ̂Yp2 (u~t)(
φ̂~Y (u~t)

)2 −
φ̂Yp1Yp2 (u~t)

φ̂~Y (u~t)
dudv


− exp

(∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

)∣∣∣∣∣
= sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

)
×∫ s

0

∫ v

0

φ̂Yp1 (u~t)φ̂Yp2 (u~t)(
φ̂~Y (u~t)

)2 −
φ̂Yp1Yp2 (u~t)

φ̂~Y (u~t)
dudv −

∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

+o


∣∣∣∣∣∣∣
∫ s

0

∫ v

0

φ̂Yp1 (u~t)φ̂Yp2 (u~t)(
φ̂~Y (u~t)

)2 −
φ̂Yp1Yp2 (u~t)

φ̂~Y (u~t)
dudv

∣∣∣∣∣∣∣+

∣∣∣∣∣
∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

∣∣∣∣∣


∣∣∣∣∣∣∣

= sup
s∈[−SN ,SN ]

∣∣∣∣∣exp

(∫ s

0

∫ v

0

φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)2 −
φYp1Yp2 (u~t)

φ~Y (u~t)
dudv

)

×

[∫ s

0

∫ v

0

φYp2 (u~t)(
φ~Y (u~t)

)2 (φ̂Yp1 (u~t)− φYp1 (u~t)
)

dudv +

∫ s

0

∫ v

0

φYp1 (u~t)(
φ~Y (u~t)

)2 (φ̂Yp2 (u~t)− φYp2 (u~t)
)

dudv

−
∫ s

0

∫ v

0

1

φ~Y (u~t)

(
φ̂Yp1Yp2 (u~t)− φYp1Yp2 (u~t)

)
dudv

+

∫ s

0

∫ v

0

(
φYp1Yp2 (u~t)(
φ~Y (u~t)

)2 − 2φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)3
)(

φ̂~Y (u~t)− φ~Y (u~t)
)

dudv

+ o

(∣∣∣∣∣
∫ s

0

∫ v

0

φYp2 (u~t)(
φ~Y (u~t)

)2 (φ̂Yp1 (u~t)− φYp1 (u~t)
)

dudv

∣∣∣∣∣+

∣∣∣∣∣
∫ s

0

∫ v

0

φYp1 (u~t)(
φ~Y (u~t)

)2 (φ̂Yp2 (u~t)− φYp2 (u~t)
)

dudv

∣∣∣∣∣
+

∣∣∣∣∣
∫ s

0

∫ v

0

1

φ~Y (u~t)

(
φ̂Yp1Yp2 (u~t)− φYp1Yp2 (u~t)

)
dudv

∣∣∣∣∣
+

∣∣∣∣∣
∫ s

0

∫ v

0

(
φYp1Yp2 (u~t)(
φ~Y (u~t)

)2 − 2φYp1 (u~t)φYp2 (u~t)(
φ~Y (u~t)

)3
)(

φ̂~Y (u~t)− φ~Y (u~t)
)

dudv

∣∣∣∣∣
)]∣∣∣∣∣

. sup
s∈[−SN ,SN ]

[∫ s

0

∫ v

0

∣∣φYp2 (u~t)
∣∣∣∣φ~Y (u~t)
∣∣2
∣∣∣φ̂Yp1 (u~t)− φYp1 (u~t)

∣∣∣dudv +

∫ s

0

∫ v

0

∣∣φYp1 (u~t)
∣∣∣∣φ~Y (u~t)
∣∣2
∣∣∣φ̂Yp2 (u~t)− φYp2 (u~t)

∣∣∣dudv

+

∫ s

0

∫ v

0

1∣∣φ~Y (u~t)
∣∣ ∣∣∣φ̂Yp1Yp2 (u~t)− φYp1Yp2 (u~t)

∣∣∣ dudv

47dN = o(eN ) is Little-o notation and means that for every δ > 0 there exists N large enough so that
dn ≤ δen for all n > N .
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+

∫ s

0

∫ v

0

(∣∣φYp1Yp2 (u~t)
∣∣∣∣φ~Y (u~t)

∣∣2 +

∣∣φYp1 (u~t)
∣∣ ∣∣φYp2 (u~t)

∣∣∣∣φ~Y (u~t)
∣∣3

)∣∣∣φ̂~Y (u~t)− φ~Y (u~t)
∣∣∣dudv

]

≤ εN

(∫ SN

−SN

∫ v

0

∣∣φYp2 (u~t)
∣∣∣∣φ~Y (u~t)
∣∣2 dudv +

∫ SN

−SN

∫ v

0

∣∣φYp1 (u~t)
∣∣∣∣φ~Y (u~t)
∣∣2 dudv +

∫ SN

−SN

∫ v

0

1∣∣φ~Y (u~t)
∣∣dudv

+

∫ SN

−SN

∫ v

0

(∣∣φYp1Yp2 (u~t)
∣∣∣∣φ~Y (u~t)

∣∣2 +

∣∣φYp1 (u~t)
∣∣ ∣∣φYp2 (u~t)

∣∣∣∣φ~Y (u~t)
∣∣3

)
dudv

)

. εN (E [|Yp1 |] + E [|Yp2 |] + E [|Yp1Yp2 |])
∫ SN

−SN

∫ v

0

1∣∣φ~Y (u~t)
∣∣3 dudv

where the second equality uses the Taylor expansion ex = ex0 + ex0(x−x0) +ex0o(x−x0), the third equality

uses the Taylor expansion x
y = x0

y0
+ 1

y0
(x − x0) − x0

y20
(y − y0) + o

(
| 1
y0

(x− x0)|+ |x0

y20
(y − y0)|

)
, the first .

by the triangle inequality,

∣∣∣∣exp

(∫ s
0

∫ v
0

φYp1
(u~t)φYp2

(u~t)

(φ~Y (u~t))
2 − φYp1Yp2

(u~t)

φ~Y (u~t)
dudv

)∣∣∣∣ ≤ 1 because it is a CF, and the

implications of the little-o notion, and the inequality from Lemma 1.

1.11.3 Proof of Theorem 5

For all u in the support of Um∗ and for N large enough

∣∣∣f̂m∗(u)− fm∗(u)
∣∣∣

=

∣∣∣∣ 1

2π

∫
e−isuφ̂m∗(s)φK (shN ) ds− 1

2π

∫
e−isuφm∗(s)ds

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
e−isu

(
φ̂m∗(s)φK(shN )− φm∗(s)φK(shN ) + φm∗(s)φK(shN )− φm∗(s)

)
ds

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
e−isuφK(shN )

(
φ̂m∗(s)− φm∗(s)

)
ds+

1

2π

∫
e−isuφm∗(s) (φK(shN )− 1) ds

∣∣∣∣
≤ 1

2π

∫
|φK(shN )|

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣+
1

2π

∫
|φm∗(s)| |φK(shN )− 1|ds

≤ 1

2π

∫ SN

−SN

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣ds+
1

2π

∫ SN

−SN
|φm∗(s)| |m(shN ) (shN )

q|ds

+
1

2π

∫ ∞
SN

|φm∗(s)|ds+
1

2π

∫ −SN
−∞

|φm∗(s)|ds

. SN sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)∣∣∣+ sup
s∈[−1,1]

|m(s)|hqN
∫ SN

−SN
|φm∗(s)||s|qds

+

∫ −SN
−∞

|φm∗(s)|ds+

∫ ∞
SN

|φm∗(s)|ds

where the second inequality follows because |φK(s)| < 1, φK(s) = 1 +m(s)sq for s ∈ [−1, 1] and φK(s) = 0

otherwise and m(s) is continuous for s ∈ [−1, 1].
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Figure 1.1: Experiment 1: X∗ ∼ Normal(0, 1), ε1 ∼ Normal(0, 1), ε2 ∼ Normal(0, 1) with
N = 100
The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.2: Experiment 2: X∗ ∼ Gamma(5, 1), ε1 ∼ Normal(0, 1), ε2 ∼ Normal(0, 1) with
N = 100
The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.3: Experiment 3: X∗ ∼ 1
2
N(−2, 1) + 1

2
N(2, 1) (Bimodal), ε1 ∼ Normal(0, 1), ε2 ∼

Normal(0, 1) with N = 100
The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.4: Experiment 4: X∗ ∼Unif(0, 1), ε1 ≡ 0, ε2 ≡ 0 with N = 100
The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Figure 1.5: Experiment 5: X∗ ∼ Normal(0, 1) (X∗ and ε1 dependent), ε1 ∼ Normal(0, x∗2),
ε2 ∼ Normal(0, 1) with N = 100
The left column is the real part of the characteristic function, the middle column is the
imaginary part of the characteristic function and the right column is the density. The first
through third rows are estimators A though C, respectively.
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Table 1.1: Comparing Estimators in Measurement Error Model With a Repeated Measurement

with N=100

Experiment Estimator A Estimator B Estimator C

Norm(0,1) MISE 0.0429 0.0672 0.0391
Gamma(5,1) MISE 0.2104 0.0393 >1,000
Bimodal MISE 0.0326 0.0324 >1,000
Norm(0,1) (Depend) MISE 0.0404 0.0348 >1,000
Unif(0,1) MISE 0.0292 0.0300 0.0195

Table 1.2: Comparing Estimators: Measurement Error Model With a Repeated Measurement with

N=1,000

Experiment Estimator A Estimator B Estimator C

Norm(0,1) MISE 0.0066 0.0071 0.0025
Gamma(5,1) MISE 0.0365 0.0048 >1,000
Bimodal MISE 0.0124 0.0024 >1,000
Norm(0,1) (Depend) MISE 6.3110 0.0201 >1,000
Unif(0,1) MISE 0.0039 0.0155 0.0058

Table 1.3: Comparing Estimators: Measurement Error Model With a Repeated Measurement with

N=10,000

Experiment Estimator A Estimator B Estimator C

Norm(0,1) MISE 0.0008 0.0007 0.0004
Gamma(5,1) MISE 0.0127 0.0007 >1,000
Bimodal MISE 13.9634 0.0003 >1,000
Norm(0,1) (Depend) MISE >1,000 0.0187 >1,000
Unif(0,1) MISE 0.0005 0.0148 0.0044
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Chapter 2

Identification and Estimation for

Regressions with Errors in All

Variables

2.1 Introduction

In this paper I study identification of the coefficients, β1, . . . , βM , in the linear regression

model with measurement error in all the variables

Y = β0 + β1X
∗
1 + . . .+ βMX

∗
M + ε

Xm = X∗m + Um m = 1, . . . ,M
(2.1)

where Y is an observed outcome, Xm is an observed measurement of the unobserved ex-

planatory variable X∗m, and ε and Um are measurement errors.

Estimation techniques that ignore the measurement errors in the explanatory variables,

such as Ordinary Least Squares, lead to biased estimates of the coefficients. Solutions in the

literature have focused on using additional information such as repeated measurements (Li

and Vuong (1998), Schennach (2004a)), instrumental variables (Hausman, Ichimura, Newey,
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and Powell (1991), Carroll and Stefanski (1996)), signal-to-noise ratio (Fuller (1986)), known

measurement error distributions (Hu and Ridder (2012)) validation data (Chen, Hong, and

Tamer (2005)), or bounding the coefficients (Klepper and Leamer (1984)).

I develop a new method that identifies the coefficients under an assumption about a char-

acteristic function (CF) that is testable in the data.1 This method uses a CF transformation

of the data, which contains more information than the moments of the observed variables.

The main idea is to view the partial derivatives of a log CF as a moment adjusted by a direc-

tion. Thus, instead of the moment E[Y X1] I use E[Y X1e
is0Y+is1X1 ], where (s0Y + s1X1) is

the direction of the moment. The coefficients are identified by minimizing a distance between

two of these partial derivatives evaluated at two different choices of (s0, s1).

I show how to use this method to identify the coefficients in the Errors-in-Variables

model from Equation (2.1) without additional information, the parameter in a moving-

average process in a panel data with only two time periods and without restricting shocks to

have equal variance, and the coefficients in a simultaneous equations model from Hausman

and Taylor (1983) without restricting one of the error terms to be mean independent. I then

extend the methods to identification of coefficients in a system of linear equations in which

only some of the coefficients on the unobserved variables are known.

The estimator is in the class of Extremum estimators. I show that the estimator is

consistent and derive its asymptotic distribution. In finite sample simulations of the Errors-

in-Variables model in Equation (2.1), the estimates have small variances and are close to the

values of the underlying coefficients.

This paper is organized as follows. Section 2.2 proves identification in the Errors-in-

Variables model. Section 2.3 proves identification in a moving-average process of order 1.

Section 2.4 proves identification in a simultaneous equations model. Section 2.5 presents

identification in the general setup. Section 2.6 presents the asymptotic results. Section

2.7 presents Monte Carlo simulations. Section 2.8 concludes. Appendix A contains the

1Consistent with Klepper and Leamer (1984) and Schennach and Hu (2007), the assumption fails when
the unobserved variables are jointly normal.
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identification proofs and Appendix B contains proofs of the asymptotic results.

2.2 Errors-in-Variables Model

In this section I identify the coefficients in the Errors-in-Variables model

Y = β0 + β1X
∗
1 + . . .+ βMX

∗
M + ε

Xm = X∗m + Um m = 1, . . . ,M

where (Y,X1, . . . , XM) is an observed random vector, (X∗1 , . . . , X
∗
M , U1, . . . , UM , ε) is an un-

observed mutually independent random vector, and (β0, . . . , βM) are unknown nonzero co-

efficients.

Assumption 4. There exists U ⊆ R with nonzero Lebesgue measure such that for all u ∈ U

and all b 6= βm

ϕ′′m(bu) 6= ϕ′′m(βmu)

where

ϕ′′m(u) =
∂2 lnE [exp (iuX∗m)]

∂u2

=

(
E [X∗m exp (iuX∗m)]

E [exp (iuX∗m)]

)2

−
E
[
(X∗m)2 exp (iuX∗m)

]
E [exp (iuX∗m)]

is the second derivative of the log CF of X∗m.

Theorem 6. If ϕ′′m(βmu) < ∞ for all u ∈ U and βm 6= 0, then βm is identified when

Assumption 1 holds and is the unique solution to

βm = argmin
b∈R

∫
U

 ∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(0,...,0,bu,0,...,0)

−
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(u,0,...,0)

2

w(u)du
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where w(u) is a weight function that satisfies
∫
U w(u)du = 1 and

∂2ϕY, ~X(~s)

∂s0∂sm
=
∂2 lnE [exp (is0Y + is1X1 + . . .+ isMXM )]

∂s0∂sm

=
E
[
Y eis0Y+is1X1+...+isMXM

]
E
[
Xme

is0Y+is1X1+...+isMXM
]

(E [eis0Y+is1X1+...+isMXM ])
2 −

E
[
Y Xme

is0Y+is1X1+...+isMXM
]

E [eis0Y+is1X1+...+isMXM ]

is the second-order partial derivative of the log CF of (Y,X1, . . . , XM) with respect to s0 and

sm.

The main insight in this paper is that for all u ∈ R

∂2 lnE [exp (iuβmX
∗
m)]

∂u2
=
∂2 lnE [exp (is0Y + ismXm)]

∂s0∂sm

∣∣∣∣
(s0,sm)=(0,βmu)

=
∂2 lnE [exp (is0Y + ismXm)]

∂s0∂sm

∣∣∣∣
(s0,sm)=(u,0)

(2.2)

This has two important implications: First, ∂2 lnE [exp (iuβmX
∗
m)]/∂u2 is expressed in terms

of observables. Second, ∂2 lnE [exp (is0Y + ismXm)]/∂s0∂sm is the same when evaluated in

the two directions: (1) (s0, sm) = (0, βmu) and (2) (s0, sm) = (u, 0).

Remark 11. If ϕ′′m (u) = a for all u ∈ R then Assumption 4 fails (and Equation (2.2) equals

a constant) because ϕ′′m(bu) = ϕ′′m(βmu) for all b ∈ R.

ϕ′′m (u) = a ⇒ E [exp (iuXm)] = exp(au2 + bu+ c)

Let a = −σ2/2, b = iµ and c = 0, then E [exp (iuXm)] = exp(iµu − σ2u2/2) is the CF of

a Normal distribution with mean µ and variance σ2. Let a = 0, b = iµ, and c = 0, then

E [exp (iuXm)] = exp(iµu) is the CF of a Degenerate distribution with mass at µ.

This is consistent with Klepper and Leamer (1984) and Schennach and Hu (2007) who

show that coefficients are not identified when unobservables are jointly normal.

While Assumption 4 fails when X∗m is normal or has a point mass, it is satisfied, for
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example, when X∗m is Gamma(5,1), Uniform(0,1) or Laplace(0,1) (see Figure 2.1).2

Assumption 8 in the Estimation and Asymptotics section is an alternative to Assumption

4 that can be checked in the data.

Remark 12. The unobserved covariates X∗m can be identified using Bonhomme and Robin

(2010) or Ben-Moshe (2012a).

Remark 13. Let M = 1 and relabel the variables so that the model is

W1 = βW ∗ + U1

W2 = W ∗ + U2

which is a measurement error model with repeated measurements without the assumption that

β is known.

2.3 Moving-Average Process of Order 1

In this section I identify the parameter θ in the moving-average model

Y1 = ε1 − θε0

Y2 = ε2 − θε1

where (Y1, Y2) is an observed random vector, ε0, ε1, and ε2 are unobserved mutually inde-

pendent random variables, and θ is an unknown nonzero coefficient.3

2When X∗m is Laplace(0,1) then Assumption 4 is modified to ϕ′′′m(bu) 6= ϕ′′′m(βmu) and Theorem 6
minimizes a third-order partial derivative (see Section 2.5 for details).

3A common way to identify θ is by the system of second-order moments

E[Y 2
1 ] = E[ε2

1] + θ2E[ε2
0]

E[Y1Y2] = −θE[ε2
1]

E[Y 2
2 ] = E[ε2

2] + θ2E[ε2
1]

which does not work without an additional assumption about the variances of the unobserved variables and
/ or T > 2.

79



Assumption 5. There exists U ⊆ R with nonzero Lebesgue measure such that for all u ∈ U

and all b 6= θ

ϕ′′ε1(bu) 6= ϕ′′ε1(θu)

where

ϕ′′ε1(u) =
∂2 lnE [exp (iuε1)]

∂u2

=

(
E [ε1 exp (iuε1)]

E [exp (iuε1)]

)2

− E [ε1
2 exp (iuε1)]

E [exp (iuε1)]

is the second derivative of the log CF of ε1.

Theorem 7. If ϕ′′ε1(θu) <∞ for all u ∈ U and θ 6= 0, then θ is identified when Assumption

2 holds and is the unique solution to

θ = argmin
b∈R

∫
U

(
∂2ϕY1,Y2 (s1, s2)

∂s1∂s2

∣∣∣∣
(bu,0)

− ∂2ϕY1,Y2 (s1, s2)

∂s1∂s2

∣∣∣∣
(0,u)

)2

w(u)du

where w(u) is a weight function that satisfies
∫
U w(u)du = 1 and

∂2ϕY1,Y2(s1, s2)

∂s1∂s2
=
∂2 lnE [exp (is1Y1 + is2Y2)]

∂s1∂s2

=
E
[
Y1e

is1Y1+is2Y2
]
E
[
Y2e

is1Y1+is2Y2
]

(E [eis1Y1+is2Y2 ])2
−
E
[
Y1Y2e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

is the second-order partial derivative of the log CF of (Y1, Y2) with respect to s1 and s2.

Remark 14. The distributions of ε1 and ε2 can be estimated using Bonhomme and Robin

(2010) or Ben-Moshe (2012a).

Remark 15. The techniques can also be applied to a times-series with the additional as-

sumption εt
d
= εt−2.

80



Remark 16. The same techniques can be used to identify γm and θm in a moving-average

process of order (p,q)

Yt = c+ εt +

p∑
m=1

γmYt−m +

q∑
m=1

θmεt−m

See Ben-Moshe (2012b) for identification in an Autoregressive Process of order 1.

2.4 Simultaneous Equations Model

Consider the simultaneous equations model in Hausman and Taylor (1983)

Y1 = δ1Y2 + β1X + ε1

Y2 = δ2Y1 + ε2

where (Y1, Y2, X) is an observed random vector and ε0 and ε1 are unobserved random vari-

ables. Hausman and Taylor (1983) identify the coefficients δ1, δ2, and β1 under the as-

sumptions E [Xε1] = 0, E [Xε2] = 0, and E [ε1ε2] = 0. I allow ε1 and X to be arbitrarily

dependent, I assume E [Xε2] = 0, and I assume ε1 and ε2 are mutually independent condi-

tional on the scalar X.

Assumption 6. There exists U ⊆ R with nonzero Lebesgue measure such that for all u ∈ U

and all b 6= δ1

ϕ′′ε2

(
bu

1− δ1δ2

)
6= ϕ′′ε2

(
δ1u

1− δ1δ2

)
where

ϕ′′ε2(u) =
∂2 lnE [exp (iuε2)]

∂u2

=

(
E [ε2 exp (iuε2)]

E [exp (iuε2)]

)2

−
E
[
(ε2)

2 exp (iuε2)
]

E [exp (iuε2)]

is the second derivative of the log CF of ε2.
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Theorem 8. If E[XY1] 6= 0, then δ2 is identified. Furthermore, if ϕ′′2(θbu) < ∞ for all

u ∈ U , δ1δ2 6= 1, and δ1 6= 0, then δ1 is identified when Assumption 2 holds and is the unique

solution to

θ = argmin
b∈R

∫
U

δ2 · ∂ϕ2
Y1,Y2|X(s1, s2)

∂s21

∣∣∣∣∣
(u,0)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(u,0)


−

δ2 · ∂ϕ2
Y1,Y2|X(s1, s2)

∂s21

∣∣∣∣∣
(0,bu)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(0,bu)

2

w(u)du

where w(u) is a weight function that satisfies
∫
U w(u)du = 1 and

∂2ϕY1,Y2(s1, s2)

∂s1∂s2
=
∂2 lnE [exp (is1Y1 + is2Y2)]

∂s1∂s2

=
E
[
Y1e

is1Y1+is2Y2
]
E
[
Y2e

is1Y1+is2Y2
]

(E [eis1Y1+is2Y2 ])2
−
E
[
Y1Y2e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

∂2ϕY1,Y2(s1, s2)

∂s21
=
∂2 lnE [exp (is1Y1 + is2Y2)]

∂s21

=

(
E
[
Y1e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

)2

−
E
[
Y 2
1 e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

is the second-order partial derivative of the log CF of (Y1, Y2) with respect to s1 and s2.

Furthermore, if E[ε1] = 0 and E[X] 6= 0, then β1 is identified.

Remark 17. Identification of δ1 and δ2 is still possible when β1 is a random coefficient.

2.5 Identification in the General Setup

Let Um ∈ R, m = 1, . . . ,M be unobserved mutually independent random variables, let

A be a TA×M matrix of nonzero known coefficients, let B be a TB ×M matrix of unknown
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nonzero coefficients, and consider the observed vector Y ∈ RTA+TB such that



Y1
...

YTA

YTA+1

...

YTA+TB


=



a11 . . . a1M
...

. . .
...

aTA1 . . . aTAM

b11 . . . b1M
...

. . .
...

bTB1 . . . bTBM




U1

...

UM



which can be represented as Y =

 A

B

U .4

Define the matrix AD by

AD =


∏TA

t=1 a
α1
t
t1 . . .

∏TA
t=1 a

α1
t
tM

...
. . .

...∏TA
t=1 a

αRt
t1 . . .

∏TA
t=1 a

αRt
tM


where D is a nonnegative integer and (αr1, . . . , α

r
TA

) is a vector of nonnegative integers such

that D = αr1 + . . . + αrTA for r = 1, . . . , R and (αr1, . . . , α
r
TA

) 6= (αr
′

1 , . . . , α
r′
TA

) for r 6= r′.

The matrix AD contains all products of entries in the same column of A with the restriction

that the sum of the exponents is exactly equal to D. The matrix AD has dimension R = D + TA − 1

D

×M .

Assumption 7. There exists a positive integer D and a subset U ⊂ R of nonzero Lebesgue

measure such that

i. Rank
(
AD
)

= M

4The assumptions that entries are nonzero and that known coefficients can be separated from unknown
coefficients, into matrices A and B respectively, are done for clarity. The proof is similar if for every btm
that is unknown, and is to be identified, there is at least one coefficient in the mth column that is known
and nonzero. The proof fails when an a coefficient is unknown and equal to 0.
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ii. For all u ∈ U and all b 6= bt∗m,

ϕD+TB
m (bu) 6= ϕD+TB

m (bt∗mu)

where ϕjm(u) = ∂jE [exp(iUmu)]/∂uj is the jth derivative of ϕm.5

Theorem 9. If
∫
R

(
ϕD+TB
m (bt∗mu)

)2
w(u)du <∞ and bt∗m 6= 0, then the unknown coefficient

bt∗m is identified when Assumption 7 holds. The unknown coefficient satisfies

bt∗m = argmin
b∈R

∫
U

 R∑
r=1

aD+
mr

 ∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bu~smA ,

~0)

−
∂ϕD+TB

~Y
(~s)∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

2

w(u)du

where ∂ϕD+TB
~Y

(~s)/
∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t is a partial derivative of ϕ~Y (~s) = lnE[exp(i~Y ′~s)],

{aD+
mr }m,r are the entries in (AD)+, the Moore-Penrose pseudoinverse of AD, ~em =

(0, . . . , 1, 0, . . . , 0) with 1 in the mth coordinate, and w(u) is a weight function that satis-

fies
∫
U w(u)du = 1.6

The proof sets up a system of equations of all D + TB-order partial derivatives of

lnE[exp(i~Y ′~s)]. In parametric settings this is analogous to setting up a system of equa-

tions of all D + TB-order moments (i.e. all moments of the form E
[∏TA

t=1 Y
αrt
t

∏TB
t=1 YTA+t

]
where

∑TA
t=1 α

r
t = D). By Assumption 7i this system can be inverted to solve for ϕD+TB

m .

5Identification is also possible under the weaker condition: For some nonzero ū ∈ R and all b 6= bt∗m

ϕD+TB
m (bū) 6= ϕD+TB

m (bt∗mū)

but for estimation this is harder to use.
6Instead of the L2 norm in Theorem 3 other measures of distance can be used.
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This implies that

ϕD+TB
m (·) = linear combination of observed partial derivatives of lnE[exp(i~Y ′~s)]

Two different choices of directions: (1) (~sA, ~sB) = (bu~smA ,~0) and (2) (~sA, ~sB) = (~0, u~em)

correspond to different choices of linear combinations of Y1, . . . , YTA+TB . By Assumption 7ii

TB∏
t=1

btmϕ
D+TB(bt∗mu) =

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bu~smA ,

~0)

=
∂ϕD+TB

~Y
(~s)∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

for all u ∈ R if and only if b = bt∗m.

Remark 18. If (1) ϕD+TB
m (u) = a for a ∈ R then Assumption 7ii fails for all b ∈ R and if

(2) ϕD+TB
m (u) = ϕD+TB

m (au) for a ∈ R then Assumption 7ii fails for all b = aKbt∗m where K

is an integer.

Remark 19. Assumption 7ii can be modified as follows: Let D = 1, 2, . . . and assume that

for u ∈ UD ⊂ R

ϕD+TB
m (bu) = ϕD+TB

m (bt∗mu)

if only if b ∈ BD. Then bt∗m ∈ ∩DBD. Assumption 8 in the next section can be used to

check which of these conditions holds in the data and once this is established different D’s

can be used simultaneously to make estimators more robust, test the validity of an estimator,

or tighten a partially identified set.

Remark 20. Theorem 9 can be modified to allow for subsets of unobservables to be sta-

tistically dependent. This somewhat complicates the proof because dependent unobservables

cannot be separated into different CFs that are added together. Ben-Moshe (2012a) solves
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this problem by keeping dependent unobservables in a single multidimensional CF and in-

cluding another rank condition on the matrices of coefficients of dependent unobservables. A

similar approach is possible here.

2.6 Estimation and Asymptotics

In this section I show that an estimator of βm in the Errors-in-Variables model considered

in Section 2.2 is consistent and asymptotically normal. Deriving the asymptotic properties

of estimators of coefficients in the general setup in Section 2.5 is similar but more tedious. I

also show that Assumption 4 can be checked using the data.

Let {Yn, Xn1, . . . , XnM}Nn=1 denote independent identically distributed observations of

the random vector (Y,X1, . . . , XM) ∈ RM+1 and let βm ∈ B ⊂ R denote the parameter of

interest. Let

Q̂N (b) =

∫
U

[(
EN

[
Y eibuXm

]
EN

[
Xme

ibuXm
]

(EN [eibuXm ])
2 −

EN
[
Y Xme

ibuXm
]

EN [eibuXm ]

)

−

(
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eiuY ])
2 −

EN
[
Y Xme

iuY
]

EN [eiuY ]

)]2

w(u)du

where w(u) is a positive bounded weight function that satisfies
∫
U w(u)du = 1, U is compact,

and

EN
[
Y αXγ

me
is0Y+ismXm

]
=

1

N

N∑
n=1

Y α
n X

γ
nme

is0Yn+ismXnm α, γ ∈ {0, 1, 2, . . .}

is the sample analog of the population quantity E
[
Y αXγ

me
is0Y+ismXm

]
.

The Extremum estimator I consider is defined as

β̂m = argmin
b∈B

Q̂N(b)

Its consistency and asymptotic normality are proved by checking the conditions listed by

Newey and McFadden (1994):
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Condition 1. (Consistency)

(i) Q0(b) is uniquely minimized at b = βm where

Q0(b) =

∫
U

[(
E
[
Y eibuXm

]
E
[
Xme

ibuXm
]

(E [eibuXm ])2
−
E
[
Y Xme

ibuXm
]

E [eibuXm ]

)

−

(
E
[
Y eiuY

]
E
[
Xme

iuY
]

(E [eiuY ])2
−
E
[
Y Xme

iuY
]

E [eiuY ]

)]2
w(u)du

(ii) βm ∈ B where B ⊂ R is a compact set

(iii) Q0(b) is continuous

(iv) QN(b) converges uniformly in probability to Q0(b)

Theorem 10. (Consistency) Assume E [Y 2] < ∞, E [X2
m] < ∞, E [(Y Xm)2] < ∞,∫

U

∣∣E [eiuY ]∣∣−5w(u)du < ∞,
∫
U

∣∣E [eibuXm]∣∣−5w(u)du < ∞ for all b ∈ B, Assumption 4

holds, and (U ,B) ⊂ R2 is compact, then β̂m
p→ βm.

Assumption 4 is assumed to hold. Then by Theorem 6 Q0(b) = 0 if and only if b = βm.

Hence, condition 1(i) is satisfied. Condition 1(ii) is assumed to hold. Condition 1(iii) is

satisfied because of the bounds on the moments so that Q0(b) <∞ and continuity is checked.

Condition 1(iv) is shown to hold in the Appendix by linearization through a Taylor series

expansion.

Condition 2. (Asymptotic Normality) Suppose β̂m
p→ βm and

(i) βm is an interior point of B

(ii) Q̂N(b) is twice continuously differentiable in a neighborhood of βm
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(iii)
√
NQ′N(βm)

d→ N(0,Ω(βm))

(iv) Hn(b) := Q′′N(b) converges uniformly in probability to H0(b) and H0(βm) is nonsingular

Theorem 11. (Asymptotic Normality) Assume E[Y 2] < ∞, E[X6
m] < ∞,

E[(Y X3
m)2] < ∞,

∫
U u|E[eiuY ]|−4|E[eiβmuXm ]|−3w(u)du < ∞,

∫
U u|E[eiβmuXm ]|−7w(u)du <

∞,
∫
U u

2|E[eiuY ]|−2|E[eibuXm ]|−4w(u)du < ∞,
∫
U u

2|E[eibuXm ]|−6w(u)du < ∞ for all

b ∈ B, Assumption 4 holds, and (U ,B) ⊂ R2 is compact, then
√
N(β̂m − βm)

d→
N(0, (H0(βm))−2Ω(βm)) where

Ω(βm) = O

(∫
U

∫
U
uv
[
Cov

(
Y eiβmuXm , Y eiβmvXm

)
+ . . .+ Cov

(
eiuY , eivY

)]
w(u)w(v)dudv

)

and7

H0(βm) := −2

∫
U
u2

(
2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])2
+
E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]

(E [eiβmuXm ])2

−
2E
[
Y eiβmuXm

] (
E
[
Xme

iβmuXm
])2

(E [eiβmuXm ])3
−
E
[
Y X2

me
iβmuXm

]
(E [eiβmuXm ])2

)2

w(u)du

β̂m
p→ βm because the conditions for Theorem 10 hold. Condition 2(i) is assumed to

hold. Condition 2(ii) is satisfied because of the bounds on the moments so that Q′′0(b) <∞

and continuity is checked. Condition 2(iii) is shown to hold in the Appendix by linearization

through a Taylor series expansion. The linear terms satisfy the central limit theorem while

higher order terms are negligible. Condition 2(iv) is proved in a similar way to condition

1(iv).

This estimation procedure only works as long as Assumption 4 holds. Assumption 4

places a condition on an unobserved variable so consider instead the following alternative

assumption whose validity can be checked in the data.

Assumption 8. There exist compact sets Ũ ⊂ R and B ⊂ R such that for all u ∈ Ũ and

7ZN = O (aN ) is Big-O notation and means that there exists C > 0 such that ZN ≤ CaN .
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b ∈ B
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(u,0,...,0)

6=
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(bu,0,...,0)

Assumption 8 checks that the function ∂2ϕY, ~X(~s)/∂s0∂sm is not constant or log periodic.

Assumption 8 implies Assumption 4 as follows:

∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(u,0,...,0)

6=
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(bu,0,...,0)

∀u ∈ Ũ , b ∈ B

⇒ βmϕ
′′
m (βmu) 6= βmϕ

′′
m (βmbu) ∀u ∈ Ũ , b ∈ B

⇒ βmϕ
′′
m (βmu) 6= βmϕ

′′
m (bu) ∀u ∈ U , b ∈ B

where the first “⇒” follows from Equation (2.2) and the last “⇒” by letting βmŨ = U .

2.7 Monte Carlo Simulations: Errors-in-Variables

This section presents a Monte Carlo study on the finite sample properties of estimators

of β1 in the Errors-in-Variables model

Y = β0 + β1X
∗
1 + β2X

∗
2 + β3X

∗
3 + ε

Xm = X∗m + Um m = 1, 2, 3

where (Y,X1, X2, X3) is observed, (X∗1 , X
∗
2 , X

∗
3 , U1, U2, U3, ε) is an unobserved mutually inde-

pendent random vector, and (β0, β1, β2, β3) are unknown coefficients. The random variables

ε and Um, m = 1, 2, 3 are i.i.d N(1, 1).

The data is generated using the following four configurations
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Experiment
(
fX∗1 , fX∗2 , fX∗3

)
(β0, β1, β2, β3)

i χ2
2, Unif(0,1), Unif(0,1) (3, 2, 1,−1)

ii exp(1), Unif(0,1), Norm(1,1) (3, 2,−1,−1)

iii Gamma(5,1), exp(1), Poiss(1) (3,−2, 1, 1)

iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,−2,−1, 1)

I estimate β̂1 as the solution to

β̂1 = argmin
b∈[−4,4]

∫
[−0.3,0.3]

[(
E
[
Y eibuX1

]
E
[
Xme

ibuX1
]

(E [eibuX1 ])
2 −

E
[
Y Xme

ibuX1
]

E [eibuX1 ]

)

−

(
E
[
Y eiuY

]
E
[
X1e

iuY
]

(E [eiuY ])
2 −

E
[
Y X1e

iuY
]

E [eiuY ]

)]2

w(u)du

I generate 100 simulations of sample size N = 100, N = 1, 000 and N = 10, 000. The

x-axis is divided into 100 equidistant grid points. The results are summarized in Tables 2.1,

2.2, and 2.3. The estimates of β̂1 are close to β1 in all the experiments.

Figure 2.2 shows that Assumption 8 is satisfied by plotting ∂2ϕY, ~X(~s)/∂s0∂sm, and

β1ϕ
′′
X∗1

(β1u) for a Gamma(5,1) distribution using the configuration in Experiment iv with

N = 100.

2.8 Conclusion

I minimize the distance between partial derivatives of log CFs in two different directions

to identify the coefficients of the matrix B in the system of linear equations

~Y =

 A

B

 ~U
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where ~Y ∈ RTA+TB is an observed random vector, ~U ∈ RM is an unobserved random vector,

A is a TA×M matrix of known coefficients, and B is a TB×M matrix of unknown coefficients.

I show how to use the identification strategy in three models:

i. Errors-in-Variables model:

Y = β0 + β1X
∗
1 + . . .+ βMX

∗
M + ε

Xm = X∗m + Um m = 1, . . . ,M

where (Y,X1, . . . , XM) is an observed random vector and (X∗1 , . . . , X
∗
M , U1, . . . , UM , ε)

is an unobserved mutually independent random vector. I identify (β0, . . . , βM) without

any additional information.

ii. Moving-average process of order 1:

Y1 = ε1 − θε0

Y2 = ε2 − θε1

where (Y1, Y2) is an observed random vector and ε0, ε1, and ε2 are unobserved mutually

independent random variables. I identify θ without assuming that ε0, ε1, and ε2 have

equal variances.

iii. Simultaneous equations model:

Y1 = δ1Y2 + β1X + ε1

Y2 = δ2Y1 + ε2

where (Y1, Y2, X) is an observed random vector and ε0 and ε1 are conditionally inde-

pendent unobserved random variables. I assume E [Xε2] = 0 but do not place any

restriction on the dependence of ε1 on X. I identify the coefficients δ1, δ2, and β1.
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2.9 Appendix A

2.9.1 Proof of Theorem 6

Let φY,X1...,XM denote the CF of (Y,X1, . . . , XM ), φX∗m the CF of X∗m for 1 ≤ m ≤M , φUm the CF of

Um for 1 ≤ m ≤M , and φε the CF of ε. Then,

φY,X1...,XM (s0, s1, . . . , sM )

= E [exp (iY s0 + iX1s1 + . . .+ iXMsM )]

= E [exp (i(β0 + β1X
∗
1 + . . .+ βMX

∗
M + ε)s0 + i(X∗1 + U1)s1 + . . .+ i(X∗M + UM )sM )]

= E [exp i (β0s0 + (β1s0 + s1)X∗1 + . . .+ (βMs0 + sM )X∗M + s1U1 + . . .+ sMUM + s0ε)]

= exp (iβ0s0)E [exp (is0ε)]

M∏
m=1

E [exp (i (βms0 + sm)X∗m)]

M∏
m=1

E [exp (ismUm)]

= exp (iβ0s0)φε (s0)

M∏
m=1

φX∗m (βms0 + sm)

M∏
m=1

φUm (sm)

where the second equality follows by substituting Y = β0 +β1X
∗
1 + . . .+βMX

∗
M + ε and Xm = X∗m+Um for

m = 1, . . . ,M and the fourth equality follows from the mutual independence of the unobserved variables.

Let ϕY, ~X (~s) = ϕY,X1...,XM (s0, s1, . . . , sM ) = lnφY, ~X (~s), ϕm(u) = lnφX∗m(u), ϕUm(u) = lnφUm(u), and

ϕε(u) = lnφε(u) where ~s ∈ RM+1 and u ∈ R, then

ϕY, ~X(~s) = iβ0s0 + ϕε (s0) +

M∑
m=1

ϕm (βms0 + sm) +

M∑
m=1

ϕUm (sm)

The second-order partial derivative with respect to s0 and sm∗ is

∂2ϕY, ~X(~s)

∂s0∂sm∗
= βm∗ϕ

′′
m∗ (βm∗s0 + sm∗) (2.3)

where

∂2ϕY, ~X(~s)

∂s0∂sm
=
E
[
Y eis0Y+is1X1+...+isMXM

]
E
[
Xme

is0Y+is1X1+...+isMXM
]

(E [eis0Y+is1X1+...+isMXM ])
2 −

E
[
Y Xme

is0Y+is1X1+...+isMXM
]

E [eis0Y+is1X1+...+isMXM ]

ϕ′′m(u) =

(
E [X∗m exp (iuX∗m)]

E [exp (iuX∗m)]

)2

−
E
[
(X∗m)

2
exp (iuX∗m)

]
E [exp (iuX∗m)]
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Evaluate Equation (2.3) at (0, . . . , 0, bu, 0, . . . , 0) and (u, 0 . . . , 0)

∂2ϕY, ~X(~s)

∂s0∂sm∗

∣∣∣∣∣
(0,...,0,bu,0,...,0)

= βm∗ϕ
′′
m∗ (bu) (2.4)

∂2ϕY, ~X(~s)

∂s0∂sm∗

∣∣∣∣∣
(u,0,...,0)

= βm∗ϕ
′′
m∗ (βm∗u) (2.5)

where by assumption ϕ′′m(βm∗) <∞ for all u ∈ U . Define

R0(b, u) : =

 ∂2ϕY, ~X(~s)

∂s0∂sm∗

∣∣∣∣∣
(0,...,0,bu,0,...,0)

−
∂2ϕY, ~X(~s)

∂s0∂sm∗

∣∣∣∣∣
(u,0,...,0)

2

= β2
m∗ (ϕ′′m∗ (bu)− ϕ′′m∗ (βm∗u))

2

where the second equality follows by substituting in Equations (2.4) and (2.5).

Let b = βm∗ , then R0(βm∗ , u) = 0 for all u ∈ U and by Assumption 4 R0(b, u) > 0 for all b 6= βm∗ and

all u ∈ U . The coefficient βm∗ is identified as the unique solution to

βm∗ = argmin
b∈R

∫
U
R0(b, u)w(u)du

Assume E[ε] = E[U1] = . . . E[UM ] = 0, then after identifying {βm}Mm=1

β0 = E[Y ]−
M∑
m=1

βmE[X∗m] = E[Y ]−
M∑
m=1

βmE[Xm]

2.9.2 Proof of Theorem 7

The log CF of (Y1, Y2) is

lnE [exp (iY1s1 + iY2s2)] = lnE [exp (i(ε1 − θε0)s1 + i(ε2 − θε1)s2)]

= lnE [exp (−iθs1ε0 + i (s1 − θs2) ε1 + is2ε2)]

= lnE [exp (−iθs1ε0)] + lnE [exp (i (s1 − θs2) ε1)] + lnE [exp (is2ε2)]

where the first equality follows by substituting Y1 = ε1− θε0 and Y2 = ε2− θε1 and the last equality follows

from the mutual independence of the unobserved variables.

93



Let ϕY1,Y2
denote the log CF of (Y1, Y2) and ϕm the log CF of εm. Then

ϕY1,Y2
(s1, s2) = ϕ0 (−θs1) + ϕ1 (s1 − θs2) + ϕ2 (s2)

The second-order partial derivative with respect to s1 and s2 is

∂2ϕY1,Y2
(s1, s2)

∂s1∂s2
= −θϕ′′1 (s1 − θs2) (2.6)

where

∂2ϕY1,Y2
(s1, s2)

∂s1∂s2
=
E
[
Y1e

is1Y1+is2Y2
]
E
[
Y2e

is1Y1+is2Y2
]

(E [eis1Y1+is2Y2 ])
2 −

E
[
Y1Y2e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

ϕ′′ε1(u) =

(
E [ε1 exp (iuε1)]

E [exp (iuε1)]

)2

−
E
[
ε1

2 exp (iuε1)
]

E [exp (iuε1)]

Evaluate Equation (2.6) at (0, bu) and (u, 0)

∂2ϕY1,Y2 (s1, s2)

∂s1∂s2

∣∣∣∣
(0,bu)

= −θϕ′′1 (bu) (2.7)

∂2ϕY1,Y2
(s1, s2)

∂s1∂s2

∣∣∣∣
(u,0)

= −θϕ′′1 (θu) (2.8)

where by assumption ϕ′′1(θu) <∞ for all u ∈ U . Define

R0(b, u) : =

(
∂2ϕY1,Y2

(s1, s2)

∂s1∂s2

∣∣∣∣
(0,bu)

− ∂2ϕY1,Y2
(s1, s2)

∂s1∂s2

∣∣∣∣
(u,0)

)2

= θ2 (ϕ′′1 (bu)− ϕ′′1 (θu))
2

where the second equality follows by substituting in Equations (2.7) and (2.8).

Let b = θ, then R0(θ, u) = 0 for all u ∈ U and by Assumption 5 R0(b, u) > 0 for all b 6= θ and all u ∈ U .

The parameter θ is identified as the unique solution to

θ = argmin
b∈R

∫
U
R0(b, u)w(u)du

2.9.3 Proof of Theorem 8

The parameter δ2 = E [XY2] /E [XY1] is identified using the condition 0 = E[Xε2] = E[XY2 −Xδ2Y1].
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The structural system is now rewritten in its reduced form

Y1 =
X

1− δ1δ2
· β1 +

1

1− δ1δ2
· ε1 +

δ1
1− δ1δ2

· ε2

Y2 =
δ2X

1− δ1δ2
· β1 +

δ2
1− δ1δ2

· ε1 +
1

1− δ1δ2
· ε2

Let θ = 1/(1− δ1δ2). The log CF of (Y1, Y2) conditional on X = x is

lnE [exp (iY1s1 + iY2s2) |X = x]

= lnE [exp (i(Xθβ1 + θε1 + δ1θε2)s1 + i(Xδ2θβ1 + δ2θε1 + θε2)s2) |X = x]

= ixθ(s1 + δ2s2)β1 + lnE [exp (iθ(s1 + δ2s2)ε1 + iθ(s1δ1 + s2)ε2) |X = x]

= ixθ(s1 + δ2s2)β1 + lnE [exp (iθ(s1 + δ2s2)ε1) |X = x] + lnE [exp (iθ(δ1s1 + s2)ε2) |X = x]

where the first equality follows by substituting Y1 = Xθβ1 + θε1 + δ1θε2 and Y2 = Xδ2θβ1 + δ2θε1 + θε2 and

the last equality follows from the mutual independence of the unobserved variables.

Let ϕY1,Y2|X denote the log CF of (Y1, Y2|X = x) and ϕm|X the log CF of εm|X = x. Then

ϕY1,Y2|X(s1, s2) = ixθ(s1 + δ2s2)β1 + ϕ1|X (θs1 + θδ2s2) + ϕ2|X (θδ1s1 + θs2)

where the equality follows from the independence assumptions. The second order partial derivatives are



∂ϕ2
Y1,Y2|X(s1, s2)

∂s2
1

∂ϕ2
Y1,Y2|X(s1, s2)

∂s1∂s2
∂ϕ2

Y1,Y2|X(s1, s2)

∂s2
2


=


θ2 θ2δ2

1

θ2δ2 θ2δ1

θ2δ2
2 θ2


 ϕ′′1|X (θs1 + θδ2s2)

ϕ′′2|X (θδ1s1 + θs2)



Hence,8

δ2 ·
∂ϕ2

Y1,Y2|X(s1, s2)

∂s2
1

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2
= θ2δ1 (δ1δ2 − 1)ϕ′′2|X (θδ1s1 + θs2) (2.9)

where

∂2ϕY1,Y2(s1, s2)

∂s2
1

=

(
E
[
Y1e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

)2

−
E
[
Y 2

1 e
is1Y1+is2Y2

]
E [eis1Y1+is2Y2 ]

8Other identification strategies are possible.
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∂2ϕY1,Y2(s1, s2)

∂s1∂s2
=
E
[
Y1e

is1Y1+is2Y2
]
E
[
Y2e

is1Y1+is2Y2
]

(E [eis1Y1+is2Y2 ])
2 −

E
[
Y1Y2e

is1Y1+is2Y2
]

E [eis1Y1+is2Y2 ]

ϕ′′2(u) =

(
E [ε2 exp (iuε2)]

E [exp (iuε2)]

)2

−
E
[
ε2

2 exp (iuε2)
]

E [exp (iuε2)]

Evaluate Equation (2.9) at (u, 0) and (0, du)

δ2 · ∂ϕ2
Y1,Y2|X(s1, s2)

∂s2
1

∣∣∣∣∣
(u,0)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(u,0)

 = θ2δ1 (δ1δ2 − 1)ϕ′′2|X (θδ1u) (2.10)

δ2 ·
∂ϕ2

Y1,Y2|X(s1, s2)

∂s2
1

∣∣∣∣∣
(0,bu)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(0,bu)

= θ2δ1 (δ1δ2 − 1)ϕ′′2|X (θbu) (2.11)

where by assumption ϕ′′2(θbu) <∞ for all u ∈ U .

Define

R(b, u) =

δ2 · ∂ϕ2
Y1,Y2|X(s1, s2)

∂s2
1

∣∣∣∣∣
(u,0)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(u,0)


−

δ2 · ∂ϕ2
Y1,Y2|X(s1, s2)

∂s2
1

∣∣∣∣∣
(0,bu)

−
∂ϕ2

Y1,Y2|X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(0,bu)

2

= θ4δ2
1 (δ1δ2 − 1)

2
(
ϕ′′ε2|X (θδ1u)− ϕ′′ε2|X (θbu)

)2

where the second equality follows by substituting in Equations (2.10) and (2.11).

Let b = δ1, then R0(δ1, u) = 0 for all u ∈ U and by Assumption 6 R0(b, u) > 0 for all b 6= δ1 and all

u ∈ U . The parameter δ1 is identified as the unique solution to

δ1 = argmin
b∈R

∫
U
R0(b, u)w(u)du

Assume E[ε1] = 0 and E[X] 6= 0, then β1 = 1− δ1δ2/E[X].

2.9.4 Proof of Theorem 9

The CF of (Y1, . . . , YT ) is

φY1,...,YT (s1, . . . , sT ) = E [exp (iY1s1 + . . .+ iYTA+TBsTA+TB )]

= E [exp (i(a11U1 + . . .+ a1MUM )s1 + . . .+ i(bTB1U1 + . . .+ bTBMUM )sTA+TB ))]
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= E [exp (i(a11s1 + . . .+ bTB1sTA+TB )U1 + . . .+ i(a1Ms1 + . . .+ bTBMsTA+TB )UM )]

=

M∏
m=1

E [exp (i(a1ms1 + . . .+ bTBmsTA+TB )Um)]

where the second equality follows by substituting Yt = at1U1 + . . .+ atMUM and the fourth equality follows

from the mutual independence of the unobserved variables.

Let ϕ~Y (~s) = ϕY1,...,YT (s1, . . . , sT ) = lnφ~Y (~s) and ϕm(u) = lnφUm(u) = lnE [exp (iuUm)], m = 1, . . . ,M

where ~s ∈ RT and u ∈ R. Then

ϕ~Y (~s) =

M∑
m=1

ϕm

(
TA∑
t=1

atmst +

TB∑
t=1

btmsTA+t

)
=

M∑
m=1

ϕm (A′m~sA +B′m~sB)

where Am is the mth column of A, Bm is the mth column of B, ~sA = (s1, . . . , sTA)
′

and ~sB =

(sTA+1, . . . , sTA+TB )
′
.

Let (αr1, . . . , α
r
TA

) be a multi-index TA-tuple of nonnegative integers. The norm of the multi-index is

defined by |αr| = αr1 + . . . + αrTA . For all multi-indexes with |αr| = D the partial derivative of ϕ~Y (~s) with

respect to s
αr1
1 , . . ., s

αrTA
TA

, sTA+1, . . ., sTA+TB is

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

=

M∑
m=1

TA∏
t=1

a
αrt
tm

[
TB∏
t=1

btmϕ
D+TB
m (A′m~sA +B′m~sB)

]

where ϕjm (·) is the jth derivative of ϕm (·). This is represented in matrix notation by



∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

α1
t
t

∏TB
t=1 ∂sTA+t

...

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αRt
t

∏TB
t=1 ∂sTA+t


=


∏TA
t=1 a

α1
t
t1 . . .

∏TA
t=1 a

α1
t

tM

...
. . .

...∏TA
t=1 a

αRt
t1 . . .

∏TA
t=1 a

αRt
tM




∏TB
t=1 bt1ϕ

D+TB
1 (A′1~sA +B′1~sB)

...∏TB
t=1 btMϕ

D+TB
M (A′M~sA +B′M~sB)



where R =

 D + TA − 1

D

.

By Assumption 7i


∏TB
t=1 bt1ϕ

D+TB
1 (A′1~sA +B′1~sB)

...∏TB
t=1 btMϕ

D+TB
M (A′M~sA +B′M~sB)

 =


∏TA
t=1 a

α1
t
t1 . . .

∏TA
t=1 a

α1
t

tM

...
. . .

...∏TA
t=1 a

αRt
t1 . . .

∏TA
t=1 a

αRt
tM


+



∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

α1
t
t

∏TB
t=1 ∂sTA+t

...

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αRt
t

∏TB
t=1 ∂sTA+t


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where
(
AD
)+

is the Moore-Penrose pseudoinverse of AD with entries {aD+
mr }m,r.

Let ~smA satisfy A′m~s
m
A = 1. For u ∈ R, b ∈ R

R∑
r=1

aD+
mr

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bu~smA ,

~0)

=

TB∏
t=1

btmϕ
D+TB
m (bu) (2.12)

R∑
r=1

aD+
mr

∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

=

TB∏
t=1

btmϕ
D+TB
m (bt∗mu) (2.13)

where ~em = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the mth coordinate.

Define

Q0(b) :=

∫
U

 R∑
r=1

aD+
mr

 ∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bu~smA ,

~0)

−
∂ϕD+TB

~Y
(~s)∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

2

w(u)du

where w(u) is a weight function that satisfies
∫
U w(u)du = 1.

I show that Q0(bt∗m) = 0 and Q0(b) > 0 for all b 6= bt∗m:

Q0(bt∗m) =

∫
U

 R∑
r=1

aD+
mr

 ∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bt∗mu~s

m
A ,
~0)

−
∂ϕD+TB

~Y
(~s)∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

2

w(u)du

=

∫
U

(
TB∏
t=1

btmϕ
D+TB
m (bt∗mu)−

TB∏
t=1

btmϕ
D+TB
m (bt∗mu)

)2

w(u)du

= 0

where the second equality follows by substituting in Equations (2.12) and (2.13) and the last equality follows

by the assumption that
∫
U
(
ϕD+TB
m (bt∗mu)

)2
w(u)du <∞.

Q0(b) :=

∫
U

 R∑
r=1

aD+
mr

 ∂ϕD+TB
~Y

(~s)∏TA
t=1 ∂s

αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(bu~smA ,

~0)

−
∂ϕD+TB

~Y
(~s)∏TA

t=1 ∂s
αrt
t

∏TB
t=1 ∂sTA+t

∣∣∣∣∣
(~sA,~sB)=(~0,u~em)

2

w(u)du

=

∫
U

(
TB∏
t=1

btmϕ
D+TB
m (bu)−

TB∏
t=1

btmϕ
D+TB
m (bt∗mu)

)2

w(u)du
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=

(
TB∏
t=1

btm

)2 ∫
R

(
ϕD+TB
m (bu)− ϕD+TB

m (bt∗mu)
)2
w(u)du

> 0

where the second equality follows by substituting in Equations (2.12) and (2.13) and the last inequality

follows by Assumption 7ii. Hence, bt∗m uniquely minimizes Q0 and is identified.

2.10 Appendix B

2.10.1 Proof of Condition 1(iv): QN(b) Converges Uniformly in

Probability to Q0(b)

Lemma 2. Let F denote the cumulative distribution function of (Y,X1, . . . , XM ) and FN the empirical

cumulative distribution function corresponding to a sample {Yn, Xn1, . . . , XnM}Nn=1 of N independent iden-

tically distributed random draws from F . Assume E
[
Y 2αX2γ

m

]
<∞. Let

εN = C(M,E[Y 2αX2γ
m ])

(
lnN

N

) 1
2

where C > 0 and C(M,E[Y 2αX2γ
m ]) > 0 is a constant that may depend on the arguments in the subscript. Then

sup
(s0,sm)∈[−S0,S0]×[−Sm,Sm]

∣∣EN [Y αXγ
me

is0Y+ismXm
]
− E

[
Y αXγ

me
is0Y+ismXm

]∣∣ < εN a.s.

when N tends to infinity.

Proof: See Lemma 1 in Ben-Moshe (2012a).

Let

R0(b, u)

=

[(
E
[
Y eibuXm

]
E
[
Xme

ibuXm
]

(E [eibuXm ])
2 −

E
[
Y Xme

ibuXm
]

E [eibuXm ]

)
−

(
E
[
Y eiuY

]
E
[
Xme

iuY
]

(E [eiuY ])
2 −

E
[
Y Xme

iuY
]

E [eiuY ]

)]2
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and

R̂N (b, u) =

[(
EN

[
Y eibuXm

]
EN

[
Xme

ibuXm
]

(EN [eibuXm ])
2 −

EN
[
Y Xme

ibuXm
]

EN [eibuXm ]

)

−

(
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eiuY ])
2 −

EN
[
Y Xme

iuY
]

EN [eiuY ]

)]2

Then

Q0(b) =

∫
U
R0(b, u)w(u)du

Q̂N (b) =

∫
U
RN (b, u)w(u)du

Expand the brackets in R̂N (b, u) and use a Taylor expansion

R̂N (b, u)

=

(
EN

[
Y eibuXm

])2 (
EN

[
Xme

ibuXm
])2

(EN [eibuXm ])
4 −

2EN
[
Y eibuXm

]
EN

[
Xme

ibuXm
]
EN

[
Y Xme

ibuXm
]

(EN [eibuXm ])
3

−
2EN

[
Y eibuXm

]
EN

[
Xme

ibuXm
]
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eibuXm ])
2

(EN [eiuY ])
2

+
2EN

[
Y eibuXm

]
EN

[
Xme

ibuXm
]
EN

[
Y Xme

iuY
]

(EN [eibuXm ])
2
EN [eiuY ]

+

(
EN

[
Y Xme

iuY
])2

(EN [eiuY ])
2

−
2EN

[
Y eiuY

]
EN

[
Xme

iuY
]
EN

[
Y Xme

iuY
]

(EN [eiuY ])
3 +

2EN
[
Y Xme

ibuXm
]
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

EN [eibuXm ] (EN [eiuY ])
2

−
2EN

[
Y Xme

ibuXm
]
EN

[
Y Xme

iuY
]

EN [eibuXm ]EN [eiuY ]
+

(
EN

[
Y eiuY

])2 (
EN

[
Xme

iuY
])2

(EN [eiuY ])
4 +

(
EN

[
Y Xme

ibuXm
])2

(EN [eibuXm ])
2

= R0(b, u) + g1
0(b, u)

(
EN

[
Y eibuXm

]
− E

[
Y eibuXm

])
+ g2

0(b, u)
(
EN

[
Xme

ibuXm
]
− E

[
Xme

ibuXm
])

+ g3
0(b, u)

(
EN

[
Y Xme

ibuXm
]
− E

[
Y Xme

ibuXm
])

+ g4
0(b, u)

(
EN

[
eibuXm

]
− E

[
eibuXm

])
+ g5

0(b, u)
(
EN

[
Y eiuY

]
− E

[
Y eiuY

])
+ g6

0(b, u)
(
EN

[
Xme

iuY
]
− E

[
Xme

iuY
])

+ g7
0(b, u)

(
EN

[
Y Xme

iuY
]
− E

[
Y Xme

iuY
])

+ g8
0(b, u)

(
EN

[
eiuY

]
− E

[
eiuY

])
+ o

[∣∣g1
0(b, u)

(
EN

[
Y eibuXm

]
− E

[
Y eibuXm

])∣∣+ . . .+
∣∣g8

0(b, u)
(
EN

[
eiuY

]
− E

[
eiuY

])∣∣]
where the second equality follows by a Taylor expansion and

g1
0(b, u) =

2E
[
Xme

ibuXm
]

(E [eibuXm ])
4

(E [eiuY ])
2

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
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−E
[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g2

0(b, u) =

2E
[
Y eibuXm

]
(E [eibuXm ])

4
(E [eiuY ])

2

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g3

0(b, u) =

−2

(E [eibuXm ])
3

(E [eiuY ])
2

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g4

0(b, u) =

2

(E [eibuXm ])
5

(E [eiuY ])
2

(
E
[
Y Xme

ibuXm
]
E
[
eibuXm

]
− 2E

[
Y eibuXm

]
E
[
Xme

ibuXm
])
×(

E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g5

0(b, u) =

−2E
[
Xme

iuY
]

(E [eibuXm ])
2

(E [eiuY ])
4

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g6

0(b, u) =

−2E
[
Y eiuY

]
(E [eibuXm ])

2
(E [eiuY ])

4

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g7

0(b, u) =

2

(E [eibuXm ])
2

(E [eiuY ])
3

(
E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
g8

0(b, u) =

− 2

(E [eibuXm ])
2

(E [eiuY ])
5

(
E
[
Y Xme

iuY
]
E
[
eiuY

]
− 2E

[
Y eiuY

]
E
[
Xme

iuY
])
×(

E
[
Y Xme

iuY
] (
E
[
eibuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eibuXm

])2
−E

[
Y Xme

ibuXm
]
E
[
eibuXm

] (
E
[
eiuY

])2
+ E

[
Y eibuXm

]
E
[
Xme

ibuXm
] (
E
[
eiuY

])2)
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Substitute R̂N (b, u) into supb

∣∣∣Q̂N (b)−Q0(b)
∣∣∣

sup
b

∣∣∣Q̂N (b)−Q0(b)
∣∣∣

= sup
b

∣∣∣∣∫
U

(
R̂N (b, u)−R0(b, u)

)
w(u)du

∣∣∣∣
= sup

b

∣∣∣∣∫
U
g1

0(b, u)
(
EN

[
Y eibuXm

]
− E

[
Y eibuXm

])
+ g2

0(b, u)
(
EN

[
Xme

ibuXm
]
− E

[
Xme

ibuXm
])

+ g3
0(b, u)

(
EN

[
Y Xme

ibuXm
]
− E

[
Y Xme

ibuXm
])

+ g4
0(b, u)

(
EN

[
eibuXm

]
− E

[
eibuXm

])
+ g5

0(b, u)
(
EN

[
Y eiuY

]
− E

[
Y eiuY

])
+ g6

0(b, u)
(
EN

[
Xme

iuY
]
− E

[
Xme

iuY
])

+ g7
0(b, u)

(
EN

[
Y Xme

iuY
]
− E

[
Y Xme

iuY
])

+ g8
0(b, u)

(
EN

[
eiuY

]
− E

[
eiuY

])
+o
[∣∣g1

0(b, u)
(
EN

[
Y eibuXm

]
− E

[
Y eibuXm

])∣∣+ . . .+
∣∣g8

0(b, u)
(
EN

[
eiuY

]
− E

[
eiuY

])∣∣]w(u)du
∣∣

. εN

∫
U

(
|g1

0(b, u)|+ |g2
0(b, u)|+ |g3

0(b, u)|+ |g4
0(b, u)|+ |g5

0(b, u)|+ |g6
0(b, u)|+ |g7

0(b, u)|+ |g8
0(b, u)|

)
w(u)du

.

(
lnN

N

) 1
2

(E[|Y |] + E[|Xm|] + E[|Y Xm|])
∫
U

(
1

|E [eiuY ]|5
+

1

|E [eibuXm ]|5

)
w(u)du

where the “.”s follow by Lemma 2.9 By the assumptions E
[
Y 2
]
< ∞, E

[
X2
m

]
< ∞, E

[
(Y Xm)2

]
< ∞,∫

U

∣∣E [eiuY ]∣∣−5
w(u)du <∞, and

∫
U

∣∣E [eibuXm]∣∣−5
w(u)du <∞ for all b ∈ B so QN (b) converges uniformly

to Q0(b).

2.10.2 Proof of Condition 2(iii):
√
NQ′N(βm)

d→ N(0,Ω(βm))

The derivative Q′N (βm) is

Q̂′N (βm)

= 2i

∫
U
u

(
EN

[
Y eiβmuXm

]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 −

EN
[
Y Xme

iβmuXm
]

EN [eiβmuXm ]

+
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eiuY ])
2 −

EN
[
Y Xme

iuY
]

EN [eiuY ]

)

×

(
2EN

[
Y Xme

iβmuXm
]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 +

EN
[
Y eiβmuXm

]
EN

[
X2
me

iβmuXm
]

(EN [eiβmuXm ])
2

−
2EN

[
Y eiβmuXm

] (
EN

[
Xme

iβmuXm
])2

(EN [eiβmuXm ])
3 −

EN
[
Y X2

me
iβmuXm

]
(EN [eiβmuXm ])

2

)
w(u)du

9ZN . aN means that there exists C > 0 such that ZN ≤ CaN .
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Let

P̂N (βm, u) =

(
EN

[
Y eiβmuXm

]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 −

EN
[
Y Xme

iβmuXm
]

EN [eiβmuXm ]

+
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eiuY ])
2 −

EN
[
Y Xme

iuY
]

EN [eiuY ]

)

×

(
2EN

[
Y Xme

iβmuXm
]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 +

EN
[
Y eiβmuXm

]
EN

[
X2
me

iβmuXm
]

(EN [eiβmuXm ])
2

−
2EN

[
Y eiβmuXm

] (
EN

[
Xme

iβmuXm
])2

(EN [eiβmuXm ])
3 −

EN
[
Y X2

me
iβmuXm

]
(EN [eiβmuXm ])

2

)

and

P0(βm, u)

=

(
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2 −

E
[
Y Xme

iβmuXm
]

E [eiβmuXm ]
+
E
[
Y eiuY

]
E
[
Xme

iuY
]

(E [eiuY ])
2 −

E
[
Y Xme

iuY
]

E [eiuY ]

)

×

(
2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2 +

E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]

(E [eiβmuXm ])
2

−
2E
[
Y eiβmuXm

] (
E
[
Xme

iβmuXm
])2

(E [eiβmuXm ])
3 −

E
[
Y X2

me
iβmuXm

]
(E [eiβmuXm ])

2

)

=

 ∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(0,...,0,βmu,0,...,0)

−
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(u,0,...,0)

 ·(2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2

+
E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]

(E [eiβmuXm ])
2 −

2E
[
Y eiβmuXm

] (
E
[
Xme

iβmuXm
])2

(E [eiβmuXm ])
3 −

E
[
Y X2

me
iβmuXm

]
(E [eiβmuXm ])

2

)

= (βmϕ
′′
m (βmu)− βmϕ′′m (βmu)) ·

(
2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2

+
E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]

(E [eiβmuXm ])
2 −

2E
[
Y eiβmuXm

] (
E
[
Xme

iβmuXm
])2

(E [eiβmuXm ])
3 −

E
[
Y X2

me
iβmuXm

]
(E [eiβmuXm ])

2

)

= 0

where the third equality follows from Equations (2.4) and (2.5).

Expand the brackets of P̂N (βm, u) and se a Taylor expansion

P̂N (βm, u)

=
E
[
Y Xme

iβmuXm
]
E
[
Y X2

me
iβmuXm

]
E [eiβmuXm ]

2 −
2E
[
Y eiβmuXm

]2
E
[
Xme

iβmuXm
]3

E [eiβmuXm ]
5
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−
2E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
]2

E [eiβmuXm ]
3 −

E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]
E
[
Y X2

me
iβmuXm

]
d3

−
E
[
Y eiβmuXm

]
E
[
Y Xme

iβmuXm
]
E
[
X2
me

iβmuXm
]

E [eiβmuXm ]
3 +

E
[
Y X2

me
iβmuXm

]
E
[
Y eiuY

]
E
[
Xme

iuY
]

E [eiβmuXm ]E [eiuY ]
2

+
E
[
Y eiβmuXm

]2
E
[
Xme

iβmuXm
]
E
[
X2
me

iβmuXm
]

E [eiβmuXm ]
4 −

E
[
Y X2

me
iβmuXm

]
E
[
Y Xme

iuY
]

E [eiβmuXm ]E [eiuY ]

−
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2
E
[
Y Xme

iuY
]

E [eiβmuXm ]
3
E [eiuY ]

+
2E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
]
E
[
Y Xme

iuY
]

E [eiβmuXm ]
2
E [eiuY ]

+
E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
Y Xme

iuY
]

E [eiβmuXm ]
2
E [eiuY ]

+
4E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2
E
[
Y Xme

iβmuXm
]

E [eiβmuXm ]
4

+
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2
E
[
Y eiuY

]
E
[
Xme

iuY
]

E [eiβmuXm ]
3
E [eiuY ]

2

−
2E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
]
E
[
Y eiuY

]
E
[
Xme

iuY
]

E [eiβmuXm ]
2
E [eiuY ]

2

−
E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
Y eiuY

]
E
[
Xme

iuY
]

E [eiβmuXm ]
2
E [eiuY ]

2

= P0(βm, u)

+ h1
0(βm, u)

(
EN

[
Y eiβmuXm

]
− E

[
Y eiβmuXm

])
+ h2

0(βm, u)
(
EN

[
Xme

iβmuXm
]
− E

[
Xme

iβmuXm
])

+ h3
0(βm, u)

(
EN

[
Y Xme

iβmuXm
]
− E

[
Y Xme

iβmuXm
])

+ h4
0(βm, u)

(
EN

[
eiβmuXm

]
− E

[
eiβmuXm

])
+ h5

0(βm, u)
(
EN

[
Y X2

me
iβmuXm

]
− E

[
Y X2

me
iβmuXm

])
+ h6

0(βm, u)
(
EN

[
X2
me

iβmuXm
]
− E

[
X2
me

iβmuXm
])

+ h7
0(βm, u)

(
EN

[
Y eiuY

]
− E

[
Y eiuY

])
+ h8

0(βm, u)
(
EN

[
Xme

iuY
]
− E

[
Xme

iuY
])

+ h9
0(βm, u)

(
EN

[
Y Xme

iuY
]
− E

[
Y Xme

iuY
])

+ h10
0 (βm, u)

(
EN

[
eiuY

]
− E

[
eiuY

])
+
(
E[|Y |] + E[|X2

m|] + E[|Y X2
m|]
)( 1

|E [eiuY ]|4 |E [eiβmuXm ]|3
+

1

|E [eiβmuXm ]|7

)
×

O
[(
EN

[
Y eiβmuXm

]
− E

[
Y eiβmuXm

])2
+ . . .

+
∣∣EN [eiβmuXm]− E [eiβmuXm]∣∣ ∣∣EN [Xme

iuY
]
− E

[
Xme

iuY
]∣∣+ . . .

+
∣∣EN [Y eiβmuXm]− E [Y eiβmuXm]∣∣ ∣∣EN [Y X2

me
iβmuXm

]
− E

[
Y X2

me
iβmuXm

]∣∣+ . . .

+
(
EN

[
eiuY

]
− E

[
eiuY

])2]

where the second equality follows by a Taylor expansion and

h1
0(βm, u) = − 1

(E [eiβmuXm ])
5

(E [eiuY ])
2

(
4E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]3 (

E
[
eiuY

])2
+ 2E

[
Y Xme

iuY
]
E
[
Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2
E
[
eiuY

]
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− 2E
[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2
− 4E

[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]2
E
[
eiβmuXm

] (
E
[
eiuY

])2
+ E

[
Y X2

me
iβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2
− 2E

[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2
− E

[
X2
me

iβmuXm
]
E
[
Y Xme

iuY
] (
E
[
eiβmuXm

])3
E
[
eiuY

]
+ E

[
X2
me

iβmuXm
]
E
[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eiβmuXm

])3
+E

[
Y Xme

iβmuXm
]
E
[
X2
me

iβmuXm
] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2)
h2

0(βm, u) = − 1

(E [eiβmuXm ])
5

(E [eiuY ])
2

(
6E
[
Y eiβmuXm

]2
E
[
Xme

iβmuXm
]2 (

E
[
eiuY

])2
−E

[
X2
me

iβmuXm
]
E
[
Y eiβmuXm

]2
E
[
eiβmuXm

] (
E
[
eiuY

])2
−8E

[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2
+4E

[
Y Xme

iuY
]
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2
E
[
eiuY

]
−4E

[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2
+ E

[
Y X2

me
iβmuXm

]
E
[
Y eiβmuXm

] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2
+ 2E

[
Y Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2 (
E
[
eiuY

])2
− 2E

[
Y Xme

iuY
]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])3
E
[
eiuY

]
+2E

[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])3)
h3

0(βm, u) =
1

(E [eiβmuXm ])
4

(E [eiuY ])
2

(
4E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2 (

E
[
eiuY

])2
+ 2E

[
Y Xme

iuY
]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2
E
[
eiuY

]
− 2E

[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2
− 4E

[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2
+ E

[
Y X2

me
iβmuXm

] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2
−E

[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2)
h4

0(βm, u) =
1

(E [eiβmuXm ])
6

(E [eiuY ])
2

(
10E

[
Y eiβmuXm

]2
E
[
Xme

iβmuXm
]3 (

E
[
eiuY

])2
−4E

[
X2
me

iβmuXm
]
E
[
Y eiβmuXm

]2
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2
−16E

[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2
E
[
Y Xme

iβmuXm
]
E
[
eiβmuXm

] (
E
[
eiuY

])2
+6E

[
Y Xme

iuY
]
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2
E
[
eiuY

]
−6E

[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2
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+3E
[
Y X2

me
iβmuXm

]
E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2
+3E

[
X2
me

iβmuXm
]
E
[
Y eiβmuXm

]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])2 (
E
[
eiuY

])2
−2E

[
X2
me

iβmuXm
]
E
[
Y Xme

iuY
]
E
[
Y eiβmuXm

] (
E
[
eiβmuXm

])3
E
[
eiuY

]
+2E

[
X2
me

iβmuXm
]
E
[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Y eiβmuXm

] (
E
[
eiβmuXm

])3
+6E

[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
]2 (

E
[
eiβmuXm

])2 (
E
[
eiuY

])2
−4E

[
Y Xme

iuY
]
E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])3
E
[
eiuY

]
+4E

[
Y eiuY

]
E
[
Xme

iuY
]
E
[
Xme

iβmuXm
]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])3
−2E

[
Y X2

me
iβmuXm

]
E
[
Y Xme

iβmuXm
] (
E
[
eiβmuXm

])3 (
E
[
eiuY

])2
+ E

[
Y X2

me
iβmuXm

]
E
[
Y Xme

iuY
] (
E
[
eiβmuXm

])4
E
[
eiuY

]
−E

[
Y X2

me
iβmuXm

]
E
[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eiβmuXm

])4)
h5

0(βm, u) =
E
[
Y eiβmuXm

]
(E [eiβmuXm ])

4
(E [eiuY ])

2

(
E
[
Y Xme

iuY
] (
E
[
eiβmuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eiβmuXm

])2 − E [Y Xme
iβmuXm

]
E
[
eiβmuXm

] (
E
[
eiuY

])2
+E

[
Y eiβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiuY

])2)
h6

0(βm, u) = − 1

(E [eiβmuXm ])
3

(E [eiuY ])
2

(
E
[
Y Xme

iuY
] (
E
[
eiβmuXm

])2
E
[
eiuY

]
− E

[
Y eiuY

]
E
[
Xme

iuY
] (
E
[
eiβmuXm

])2 − E [Y Xme
iβmuXm

]
E
[
eiβmuXm

] (
E
[
eiuY

])2
+E

[
Y eiβmuXm

]
E
[
Xme

iβmuXm
] (
E
[
eiuY

])2)
h7

0(βm, u) =
E
[
Xme

iuY
]

(E [eiβmuXm ])
3

(E [eiuY ])
2

(
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2

+ E
[
Y X2

me
iβmuXm

] (
E
[
eiβmuXm

])2 − 2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

]
−E

[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
eiβmuXm

])
h8

0(βm, u) =
E
[
Y eiuY

]
(E [eiβmuXm ])

3
(E [eiuY ])

2

(
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2

+ E
[
Y X2

me
iβmuXm

] (
E
[
eiβmuXm

])2 − 2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

]
−E

[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
eiβmuXm

])
h9

0(βm, u) =
−1

(E [eiβmuXm ])
3
E [eiuY ]

(
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2

+ E
[
Y X2

me
iβmuXm

] (
E
[
eiβmuXm

])2 − 2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

]
−E

[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]
E
[
eiβmuXm

])
h10

0 (βm, u) =
1

(E [eiβmuXm ])
3

(E [eiuY ])
3

(
E
[
Y Xme

iuY
]
E
[
eiuY

]
− 2E

[
Y eiuY

]
E
[
Xme

iuY
])
×
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(
2E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]2 − 2E

[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]
E
[
eiβmuXm

]
+E

[
Y X2

me
iβmuXm

] (
E
[
eiβmuXm

])2 − E [Y eiβmuXm]E [X2
me

iβmuXm
]
E
[
eiβmuXm

])

Substitute P̂N (βm, u) and P0(βm, u) = 0 into
√
NQ̂′N (βm)

√
NQ̂′N (βm) = 2i

∫
U
uP̂N (βm, u)w(u)du

=
√
N2i

∫
U
u
{
h1

0(βm, u)
(
EN

[
Y eiβmuXm

]
− E

[
Y eiβmuXm

])
+ h2

0(βm, u)
(
EN

[
Xme

iβmuXm
]
− E

[
Xme

iβmuXm
])

+ h3
0(βm, u)

(
EN

[
Y Xme

iβmuXm
]
− E

[
Y Xme

iβmuXm
])

+ h4
0(βm, u)

(
EN

[
eiβmuXm

]
− E

[
eiβmuXm

])
+ h5

0(βm, u)
(
EN

[
Y X2

me
iβmuXm

]
− E

[
Y X2

me
iβmuXm

])
+ h6

0(βm, u)
(
EN

[
X2
me

iβmuXm
]
− E

[
X2
me

iβmuXm
])

+ h7
0(βm, u)

(
EN

[
Y eiuY

]
− E

[
Y eiuY

])
+ h8

0(βm, u)
(
EN

[
Xme

iuY
]
− E

[
Xme

iuY
])

+ h9
0(βm, u)

(
EN

[
Y Xme

iuY
]
− E

[
Y Xme

iuY
])

+h10
0 (βm, u)

(
EN

[
eiuY

]
− E

[
eiuY

])}
w(u)du

+
√
N2i

∫
U
u

{(
E[|Y |] + E[|X2

m|] + E[|Y X2
m|]
)( 1

|E [eiuY ]|4 |E [eiβmuXm ]|3
+

1

|E [eiβmuXm ]|7

)
×

O
[(
EN

[
Y eiβmuXm

]
− E

[
Y eiβmuXm

])2
+ . . .

+
∣∣EN [eiβmuXm]− E [eiβmuXm]∣∣ ∣∣EN [Xme

iuY
]
− E

[
Xme

iuY
]∣∣+ . . .

+
∣∣EN [Y eiβmuXm]− E [Y eiβmuXm]∣∣ ∣∣EN [Y X2

me
iβmuXm

]
− E

[
Y X2

me
iβmuXm

]∣∣+ . . .

+
(
EN

[
eiuY

]
− E

[
eiuY

])2]}
w(u)du

= 2i
√
N

1

N

N∑
n=1

∫
U
u
{
h1

0(βm, u)
(
Yne

iβmuXnm − E
[
Y eiβmuXm

])
+ h2

0(βm, u)
(
Xnme

iβmuXnm − E
[
Xnme

iβmuXnm
])

+ h3
0(βm, u)

(
YnXnme

iβmuXnm − E
[
Y Xnme

iβmuXm
])

+ h4
0(βm, u)

(
eiβmuXnm − E

[
eiβmuXnm

])
+ h5

0(βm, u)
(
YnX

2
nme

iβmuXnm − E
[
Y X2

nme
iβmuXm

])
+ h6

0(βm, u)
(
X2
nme

iβmuXnm − E
[
X2
nme

iβmuXm
])

+ h7
0(βm, u)

(
Yne

iuYn − E
[
Y eiuY

])
+ h8

0(βm, u)
(
Xnme

iuYn − E
[
Xme

iuY
])

+h9
0(βm, u)

(
YnXnme

iuYn − E
[
Y Xme

iuY
])

+ h10
0 (βm, u)

(
eiuYn − E

[
eiuY

])}
w(u)du+ o(1)

= 2i
√
N

1

N

N∑
n=1

G(Yn, Xn;βm) + o(1)
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where I denoted10

G(Yn, Xn;βm) =∫
U
u
{
h1

0(βm, u)
(
Yne

iβmuXnm − E
[
Y eiβmuXm

])
+ h2

0(βm, u)
(
Xnme

iβmuXnm − E
[
Xnme

iβmuXnm
])

+ h3
0(βm, u)

(
YnXnme

iβmuXnm − E
[
Y Xnme

iβmuXm
])

+ h4
0(βm, u)

(
eiβmuXnm − E

[
eiβmuXnm

])
+ h5

0(βm, u)
(
YnX

2
nme

iβmuXnm − E
[
Y X2

nme
iβmuXm

])
+ h6

0(βm, u)
(
X2
nme

iβmuXnm − E
[
X2
nme

iβmuXm
])

+ h7
0(βm, u)

(
Yne

iuYn − E
[
Y eiuY

])
+ h8

0(βm, u)
(
Xnme

iuYn − E
[
Xme

iuY
])

+h9
0(βm, u)

(
YnXnme

iuYn − E
[
Y Xme

iuY
])

+ h10
0 (βm, u)

(
eiuYn − E

[
eiuY

])}
w(u)du

the second equality follows because P0(βm, u) = 0 and the Taylor expansion of P̂N (βm, u), the third equality

follows by using the linearity of EN := 1
N

∑N
n=1 and

√
N

∫
U
u

{(
E[|Y |] + E[|X2

m|] + E[|Y X2
m|]
)( 1

|E [eiuY ]|4 |E [eiβmuXm ]|3
+

1

|E [eiβmuXm ]|7

)
×

O
[(
EN

[
Y eiβmuXm

]
− E

[
Y eiβmuXm

])2
+ . . .

+
∣∣EN [eiβmuXm]− E [eiβmuXm]∣∣ ∣∣EN [Xme

iuY
]
− E

[
Xme

iuY
]∣∣+ . . .

+
∣∣EN [Y eiβmuXm]− E [Y eiβmuXm]∣∣ ∣∣EN [Y X2

me
iβmuXm

]
− E

[
Y X2

me
iβmuXm

]∣∣+ . . .

+
(
EN

[
eiuY

]
− E

[
eiuY

])2]
≤
√
Nε2

N

(
E[|Y |] + E[|X2

m|] + E[|Y X2
m|]
)( 1

|E [eiuY ]|4 |E [eiβmuXm ]|3
+

1

|E [eiβmuXm ]|7

)}
w(u)du

≤ lnN√
N

(
E[|Y |] + E[|X2

m|] + E[|Y X2
m|]
) ∫
U
u

(
1

|E [eiuY ]|4 |E [eiβmuXm ]|3
+

1

|E [eiβmuXm ]|7

)
w(u)du

= o(1)

where the second inequality follows by Lemma 2 and the last equality follows because lnN√
N

n→∞→ 0 and the

assumptions E
[
Y 2
]
<∞, E

[
X4
m

]
<∞, E

[
(Y X2

m)2
]
<∞,

∫
U u
∣∣E [eiuY ]∣∣−4 ∣∣E [eiβmuXm]∣∣−3

w(u)du <∞,∫
U u
∣∣E [eiβmuXm]∣∣−7

w(u)du <∞, and
∫
U u

2
∣∣E [eiβmuXm]∣∣−6

w(u)du <∞.

Therefore
√
NQ̂′N (βm) is the sample average of independent identically distributed random variables

multiplied by a constant so by the Classical Central Limit

√
NQ̂′N (βm)

d→ N(0, 4Ω(βm))

10dN = o(eN ) is Little-o notation and means that for every δ > 0 there exists N large enough so that
dn ≤ δen for all n > N .
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where by linearity and the Dominated Convergence theorem E [G(Yn, Xn;βm)] = 0 and

Ω(βm) = E
[
G(Yn, Xn;βm)2

]
=

∫
U

∫
U
uv
{
h1

0(βm, u)h1
0(βm, v)Cov

(
Y eiβmuXm , Y eiβmvXm

)
+ h1

0(βm, u)h2
0(βm, v)Cov

(
Y eiβmuXm , Xme

iβmvXm
)

+ . . .

+ h7
0(βm, u)h4

0(βm, v)Cov
(
Y eiuY , eiβmvXm

)
+ . . .

+h10
0 (βm, u)h10

0 (βm, v)Cov
(
eiuY , eivY

)}
w(u)w(v)dudv

2.10.3 Proof of Condition 2(iv): Q′′N(b) Converges Uniformly in

Probability to H0(b) and H0(βm) is Nonsingular

To prove that Q̂′′N (βm) converges uniformly to H0(b) use a Taylor expansion and Lemma 2 along with the

assumptions E
[
Y 2
]
< ∞, E

[
X6
m

]
< ∞, E

[
(Y X3

m)2
]
< ∞,

∫
U u

2
∣∣E [eiuY ]∣∣−2 ∣∣E [eibuXm]∣∣−4

w(u)du < ∞,∫
U u

2
∣∣E [eibuXm]∣∣−6

w(u)du <∞ for all b ∈ B (The proof is similar to the proof of 1(iv). A detailed proof is

available upon request).

Finally,

H0(βm) := lim
N→∞

Q̂′′N (βm)

= −2 lim
N→∞

∫
U
u2

(
2EN

[
Y Xme

iβmuXm
]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 +

EN
[
Y eiβmuXm

]
EN

[
X2
me

iβmuXm
]

(EN [eiβmuXm ])
2

−
2EN

[
Y eiβmuXm

] (
EN

[
Xme

iβmuXm
])2

(EN [eiβmuXm ])
3 −

EN
[
Y X2

me
iβmuXm

]
(EN [eiβmuXm ])

2

)2

w(u)du

+ 2i

∫
U
u2

(
EN

[
Y eiβmuXm

]
EN

[
Xme

iβmuXm
]

(EN [eiβmuXm ])
2 −

EN
[
Y Xme

iβmuXm
]

EN [eiβmuXm ]

+
EN

[
Y eiuY

]
EN

[
Xme

iuY
]

(EN [eiuY ])
2 −

EN
[
Y Xme

iuY
]

EN [eiuY ]

)
×

∂

∂b

(
2EN

[
Y Xme

ibuXm
]
EN

[
Xme

ibuXm
]

(EN [eibuXm ])
2 +

EN
[
Y eibuXm

]
EN

[
X2
me

ibuXm
]

(EN [eibuXm ])
2

−
2EN

[
Y eibuXm

] (
EN

[
Xme

ibuXm
])2

(EN [eibuXm ])
3 −

EN
[
Y X2

me
ibuXm

]
(EN [eibuXm ])

2

)∣∣∣∣∣
b=βm

w(u)du

= −2

∫
U
u2

(
2E
[
Y Xme

iβmuXm
]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2 +

E
[
Y eiβmuXm

]
E
[
X2
me

iβmuXm
]

(E [eiβmuXm ])
2

−
2E
[
Y eiβmuXm

] (
E
[
Xme

iβmuXm
])2

(E [eiβmuXm ])
3 −

E
[
Y X2

me
iβmuXm

]
(E [eiβmuXm ])

2

)2

w(u)du
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where the last equality follows because of uniform convergence and

E
[
Y eiβmuXm

]
E
[
Xme

iβmuXm
]

(E [eiβmuXm ])
2 −

E
[
Y Xme

iβmuXm
]

E [eiβmuXm ]
+
E
[
Y eiuY

]
E
[
Xme

iuY
]

(E [eiuY ])
2 −

E
[
Y Xme

iuY
]

E [eiuY ]

=
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(0,...,0,βmu,0,...,0)

−
∂2ϕY, ~X(~s)

∂s0∂sm

∣∣∣∣∣
(u,0,...,0)

= βmϕ
′′
m (βmu)− βmϕ′′m

= 0

where the second equality follows from Equations (2.4) and (2.5).

The assumption
∫
U u

2
(
E
[
eiβmuXm

])−6
w(u)du < ∞ implies that 0 < H0(βm) < ∞ so H0(βm) is non-

singular and
√
N
(
β̂m − βm

)
d→ N

(
0, (H0(βm))

−2
Ω(βm)

)
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Figure 2.1: Top graph: ϕ′′m (u) = −5/(iu− 1)2 when X∗m∗ ∼ Gamma(5, 1)
Middle graph: ϕ′′m∗ (u) = (2i+ it2eit − 2ieit − 2teit)/t3 when X∗m ∼ Uniform(0, 1)
Bottom graph: ϕ′′′m∗ (u) = −4u(u2 − 3)/(u2 + 1)3 when X∗m ∼ Laplace(0, 1)
The real parts are the red lines and the imaginary parts are the blue lines.
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Figure 2.2: Errors-in-Variables. Experiment iv:
(
fX∗1 , fX∗2 , fX∗3

)
=(Gamma(5,1), Norm(1,1),

Norm(1,1)) and (β0, β1, β2, β3) = (3,−2,−1, 1) with N = 100
The top and bottom graphs depict the real and imaginary parts respectively of β1ϕ

′′
X∗1

(β1u)

(black solid line), the median of ∂2ϕY, ~X(~s)/∂s0∂sm

∣∣∣
(0,βu)

(blue dotted line), its 10-90% con-

fidence bands (blue dotted line with x’s), the median of ∂2ϕY, ~X(~s)/∂s0∂sm

∣∣∣
(u,0)

(red dashed

line), and its 10-90% confidence bands (red dashed line with x’s).
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Table 2.1: Estimates for β1 in the Errors-in Variables Model with N=100

Experiment
(
fX∗1 , fX∗2 , fX∗3

)
(β0, β1, β2, β3) Mean(β̂1) Stdev(β̂1)

i χ2
2, Unif(0,1), Unif(0,1) (3,2,1,-1) 2.0008 0.1645

ii exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 2.0066 0.1787
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9708 0.2084
iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,-2,-1,1) -1.9636 0.1225

Table 2.2: Estimates for β1 in the Errors-in Variables Model with N=1,000

Experiment
(
fX∗1 , fX∗2 , fX∗3

)
(β0, β1, β2, β3) Mean(β̂1) Stdev(β̂1)

i χ2
2, Unif(0,1), Unif(0,1) (3,2,1,-1) 1.9961 0.0385

ii exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 1.9977 0.0515
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9963 0.0484
iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,-2,-1,1) -1.9968 0.0352

Table 2.3: Estimates for β1 in the Errors-in Variables Model with N=10,000

Experiment
(
fX∗1 , fX∗2 , fX∗3

)
(β0, β1, β2, β3) Mean(β̂1) Stdev(β̂1)

i χ2
2, Unif(0,1), Unif(0,1) (3,2,1,-1) 1.9996 0.0085

ii exp(1), Unif(0,1), Norm(1,1) (3,2,-1,-1) 1.9983 0.0143
iii Gamma(5,1), exp(1), Poiss(1) (3,-2,1,1) -1.9994 0.0139
iv Gamma(5,1), Norm(1,1), Norm(1,1) (3,-2,-1,1) -2.0002 0.0128
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Chapter 3

Identification of Nonparametrically

Distributed Random Coefficients in

Linear Panel Data Models

3.1 Introduction

In this paper I consider the panel data linear regression model

Ynt = X ′ntβn + εnt t = 1, . . . , T n = 1, . . . , N (3.1)

where Ynt is an outcome variable, Xnt is a vector of covariates, εnt is an error, and βn is

a vector of coefficients. My main objective is to show that identification is possible even

when the coefficients are not fixed across individuals (βn = b for all n) and instead are non-

parametrically distributed random variables. To illustrate this, I identify nonparametrically

distributed random coefficients in a cross-sectional regression model, a panel data regression

model, a fixed effects regression model from Maddala (1971), Chamberlain (1982), Arellano

and Bover (1995), and Wooldridge (2005), and a first-order autoregressive panel data regres-

sion model from Alvarez and Arellano (2002), Bond and Windmeijer (2002)., and Arellano
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and Bonhomme (2011).

I identify the nonparametric joint distribution of the coefficients under various assump-

tions about the statistical dependence of coefficients on covariates, the conditional statistical

relationship of coefficients (allowing them to be statistically dependent or equal in distribu-

tion), and the number of time periods per individual relative to the number of coefficients.

Linear regression models with fixed coefficients include unobserved heterogeneity only

through the scalar error term. On the other hand, linear regression models with random

coefficients can have multiple sources of unobserved heterogeneity through the random coef-

ficients. In contrast to linear regression models with fixed coefficients, and more in line with

reality, these random coefficients allow observationally equivalent individuals to respond dif-

ferently to identical changes in covariates. For example, Card (2001) analyzes returns to

schooling using a linear regression model with random coefficients. One of the aims of his

research is to show that the marginal returns to schooling, as reflected by the random coeffi-

cient on education, are heterogeneous across the population. The focus in Foster and Hahn

(2000) is not the distribution of unobserved heterogeneity but rather the expected value of

consumer surplus, E [S (β, ·)] =
∫
b
S(b, ·)fβ(b)db. In order to estimate this expected value

they first estimate the density of the coefficients, fβ.

Beran, Feuerverger, and Hall (1996) and Hoderlein, Klemela, and Mammen (2010) study

linear models with nonparametrically distributed random coefficients that are independent

of covariates. They use a Radon transform to estimate the distributions of coefficients. I take

another approach to identification (and estimation) of the nonparametric distributions that

uses the derivative of a log characteristic function (CF) of outcome variables with respect to

a covariate. This is analogous to identification of a fixed coefficient by taking the derivative

of an expected outcome variable with respect to a covariate. Identification is possible even

when the data comes from a cross-section of the population and there are a countably infinite

number of coefficients.

Arellano and Bonhomme (2011) “regard individual specific parameters as random draws
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from an unrestricted conditional distribution given regressors.”1 I deal with the dependence

of the coefficients on the covariates by either introducing an instrumental variable or using

the variation across time for each individual within a panel dataset. My contributions

relative to Arellano and Bonhomme (2011), who use the panel data approach, are: (i) to

allow coefficients to be statistically related either because they are conditionally arbitrary

dependent or because they come from the same underlying distributions (for example, error

terms in different periods can be modeled as homogeneous), and (ii) to allow the number of

coefficients to be larger than the number of time periods.

The identification strategy uses a CF transformation to take advantage of the linear

structure of the model. The main identification steps are to: 1) take partial derivatives of

a log CF of a linear combination of outcome variables and 2) choose the arguments of this

log CF. Specifically, the linearity in Equation (3.1) is exploited by a log CF transformation

that retains the additivity:

log CF∑
YT

(·) = log CFβ1(·) + log CFβ2(·) + . . . ,

The separability of the log CFβm(·)’s is exploited by partial derivatives with respect to

covariates or arguments. This reduces the number of log CFβm(·)’s on the right side of the

equation. Then choices of arguments remove all but one of the log CFs of coefficients on the

right hand side. This log CF is now expressed in terms of an observed partial derivative of

a log CF∑
YT (·).

Estimators are constructed from the identification proofs by replacing population quanti-

ties with sample analogs. The estimators are related to deconvolution estimators, which have

slow convergence rates because of an ill-posed inverse problem and requirement of uniform

convergence rates, and the Nadaraya-Watson kernel estimator, which is a locally weighted

1Arellano and Bonhomme (2011) view this method as a fixed effects approach because there are no
restrictions on the distributions of the coefficients conditioned on covariates. Graham and Powell (2011)
view this method as a correlated random coefficients approach because the ‘random’ coefficients can vary
across individuals and the covariates can be ‘correlated’ with coefficients.
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estimator that suffers from the curse of dimensionality.2 Evdokimov (2011) shows that these

estimators are consistent but optimal rates of convergence and asymptotic distributions as of

yet have not been derived. The finite sample properties of the estimators are tested in Monte

Carlo simulations and have tight confidence bands around their theoretical counterparts.

The literature on linear models is extensive. Linear panel data models with random

coefficients are primarily concerned with expectations and variances (see Hsiao and Pesaran

(2008) for a good review). Linear panel data models with fixed effects are analyzed by

Maddala (1971), Mundlak (1978), and Chamberlain (1982). Linear panel data models with

correlated random coefficients are analyzed by Graham and Powell (2011), who identify

the expected value of the coefficients but not their distributions. Hoderlein, Nesheim, and

Simoni (2012) analyze identification of nonparametrically distributed parameters conditioned

on covariates in nonlinear models. They use a completeness condition that requires strong

restrictions on the dimensionality of parameters relative to outcome variables.

The identification framework of this paper is based on the literature on linear models

with multidimensional unobservables. The first paper in this literature is Kotlarski (1967).

Subsequent papers include Khatri and Rao (1968), Székely and Rao (2003), Bonhomme and

Robin (2011), and Ben-Moshe (2012a). In these papers the covariates are fixed across indi-

viduals and they do not show how to deal with unobserved variables that are homogeneous.

This paper is organized as follows. Section 3.2 presents the model, its assumptions,

and the identification results. Section 3.3 presents examples that illustrate how to use the

identification techniques from Section 2. Section 3.4 constructs the estimators. Section 3.5

presents Monte Carlo simulations. Section 3.6 concludes. Appendix A contains all the proofs

from Section 2 and Appendix B contains detailed solutions to the examples in Section 3.

2When coefficients and covariates are dependent and covariates are continuous I believe the curse of
dimensionality is unavoidable without additional restrictions. The reason is that the procedure is local so
that estimating the density of β|X = x̄ requires a lot of data near x̄.
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3.2 Identification

Consider the linear panel data model,

Y = Xβ

where Y ∈ RT is an observed vector of outcomes, β ∈ RM is an unobserved random vector

of coefficients, and X is a T ×M matrix of observed covariates. The goal in this paper is to

identify the nonparametric joint distribution of β.3′ 4

A general setup used in the handbook chapter of econometrics on panel data mod-

els by Arellano and Honoré (2001) is to let β = (γ′, θ′1, . . . , θ
′
T , α, ε1, . . . , εT )′ and Xt =

(W ′
t , 0, . . . , 0, Z

′
t, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)′. The model is then rewritten as

Yt = W ′
tγ + Z ′tθt + α + εt t = 1, . . . , T

where the unobservables γ and α are realized in T equations (per individual) while the

unobservables θt and εt are realized in just a single equation (per individual).

3.2.1 Identification Using the Change of Variables Theorem

In this subsection I establish identification of the joint distribution of β using the well-

known change of variables theorem. This method allows the components of β to be arbitrarily

dependent but requires β to be independent of X and dim(β) ≤ T .

Recall the change of variables theorem: Let β ∈ RM be an unobserved arbitrarily depen-

dent random vector, let g : RM → RT be a known, bijective, and differentiable function, and

3Each individual makes a random draw from the random matrix {Y,X, β}. The matrix {Yn, Xn}Nn=1

is observed while the vector {βn}Nn=1 is unobserved. For identification purposes, the joint distribution of
{Y,X} and the linear relationship Y = Xβ is assumed known.

4Some of the covariates can be intercepts so that the model is rewritten as Y = Xβ + ε.
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consider the observed vector Y ∈ RT such that

Y = g(β)

then the change of variables formula for the density of β is

fβ(b) = fY (y)

∣∣∣∣det

(
dy

db

)∣∣∣∣
where y = g(b) and

∣∣det
(
dy
db

)∣∣ is the absolute value of the determinant of the Jacobian.

The following is a straightforward modification of the change of variables theorem

Proposition 1. Let β ∈ RM be an unobserved arbitrarily dependent random vector, let

gj : RM → RT be known, bijective, and differentiable functions, and consider the observed

vectors Yj ∈ RT such that

Yj = gj(β) j = 1, . . .

then the density of β can be expressed as

fβ(b) = lim
J→∞

1

J

J∑
j=1

fYj (y)

∣∣∣∣det

(
dyj
db

)∣∣∣∣
where yj = gj(b) and

∣∣∣det
(

dyj
db

)∣∣∣ is the absolute value of the determinant of the Jacobian.

Consider the linear panel data model

Yj = Xjβ

where Yj ∈ RT is a vector of observed outcomes, β ∈ RM is a vector of arbitrarily dependent
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unobserved random coefficients, and Xj is a T ×M matrix of observed covariates.

Corollary 1. Assume X = (X1, . . .) and β are independent.5 If Xj, j = 1, . . . are square

invertible matrices, then

fβ(b) = lim
J→∞

1

J

J∑
j=1

fYj (Xjb) |det (Xj)|

Corollary 1 follows immediately from Proposition 1.

3.2.2 Identification Using Characteristic Functions

In this subsection I establish identification of the distribution of β conditioned on X

using CF transformations. These methods allow β to be dependent on X and T < dim(β).

I first explicitly describe the dependence of the unobserved coefficients β. Let β =

(β′1, . . . , β
′
M)′ and assume that conditional on X the unobserved vectors βm ∈ RKm , m =

1, . . . ,M are mutually independent but βm = (βm1, . . . , βmKm) are arbitrarily dependent.

Let X = (X1, . . . , XM) with Xm a T ×Km matrix of observed covariates, and consider the

observed vector Y ∈ RT such that
Y1
...

YT

 =


X1

11 . . . X1
1K1

...
. . .

...

X1
T1 . . . X1

TK1




β11
...

β1K1

+ . . .+


XM

11 . . . XM
1KM

...
. . .

...

XM
T1 . . . XM

TKM




βM1

...

βMKM


(3.2)

which can be represented as Y = X1β1 + . . .+XMβM .

The following theorem uses the partial derivative of the log CF of a linear combination

of outcome variables with respect to xm
∗

tk∗ , t = 1, . . . , T , which exploits the independence

of coefficients and covariates. This method allows the dimension of the coefficients to be

5If X and β are dependent then identification is possible by first conditioning on conditioning Xj = x
and then applying the change of variables theorem.
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countably infinite and subsets of β to be arbitrarily dependent but requires that the covariates

and β be independent.

Condition on X := (X1, . . . , XM) = (x1, . . . , xM) := x

Assumption 9.

i. X and β are independent

ii. Span(x′m∗) = Km∗

Theorem 12. If E [|βm∗k|] < ∞ and
uk∫
0

|(E[exp i(βm∗1u1 + . . . + βm∗k−1uk−1 +

βm∗kvk)])
−1|dvk < ∞ for all fixed u1, . . . , uk−1 and all uk in the support of the CF of βm∗,

then βm∗ is identified when Assumption 9 holds. The CF of βm∗ is

φβm∗ (~um∗)

=

T∑
t=1

E

exp

Km∗∑
k=1

1

sxm∗kt

∫ uk

0

E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
∂ ln fY |X(x)

∂xm
∗

tk

]
E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
|X = x

] dvk

w(t)

where w(t) is a weight function that satisfies
∑T

t=1w(t) = 1 and w(t) ≥ 0.

The theorem uses the partial derivative of the log CF of ~Y with respect to Xm
tk ,

∂ lnE[exp(i~Y ~s)]/∂Xm
tk and the independence of Xm

tk and β. This is analogous to βmk =

∂E[Yt]/∂X
m
tk in the fixed coefficient framework. This approach no longer works if the unob-

served heterogeneity (ε in the fixed coefficients framework and β in the random coefficients

framework) depends on Xm
tk . When β is dependent on Xm

tk then the partial derivative of the

log CF of Y with respect to Xm∗

t∗k∗ includes two terms: (1) the effects of the change on Y and

(2) the effects on the density of β

∂ϕβm∗ |X(st∗xt∗m∗)

∂xt∗m∗
=
∂ lnE [exp (iβm∗xt∗m∗st∗)]

∂xt∗m∗

=
ist∗E [βm∗ exp (iβm∗xt∗m∗st∗) |X = x]

E [exp (iβm∗xt∗m∗st∗) |X = x]
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+
E
[

exp (iβm∗xt∗m∗st∗)
∂ ln fβm∗ |X

(b)

∂xt∗m∗

∣∣∣X = x
]

E [exp (iβm∗xt∗m∗st∗) |X = x]

When X and β are independent then the second term equals 0 and Theorem 12 follows.

When X and β are dependent then the second term is not 0 and different techniques need

to be used. Corollary 2 identifies β by an instrumental variable approach and Theorems 13,

14, and 15 identify β by using partial derivatives with respect to st, which will not include

the second term.

Corollary 2. Assume βmk is dependent on Xm
k = (Xm

1k, . . . , X
m
Tk)
′ but there exists an in-

strumental variable Z = (Z1, . . . , ZT )′ such that Xm
k = Zγ where γ ∈ R. If γ and β are

independent and (Z,X1
1 , . . . , X

m
k−1, X

m
k+1, . . . , X

M
KM

) is independent of γ and β, then the joint

distribution of βm is identified. If βm is dependent on more covariates then β can still

identified if there are more instrumental variables.

Before stating Theorem 13 the following definition is needed:6′ 7′ 8

xt
∗

=
(
xt
∗

1 . . . xt
∗

M

)
=

(
x1I

(⋃
k

x1t∗k 6= 0

)
. . . xMI

(⋃
k

xMt∗k 6= 0

))

Assumption 10. There exists a tk∗ ∈ {1, . . . , T}, and a vector ~sm∗ = (sm∗1, . . . , sm∗T )′ for

k∗ = 1, . . . , Km∗ such that

i. xtk∗ ′~sm∗ =


xtk∗ ′1 ~sm∗

...

xtk∗ ′M ~sm∗

 =


~0∑

m<m∗ Km

~sm∗

~0∑
m>m∗ Km


6The function I(E) is the indicator function.
7Zero columns are removed from all matrices in this paper.
8Theorems 13 and 14 are very similar to theorems in Ben-Moshe (2012a), who has some further details

and discussion on these theorems.
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ii. am
∗

tk∗k
= 0 for all k 6= k∗

where ~0J = (0, . . . , 0)′ is a column vector with J zeros and ~sm∗ = (sm∗1, . . . , sm∗Km∗ )
′.

Theorem 13. If E [|βm∗k|] < ∞ and
uk∫
0

|(E[exp i(βm∗1u1 + . . . + βm∗k−1uk−1 +

βm∗kvk)])
−1|dvk < ∞ for all fixed u1, . . . , uk−1 and all uk in the support of the CF of βm∗,

then βm∗ is identified when Assumption 10 holds. The CF of βm∗ is

φm∗|X(~um∗) = exp

Km∗∑
k=1

1

xm
∗

tkk

∫ uk

0

iE
[
Ytk∗ exp

(
iY ′
(
xtk∗

)+
(~0′, u1, . . . , uk−1, vk, 0, . . . , 0,~0

′)′
)]

E
[
exp

(
iY ′ (xtk∗ )+ (~0′, u1, . . . , uk−1, vk, 0, . . . , 0,~0′)′

)] dvk

−
Km∗∑
k=1

uk
xm
∗

tkk

∑
m 6=m∗

Km∑
k′=1

xmtkk′E [βmk′ |X = x]


Remark 21. The distributions of the coefficients in Corollary 1, Theorem 12, and Theorem

13 can be a point mass. This is the fixed coefficient linear regression model.

Theorem 14 establishes identification of the joint distribution of β by solving a system

of equations of second-order partial derivatives of the log CF of a linear combination of

outcome variables. This method allows X and β to be arbitrarily dependent and Km ≥ 1,

m = 1, . . . ,M so that conditional on X subsets of β can be arbitrarily dependent. The

model is described as in Equation (3.2), Y = β1X1 + . . .+ βMXM .

Condition on X := (X1, . . . , XM) = (x1, . . . , xM) := x. Let xm = (xm1 , . . . , x
m
Km

) be a

partition of the matrix xm where xmk is the kth column of xm. Define the matrix multiplication

xm ∗ xm :=(
xm1 ⊗ xm1 , xm1 ⊗ xm2 + xm2 ⊗ xm1 , . . . , xmk ⊗ xmk , . . . , xmk ⊗ xmk+j + xmk+j ⊗ xmk , . . . , xmKm ⊗ x

m
Km

)
where ⊗ is the Kronecker product and 1 ≤ j ≤ Km − k. The matrix xm ∗ xm has dimension

T 2 ×Km(Km + 1)/2. Now, let x = (x1, . . . , xM) be a partition of the matrix x and define
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the matrix multiplication

x� x := (x1 ∗ x1 , . . . , xM ∗ xM)

where x� x is has dimension T 2 ×Km(Km + 1)/2.

Assumption 11.

i. Rank(x� x) =
∑M

m=1Km(Km + 1)/2

ii. Rank(xm) = Km for all m

Theorem 14. If
∫ uk2
0

∫ uk1
0

(
E
[
exp

(
i
∑k1−1

k=1 βmkuk + iβmk1vk1 + iβmk2vk2

)])−2
dvk1dvk2 <

∞ for all fixed s1, . . . , sk1−1 and all sk1 , sk2 in the support of the CF of ~βm and

E [|βmk1βmk2 |] <∞ for k1, k2 = 1, . . . , Km, then the joint distribution of β conditional on X

is identified when Assumption 11 holds. The CF of βm∗ is

φm|X(~um) = exp

Km∑
k=1

∫ uk

0

∫ wk

0

∂ϕ2
m|X (~ωm)

∂ω2
mk

∣∣∣∣∣
(0,...,vk,0,...,0)

dvkdwk

+
∑
k1<k2

∫ uk2

0

∫ uk1

0

∂ϕ2
m|X (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣∣
(u1,...,uk1−1,vk1 ,0,...,0,vk2 ,0,...,0)

dvk1dvk2

+

Km∑
k=1

ukE [βmk|X = x]

)

Let Km = 1, m = 1, . . . ,M so that each matrix Xm = (Xm
11, . . . , X

m
t1 , . . . , X

m
T1)
′ has only

one column. The system is represented as


Y1
...

YT

 =


X11 . . . X1M

...
. . .

...

XT1 . . . XTM




β1
...

βM


where β1, ... , βM−1, and βM are mutually independent.
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In Theorem 4, I allow coefficients conditioned on X to be equal in distribution.9 This

allows homogeneity in the unobservables so that unobserved variables are drawn from the

same distributions but do not need to be identical. To be specific define the equivalence

classes

[βm̃] =
{
βm : βm

d
= βm̃

}

where ′′βm
d
= βm̃

′′ means βm is equal in distribution to βm̃

fβm|X(b) = fβm̃|X(b) ∀ b ∈ R

Let
{

[β1] , . . . ,
[
βM̃
]}

be the equivalence classes, which are disjoint and partition (β1, . . . , βM).

Now, condition on X := (X1, . . . , XM) = (x1, . . . , xM) := x and let x = (x1, . . . , xM) be

a partition of x where xm is the mth column of x and define10, 11

x̃m̃ :=
(
x̃m̃1 . . . x̃m̃M

)
= (x1I (β1 ∈ [βm̃]) . . . xMI (βM ∈ [βm̃]))

x̃ :=
(
x̃1 . . . x̃M̃

)
x̃ ? x̃ :=

(
M∑
m=1

x̃1m ⊗ x̃1m . . .
M∑
m=1

x̃M̃m ⊗ x̃M̃m

)

Assumption 12.

i. Km = 1 so β is mutually independent

9A similar kind of relationship structure on β can be used to modify Theorem 12.
10Columns of x̃m̃ equal to the zero vector are removed.
11The matrix x̃ ? x̃ has some repeated rows because the order of the scalar multiplication does not matter,

that is xt1mxt2m = xt2mxt1m, so for calculation purposes I remove repeated rows and define the matrix x̃?̄x̃
as the matrix x̃ ? x̃ without repeated rows so that a typical row looks like[

M∑
m=1

xt1xt+j1 , . . . ,

M∑
m=1

xtmxt+jm

]

where 0 ≤ j ≤ T − t. The matrix xm?̄xm has dimension (T + 1)T/2× M̃ .
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ii. The equivalence classes [βm̃]M̃m̃=1 are known

iii. There exists a vector ~̃s ∈ RT such that

x̃′~̃s = ~̃u

where ~̃u =
(
ũ1l1, . . . , ũM̃ lM̃

)′ ∈ RM , um̃ ∈ R with um̃ and um̃′ not necessarily distinct

and lm̃ = (1, . . . , 1)′ is a column vector of 1’s of dimension | [βm̃] | × 1 with | [βm̃] | =∑M
m=1 I (βm ∈ [βm̃]) is the size of the equivalence class.

iv. Rank(x̃ ? x̃) = M̃

Theorem 15. If E [β2
m̃] < ∞ and

∫ um̃
0

∫ w
0

(E [exp (ivβm̃)])−2dvdw < ∞ for all um̃ in the

support of βm̃, then the joint distribution of β conditional on X is identified when Assumption

12 holds. The CF of βm̃ is

φm̃|X(um̃) = exp

(∫ um̃

0

∫ w

0

ϕ′′m̃|X (v) dvdw + um̃E [βm̃|X = x]

)

Remark 22. Assumption 12ii can be generalized by βm
d
=
∑
amm̂β̃m̃ but more caution is

needed because equivalence classes might not be disjoint.

Theorems 13, 14, and 15 assume that the conditional expectations of some unobservables

are known. This is a strong assumption. There are at least two ways to deal with this:

(1) Assume some unobservables have known expectations and use the formula E[β|X] =

E[(X ′X)−1X ′Y |X] to identify the other expectations. As a rule of thumb the number of

expectations that can be identified is less than or equal to the number of outcome variables

(so that Xhas a pseudoinverse). Graham and Powell (2011), however, identify conditional

expectations in a similar model under weaker condition can also be used (2) Concede that the

expectations are not identified; and instead assume E[β|X] = 0 and identify the parameter
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b = E[Y ] in the model Y = b+Xβ (or E[ε|X] = E[Y |X] in the model Y = Xβ + ε), which

is similar to not being able to identify both the intercept and mean of the error in a fixed

coefficient linear regression model.

3.3 Illustrative Examples

The following illustrative examples demonstrate how to use the Theorems in Section

3.2.2.12

3.3.1 Example 1: Cross Sectional and Panel Data Model

Consider the linear panel data model with random coefficients13

Yt = α +X ′tβ + εt t = 1, . . . , T

i. Let T = 1 and β ∈ RM so that the data comes from a cross section of the population

Y1 = α +X ′1β + ε1

Assume X and β are independent, and (α, β1, . . . , βM , ε1) is independent. Using Theo-

rem 12,

φβm(u) = exp

E
x1m ∫ u

0

E

[
exp (iY1v/x1m)

∂ ln fY1|X
∂x1m

]
vE [exp (iY1v/x1m)]

dv


 m = 1, . . . ,M

12More detailed explanations of the examples are in Appendix B.
13Some of the papers that consider this setup are: Maddala (1971), Chamberlain (1982), Arellano and

Bover (1995), and Wooldridge (2005).

133



The unobservables α and ε1 are not separately identified but

φα+ε1(u) = E

[
φY1|X(u)∏M

m=1 φβm(x1mu)

]

ii. As in Example 1i, let T = 1 and β ∈ RM . Assume X1 = iM (the M × 1 vector of 1s)

Y1 = α + β1 + . . . βM + ε1

Assume (α, β1, . . . , βM , ε1) is independent but α
d
= β1

d
= . . .

d
= βM

d
= ε1 and assume

without loss of generality that E [α] = E [β1] = . . . = E [βM ] = E [ε1] = 0 (otherwise

normalize by subtracting E[Y1]).

The CF of βm is

φβm (s1) = [φY1 (s1)]
1

M+2

Remark 23. When Y1 = α + ε1 then this is the deconvolution problem with the as-

sumption that α
d
= ε1. When M → ∞ then this is the start of the proof of the central

limit theorem, which uses a Taylor expansion of the CF and further assumptions about

existence of higher order moments.

iii. Let T = 2 and β ∈ R

Y1 = α +X1β1 + ε1

Y2 = α +X2β1 + ε2

Assume ε1
d
= ε2|X and (α, β1, ε1, ε2) are mutually independent conditional on X, assume

E[ε1|X] = E[ε2|X] = 0, and assume X and β are arbitrarily dependent.14 When x1 6= x2

14As mentioned earlier E[ε1|X] = E[ε2|X] = 0 is a strong assumption (notice E[α|X] 6= 0 and E[β1|X] 6=
0). This can be replaced with other perhaps weaker assumptions. Graham and Powell (2011) analyze the
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then the expectation of (α, β1) conditional on X is

E

 α

β1

∣∣∣∣∣∣∣X = x

 =

 − x2
x1−x2

x1
x1−x2

1
x1−x2 − 1

x1−x2

E

 Y1

Y2

∣∣∣∣∣∣∣X = x


Let (β1, β2, β3, β4) = (α, β1, ε1, ε2), then

 Y1

Y2

 =

 1 X1 1 0

1 X2 0 1




β1

β2

β3

β4


I now check Assumptions 12iii and 12iv. The details and explicit formulas for the CFs

are left to Appendix B.

x̃1 =

 1

1

 x̃2 =

 x1

x2

 x̃3 =

 1 0

0 1



x̃?̄x̃ =


1 x21 1

1 x1x2 0

1 x22 1


Set ~̃s = (1, 1) then x̃1′~̃s = 1 , x̃2′~̃s = x1 + x2, x̃

3′
1 ~s = x̃3′2

~̃s = (1, 1)′ so Assumption 12iii is

satisfied. Assume |x1| 6= |x2| then Rank(x̃?̄x̃) = 3 and Assumption 12iv holds. Theorem

15 identifies the joint distribution of (α, β1, ε1, ε2).

Remark 24. By relabeling the variables Example 1iii can be viewed as an extension of

same system of equations with ε2 = 0.
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a measurement error model with a repeated measurement15

X1 = X∗ +W ∗ + ε1

X2 = X∗ + aW ∗ + ε2 a2 6= 1

where X1 and X2 are two observed measurements. X∗ and W ∗ are unobserved true

variables, ε1 and ε2 are independent and identically distributed measurement errors, and

a is a known constant.

3.3.2 Example 2: First-Order Autoregressive Process

The approach in this paper can be used under the more general formulation

Y = A(X, δ)β

where A(·) is a T ×M matrix of continuously differentiable functions that are known up to

a vector of unknown common parameters δ.

Consider, for example, the first-order autoregressive panel data model

Yt = δYt−1 +X ′tβ + εt |δ| < 1

This model is considered, for example, by Maddala (1971), Alvarez and Arellano (2002),

Bond and Windmeijer (2002), and Arellano and Bonhomme (2011). These papers assume δ

and β are fixed parameters, T ≥ 3, and E [ε1ε2] = E [Xε1] = E [Xε2] = 0. I assume that δ is

a fixed parameter, β is a random variable, and T = 2. I require ε1 and ε2 to be independent

conditional on X and ε1
d
= ε2|X.16

15The measurement error model with repeated measurements is analyzed for example by Kotlarski (1967)
and Li and Vuong (1998).

16ε1 and ε1 do not need to be equal in distribution for identification of δ.
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To be specific assume Xt is a scalar and T = 2, then

Y1 = X1β1 + δY0 + ε1

Y2 = X2β1 + δX1β1 + δ2Y0 + δε1 + ε2

where δ is an unknown fixed parameter and β1 is a nonparametrically distributed random

coefficient. Assume ε1
d
= ε2|X and (β1, Y0, ε1, ε2) are random variables that are mutually

independent conditional on X, assume E[ε1|X] = E[ε2|X] = 0, and assume X and β1 are

arbitrarily dependent.17 The fixed parameter is identified in Appendix B using a technique

from Ben-Moshe (2012b).

When x2 6= 0, then

E[β1|X] =
E[Y2|X]− δE[Y1|X]

x2

E[Y0|X] =
(x2 + x1δ)E[Y1|X]− x1E[Y2|X]

x2δ

Let (β1, β2, β3, β4) = (β1, Y0, ε1, ε2) then

 Y1

Y2

 =

 X2 + δX1 δ2 δ 1

X1 δ 1 0




β1

β2

β3

β4


I now check Assumptions 12iii and 12iv

x̃1 =

 x1

x2 + δx1

 x̃2 =

 δ

δ2

 x̃3 =

 1 0

δ 1



17Despite E[ε1|X] = E[ε2|X] = 0, the covariates can be dependent with ε1 and ε2 in other ways.
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x̃?̄x̃ =


x21 δ2 1

(x2 + δx1)x1 δ3 δ

(x2 + δx1)
2 δ4 δ2 + 1


Set ~s = (u(1− δ), u) then x̃1′~s = u(x1 + x2) , x̃2′~s = uδ , x̃3′1 s = x̃3′2 s = u so Assumption 12iii

is satisfied. Assume x1 6= 0, x2 6= 0, δ 6= 0 then Rank(x̃?̄x̃) = 3 and Assumption 12iv holds.

Theorem 15 identifies the joint distribution of (β1, Y0, ε1, ε2).

Remark 25. Similar techniques can be used to identify fixed parameters and unobserved

distributions when Yt follows an Autoregressive Process of order P (see for example Maddala

(1971))

Yt =
P∑
p=1

θpYt−p +X ′tβ + εt

3.4 Estimation

Given i.i.d observations {Yn, Xn}Nn=1, estimators use the identification results by replacing

population quantities with sample analogs.

When X and β are independent and T = Dim(β) then an estimator is based on Corollary

1. Estimate Fβ(b) by the empirical distribution function

F̂β(b) =
1

N

N∑
n=1

I
(
X−1n Yn ≤ b

)
This method is attractive when it can be used because estimators use densities of observed

variables rather than CFs, which suffer from slow convergence rates and unknown asymptotic

distributions.

When X and β are independent and T < Dim(β) then an estimator is based on Theorem
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12. Estimate φβ(mk)∗ (u) by replacing population quantities with sample analogs

φ̂β(mk)∗ (u) = exp

 1

N

N∑
n=1

1

s
(mk)∗

t∗xn

∫ u

0

Ê

[
exp

(
ivY ′s

(mk)∗
x

) ∂ ln fY |X
∂xm

∗
t∗k∗

]
vÊ
[
exp

(
ivY ′s

(mk)∗
x

)] dv


where for a function g(x, y)

Ê [g(y, x)] =

∑
nKX(x− xn)g(yn, xn)∑

nKX(x− xn)

is the Nadaraya-Watson kernel estimator and KX is a Kernel that weights the observations

xn based on how close they are to x.

The density is identified using the inverse Fourier transformation and is estimated by a

nonparametric kernel deconvolution estimator

f̂β(mk)∗ |X(b) =
1

2π

∫
φK(uhN)e−iubφ̂β(mk)∗ |X(u)du

where φK is the Fourier transform of a kernel K supported on [−1, 1] and hN is the bandwidth

of the kernel. In the Simulations section I use a second-order kernel18

K(b) =
48 cos(b)

πb4

(
1− 15

b2

)
− 144 sin(b)

πb5

(
2− 5

b2

)

whose Fourier transform is

φK(u) = (1− u2)3I(u ∈ [−1, 1])

Estimators based on Theorems 13 to 15 replace population quantities with sample analogs

and are constructed in a similar way to the estimator above for Theorem 12.

I do not prove consistency, which can be obtained from the existing literature. In par-

18See Delaigle and Gijbels (2002).
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ticular, Evdokimov (2011) derives uniform convergence rates for a conditional distribution

using partial derivatives of CFs.19 Estimators that use deconvolutions are well-known to

have slow convergence rates (see Carroll and Hall (1988) and Fan (1991)). The kernel-based

estimator is a local estimator that weights data around x and will suffer from the curse of

dimensionality.

3.5 Simulations

In this section, I study the finite sample behavior of the estimators obtained from Corol-

lary 1, Theorem 12, and Theorem 15. The estimators of the densities have tight confidence

bands around their underlying counterparts.

3.5.1 Estimator Using Corollary 1

Consider the linear panel data model with random coefficients,

Y1 = β1X11 + β2X12

Y2 = β1X21 + β2X22

Assume (X11, X12, X21, X22) and β are independent and

 β1

β2

 ∼ N


 0

0

 ,
 1 0.5

0.5 1






X11

X12

X21

X22


∼ N





5

5

5

5


,



1 0.3 0.3 0.3

0.3 1 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1




Based on Corollary 1, I estimate the marginal densities of β1 and β2 by generating 100

simulations each of sample size 100 and I estimate the joint density of (β1, β2) by generating

19Consistency in models without covariates can be found in, for example, Bonhomme and Robin (2010)
and Ben-Moshe (2012a).
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100 simulations each of sample size 500. The results are summarized graphically in Figures

3.1 and 3.2. Figure 3.1 represents the results for the marginal densities and figure 3.2

represents the results for the joint density.

3.5.2 Estimator Using Theorem 12

Consider the cross-sectional linear regression model with random coefficients

Y1 = β1X1 + β2X2 + ε1

Assume (X1, X2) and (β1, β2) are independent and

 β1

β2

 ∼ N


 0

0

 ,
 1 0

0 1




 X1

X2

 ∼ N


 5

5

 ,
 1 0.3

0.3 1


 ε1 ∼ N (0, 1)

Based on Theorem 12, I estimate the marginal densities of β1 and β2 by generating 100

simulations each of sample size 500. The results are summarized graphically in Figure 3.3.

3.5.3 Estimator Using Theorem 15

Consider the linear panel data model with random coefficients as in Example 1iii,

Y1 = α + βX1 + ε1

Y2 = α + βX2 + ε2

141



Assume



α

β

X1

X2


∼ N





0

0

5

10


,



1 0 0.3 0.3

0 1 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1




ε1 ∼ N (0, 1)

ε2 ∼ N (0, 1)

so that (X1, X2) and (α, β) are dependent, the distributions of α and β are mutually inde-

pendent conditional on X1, and ε1 and ε2 are equally distributed and independent of X1,

X2, α, and β.

Based on Theorem 15, I estimate the marginal density of β by generating 100 simulations

each of sample size 500. The result is summarized graphically in Figure 4.

3.6 Conclusion

I study a linear model with nonparametrically distributed random coefficients. I identify

the nonparametric distributions of these coefficients. The distributions of the coefficients

can depend on covariates, coefficients can be conditionally statistically dependent or have

homogeneous distributions, and the number of coefficients can be larger than the number of

time periods per individual. I present examples to illustrate how the identification results

can be used in practice and test their finite sample properties using Monte Carlo simulations,

which suggest a practical estimation procedure.
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3.7 Appendix A

3.7.1 Proof of Proposition 1

lim
J→∞

1

J

J∑
j=1

fYj (y)

∣∣∣∣det

(
dyj
db

)∣∣∣∣ = lim
J→∞

1

J

J∑
j=1

fβ(b) = fβ(b)

where the first equality follows by the change of variables theorem.

3.7.2 Proof of Theorem 12

Let φY |X denote the CF of Y conditioned on X := (X1, . . . , XM ) = (x1, . . . , xM ) := x and let ~s =

(s1, . . . , sT ). Then

φY |X(~s) = E [exp (iY1s1 + . . .+ iYT sT ) |X = x]

= E
[
exp

(
i(x1

11β11 + . . .+ xM1KMβ1KM )s1 + . . .+ i(x1
T1β11 + . . .+ xMTKMβMKM )sT

)
|X = x

]
= E

[
exp

(
i(x1

11s1 + . . .+ x1
T1sT )β11 + . . .+ i(xM1KM s1 + . . .+ xMTKM sT )βMKM

)
|X = x

]
=

M∏
m=1

E

[
exp

(
iβm1

T∑
t=1

xmt1st + . . .+ iβmKm

T∑
t=1

xmtKmst

)]

where the second equality follows by substituting Yt = x1
t1β11 + . . .+xMtKMβMKM and the last equality follows

from the independence assumptions on β and the independence of X and β.

Let ϕY |X(~s) = lnφY |X(~s) and

ϕm (~ωm) = ϕβm1,...,βmKm
(ωm1, . . . , ωmKm) = lnE [exp (iβm1ωm1 + . . .+ iβmKmωmKm)]

then

ϕY |X(~s) =

M∑
m=1

ϕm

(
T∑
t=1

xmt1st, . . . ,

T∑
t=1

xmtKmst

)
=

M∑
m=1

ϕm
(
xm′1 ~s, . . . , xm′Km~s

)
=

M∑
m=1

ϕm

(
(x′m~s)

′
)

where x = (x1, . . . , xM ) partitions x and xmk = (xm1k, . . . , x
m
Tk)
′

is the kth column of xm.

The partial derivative with respect to xm
∗

t∗k is

∂ϕY |X(~s)

∂xm
∗

t∗k

= st∗ ×
∂ϕm∗ (~ωm∗)

∂ωk

∣∣∣∣
(x′m∗s)

′
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By Assumption 9i, span(x′m∗) = Km∗ so for any ~um∗ ∈ RKm∗ there exists ~sxm∗k ∈ RT that solves

x′m∗~sxm∗k = ~um∗ . One solution is ~sxm∗k = (x′m∗)
+
~um∗ . Then

∂ϕY |X (~s)

∂xm
∗

t∗k

∣∣∣∣
(x′m∗)

+
~um∗

= sxm∗kt∗ ×
∂ϕm∗ (~ωm∗)

∂ωk

∣∣∣∣
~um∗

(3.3)

The CF of βm∗ is expressed in terms of its first-order partial derivatives

φβm∗ (~um∗) = exp

(
Km∗∑
k=1

∫ sk

0

∂ϕm∗ (~ωm∗)

∂ωk

∣∣∣∣
(u1,...,uk−1,vk,0,...,0)

dvk

)

= exp

(
Km∗∑
k=1

1

sxm∗kt∗

∫ uk

0

∂ϕY |X (~s)

∂xm
∗

t∗k

∣∣∣∣
(x′m∗)

+
(u1,...,uk−1,vk,0,...,0)′

dvk

)

= exp

Km∗∑
k=1

1

sxm∗kt∗

∫ uk

0

∂ lnE
[
exp

(
~Y ′~s
)
|X = x

]
∂xm

∗
t∗k

∣∣∣∣∣∣
(x′m∗)

+
(u1,...,uk−1,vk,0,...,0)′

dvk


= exp

Km∗∑
k=1

1

sxm∗kt∗

∫ uk

0

E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
∂ ln fY |X(x)

∂xm
∗

t∗k

]
E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
|X = x

] dvk


where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by

substituting Equation (3.3).

For estimation purposes, expectation is taken over X and weighted for each t

φβm∗ (~um∗)

=

T∑
t=1

E

exp

Km∗∑
k=1

1

sxm∗kt

∫ uk

0

E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
∂ ln fY |X(x)

∂xm
∗

tk

]
E
[
exp

(
~Y ′ (x′m∗)

+
(u1, . . . , uk−1, vk, 0, . . . , 0)′

)
|X = x

] dvk

w(t)

where w(t) is a weight function that satisfies
∑T
t=1 w(t) = 1 and w(t) ≥ 0.

The CF of ~Um∗ is bounded using the regularity conditions: E [|βm∗k|] < ∞ and
uk∫
0

|(E[exp i(βm∗1u1 +

. . .+ βm∗k−1uk−1 + βm∗kvk)])−1|dvk <∞ for k = 1, . . . ,Km∗ .

This shows that the CF of βm∗ is identified. The density of βm∗ is identified using the bijection between

densities and CFs by the inverse Fourier transform

fm∗(~bm∗) =
1

2π

∫
e−i~u

′
m∗
~bm∗φm∗(~um∗)d~um∗

This identifies the joint distribution of βm for all m and in turn the joint distribution of β by the mutual
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independence assumption.

3.7.3 Proof of Corollary 2

The proof uses Theorem 12 twice and the Change of Variables Theorem: The distribution of γ ∈ R is

identified from Xm
k = Zγ using Theorem 12. Substitute Xm

k = Zγ into

Y = Xβ

= (X1
1 , . . . , X

m
k−1, Z,X

m
k+1, . . . , X

M
KM )(β11, . . . , βmk−1, γβmk, βmk+1, . . . , βMKM )′

The joint distribution of (βm1, . . . , βmk−1, γβmk, βmk+1, . . . , βmKm) is identified using Theorem 12. The joint

distribution of βm is identified from the joint distribution of (βm1, . . . , βmk−1, γβmk, βmk+1, . . . , βmKm) and

γ using their independence and the Change of Variables Theorem.

3.7.4 Proof of Theorem 13

Let φY |X denote the CF of Y conditioned on X := (X1, . . . , XM ) = (x1, . . . , xM ) := x and let ~s =

(s1, . . . , sT ). Then

φY |X(~s) = E [exp (iY1s1 + . . .+ iYT sT ) |X = x]

= E
[
exp

(
i(x1

11β11 + . . .+ xM1KMβ1KM )s1 + . . .+ i(x1
T1β11 + . . .+ xMTKMβMKM )sT

)
|X = x

]
= E

[
exp

(
i(x1

11s1 + . . .+ x1
T1sT )β11 + . . .+ i(xM1KM s1 + . . .+ xMTKM sT )βMKM

)
|X = x

]
=

M∏
m=1

E

[
exp

(
iβm1

T∑
t=1

xmt1st + . . .+ iβmKm

T∑
t=1

xmtKmst

)
|X = x

]

where the second equality follows by substituting Yt = x1
t1β11 + . . .+xMtKMβMKM and the last equality follows

from the independence assumptions.

Let ϕY |X(~s) = lnφY |X(~s) and

ϕm|X (~ωm) = ϕβm1,...,βmKm
(ωm1, . . . , ωmKm |X) = lnE [exp (iβm1ωm1 + . . .+ iβmKmωmKm) |X = x]

then

ϕY |X(~s) =

M∑
m=1

ϕm|X

(
T∑
t=1

xmt1st, . . . ,

T∑
t=1

xmtKmst

)
=

M∑
m=1

ϕm|X
(
xm′1 ~s, . . . , xm′Km~s

)
=

M∑
m=1

ϕm|X

(
(x′m~s)

′
)
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where x = (x1, . . . , xM ) partitions x and xmk = (xm1k, . . . , x
m
Tk)
′

is the kth column of xm.

The first-order partial derivative with respect to stk∗ is

∂ϕY |X(~s)

∂stk∗
=

M∑
m=1

Km∑
k=1

xmtk∗k
∂ϕm|X (~ωm)

∂ωmk

∣∣∣∣
(x′m~s)

′

=

M∑
m=1

Km∑
k=1

xmtk∗k
∂ϕm|X (~ωm)

∂ωmk

∣∣∣∣(
I
(⋃

k x
m
tk∗k
6=0
)

(x′m~s)
′
)

=

M∑
m=1

Km∑
k=1

xmtk∗k
∂ϕm|X (~ωm)

∂ωmk

∣∣∣∣(
x
tk∗ ′
m ~s

)′

where xtk∗ =
(
xtk∗1 , . . . , xtk∗M

)
partitions xtk∗ .

By Assumption 10i, there exists ~sm∗ such that xtk∗ ′m ~sm∗ = ~0Km for all m 6= m∗ and xtk∗ ′m∗ ~sm∗ = ~um∗ ∈

RK∗m . One solution is ~sm∗ = (xtk∗ )
+
(
~0′∑

m<m∗ Km
, ~u′m∗ , ~0

′∑
m>m∗ Km

)′
. Denote this solution as ~sm∗ =

(xtk∗ )
+

(~0′, ~u′m∗ ,~0
′)′. Then

∂ϕY |X (~s)

∂stk∗

∣∣∣∣
(xtk∗ )

+
(~0′,~u′

m∗ ,
~0′)′

=

Km∗∑
k=1

xm
∗

tk∗k

∂ϕm∗|X (~ωm∗)

∂ωm∗k

∣∣∣∣
~um∗

+
∑
m 6=m∗

Km∑
k=1

∂ϕm|X (~ωm)

∂ωmk

∣∣∣∣
~0′Km

= xm
∗

tk∗k∗
∂ϕm∗|X (~ωm∗)

∂ωm∗k∗

∣∣∣∣
~um∗

+
∑
m6=m∗

Km∑
k=1

xmtk∗kE [βmk|X = x] (3.4)

where the second equality follows from Assumption 10ii that xm
∗

tk∗k
= 0 for all k 6= k∗, and the assumption∑

m 6=m∗
∑Km
k=1 x

m
tk∗k

E [βmk|X = x] is previously identified or assumed known. The CF of βm∗|X is expressed

in terms of its first-order partial derivatives

φm∗|X(~um∗)

= exp

(
Km∗∑
k=1

∫ uk

0

∂ϕm∗|X(~ωm∗)

∂ωm∗k

∣∣∣∣
(u1,...,uk−1,vk,0,...,0)

dvk

)

= exp

(
Km∗∑
k=1

(
1

xm
∗

tkk

∫ uk

0

∂ϕY |X (~s)

∂stk

∣∣∣∣
(xtk∗ )

+
(~0′,u1,...,uk−1,vk,0,...,0,~0′)′

dvk

−uk
∑
m 6=m∗

Km∑
k′=1

xmtkk′E [βmk′ |X = x]


= exp

(
Km∗∑
k=1

1

xm
∗

tkk

∫ uk

0

∂ lnE [exp (iY ′~s)]

∂tpk∗

∣∣∣∣∣
(xtk∗ )

+
(~0′,u1,...,uk−1,vk,0,...,0,~0′)′

dvk

−
Km∗∑
k=1

uk
xm
∗

tkk

∑
m 6=m∗

Km∑
k′=1

xmtkk′E [βmk′ |X = x]


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= exp

Km∗∑
k=1

1

xm
∗

tkk

∫ uk

0

iE
[
Ytk∗ exp

(
iY ′ (xtk∗ )

+
(~0′, u1, . . . , uk−1, vk, 0, . . . , 0,~0

′)′
)]

E
[
exp

(
iY ′ (xtk∗ )

+
(~0′, u1, . . . , uk−1, vk, 0, . . . , 0,~0′)′

)] dvk

−
Km∗∑
k=1

uk
xm
∗

tkk

∑
m 6=m∗

Km∑
k′=1

xmtkk′E [βmk′ |X = x]


where the first equality uses the Fundamental Theorem of Calculus and the second equality follows by

substituting Equation (3.4).

The CF of βm∗ is bounded using the regularity conditions: E [|βm∗k|] < ∞ and
uk∫
0

|(E[exp i(βm∗1u1 +

. . .+ βm∗k−1uk−1 + βm∗kvk)])−1|dvk <∞ for k = 1, . . . ,Km∗ .

This shows that the CF of βm∗ |X is identified. The density of βm∗ |X is identified using the bijection

between densities and CFs by the inverse Fourier transform

fm∗|X(~bm∗) =
1

2π

∫
e−i~um∗

~bm∗φm∗|X(~um∗)d~um∗

3.7.5 Proof of Theorem 14

Let φY |X denote the CF of Y conditioned on X := (X1, . . . , XM ) = (x1, . . . , xM ) := x and let ~s =

(s1, . . . , sT ). Then

φY |X(~s) = E [exp (iY1s1 + . . .+ iYT sT ) |X = x]

= E
[
exp

(
i(x1

11β11 + . . .+ xM1KMβ1KM )s1 + . . .+ i(x1
T1β11 + . . .+ xMTKMβMKM )sT

)
|X = x

]
= E

[
exp

(
i(x1

11s1 + . . .+ x1
T1sT )β11 + . . .+ i(xM1KM s1 + . . .+ xMTKM sT )βMKM

)
|X = x

]
=

M∏
m=1

E

[
exp

(
iβm1

T∑
t=1

xmt1st + . . .+ iβmKm

T∑
t=1

xmtKmst

)
|X = x

]

where the second equality follows by substituting Yt = x1
t1β11 + . . .+xMtKMβMKM and the last equality follows

from the independence assumptions.

Let ϕY |X(~s) = lnφY |X(~s) and

ϕm|X (~ωm) = ϕβm1,...,βmKm
(ωm1, . . . , ωmKm |X) = lnE [exp (iβm1ωm1 + . . .+ iβmKmωmKm) |X = x]

then

ϕY |X(~s) =

M∑
m=1

ϕm|X

(
T∑
t=1

xmt1st, . . . ,

T∑
t=1

xmtKmst

)
=

M∑
m=1

ϕm|X
(
xm′1 ~s, . . . , xm′Km~s

)
=

M∑
m=1

ϕm|X

(
(x′m~s)

′
)
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where x = (x1, . . . , xM ) partitions x and xmk = (xm1k, . . . , x
m
Tk)
′

is the kth column of xm.

The second-order partial derivatives of ϕY |X(~s) are



∂2ϕY |X(~s)

∂s2
1

...

∂2ϕY |X(~s)

∂st1∂st2
...

∂2ϕY |X(~s)

∂s2
T


= (x� x)



∂ϕ2
1|X (~ω1)

∂ω2
11

∣∣∣∣∣
(x′1~s)

′

...

∂ϕ2
m|X (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣∣
(x′m~s)

′

...

∂ϕ2
M |X (~ωM )

∂ω2
MKM

∣∣∣∣∣
(x′M~t)

′


k1 ≤ k2.

By Assumption 11i

 ∂ϕ2
1|X (~ω1)

∂ω2
11

∣∣∣∣∣
(x′1~s)

′

. . .
∂ϕ2

M |X (~ωM )

∂ω2
MKM

∣∣∣∣∣
(x′M~s)

′

′ = (x� x)
+

(
∂2ϕY |X(~s)

∂s2
1

, . . . ,
∂2ϕY (~s)

∂s2
T

)′

By Assumption 11ii, for all ~um ∈ RKm there exists a ~sm ∈ RP that solves x′m~sm = ~um. One solution is

~sm = (x′m)
+
~um. Then

. . . ∂ϕ2
m|X (~ωm)

∂ω2
m1

∣∣∣∣∣
~u′m

. . .
∂ϕ2

m|X (~ωm)

∂ω2
mKm

∣∣∣∣∣
~u′m

. . .

′ = (x� x)
+

(
∂2ϕY |X(~s)

∂s2
1

∣∣∣∣
(x′m)+~um

. . .
∂2ϕY |X(~s)

∂s2
T

∣∣∣∣
(x′m)+~um

)′

where

∂2ϕY |X(~s)

∂st1∂st2

∣∣∣∣
(x′m)+~um

=
E
[
Yt1e

iY ′(x′m)
+
~um |X = x

]
E
[
Yt2e

iY ′(x′m)
+
~um |X = x

]
(
E
[
eiY

′(x′m)+~um |X = x
])2 −

E
[
Yt1Yt2e

iY ′(x′m)
+
~um |X = x

]
E
[
eiY

′(x′m)+~um |X = x
]
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The CF of Um is expressed in terms of second-order partial derivatives

φm|X(~um) = exp

Km∑
k=1

∫ uk

0

∫ wk

0

∂ϕ2
m|X (~ωm)

∂ω2
mk

∣∣∣∣∣
(0,...,vk,0,...,0)

dvkdwk

+
∑
k1<k2

∫ uk2

0

∫ uk1

0

∂ϕ2
m|X (~ωm)

∂ωmk1∂ωmk2

∣∣∣∣∣
(u1,...,uk1−1,vk1 ,0,...,0,vk2 ,0,...,0)

dvk1dvk2

+

Km∑
k=1

ukE [βmk|X = x]

)

The CF is defined using the regularity conditions: E[|βmk1βmk2 |] <∞ and
∫ uk2

0

∫ uk1
0

(E[exp(i
∑k1−1
k=1 βmkuk+

iβmk1vk1 + iβmk2vk2)])−2dvk1dvk2 <∞ for k1, k2 = 1, . . . ,Km.

This shows that the CF of βm|X is identified. The density of βm|X is identified using the bijection

between densities and CFs by the inverse Fourier transform

fm|X(~bm) =
1

2π

∫
e−i~um

~bmφm|X(~um)d~um

3.7.6 Proof of Theorem 15

The CF of Y conditioned on X = x is

φY |X(s1, . . . , sT ) = E [exp (iY1s1 + . . .+ iYT sT ) |X = x]

= E [exp (i(x11β1 + . . .+ x1MβM )s1 + . . .+ i(xT1β1 + . . .+ xTMβM )sT ) |X = x]

= E [exp (i(x11s1 + . . .+ xT1sT )β1 + . . .+ i(x1Ms1 + . . .+ xTMsT )βM ) |X = x]

=

M∏
m=1

E

[
exp

(
iβm

T∑
t=1

xtmst

)
|X = x

]

where the second equality follows by substituting Yt = xt1β1 + . . . + xtMβM and the last equality follows

from mutual independence.

Let ϕY |X(~s) = lnφY |X(~s) and ϕm|X(um) = lnE [exp (iβmum) |X = x], m = 1, . . . ,M then

ϕY |X(~s) =

M∑
m=1

ϕm|X

(
T∑
t=1

xtmst

)
=

M∑
m=1

ϕm|X (x′m~s)

where xm = (x1m, . . . , xTm)
′

is the mth column of x.
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The second-order partial derivative with respect to st1 and st2 is

∂2ϕY |X(~s)

∂st1∂st2
=

M∑
m=1

xt1mxt2mϕ
′′
m|X (x′m~s)

=

M∑
m=1

M̃∑
m̃=1

I (βm ∈ [βm̃])xt1mxt2mϕ
′′
m̃|X (I (βm ∈ [βm̃])x′m~s)

=

M̃∑
m̃=1

(
M∑
m=1

x̃m̃t1mx̃
m̃
t2m

)
ϕ′′m̃|X

(
x̃m̃′m ~s

)

where the second equality follows by Assumption 12ii.20

By Assumption 12iii there exists ~̃s ∈ RT such that x̃m̃′m
~̃s = ũm̃ where ũm̃ ∈ R. ũm̃′ and ũm̃ do not need

to be distinct. One solution is ~̃s = (x̃′)
+ ~̃u. Then

∂2ϕY |X(~s)

∂st1∂st2

∣∣∣∣
(x̃′)+~̃u

=

M̃∑
m̃=1

(
M∑
m=1

x̃m̃t1mx̃
m̃
t2m

)
ϕ′′m̃|X (ũm̃)

In matrix notation the second-order partial derivatives can be represented as



∂2ϕY |X(~s)

∂s2
1

∣∣∣∣
(x̃′)+~̃u

...

∂2ϕY |X(~s)

∂s2
T

∣∣∣∣
(x̃′)+~̃u

 = (x̃ ? x̃)


ϕ′′1|X (ũ1)

...

ϕ′′
M̃ |X

(
ũ
M̃

)


By Assumption 12iv

(
ϕ′′1|X (ũ1) , . . . , ϕ′′

M̃ |X

(
ũ
M̃

))′
= (x̃ ? x̃)

+

(
∂2ϕY |X(~s)

∂s2
1

∣∣∣∣
(x̃′)+~̃u

, . . . ,
∂2ϕY |X(~s)

∂s2
T

∣∣∣∣
(x̃′)+~̃u

)′

where

∂2ϕY |X(~s)

∂st1∂st2

∣∣∣∣
(x̃′)+~̃u

=
E
[
Yt1e

iY ′(x̃′)
+~̃u|X = x

]
E
[
Yt2e

iY ′(x̃′)
+~̃u|X = x

]
(
E
[
eiY ′(x̃′)

+~̃u|X = x
])2 −

E
[
Yt1Yt2e

iY ′(x̃′)
+~̃u|X = x

]
E
[
eiY ′(x̃′)

+~̃u|X = x
]

20For all βm ∈ [βm̃]

ϕβm|X(ωm) = ln

(∫
exp (ibωm) fβm|X(b)db

)
= ln

(∫
exp (ibωm) fβm̃|X(b)db

)
= ϕβm̃|X (ωm)

where the second equality follows because fβm|X(b) = fβm̃|X(b) for all b ∈ R.
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Applying the Second Fundamental Theorem of calculus twice

φm̃|X(um̃) = exp

(∫ um̃

0

∫ w

0

ϕ′′m̃|X (v) dvdw + um̃E [βm̃|X = x]

)

The CF is defined using the regularity conditions: E
[
β2
m̃

]
<∞ and

∫ um̃
0

∫ w
0

(E [exp (ivβm̃)])
−2

dvdw <∞.

This shows that the CF of βm̃|X is identified. The density of βm̃|X is identified using the bijection

between densities and CFs by the inverse Fourier transform

fm̃|X(bm̃) =
1

2π

∫
e−ium̃bm̃φm̃|X(um̃)dum̃

3.8 Appendix B

3.8.1 Example 1i: Cross-Sectional Linear Regression Model

The log CF of Y conditional on X is

ϕY1|X(s1) = ϕα+ε1(s1) +

M∑
m=1

ϕm(x1ms1)

∂ϕY1|X(s1)

∂x1m∗
= s1ϕ

′
m∗(x1m∗s1)

where the first equality follows by the linearity, mutual independence, and independence of X and β. The

result now follows by the Second Fundamental Theorem of Calculus.

3.8.2 Example 1ii: Cross-Sectional Linear Regression Model with

only Intercepts

The log CF of Y is

ϕY1 (s1) = ϕα (s1) + ϕβ1 (s1) + . . .+ ϕβM (s1) + ϕε1 (s1)

= (M + 2)ϕβm (s1)
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where the first equality follows from the mutual independence assumption and the second equality follows

from the equality in distribution assumption. Then

φβm (s1) = [φY1
(s1)]

1/M+2

3.8.3 Example 1iii: Panel Data Linear Regression Model

The log CF of Y conditional on X is

ϕY |X(s1, s2) = ϕα|X(s1 + s2) + ϕβ1|X(x1s1 + x2s2) + ϕε1|X(s1) + ϕε2|X(s2)


∂ϕ2

Y |X(s1,s2)

∂s21
∂ϕ2

Y |X(s1,s2)

∂s1∂s2

∂ϕ2
Y |X(s1,s2)

∂s22

 =


1 x2

1 1 0

1 x1x2 0 0

1 x2
2 0 1





ϕ′′α|X(s1 + s2)

ϕ′′β1|X(s1x1 + s2x2)

ϕ′′ε1|X(s1)

ϕ′′ε2|X(s2)


Set s1 = s2 = u then by the equality in distribution assumption ϕε1|X(u) = ϕε2|X(u). Hence,



∂ϕ2
Y |X(s1,s2)

∂s21

∣∣∣∣
(u,u)

∂ϕ2
Y |X(s1,s2)

∂s1∂s2

∣∣∣∣
(u,u)

∂ϕ2
Y |X(s1,s2)

∂s22

∣∣∣∣
(u,u)


=


1 x2

1 1

1 x1x2 0

1 x2
2 1




ϕ′′α|X(2u)

ϕ′′β1|X((x1 + x2)u)

ϕ′′ε1|X(u)



Under the assumption that x2
1 6= x2

2,


ϕ′′α|X(2u)

ϕ′′β1|X((x1 + x2)u)

ϕ′′ε1|X(u)

 =


− x1x2

x2
1−x2

2
1 x1x2

x2
1−x2

2

1
x2
1−x2

2
0 − 1

x2
1−x2

2

x2

x1+x2
−1 x1

x1+x2





∂ϕ2
Y |X(s1,s2)

∂s21

∣∣∣∣
(u,u)

∂ϕ2
Y |X(s1,s2)

∂s1∂s2

∣∣∣∣
(u,u)

∂ϕ2
Y |X(s1,s2)

∂s22

∣∣∣∣
(u,u)


so

ϕ′′α|X(u) = − x1x2

x2
1 − x2

2

·
∂ϕ2

Y |X(s1, s2)

∂s2
1

∣∣∣∣∣
(u/2,u/2)

+
∂ϕ2

Y |X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(u/2,u/2)

+
∂ϕ2

Y |X(s1, s2)

∂s2
2

∣∣∣∣∣
(u/2,u/2)

ϕ′′β1|X(u) =
1

x2
1 − x2

2

·
∂ϕ2

Y |X(s1, s2)

∂s2
1

∣∣∣∣∣
(u/(x1+x2),u/(x1+x2))

− 1

x2
1 − x2

2

·
∂ϕ2

Y |X(s1, s2)

∂s2
2

∣∣∣∣∣
(u/(x1+x2),u/(x1+x2))
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ϕ′′ε1|X(u) =
x2

x1 + x2
·
∂ϕ2

Y |X(s1, s2)

∂s2
1

∣∣∣∣∣
(u,u)

−
∂ϕ2

Y |X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(u,u)

+
x1

x1 + x2
·
∂ϕ2

Y |X(s1, s2)

∂s2
2

∣∣∣∣∣
(u,u)

and now use the Second Fundamental Theorem of Calculus to obtain the CFs

φm̃∗|X(u) = exp

(∫ u

0

∫ w

0

ϕ′′m̃∗|X (v) dvdw + iuE[βm̃∗ |X]

)
m̃∗ = α, β1, ε1, ε2

3.8.4 Example 2: First-Order Autoregressive Process

The log CF of Y conditional on X is

ϕY |X(s1, s2) = ϕβ1|X(x1s1 + (x2 + δx1)s2) + ϕY0|X(δs1 + δ2s2) + ϕε1|X(s1 + δs2) + ϕε2|X(s2)

where the equality follows from the independence assumptions. The second order partial derivatives are


∂ϕ2

Y |X(s1,s2)

∂s21
∂ϕ2

Y |X(s1,s2)

∂s1∂s2

∂ϕ2
Y |X(s1,s2)

∂s22

 =


x2

1 δ2 1 0

(x2 + δx1)x1 δ3 δ 0

(x2 + δx1)2 δ4 δ2 1





ϕ′′β1|X(x1s1 + (x2 + δx1)s2)

ϕ′′Y0|X(δs1 + δ2s2)

ϕ′′ε1|X(s1 + δs2)

ϕ′′ε2|X(s2)


(3.5)

To identify the parameter δ I employ a technique from Ben-Moshe (2012b). For all d ∈ R

d ·
∂ϕ2

Y |X(s1, s2)

∂s2
1

−
∂ϕ2

Y |X(s1, s2)

∂s1∂s2
= (dx1 − δx1 − x2)x1ϕ

′′
β1|X (x1s1 + (x2 + δx1)s2)

+ (dδ2 − δ3)ϕ′′Y0|X(δs1 + δ2s2) + (d− δ)ϕ′′ε1|X(s1 + δs2) (3.6)

Define

R(d, u) =:

d · ∂ϕ2
Y |X(s1, s2)

∂s2
1

∣∣∣∣∣
((x2+dx1)u,0)

−
∂ϕ2

Y |X(s1, s2)

∂s1∂s2

∣∣∣∣∣
((x2+dx1)u,0)


−

d · ∂ϕ2
Y |X(s1, s2)

∂s2
1

∣∣∣∣∣
(0,x1u)

−
∂ϕ2

Y |X(s1, s2)

∂s1∂s2

∣∣∣∣∣
(0,x1u)


= (dx1 − δx1 − x2)x1

(
ϕ′′β1|X (x1(x2 + dx1)u)− ϕ′′β1|X ((x2 + δx1)x1u)

)
+ (dδ2 − δ3)

(
ϕ′′Y0|X(δ(x2 + dx1)u)− ϕ′′Y0|X(δ2x1u)

)
+ (d− δ)

(
ϕ′′ε1|X((x2 + dx1)u)− ϕ′′ε1|X(δx1u)

)

where the second equality follows by substituting in Equation (3.6) evaluated in two directions: (s1, s2) =
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((x2 + dx1)u, 0) and (s1, s2) = (0, x1u).

Notice that R(δ, u) = 0. Assume there exists U ⊂ R with nonzero Lebesgue measure such that for all

u ∈ U and all d 6= δ

R(d, u) 6= 0

The coefficient δ 6= 0 is identified as the unique solution to

δ = argmin
d∈R

∫
U

(R(d, u))
2
w(u)du

where w(u) is a weight function that satisfies
∫
U w(u)du = 1.

In Equation (3.5) set s1 = u, s2 = u(1− δ) then by the equality in distribution assumption ϕε1|X(u) =

ϕε2|X(u). Hence,



∂ϕ2
Y |X(s1,s2)

∂s21

∣∣∣∣
u(1−δ),u

∂ϕ2
Y |X(s1,s2)

∂s1∂s2

∣∣∣∣
u(1−δ),u

∂ϕ2
Y |X(s1,s2)

∂s22

∣∣∣∣
u(1−δ),u


=


x2

1 δ2 1

(x2 + δx1)x1 δ3 δ

(x2 + δx1)2 δ4 δ2 + 1




ϕ′′β1|X((x1 + x2)u)

ϕ′′Y0|X(δu)

ϕ′′ε1|X(u)



Assume x1 6= 0, x2 6= 0, and δ 6= 0. Then


ϕ′′β1|X((x1 + x2)u)

ϕ′′Y0|X(δu)

ϕ′′ε1|X(u)

 =


− δ
x1x2

1
x1x2

0

−δ2x1x2+δx2
1−δx

2
2+x1x2

δ2x1x2

−x2
1+2δx1x2+x2

2

δ2x1x2
− 1
δ2

x1δ
2+x2δ
x1

−x2+2δx1

x1
1





∂ϕ2
Y |X(s1,s2)

∂s21

∣∣∣∣
u(1−δ),u

∂ϕ2
Y |X(s1,s2)

∂s1∂s2

∣∣∣∣
u(1−δ),u

∂ϕ2
Y |X(s1,s2)

∂s22

∣∣∣∣
u(1−δ),u


Then

ϕ′′β1|X(u) = − δ

x1x2
·
∂ϕ2

Y |X(~s)

∂s2
1

∣∣∣∣∣
u(1−δ)/(x1+x2),u/(x1+x2)

+
1

x1x2
·
∂ϕ2

Y |X(~s)

∂s1∂s2

∣∣∣∣∣
u(1−δ)/(x1+x2),u/(x1+x2)

ϕ′′Y0|X(u) =
−δ2x1x2 + δx2

1 − δx2
2 + x1x2

δ2x1x2
·
∂ϕ2

Y |X(~s)

∂s2
1

∣∣∣∣∣
u(1−δ)
δ ,uδ

− x2
1 − 2δx1x2 − x2

2

δ2x1x2
·
∂ϕ2

Y |X(~s)

∂s1∂2

∣∣∣∣∣
u(1−δ)
δ ,uδ

− 1

δ2
·
∂ϕ2

Y |X(~s)

∂s2
2

∣∣∣∣∣
u(1−δ)
δ ,uδ
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ϕ′′ε1|X(u) =
x1δ

2 + x2δ

x1
·
∂ϕ2

Y |X(~s)

∂s2
1

∣∣∣∣∣
u(1−δ),u

− x2 + 2δx1

x1
·
∂ϕ2

Y |X(~s)

∂s1∂s2

∣∣∣∣∣
u(1−δ),u

+
∂ϕ2

Y |X(~s)

∂s2
2

∣∣∣∣∣
u(1−δ),u

and now use the Second Fundamental Theorem of Calculus to obtain the CFs

φm̃∗|X(u) = exp

(∫ u

0

∫ w

0

ϕ′′m̃∗|X (v) dvdw + iuE[βm̃∗ |X]

)
m̃∗ = β1, Y0, ε1
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Figure 3.1: The marginal densities of β1 and β2 using Corollary 1
The left graph depicts the marginal distribution of β1 and the right graph depicts the
marginal distribution of β2. The solid red lines are the underlying theoretical distribu-
tions, the solid blue lines are the medians of the estimates and the dotted black lines are the
10-90% confidence bands of the estimates. The mean squared error of the marginal density
of β1 is 0.0175. The mean squared error of the marginal density of β2 is 0.0252.
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Figure 3.2: The joint density of (β1, β2) using Corollary 1
The left graph depicts the median of the estimates for the joint distribution of (β1, β2) and
the right graph depicts the underlying theoretical joint distribution of (β1, β2). The mean
squared error of the joint density of (β1, β2) is 0.0629.
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Figure 3.3: The marginal densities of β1 and β2 using Theorem 12
The left graph depicts the marginal distribution of β1 and the right graph depicts the
marginal distribution of β2. The solid red lines are the underlying theoretical distribu-
tions, the solid blue lines are the medians of the estimates and the dotted black lines are the
10-90% confidence bands of the estimates. The mean squared error of the marginal density
of β1 is 0.0087. The mean squared error of the marginal density of β2 is 0.0092.
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Figure 3.4: The marginal density of β using Theorem 15
The graph depicts the marginal distribution of β. The solid red line is the underlying
theoretical distribution, the solid blue line is the median of the estimates and the dotted
black lines are the 10-90% confidence bands of the estimates. The mean squared error of the
marginal density of β is 0.0025.
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