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Abstract 

 

Synthesis and Characterization of New Metal-Organic Frameworks for Gas 
Adsorption Studies and as Solid Superacids 

 

By 
Juncong Jiang 

Doctor of Philosophy in Chemistry 
University of California, Berkeley 
Professor Omar M. Yaghi, Chair 

 

The development of metal-organic frameworks (MOFs) has experienced three main periods: 
(1) discovery of new structures; (2) structure design using the principles of reticular chemistry; 
and (3) study of these new materials in various applications. We are now in the third period as 
MOFs are extensively tested in a large number of potential applications, such as gas-storage and 
separation, catalysis, design of energy storage devices, drug delivery, and molecule sensing and 
recognition. The increasing applications of MOFs is raising the demand for the materials, 
therefore in this dissertation, I will focus on design and synthesis of new MOFs with high storage 
capacity for various gases including water, ammonia, and methane; and design and synthesis of 
MOF-based solid acids and the study of their liquid and vapor phase catalytic properties. 

The strategy of material design targets practical applications. Thus, with different gas 
storage purposes in mind, different materials are proposed. In the first example, the need to 
capture water vapor at low humidity requires MOFs to exhibit pore filling or condensation of 
water into the pores at P/P0 < 0.1. Thus we have designed a small pore zirconium MOF, MOF-
801, for this purpose. MOF-801 is shown to have high uptake of water, recyclability, and water 
stability. In the second example, the need to capture harmful ammonia gas requires MOFs with 
strong binding sites for the basic gas at low concentration. Thus we have designed and installed 
strongly acidic sites in a zirconium MOF, sulfated MOF-808, for this purpose. This sulfated 
MOF-808 is shown to take up 5.3 mmol ammonia per gram at P < 1.5 Torr, and 16.7 mmol 
ammonia at P = 760 Torr, one of the highest numbers for a MOF-based ammonia capture 
material. In the third example, high methane gas storage capacity at 80 bar was attempted using 
MOFs. This increase on the working capacity (between 5 and 80 bar) requires MOFs to have 
both high surface area and suitable pore sizes. For this purpose, we have designed zinc MOFs 
using organic linkers having delocalized π-electrons and with suitable pore metrics. The 
compound, MOF-905, shows 200 cm3 cm-3 working capacity between 5 and 80 bar, the highest 
of all zinc MOFs and is equivalent to the benchmark HKUST-1 compound. 

With regard to the design and synthesis of MOF-based solid acids, three approaches have 
been proposed: (1) acidic functional groups bound to the organic linker; (2) acidic ligands bound 
to the inorganic cluster; and (3) acidic molecules encapsulated in MOF pores. While in the first 
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approach, the acidity of the MOF is mostly determined by the acidity of the free acidic functional 
group, the latter two strategies provide for more interaction between the framework and the 
acidic groups, which is of great importance to understand the chemistry within the pores. A new 
type of MOF-based solid acid is demonstrated by the controllable sulfation of a zirconium MOF, 
MOF-808, on the inorganic cluster. The substitution of terminal formate groups in MOF-808 
with sulfate groups has imparted strong acidity onto the sulfated MOF-808. The material has 
shown activity for acid catalyzed Friedel-Crafts acylation, esterification, isomerization, as well 
as the conversion of methylcyclopentane (MCP) into various hydrocarbons at 150-200 oC. 
Another MOF-based acid is synthesized by including phosphotungstic acid (PTA) into the large 
cages of MIL-101. Interestingly, we have found that the Brønsted acidity (originating from PTA) 
of the composite material is not directly proportional to the loading of PTA. Instead, the acidity 
is not exhibited until a threshold amount of PTA loading is reached. This is explained by the 
level of protonation of PTA incorporated into the material, where the material with the highest 
loading, Pt/60PTA/MIL-101, is shown to effectively catalyze hydroisomerization of n-hexane at 
250 oC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________________________________________________________ 
*The work includes material (text and figures) from Jiang, J.; Zhao, Y.; Yaghi, O. M. Covalent 
Chemistry beyond Molecules. J. Am. Chem. Soc. 2016, 138, 3255. Jiang, J.; Yaghi, O. M. 
Brønsted Acidity in Metal-Organic Frameworks. Chem. Rev. 2015, 115, 6966. Jiang, J.; Gándara, 
F.; Zhang, Y.-B.; Na, K.; Yaghi, O. M.; Klemperer, W. G. Superacidity in Sulfated Metal-
Organic Framework-808. J. Am. Chem. Soc. 2014, 136, 12844. Furukawa, H.; Gándara, F.; 
Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R. Yaghi, O. M. Water Adsorption in Porous 
Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369. and also 
non-published results. The use of co-authored material is permitted by all contributing authors. 
The material is reproduced with permission, copyright 2014, 2015, and 2016 American Chemical 
Society. 
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Chapter I 

Introduction to Metal-Organic Frameworks 
 

Metal-organic frameworks (MOFs) are crystalline materials constructed by linking organic 
and inorganic secondary building units (SBUs) with strong bonds.1 the chemistry of MOFs has 
been explored extensively in the areas of inorganic chemistry and materials science in the past 
two decades. The reasons for such intensive study stems not only from the aesthetics of creating 
unprecedented structures, but also from the expectation of novel properties not previously 
possible in the realm of molecular chemistry.2 

The first period (1995 - 2002) of MOF materials’ developments began with the first major 
development in MOF chemistry: the use of charged organic building units instead of neutral 
Lewis bases to form a stronger bond between SBUs. The bond energy between metal ions and 
neutral Lewis bases are reported to be in the range of 90-180 kJ mol-1.2 This leads to the thermal 
instability because of their frail architecture which often results in framework collapse when 
attempting to evacuate the space encompassed within them and thus limits the implementation of 
these materials in applications where open frameworks are preferred. 

Conversely, the metal-charged organic linker bond, for example, the Zn(II)-carboxylate bond 
in MOF-5,3 Zn4O(C8H4O4)3, is estimated to have the bond energy of 300 kJ mol-1, a number that 
is comparable to covalent bonds found in conventional molecules.4 This has greatly enhanced the 
thermal stability of these MOFs as they are robust upon removal of the guest solvent molecules. 
Proof of permanent porosity was obtained as early as 1998 in activated MOF-2, Zn(C8H4O4).

5 
This has allowed comparisons to be made between these frameworks and the more traditional 
porous material, such as zeolites and related inorganic microporous materials. 

However, these strong bonds between SBUs inevitably increase the difficulty in crystallizing 
these extended frameworks. This difficulty is referred to in literature as the ‘crystallization 
problem’.2 This problem originates from the fact that strong bonds, as linkages, tend to form 
irreversibly under mild conditions, hampering self-correction of defects during the crystallization 
process. Therefore the formation of amorphous or poorly defined solids is favored. To overcome 
this problem in MOF chemistry, it is important to slow down the formation of strong metal-
carboxylate bonds between the inorganic and organic SBUs to a time scale permitting self-
correction.  

The formation of the MOFs using charged organic secondary building units (SBUs) requires 
deprotonation of the organic acids in order to form the metal-oxygen bonds.2 However, the rate 
at which this deprotonation process takes place is a critical factor in controlling the 
crystallization process. The key development in making MOF crystals based on metal-carboxyl 
bonds was the use of amide solvents such as dimethylformamide (DMF), diethylformamide, 
dimethylacetamide, and N-methyl-2-pyrrolidone.5 These solvents release basic amines upon 
heating, which is required for crystalline MOF formation. This allows for gradual control of the 
deprotonation of the organic acid and thus the formation of strong bonds between inorganic and 
organic SBUs. MOF single crystals up to millimeters in size have been reported using these 
solvents.6 This basic synthetic procedure has been employed in the synthesis of the vast majority 
of MOFs. Once a new MOF is discovered using this procedure, other preparation methods 
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involving the use of water as a solvent, microwave irradiation, and mechanochemical procedures 
could be deployed to make those MOFs.7 

It was also shown that highly crystalline zirconium, aluminum and iron MOFs can be 
obtained by adding modulators,8 typically monocarboxylic acids such as formic acid, acetic acid 
and benzoic acid. Addition of modulators with di- and multi-topic carboxylate linkers suppress 
the hydrolysis of the metal ions to metal oxides due to their acidity, and slows down the crystal 
growth process to give the control needed for obtaining MOF crystals. 

In subsequent years, other organic ligands, such as catechols,9 organosulfuric acids,10 
organophosphoric acids,10,11 imidazoles,12 and pyrazoles,13 were also used to make MOF 
materials. Despite their differing structures and chemical properties, these ligands all have the 
ability to be deprotonated and form strong chemical bonds with the metal SBUs. Thus, many 
MOF materials are robust frameworks comparable to the metal-carboxylate based MOFs. 

Sustained efforts devoted to the crystallization of these extended structures have produced 
highly crystalline materials and made their structural characterization possible by diffraction 
techniques (powder and single crystal X-ray, neutron, and electron). Over 6,000 MOF structures 
have been reported in the period of 1995-2002,1 which allows for the study of rules that these 
structures follow and the rational design of MOF materials. 

The beginning of the second period (2003 - 2009) is marked by the introduction of reticular 
chemistry. Reticular chemistry, or reticular synthesis, is defined as the logical approach to 
assemble predesigned building blocks by strong bonding into predetermined ordered structures.4 
This is achievable because the structural integrity and rigidity of the building blocks remain 
unaltered during the synthesis. These SBUs, can be either a duplicate from the starting materials, 
or be formed predictably in situ. 

It is natural to make an analogy between SBUs in a MOF and atoms in a conventional 
molecule, as they are both the fundamental unit of a larger scale entity, not to mention there are 
cases in which inorganic SBUs in MOFs are single atoms by themselves. Also, they can be 
described using similar language: in molecules, each atom has its fixed coordination number and 
coordination geometry; while in MOFs, each SBU, organic or metal-containing, also has its fixed 
coordination number (CN) and coordination geometry. For example, in MOF-5,3 each inorganic 
Zn4O(CO2)6 SBU is bound to organic SBUs in 6 directions oriented in space as an octahedron, 
resembling that of the central sulfur atom in sulfur hexafluoride, thus both are described with 
coordination number equals 6 and octahedral coordination geometry. More often, the above is 
illustrated in a way that each building block is abstracted as shapes such as dots (CN = 1), lines 
(CN = 2), triangles (CN = 3), squares (CN = 4), tetrahedra (CN = 4), and octahedral (CN = 6). 
As shown in Figure 1.1, MOF-5 is represented by a cubic network consisting of octahedra 
connected with lines. In this way, all the organic SBUs and finite inorganic SBUs can be 
topologically described with MOF structures abstracted into underlying nets in their augmented 
versions that are special kind of periodic graphs.14 
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atoms in the organic SBUs were also changed to synthesize isoreticular MOFs such as the sulfur-
analogue of MOF-74 [M2(DSBDC); M = Fe(II), Mn(II)].19 

Isoreticular functionalization of MOFs with derivatives of organic SBUs was first reported 
in 2002 on the basis of MOF-5 (IRMOF-1) resulted in a family of 6 cubic IRMOFs—IRMOF-2 
to IRMOF-7.20 This development heralded the adaptability of the MOF synthesis to functional 
groups including amino, bromo, alkoxy, aliphatic and aromatic rings. The list of functionality 
tolerance was subsequently expanded to other structures as well as functional groups initially 
thought to interfere the MOF synthesis. Hexagonal structure MOF-177 [Zn4O(BTB)2; BTB = 
benzene-1,3,5-tribenzoate] was recently made with a variety of 9 derivatives of BTB with 
varying type and position of function groups as well as an example of single BTB linker bearing 
3 different kind of functional groups on its 3 branches.21 Medium to strong Brønsted acid group 
functionalized BDC linkers were also reported to be ‘isoreticularly’ incorporated into UiO-66 
[Zr4O4(OH)4(BDC)6] and MIL-101 type of structures.22 

The concept of isoreticular expansion involves the use of longer organic SBUs while 
retaining the same underlying net.1 In the cubic MOF-5 system, the largest member, IRMOF-16 
[Zn4O(TPDC)3; TPDC = terpehyl-4,4”-dicarboxylate]20 bears a unit cell volume eight times to 
that of Zn4O(fumarate)3,

23 the smallest member. This record was soon broken with a series of 
MOF-74’s with large pore apertures large enough to take in proteins. The volumetric expansion 
ratio between the largest MOF-74-XI and the smallest MOF-74 was measured to be 16.1.24 And 
the current record holder is MOF-399, [Cu3(BBC)2; BBC = 4,4’,4”-(benzene-1,3,5-triyl-
tris(benzene-4,1-diyl))tribenzoate],25 a giant 17.4 times larger than its smallest member HKUST-
1. MOF-399 also holds the record for the lowest reported crystal density in all MOFs. 

It is not guaranteed that isoreticular structures will always be obtained once SBUs of same 
shape are used. Although reticular design greatly limits the number of available structures, the 
final structures depend also on the details of the conditions of synthesis and parameters that go 
beyond geometry such as solubility of the building units. For example, reticular chemistry only 
allows two ways of linking Cu2(CO2)4 squares and BTC/BTB/TATB [TATB = 4,4’,4’’-(1,3,5-
triazine-2,4,6-triyl)tribenzoate] triangular SBUs—these are nets named after Pt3O4 and twisted 
boracite. Despite the structural similarity between BTC, BTB and TATB, MOF-14, 
[Cu3(BTB)2]

26 is formed with Pt3O4 net while HKUST-1 and PCN-6, [Cu3(TATB)2],
27 adopt the 

twisted boracite net. Examination of the parent nets informs us that the Pt3O4 net requires a more 
flexible dihedral angle between the abstract triangle and the carboxylate groups, while that value 
for BTC and TATB are fixed around 0o. 

At present, reticular chemistry has entered the new stage where increasing complexity is 
introduced.28 This is reflected in the larger number of building blocks incorporated in a single 
structure, lower symmetry and higher flexibility of the building blocks, and more selective 
interactions for formation strong bonds between inorganic and organic SBUs. However, as stated 
at the beginning of this section, the rigid building blocks and formation of strong bonds within 
the order of the underlying nets allow the materials to remain crystalline. That is to say, MOFs, 
although typically several hundreds to a few thousands times larger in each dimension, are 
structurally and compositionally as well-defined as conventional molecules. 

The starting point of the third period (2009 - present) of MOF chemistry is not clearly 
marked by one incident. This period is marked by application of MOF materials in various fields. 
These studies have begun with the first discovery of MOF structures and have continued since. 



However
Soc. Rev
direction
importan

As m
applicatio
of MOFs
and the c
within th
structure
structure
inorganic
SBUs are
only poss
without 
inaccessi

 

Figure 1
These inc
above th
spheres. A

 

Acce
conducte
the alread
a-c), the 
also serv
MOFs. S
behavior 
was asse
access to
maximiz

All t
applicatio

 

r, the year of
v.,29 which s
ns, and prel
nt and active 

mentioned a
ons of MOF
s has allowe
covalent atta
he backbone
s permanent
. Indeed, all
c SBU, for 
e accessible 
sible becaus
being solva

ible in the so

1.2. Symmet
clude (a to c

he (d) face a
Atom labelin

ess to each 
ed on single 
dy evacuated
faces and th

ved as a ben
Subsequently

in MOFs w
ssed for a la
o these mol
ing access to

these advan
ons involvin

f 2009 is esp
summarized
liminary res
field of stud

above, the c
Fs will inevit
ed unparallel
achment of f
e of MOFs. 
tly porous ha
l atoms [with
example, th
to incoming

se the SBUs 
ated as disc
olid state, as 

try-independ
c) three sites
and (e) edge
ng scheme: Z

of the atom
crystals of M
d pores reve
he edges of t
nchmark for
y, adsorption
were identifie
arge variety 
lecules by c
o them as we

ntages have 
ng gas stora

pecially imp
d the import
sults. More 
dy for scienti

chemistry of
tably be dep
led precision
functional g
Moreover, 

as given acc
h the except

he O in Zn4O
g guests such
are stitched

crete molecu
would be th

dent adsorpt
s primarily a
es of the lin
Zn (blue pol

ms in MOFs
MOF-5 at 30
ealed accessi
the phenyl r
r identifying
n sites for ga
ed using a v
of MOFs. T

covalently li
ell as for inc

qualified M
age and sepa

ortant becau
tant rules on

importantly
ists around t

f MOFs is 
pendent upon
n in: expand
roups to the
on a fundam

cess to mole
tion of a cen
O(-COO)6] t
h as gases a

d through stro
ules. Additi
he case in a c

tion sites pa
associated wi
nker. The ab
lyhedra), C (

s was revea
0 K.30 Here,
ible adsorpti
ring of the B
g the origin 
ases, such a

variety of tec
Thus, suspen
inking them

creasing the n

MOFs as one
aration. Inde

use the first 
n structure 
y MOFs w
the world. 

designed ar
n their poro

ding the pore
e organic lin
amental leve
cules within
ntral atom w
that make u

and organic m
ong bonds a
onally, they

closely packe

artially occu
ith the secon
bsorption si
(black), O (r

aled by an X
 small doses
on sites: the

BDC linkers 
of the ultra

as D2(H2), C
chniques,31 a
nding molec

m into scaffo
number of a

e of the mo
eed, relevant

MOF theme
design, pote

were now re

round their 
sity. The pe
es, designing
nkers and/or 
el, the abilit
n the confine
which might
up the inorg
molecules. T

and thus are 
y do not su
ed molecula

upied by Ar
ndary buildin
tes are repr

red), and H (

X-ray diffra
s of Ar or N

e zinc oxide 
(Figure 1.2,

ahigh surfac
H4, CO2, an
and their int

cules in 3D s
olds is the 
dsorption sit

ost competit
t studies thr

ed issue in C
ential applic
ecognized a

pores. Thus
ermanent por
g the pore s
open metal

ty to make M
es of an exte
t reside with
ganic and or
This advanta
suspended i

uffer from b
ar crystal. 

r atoms at 3
ng unit and 

resented as g
(white). 

ction experi
N2 introduced

SBU (Figure
, d-e). This 

ce areas foun
nd H2O, and 
teraction stre
space and ha
best strateg
tes. 

tive material
rough gas up

5 

Chem. 
cation 
as an 

s, the 
rosity 
hape, 

l sites 
MOF 
ended 
hin an 
ganic 
age is 
in 3D 
being 

 

30 K. 
those 
green 

iment 
d into 
e 1.2, 
study 
nd in 

d their 
ength 
aving 
y for 

ls for 
ptake 



6 
 

experiments with carbon dioxide,5,32 methane,33 and hydrogen34 in MOFs were started as early as 
1998, 2000, and 2003, respectively.  

Research on MOFs for hydrogen storage has increased in the past 13 years. The US 
Department of Energy (DOE) set the 2017 hydrogen storage in materials target for mobile 
applications at a: gravimetric capacity of 5.5 wt% and volumetric capacity of 40 g L-1 under -40 
to 85 oC.35 According to literature reported values, MOF materials exhibit excess gravimetric 
hydrogen storage capacities in the range of 5 to 15 wt% at 77 K and 80 bar. Total volumetric 
capacities are reported in the range of 40 to 60 g L-1 under these conditions.36 MOFs have also 
been shown to reversibly store substantial amounts of hydrogen with exhibited fast kinetics of 
hydrogen release. These results indicate that MOFs can potentially meet the DOE target. 
However, extensive studies are still needed to optimize and explore novel MOF materials, 
especially for room temperature hydrogen storage (MOFs now exhibit 0.5 to 1 wt% gravimetric 
capacity and less than 15 g L-1 volumetric capacity at room temperature).36 Interest exists for 
exploring approaches to increase the strength of interaction between hydrogen molecules and the 
framework, including making noble metal@MOF composite materials to take advantage of a 
potential spillover effect. 

Among the diverse applications of MOF as gas storage materials, their application in 
methane storage might be one of the most promising. BASF has commercialized some prototypic 
MOFs (HKUST-1 or Basolite C300) and built vehicles of both light and heavy duty equipped 
with natural gas fuel systems containing MOF materials. In 2012, the US DOE updated the target 
of methane storage in materials for adsorbed natural gas (ANG) mobile application. This new 
target details an escalated system gravimetric capacity of 50 wt% and a volumetric capacity of 
250 g L-1.37 Accordingly, new porous adsorbents are required to meet these challenging storage 
targets in order for the ANG technology to become practical. Currently, MOF materials exhibit 
gravimetric and volumetric methane storage capacity in the range of 15 to 37 wt% and 140 to 
192 g L-1 at 298 K and 65 bar, respectively.38 These results clearly show that MOFs are 
promising adsorption materials for this application, but more scientific studies will still be 
necessary to target some new porous MOFs for higher methane storage capacity. Several 
potential research directions include: (a) synthesis of new MOFs with 10 Å (diameter) pores, as 
these small cages have proven to be extremely important for high volumetric methane storage; 
(b) clarification of the pertinent organic functional groups on MOFs’ methane storage capacities 
and identify the powerful organic functional groups; (c) modification of the pore interiors of 
extended MOFs to augment the interactions between methane molecules and the MOF backbone. 
This includes introduction of metal ions, nanoparticles, and complexes; and (d) formation of an 
intimate collaboration with industry to facilitate the measurement at higher pressure (up to 250 
bar), increasing the scale of synthesis, and optimizing the fabrication of materials. 

Another use of MOFs is in the important gas storage/separation process involving the 
removal of carbon dioxide from flue gas streams. The plethora of choices of metal centers and 
organic linkers make it possible to synthesize MOFs with desired pore structures and 
environments for carbon dioxide capture and separation. The state-of-the-art strategies for carbon 
dioxide capture in MOFs employ carefully designed open metal sites and/or basic functional 
groups on the framework.39 MOFs with open metal sites show moderate to high carbon dioxide 
uptake at low pressure, particularly at 0.15 bar and 298 K. The major factors that affect capacity 
and selectivity of CO2/N2 are the nature and density of open metal sites. Materials belonging to 
this category include M-MOF-74 (CPO-27) and M2(dobpdc)2, M = Mg, Co, Ni, Zn, with Mg-
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MOF-74 holding the record for gravimetric capacity, 26.0 wt% CO2 at 0.15 bar and 298 K. 
However, since the flue gas consists of ~6 % water vapor, which is known to bind strongly to 
MOF open metal sites, it is challenging to use open metal sites to capture carbon dioxide under 
humid conditions. To overcome this challenge, several strategies have been applied in MOF 
design and synthesis: (a) development of water-stable MOFs using high valent metal clusters, 
such as Al(III), Fe(III), and Zr(IV), and/or nitrogen-based linkers, such as imidazolate, triazolate, 
and pyrazolate; (b) design of hydrophobic MOF pores, including attaching alkyl and 
perfluoroalkyl groups on the linker to shield the metal SBU, or designing frameworks in which 
the hydrophobic moieties on the linkers are positioned toward the pores (as illustrated in some 
zeolitic imidazolate frameworks); and (c) exploration of carbon dioxide capture mechanisms that 
either react synergistically or be unreactive towards water vapor. MOFs with basic sites such as 
covalently bound amino groups are of the latter category. 

Compared to the relatively large body of work done on the storage of hydrogen, methane 
and carbon dioxide in MOFs, water adsorption in MOFs is in its infancy. This is mainly due to 
the combination of two factors. The first being that water stable MOFs [e.g. with Zr(IV), Al(III), 
and Fe(III)] compose only a small fraction of all MOFs discovered and their discovery is 
relatively recent. The second being that the strong intermolecular interaction between water 
molecules and between water molecule and the MOF framework leads to a very distinct behavior 
of water compared to other gases. To date, studies on water adsorption in MOFs focus on three 
promising applications: (a) MOFs as adsorption materials for dehumidifiers; (b) MOFs as 
adsorbents for heat pump or adsorption chiller applications; and (c) MOFs as adsorbents for 
harvesting water from air.40 Targeting these three applications, general requirements are proposed 
for the materials: good water stability, the presence of steep, well-defined pore condensation at a 
low relative pressure, high uptake to allow maximum working capacity, and facile recyclability 
of the material during water adsorption. According to these criteria, materials such as M-MIL-
100 (M = Al, Fe), Cr-MIL-101, UiO-66, M-MOF-74 (M = Mg, Co, Ni), MOF-801, and MOF-
841, are identified as promising candidates.  

It is also be interesting to compare the different water-adsorption behavior between MOFs 
and other porous materials. For example, Zeolites have the ability to capture water at very low 
relative pressures because of their great affinity for water.41 However, as consequence of the 
strong interaction with the framework, heating to a high temperature is required to desorb the 
water and regenerate the adsorbent. Large pore materials, such as mesoporous silicas and 
carbons can achieve high water uptake capacity,42 but due to their hydrophobic nature, the water 
capture is restricted to the condensation at high relative pressure values with these materials 
being difficult to chemically manipulate to significantly modify their sorption profile. Among 
various MOFs, there are scenarios where stronger sorption sites can be incorporated in the form 
of open metal sites, as in MOF-74. As one would expect, similar to the case of zeolites, these are 
found to be very strong sorption sites for water and require higher temperatures to desorb the 
water molecules. There are also cases where the large pore MOFs, MOF-100 and MIL-101, 
exhibit a large total uptake with a step position at high P/P0 (0.3-0.5). This behavior indicates 
that the hydrophobic nature of the organic linker dominates the water sorption profile of the 
MOF, similar to that observed in mesoporous silicas and carbons. However, there are MOFs that 
fall in the middle where moderate interaction between water molecules and frameworks can be 
achieved by altering the pore size of MOFs or introducing polar or hydrophilic organic 
functional groups into the frameworks. These MOFs typically exhibit uptake steps at medium 
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P/P0 (0.05-0.3) and can be easily regenerated by evacuation or moderate heating to ~80 oC. 
Nevertheless, extensive study is still required in this field. Firstly more water stable MOFs must 
be identified as potential candidates. Also systems must be developed that can adsorb water at 
low P/P0 (< 0.05), while being regenerated easily (room temperature under vacuum or heating to 
80 oC). These materials must also be producible on a large-scale and prototypic devices using 
these materials with the attempts to lower costs must be designed. 

To some extent, ammonia and water are alike, despite the fact that ammonia has stronger 
basicity. Thus, few MOFs are reported to be stable to multiple adsorption/desorption cycles of 
ammonia. Two potential ammonia adsorption applications for MOFs are irreversible ammonia 
capture and ammonia storage.43 Each application requires specific material properties. The first 
application targets the toxic gas removal for instance for gas masks. The performance of 
materials is evaluated by both static adsorption measurements using volumetric or gravimetric 
systems, and dynamic breakthrough measurements where the gas mixture containing ammonia is 
passed through the material and the different gas compositions are recorded before and after 
adsorbent materials. Two properties of the material are important for this particular application. 
First, the capturing agent should be able to remove ammonia from environments in which the gas 
is present at low concentrations, and store it irreversibly to keep its concentration levels below 
those recommended values (CAL-OSHA permissible ammonia exposure limit: 25 ppm).44 The 
second criterion is the competitive ammonia removal under moist conditions due to the presence 
of significant amount of moisture in potential fields of application (for example, exhaled gas 
from human). The latter aims at reversible capture of ammonia in applications such as ammonia 
transportation and recycling. It is beneficial to use solid adsorbents to replace the toxic, corrosive, 
and difficult-to-handle compressed liquid ammonia. For this purpose, criteria such as high 
ammonia uptake capacity at 1 bar or even higher pressure, high cycling performance, and 
ammonia stability of the material are important. Compared to the irreversible ammonia capture, 
studies related to this application are limited and preliminary, mainly due to the lack of stable 
MOFs toward multi-cycle ammonia adsorption/desorption. To guarantee a high ammonia uptake 
at low pressure, strong interactions between adsorbents and adsorbates are preferred. MOFs with 
open metal sites (MOF-74) show strong interaction towards ammonia. The reported ammonia 
capture capacities are in the range of 2.6 to 7.6 mmol g-1 at 1440 ppm for these MOFs. However, 
up to 75 % of capacity loss were observed when attempting to capture ammonia under humid 
conditions (80 % RH), indicating a favorable water competition with ammonia molecules for the 
open metal sites.45 To mitigate the competitive effect of water, Brønsted acidic sites are 
introduced into the framework with the expectation that it shows higher selectivity of ammonia 
over water. Functional groups including phenolic hydroxyl groups, ammonium groups, sulfonic 
acid groups, carboxylic acid groups are reported. The reported ammonia capture capacities are in 
the range of 2.6 to 3.5 mmol g-1 at ~ 500 ppm for MOFs with these functional groups. However, 
to date, no reports have appeared for evaluating the ammonia capture capacity for these Brønsted 
acidic MOFs under humid conditions. 

Another important application for MOF materials is their use as versatile heterogeneous 
catalysts for efficient catalytic organic transformations.46 As shown in Figure 1.3, the number of 
publications detailing catalysis by MOFs since 2005 is increasing, and there are approximately 
500 papers published annually now. The versatility of MOF-based catalysts stems from the 
ability to introduce multiple catalytic active sites within the framework. Based on their positions, 
these active sites can be grouped into four main categories: (a) active species encapsulated within 
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Pt/H3PW12O40@[Cr3F(H2O)2O(BD
C-NH2)3] 

Hydrogen and toluene; 
carbon monoxide and 
oxygen 

Hydrogenation; oxidation 

Ru/H3PW12O40@[Cr3F(H2O)2O(BT
C)2] 

Cellulose and hydrogen Cellulose conversion 

Ru/H3PW12O40@[Cu3(BTC)2] Cellulose and hydrogen Cellulose conversion 

[SO3H-(CH2)4-IM][HSO4] and  
[SO3H-(CH2)4-TEDA][HSO4] 
@[Cr3F(H2O)2O(BDC)3] 

Benzaldehyde and glycol Acetalization 

[SO3H-(CH2)3-HIM]3PW12O40@ 
Fe3F(H2O)2O(BDC)3] 

Oleic acid and ethanol Esterification 

Zn3(OH)2(BDC)2(DEF)2, 
Zn4O(BDC)3 and Zn4O(NDC)3 

Toluene, biphenyl and tert-
butyl chloride 

Friedel-Craft alkylation 

Cu3(BTC)2 Furfuryl alcohol; 
benzaldehyde and 
malononitrile 

Knoevenagel reaction; 
oligomerization 

V(OH)(BDC-NH2) Styrene oxide and carbon 
dioxide 

Carbonation reaction 

Fe3F(H2O)2O(BTC)2 1,3-Cyclohexadiene and 
dimethyl fumarate; α-pinene 
oxide; citronellal 

Diels-Alder reaction; 
isomerization 

Cr3F(H2O)2O(BDC)3, 
Cr3F(H2O)2O(BDC-NO2)3, and 
Cr3F(H2O)2O(BDC-NH2)3 

Benzaldehyde and methanol Acetalization 

Al3F(H2O)2O(BDC-NH2)3 Benzaldehyde 
dimethylacetal and 
malononitrile 

Deacetalization-Knoevenagel 
condensation 

Zr6O5(OH)3(BTC)2(SO4)2.5(H2O)2.5 Anisole and benzoic acid; 
oleic acid and methanol; 
methylcyclopentane; α-
pinene 

Friedel-Craft acylation; 
esterification; isomerization 

Cr3F(H2O)2O(BDC)x(BDC-
OSO3H)3-x 

Acetic acid and n-butanol Esterification 

Cr3F(H2O)2O(BDC-SO3H)3 Acetic acid and n-hexanol Esterification 

 2-Butanol Dehydration 

 Fructose Carbohydrate dehydration 

 Cellulose Hydrolysis 

Al(OH)(BDC-AMMal), and 
Al(OH)(BDC-AMSuc) 

cis-2,3-epoxybutane and 
methanol 

Alcoholysis 

Zr6O4(OH)4(BPDC)x(BPDC-
Squar)6-x 

Indole and β-nitrostyrene Friedel-Craft alkylation 

Zr6O4(OH)4[BDC-(COOH)2]6 Methyl 
benzylidenecarbamate and 
nitromethane 

Mannich reaction 

Zr6O4(OH)4(BDC-NH2)x(BDC-
NHCH2CH2CH2SO3H)6-x 

Benzaldehyde and methanol; 
benzaldehyde and o-
phenylenediamine 

Acetalization; condensation 
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Al(III)@Cr3F(H2O)2O(BDC-
SO3H)3 

Mesitylene and benzyl 
alcohol 

Friedel-Craft alkylation 

[Ln(H2DBBP)(H3DBBP)(H2O)4](H2

O)x 

Ln = La, Ce, Pr, Nd, Sm, Gd 

Benzaldehyde and 
cyanotrimethylsilane 

Cyanosilylation of aldehydes 

Cu(L-ASP)(BPE)0.5(HCl)(H2O), 
and Cu(D-ASP)(BPE)0.5(HCl)(H2O) 

cis-2,3-epoxybutane and 
methanol 

Alcoholysis 

[(R)-TBBP-1]Cu2(H2O)2, and [(R)-
TBBP-2]Cu2(H2O)2 

Indole and N-sulfonyl 
aldimines 

Friedel-Craft alkylation 

a IM = Imidazole; TEDA = Triethylenediamine; H2NDC = Naphthalene-2,6-dicarboxylic acid; H2BDC-
AMMal = 4-((2,5-Bis(carboxylate)phenyl)-amino)-4-oxobut-2-enoic acid; H2BDC-AMSuc = 4-((2,5-
Bis(carboxylate)phenyl)amino)-4-oxobutanoic acid; H2BPDC = Biphenyl-4,4ʹ-dicarboxylate; H2BPDC-
Squar = 3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-(2-(4ʹ-carboxylphenyl)-5-carboxylphenyl)-
cyclobut-3-ene-12-dione; H4DBBP = 2,2ʹ-Diethoxy-1,1ʹ-binaphthalene-6-6ʹ-bisphophonic acid; H4(R)-
TBBP-1 = (R)-3,3ʹ,6,6ʹ-Tetrakis(4-benzoic acid)-1,1ʹ-binaphthyl phosphate; H4(R)-TBBP-2 = (R)-
4,4ʹ,6,6ʹ-Tetrakis(4-benzoic acid)-1,1ʹ-binaphthyl phosphate. 

 

Although, catalysis is a developing application of MOFs, a number of MOFs have been 
employed as solid catalysts or catalyst supports for a variety of organic transformations.46 These 
include Knoevenagel condensation, aldol condensation oxidation reactions, epoxide formation, 
hydrogenation, Suzuki coupling, ketalization reactions, ring-opening, alkylation of amines, 
cyclopropanation reactions, Henry reactions, Friedel–Crafts reactions, cyanosilylation, 
cyclization reactions, Friedlander reaction, acetalization, hydroformylation, Biginelli reaction, 
Claisen–Schmidt condensation, Beckmann rearrangement, Sonogashira reaction, and 
polymerization. 

Among various catalysis reactions, acid catalysis is mainly used for organic chemical 
reactions. Many possible chemical compounds can act as sources for the protons to be 
transferred in an acid catalysis system. Solid acids, as heterogeneous catalysts, do not dissolve in 
the reaction medium. Well-known examples include zeolites, alumina, and various other metal 
oxides and promoted metal oxides. Such acids are often used in cracking in industrial scale 
chemistry. A particularly large-scale application is alkylation, e.g. the combination of benzene 
and ethylene to give ethylbenzene. Another important application is isomerization, e.g. the 
isomerization of n-alkanes to their branched isomers to increase the octane number. 

Compared to the relatively large body of work done on inorganic solid acids, MOF-based 
solid acids are emerging as a new type of material. Catalogued in Table 1.1 are the majority of 
the known catalytically active MOF-based solid acids.43b The possibility of encapsulating large 
Brønsted acidic molecules into MOF pores welcomed the first group of catalytically active 
MOF-based solid acids. Brønsted acidic Keggin-type POM, phosphotungstic acid (PTA) and its 
analogues, when encapsulated in MOF pores, were shown to exhibit activity comparable to the 
free acids.47 More importantly, acid-base and acid-metal binary systems were reported for these 
PTA loaded in various MOFs including MIL-101, MIL-100, and HKUST-1.48 In the acid-metal 
binary system, the highly dispersed PTA molecules in the MOF pores were reported to function 
as molecular anchors for the Pt precursors.48b Another advantage of these multifunctional 
systems is their ability to catalyze tandem reactions as exhibited by Ru supported on Keggin-type 
polyacids@MIL-100 system toward conversion of cellulose. Apart from Keggin-type polyacids, 
Brønsted acidic ionic liquids (BAILs) have also been encapsulated in MOF pores for catalysis. A 
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tandem procedure was adopted to incorporate BAILs into MIL-100 and MIL-101’s mesopores.49 

The active sites in the second major group of MOF-based solid acid catalysts are more 
ambiguousas they often coexist with Lewis acidic sites. Typically, this type of MOF-based solid 
acids will have Brønsted acidic sites located on or near their SBUs, which are difficult to 
characterize. MOFs in this category could be non-acidic or exhibit only Lewis acidity when they 
are “perfect” structures. The former case includes MOF-5 and IRMOF-8. Although no acidic 
sites are expected from the coordinatively saturated Zn4O(-COO)6 SBUs, catalytic activity 
towards Friedel-Craft alkylation reactions was observed in both MOFs.50 It is widely accepted 
now that the presence of defects in these MOFs should be considered in evaluating their acidity, 
and Brønsted acidity is believed to be generated from uncoordinated carboxylic acid groups of 
the linker, especially considering the formation of hydrogen chloride as a byproduct in these 
reactions. In the latter case, previously considered “pure Lewis acidic” HKUST-1 was also 
examined for the existence of Brønsted acidic components from protonated carboxylates when 
used as acid catalyst.51 MOF-based solid acids can also be generated from the interaction 
between a metal ion and a protic solvent ligand, often water molecules. Thus MIL-100 and MIL-
101 are capable of catalyzing reactions including Diel-Alder reactions, acetalizations, and 
isomerization of pinene oxide and citronellal.52 

As the third major group of MOF-base solid acids, MOFs with strong Brønsted acid groups 
covalently bound to the organic linkers have been shown to effectively catalyze esterification 
reactions and hydrolysis of cellobiose. Recently, synergistic effects between post-synthetically 
introduced catalytic active Lewis acidic Al(III) moieties and framework-bearing Brønsted acidic 
-SO3H groups was also reported in MOF-base solid acids.53 Enantio- and stereo-selective 
catalysis is another focus for MOF catalysis to impart unique catalytic performances that are not 
possible in other materials. This also applies to MOF based solid acid catalysis.54 

Overall, the field of MOF-based solid acid catalysis is still only focused on a limited number 
of MOFs, raising the demand for further development of acid stable MOFs. Regarding the term 
‘stability’, two aspects are involved. First, stability towards acidic protons: Brønsted acid 
catalyzed reactions involve the transfer of protons from the catalyst acidic sites to substrates for 
the activation of the reactant, which, however, could lead to the slow destruction of the 
framework if those protons migrate to the carboxylates in the framework instead of returning to 
their origin. Second, stability towards reactivation: the MOFs have to be stable towards 
conditions to regenerate the acidic sites or to access the channels, which is typically 
accomplished through high temperature calcination or use of harsh chemicals. The need exists 
for developing MOFs in which the metal-link binding units are not carboxylates but other more 
acid resistant linkages. 

The objectives of this dissertation are: (a) to propose and implement strategies for designing 
MOFs for gas storage applications, including water and methane storage, and ammonia capture; 
(b) to outline and test different strategies in designing MOF-based solid acids for catalytic 
reactions in both liquid and gas phases. 

The work described in Chapter II demonstrates the designability of zirconium-based MOFs 
through exquisite control of the coordination mode of inorganic SBUs. It is well-known that 
zirconium MOFs share the same Zr6O8

8+ core, nevertheless, using terminal ligands to block 
different coordination sites on the core can potentially lead to nine highly symmetric SBUs from 
3-coordinated triangle to 12-coordinated cuboctahedron, five of which are realized and reported 
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in this work. Details are provided for the formation of single crystals of these zirconium MOFs. 
Due to their water stability, zirconium MOFs are promising candidates for water-adsorption 
related applications. All zirconium MOFs presented in this Chapter are subject to consecutive 
cycles of water adsorption/desorption measurements, through which two compounds, MOF-801-
P and MOF-841, are identified. It is proposed that the pore size of these materials is the key 
factor leading to desired water adsorption properties. 

Continuing the system of zirconium-based MOFs, in Chapter III, a novel strategy is 
demonstrated to introduce Brønsted acidity into MOFs. With the inspiration obtained from 
sulfated zirconia, a controllable sulfation on MOF-808, one of the zirconium MOFs reported in 
the previous Chapter, is carried out through sulfate group/formate group substitution. The 
resulted MOF-808-xSO4, where x = number of sulfate groups per zirconium SBU, is shown to 
completely retain the crystallinity and porosity of MOF-808. Through a combination of Hammett 
indicator test, solid-state NMR experiments and adsorption experiments of basic molecules as 
probes, the acidity of these sulfated MOF-808’s is systematically characterized. 

Having these novel MOF-based solid acid materials at hand, in Chapter IV, a series of 
studies is performed to test their catalytic activity towards different acid-catalyzed reactions. It is 
shown that as the number of sulfate groups per zirconium SBU increases in MOF-808-xSO4, the 
materials exhibit increased Lewis acidic reactivity and newly generated strong Brønsted acid 
reactivity. The fully sulfated material, MOF-808-2.5SO4, shows catalytically activity in Friedel-
Crafts acylation, esterification, and isomerization of terpenes, as well as in the conversion of 
methylcyclopentane (MCP) into various hydrocarbons at 150-200 oC; the latter being a test 
reaction for catalytic reforming. MOF-808-2.5SO4 is also found to be a powerful ammonia 
capture material that shows high uptake capacity at both low pressure (P < 1.5 Torr) and ambient 
pressure (P = 760 Torr). 

In Chapter V, zinc-based MOFs are studied for the effect of pore size and different organic 
functional groups on MOFs’ methane adsorption properties in MOFs. The zinc-based system is 
chosen to rule out the uptake activity from open metal sites. Using a novel double bond-
containing tritopic linker, five new MOFs and three known MOFs are prepared and characterized. 
Methane uptakes are measured up to 80 bar at 298 K. The results show that the new MOFs all 
exhibit high methane uptake with working capacities (between 5 and 80 bar) approaching the 
benchmark compound HKUST-1. Pore size is shown to be the most important factor for methane 
storage properties of MOFs. 

Chapter VI describes the construction of a bifunctional MOF-based solid acid system. The 
system, composed of MOF material encapsulated with phosphotungstic acid (PTA) and 
supported Pt nanoparticles shows catalytic activity towards gas phase n-hexane isomerization. 
The results indicate a close relationship between PTA added during the synthesis and the 
catalytic activity. Through a series of study and characterization, it is shown that the presence 
and quantity of strong Brønsted acidic sites (presumably on encapsulated PTA molecules) are 
key factors for understanding the catalytic activity of this type of solid acid. 
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Chapter II 

Design, Synthesis and Characterization of Zirconium Metal-Organic 
Frameworks and Their Water-Adsorption Properties 

 
Introduction 

The design, synthesis, and characterization of metal-organic frameworks (MOFs) have 
received much attention in the last two decades and significant achievements have been realized 
in this field.1 The introduction of reticular chemistry provides many possibilities leading to a 
diversity of MOFs materials with different pore metrics and properties.2 This logical approach to 
assembly of predesigned building blocks by strong bonds into predetermined ordered structures 
has led to thousands of MOFs discovered each year.1 

Among the library of MOFs, zirconium-based MOFs (Zr-MOFs) are of special interest 
because of their mechanical, thermal and chemical stability compared to MOFs composed of 
other metals.3,4 This gives Zr-MOFs invaluable advantages in applications where contact of the 
frameworks with moisture and acids are inevitable. The adsorption of water by porous solids is 
important for many applications requiring capture and release of water. Temperature-triggered 
capture and release of atmospheric water is expected to be useful in climates where there is a 
large temperature difference between day and night. Here, water is adsorbed at night and 
released during the day, making it possible to deliver fresh water without electric power.5 More 
recently, water capture by porous solids is being investigated in the design of adsorption driven 
heat exchangers6 for their use as air-conditioning units in vehicles: heating and cooling are 
achieved upon adsorption and desorption of water into/from a porous solid, respectively. 

In such water capture applications, three criteria are important in the design of a suitable 
porous material.7 First, the pore filling or condensation of water into the pores of the solid must 
occur at low relative pressure (relative humidity) and exhibit a steep uptake behavior. The former 
criterion is important because water is being captured from media where it is present at low 
concentrations, and the latter criterion is related to the working capacity of the material. Thus the 
water adsorption isotherm should exhibit a steep uptake at a specific relative pressure (P/P0, 
where P0 is the saturation pressure of water). For on-board vehicle implementation of heat 
exchangers (so-called thermal batteries),8 water capture is desirable at low relative pressures 
(P/P0 < 0.1) as it reduces the need to incorporate compressors or to raise the evaporation 
temperature for the adsorption/desorption cycles. The second criterion is the high water uptake 
capacity for maximum delivery of water, and facile adsorption/desorption processes for energy 
efficiency. Third, high cycling performance and water stability of the material are required. 
Hence, porous materials with very large pore size and pore volume might exhibit large uptake 
capacity, but it is typically reached only at high relative pressure values (close to saturation) and 
after a gradual uptake.9 Conversely, microporous zeolites can capture water at very low P/P0 
values with steep uptake behavior, however their recyclability is energetically demanding 
because of the strong interactions between water and the zeolite framework. Therefore, there is a 
need for the design and study of porous materials whose water adsorption behavior meets these 
three requirements. Metal-organic frameworks (MOFs) have been examined for their water 
capture properties and they were found to be promising materials.10 In this work, we expect to 
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show that Zr-MOFs can be designed to meet these three criteria and exhibit excellent 
performances as water capture materials.  

Despite the dramatically growing popularity and population of Zr-MOFs since the first 
discovery of UiO-66,4 completely tunable design and synthesis of desired new Zr-MOF 
structures is still far from satisfactory. The difficulty comes from two aspects: first, the limited 
variety of Zr-based SBUs from which frameworks can be derived, and second, the difficulty in 
growing single crystals of Zr-MOFs.   

Recently, topologically novel structures of Zr-MOFs are reported based on the Zr6O8
8+ 

SBUs but with a different number of connectivity of the SBU. The number of connectivity of the 
SBU refers to the number of the closest SBUs that are connected to the target SBU by an organic 
linker. The commonly found number of connectivity in Zr-MOFs are 12 in UiO-66, 
Zr6O4(OH)4(BDC)6, BDC = benzene-1,4-dicarboxylate, and its isoreticular structures. However, 
it is shown that by using other organic linkers, the number of connectivity in Zr-MOFs can be 
reduced to 10 and 8. For instance, 10-connected Zr-SBUs are found in DUT-69,11 and 8-
connected Zr-SBUs are reported in MOF-545,12 DUT-51,13 DUT-6711 et al. These findings 
greatly increase the diversity of Zr-MOF structures, which enables us to discover Zr-MOFs with 
different pore metrics and thus adsorption properties. 

It is also shown that the size of Zr-MOF crystallites can be controlled by using additional 
modulators, usually monocarboxylic acids. The commonly accepted mechanism of modulation is 
based on the competition of modulators with the linkers in binding to the growing crystal thus 
slowing down the crystal growth process and resulting in large single crystals.14 This led to the 
production of the first single crystals of a Zr-MOF followed by single-crystal structural analysis 
in 2011.15 The role of the modulator has also been further extended as structure directing agent, 
leading to the unsaturated (less than 12-connected) structures mentioned above where the 
remaining coordination sites are usually capped either by solvent molecules or the modulator 
molecules as shown by single crystal X-ray diffraction analysis. 

This work reports the synthesis and crystal structures of three new zirconium MOFs, 
Zr6O4(OH)4(PZDC)5(HCOO)2(H2O)2, MOF-802; Zr6O4(OH)4(BTC)2(HCOO)6, MOF-808; and 
Zr6O4(OH)4(MTB)2(HCOO)4(H2O)4, MOF-841. This work also summarizes the synthesis and 
the X-ray single-crystal structure of an additional Zr-MOF, Zr6O4(OH)4(fumarate)6, hereafter 
MOF-801, which was reported earlier as a microcrystalline powder. Utilizing these MOFs, the 
diversity of Zr-SBUs and modulated synthesis of single crystals of Zr-MOFs are discussed. We 
also tested the water adsorption properties of these materials, among which, MOF-801 and 
MOF-841, swiftly capture water at well-defined, low relative pressure values and exhibit high 
uptake, recyclability, and water stability. 

 

Experimental Section 
Chemicals used in this work. N,N-Dimethylformamide (DMF), formic acid (purity > 98 

%) and anhydrous methanol were obtained from EMD Millipore Chemicals; anhydrous acetone 
was obtained from Acros Organics; zirconium oxychloride octahydrate (ZrOCl2·8H2O, purity ≥ 
99.5%) and Sigmacote® siliconizing reagent were obtained from Sigma-Aldrich Co. Fumaric 
acid, thiophene-2,5-dicarboxylic acid (H2TDC), 1H-pyrazole-3,5-dicarboxylic acid (H2PZDC), 
and 1,3,5-benzenetricarboxylic acid (H3BTC) were obtained from Aldrich. 4,4',4'',4'''-
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Methanetetrayltetrabenzoic acid (H4MTB) was prepared according to the published procedure.16 
All starting materials and solvents, unless otherwise specified, were used without further 
purification. 

Analytical techniques. Single-crystal X-ray diffraction (SXRD) data were collected on a 
Bruker D8-Venture diffractometer equipped with Mo- ( = 0.71073 Å) and Cu-target (λ = 
1.54184 Å) micro-focus X-ray tubes and a PHOTON 100 CMOS detector. Additional data was 
collected using synchrotron radiation in the beamline 11.3.1 of the Advanced Light Source, 
LBNL. Powder X-ray diffraction patterns (PXRD) were recorder using a Bruker D8 Advance 
diffractometer (Göbel-mirror monochromated Cu Kα radiation λ = 1.54056 Å). Solution 1H 
NMR spectra were acquired on a Bruker AVB-400 NMR spectrometer. Elemental microanalyses 
(EA) were performed in the Microanalytical Laboratory of the College of Chemistry at UC 
Berkeley, using a Perkin Elmer 2400 Series II CHNS elemental analyzer. Attenuated total 
reflectance (ATR) FTIR spectra of neat samples were performed in-house on a Bruker ALPHA 
Platinum ATR-FTIR Spectrometer equipped with a single reflection diamond ATR module. 
Thermal gravimetric analysis (TGA) curves were recorded in-house on a TA Q500 thermal 
analysis system under air flow. Low-pressure gas (N2 and Ar) adsorption isotherms were 
recorded in-house on a Quantachrome Autosorb-1 volumetric gas adsorption analyzer. Liquid 
nitrogen and argon baths were used for the measurements at 77 and 87 K, respectively. Water 
isotherms were measured in-house on a BEL Japan BELSORP-aqua3, and the water uptake in 
weight percent (wt%) unit is calculated as [(adsorbed amount of water)/(amount of 
adsorbent)×100], consistent with the established procedures. Prior to the water adsorption 
measurements, water (analyte) was flash frozen under liquid nitrogen and then evacuated under 
dynamic vacuum at least five times to remove any gases in the water reservoir. The measurement 
temperature was controlled with a water circulator. Helium was used for the estimation of dead 
space for gas and water adsorption measurements. Ultra-high-purity grade N2, Ar, and He gases 
(Praxair, 99.999% purity) were used throughout the experiments.  

 
Synthesis and Characterization of MOFs: 
General procedure for sample preparation. To reduce nucleation in the growth of MOF 

single-crystals, the inner surface of glass containers were rinsed with Sigmacote® siliconizing 
reagent, washed three times with acetone, and dried in oven before use. Solvent exchange of the 
MOFs is performed by immersing the sample in anhydrous methanol or acetone for three days, 
during which time the solvent was decanted and freshly replenished three times per day. For 
supercritical CO2 activation, the solvent-exchanged MOFs were fully exchanged with liquid 
CO2, kept under supercritical CO2 atmosphere, and then bled using a Tousimis Samdri PVT-3D 
critical point dryer. 

Single crystal sample of Zr6O4(OH)4(fumarate)6, MOF-801-SC. A solvent mixture of 
fumaric acid (0.081 g, 0.70 mmol) and ZrOCl2·8H2O (0.23 g, 0.70 mmol) in a solvent mixture of 
DMF/formic acid (35 mL/5.3 mL) were placed in a 60-mL screw-capped glass jar, which was 
heated at 120 °C for one day. Octahedral colorless crystals were collected and quickly washed 
three times with 5 mL of fresh DMF (Yield: 0.10 g; 63% based on fumaric acid). 1H digested 
solution NMR of as-synthesized sample (400 MHz, DMSO-d6, ppm): 8.103 (s, 0.5H, 0.5 × 
HCOOH), 7.917 (s, 1H, 1 × DMF), 6.621 (s, 2H, 1 × Fumarate), 2.871 (s, 3H, 1 × DMF), 2.714 
(s, 3H, 1 × DMF). EA of as-synthesized sample: Calcd. for 
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[Zr6O4(OH)4(C4H2O4)6](C3H7NO)6(HCOOH)3(H2O)10: C, 25.49; H, 3.99; N, 3.96%. Found: C, 
25.22; H, 3.19; N, 3.95%. ATR-FTIR (4000–400 cm-1): 3151 (br), 1651 (m), 1566 (s), 1384 (s), 
1200 (w), 1098 (w), 1062 (w), 984 (m), 793 (m), 739 (w), 640 (s), 483 (s). 

As-synthesized MOF-801-SC was rinsed three times per day with 10 mL of DMF for three 
days and immersed in 10 mL of anhydrous methanol for three days, during which time the 
solvent was replaced three times per day.. The solid was then evacuated at 150 ºC for 24 hours to 
yield activated sample. EA of activated sample: Calcd. for Zr6C24H28O38 = 
[Zr6O4(OH)4(C4H2O4)6](H2O)6: C, 19.59; H, 1.92%. Found: C, 19.40; H, 1.77%. ATR-FTIR 
(4000–400 cm-1): 3217 (br), 1574 (m), 1397 (s), 1212 (w), 983 (w), 795 (w), 653 (s), 490 (m). 

Microcrystalline powder sample of Zr6O4(OH)4(fumarate)6, MOF-801-P. MOF-801-P 
was prepared according to published procedures with slight modification.14 Fumaric acid (5.8 g, 
50 mmol) and ZrOCl2·8H2O (16 g, 50 mmol) were dissolved in a solvent mixture of 
DMF/formic acid (200 mL/70 mL) in a 500-mL screw-capped jar, which was heated at 130 °C 
for 6 h. White precipitate was filtrated using Nylon membrane filters (pore size 0.2-m), and 
washed three times with 20 mL of fresh DMF and three times with 50 mL of methanol (Yield: 10 
g; 90% based on fumaric acid). As-synthesized MOF-801-P was rinsed three times per day with 
50 mL of DMF for three days, and immersed in 100 mL methanol for three days, during which 
time the methanol was replaced three times per day. The solid was then evacuated at 150 °C for 
24 hours to yield activated sample. EA of activated sample: Calcd. for Zr6C24H28O38 = 
[Zr6O4(OH)4(C4H2O4)6](H2O)6: C, 19.59; H, 1.92%; Found: C, 19.25; H, 1.05%.  

Zr6O4(OH)4(PZDC)5(HCOO)2(H2O)2, MOF-802. H2PZDC (0.27 g, 1.5 mmol) and 
ZrOCl2·8H2O (0.40 g, 1.3 mmol) in a solvent mixture of DMF/formic acid (50 mL/35 mL) were 
placed in a 125-mL screw-capped glass jar, which was heated at 130 °C for three days. Block 
colorless crystals were collected and washed three times with 5 mL of fresh DMF (Yield: 0.12 g; 
39% based on H2PZDC). 1H digested solution NMR of as-synthesized sample (400 MHz, 
DMSO-d6, ppm): 8.108 (s, 1H, 1 × HCOOH), 7.924 (s, 0.8H, 0.8 × DMF), 7.086 (s, 1H, 1 × 
PZDC), 2.871 (s, 2.4H, 0.8 × DMF), 2.714 (s, 2.4H, 0.8 × DMF). EA of as-synthesized sample: 
Calcd. for Zr6C42H66O50N14 =  [Zr6O4(OH)4 

(C5H2N2O4)5(HCOO)2(H2O)2](C3H7NO)4(HCOOH)3(H2O)6: C, 23.86; H, 3.15; N, 9.27%. 
Found: C, 23.52; H, 3.34; N, 9.18%. ATR-FTIR (4000–400 cm-1): 3082 (br), 1653 (m), 1566 (s), 
1503 (m), 1463 (m), 1432 (m), 1363 (s), 1196 (m), 1097 (m), 1059 (w), 996 (m), 865 (w), 823 
(w), 780 (m), 739 (w), 649 (s), 598 (m), 537 (m), 475 (s). 

As-synthesized MOF-802 was rinsed three times per day with 10 mL of DMF for three days, 
and immersed in 10 mL of anhydrous acetone for three days, during which time the solvent was 
replaced three times per day. Acetone-exchanged material was activated with the supercritical 
CO2 activation protocol and evacuated at 120 ºC for 24 hours to yield activated sample. EA of 
activated sample: Calcd. for Zr6C27H20O34N10 = [Zr6O4(OH)4(C5H2N2O4)5(HCOO)2(H2O)2]: C, 
20.58; H, 1.28; N, 8.89%. Found: C, 18.39; H, 0.72; N, 7.56%. ATR-FTIR (4000–400 cm-1): 
2870 (vw), 1656 (w), 1557 (m), 1462 (w), 1434 (w), 1360 (s), 1187 (w), 1095 (w), 1015 (w), 989 
(w), 817 (w), 798 (w), 778 (w), 758(w), 737 (w), 645 (s), 543 (w), 470 (s). 

Zr6O4(OH)4(BTC)2(HCOO)6, MOF-808. H3BTC (0.11 g, 0.50 mmol) and ZrOCl2·8H2O 
(0.16 g, 0.50 mmol) in a solvent mixture of DMF/formic acid (20 mL/20 mL) were placed in a 
60-mL screw-capped glass jar, which was heated at 100 °C for seven days. Octahedral colorless 
crystals were collected and washed three times with 10 mL of fresh DMF (Yield: 0.098g, 70 % 



22 
 

based on Zr). 1H digested solution NMR of as-synthesized sample (400 MHz, DMSO-d6, ppm): 
8.630 (s, 3H, 1 × BTC), 8.114 (s, 2H, 2 × HCOOH), 7.928 (s, 5H, 5 × DMF), 2.874 (s, 15H, 5 × 
DMF), 2.716 (s, 15H, 5 × DMF). EA of as-synthesized sample: Calcd. for Zr6C52H94O43N10 = 
[Zr6O4(OH)4(C9H3O6)2(HCOO)4](C3H7NO)10(H2O)5: C, 29.82; H, 4.52; N, 6.69%; Found: C, 
29.74; H, 5.13; N, 6.69%. ATR-FTIR (4000–400 cm-1): 3381 (br), 2930 (vw), 2861 (vw), 1651 
(m), 1614 (m), 1573 (m), 1497 (w), 1437 (m), 1372 (s), 1252 (m), 1099 (m), 1061 (w), 940 (w), 
864 (w), 802 (w), 783 (w), 756 (m), 717 (w), 702 (w), 646 (s), 569 (w), 501 (w), 477 (m), 445 
(s). 

As-synthesized MOF-808 was rinsed three times per day with DMF for three days, and 
immersed in 10 mL of anhydrous acetone for three days, during which time the acetone was 
replaced three times per day. Acetone exchanged material was then applied with supercritical 
CO2 activation protocol and evacuated at 150 °C for 24 hours to yield activated sample. EA of 
activated sample: Calcd. for Zr6C25.5H21.5O33.5N0.5 = [Zr6O4(OH)4 

(C9H3O6)2(HCOO)6](C3H7NO)0.5(H2O): C, 21.59; H, 1.53, N, 0.49%. Found: C, 21.46; H, 1.46; 
N, 0.77%. ATR-FTIR (4000–400 cm-1): 2867 (br), 1603 (m), 1583 (m), 1447 (m), 1379 (s), 1110 
(w), 944 (w), 758 (w), 740 (w), 703 (m), 657 (s), 572 (w), 500 (m), 451 (s). 

Zr6O4(OH)4(MTB)2(HCOO)4(H2O)4, MOF-841.  H4MTB (0.12 g, 0.25 mmol) and 
ZrOCl2·8H2O (0.32 g, 1.0 mmol) in a solvent mixture of DMF/formic acid (40 mL/25 mL) were 
placed in a 125-mL screw-capped glass jar, which was heated at 130 °C for two days. Mother 
liquor of the reaction mixture was separated and further heated at 130 ºC for another two days. 
Colorless block crystals were collected and washed three times with 5 mL of fresh DMF (Yield: 
0.13g, 55 % based on H4MTB). 1H digested solution NMR of as-synthesized sample (400 MHz, 
DMSO-d6, ppm): 8.111 (s, 2H, 2 × HCOOH), 7.929 (s, 5H, 5 × DMF) , 7.883 (d, J = 4.4 Hz, 8H, 
1 × MTB), 7.335 (d, J = 4.4 Hz, 8H, 1 × MTB), 2.875 (5s, 15H, 5 × DMF), 2.717 (s, 15H, 5 × 
DMF). EA of as-synthesized sample: Calcd. for Zr6C92H134O54N10 = 
[Zr6O4(OH)4(C29H16O8)2(HCOO)4(H2O)4](C3H7NO)10(H2O)8: C, 39.58; H, 4.84; N, 5.02%; 
Found: C, 39.11; H, 4.91; N, 5.09%. ATR-FTIR (4000–400 cm-1): 3382 (br), 2930 (vw), 2860 
(vw), 1652 (m), 1602 (m), 1583 (m), 1564 (m), 1541 (m), 1407 (s), 1253 (m), 1191 (m), 1151 
(w), 1096 (w), 1061 (w), 1017 (w), 860 (w), 837 (w), 772 (m), 743 (w), 719 (w), 695 (w), 646 
(s), 523 (m), 454 (s). 

As-synthesized MOF-841 was rinsed three times per day with 10 mL of DMF for three days 
and immersed in 10 mL of anhydrous acetone for three days, during which time the acetone was 
replaced three times per day. Acetone exchanged material was then applied with supercritical 
CO2 activation protocol and evacuated at 120 °C for 24 hours to yield activated sample. EA of 
activated sample: Calcd. for Zr6C62H48O36 = [Zr6O4(OH)4 (C29H16O8)2(HCOO)4(H2O)4]: C, 
38.86; H, 2.52%; Found: C, 39.15; H, 2.16%. ATR-FTIR (4000–400 cm-1): 2858 (vw), 1596 (m), 
1559 (m), 1407 (s), 1380 (m), 1366 (m), 1336 (m), 1194 (w), 1152 (w), 1019 (w), 839 (w), 771 
(m), 751 (m), 719 (m), 664 (m), 570 (w), 525 (m), 457 (s). 

Zr6O4(OH)4(TDC)4(HCOO)4, DUT-67. DUT-67 was prepared according to published 
procedures with slight modification.11 H2TDC (0.069 g, 0.40 mmol) and ZrOCl2·8H2O (0.19 g, 
0.60 mmol) in a solvent mixture of DMF/formic acid (20 mL/11 mL) were placed in a 60-mL 
screw-capped glass jar, which was heated at 130 °C for three days. Cubic colorless crystals were 
collected and washed three times with 10 mL of fresh DMF (Yield: 0.11 g, 73% based on 
H2TDC). 1H digested solution NMR of activated sample (400 MHz, DMSO-d6, ppm): 8.110 (s, 
1H, 1 × HCOOH), 7.927 (s, 2H, 2 × DMF), 7.697 (s, 2H, 1 × TDC), 2.873 (s, 6H, 2 × DMF), 
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and 8.4 Å of diameter, respectively.4 DUT-67 is prepared with the bent ditopic TDC linker 
(Figure 2.2) and has a reo topology, with two types of cavities with 8.8 Å and 16.6 Å in 
diameter. 

Permanent porosity of new and reported zirconium-MOFs. Prior to the water sorption 
measurements, we recorded N2 and/or Ar adsorption isotherms for the Zr-MOFs to confirm their 
permanent porosity and to calculate their surface area. The N2 and/or Ar isotherms can be found 
in the Appendices (Figures A2.11-A2.17). For easy reading, the BET and Langmuir surface 
areas, pore volume, crystal density, pore diameter, and water uptake capacity for each Zr-MOF 
sample are summarized in Table 2.1. 

 

Water adsorption properties of zirconium MOFs 
Condensation pressure and uptake capacity. The water isotherms are shown in Figure 

A2.18-A2.24. For comparison, we first studied the water uptake properties of the prototypical 
Zr-MOF, UiO-66 (Figure A2.23), and compared it to data reported by other researchers. The 
water isotherm of UiO-66 has a sigmoidal shape with a moderate hysteresis loop at P/P0 = 0.3-
0.4. Maximum water uptake at 25 °C reaches 535 cm3 g-1 (43 wt%) at P/P0 = 0.9 (Table 2.1). 
These results, recorded on a volumetric instrument (uptake vs. P/P0), show the same trend as 
those previously reported and measured on a gravimetric system (uptake vs. relative humidity, 
RH%).21  

 

Table 2.1. Summary of the sorption, physical and pore-structure properties of the studied 
zirconium MOFs. 

Material Surface area, 
m2 g-1 

Vp,  
cm3 g-1 

dcrystal, 
g cm-3 a 

Pore 
diameter, 
Å b 

Water uptake, cm3 g-1 

BET Langmuir 
P/P0 = 

0.1 
P/P0 = 

0.3 
P/P0 = 

0.9 

MOF-801-P 990 1070 0.45 N/A 
7.4, 5.6, 
4.8 

280 380 450 

MOF-801-SC 690 770 0.27 1.68 
7.4, 5.6, 
4.8 

170 270 350 

MOF-802 < 20 < 20 < 0.01 1.47 5.6 35 70 110 

UiO-66 1290 1390 0.49 1.23 8.4, 7.4 20 125 535 

MOF-808 2060 2390 0.84 0.86 18.4 55 160 735 

MOF-841 1390 1540 0.53 1.05 9.2 10 550 640 

DUT-67 1560 1720 0.60 1.04 16.6, 8.8 100 390 625 

aFrom single crystal X-ray diffraction data; bCalculated with Platon.20 

 



33 
 

The water isotherm of MOF-801-SC measured at 25 °C is shown in Figure A2.19 (blue 
squares). The adsorbed amount of water gradually increases with increasing pressure up to P/P0 
= 0.05, followed by abrupt water uptake in the pressure range from P/P0 = 0.05 to 0.1, and the 
maximum uptake is 350 cm3 g-1 (28 wt%) at P/P0 = 0.9. The step pressure is much lower than 
that of UiO-66, indicating a higher water affinity for this material. A similar trend is observed in 
MOF-801-P (A2.18), while the maximum water uptake is now 1.3 times greater than MOF-801-
SC [450 cm3 g-1 (36 wt%) at P/P0 = 0.9]. This difference in maximum uptake between the two 
forms of MOF-801 was also observed in the N2 sorption measurements, and we attribute this to 
the possibility of a large amount of missing linker defects in MOF-801-P.25 MOF-802 shows a 
Type I isotherm (Figure A2.20, green squares). Although this compound does not show 
significant N2 and Ar uptake, the total water uptake is 100 cm3 g-1 (8.0 wt%) at P/P0 = 0.9, 
indicating that the pore is large enough to allow inclusion water molecules due to its smaller 
kinetic diameter (2.6 Å). 

The water isotherms for MOF-808, MOF-841, and DUT-67 display significant steps with a 
hysteresis loop (Figure A2.21, A2.22, and A2.24). The limited water uptake at lower pressure 
from these steps indicates low affinity of water to the MOF surface. This is related to the 
hydrophobicity of the organic linker; therefore, higher pressure of water vapor is required to 
induce the pore filling. The maximum uptake of DUT-67 and MOF-808 is 625 cm3 g-1 (50 wt%) 
and 735 cm3 g-1 (59 wt%), respectively. DUT-67 shows several steps in its isotherm, which can 
be correlated to the filling of the variously sized cavities that are present in this structure. MOF-
841 shows an isotherm with a steep adsorption commencing at P/P0 = 0.2 and reaching 550 cm3 
g-1 at P/P0 = 0.3 (640 cm3 g-1 at P/P0 = 0.9).  

Thus, to fill the micropores with water in the desirable pressure range (especially below P/P0 
= 0.1) and realize the steep water uptake (i.e. the first criterion mentioned above), the pore size 
of the MOF structure plays a primary role. 

Ease of regeneration and cycle performance in water uptake. The third criterion for the 
applicability of MOFs as water adsorbents is the ease of regeneration and material stability to 
maximize water delivery. To evaluate these factors, the samples were evacuated at 25 °C for 2 
hours after the isotherm measurements. Typical pressure in the sample cell after the regeneration 
process was 5 Pa. We then collected the water isotherms for five cycles in the Zr-MOFs. The 
isotherms are shown in the Appendices (Figure A2.18-A2.24). The cycle performance results 
show that for MOF-808, the uptake constantly drops in every cycle (Figure A2.21). The surface 
area of these MOFs was remeasured after the water cycle tests, showing a significant decrease. 
This observation suggests that the loss of water uptake capacity is related to the loss of porosity.  

For DUT-67, we find a significant decrease from the first to the second cycle and a nearly 
constant uptake thereafter (Figure A2.24). This behavior can be explained if some of the water 
molecules are strongly bound to the framework, not being desorbed under the aforementioned 
regeneration conditions. If this is the case, the water release requires further energy input (higher 
temperature and/or better vacuum). In practical terms, the working capacity of these materials is 
strongly limited due to the high energetic regeneration cost.  

Finally, we find that MOF-801-P, MOF-802, MOF-841, and UiO-66 exhibit the best and 
closest to the ideal cycling performance. These materials show robust cycling performance as 
indicated by the similarity of water uptake in all five cycles (Figure A2.18, A2.20, A2.22, and 
A2.23). Since these materials are stable under humid conditions, and have no strong binding sites 
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(e.g. open metal sites) for water to bind, it is expected that their working capacity (deliverable 
amount of water) will not be strongly influenced by the regeneration conditions.  

Best performing porous materials for water adsorption. As mentioned above, different 
applications require different operation pressures. Whereas, for on-board heat exchange systems, 
it is preferable to have materials capable of taking up large amounts of water in low pressure 
regions (P/P0  0.1), temperature-triggered water capture and release systems are expected to 
operate at P/P0 values close to 0.3. 

At P/P0 = 0.1, the water uptake of MOF-801-P is higher than 20 wt%, which outperforms 
any of the other MOFs. The water uptake capacity increases for all materials at P/P0 = 0.3. 
However, the order is slightly different from the one observed at relative pressure of 0.1: Here, 
MOF-841 outperforms the other materials. The isotherm profile of this material (Figure A2.22), 
which shows a significant step in the pressure range from P/P0 = 0.2 to 0.3, indicates that water 
rapidly condenses in the pore of this MOF in this pressure range. In addition, the uptake is nearly 
constant throughout the five cycles. After the fifth cycle, the uptake is still greater than 40 wt%. 
To the best of our knowledge, this is the highest value of water uptake at P/P0 = 0.3 for any 
porous solid. 

Temperature dependence of water uptake. Since water adsorption is an exothermic 
process, a large amount of heat can be utilized if the adsorption enthalpy is large. With that in 
mind, released heat can increase the temperature in adsorbent beds so that the uptake capacity 
can be drastically influenced by this temperature change. Therefore, we measured the water 
sorption isotherms for the best performers, MOF-801-P and MOF-841, at various temperatures 
between 15 to 55 °C (Figure A2.25, A2.27). These isotherms show that the maximum uptake 
capacity is not significantly influenced by temperature, indicating that water molecules are easily 
condensed within the MOF pores.22 We estimated the isosteric heat of adsorption (Qst) of water 
from the isotherms measured at various temperatures (Figures A2.26, A2.28). The Qst value in 
the low water coverage range for MOF-841 is around 50 kJ mol-1, which remains nearly constant 
throughout the entire adsorption process, and represent 25% greater energy than the latent energy 
of water (40.7 kJ mol-1). The Qst value for MOF-801-P is even greater than MOF-841, 
approximately 60 kJ mol-1. 

Applications to thermal battery and water delivery in remote desert regions. With these 
values, we can estimate how much heat can be stored in 15 kg of MOF-801-P. Assuming that the 
storage capacity and Qst of MOF-801-P are 20 wt% (at P/P0 = 0.1) and 60 kJ mol-1, respectively, 
the total heat expected to be released is 10 MJ. If such a system is operated for 1 hour with 65% 
efficiency, the power capability is equivalent to 1.8 kW  a value approaching the 2.5 kW 
power target for typical thermal batteries as set by the DOE.23 

The temperature effect on water uptake is also important to realize another application of 
water adsorption in MOFs: temperature-triggered water capture and release systems, where 
atmospheric water would be captured and delivered at different temperatures in areas with high 
temperature contrasts between day and night. For example, in the city of Tabuk in Saudi Arabia, 
the typical summer temperature and relative humidity during day time are respectively 40 °C and 
5%, drastically changing at night to 25 °C and 35%. Assuming P/P0 × 100 = RH%, the working 
capacity of MOF-841 between P/P0 = 0.05-0.35 is more than 40 wt%, which is the largest 
obtained among all Zr-MOFs. If 15 kg of MOF-841 is deployed in Tabuk under these optimal 
conditions, it should be able to deliver 6.3 L of pure water per day. 
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Conclusion 
This chapter describes the design and synthesis of three new zirconium MOFs, MOF-802, 

MOF-808, and MOF-841. These MOFs were prepared based on the assumption towards different 
connection polyhedra of Zr-SBUs. By using organic linkers that have different angles between 
the carboxylate groups, the number of connection of the Zr-SBU is successfully reduced from 12 
to 10, 8, and 6, greatly increasing the diversity of Zr-MOFs. Besides, using MOF-801 as an 
example, we have also studied how different synthetic conditions affect the crystallinity and 
crystal growth of Zr-MOFs. Special attention is paid to the function of formic acid as modulator 
to obtain single crystals of Zr-MOFs. Finally, we have evaluated the water sorption properties of 
MOF-801, MOF-802, MOF-808, and MOF-841, along with other reported zirconium MOFs, 
UiO-66, and DUT-67, with the aim of finding new water capture materials with optimal response 
in the most important criteria to be considered for this important application: position at which 
the adsorption occurs and steepness of the process, uptake, and reuse and stability. Two 
materials, MOF-801-P and MOF-841 show excellent performance when considering all these 
three criteria: MOF-801-P takes up 22.5 wt% of water at P/P0 = 0.1, and MOF-841 takes up 44% 
at P/P0 = 0.3. These uptakes are steep and nearly constant after five consecutive cycles where the 
materials are easily regenerated with a low energetic cost. Due to these characteristics, MOF-801 
is a good candidate to be used in advanced thermal batteries while MOF-841 has potential to be 
used in capture and release of atmospheric water in remote desert areas. 
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Appendices 

Table A2.1. Crystal data and structure refinement for MOF-801-SC (CCDC #: 1002676). 
 
Identification code MOF-801-SC 

Empirical formula C24H12O32Zr6 

Formula weight 1359.66 

Temperature/K 363.15 

Crystal system cubic 

Space group Pn-3 

a/Å 17.504(3) 

b/Å 17.504(3) 

c/Å 17.504(3) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 5363.1(6) 

Z 4 

ρcalc/mg mm-3 1.592 

m/mm-1 1.450 

F(000) 2608.0 

Crystal size/mm3 0.02 × 0.02 × 0.015 

Radiation Synchrotron (λ = 0.7749Å) 

2Θ range for data collection 6.1 to 57.68° 

Index ranges -19 ≤ h ≤ 20, -20 ≤ k ≤ 22, -8 ≤ l ≤ 22 

Reflections collected 14847 

Independent reflections 1918 [Rint = 0.1340, Rsigma = 0.0797] 

Data/restraints/parameters 1918/0/98 

Goodness-of-fit on F2 1.095 

Final R indexes [I>=2σ (I)] R1 = 0.0619, wR2 = 0.1553 

Final R indexes [all data] R1 = 0.1002, wR2 = 0.1733 

Largest diff. peak/hole / e Å-3 1.45/-0.77 
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Table A2.2. Crystal data and structure refinement for MOF-802 (CCDC #: 1002674). 
 

Identification code MOF-802 

Empirical formula C39H16N14.5O39Zr6 

Formula weight 1859.65 

Temperature/K 100.0 

Crystal system orthorhombic 

Space group Fdd2 

a/Å 39.222(3) 

b/Å 26.018(2) 

c/Å 27.887(2) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 28459(4) 

Z 16 

ρcalc/mg mm-3 1.736 

m/mm-1 7.853 

F(000) 14461.0 

Crystal size/mm3 0.25 × 0.21 × 0.18 

Radiation CuKα (λ = 1.54178 Å) 

2Θ range for data collection 4.506 to 137.604° 

Index ranges -41 ≤ h ≤ 47, -31 ≤ k ≤ 30, -29 ≤ l ≤ 33 

Reflections collected 27657 

Independent reflections 10910 [Rint = 0.0142, Rsigma = 0.0197] 

Data/restraints/parameters 10910/145/797 

Goodness-of-fit on F2 1.074 

Final R indexes [I>=2σ (I)] R1 = 0.0382, wR2 = 0.1135 

Final R indexes [all data] R1 = 0.0388, wR2 = 0.1157 

Largest diff. peak/hole / e Å-3 1.55/-0.83 

Flack parameter -0.021(4) 
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Table A2.3. Crystal data and structure refinement for MOF-808 (CCDC #: 1002672). 
 

Identification code MOF-808 

Empirical formula C24H6O44.35Zr6 

Formula weight 1551.21 

Temperature/K 100.15 

Crystal system cubic 

Space group Fd-3m 

a/Å 35.0764(10) 

b/Å 35.0764(10) 

c/Å 35.0764(10) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 43156(4) 

Z 16 

ρcalc/ mg mm-3 0.955 

m/mm-1 0.781 

F(000) 11917.0 

Crystal size/mm3 0.01 × 0.01 × 0.01 

Radiation Synchrotron (λ = 0.7749 Å) 

2Θ range for data collection 3.58 to 67.398° 

Index ranges -49 ≤ h ≤ 50, -50 ≤ k ≤ 50, -50 ≤ l ≤ 50 

Reflections collected 180989 

Independent reflections 3133 [Rint = 0.0851, Rsigma = 0.0213] 

Data/restraints/parameters 3133/0/126 

Goodness-of-fit on F2 1.126 

Final R indexes [I>=2σ (I)] R1 = 0.0396, wR2 = 0.1334 

Final R indexes [all data] R1 = 0.0475, wR2 = 0.1431 

Largest diff. peak/hole / e Å-3 0.85/-0.78 
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Table A2.4. Crystal data and structure refinement for MOF-841 (CCDC #: 1002670).  
 
Identification code MOF-841 

Empirical formula C62H36O36Zr6 

Formula weight 1904.23 

Temperature/K 150(2) 

Crystal system tetragonal 

Space group I4/m 

a/Å 14.6766(6) 

b/Å 14.6766(6) 

c/Å 28.0033(10) 

α/° 90.00 

β/° 90.00 

γ/° 90.00 

Volume/Å3 6032.0(4) 

Z 2 

ρcalc/ mg mm-3 1.048 

m/mm-1 0.5485 

F(000) 3504.0 

Radiation MoKα (λ = 0.71073 Å) 

2Θ range for data collection 4.88 to 51.98° 

Index ranges -18 ≤ h ≤ 18, -18 ≤ k ≤ 18, -34 ≤ l ≤ 34 

Reflections collected 41321 

Independent reflections 3043 [Rint = 0.0415, Rsigma = 0.0165] 

Data/restraints/parameters 3043/72/135 

Goodness-of-fit on F2 1.233 

Final R indexes [I>=2σ (I)] R1 = 0.0519, wR2 = 0.1763 

Final R indexes [all data] R1 = 0.0597, wR2 = 0.1897 

Largest diff. peak/hole / e Å-3 1.48/-0.60 
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Chapter III 

Controllable Sulfation of Zirconium Metal-Organic Framework-808 and 
Generation of MOF-Based Superacid 

 
Introduction 

Structural modification of MOFs, where the secondary building units (SBUs) are modified 
with incoming molecules or functional groups, plays an important role in tuning the properties of 
and applying MOFs to gas storage, separation, and catalysis.1 The strong bonds between SBUs 
of MOFs have allowed covalent chemistry to be employed to modify MOF crystals as if they 
were discrete molecules, because the MOF building units retain the same underlying structure 
and essential chemical reactivity as their molecular counterparts. 

Of the several approaches devised to modify the structure of MOFs, post synthetic 
modification (PSM), is the most frequently applied and frequently reviewed approach.1 PSM 
involves either carrying out organic reactions to modify the organic linkers of the MOF and/or 
covalently bonding incoming ligands to open metal sites.2 These modifications are performed 
orthogonally to the MOF backbone structure. Such chemical reactions are carried out at precise 
locations within the crystal and the product remains atomically well defined (i.e. crystalline). The 
ability to carry out reactions on extended solids in this manner is possible because of the 
robustness of the MOF structure due to the strong covalent bonds composing the framework. 
Furthermore, this chemistry allows functional groups that are not compatible with the MOF 
synthesis to be incorporated, and for the design of a series of MOFs of different functionality 
using a single set of synthetic conditions. Thus, PSM is a powerful tool to design complexity 
within MOFs. 

PSM performed on extended solids requires reagents to diffuse throughout the crystal. 
Reactions involving insoluble heterogeneous reagents and catalysts or those producing insoluble 
byproducts present a challenge to PSM of MOFs. The candidate reactions for PSM should also 
be chemically compatible with the MOF backbone. Therefore, another challenge for PSM in 
MOFs is encountered when incorporation of strong acidic functionalities is desired. Increasingly, 
MOFs with unusual stability in aqueous and non-aqueous conditions are being developed and 
employed. Recently, several stable MOFs in acidic and basic media have been reported.3 These 
materials provide with a large number of opportunities for performing efficient PSMs to develop 
completely novel chemistry in MOFs. 

Superacids, refers to any acid systems stronger than 100% sulfuric acid,4 that is, Hammett 
acidity function H0 ≤ -12 (Figure 3.1).5 On the basis of various measurements, HF–SbF5, HSO3F 
and CF3SO3H are typically considered liquid Brønsted superacid catalysts widely used for 
activation of the hydrocarbons at low temperature.6 The development and utilization of solid 
superacids is another important direction of study which has yielded several solid superacid 
systems including sulfate ion-promoted metal oxides (e.g. SO4

2-/ZrO2), Nafion-H, and zeolite 
(e.g. ZSM-5).7 However, challenges still remain in this chemistry concerning the precise 
determination of the level of acidity, knowledge of the nature of the acid sites, and the discovery 
of new designable superacid systems. 
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Experimental Section 
Chemicals and supplies. N,N-Dimethylformamide (DMF), anhydrous methanol and formic 

acid (purity > 98%) were obtained from EMD Millipore Chemicals; anhydrous acetone and 
anhydrous toluene were obtained from Acros Organics; zirconium oxychloride octahydrate 
(ZrOCl2·8H2O, purity ≥ 99.5%), sulfuric acid (H2SO4, purity ≥ 95%), hydrofluoric acid (HF, 48 
wt% in water), anhydrous benzene, and anhydrous chloroform with amylenes as stabilizer were 
obtained from Sigma-Aldrich. 1,3,5-Benzenetricarboxylic acid (H3BTC) was obtained from 
Aldrich. Trimethylphosphine oxide (TMPO) was obtained from Alfa Aesar. Acetonitrile-d3 (99.8 
atom% D) was obtained from TCI America. 

Hammett Indicators: 4-Phenylazoaniline (analytical standard) and 2,4-dinitroaniline 
(analytical standard, 99.9%) were obtained from Fluka. 2-Nitroaniline (purity ≥ 98%), 4-
nitrodiphenylamine (purity ≥ 99%), anthraquinone (purity ≥ 97%), and 4-nitrofluorobenzene 
(purity ≥ 99%) were obtained from Aldrich, 2,4-Dichloro-6-nitroaniline (purity > 98%) and 2-
benzoylnaphthalene (purity ≥ 98%) were obtained from Alfa Aesar. 2-Bromo-4,6-dinitroaniline 
(purity ≥ 98.0%), 4-nitrotoluene (purity ≥ 99.0%), and 2,4-dinitrotoluene (purity ≥ 99.0%) were 
obtained from TCI. 2,4-Dinitrofluorobenzene (purity ≥ 99%) were obtained from Sigma. 

All starting materials, reagents and solvents were used without further purification. 

All glassware used to handle activated MOFs was dried at 120 oC for 12h and used 
immediately. 

 

Analytical techniques. Single-crystal X-ray diffraction (SXRD) data were collected using 
synchrotron radiation in beamline 11.3.1 of the Advanced Light Source, Lawrence Berkeley 
National Laboratory (LBNL). Powder X-ray diffraction (PXRD) patterns were recorded using a 
Rigaku Miniflex 600 diffractometer (Bragg-Brentano geometry, Cu Kα radiation λ = 1.54056 Å). 
Solution 1H NMR spectra were acquired on a Bruker Avance-400 MHz NMR spectrometer. 
Carbon, hydrogen, nitrogen and sulfur elemental microanalyses (EA) were performed in the 
Microanalytical Laboratory of the College of Chemistry at UC Berkeley, using a Perkin Elmer 
2400 Series II CHNS elemental analyzer. Inductively coupled plasma-optical emission 
spectroscopy (ICP-OES) was performed on a PerkinElmer Optical Emission Spectrometer 
Optima 7000DV instrument. Scanning electron microscope (SEM) images were obtained using a 
Zeiss Gemini Ultra-55 analytical scanning electron microscope with a working distance of 8.4 
mm and a low acceleration voltages (5 keV) to avoid damage to the samples during observation. 
All MOF SEM samples were prepared by direct deposition of MOF/acetone dispersion (1 mg 
mL-1) on the silicon substrate heated on a hot plate (60 °C). Low-pressure gas (N2 and Ar) 
adsorption isotherms were recorded on a Quantachrome Autosorb-1 volumetric gas adsorption 
analyzer. Liquid nitrogen and argon baths were used for the measurements at 77 and 87 K, 
respectively. Helium was used for the estimation of dead space for gas adsorption measurements. 
Ultra-high-purity grade N2, Ar, and He gases (Praxair, 99.999% purity) were used throughout the 
adsorption experiments. Attenuated total reflectance (ATR) FTIR spectra of neat samples were 
performed on a Bruker ALPHA Platinum ATR-FTIR Spectrometer equipped with a single 
reflection diamond ATR module. Solid-state nuclear magnetic resonance (SSNMR) spectra were 
acquired on a Bruker Avance-500 MHz NMR spectrometer using a standard Bruker double 
resonance magic angle-spinning (MAS) probe. 
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Synthesis and Characterization of MOFs: 
General procedure for MOF formulation. Activated MOFs were analyzed using 

microanalyses (C, H, N, and S), ICP-OES analyses (Zr) and integrated solution 1H NMR spectra 
of digested samples to determine their formula. A mixture containing 580 μL of DMSO-d6 and 
20 μL of hydrofluoric acid (48 wt% in water) was used to digest 10 mg of each MOF for NMR 
measurements. The formulation procedure used the formula [Zr6O10-x-2y(OH)x+2y-

2(C9H3O6)2(HCOO)x(SO4)y](H2O)z as a starting point. The value of x was determined using the 
ratio of integrated formate and trimesate resonances in the solution 1H NMR spectrum of each 
digested sample. The value of y was determined from the results of C and S microanalyses. 
Finally, the value of z was determined by matching the calculated elemental microanalyses 
results with the found values.  

Microcrystalline powder sample of MOF-808-P. Microcrystalline powder samples of 
MOF-808-P were prepared using slightly modified published procedures.9 H3BTC (2.1 g, 10 
mmol) and ZrOCl2·8H2O (9.7 g, 30 mmol) were dissolved in DMF/formic acid (450 mL/450 
mL) and placed in a 1-L screw-capped glass jar, which was heated to 130 °C for two days. A 
white precipitate was collected by filtration and washed three times with 200 mL of fresh DMF. 
As-synthesized MOF-808-P was then immersed in 100 mL of anhydrous DMF for three days, 
during which time the DMF was replaced three times per day. The DMF-exchanged compound 
was filtrated off and immersed in 100 mL of water for three days, during which time the water 
was replaced three times per day. Water exchanged material was then immersed in 100 mL of 
anhydrous acetone for three days, during which time the acetone was replaced three times per 
day. The acetone-exchanged sample was then evacuated at room temperature for 24 h and at 150 
°C for 24 h to yield activated sample (Yield: 5.1 g, 76 % based on Zr). 1H solution NMR spectra 
of digested, activated sample (400 MHz, DMSO-d6, ppm): 8.64 (s, BTC), 8.12 (s, HCOOH), 
peak area ratio (BTC:HCOOH) = 6.0:5.0. Anal. Calcd for Zr6C23H18O32 = 
[Zr6O5(OH)3(C9H3O6)2(HCOO)5](H2O)2: Zr, 40.43; C, 20.41; H, 1.34%. Found: Zr, 40.3; C, 
21.02; H, 1.37%. 

MOF-808-2.3SO4 single crystal. Single crystals of MOF-808 were prepared following the 
reported procedure (S1). As-synthesized MOF-808 single crystals were immersed in anhydrous 
DMF for three days followed by water for three days, during which time the solvent was 
exchanged three times per day. Roughly 50 mg of water-exchanged MOF-808 crystals were 
immersed in 5 mL of 0.1 M sulfuric acid for 24 h during which time the mixture was stirred 
about once every two hours. The single crystals were then solvent exchanged with water for 
three days (water exchanged three times per day), quickly exchanged with anhydrous acetone for 
several times and immersed in anhydrous chloroform for three days during which time 
chloroform was exchanged three times per day. The chloroform in the solvent-exchanged crystals 
was removed under dynamic vacuum (30 mTorr) for 24 h at room temperature and 6 h at 80 °C. 
1H solution NMR spectra of digested, activated samples (400 MHz, DMSO-d6, ppm): 8.64 (s, 
BTC), 8.12 (s, HCOOH), peak area ratio (BTC:HCOOH) = 6.0:0.04. Anal. Calcd for 
Zr6C18H42.4O16.2S2.3 = [Zr6O5.6(OH)2.4(C9H3O6)2(SO4)2.3](H2O)17: C, 13.35; H, 2.64; S, 4.55%. 
Found: C, 13.28; H, 2.61; S, 4.45%. 

MOF-808-0.65SO4 microcrystalline powder. Activated MOF-808-P microcrystalline 
powder (0.50 g, 0.37 mmol) was immersed in 50 mL of 0.005 M sulfuric acid (0.25 mmol) for 24 
h during which time the mixture was stirred about once every two hours. The solution was then 
decanted and the remaining solid material was then solvent exchanged with 50 mL water for 
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three days (water exchanged three times per day), quickly exchanged with 5 × 50 mL anhydrous 
acetone and immersed in 50 mL anhydrous chloroform for three days during which time 
chloroform was exchanged three times per day. The chloroform-exchanged material was 
activated under dynamic vacuum (30 mTorr) for 24 h at room temperature and 24 h at 150 °C to 
afford MOF-808-0.65SO4 as white powder which was stored under Ar to avoid hydration (Yield: 
0.49 g). 1H solution NMR spectra of digested, activated sample (400 MHz, DMSO-d6, ppm): 
8.63 (s, BTC), 8.12 (s, HCOOH), peak area ratio (BTC:HCOOH) = 6.0:3.0. Anal. Calcd for 
Zr6C21H13.3O29.6S0.65 = [Zr6O5.7(OH)2.3(C9H3O6)2(HCOO)3(SO4)0.65](H2O): Zr, 41.87; C, 19.29; 
H, 1.03; S, 1.59%. Found: Zr, 41.9; C, 19.91; H, 1.11; S, 1.40%. 

MOF-808-1.3SO4 microcrystalline powder. Activated MOF-808-P microcrystalline 
powder (0.50 g, 0.37 mmol) was immersed in 50 mL of 0.01 M sulfuric acid (0.5 mmol) for 24 h 
during which time the mixture was stirred about once every two hours. The solution was then 
decanted and the remaining solid material was then solvent exchanged with 50 mL water for 
three days (water exchanged three times per day), quickly exchanged with 5 × 50 mL anhydrous 
acetone and immersed in 50 mL anhydrous chloroform for three days during which time 
chloroform was exchanged three times per day. The chloroform-exchanged material was 
activated under dynamic vacuum (30 mTorr) for 24 h at room temperature and 24 h at 150 °C to 
afford MOF-808-1.3SO4 as white powder which was stored under Ar to avoid hydration (Yield: 
0.47 g). 1H solution NMR spectra of digested, activated sample (400 MHz, DMSO-d6, ppm): 
8.63 (s, BTC), 8.12 (s, HCOOH), peak area ratio (BTC:HCOOH) = 6.0:1.8. Anal. Calcd for 
Zr6C19.8H10.2O28.8S1.3 = [Zr6O5.6(OH)2.4(C9H3O6)2(HCOO)1.8(SO4)1.3]: Zr, 42.18; C, 18.33; H, 
0.79; S, 3.20%. Found: Zr, 41.8; C, 19.01; H, 0.96; S, 3.04%. 

MOF-808-2.3SO4 microcrystalline powder. Activated MOF-808-P microcrystalline 
powder (0.50 g, 0.37 mmol) was immersed in 50 mL of 0.05 M sulfuric acid (2.5 mmol) for 24 h 
during which time the mixture was stirred about once every two hours. The solution was then 
decanted and the remaining solid material was then solvent exchanged with 50 mL water for 
three days (water exchanged three times per day), quickly exchanged with 5 × 50 mL anhydrous 
acetone and immersed in 50 mL anhydrous chloroform for three days during which time 
chloroform was exchanged three times per day. The chloroform-exchanged material was 
activated under dynamic vacuum (30 mTorr) for 24 h at room temperature and 24 h at 150 °C to 
afford MOF-808-2.3SO4 as white powder which was stored under Ar to avoid hydration (Yield: 
0.48 g). 1H solution NMR spectra of digested, activated sample (400 MHz, DMSO-d6, ppm): 
8.63 (s, BTC), 8.11 (s, HCOOH), peak area ratio (BTC:HCOOH) = 6.0:0.2. Anal. Calcd for 
Zr6C18.2H13O31.6S2.3 = [Zr6O5.2(OH)2.8(C9H3O6)2(HCOO)0.2(SO4)2.3](H2O)2: Zr, 40.29; C, 16.09; 
H, 0.96; S, 5.43%. Found: Zr, 39.9; C, 16.69; H, 0.79; S, 5.47%. 

MOF-808-2.5SO4 microcrystalline powder. Activated MOF-808-P microcrystalline 
powder (0.50 g, 0.37 mmol) was immersed in 50 mL of 0.1 M sulfuric acid (5 mmol) for 24 h 
during which time the mixture was stirred about once every two hours. The solution was then 
decanted and the remaining solid material was then solvent exchanged with 50 mL water for 
three days (water exchanged three times per day), quickly exchanged with 5 × 50 mL anhydrous 
acetone and immersed in 50 mL anhydrous chloroform for three days during which time 
chloroform was exchanged three times per day. The chloroform-exchanged material was 
activated under dynamic vacuum (30 mTorr) for 24 h at room temperature and 24 h at 150 °C to 
afford MOF-808-2.5SO4 as white powder which was stored under Ar to avoid hydration (Yield: 
0.48 g). 1H solution NMR spectra of digested, activated sample (400 MHz, DMSO-d6, ppm): 
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8.63 (s, BTC), 8.12 (s, HCOOH), peak area ratio (BTC:HCOOH) = 6.0:0.05. Anal. Calcd for 
Zr6C18H14O32.5S2.5 = [Zr6O5(OH)3(C9H3O6)2(SO4)2.5](H2O)2.5: Zr, 39.73; C, 15.69; H, 1.02; S, 
5.82%. Found: Zr, 39.9; C, 15.85; H, 1.18; S, 5.62%. 

Characterization of Acidity in MOFs: 
Hammett indicator tests. A set of stock Hammett indicator solutions (0.5 wt%) was 

prepared in an inert atmosphere glovebox by dissolving Hammett indicators (Table 3.1) in 
anhydrous benzene. Hammett indicator stock solution (5 mL) was added to 20 mg of each 
activated MOF-808-xSO4 sample in a 20-mL glass vial in the glovebox. The suspension was 
swirled every 30 mins, and after 4 h the color of the solid was then recorded (Table 3.1). 

31P MAS NMR Characterizations. About 200 mg of each MOF sample was placed in a 
Pyrex cell equipped with a stopcock. The sample was then outgassed under vacuum at 150 °C for 
24 h, and 3.0 mL of 0.2 M trimethylphosphine oxide (TMPO) in dichloromethane was then 
added to the sample cell inside an inert atmosphere glovebox. After thoroughly mixing the 
TMPO solution and the MOF sample, the dichloromethane was removed under vacuum, first at 
room temperature for 24 h and then at 50 °C for 8 h. The sample was then transferred, inside the 
glovebox, into a 4 mm (o.d.) Bruker ZrO2 NMR sample rotor with a gastight cap.11 

Solid-state nuclear magnetic resonance (SSNMR) spectra were acquired on a Bruker 
Avance-500MHz NMR spectrometer using a standard Bruker double resonance magic angle-
spinning (MAS) probe. The magic angle was adjusted by maximizing the number and amplitudes 
of the signals of the rotational echoes observed in the 79Br MAS FID signal from KBr. The 
transmitter frequency was 202.46 MHz. High-power two-pulse phase modulation (TPPM) 1H 
heteronuclear decoupling was applied for 31P NMR data acquisition.12 A 90o 31P pulse (6.75 �s) 
was used and the 1H decoupling field corresponded to 30 kHz. The recycling delay between 
scans was 60s, and the sample spinning rate was 10 kHz. The 31P chemical shifts were externally 
referenced to an 85% H3PO4 aqueous solution (as zero ppm). 

To afford quantitative determination of acid sites, each TMPO-loaded sample was also 
subject to elemental analysis by ICP-OES. The assignments of 31P NMR resonances, namely 
their chemical shifts and relative distributions (i.e., their corresponding integrated areas) in each 
spectrum were achieved by simulation using the Gaussian Deconvolution method using a Win-
NMR software program (Bruker Topspin) allowed for curve fitting through appropriate choices 
of 31P NMR peaks based on observed resonance lineshape. The chemical shifts, distributions and 
concentrations of acid sites derived in conjunction with elemental analyses by ICP-OES are 
depicted in Table A3.2. 

1H MAS NMR Characterizations. All 1H MAS solid-state NMR experiments were carried 
out on a Bruker AV-500 spectrometer operating at a Larmor frequency of 500.2 MHz using a 
single-pulse sequence with a pulse width of 4 μs, a recycle delay of 60s, and a sample spinning 
rate of 12kHz. Tetramethylsilane was taken as an external reference for the 1H NMR chemical 
shift. Prior to the NMR experiment, each sample was subjected to activation treatment under 
dynamic vacuum at 150 oC for 24 hours and was then transferred to 4 mm ZrO2 rotor in 
glovebox. The assignments of 1H NMR resonances, namely their chemical shifts and relative 
distributions (i.e., their corresponding integrated areas) in each spectrum were achieved by 
simulation using the Gaussian Deconvolution method using a Win-NMR software program 
(Bruker Topspin) allowed for curve fitting through appropriate choices of 1H NMR peaks based 
on observed resonance lineshape. 
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ApexII CCD detector using synchrotron radiation with λ = 0.7749 Å. Unit cell parameters were 
determined with a set of 300 reflections with (I)/(I) >10. After data reduction and absorption 
correction, the structure was solved with direct methods as implemented in ShelXS. Full-matrix 
least-squares on F2 were carried out using ShelXL and OLEX2.15 

All framework atoms were located and refined anisotropically. As shown in Figure 3.5, two 
independent positions were assigned to the µ3 oxygen atoms, which correspond to either μ3-O 
(O7 and O5) or μ3-OH (O1 and O3) groups, consistent with our previous findings.9 The chemical 
occupancy of these oxygen atoms was therefore fixed to 0.5.  

Two symmetrically independent positions, S1 and S2, were assigned to the sulfur atoms of 
the sulfate groups, and their chemical occupancy was first refined and then fixed to a value of 0.2. 

An oxygen atom coordinated to the zirconium atoms in the SBU was disordered over two 
positions (O10 and O11) with partial occupancy of 0.5 for each position. This atom belongs to 
either one of the two sulfate groups or to a terminal ligand when the sulfate group is not present.  

Two additional oxygen atoms, O8 and O15, were located, completing the sulfate group of 
S1. The occupancy values of these two atoms were fixed to be the same as the one of the 
corresponding sulfur atom. These oxygen atoms were refined isotropically. Anisotropic 
refinement resulted in large anisotropic displacement parameters (ADP), suggesting disorder. 
The bond distances and angles of the sulfur and oxygen atoms of this sulfate group are in the 
expected ranges.  

In the case of the sulfate group corresponding to sulfur atom S2, only the position of the 
oxygen atoms coordinating to the zirconium atoms could be located. However, an area of 
residual electron density was observed in the vicinity of the sulfur atom and at a position 
expected for the missing oxygen atoms. Attempts to assign and refine the positions of these two 
oxygen atoms were unsuccessful, suggesting that this sulfate group exhibits disorder over several 
positions which could not be resolved due to low occupancies at these positions. 

Finally, several areas of residual electron density were found inside the framework pores. 
Since the sample was not fully activated at 150 °C prior to the single crystal measurement, we 
attribute this electron density to organic solvent and/or water molecules left in the pores upon 
activation or those were adsorbed during the sample mounting in ambient conditions. 

Overall, the found electron density in MOF-808 indicates approximately 2.4 bound sulfates 
per Zr SBU, in a good agreement with the obtained results from elemental analysis for the same 
sample. 

Characterization of acidity in sulfated MOF-808. The successful sulfation of Zr-MOF, 
MOF-808, with different sulfate loadings in a controllable manner revealed the necessity to 
further evaluate the acidity of them. 

Typically, the characterization of acidity in solid acid materials requires to address the 
following questions: (i) What type of acid sites are present (Brønsted, Lewis, or both)? (ii) What 
is the acid strength? and (iii) What is the acid concentration? In order to answer these questions, 
a number of techniques have been used to characterize the surface acidity, and several of which 
were used in this work to study the acidity in sulfated MOF-808 materials. 

Hammett indicator tests. The acidity of a material is defined relative to a base used in acid-
base interaction. Therefore, the solid Brønsted acid is defined as a solid which protonates or at 
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least partially transfers protons to a base. By use of an appropriate series of bases, in other words, 
indicators, the acidity scale is given by the Hammett acidity function H0.

5 The H0 scale can be 
understood as an extrapolation of the pH scale from diluted aqueous media to all media, with a 
similar written form definition: 

H0 = pKa + log [B]/[HB+] 

where [B] and [HB+] are the concentrations of the indicator in its base and acid form, 
respectively.  

The acid strength of a solid acid can be qualitatively estimated using a series of indicators, 
known as Hammett indicators,16 which will have a bright color in their conjugated acid form that 
is intense enough to mask the color of their base form.17 If immersion of a solid in a specific 
indicator solution changes the color of the solid to that of the acid form of the indicator, the H0 
value of the solid is the same as or is lower than the pKa value of the conjugate acid of the 
indicator.7e,8 

As shown in Table 3.1, while the pristine MOF-808-P and MOF-808-0.65SO4 display 
relatively low acidity (H0 ≤ -2.8) and moderate acidity (-4.4 ≤ H0 ≤ -5.9), respectively, MOF-
808-1.3SO4 and MOF-808-2.5SO4 displayed color change even in a solution of 2,4-
dinitrofluorobenzene in benzene, yielding a H0 value of ≤ -14.5. This places these MOFs in the 
superacid regime (H0 ≤ -12). Additionally, all samples showed low acidity (H0 ≤ -2.8) after 
exposing to ambient air, which could be explained as neutralization of the superacidity by 
moisture. 

31P MAS NMR Characterizations. 31P MAS NMR technique developed using 
trialkylphosphine oxides as probe molecules has been shown to be sensitive, reliable and 
versatile to provide the types (Brønsted or Lewis acidity), distribution and strength of acid sites 
in various solid acids.18 Trimethylphosphine oxide (TMPO; kinetic diameter ca. 5.5 Å) was 
chosen as a probe because of its suitable size for diffusion into MOF pores. TMPO is known to 
complex to both Brønsted and Lewis acid sites. The 31P chemical shift of adsorbed TMPO on 
Brønsted acid site moves down-field with the increase of acid strength.18 31P MAS NMR 
spectrum of TMPO adsorbed on MOF-808-P and MOF-808-xSO4 samples are shown in Figure 
3.6. For MOF-808-P, the two resonances assigned to adsorbed TMPO appeared at 62 ppm and 
56 ppm, while a third resonance assigned to free TMPO trapped in the MOF pores appeared at 
43 ppm.18 The same three resonances were observed in spectra of MOF-808-0.65SO4, albeit with 
different relative intensities. In addition, a new resonance appeared at 69 ppm in spectra of 
MOF-808-1.3SO4 and MOF-808-2.5SO4. Since the appearance of this new peak correlates with 
the observation of alpha-pinene conversion, the 69 ppm resonance was assigned to TMPO 
adsorbed on a strongly acidic site. In good agreement with this conclusion, exposure of MOF-
808-2.5SO4 to atmospheric moisture caused the 69 ppm resonance to lose almost all of its 
intensity in the same way that MOF-808-2.5SO4 loses of its ability to display Hammett 
superacidity after exposure to atmospheric moisture. 
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MOF-808-0.65SO4. A similar trend is observed by MOF-808-1.3SO4 and MOF-808-2.5SO4 
(Figure 3.8), except that the larger uptake is observed at a lower pressure range (P/P0 = 0 – 0.05), 
and this strongly adsorbed first layer consists of more and more acetonitrile molecules as more 
and more sulfate groups are incorporated into the MOF. 

The strength of acidic sites is characterized by the ease of dissociation of acetonitrile. To 
evaluate this factor, the samples were evacuated at 25 °C for 2 hours after the isotherm 
measurements. Typical pressure in the sample cell after the regeneration process was 5 Pa. We 
then collected the acetonitrile isotherms up to three cycles for the Zr-MOFs studied here. The 
isotherms are shown in Figures A3.13-A3.17. The cycling performance results show that for 
MOF-808-P and MOF-808-0.65SO4, the uptake for all three cycles are the same. Since we know 
that MOF-808-P bears only low acidity, it is expected that the mainly physisorbed acetonitrile 
molecules could be easily removed by evacuation at room temperature. As discussed above, 
MOF-808-0.65SO4 is shown to have stronger acidity than that of MOF-808-P, however, the 
strength of these acidic sites are not strong enough to hold acetonitrile molecules upon low-
pressure evacuation. 

In both MOF-808-1.3SO4 and MOF-808-2.5SO4, we found a significant decrease from the 
first to the second cycle and a constant uptake thereafter, mainly due to the decreased uptake at 
lower pressure range (P/P0 = 0 – 0.05). This behavior can be explained by some acetonitrile 
molecules being strongly bound to the framework, not being desorbed under the aforementioned 
regeneration conditions. If this is the case, the acetonitrile release requires further energy input 
(higher temperature and/or stronger vacuum). Apparently, MOF-808-1.3SO4 and MOF-808-
2.5SO4 contains acidic sites that are stronger than those of MOF-808-0.65SO4 as acetonitrile 
molecules adsorbed in the latter can be removed under this condition, but not all the adsorbed 
molecules in the former two materials can be removed under the same conditions. This supports 
the results from above. From the difference of uptake at low pressure between the first two runs, 
we estimated the concentration of strong acidic sites in MOF-808-1.3SO4 and MOF-808-2.5SO4 
to be 1.2 and 2.4 mmol g-1, respectively. 

 

Conclusion 
In this chapter, we report superacidity in a sulfated metal-organic framework (MOF) 

obtained by treating the microcrystalline form of MOF-808 [MOF-808-P: 
Zr6O5(OH)3(BTC)2(HCOO)5, BTC = 1,3,5-benzenetricarboxylate] with aqueous sulfuric acid to 
generate its sulfated analogue, MOF-808-2.5SO4 [Zr6O5(OH)3(BTC)2(SO4)2.5]. The sulfation 
process is shown to be controllable with respect to the incorporation of different amount of 
sulfate groups. The resultant materials are characterized using a indicator, MAS NMR, and vapor 
sorption techniques for their acidity. We show that the acidity these materials is highly 
dependent upon the amount of sulfate groups incorporated. The fully sulfated material, MOF-
808-2.5SO4 has a Hammett acidity function H0 ≤ -14.5 and is thus identified as a superacid, 
providing the first evidence for superacidity in MOFs. The superacidity is attributed to the 
presence of zirconium-bound sulfate groups structurally characterized using single-crystal X-ray 
diffraction analysis.  
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Appendices 

Table A3.1. Crystal data and structure refinement for MOF-808-2.3SO4 single crystal 
(CCDC #: 1027470). 

Identification code MOF-808-2.3SO4 

Empirical formula C18H6O41.85S2.40Zr6  

Formula weight 1516.09 

Temperature/K 100.15 

Crystal system cubic 

Space group Fd-3m 

a/Å 35.32 (2) 

b/Å 35.32 (2) 

c/Å 35.32 (2) 

alpha/° 90 

beta/° 90 

gamma/° 90 

Volume/Å3 44078(63) 

Z 16 

ρcalc/ mg mm-3 0.914 

Mu/mm-1 0.817 

F(000) 11635.0 

Crystal size/mm3 0.01 × 0.01 × 0.02 

Radiation Synchrotron (λ = 0.7749 Å) 

2theta range for data collection 5.48 to 60.332° 

Index ranges -45 ≤ h ≤ 44, -45 ≤ k ≤ 45, -45 ≤ l ≤ 44 

Reflections collected 97539 

Independent reflections 2397 [Rint = 0.1869, Rsigma = 0.0393] 

Data/restraints/parameters 2397/0/104 

Goodness-of-fit on F2 1.092 

Final R indexes [I>=2σ (I)] R1 = 0.0512, wR2 = 0.1501 

Final R indexes [all data] R1 = 0.0763, wR2 = 0.1662 

Largest diff. peak/hole / e Å-3 0.86/-0.67 
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Chapter IV 

Catalytic Properties of Sulfated Zirconium MOF-808 as Solid Acid and Its 
Ammonia Adsorption Properties 

 
Introduction 

Development of MOF-base acid catalysts began at the very onset of MOF chemistry as the 
first example of Lewis acidic MOF was reported for catalyzing the cyanosilylation of aldehydes.1 
In successive years, coordinative unsaturation or open metal sites2 on metal SBUs were 
synthesized and found to be suitable as Lewis acid sites. In this case, several coordination 
positions of the metal center are occupied by solvent molecules, which can be removed by 
heating and/or evacuation during the activation process without collapse of the framework. In 
this group of MOFs, the metal center simultaneously acts as a structural building unit and a 
Lewis acid site for use in catalysis. Examples involving HKUST-1 [Cu3(BTC)2; BTC = benzene-
1,3,5-tricarboxylate]3, M-MIL-101 [M3X(H2O)2O(BDC)3; M = Al, Cr, Fe; X = F, OH; BDC = 
benzene-1,4-dicarboxylate] or functionalized MIL-1014, and NU-1000 
[Zr6O4(OH)4(H2O)4(OH)4(TBAPy)2; TBAPy = 1,3,6,8-(p-benzoate)pyrene]5 were found to be 
catalytically active in various reactions: aldehyde cyanosilylation, α-pinene oxide isomerization, 
citronellal cyclization, Knoevenagel condensation, selective oxidation of organic compounds, 
and decomposition of chemical warfare agents.5,6 We note that MOFs without open-metal sites 
per se can act as Lewis acids because of accessibility to metal centers within the SBUs. Several 
reviews on this property of MOFs are available in the literature.7 

Compared to the relatively large body of work done on the Lewis acidic MOFs, Brønsted 
acid chemistry in MOFs is beginning to emerge as an alternative catalytic scheme.8 The methods 
for the preparation of Brønsted acidic MOFs can be classified into three categories: (i) Brønsted 
acidic molecules such as polyoxometalates (POMs) can be encapsulated within the MOF pores; 
(ii) Brønsted acid moieties can be ligated onto metal sites of SBUs; or (iii) Brønsted acid 
functional groups can be covalently bound to organic linking units. Due to their different 
composition, catalysts based on Brønsted acidic MOFs derived from each category also bear 
their own characteristics: (i) Brønsted acidic Keggin-type POM, phosphotungstic acid (PTA) and 
its analogues, when encapsulated in MOF pores, were shown to exhibit activity comparable to 
those free acids.9 They are often reported to form acid-base and acid-metal binary systems in 
various MOFs including MIL-101, MIL-100, and HKUST-1;10 (ii) when Brønsted acid sites are 
located on or near the metal SBUs, they are often coexisting with Lewis acidic sites, making it 
more difficult to clarify the activity and characterize the active sites; (iii) MOFs with strong 
Brønsted acid groups covalently bound to the organic linkers have often been shown to retain 
activity despite being covalently linked to the framework. This has attracted attention to the field 
of enantio- and stereo-selective catalysis by MOFs imparting unique catalytic properties that are 
not possible in other materials.11 

As shown in Chapter III, sulfation of zirconium MOF-808 has generated novel acidity in the 
framework and we also showed that using the Hammett indicator test, the fully sulfated version, 
MOF-808-2.5SO4 exhibits evidences of superacidity. Thus, it is natural to look at its catalytic 
properties. Here, we confirm the coexistence of both Lewis and Brønsted acidity in sulfated 
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MOF-808 materials and, through a series of test reactions, we study the amount and strength of 
these acid sites as a function of sulfate groups incorporated. This is followed by a survey of 
reactions to confirm MOF-808-2.5SO4, the most active compound, to as a useful material for 
various acid-catalyzed reactions including Friedel-Crafts acylation, esterification, and 
isomerization, as well as in the conversion of methylcyclopentane (MCP) into various 
hydrocarbons at 150-200 oC; the last being a test reaction for catalytic reforming. 

Ammonia is one of the unpleasant chemicals related to life, contributing to a number of 
environmental problems including pollution in the form of atmospheric particulate matter, 
acidification of soil, and alteration of the global greenhouse gas balance.12 Atmospheric 
ammonia levels, from contributors including agricultural sector (fertilizer and livestock 
operations), losses from ammonia refrigeration systems, and oxidative degradation of amine-
based solvents in CO2 capture plants, is predicted to continue rising, worsening the 
aforementioned issues. Therefore, safe removal of ammonia is necessary for a pleasant 
environment and better human health. 

There are two main categories for ammonia capture applications, each requiring materials to 
bear specific merits.8 One is the irreversible ammonia removal. This direction targets at toxic gas 
removal applications like gas masks. Two criteria are prominent here. First, the absorption or 
adsorption of ammonia occurs at low ammonia concentration. This is important because the 
capturing agent should still be able to remove ammonia from the environment where it is present 
at low concentration to make sure the concentration afterwards is below the harmful level, for 
example, 25 ppm the recommended CAL-OSHA permissible ammonia exposure limit.13 The 
second criterion is the competitive ammonia removal under moist conditions due to the presence 
of significant amount of moisture in real world applications (for example, exhaled gas from 
human). The other direction aims at reversible capture of ammonia in applications such as 
ammonia transportation and recycling. It is beneficial to use solid adsorbents to replace the toxic, 
corrosive, and difficult-to-handle compressed liquid ammonia. For this purpose, criteria such as 
high ammonia uptake capacity at 1 bar or even higher pressure, high cycling performance, and 
ammonia stability of the material are important. 

MOFs have attracted tremendous attention in the fields of gas storage and gas separation 
over the past 20 years. Preliminary investigations have proved MOFs and also related 
MOF/graphite oxide composite materials as potentially promising materials for ammonia 
capture.14 A series of MOFs have been surveyed including MOFs with Lewis acidic open metal 
sites (MOF-74, HKUST-1), MOFs without acidic sites per se (MOF-177, IRMOF-3 and 
IRMOF-62), and MOFs with Brønsted acidic sites (MIL-101-SO3H and UiO-66-NH3Cl) for 
capture of ammonia.15 The good performance of these materials indicates acidic MOFs are 
promising capturing materials for ammonia. 

Here, we also explore our MOF-808-2.5SO4 material for its ammonia adsorption properties 
to evaluate its performance according to aforementioned criteria and potentiality to become a 
promising ammonia capture material. 

 

Experimental Section 
Chemicals and supplies. Anhydrous methanol was obtained from EMD Millipore 

Chemicals. Anhydrous toluene was obtained from Acros Organics. Benzoic acid (purity ≥ 



89 
 

99.5%), benzophenone (purity ≥ 99 %), oleic acid (analytical standard), methyl heptadecanoate 
(analytical standard), methylcyclopentane (purity ≥ 98%), anhydrous ethyl acetate, anhydrous 
anisole, anhydrous dichloromethane, and anhydrous chloroform with amylenes as stabilizer were 
obtained from Sigma-Aldrich. (±)-Citronellal (GC, purity ≥ 95%), (+)-isopulegol (purity ≥ 99%), 
(-)-isopulegol (purity ≥ 99%), alpha-pinene (purity ≥ 98%), camphene (purity ≥ 95%), 4-
methoxybenzophenone (purity ≥ 97%) and benzoic anhydride (purity ≥ 95%) were obtained 
from Aldrich. (R)-(+)-Limonene (analytical standard) and 2-chlorobenzoyl chloride (purity ≥ 
97.0%) were obtained from Fluka. 

MOF-808 and sulfated MOF-808 materials are synthesized according to reported 
procedure.16 

All starting materials, reagents and solvents were used without further purification. 

All glassware used to handle activated MOFs was dried at 120 oC for 12h and used 
immediately. 

Analytical techniques. Powder X-ray diffraction (PXRD) patterns were recorded using a 
Rigaku Miniflex 600 diffractometer (Bragg-Brentano geometry, Cu Kα radiation λ = 1.54056 Å). 
Scanning electron microscope (SEM) images were obtained using a Zeiss Gemini Ultra-55 
analytical scanning electron microscope with a working distance of 8.4 mm and a low 
acceleration voltage (5 keV) to avoid damage to the samples during observation. All MOF SEM 
samples were prepared by direct deposition of MOF/acetone dispersion (1 mg mL-1) on the 
silicon substrate heated on a hot plate (60 °C). Low-pressure gas (N2) adsorption isotherms were 
recorded on a Quantachrome Autosorb-1 volumetric gas adsorption analyzer. Liquid nitrogen 
bath was used for the measurements at 77 K. Helium was used for the estimation of dead space 
for gas adsorption measurements. Ultra-high-purity grade N2, and He gases (Praxair, 99.999% 
purity) were used throughout the adsorption experiments. Low-pressure ammonia adsorption 
isotherms were recorded on a Micromeritcs ASAP 2020 accelerated surface area and porosimetry 
system. The measurement temperature was controlled with a water circulator. Anhydrous 
ammonia gas (Praxair, 99% purity) was used throughout the adsorption experiments. 

 
Catalysis tests of MOFs: 
Citronellal cyclization: The citronellal cyclization reactions were carried out in 15-mL Ace 

pressure tube (Sigma-Aldrich) loaded with 50 mg of activated catalysts. Each catalyst was first 
activated under dynamic vacuum at 150 °C for 24 h and stored in an inert atmosphere glovebox. 
After adding a solution of 1.5 mL (±)-citronellal in 5 mL toluene to the reactor (c.a. 
citronellal:Zr4+ mole ratio = 35) in the glovebox, the vessels were placed in an aluminum heating 
block at 60 oC with stirring. Reaction samples were removed in the dry box at different reaction 
times (0.5, 1, 1.5, 2, 3, 4, 5, 6, and 8 h), filtered through a 0.2 μm PTFE membrane filter, diluted 
250 times with ethyl acetate and analyzed with a Shimadzu GCMS-QP2010 SE GC-MS, 
equipped with a SHRXI-5MS capillary column. Column temperature was initially 75 °C for 3 
minutes, then gradually increased to 200 °C at 3 °C/min. Cyclohexanone was added as internal 
standard, and calibration curves for (±)-citronellal and (±)-isopulegol were obtained using 
commercially available (±)-citronellal and (±)-isopulegol for quantification. Conversions of (±)-
citronellal at a given reaction time were calculated by dividing the amount of (±)-citronellal left 
in the reaction mixture at that given reaction time (calculated using the calibration curve) over 
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the initial amount of (±)-citronellal added. Selectivity towards (±)-isopulegol was calculated by 
dividing the amount of (±)-isopulegol produced in the reaction mixture over the amount of the 
(±)-citronellal had been converted to that time.  

Recyclability tests were performed on MOF-808-2.5SO4 to test for catalyst stability. Here, 
the catalyst after the reaction was thoroughly washed by submerging it in anhydrous chloroform 
for one day, exchanging the solvent six times during the day, and dried under vacuum at 150 °C 
between consecutive runs. For filtration experiments to test for catalyst leaching, the reaction 
slurry was split in two parts after 0.5 h. While one part was left undisturbed, from the other part 
the catalyst was removed by filtration. The supernatant was allowed to react further in a separate 
reactor. 

alpha-Pinene isomerization: The alpha-pinene isomerization reactions were carried out in 
4-mL Ace pressure tube (Sigma-Aldrich) loaded with 100 mg of activated catalysts. Each 
catalyst was first activated under dynamic vacuum at 150 °C for 24 h and stored in an inert 
atmosphere glovebox. After adding 3 mL of alpha-pinene to the reactor (c.a. pinene:Zr4+ mole 
ratio = 40) in glovebox, the vessels were placed in an aluminum heating block at 120 °C with 
stirring. Reaction samples were removed in the dry box at different reaction times (12, 24, 36, 
and 48 h), diluted 1000 times with ethyl acetate, filtered through a 0.2 μm PTFE membrane filter, 
and analyzed with a Shimadzu GCMS-QP2010 SE GC-MS, equipped with a SHRXI-5MS 
capillary column. Column temperature was initially 50 °C for 5 minutes, then gradually 
increased to 100 °C at 2 °C/min, and finally increased to 200 °C at 5 °C/min. Calibration curves 
for alpha-pinene, camphene and limonene were obtained using commercially available alpha-
pinene, camphene and (R)-(+)-Limonene for quantification. Conversions of alpha-pinene at a 
given reaction time were calculated by dividing the amount of alpha-pinene left in the reaction 
mixture at that given reaction time (calculated using the calibration curve) over the initial amount 
of alpha-pinene added. Selectivity towards camphene and limonene was calculated by dividing 
the amount of camphene and limonene produced in the reaction mixture over the amount of the 
alpha-pinene had been converted to that time. 

Recyclability tests were performed on MOF-808-2.5SO4 to test for catalyst stability. Here, 
the catalyst after the reaction was thoroughly washed by submerging it in anhydrous chloroform 
for one day, exchanging the solvent six times during the day, and dried under vacuum at 150 °C 
between consecutive runs. For filtration experiments to test for catalyst leaching, the reaction 
slurry was split in two parts after 12 h. While one part was left undisturbed, from the other part 
the catalyst was removed by filtration. The supernatant was allowed to react further in a separate 
reactor. 

Friedel-Crafts acylation of anisole: The Friedel-Crafts acylation of anisole was carried out 
in 15-mL Ace pressure tube (Sigma-Aldrich) loaded with 50 mg of activated catalysts (250 mg 
when using benzoic acid as the acylation reagent). Each catalyst was first activated under 
dynamic vacuum at 150 °C for 24 h and stored in an inert atmosphere glovebox. After adding a 
solution of acylation reagents in 5 mL anisole to the reactor in the glovebox (c.a. carboxylic 
acid:Zr4+ mole ratio = 0.4; carboxylic anhydride:Zr4+ mole ratio = 2; acyl chloride:Zr4+ mole 
ratio = 9), the vessels were placed in an aluminum heating block at 110 oC with stirring (180 oC 
when using benzoic acid as the acylation reagent). Reaction samples were removed after 12 h, 
filtered through a 0.2 μm PTFE membrane filter, diluted 20 times with ethyl acetate and analyzed 
with a Shimadzu GCMS-QP2010 SE GC-MS, equipped with a SHRXI-5MS capillary column. 
Column temperature was initially 40 °C for 1 minutes, then gradually increased to 300 °C at 
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10 °C/min. Benzophenone was added as internal standard. Conversions of acylation reactions 
were calculated by dividing the amount of acylation reagents left in the reaction mixture over the 
initial amount added. 

Esterification of oleic acid with methanol: The esterification of oleic acid with methanol 
was carried out in 15-mL Ace pressure tube (Sigma-Aldrich) loaded with 200 mg of activated 
catalysts. Each catalyst was first activated under dynamic vacuum at 150 °C for 24 h and stored 
in an inert atmosphere glovebox. After adding a solution of 1.0 g oleic acid in 10 mL anisole to 
the reactor in the glovebox (c.a. oleic acid:Zr4+ mole ratio = 4), the vessels were placed in an 
aluminum heating block at 65 oC with stirring. Reaction samples were removed in the dry box at 
different reaction times (1, 2, 3, 4, 5, and 6 h), filtered through a 0.2 μm PTFE membrane filter, 
diluted 250 times with methanol and analyzed with a Shimadzu GCMS-QP2010 SE GC-MS, 
equipped with a SHRXI-5MS capillary column. Column temperature was initially 75 °C for 1 
minutes, then gradually increased to 300 °C at 10 °C/min. Methyl heptadecanoate was added as 
internal standard. Calibration curves for oleic acid were obtained using commercially available 
oleic acid for quantification. Conversions of oleic acid at a given reaction time were calculated 
by dividing the amount of oleic acid left in the reaction mixture at that given reaction time 
(calculated using the calibration curve) over the initial amount of oleic acid added. 

Recyclability tests were performed on MOF-808-2.5SO4 to test for catalyst stability. Here, 
the catalyst after the reaction was quickly washed with 10 mL of anhydrous methanol followed 
by 6 × 10 mL of anhydrous chloroform, and dried under vacuum at 150 °C between consecutive 
runs. For control experiments, the reaction was stirred without catalysts or with same amount 
(200 mg) of activated MOF-808-P, and analyzed in the same manner. 

Limonene isomerization: The limonene isomerization reaction was carried out in 4-mL 
Ace pressure tube (Sigma-Aldrich) loaded with 150 mg of activated catalysts. Each catalyst was 
first activated under dynamic vacuum at 150 °C for 24 h and stored in an inert atmosphere 
glovebox. After adding 2.5 mL limonene to the reactor in the glovebox (c.a. limonene:Zr4+ mole 
ratio = 20), the vessels were placed in an aluminum heating block at 60 oC with stirring. Reaction 
samples were removed after 1 h, filtered through a 0.2 μm PTFE membrane filter, diluted 1000 
times with ethyl acetate and analyzed with a Shimadzu GCMS-QP2010 SE GC-MS, equipped 
with a SHRXI-5MS capillary column. Column temperature was initially 50 °C for 5 minutes, 
then gradually increased to 100 °C at 2 °C/min, and finally increased to 200 °C at 5 °C/min. 
Calibration curves for limonene were obtained using commercially available (R)-(+)-Limonene 
for quantification. Conversion of limonene was calculated by dividing the amount of limonene 
left in the reaction mixture (calculated using the calibration curve) over the initial amount of 
limonene added. 

Methylcyclopentane conversion reaction: The mesoporous silica MCF-17 was 
synthesized by following the literature reported elsewhere.17 In a typical synthesis, 1,3,5-
trimethylbenzene, which was utilized as a pore swelling agent, was added to an aqueous solution 
of triblockcopolymer Pluoronic P123 and HCl. After stirring of this solution for 2 h at 40 °C, 
tetraethylorthosilicate was added and the solution was stirred for an additional 20 h. NH4F was 
then added, and the solution was allowed to hydrothermally react at 100 °C for 24 h. The 
precipitated product was collected by filtration and then calcined for 6 h at 550 °C. 

Poly(vinylpyrrolidone) (PVP)-capped Pt nanoparticles (NPs) with an average size of 2.5 nm 
were synthesized by following the literature reported elsewhere.18 In a typical synthesis, H2PtCl6 
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was used as Pt precursor, which was dissolved in ethylene glycol in the presence of PVP. This 
solution was reacted at boiling solvent temperatures, and the as-synthesized PVP-capped Pt NPs 
were washed and re-dispersed in ethanol to give colloidal solution of Pt NPs with the 
concentration of 1 mg mL-1. For supporting Pt NPs on mesoporous silica MCF-17, this colloidal 
solution of Pt NPs was added to the supporting materials to give 1wt% of Pt. The colloidal 
suspension was sonicated for 5 h at room temperature using a commercial ultrasonic cleaner 
(Branson, 1510R-MT, 70W, 42 kHz). The brown precipitates were separated by centrifugation 
(4000 rpm, 10 min), washed with ethanol for three times, and dried in an oven at 60 °C 
overnight. 

The Pt NPs supported mesoporous silica was designated as Pt/SiO2 that was tested for 
methylcyclopentane conversion reaction as the reference catalyst.  

Supporting Pt NPs on MOF-808-P and MOF-808-2.5SO4 (hereafter Pt/MOF-808-P and 
Pt/MOF-808-2.5SO4, respectively) were carried out by following the literature with slight 
modification.19 In a typical synthesis, in glovebox, 200 mg of activated MOF powder was 
suspended in 20 mL of anhydrous pentane, to which an methanol solution of H2PtCl6 (0.17 mL) 
was added dropwise under continuous vigorous stirring. After filtration, the orange powder was 
dried under dynamic vacuum at room temperature for 24 h and then at 150 °C for 24 h. Partial 
reduction of Pt was already observed after the heating under vacuum. Further reduction was 
carried out during the pretreatment of catalysts before reaction. Pt loading on MOF was 
determined by ICP-OES to be 2 wt%. 

The catalytic testing was performed using lab-built plug-flow reactor connected to a Hewlett 
Packard 5890 gas chromatograph (GC). A 10% SP-2100 on 100/120 Supelco port packed 
column in line with a FID detector was used to separate and analyze the C1 – C6 hydrocarbons. 
Mass flow controllers were carefully calibrated using a bubble flow meter and used to introduce 
the ultra-high purity (99.9999% Praxair) H2 and He gases. Saturated vapor pressure of 
methylcyclopentane (MCP) was introduced to the reactor using a bubbler. The reactant flow was 
carefully calibrated at different temperatures and partial pressures of He carrier. A total flow of 
40 mL/min was used. Partial pressure of reactant was calculated by using the known temperature 
vs. saturated vapor pressure plots and was 50 Torr with 5:1 H2 excess. 50 – 100 mg charges of 
the catalysts were diluted by quartz sand loaded in the reactor bed. The actual weight of catalyst 
used was selected to give similar total conversions in each case. The catalysts were reduced at 
150 - 200 °C for 2 h under a flow of 210 Torr H2 in 550 Torr He prior to catalytic testing. The 
catalytic activity and selectivity were evaluated for total MCP conversions around 3%. 

 
Results and Discussion 

Test reactions for identifying Lewis and Brønsted acidity in sulfated MOF-808. Unlike 
in the field of acidic zeolites and sulfated metal oxides, where test reactions are often of 
industrial interest; till now, test reactions in acidic MOFs are merely used for fundamental 
studies and understanding the nature of the acidic sites (Lewis acidity or Brønsted acidity). For 
this purpose, each test run typically requires 50-100 mg of MOF often in microcrystalline 
powder form with particle sizes in the range of a few hundred nanometers to one hundred 
micrometers. These samples are preferred over large single crystals due to facile diffusion of 
reactants and products. Careful observation of the condition of MOF crystals before and after 
catalyst activation and reaction is also necessary to avoid misjudgments. 
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as the concentration of sulfuric acid used in acid treatment is increased, Brønsted acidity begins 
to appear in MOF-808-xSO4, leading to distinct product selectivity. 

Alpha-pinene isomerization is achieved in presence of strong acid catalysts (Scheme 4.2).22 
Strong Lewis acid sites are beneficial for the formation of bicyclic compounds (e.g. camphene), 
while strong Brønsted acid sites are responsible for the formation of monocyclic compounds 
(e.g. limonene). To the best of our knowledge, no catalytic activity of MOF-based solid acids for 
alpha-pinene isomerization has been reported. Unlike in citronellal cyclization, where MOF-808 
showed scarce activity and MOF-808-0.65SO4 already exhibited moderate activity, no 
conversion of alpha-pinene over MOF-808 or MOF-808-0.65SO4 is observed even after 2 days 
of reaction at 120 oC. This is consistent with observed results that if only Lewis acid sites are 
present (e.g. in calcined zirconia) there is not activity.22a,b On the contrary, MOF-808-1.3SO4 
converted 31% of alpha-pinene after 2 days and MOF-808-2.5SO4 quantitatively completed the 
reaction after 1.5 days. Selectivity towards camphene and limonene fluctuates between 50-55% 
and 16-19% (Table 4.1), which is similar to reported value for sulfated zirconia.22a,b Beyond the 
assessment drawn from citronellal cyclization, these results further prove the existence of very 
strong Brønsted acid sites in MOF-808-1.3SO4 and MOF-808-2.5SO4, although the rate is still 
low compared to sulfated zirconia22a,b and H-beta,22c typical solid superacids. 

Table 4.1. Summary of MOF-808-xSO4 catalytic performance for citronellal and alpha-pinene 
isomerization. 

Material Citronellal cyclizationa alpha-Pinene isomerizationb 

Citronellal 
conversion, % 

(±)-Isopulegol 
selectivity, % 

alpha-Pinene 
conversion, % 

Camphene 
selectivity,% 

Limonene 
selectivity, % 

MOF-808 8.0 85 0 – – 

MOF-808-0.65SO4 44 78 0 – – 

MOF-808-1.3SO4 97c 67 31 55 18 

MOF-808-2.5SO4 98c 55 99d 56 16 
a 50 mg MOF-808-X, 1.5 mL (±)-citronellal, 5mL toluene, 60 oC, 8 hours. 
b 100 mg MOF-808-X, 3 mL alpha-pinene, 120 oC, 2 days.  
c Reaction time: 1.5 hours.  
d Reaction time: 1.5 days. 

 

From the above results, we were able to trace the generation of both Lewis and Brønsted 
acid sites in MOF-808 and sulfated MOF-808 materials. MOF-808 is weakly acidic and its acid 
sites are mainly Lewis acidic. Similar to other Zr MOFs, defects were observed in MOF-808, as 
proved by the deviation between its determined formula, Zr6O5(OH)3(BTC)2(HCOO)5(H2O)2 and 
the derived formula of the ideal structure, Zr6O4(OH)4(BTC)2(HCOO)6. The missing formate 
linker has resulted in two coordination vacancies on the Zr6O8

8+ SBU and in this case, it was 
occupied by water molecules. A portion of these water molecules were removed during the 
activation of the MOF, thus generating Lewis acidic sites in MOF-808.  
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Table 4.2. Acylation of anisole by different acylation reagents with MOF-808-2.5SO4 as catalyst. 

Acylating Agents Conversion/% 
Selectivity to ketone/% 

o- m- p- 
Other 

Products 

Benzoic acida 5.6 - - 55 45f 

Benzoic anhydrideb 98 - - 98 2f 

Acetic acidc 4.1 - - 100 - 

Acetic anhydrided 100 3 - 84 13g 

2-Chlorobenzoylchloridee 100 2.5 - 89 8.5h 

aAnisole, 5mL; benzoic acid, 50 mg; catalyst amount 250 mg; reaction temperature, 453K; 
reaction time, 12 h. 
bAnisole, 5mL; benzoic anhydride, 100 mg; catalyst amount 50 mg; reaction temperature, 383K; 
reaction time, 12 h. 
cAnisole, 5mL; acetic acid, 25 mg; catalyst amount 50 mg; reaction temperature, 453K; reaction 
time, 12 h. 
dAnisole, 5mL; acetic anhydride, 45 mg; catalyst amount 50 mg; reaction temperature, 383K; 
reaction time, 12 h. 
eAnisole, 5 mL; 2-chlorobenzoylchloride, 0.25 mL; catalyst amount 100 mg; 383K; 12h. 
fPhenyl benzoate 
gAcetal condensation product of acetylanisole. 
hPhenyl 2-chlorobenzoate (2.6%) and 4-chlorobenzoylphenol (5.9%) 

 

At the beginning stage of sulfation, only part of the monovalent formate groups were 
substituted by the incoming divalent sulfate groups, as illustrated in MOF-808-0.65SO4. To 
balance the charge, either two formate groups must leave per incoming sulfate group, or extra 
protons must attach to the Zr SBUs. In the former case, more Lewis acid sites will be generated, 
while in the latter case, we expected to see more Brønsted acid sites. From the determined 
formula of activated MOF-808-0.65SO4, [Zr6O5.7(OH)2.3(C9H3O6)2(HCOO)3(SO4)0.65](H2O), the 
system adopts the first route to balance the charge as we observed roughly half the sulfate groups 
compared to the number of leaving formate groups. This left as many as 3.7 Lewis acidic sites 
per Zr SBU, which explains why we observed significant activity increase in MOF-808-0.65SO4, 
despite insignificant change of acid strength. The appearance of Brønsted acidity in the MOF-
808-1.3SO4 material was evidenced by these catalytic test reactions, which is consistent with 
other acidity characterization results reported in Chapter III. The source of this Brønsted acidity 
may be attributed to hydroxyl groups or water molecules that are bound to Zr(IV) in the SBUs, 
as the adjacent strong electron-withdrawing sulfate groups contribute to stronger acid sites. This 
assumption that sulfate groups help to generate Brønsted acidity and promote the acid strength is 
further verified by the fact that MOF-808-2.5SO4, the completely sulfated version of MOF-808, 
shows the highest acid strength as the most significant Brønsted acid behavior among all sulfated 
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MOF-808’s. To summarize, sulfation of MOF-808 generates more Lewis acid sites by creating 
more coordinatively unsaturated sites on Zr SBUs, and when a certain degree of sulfation is 
acheived, Brønsted acid sites begin to appear and affect the catalytic properties of the materials 
significantly. The strong electron-withdrawing sulfate groups were believed to play an important 
role in promoting the Brønsted acid strength in sulfated MOF-808 materials. 

 

Table 4.3. Acylation of toluene by different acylation reagents with MOF-808-2.5SO4 as 
catalyst. 

Acylating Agents Conversion/% 
Selectivity to ketone/% 

o- m- p- 
Other 

Products 

Benzoic acida - - - - - 

Benzoic anhydrideb 15 - - 100 - 

Acetic acidc 0.5 - - 100 - 

Acetic anhydrided 43 10 4 86 - 

2-Chlorobenzoylchloridee 51 17 4 79 - 

aToluene, 5mL; benzoic acid, 50 mg; catalyst amount 250 mg; reaction temperature, 453K; 
reaction time, 12 h. 
bToluene, 5mL; benzoic anhydride, 100 mg; catalyst amount 100 mg; reaction temperature, 
383K; reaction time, 12 h. 
cToluene, 5mL; acetic acid, 25 mg; catalyst amount 50 mg; reaction temperature, 453K; reaction 
time, 12 h. 
dToluene, 5mL; acetic anhydride, 45 mg; catalyst amount 50 mg; reaction temperature, 383K; 
reaction time, 12 h. 
eToluene, 5mL; 2-chlorobenzoylchloride, 0.25 mL; catalyst amount 100 mg; reaction 
temperature, 383K; reaction time, 12 h. 

 

Catalytic properties of MOF-808-2.5SO4 for various acid-catalyzed reactions. We chose 
MOF-808-2.5SO4 as the representative material to test our sulfated MOF-808 materials as solid 
acid catalysts. 

Synthesis of fine chemicals and intermediates by Friedel-Craft acylation reactions is an 
important process in the chemical industry. Typically, these reactions are catalyzed by Lewis 
acidic aluminum chloride with acid anhydrides and acyl chlorides as the acylation reagents. 
However, in consonance with green chemistry, heterogeneous catalysts are preferred for their 
easy separation and less pollution to the environment. 
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of adsorption sites by strongly bound ammonia molecules, the uptake decrease at second step 
indicates a similar partial destruction of the MOF framework upon this ammonia adsorption-
desorption process. Despite of this, MOF-808-2.5SO4 still has significant uptake capacities at 
760 Torr (250 cm3 g-1 or 11.2 mmol g-1), a number comparable to fresh MOF-808 and also other 
materials of the same kind. 

 
Conclusion 

In this chapter, we report the catalytic performance, and ammonia adsorption properties for 
MOF-808 and sulfated MOF-808 materials. While MOF-808 is weakly Lewis acidic and does 
not exhibit interesting catalytic activity, sulfation of MOF-808 significantly increases the 
quantity of Lewis acid sites within the MOF and more importantly, generates strong Brønsted 
acid sites that significantly change the catalytic behavior of the material, as proved by two test 
reactions. Later, MOF-808-2.5SO4 has found to be catalytically active in various acid-catalyzed 
reactions including Friedel-Crafts acylation, esterification, and isomerization, as well as in the 
conversion of methylcyclopentane (MCP) into various hydrocarbons at 150-200 oC; the latter 
being a test reaction for catalytic reforming. MOF-808-2.5SO4 is also found to be good ammonia 
capture material that shows high uptake capacity at both low pressure (P < 1.5 Torr) and ambient 
pressure (P = 760 Torr).  



Appendi

Figure A
MOF-80

 

 

 

Figure A
solid), ru
cyclizatio
withdraw

 

ices 

A4.1. Conver
8-1.3SO4 (or

A4.2. Reusab
un 2 (olive), r
on: after 0.5 

wn from one 

rsion of (±)-
range) and M

bility test on 
run 3 (violet
h in run 1, t
sample (red

citronellal o
MOF-808-2.

MOF-808-2
t); Filtration 
the reaction m
d hollow). 

ver MOF-80
5SO4 (red). 

 

2.5SO4 over 
test on MOF

mixture was

 

08-P (blue), 

(±)-citronel
F-808-2.5SO
s split in two

MOF-808-0

lal cyclizatio
O4 over (±)-c
o parts and th

0.65SO4 (win

on: run 1 (re
citronellal 
he catalysts w

 

104 

ne), 

ed 

was 



Figure A
MOF-80

 

 

 

Figure A
run 2 (oli
h in run 2
sample (o

 
 

 

A4.3. Conver
8-0.65SO4 (w

A4.4. Reusab
ive solid); F
2, the reactio
olive hollow

rsion of alph
wine), MOF

bility test on 
iltration test
on mixture w

w). 

 

ha-pinene ov
F-808-1.3SO

MOF-808-2
t on MOF-80
was split in tw

ver MOF-808
O4 (orange) an

 

2.5SO4 over 
08-2.5SO4 ov
wo parts and

 

8-P (blue, hi
and MOF-80

alpha-pinen
ver alpha-pin
d the catalys

idden under 
8-2.5SO4 (re

ne isomerizat
nene isomer
ts was withd

the wine cur
ed). 

tion: run 1 (r
rization: afte
drawn from o

105 

rve), 

red), 
er 12 
one 



106 
 

Figure A4.5. Reusability test on MOF-808-2.5SO4 over esterification reaction of methanol with 
oleic acid: run 1 (black), run 2 (red), run 3 (blue); Blank tests were performed with no catalyst 
(pink) and with MOF-808 (green). 
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Chapter V 

Synthesis of Zinc Metal-Organic Frameworks and their Methane Adsorption 
Properties 

 
Introduction 

Hydrocarbons are the main components of the fuel used to run our automobiles and power 
our lives. Among them, methane, the lightest of hydrocarbons, draws a lot of attention because it 
has a higher research octane number (RON = 107), and lower emission of CO2. It is predicted 
that the demand of natural gas in unit of energy is to exceeding 200 exajoules per year in 2040, 
as the second largest energy source.1 Although natural gas represents over 60 % of the fossil 
fuels on earth, it remains the least utilized one when compared to oil and coal. Currently, natural 
gas is utilized mainly as a fuel for electric power plants (31 %), industry (28 %), and houses 
(19 %).2 

Growing interest is focused on expanding the use of methane for fueling automobiles. 
However, one main challenge for this expansion lies in the low energy density of methane in its 
natural state under ambient conditions (0.04 MJ L-1, compared to 32.4 MJ L-1 for gasoline).3 
Three strategies are being developed to overcome this challenge. First is the use of liquefied 
natural gas (LNG). Here, methane is stored under cryogenic conditions which leads to high 
reduction in volume to 0.16 vol.% compared to gaseous methane, resulting in the high 
volumetric energy density of 20-23 MJ L-1. However, the main drawback of this strategy is the 
high-costly cryogenic system necessary to cool down the whole storage tank to -162 oC. To date, 
this technique is mainly used in long distance natural gas transportation.4 Another strategy is the 
use of compressed natural gas (CNG). Here, methane is stored under high pressure in fuel tanks 
attached to the automobile or truck (usually 200 to 250 bar). Under this pressure, the volume of 
methane is compressed to 1 % of the original value, thus increasing its energy density to 
approximately 10 MJ L-1. Vehicles using this technology have been designed, and manufactured 
mainly in Europe, South America, and Asia. Safety concerns have been risen about carrying a 
highly pressurized methane tank in the automobile, in case of high temperature and/or fire.5 
Lastly is the use of adsorbed natural gas (ANG), in which methane is stored with the help of 
porous sorbent materials under significantly reduced pressure (35 to 65 bar). The excessive 
adsorption of methane in porous material is expected to compensate the capacity loss due to 
operating at lower pressures. Porous carbon and newly developed MOFs are promising 
candidates as these sorbent materials.6 ANG is also combined with CNG to give high pressure 
ANG, where a high pressure CNG tank is filled by sorbent materials. This technique aims to 
increase the capacity of natural gas storage. The presence of sorbent materials contributes to the 
increased safety for the high pressure tanks as desorption of methane gas from the sorbent 
materials takes up significant amount of heat, cools down the whole tank, slows down the 
methane release and prevents the tank from quick explosion. Vehicle models using this high 
pressure ANG technique have already been realized by BASF.7 

The fast pace of development of ANG and high pressure ANG techniques raised higher 
goals for the sorbent materials. In 2012, U.S. Department of Energy (DOE) has updated the 
target for methane storage materials for ANG applications, to a gravimetric capacity of 50 wt% 
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and a volumetric capacity of 250 g L-1.8 Among these two goals, achieving the desired 
volumetric capacity is more important when considering the limited size of an automobile fuel 
tank. Accordingly, new porous adsorbents are required to meet these challenging storage targets. 
MOFs are known to be useful in the storage of gases, including methane. Among the many 
MOFs studied for methane storage, HKUST-1, Ni-MOF-74, Co-MOF-74, PCN-14 at 35 bar,9 
plus NOTT-101, NOTT-109, UTSA-20, UTSA-76, Co(BDP) at 65 bar,10 and MOF-5, MOF-177, 
MOF-205, MOF-210 at 250 bar11 as have been outstanding sorbent materials, having some of the 
highest reported total volumetric storage capacities. Since the automobile industry requires that 5 
bar of methane pressure remains unused in the fuel tank, working capacity is the key parameter 
to evaluating the performance of methane storage materials. At present, the highest working 
capacities reported for a MOF are 109 g L-1 (153 cm3 cm-3) at 35 bar for HKUST-1 and 164 g L-1 
(230 cm3 cm-3) at 80 bar for MOF-519.11 

Extensive work is ongoing to find materials whose working capacities are larger than those 
found for the above mentioned materials. Several strategies have been proposed for improved 
methane storage in MOFs: (a) increase of the number of open metal sites. As shown for HKUST-
1, Ni-MOF-74, and PCN-14, these coordinatively unsaturated sites have proved effective in 
adsorbing methane. However, due to the strong adsorbate-open metal site interactions, MOFs 
with open metal sites typically exhibit high methane uptake at 5 bar as well, thus limiting their 
working capacities. Additionally, these open metal sites are sensitive to impurities such as water 
and hydrogen sulfide, which are often found in natural gas;12 (b) GCMC simulation results have 
shown the beneficial effects of MOFs having large volumetric surface area with optimal void 
fraction of 0.8 and optimal pore size of 4, 8, and 12 Å, suitable for one, two, and three methane 
molecules to fit in, respectively;13 (c) small polar functional groups, short alkyl groups and 
aromatic π-systems are believed to contribute to stronger interaction between framework and 
methane molecules, thus increase the uptake of methane.14 

Here, we report the synthesis, crystal structure, porosity, and methane adsorption properties 
for five zinc based MOFs synthesized using organic linkers containing C=C double bonds 
[termed MOF-950: Zr4O(BTAC)2, BTAC = benzene-1,3,5-tri-β-acrylic acid, MOF-905: 
Zr4O(BDC)(BTAC)4/3, BDC = benzene-1,4-dicarboxylic acid, and functionalized MOF-905: 
MOF-905-NO2, MOF-905-Naph, and MOF-905-Me2], one of which (MOF-905) has working 
capacities (desorption at 5 bar) of 145 g L-1 at 80 bar and 298 K, a value rivaling that of HKUST-
1 (143 g L-1), the benchmark compound for methane storage in MOFs. 

 

Experimental Section 
Chemicals and supplies. Pyridine (≥ 99%), piperidine (99%), malonic acid (99%), Acetic 

Acid (≥ 99%), and sulfuric acid (95.0–98.0%) were purchased from Sigma-Aldrich. 1,3,5-
Triformylbenzene (98%) was obtained from Acros Organics. Anhydrous N,N-
dimethylformamide (DMF) was obtained from EMD Millipore Chemicals; chloroform (HPLC 
grade with 50 ppm pentene as preservative) was obtained from Fisher Scientific; ethanol 
(anhydrous, ≥ 99.5%), zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and Sigmacote® siliconizing 
reagent were obtained from Sigma-Aldrich. Terephthalic acid (H2BDC) was obtained from 
Aldrich. Nitroterephthalic acid (H2BDC-NO2) and 2,5-dimethylterephthalic acid (H2BDC-Me2) 
were purchased from TCI. Naphthalene-1,4-dicarboxlic acid (H2BDC-Nap) was obtained from 
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Alfa Aesar. All starting materials and solvents, unless otherwise specified, were used without 
further purification. 

Analytical techniques. Single-crystal X-ray diffraction (SXRD) data were collected on a 
Bruker D8-Venture diffractometer equipped with Mo- ( = 0.71073 Å) and Cu-target (λ = 
1.54184 Å) micro-focus X-ray tubes and a PHOTON 100 CMOS detector. Powder X-ray 
diffraction patterns (PXRD) were recorder using either a Bruker D8 Advance diffractometer 
(Göbel-mirror monochromated Cu Kα radiation λ = 1.54056 Å) or a Rigaku Miniflex 600 
diffractometer (Bragg-Brentano geometry, Cu Kα radiation λ = 1.54056 Å). Elemental 
microanalyses (EA) were performed in the Microanalytical Laboratory of the College of 
Chemistry at UC Berkeley, using a Perkin Elmer 2400 Series II CHNS elemental analyzer. Low-
pressure gas (N2 and CH4) adsorption isotherms were recorded in-house on a Quantachrome 
Autosorb-1 volumetric gas adsorption analyzer. High-pressure methane adsorption isotherms 
were measured using the static volumetric method in an HPA-100 from the VTI Corporation 
(currently Particulate Systems). Ultra-high-purity grade N2, CH4, and He (99.999% purity) gases 
were used throughout the gas adsorption experiments. A liquid nitrogen bath was used for the 
measurements at 77 K. A water circulator was used for adsorption measurements at 298, 308, and 
318 K. 

 

 

Figure 5.1. Synthesis of benzene-1,3,5-tri-β-acrylic acid (H3BTAC). 

 

Synthesis of organic linker: Benzene-1,3,5-tri-β-acrylic acid (H3BTAC) was prepared 
according to the published procedure with slight modification.15 Pyridine (80 mL) and a few 
drops of piperidine was added to a flask containing 1,3,5-triformylbenzene (10.0 g, 61.7 mmol) 
and malonic acid (24.0 g, 230 mmol). The resulting suspension was heated at 85 °C for 12 hours 
and refluxed at 120 °C for 1 hour. Pyridine was removed under vacuum before sulfuric acid (1 M, 
100 mL) was added to the solution. The precipitate was filtered and washed with water until 
neutral filtrate. The filter cake was recrystallized in glacial acetic acid and dried under vacuum at 
120 °C to give benzene-1,3,5-tri-β-acrylic acid (H3BTAC) as white solid (14.9 g, 51.7 mmol, 
84%). 1H NMR (400 MHz, DMSO), [ppm]: 12.45 (s, 3H), 8.05 (s, 3H), 7.58 (d, J = 16.0 Hz, 3H), 
6.75 (d, J = 16.0 Hz, 3H). 

Synthesis and Characterization of MOFs: 
General procedure for sample preparation. To reduce nucleation in the growth of MOF 

single-crystals, the inner surface of glass containers were rinsed with Sigmacote® siliconizing 
reagent, washed three times with acetone, and dried in oven before use. Solvent exchange of the 
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MOFs is performed by immersing the sample in for three days, during which the solvent was 
decanted and freshly replenished three times per day.  

Zn4O(BTAC)2, MOF-950. A solvent mixture of H3BTAC (0.033 g, 0.11 mmol) and 
Zn(NO3)2·6H2O (0.25 g, 0.84 mmol) in 20 mL DMF was placed in a 20-mL screw-capped 
scintillation vial, which was heated at 85 °C for 3 days. Light yellow crystals were collected and 
quickly washed three times with 5 mL of fresh DMF. As-synthesized MOF-950 was rinsed 3 
times per day with 4 mL of DMF for 3 days and immersed in 4 mL of chloroform for 3 days, 
during which time the solvent was replaced 3 times per day. The solid was then evacuated under 
dynamic vacuum first at room temperature for 12 hours and then 80 °C for 4 hours to yield 
activated sample DMF (Yield: 0.029 g; 62% based on H3BTAC). 1H digested solution NMR of 
activated sample (400 MHz, DMSO-d6, ppm): 8.05 (s, 3H, 1 × BTAC), 7.60 (d, J = 16.1 Hz, 3H, 
1 × BTAC), 6.77 (d, J = 16.1 Hz, 3H, 1 × BTAC). EA of activated sample: Calcd. for 
Zn4C30H18O13 = Zn4O(C15H9O6)2: C, 42.49; H, 2.14%. Found: C, 41.47; H, 2.09%. ATR-FTIR 
(4000–400 cm-1): 1647 (m), 1588 (m), 1560 (sh), 1542 (sh), 1527 (m), 1444 (m), 1399 (s), 1299 
(w), 1236 (w), 1166 (w), 972 (m), 895 (w), 858 (m), 753 (w), 726 (w), 670 (w), 593 (m), 524 
(m), 413 (m). 

Zn4O(BDC)(BTAC)4/3, MOF-905. A solvent mixture of H3BTAC (0.045 g, 0.16 mmol), 
H2BDC (0.048 g, 0.29 mmol) and Zn(NO3)2·6H2O (0.26 g, 0.87 mmol) in 18 mL DMF and 1.8 
mL ethanol was placed in a 20-mL screw-capped scintillation vial, which was heated at 85 °C for 
1 day. Light yellow crystals were collected and quickly washed three times with 5 mL of fresh 
DMF. As-synthesized MOF-905 was rinsed 3 times per day with 4 mL of DMF for 3 days and 
immersed in 4 mL of chloroform for 3 days, during which time the solvent was replaced 3 times 
per day. The solid was then evacuated under dynamic vacuum first at room temperature for 12 
hours and then 80 °C for 4 hours to yield activated sample (Yield: 0.048 g; 49% based on 
H3BTAC). 1H digested solution NMR of activated sample (400 MHz, DMSO-d6, ppm): 8.05 (s, 
4H, 1.33 × BTAC), 8.03 (s, 4H, 1 × BDC), 7.60 (d, J = 16.1 Hz, 4H, 1.33 × BTAC), 6.77 (d, J = 
16.1 Hz, 4H, 1.33 × BTAC). EA of activated sample: Calcd. for Zn4C28H16O13 = 
Zn4O(C8H4O4)(C15H9O6)4/3: C, 40.89; H, 1.96%. Found: C, 39.87; H, 1.82%. ATR-FTIR (4000–
400 cm-1): 1644 (m), 1595 (m), 1535 (m), 1397 (s), 1301 (w), 1275 (w), 1236 (w), 1160 (w), 
1020 (w), 983 (m), 861 (m), 825 (w), 746 (m), 666 (w), 604 (m), 576 (m), 517 (m). 

Zn4O(BDC-Me2)(BTAC)4/3, MOF-905-Me2. A solvent mixture of H3BTAC (0.045 g, 0.16 
mmol), H2BDC-Me2 (0.067 g, 0.34 mmol) and Zn(NO3)2·6H2O (0.26 g, 0.87 mmol) in 18 mL 
DMF and 1.8 mL ethanol was placed in a 20-mL screw-capped scintillation vial, which was 
heated at 85 °C for 1 day. Light yellow crystals were collected and quickly washed three times 
with 5 mL of fresh DMF. As-synthesized MOF-905-Me2 was rinsed 3 times per day with 4 mL of 
DMF for 3 days and immersed in 4 mL of chloroform for 3 days, during which time the solvent 
was replaced 3 times per day. The solid was then evacuated under dynamic vacuum first at room 
temperature for 12 hours and then 80 °C for 4 hours to yield activated sample (Yield: 0.044 g; 
43% based on H3BTAC). 1H digested solution NMR of activated sample (400 MHz, DMSO-d6, 
ppm): 8.07 (s, 4H, 1.33 × BTAC), 7.67 (s, 2H, 1 × BDC-Me2), 7.59 (d, J = 16.0 Hz, 4H, 1.33 × 
BTAC), 6.76 (d, J = 16.0 Hz, 4H, 1.33 × BTAC), 2.46 (s, 6H, 1 × BDC-Me2). EA of activated 
sample: Calcd. for Zn4C30H20O13 = Zn4O(C10H8O4)(C15H9O6)4/3: C, 42.39; H, 2.37%. Found: C, 
42.09; H, 2.02%. ATR-FTIR (4000–400 cm-1): 1645 (m), 1594 (m), 1534 (m), 1400 (s), 1360 
(m), 1301 (w), 1236 (w), 1194 (w), 1159 (w), 982 (m), 861 (m), 796 (w), 748 (w), 666 (w), 604 
(m), 570 (w), 517 (m), 427 (w). 
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Zn4O(BDC-Nap)(BTAC)4/3, MOF-905-Nap. A solvent mixture of H3BTAC (0.045 g, 0.16 
mmol), H2BDC-Nap (0.074 g, 0.34 mmol) and Zn(NO3)2·6H2O (0.26 g, 0.87 mmol) in 18 mL 
DMF and 1.8 mL ethanol was placed in a 20-mL screw-capped scintillation vial, which was 
heated at 85 °C for 1 day. Light yellow crystals were collected and quickly washed three times 
with 5 mL of fresh DMF. As-synthesized MOF-907 was rinsed 3 times per day with 4 mL of 
DMF for 3 days and immersed in 4 mL of chloroform for 3 days, during which time the solvent 
was replaced 3 times per day. The solid was then evacuated under dynamic vacuum first at room 
temperature for 12 hours and then 80 °C for 4 hours to yield activated sample (Yield: 0.047 g; 
45% based on H3BTAC). 1H digested solution NMR of activated sample (400 MHz, DMSO-d6, 
ppm): 8.75 (dd, J = 6.7 Hz, 3.4 Hz, 2H, 1 × BDC-Nap), 8.09 (s, 2H, 1 × BDC-Nap), 8.07 (s, 4H, 
1.33 × BTAC), 7.69 (dd, J = 6.7 Hz, 3.4 Hz, 2H, 1 × BDC-Nap), 7.60 (d, J = 16.0 Hz, 4H, 1.33 × 
BTAC), 6.76 (d, J = 16.0 Hz, 4H, 1.33 × BTAC). EA of activated sample: Calcd. for 
Zn4C32H18O13 = Zn4O(C12H6O4)(C15H9O6)4/3: C, 44.05; H, 2.08%. Found: C, 43.70; H, 1.98%. 
ATR-FTIR (4000–400 cm-1): 1644 (m), 1593 (m), 1532 (m), 1400 (s), 1371 (s), 1264 (w), 1237 
(w), 1165 (w), 982 (m), 860 (m), 827 (w), 789 (m), 740 (w), 666 (w), 604 (m), 587 (m), 522 (m), 
472 (m). 

Zn4O(BDC-NO2)(BTAC)4/3, MOF-905-NO2. A solvent mixture of H3BTAC (0.045 g, 0.16 
mmol), H2BDC-NO2 (0.062 g, 0.29 mmol) and Zn(NO3)2·6H2O (0.26 g, 0.87 mmol) in 18 mL 
DMF and 1.8 mL ethanol was placed in a 20-mL screw-capped scintillation vial, which was 
heated at 85 °C for 36 hours. Light yellow crystals were collected and quickly washed three 
times with 5 mL of fresh DMF. As-synthesized MOF-905-NO2 was rinsed 3 times per day with 4 
mL of DMF for 3 days and immersed in 4 mL of chloroform for 3 days, during which time the 
solvent was replaced 3 times per day. The solid was then evacuated under dynamic vacuum first 
at room temperature for 12 hours and then 80 °C for 4 hours to yield activated sample (Yield: 
0.043 g; 41% based on H3BTAC). 1H digested solution NMR of activated sample (400 MHz, 
DMSO-d6, ppm): 8.24 (d, J = 1.4 Hz, 1H, 1 × BDC-NO2), 8.20 (dd, J = 7.9 Hz, 1.4 Hz, 1H, 1 × 
BDC-NO2), 8.03 (s, 4H, 1.33 × BTAC), 7.85 (d, J = 7.9 Hz, 1H, 1 × BDC-NO2), 7.59 (d, J = 
16.0 Hz, 4H, 1.33 × BTAC), 6.76 (d, J = 16.0 Hz, 4H, 1.33 × BTAC). EA of activated sample: 
Calcd. for Zn4C28H15NO15 = Zn4O(C8H3O6N)(C15H9O6)4/3: C, 38.76; H, 1.74; N, 1.62%. Found: 
C, 38.98; H, 1.46; N, 1.65%. ATR-FTIR (4000–400 cm-1): 1643 (m), 1615 (m), 1591 (m), 1532 
(m), 1398 (s), 1302 (w), 1276 (w), 1237 (w), 1167 (w), 1133 (w), 1067 (w), 983 (m), 860 (m), 
840 (w), 826 (w), 778 (w), 750 (w), 738 (w), 728 (w), 666 (w), 604 (m), 589 (m), 525 (m), 509 
(m). 
 

Results and Discussion 
As shown in Figure 5.1, the new tricarboxylate organic linker benzene-1,3,5-tri-β-acrylic 

acid (H3BTAC) was synthesized by a single-step condensation of 1,3,5-triformylbenzene and 
malonic acid followed by in situ decarboxylation. All three double bonds generated adopt trans 
configuration, greatly increasing the symmetry of the H3BTAC molecule. Reaction of this linker 
with Zn(NO3)2·6H2O in DMF at 85 °C for 3 d afforded block crystals of MOF-950. Single-
crystal X-ray diffraction analysis revealed that MOF-950 crystallizes in the cubic P213 space 
group with an axis length of 21.2832(4) Å. In this structure, octahedral Zn4O(-COO)6 units are 
linked by tritopic BTAC linkers to afford a three-dimensional framework with a pyr topology 
(Figure 5.2), isoreticular to MOF-150 [Zn4O(TCA)2; TCA = 4,4ʹ,4″-tricarboxytriphenylamine]16 
and MOF-155, [Zn4O(BTB-X)2; BTB = benzene-1,3,5-tricarboxylic acid, X = F2, mNH2].
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density, pore diameter are summarized along with other bench mark MOFs with Zn4O(-COO)6 
SBU in Table 5.1. 

 

Table 5.1. Summary of the low pressure sorption, physical and pore-structure properties of the 
studied zinc MOFs. 

Material Surface area,  
m2 g-1 

Vp,
a 

cm3 g-1 
dcrystal,

b 
g cm-3 

dpycno,
c 

g cm-3  
Pore 
diameter,d 
Å  

CH4 uptake,e  
cm3 g-1 

Qst, 
kJ mol-1 

BET Langmuir 

MOF-950 3440 3650 1.30 0.517 0.540 8.5 8.6 11.9 

MOF-905 3490 3770 1.34 0.549 0.537 6.0, 18.0 7.7 11.7 

MOF-905-
Me2 

3920 3640 1.39 0.568 0.515 5.5, 17.6 11.0 10.3 

MOF-905-
Naph 

3540 3310 1.25 0.585 0.553 6.8, 15.3 10.2 11.3 

MOF-905-
NO2 

3600 3380 1.29 0.580 0.551 5.1, 17.3 8.1 10.7 

MOF-205 4080 5700 1.96 0.380 0.40 5.0, 25.0 8.0 10.6 

MOF-177 4700 5060 1.83 0.427 0.41 10.8 9.1 9.9 

MOF-5 3480 3860 1.39 0.605 0.53 12.8 7.3 10.0 

aCalculated from uptake at P/P0 = 0.9; 
bFrom crystal structure and model structure data;  
cFrom pycnometer density data; 
dCalculated with Platon.19 
eData at 1.1 bar and 298 K. 

 

Low-Pressure CH4 Isotherms and Adsorption Enthalpies. Low-pressure CH4 isotherms 
for MOF-950, MOF-905, and functionalized MOF-905 were measured up to 1.1 bar at 298, 308, 
and 318 K (Figures A5.21-A5.25). CH4 uptakes in these MOFs linearly increase with an increase 
in the pressure, while no saturation was observed. CH4 uptake for these new MOFs at 298 K and 
1 bar is ranging from 8.1 cm3 g-1 (MOF-905-NO2) to 11.0 cm3 g-1 (MOF-905-Me2), and these are 
comparable to the CH4 uptake in MOF-177 (9.1 cm3 g-1) under the same conditions (Table 5.1). 
Such moderate CH4 uptake capacity below 1 bar should be advantageous to achieving larger 
working capacity in the practical natural gas storage processes. It is known that low-pressure 
CH4 adsorption capacity correlates to the adsorption enthalpy rather than porosity of sorbent 
materials. Accordingly, the isosteric enthalpy of adsorption (Qst) for CH4 was calculated based on 
CH4 isotherms collected at 273, 283, and 298 K. Figure A5.26 demonstrates the coverage 
dependencies of Qst calculated from fitting these data. MOF-950 and MOF-905 show similar 
near-zero coverage Qst values of 11.9 and 11.7 kJ mol-1. Compared to MOF-905, functionalized 
MOF-905 shows lower Qst values of 10.3 (Me2), 11.3 (Naph), and 10.7 (NO2) kJ mol-1. These 
values are comparable to those in MOF-5 (12.3 kJ mol-1), MOF-177 (9.9 kJ mol-1), and MOF-
205 (10.6 kJ mol-1),18b MOFs with Zn4O(-COO)6 SBUs; but less than those of MOFs with open 
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the MOF crystals. The maximum excess CH4 uptake for MOF-905 in volumetric units is 165 cm3 
cm-3 at 80 bar and 298 K, which outperforms MOF-950 (153 cm3 cm-3) and functionalized MOF-
905 (160, 151, and 144 cm3 cm-3 for Nap, Me2, and NO2, respectively). 

To explore the potential as sorbent materials in practical applications, the total CH4 uptake in 
volumetric units is frequently used. Accordingly, the total uptake was calculated from the excess 
CH4 uptake using the following equation:  

Ntot = Nex + ρCH4 × Vp.                                                 Eq. (5.2) 

Table 5.2. Total methane uptake and working capacity (desorption at 5 bar) at 35, 80, and 250 
bar and 298 K. 

Material 

Total 
uptake at 35 
bar, 
cm3 cm-3 

Total 
uptake at 
80 bar, cm3 
cm-3 

Total 
uptake at 
250 bar,a 
cm3 cm-3 

Working 
capacity at 
35 bar, 
cm3 cm-3 

Working 
capacity at 
80 bar, 
cm3 cm-3 

Working 
capacity 
at 250 
bar, 
cm3 cm-3 

MOF-905 145 225 305 119 200 285 
MOF-905-
Me2 

138 211 — 111 184 — 

MOF-905-
Nap 

146 217 — 117 188 — 

MOF-905-
NO2 

132 203 — 107 177 — 

MOF-950 145 209 — 109 174 — 
MOF-5b 126 198 328 104 176 306 
MOF-177b 122 205 350 102 185 330 
MOF-205b 120 205 345 101 186 326 
MOF-210b 82 166 377 70 154 365 
Ni-MOF-74c 230 267 — 115 152 — 
HKUST-1c 225 272 — 153 200 — 
Al-soc-
MOF-1d 

127 221 — 106 200 — 

PCN-14c 200 250 — 128 178 — 
UTSA-76ae 211 257f — 151 197f — 
Co(BDP)g 161 155f — 203 197f — 
AX-21c 153 222 — 103 172 — 
Bulk CH4 33 83 263 29 79 260 

aCalculated with a dual site Langmuir model; 
bData from ref. 18b; 
cData from ref. 9a; 
dData from ref. 18c; 
eData from ref. 18d; 
fData measured at 298 K and 65 bar; 
gData from ref. 18e. 

 



123 
 

To As shown in Figure 5.5, the total CH4 uptake calculated, monotonously increases when 
increasing the pressure without revealing a particular saturation pressure. The volumetric total 
CH4 uptakes for MOF-950, MOF-905, and functionalized MOF-905 at 80 bar and 298 K range 
from 203 (MOF-905-NO2) to 225 cm3 cm-3 (MOF-905). Remarkably, CH4 uptake in MOF-905 at 
80 bar is 2.7 times larger than bulk CH4 density at the same temperature and pressure. This value 
is also greater than MOF-177 (205 cm3 cm-3) and MOF-205 (205 cm3 cm-3), and approaching the 
best performing MOFs, such as MOF-519 (279 cm3 cm-3), HKUST-1 (272 cm3 cm-3), and 
UTSA-76a (257 cm3 cm-3 at 65 bar). 

CH4 storage working capacity. Considering the practical application of methane storage in 
automobiles, the volumetric working capacity of methane (considering desorption pressure at 5 
bar) was also obtained, as shown in Table 5.2. The working capacity of MOF-905 at 35 bar is 
119 cm3 cm-3, while at 80 bar this MOF is able to deliver 200 cm3 cm-3, which is comparable to 
the benchmark compound HKUST-1 (200 cm3 cm-3) at 80 bar, and surpasses all other zinc 
MOFs. At 80 bar, a tank filled with MOF-905 would deliver 2.5 times more methane than an 
empty tank. 

 

Conclusion 
In this chapter, we report the synthesis, structure, porosity, and methane adsorption 

properties of five new zinc MOFs with benzene-1,3,5-tri-β-acrylic acid (H3BTAC) as organic 
linker. Among them, MOF-905, Zn4O(BDC)(BTAC)4/3, has working capacities (desorption at 5 
bar) of 200 cm3 cm-3 at 80 bar and 298 K, a value rivaling that of HKUST-1 (200 cm3 cm-3), the 
benchmark compound for methane storage in MOFs. The working capacity of MOF-905 at 80 
bar and 298 K also surpasses all reported values for Zn4O based MOFs including MOF-5, MOF-
177, and MOF-205. At 80 bar, a tank filled with MOF-905 would deliver 2.5 times more 
methane than an empty tank. Comparison between MOF-905 and functionalized MOF-905 of 
their high pressure methane storage capacity shows that pore size appears to play a more 
important role than functional groups (methyl, nitro, and naphthalene groups) on the organic 
linkers. 
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Appendices 

Table A5.1. Crystallographic information and atomic fractional coordinates for the structure 
model of MOF-905. 

Identification Code MOF-905 
Empirical Formula C28H16O13Zn4 
Formula Weight 821.97 
Crystal System Cubic 
Space Group Pm3ത 
a / Å 23.40810 
V/ Å3 12826.2 
Z 6 
d/g cm-3 0.638 
Atoms x y z Occupancy 
Zn1 1 1.28933 0.56556 0.5 
Zn2 0.934 1.21215 0.5 0.5 
O1 1 1.25057 0.5 0.25 
O2 0.88818 1.2235 0.55917 1 
O3 0.94057 1.28227 0.61005 1 
O4 1 1.35791 0.54754 0.5 
O5 0.95216 1.14275 0.5 0.5 
C1 0.89504 1.25506 0.60228 1 
C2 0.84909 1.26377 0.64275 1 
H2 0.86056 1.27794 0.68533 1 
C3 0.79455 1.26225 0.62651 1 
H3 0.78266 1.24718 0.58436 1 
C4 0.74975 1.27881 0.66672 1 
C5 0.70322 1.24257 0.67434 1 
H5 0.69819 1.20581 0.6466 1 
C6 1 1.38278 0.5 0.25 
C7 1 1.44243 0.5 0.25 
C8 1 1.47105 0.55228 0.5 
H8 1 1.449 0.593 0.5 
C9 1 1.11782 0.5 0.25 
C10 1 1.05782 0.5 0.25 
C11 0.94777 1.02904 0.5 0.5 
H11 0.90706 1.05109 0.5 0.5 
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Table A5.2. Crystallographic information and atomic fractional coordinates for the structure 
model of MOF-905-Me2. 

Identification Code MOF-905-Me2 
Empirical Formula C30H18O13Zn4 
Formula Weight 848 
Crystal System Cubic 
Space Group Pm3ത 
a / Å 24.7215 
V/ Å3 15108 
Z 6 
d/g cm-3 0.559 
Atoms x y z Occupancy 
Zn1 0.43944 0 0.70921 0.5 
Zn2 0.5 0.06391 0.78812 0.5 
O1 0.5 0 0.74952 0.25 
O2 0.39683 0.05663 0.71804 1 
O3 0.44014 0.10745 0.77705 1 
O4 0.45569 0 0.64147 0.5 
O5 0.5 0.04493 0.85697 0.5 
C1 0.3997 0.09914 0.74614 1 
C2 0.35379 0.13741 0.74062 1 
H2 0.31894 0.12148 0.7195 1 
C3 0.35283 0.18893 0.75768 1 
H3 0.38683 0.20428 0.78069 1 
C4 0.30573 0.22584 0.74719 1 
C5 0.29705 0.2702 0.78177 1 
H5 0.32552 0.27699 0.81429 1 
C6 0.5 0 0.61641 0.25 
C7 0.5 0 0.5569 0.25 
C8 0.45036 0 0.52814 0.5 
C9 0.39618 0 0.55617 0.25 
H9a 0.37627 0.03171 0.54586 0.25 
H9b 0.37627 -0.03171 0.54586 0.25 
H9c 0.40151 0 0.59464 0.25 
C10 0.5 0 0.88212 0.25 
C11 0.5 0 0.94245 0.25 
C12 0.5 -0.04947 0.97167 0.5 
C13 0.5 -0.10357 0.94364 0.25 
H13a 0.53171 -0.12348 0.95394 0.25 
H13b 0.46829 -0.12348 0.95394 0.25 
H13c 0.5 -0.09822 0.90518 0.25 
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Table A5.3. Crystallographic information and atomic fractional coordinates for the structure 
model of MOF-905-Naph. 

Identification Code MOF-905-Naph 
Empirical Formula C32H16O13Zn4 
Formula Weight 870.01 
Crystal System Cubic 
Space Group Pm3ത 
a / Å 24.74010 
V/ Å3 15142.7 
Z 6 
d/g cm-3 0.572 
Atoms x y z Occupancy 
Zn1 0.43951 0 0.71012 0.5 
Zn2 0.5 0.06385 0.787 0.5 
O1 0.5 0 0.74942 0.25 
O2 0.39676 0.05657 0.71816 1 
O3 0.4402 0.10754 0.77663 1 
O4 0.45681 0 0.64366 0.5 
O5 0.5 0.04382 0.85458 0.5 
C1 0.39968 0.09919 0.74596 1 
C2 0.35381 0.13745 0.74037 1 
H2 0.31905 0.12156 0.71915 1 
C3 0.35275 0.18889 0.75759 1 
H3 0.38666 0.20417 0.78071 1 
C4 0.30566 0.22579 0.74716 1 
C5 0.29702 0.27011 0.78176 1 
H5 0.3255 0.27685 0.81424 1 
C6 0.5 0 0.61795 0.25 
C7 0.5 0 0.55768 0.25 
C8 0.44908 0 0.52875 0.5 
C9 0.39673 0 0.55497 0.25 
H9 0.38718 0 0.59678 0.25 
C10 0.34828 0 0.52742 0.25 
H10 0.31013 0 0.54903 0.25 
C11 0.5 0 0.88042 0.25 
C12 0.5 0 0.9416 0.25 
C13 0.5 0.0507 0.97107 0.5 
C14 0.5 0.10299 0.94495 0.25 
H14 0.5 0.11237 0.90316 0.25 
C15 0.5 0.15141 0.97257 0.25 
H15 0.5 0.18956 0.95096 0.25 
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Table A5.4. Crystallographic information and atomic fractional coordinates for the structure 
model of MOF-905-NO2. 

Identification Code MOF-905-NO2 
Empirical Formula C28H12NO15Zn4 
Formula Weight 863.95 
Crystal System Cubic 
Space Group Pm3ത 
a / Å 23.99180 
V/ Å3 13809.8 
Z 6 
d/g cm-3 0.623 
Atoms x y z Occupancy 
Zn1 0.43694 0 0.70981 0.5 
Zn2 0.5 0.06494 0.78691 0.5 
O1 0.5 0 0.74889 0.25 
O2 0.3933 0.05766 0.71761 1 
O3 0.44078 0.10959 0.77619 1 
O4 0.45418 0 0.64224 0.5 
O5 0.5 0.04629 0.85542 0.5 
O6 0.54687 -0.12971 0.93321 0.25 
O7 0.37042 0.04689 0.56631 0.25 
N1 0.39579 0 0.55641 0.125 
N2 0.5 -0.10405 0.94237 0.125 
C1 0.39874 0.10173 0.74533 1 
C2 0.35524 0.14363 0.73905 1 
H2 0.31564 0.12927 0.72275 1 
C3 0.36389 0.19789 0.74727 1 
H3 0.40277 0.21235 0.76515 1 
C4 0.32005 0.23872 0.73382 1 
C5 0.31189 0.28422 0.76914 1 
H5 0.34012 0.29042 0.80384 1 
C6 0.5 0 0.61718 0.25 
C7 0.5 0 0.55747 0.25 
C8 0.44874 0 0.52856 0.5 
C9 0.5 0 0.88053 0.25 
C10 0.5 0 0.94076 0.25 
C11 0.5 -0.05102 0.96986 0.5 
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Table A5.5. Crystal data and structure refinement for MOF-950. 

Identification code MOF-950 
Empirical formula C30H18O13Zn4 
Formula weight 848.00 
Temperature/K 150 
Crystal system cubic 
Space group Pa-3 
a/Å 21.2832(4) 
α/° 90 
Volume/Å3 9640.8(5) 
Z 4 
ρcalc/mg mm-3 0.584 
m/mm-1 1.320 
F(000) 1688 
Crystal size/mm3 0.07 × 0.09 × 0.10 
Radiation CuKα (λ = 1.54178 Å) 
θ range 3.6 to 49.7° 
Index ranges -18 ≤ h ≤ 16, -13 ≤ k ≤ 21, -20 ≤ l ≤ 21 
Reflections collected 15494 
Unique reflections 1633 
Restraints/parameters 6/96 
Rint 0.045 
R1

a, wR2
b 0.0824, 0.2495 

S(GOF)c 1.005 
Largest diff. peak/hole / e Å-3 0.36/-0.44 
aR1 = Σ||Fo| - |Fc||/Σ|Fo|; 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(Fo

2)2]1/2 
cS = [Σw(Fo

2 - Fc
2)2/(Nref - Npar)]

1/2 
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It is demonstrated that the platinum metal catalyzes the dehydrogenation and hydrogenation 
of the hydrocarbons, while the isomerization occurs on the acidic support via carbocation 
transition species.5 Previous studies also reveal that it is possible to change the catalytic activity 
and selectivity of the system by varying the size and shape of metal nanoparticles, composition 
of metal nanoparticles, pore matrices of the supporting materials, and chemical composition and 
acidity of the supporting materials.6 MOFs are known as versatile materials whose pore matrices 
and chemical compositions can be changed nearly at will.7 Recently, MOFs bearing Lewis and 
Brønsted acidity are also reported as effective solid acid catalysts.8 Among all MOF-based acid 
catalysts, one type that has been studied most frequently is the phosphotungstic acid (PTA) 
encapsulated MOF materials, such as MIL-100, MIL-101, UiO-67, and HKUST-1.9 They have 
shown high activity for solution based catalytic reactions, such as production of 5-
hydroxymethylfurfural, conversion of cellulose, esterification, and etherification reactions.9 
Despite PTA supported on silica and other metal oxides shows interesting catalytic activity for n-
hexane reforming,10 to-date, no study has been reported using these PTA loaded MOFs on this 
reaction. Thus, we decide to apply these PTA loaded MOF acids for gas-phase reforming of n-
hexane and study their activity as well as the factors that may affect the overall activity and 
selectivity. 

We selected chromium(III) terephthalate (MIL-101), Cr3O(OH)(BDC)3,
11 as the MOF 

support because of its high thermal, chemical, and solvent stability, and more importantly its 
large (~3.5 nm) cavities and (~1.5 nm) apertures that enable PTA (ca. 1.3 nm in diameter and 
2.25 nm3 in volume) encapsulation as well as mass transport. Primitive MIL-101 is known to 
have mild Lewis acid properties due to the presence of open metal sites on those chromium oxide 
clusters.12 With the loading of PTA, the strongest heteropolyacid known with good thermal 
stability in the solid state, MIL-101 and PTA composites are expected to be formed having both 
Lewis and Brønsted acid sites. Two methods have been reported to synthesize this composite 
material which utilize two-step and one-step synthesis approaches. In the first step of the two 
step synthesis approach, the MOF is prepared. This is followed by the impregnation of PTA 
molecules into the MOF pores by diffusing the guests into either solvent filled or evacuated 
pores as the second step. The one-step synthesis approach differs in that PTA molecules are 
included at the same time as the MOF is being formed.8e It was shown that the distribution of 
included POMs in MIL-101 materials greatly depends on the preparation methods: when the 
two-step method was used, only a small portion of the large cavities of MIL-101 was occupied 
by POM molecules, while the medium-sized pores, which represent 60% of the total amount of 
pores, were not occupied due to a smaller pore opening than the size of the Keggin-type POM. 
Instead, blockage of the pore openings was observed. This indicates that a considerable number 
of molecules in these POM-impregnated MIL-101 samples actually reside on the outside surface 
of the MOF crystals instead of being included within the pores. Alternatively, when the one-step 
method was used, better-dispersed POM moieties and catalytic activity were obtained in these 
POM-encapsulated MIL-101 samples. They were measured to have nitrogen sorption isotherms 
similar to that of pristine MIL-101 with all three steps observed in the profiles. This indicates a 
more evenly distribution of POMs in both the medium and the large cavities in MIL-101 with no 
significant blockage of the pore openings.13 

In the present chapter, we report on the synthesis of Pt/xPTA/MIL-101 (x = 0, 25, and 60, 
wt % of PTA in PTA/MIL-101 composites) composite catalysts with different PTA loadings, the 
characterization of their pore matrices and acidity, and the evaluation of the catalyst materials in 
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the vapor phase hydrogenation of n-hexane. When Pt nanoparticles supported on 60 wt% 
PTA/MIL-101 (Pt/60PTA/MIL-101) was evaluated, it was found to be highly active (7 times 
greater than Pt supported on Al modified mesoporous silica MCF-17) and selective ( > 90%) 
toward branched isomer production at 250 oC. When Pt supported on either the pure MOF or 
MOF with a smaller PTA loading were tested separately, it was found that both catalysts were 
relatively inactive. This behavior was attributed to the different acidity of these composite 
catalysts. 

 

Experimental Section 
Chemicals and supplies. Chromium nitrate nonahydrate [Cr(NO3)3·9H2O, 99%] and 

terephthalic acid (H2BDC, ≥ 99.5%) were obtained from Aldrich. Phosphotungstic acid 
(H3PW12O40·xH2O) was obtained from Merck & Co Inc. Hydrochloric acid (ACS reagent, 37%) 
was obtained from EMD Millipore Chemicals. Ethanol (anhydrous, ≥ 99.5%), mesitylene (98%), 
n-hexane (ReagentPlus, ≥ 99%), ethylene glycol (anhydrous, 99.8%), acetonitrile-d3 (≥ 99.8 
atom% D), tetraethylorthosilicate (99.999%), aluminum chloride (AlCl3, 99.999%), ammonium 
fluoride (NH4F, 99.99%), ammonium nitrate (NH4NO3, 98%), chloroplatinic acid hexahydrate 
(H2PtCl6·6H2O, ≥ 37.50% Pt basis), Poly(vinylpyrrolidone), and Pluronic® P-123 were obtained 
from Sigma-Aldrich. All starting materials and solvents, unless otherwise specified, were used 
without further purification. 

Analytical techniques. Powder X-ray diffraction patterns (PXRD) were recorder using a 
Rigaku Miniflex 600 diffractometer (Bragg-Brentano geometry, Cu Kα radiation λ = 1.54056 Å). 
Carbon, hydrogen, and nitrogen elemental microanalyses (EA) were performed in the 
Microanalytical Laboratory of the College of Chemistry at UC Berkeley, using a Perkin Elmer 
2400 Series II CHNS elemental analyzer. Inductively coupled plasma-optical emission 
spectroscopy (ICP-OES) was performed on a PerkinElmer Optical Emission Spectrometer 
Optima 7000DV instrument. Scanning electron microscope (SEM) images were obtained using a 
Zeiss Gemini Ultra-55 analytical scanning electron microscope with a working distance of 8.4 
mm and a low acceleration voltages (5 keV) to avoid damage to the samples during observation. 
All MOF SEM samples were prepared by direct deposition of MOF/acetone dispersion (1 mg 
mL-1) on the silicon substrate heated on a hot plate (60 °C). Attenuated total reflectance (ATR) 
FTIR spectra of neat samples were performed in-house on a Bruker ALPHA Platinum ATR-FTIR 
Spectrometer equipped with a single reflection diamond ATR module. Thermal gravimetric 
analysis (TGA) curves were recorded in-house on a TA Q500 thermal analysis system under gas 
flow. One-pulse 31P solid-state nuclear magnetic resonance (SSNMR) spectra were acquired on a 
Tecmag Discovery spectrometer at 7.05 T using a 4 mm Doty triple resonance magic-angle 
spinning (MAS) probe. The Larmor frequency of 31P is 141.49 MHz. Continuous-wave 1H 
heteronuclear decoupling ( 50 kHz decoupling field) was applied for 31P NMR data acquisition. 
The 90 pulse of 31P pulse (2.8 s) was measured on NH4H2PO4. The pulse delay was 60 s, and 
the sample spinning rates were between 7 and 10 kHz. The 31P chemical shifts were externally 
referenced to NH4H2PO4, which is 0.81 ppm relative to 85% H3PO4 (primary reference). Low-
pressure gas (N2) adsorption isotherms were recorded in-house on a Quantachrome Autosorb-1 
volumetric gas adsorption analyzer. A liquid nitrogen bath was used for the measurements at 77 
K. Acetonitrile isotherms were measured in-house on a BEL Japan BELSORP-aqua3. Prior to the 
acetonitrile adsorption measurements, acetonitrile-d3 (analyte) was flash frozen under liquid 
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nitrogen and then evacuated under dynamic vacuum at least five times to remove any gases in 
the liquid reservoir. The measurement temperature was controlled with a water circulator. 
Helium was used for the estimation of dead space for gas and water adsorption measurements. 
Ultra-high-purity grade N2 and He gases (Praxair, 99.999% purity) were used throughout the 
experiments.  

Synthesis and Characterization of Pt nanoparticles supported on PTA/MOF. In this 
work, MIL-101 and PTA/MIL-101 composites were synthesized in water using an HF-free 
procedure reported in literature.14  

MIL-101. A mixture of H2BDC (2.08 g, 12.5 mmol) and Cr(NO3)3·9H2O (5.00 g, 12.5 
mmol) in 50 mL deionized water was stirred at room temperature for 20 minutes before placed in 
a 100-mL Teflon-lined autoclave bomb, which was heated at 220 °C for 18 hours. The vessel was 
slowly cooled to room temperature and green solids were quickly separated using a centrifuge 
(5,000 rpm, 8 min). As-synthesized MIL-101 was washed 4 times per day with 50 mL of 
deionized water for 3 days and immersed in 50 mL of ethanol for 3 days, during which time the 
solvent was replaced 4 times per day. The solid was then evacuated under dynamic vacuum first 
at room temperature for 24 hours and then 150 °C for 24 hours to yield activated MIL-101 
(Yield: 1.85 g, 61.9% based on Cr). EA of activated sample: Calcd. for Cr3C24H17O16 = 
Cr3O(OH)(H2O)2(C8H4O4)3: Cr, 21.74; C, 40.18; H, 2.39%. Found: Cr, 20.18; C, 42.47; H, 
2.99%. ATR-FTIR (4000–400 cm-1): 1618 (m), 1543 (w), 1509 (m), 1397 (s), 1162 (w), 1019 
(w), 880 (w), 831 (w), 811 (w), 746 (m), 714 (w), 648 (sh), 580 (m), 439 (m). 

25 wt% PTA/MIL-101 Composite Material, 25PTA/MIL-101. A mixture of H2BDC (2.08 
g, 12.5 mmol), Cr(NO3)3·9H2O (5.00 g, 12.5 mmol), and PTA (1.25 g, 0.434 mmol, anhydrous 
basis) in 50 mL deionized water was stirred at room temperature for 20 minutes before placed in 
a 100-mL Teflon-lined autoclave bomb, which was heated at 220 °C for 18 hours. The vessel was 
slowly cooled to room temperature and green solids were quickly separated using a centrifuge 
(5,000 rpm, 8 min). As-synthesized 25PTA/MIL-101 was washed 4 times per day with 50 mL of 
deionized water for 3 days and immersed in 50 mL of ethanol for 3 days, during which time the 
solvent was replaced 4 times per day. The solid was then evacuated under dynamic vacuum first 
at room temperature for 24 hours and then 150 °C for 24 hours to yield activated 25PTA/MIL-
101 (Yield: 2.32 g, 58.2 % based on Cr). EA of activated sample: Calcd. for 
Cr3P0.083WC24H17.25O19.33 = (H3PW12O40)0.083[Cr3O(OH)(H2O)2(C8H4O4)3]: Cr, 16.29; P, 0.27; W, 
19.20; C, 30.11; H, 1.82%. Found: Cr, 16.76; P, 0.28; W, 19.82; C, 29.69; H, 2.24%. ATR-FTIR 
(4000–400 cm-1): 1712 (vw), 1619 (m), 1543 (w), 1509 (m), 1397 (s), 1162 (w), 1079 (w), 1019 
(w), 981 (w), 881 (w), 825 (m), 745 (m), 715 (w), 582 (m), 464 (m). 

60 wt% PTA/MIL-101 Composite Material, 60PTA/MIL-101. A mixture of H2BDC (2.08 
g, 12.5 mmol), Cr(NO3)3·9H2O (5.00 g, 12.5 mmol), and PTA (5.00 g, 1.74 mmol, anhydrous 
basis) in 50 mL deionized water was stirred at room temperature for 20 minutes before placed in 
a 100-mL Teflon-lined autoclave bomb, which was heated at 220 °C for 18 hours. The vessel was 
slowly cooled to room temperature and green solids were quickly separated using a centrifuge 
(5,000 rpm, 8 min). As-synthesized 60PTA/MIL-101 was washed 4 times per day with 50 mL of 
deionized water for 3 days and immersed in 50 mL of ethanol for 3 days, during which time the 
solvent was replaced 4 times per day. The solid was then evacuated under dynamic vacuum first 
at room temperature for 24 hours and then 150 °C for 24 hours to yield activated 60PTA/MIL-
101 (Yield: 4.03 g, 55.1 % based on Cr). EA of activated sample: Calcd. for 
Cr3P0.36W4.32C24H18.08O30.40 = (H3PW12O40)0.36[Cr3O(OH)(H2O)2(C8H4O4)3]: Cr, 8.89; P, 0.64; W, 
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45.27; C, 16.43; H, 1.04%. Found: Cr, 9.11; P, 0.65; W, 45.30; C, 16.85; H, 1.84%. ATR-FTIR 
(4000–400 cm-1): 1710 (vw), 1620 (m), 1546 (w), 1509 (w), 1395 (s), 1164 (w), 1080 (w), 1018 
(w), 972 (m), 899 (m), 819 (s), 743 (m), 667 (w), 585 (m), 514 (w), 458 (m). 

Synthesis of MCF-17 and Al-modified MCF-17. MCF-17 type mesoporous silica was 
synthesized and aluminated according to reported literature methods.4b,6b,15 In a typical 
experiment, mesitylene, acting as a pore swelling agent, was added to an aqueous solution 
containing triblockcopolymer Pluoronic® P123 and hydrochloric acid. After stirring of this 
solution for 2 hours at 40 °C, tetraethylorthosilicate (TEOS) was added and the solution was 
stirred for additional 20 hours. Ammonium fluoride was then added and the solution was allowed 
to hydrothermally react at 100 °C for 1 day. The MCF-17 product was then calcined for 6 hours 
at 550 °C. The pore size of the material is 30 to 50 nm and the Langmuir surface area is 
approximately 1000 m2 g-1. 

The calcined MCF-17 sample was grafted with aluminum by slurring with anhydrous 
aluminum chloride in absolute ethanol, in order to give a Si/Al ratio of 10:1. The slurring 
solution was stirred overnight at room temperature, followed by removal of ethanol under 
vacuum. The precipitate was dried at 130 °C for 1 hour, and subsequently calcined at 550 °C for 
4 hours in air. To introduce acidic sites in Al-modified MCF-17, Al-MCF-17, the sample was 
slurred in 1M aqueous solution of ammonium nitrate for 4 hours at room temperature. The 
sample was then filtered, washed with distilled water, and dried at 130 °C for 1 h. This process 
was repeated three times and the final product was calcined at 550 °C for 4 hours in air to give 
acidic Al-MCF-17. 

Synthesis of Pt Nanoparticles. Poly(vinylpyrrolidone) (PVP)-capped Pt nanoparticles 
(NPs) with an average size of 3 nm were synthesized by following the literature reported 
elsewhere.6f,6g In a typical synthesis, PVP and H2PtCl6·6H2O were dissolved in 10 mL of 
ethylene glycol separately, mixed in 50 mL round bottom flask at room temperature under 
constant stirring, and aged in the pre-heated oil bath at 180 ºC for 30 minutes. The final 
suspension was naturally cooled to room temperature, mixed with excess amount of hexane to 
help nanoparticles separate by centrifugation, and washed with a solution composed of ethanol 
and acetone (volume ratio is about 1:3) for 3 times. Finally, Pt nanoparticles were re-dispersed 
and kept in ethanol to give colloidal solution of Pt nanoparticles with the concentration of 1 
mg/mL. 

Synthesis of Pt Nanoparticles supported on MCF-17, Al-MCF-17, and PTA/MOF 
composites. For supporting Pt nanoparticles on mesoporous silica MCF-17, Al-MCF-17, and 
PTA/MOF composites, 10 mL of this colloidal solution of Pt nanoparticles was added to the 500 
mg of supporting materials to give ca. 0.1 wt% of Pt. The colloidal suspension was sonicated for 
5 h at room temperature using a commercial ultrasonic cleaner (Branson, 1510R-MT, 70W, 42 
kHz). The precipitates were separated by centrifugation (4000 rpm, 10 min), washed with 
ethanol for three times, and dried in an oven at 60 °C overnight. 

The Pt nanoparticles supported materials were designated as Pt/MCF-17, Pt/Al-MCF-17, 
and Pt/xPTA/MIL-101 (x = 0, 25, and 60, wt% of PTA in PTA/MIL-101 composites), 
respectively.  

Catalytic Reaction Studies. Gas phase n-hexane hydroisomerization reaction was carried 
out on the catalysts described above. A tubular fixed-bed flow reactor was used for all catalytic 
measurements at 1 bar and 200 – 260 ºC. A stainless steel reactor tube with ¼ inch diameter was 
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loaded with 200 – 300 mg of catalyst, whose ends were capped with a purified thermal silica 
paper. The remaining space in the reactor tube was filled with purified fused alumina granulate 
and the ends of the tube were capped with glass wool.  

Before the actual reaction measurements, the catalysts were pretreated at 250 ºC for 2 hours 
under a gas mixture of H2 (Praxair, 5.0 UHP, 10 sccm) and N2(Praxair, 5.0 UHP, 10 sccm) with a 
heating rate of 2 K/min. After the pretreatment, the gas flow was changed to 16 sccm H2 and n-
hexane was introduced using a liquid flow pump (Teledyne ISCO 500D) at a rate of 1.4 mL/hour. 
In the reactor head, n-hexane was evaporated and mixed with H2 gas to give a two-component 
gas flow with n-hexane:H2 mole ratio of 1:5. A Baratron type manometer (890B, MKS 
Instruments) was used to monitor the reactor head pressure. At the reactor outlet, the flow lines 
were maintained at 423 K to enable vapor phase sampling of the reaction products. An in-line 
gas chromatography-mass spectrometry (GC-MS, HP 6890 Series) equipped with an Aldrich HP-
1 capillary column, a flame ionization detector (FID), and a mass selective detector (MSD) was 
used to analyze the product composition. A GC-MSChemstation software (HP) was used for 
automatic sampling, data collection, and post-run processing. 

 

Results and Discussion 
Inclusion of PTA in MIL-101. One-step synthesis of MIL-101 and PTA/MIL-101 materials 

was carried out hydrothermally form a mixture of Cr3+, H2BDC, and PTA at 218 °C (no PTA 
when synthesizing MIL-101). This HF-free approach is reported to give MIL-101 materials with 
very similar thermal and chemical stability and properties to those synthesized using HF, despite 
subtle but considerable differences in the crystal structure (no F within the crystalline structure). 
More importantly, using this HF-free approach, we not only avoid the use of harmful and 
corrosive HF, but also eliminate the side reactions between HF and PTA to allow potential one-
step encapsulation of PTA molecules. 

MIL-101 synthesized accordingly, was obtained as powders of 200-600 nm-sized, 
octahedral microcrystals (Figure 6.2a). Phase purity and porosity were established using powder 
X-ray diffraction (PXRD) (Figure 6.2d) and nitrogen sorption measurements (Figure 6.2e), 
respectively, and its chemical composition was found to be in agreement with the calculated 
value of Cr3O9(OH)(H2O)2(C8H4O4)3, despite a slight excess of the carbon and hydrogen content 
due to the presence of residual free acid and water molecules. 

Inclusion of PTA into MIL-101 was achieved by adding different amount of PTA into the 
starting mixture without changing any other parameters. We observed that the presence of PTA in 
the reaction mixture significantly changed the morphology of the obtained solids. Resultant 
particles were up to 5 μm in size, with a morphology comprising octahedral and truncated-
octahedral crystals on the surface (Figures 6.2b and 6.2c). This particle appearance is markedly 
different from that of MIL-101 as significant number of aggregation and inter-growth of 
nanocrystals are evidenced. Elemental analysis of these materials shows presence of 
phosphorous and tungsten and the molar ratio of W/P is very close to 12. Assuming all PTA 
molecules are incorporated in their dehydrated acid form, this one-step approach incorporates 45 
to 50% of input PTA into the solids, a value that doesn’t change much with different PTA input 
amounts. Hereafter, the different materials were designated xPTA/MIL-101, x = 25 and 60, 
where x = wt% of PTA in composite materials. 
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The crystal structures of the xPTA/MIL-101 samples were probed via PXRD, with resulting 
data shown in Figure 6.2d. Significant changes in the diffraction patterns were observed after 
incorporation of PTA in MIL-101, compared with that of pristine MIL-101. In particular, several 
new peaks emerged between 6o and 8o (2θ value). They become more visible in the higher PTA 
loading sample (60PTA/MIL-101). None of these newly appeared peaks overlaps with those of 
pure PTA. In fact, they all lie in the Bragg peak positions of the unit cell of MIL-101, which 
shows null intensity at these positions (Figure A6.2). According to literature, this PXRD pattern 
indicates that there are ordered PTA assemblies residing in both the large cages and small pores 
of MIL-101, and the PTA assemblies in the small pores or cages may possess higher degrees of 
freedom than those in the large cages. These ordered PTA assemblies prevail when larger amount 
of PTA molecules are encapsulated into the framework, as demonstrated by the more intense 
peaks in 60PTA/MIL-101 than those in 25PTA/MIL-101. 

Thermal gravimetry (TG) traces of activated MIL-101, 25PTA/MIL-101, and 60PTA/MIL-
101 under a flow of air are displayed in Figures A6.6-A6.8. As expected, PTA/MIL-101 samples 
exhibit lower weight loss than MIL-101. Assuming all organic compounds will be burned out, 
Cr(III) will become Cr2O3, and PTA molecules are not affected since P(V) and W(VI) are at their 
highest oxidation state. We expected MIL-101 and PTA/MIL-101 samples to lose 69%, 52%, and 
28% of their weight, respectively. These numbers are in good agreement with the observed 
experimental data, which proves our proposed material compositions are correct. To further 
study the proper activation conditions for theses samples, TG traces of as-synthesized samples 
(samples were quickly washed with deionized water and ethanol before air-dried) were taken 
under a flow of N2 and displayed in Figures A6.9-A6.11. A first weight loss up to 80 oC 
corresponds to the removal of free water and ethanol molecules. The second major weight loss 
was found between 300 and 500 oC in all samples, this step corresponds to the collapse of the 
framework and the degradation of the organic compounds. However, we did not observe a third 
weight loss step that is only found in the PTA/MIL-101 composite materials between 230 and 
250 oC. The weight loss increases as the loading of PTA in the composite material. Considering 
the fact that we use hydrated PTA as the starting material and the solids are precipitated out from 
aqueous media, we attribute this step to the dehydration of PTA, a necessary step to expose its 
strong Brønsted acidity. 

Infrared (IR) spectroscopy characterization reveals additional absorption bands in both PTA 
containing materials, corresponding to phosphotungstate structure at 1080, 972, 889, and 819 cm-

1. These absorption bands are attributed to vibrational modes of υas(P-Oa), υas(W=Od), υas(W-Ob), 
and υas(W-Oc), respectively.16 The υas(P-Oa), υas(W-Ob), and υas(W-Oc) vibrational bands are 
remarkably shifted in comparison to PTA hydrate (1072, 902, and 773 cm-1, respectively). This 
shift may be attributed to the confinement effect of PTA inside the porous solid.16 Additionally, a 
very weak absorption band appears at 1710 cm-1 [υas(C=O)] in both PTA/MIL-101 samples, 
which is assigned to the presence of free carboxylic acid. 

In order to conclude about the PTA structure after its incorporation into MIL-101 pores, one-
pulse 31P solid-state nuclear magnetic resonance (SSNMR) spectra were acquired for both 
PTA/MIL-101 samples along with PTA hydrate and CrPW12O40 hydrate, a byproduct that has 
strong interaction between Cr(III) and PTA. As shown in Figure A6.15, both 25PTA/MIL-101 
and 60PTA/MIL-101 exhibit single resonance at -16 ppm, which is very similar to that of PTA 
hydrate (resonance at -15.5 ppm). All three spectra are distinct from that of Cr(III) salt of PTA, 
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which has broader resonance bands at lower field due to its paramagnetic nature. The unchanged 
chemical shift indicates that the integrity of the PTA unit is maintained inside MIL-101. 

Characterization of acidity in PTA/MIL-101 composite materials by acetonitrile 
adsorption measurements. The successful inclusion of PTA molecules into MIL-101’s pores 
has raised the need to further evaluate their acidity. As stated in Chapter III, adsorption of 
volatile bases such as NH3, pyridine, n-butylamine can be used to determine the number of acid 
sites on solid acid materials. However, due to their strong basicity and the high desorption 
temperature needed to desorb, these basic molecules are not applied to the characterization of 
MOF-based solid acids. Instead, acetonitrile, a small molecule with low basicity (pKb = 24), has 
been successfully applied to characterize acidic properties of sulfated zirconium MOF-808. 

Here, we report characterization of acidity in PTA/MIL-101 materials using acetonitrile 
adsorption measurements, and in addition, we also study the desorption behavior of adsorbed 
acetonitrile using TG analysis. We anticipate that these results would show the possibility of 
using acetonitrile based TPD technique and if possible, other combined in situ techniques to 
study MOF-based solid acid materials. 

Prior to the acetonitrile sorption measurements, samples were activated at 150 and 250 oC. 
We chose two different activation temperatures because we wanted to study the acidity changes 
after PTA dehydration, which occurs between 230 to 260 oC, as indicated by TG traces (Figures 
A6.10 and A6.11). To carry out this experiment, samples synthesized from the same batch were 
separately activated and measured. The strength of acidic sites is characterized by the ease of 
dissociation of acetonitrile. To evaluate this factor, the samples were evacuated at 25 °C for 2 
hours after isotherm measurements. Typical pressure in the sample cell after the regeneration 
process was 5 Pa. We then collected the acetonitrile-d3 isotherms up to three cycles for the 
materials studied here. 

The acetonitrile-d3 isotherm of MIL-101 (activated at 150oC) measured at 25 °C is shown in 
Figure 6.3a. The adsorbed amount of acetonitrile gradually increases with increasing pressure up 
to P/P0 = 0.13, followed by two abrupt acetonitrile uptake steps in the pressure ranges of P/P0 = 
0.13 to 0.20 and P/P0 = 0.21 to 0.27, and the maximum uptake reaches 770 cm3 g-1 at P/P0 = 0.9. 
A significant decrease from the first to the second cycle and a constant uptake thereafter was 
found for MIL-101. This difference is mainly due to the decreased uptake at lower pressure 
range (P/P0 = 0 – 0.05). This behavior can be explained if some of the acetonitrile molecules are 
strongly bound to the framework, not being desorbed under the aforementioned regeneration 
conditions. If this is the case, the acetonitrile release requires further energy input (higher 
temperature and/or better vacuum). This indicates the presence of acidic sites in pristine MIL-
101 activated at 150 oC. MIL-101 activated at higher temperature (250 oC) exhibited very similar 
acetonitrile-adsorption behavior to those of MIL-101 activated at lower temperature (150 oC). 
Apparently, activating MIL-101 at higher temperature does not generate more acidic sites. This is 
in agreement with the fact that no extra weight loss step occurred in the TG trace of MIL-101 
between 150 and 250 oC. 

The acetonitrile-d3 isotherm of 25PTA/MIL-101 (activated at 150oC) measured at 25 °C is 
shown in Figure 6.3b. Similar to pristine MIL-101, the adsorbed amount of acetonitrile gradually 
increases with increasing pressure up to P/P0 = 0.2, followed by an abrupt acetonitrile uptake 
step in the pressure range of P/P0 = 0.21 to 0.27, and the maximum uptake reaches 520 cm3 g-1 at 
P/P0 = 0.9. The maximum uptake is lower than MIL-101 because the pore volume of 
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25PTA/MIL is smaller. The adsorption step found in the pressure range of P/P0 = 0.13 to 0.20 in 
MIL-101 is not observed in 25PTA/MIL-101, which could be assigned to the blocked small 
pores by PTA molecules in the material. Similar to pristine MIL-101, a significant decrease from 
the first to the second cycle and a constant uptake thereafter was found for 25PTA/MIL-101 as 
well. This indicates the presence of acidic sites in 25PTA/MIL-101 activated at 150 oC, which 
absorb acetonitrile molecules strongly in an irreversible process at room temperature. 
25PTA/MIL-101 activated at higher temperature (250 oC) exhibited a slightly higher (30 cm3 g-1) 
uptake of acetonitrile in the first cycle, while the uptake of acetonitrile in the second circle is 
quite similar to those of samples activated at 150 oC. These findings indicate a slight increase of 
the number of the acidic sites in 25PTA/MIL-101, which is in good agreement with the fact that 
a tiny weight loss step was found on TG trace of 25PTA/MIL-101 between 230 and 250 oC. 

The adsorption behavior becomes very different in 60PTA/MIL-101 samples. As shown in 
Figure 6.3c, the adsorbed amount of acetonitrile-d3 in 60PTA/MIL-101 (activated at 150 oC) 
gradually increases with increasing pressure up to P/P0 = 0.05, followed by two abrupt 
acetonitrile uptake step in the pressure ranges of P/P0 = 0.05 to 0.12 and P/P0 = 0.21 to 0.27, and 
the maximum uptake reaches 230 cm3 g-1 at P/P0 = 0.9. Despite the fact that 60PTA/MIL-101 has 
the largest loading of PTA in all samples, interestingly, only a very slight decrease in acetonitrile 
uptake (8 cm3 g-1) from first cycle to second cycle was observed. This clearly shows that the 
major type of acidic sites in both MIL-101 and 25PTA/MIL-101 are not present in 60PTA/MIL-
101 material. On the contrary, 60PTA/MIL-101 activated at 250 oC exhibited higher acetonitrile 
uptake in the first cycle and a significant decrease in uptake (95 cm3 g-1) from first cycle to 
second cycle compared to other samples. These findings indicate: (a) strong acidic sites are 
present in 60PTA/MIL-101 activated at 250 oC; and (b) these acidic sites are not generated or 
activated at 150 oC. This is also consistent with the finding that 60PTA/MIL-101 has a 
significant weight loss step between 230 and 260 oC, which is assigned to the dehydration of 
PTA molecules. 

To further study the acid strength of PTA/MIL-101 materials, samples loaded with 
acetonitrile-d3 were quickly transferred and subjected to TG measurements under a flow of 
nitrogen. TG traces were plotted in Figures A6.12 to A6.14. Two major weight loss steps were 
observed in pristine MIL-101 and 25PTA/MIL-101 samples in the ranges of below 50 oC and 
325 to 500 oC. While the second weight loss corresponds to the collapse of the framework and 
degradation of the organic struts, the first weight loss step might be assigned to desorption of the 
physisorbed and chemisorbed acetonitrile molecules. The TG trace of acetonitrile loaded 
60PTA/MIL-101 sample shows an extra step in the range of 200 to 300 oC. This weight loss may 
be attributed to desorption of the chemisorbed acetonitrile molecules. The different temperatures 
required to desorb chemisorbed acetonitrile molecules in 25PTA/MIL-101 and 60PTA/MIL-101 
samples undoubtedly support the presence of two different types of acidic sites. The elevated 
temperatures required to desorb acetonitrile in 60PTA/MIL-101 supports the presence of stronger 
acidic sites. These results obtained are preliminary; however, they clearly support the notion that 
it is possible to conduct TPD experiments on MOF-based acid materials using carefully chosen 
base probes, such as acetonitrile and carbon monoxide. We hope that this work can inspire 
individuals to explore this field, which will lead to a better understanding to the acid properties 
of MOF-based acid materials. 
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Previous characterization has confirmed the integrity of PTA structures when loaded by one 
pot synthesis into MIL-101’s cages; however, their protonation state is uncertain. Acidity 
characterization of samples with different PTA loading using adsorption of acetonitrile has given 
hints of two types of acidic sites present in these PTA loaded MIL-101 samples. One type is 
present in Pt/MIL-101 and Pt/25PTA/MIL-101, the other type is present in Pt/60PTA/MIL-101. 
This is in good agreement with the catalytic behavior of these composite catalysts. To further 
prove our hypothesis, we carried out qualitative characterization of acidic sites by adsorbing 
acetonitrile-d3 and taking IR spectra for all three catalysts. As shown in Figure A6.16, two peaks 
were observed in the IR spectra in the region corresponding to absorption by triple bonds: one at 
2312 – 2320 cm-1 and the other at 2260 – 2271 cm-1. According to literature data, the bands at 
higher and lower wavenumbers can be tentatively attributed to the adsorption on acidic sites and 
the physisorbed CD3CN, respectively. The peak at 2320 cm-1 for MIL-101 is attributed to Lewis 
acid sites of the pure MOF, whereas the more intense peak at 2312 cm-1 for 60PTA/MIL-101 
might be due to Brønsted acid sites. The absence of this peak for 25PTA/MIL-101 might indicate 
the absence of Brønsted sites, and therefore, negligible activity towards n-hexane isomerization. 

Reaction activity and isomer selectivity of the acid-encapsulated MOF catalyst was 
compared to aluminum modified mesoporous silica catalyst (Figure 6.5) The aluminosilicate 
catalyst was previously shown to have high selectivity towards isomerization due to its mild 
acidic character and have comparable activity to zeolite catalysts.6f Figure 6.5a presents reaction 
activity in terms of turnover frequency (TOF) and isomer selectivity for Pt/60PTA/MIL-101, 
Pt/Al-MCF-17, and Pt/MCF-17. The TOF is based on the total surface area of Pt, which is 
calculated based on geometrical methods and TEM analysis of average nanoparticle size (3 nm). 
The MOF based catalyst Pt/60PTA/MIL-101 was highly selective and almost 7 times more 
active than the Pt/Al-MCF-17 catalyst at 240 ºC and 1 bar. At these reaction conditions, the pure 
Pt/MCF-17 was not active at all. Both MOF and aluminosilicate based catalysts maintained 
excellent selectivity and showed increased activity as a function of temperature as presented in 
Figure 6.5b. The apparent activation energy (76.5 kJ/mole) for n-hexane hydroisomerization on 
MOF based catalyst was two times lower than the activation energy (153.2 kJ/mole) on silica 
based catalyst (Figure A6.17). 

Finally, the stability of MOF based catalyst was tested as it is one of the key parameters of 
hydroisomerization catalysts. The reaction was carried out for about 10 hours at 250 ºC and 1 bar. 
We observed a slight catalyst deactivation during the first three hours of operation, after which 
the deactivation was minimal (Figure 6.6). A similar deactivation trend was observed when the 
same catalyst was cycled 3 times as presented in the inset of Figure 6.6. In between cycles, the 
catalyst was flowed with H2 and N2 gas mixture at 250 ºC. High temperature aerobic treatment 
was avoided as MOF catalysts were more susceptible to decomposition in air than in H2 and N2 
gas mixture as demonstrated by TG analyses (Figures A6.8 and A6.18). 

We performed N2 adsorption-desorption (Figure A6.1), powder XRD (Figures 6.2 and A6.5), 
and SEM studies (Figures 6.2 and A6.19) before and after 10 hours of reaction to characterize 
the structural integrity of the Pt/PTA/MIL-101 catalyst under reaction conditions. As shown, 
slightly decrease in XRD peak intensity, N2 uptake and change in the pore distribution was 
observed after the reaction. However, no evidence of structural decomposition was observed in 
SEM images of the MOF crystals (Figure A6.19). 
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strong Brønsted acidity as characterized by acetonitrile-d3 sorption studies, while MIL-101 and 
25PTA/MIL-101 materials exhibit only weak Lewis acidity. We believe the major reason for this 
non-linear corelation between acid strength and the loading of PTA is the different protonation 
states of the PTA included. These acid properties have direct impct on the catalytic performance 
of these materials toward hydroisomerization of n-hexane. Although Pt/MIL-101 and 
Pt/25PTA/MIL-101 were found to be inactive in the catalytic conversion of n-hexane to isomers, 
when Pt/60PTA/MIL-101 is used as catalysts the isomerization became the dominant pathway 
with high activity and selectivity (> 90%) at 250 oC. Coking was found as the main reason for 
the slow deactivation of the Pt/60PTA/MIL-101 catalyst. 
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Chapter VII 

Concluding Remarks and Future Outlook 
 

This work demonstrates the viability of assembling metal-organic framework (MOF) 
materials based on Zn(II), Zr(IV), and Cr(III) metal ions with carboxylate-type organic 
secondary building units for various applications concerning gas storage and solid acid design. 
As discussed throughout the body of this dissertation, the synthesis of crystalline extended 
structures connected by strong bonds has opened up a new area of chemistry, where the 
molecular units become part of a new environment: the enclosed pores. The well-defined spatial 
arrangement around these pores has allowed us to determine that the properties of the molecular 
units are influenced by the intricacies of the pores. Moreover, design and control of the obtained 
structures has been exhibited, allowing the tuning of materials toward the target application. 

There has been a rapid advancement in this field from the progression of discovering new 
materials to designing useful materials. The challenging transition was studied here as I am 
trying to identify the crucial criteria for each application and discuss the factors from materials’ 
perspective to satisfy those. In Chapter II, the need to capture water vapor at low humidity 
requires MOFs to exhibit pore filling or condensation of water into the pores at P/P0 < 0.1. Thus 
we have designed small pore zirconium MOF, MOF-801, Zr6O4(OH)4(fumarate)6, for this 
purpose. MOF-801 is shown to have high uptake, recyclability, and water stability. In Chapter III 
and IV, the need to capture harmful ammonia gas also required MOFs to have strong binding 
sites for capturing the basic ammonia gas at low concentration. Thus we have designed strongly 
acidic zirconium MOF, sulfated MOF-808, Zr6O5(OH)3(BTC)2(SO4)2.5, for this purpose. This 
sulfated MOF-808 is shown to take up 5.3 mmol ammonia at P < 1.5 Torr, and 16.7 mmol 
ammonia at P = 760 Torr per gram material, one of the highest values for MOF-based ammonia 
capture material. In Chapter V, the need to store methane gas at 80 bar and increase the working 
capacity (between 5 and 80 bar) requires MOFs to have both high surface area and suitable pore 
sizes. For this purpose, we designed zinc MOFs using organic linkers having delocalized π-
electrons and with suitable pore matrices. The star compound, MOF-905, Zn4O(BDC)(BTAC)4/3, 
shows 200 cm3 cm-3 working capacity between 5 and 80 bars, the highest of all zinc MOFs and is 
equivalent to the benchmark HKUST-1 compound. 

It is clear that MOFs are promising materials for gas sorption related applications. However, 
for the above mentioned three gases (water, ammonia, and methane), challenges still remain. For 
water storage, extensive studies are still needed in this field: (a) to discover more water stable 
MOFs as potential candidates; (b) to develop systems that can adsorb water at low P/P0 (< 0.05), 
while can be easily regenerated (room temperature under vacuum or heating to 80 oC); (c) to 
realize large-scale production and fabrication of the material; and (d) to design prototypic 
devices using these materials with the attempts to lower costs. For ammonia capture, future study 
should focus on evaluation of the under humid conditions. For methane storage, there are several 
potential research directions: (a) the synthesis of new MOFs with 10 Å (diameter) pores as these 
small cages are proved to be extremely important for high volumetric methane storage; (b) the 
clarification of the effect of functional groups on MOFs’ methane storage capacities and 
identification of powerful organic functional groups; (c) the modification the pore interiors of 
extended MOFs to intensify the interaction between methane molecules and the MOF backbone. 
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This includes introduction of metal ions, nanoparticles, and complexes; and (d) a close 
collaboration with industry to facilitate the measurement at higher pressure (up to 250 bar), 
enlarging the scale of synthesis, and optimizing the fabrication of materials. 

When it comes to the design and synthesis of MOF-based solid acids, three approaches have 
been proposed: (1) acidic functional groups bound to the organic linker; (2) acidic ligands bound 
to the inorganic cluster; and (3) acidic molecules encapsulated in MOF pores. While in the first 
approach, the acidity of the MOF is mostly decided by the acidity of the free acidic functional 
group, the latter two strategies will see more interaction between the framework and the acidic 
groups, which is of great importance to understand the chemistry within the pores. A new type of 
MOF-based solid acid is demonstrated by the controllable sulfation of zirconium MOF, MOF-
808, on the inorganic cluster. The substitution of terminal formate groups in MOF-808 with 
sulfate groups has given the sulfated MOF-808 strong acidity that has not been previously 
observed. The material has shown activity for acid catalyzed Friedel-Crafts acylation, 
esterification, isomerization, as well as the conversion of methylcyclopentane (MCP) into 
various hydrocarbons at 150-200 oC. Another MOF-based acid was synthesized by including 
phosphotungstic acid (PTA) into the large cages of MIL-101. Interestingly, we observed that the 
Brønsted acidity (comes from PTA) of the composite material is not directly proportional to the 
loading of PTA, but instead, is not exhibited until a certain degree of PTA loading is reached. 
This is explained by the different protonation status of the PTA in the material and the highest 
loaded composite material, Pt/60PTA/MIL-101 is shown to effectively catalyze 
hydroisomerization of n-hexane at 250 oC. 

For the field of MOF-based solid acid materials, there is still a limited number of MOFs 
available, raising the urgent demand for further development of acid stable MOFs. Regarding the 
term “stability”, two aspects are involved. First, stability towards acidic protons: Brønsted acid 
catalyzed reactions involve the transfer of protons from the catalyst acidic sites to substrates for 
the activation of the reactant, which, however, could lead to the slow destruction of the 
framework if those protons migrate to the carboxylates in the framework instead of returning to 
their origin. Second, stability towards reactivation: the MOF has to be stable towards conditions 
to regenerate the acidic sites or to dredge the tunnels, which nowadays are typically done through 
high temperature calcination or use of strong chemicals. The need exists for developing MOFs in 
which the metal-link binding units are not carboxylates but other, more acid-resistant, linkages. 

However, at the same time, we should clearly state that we are not aiming at making MOF-
based solid acid materials the same as those inorganic solid acids in terms of stability, reactivity, 
and target reactions. The versatile and flexible nature of MOFs guides their applications toward 
those requiring fine design at the active sites, such as the enzyme-type catalysis and the 
multicomponent catalysis. For example, enclosing a typical metal catalyst with acidic MOFs is 
expected to alter the catalyst activity and selectivity. In a way, the MOF in this case acts as a 
complex ‘ligand’ enclosure for metal nanoparticles where it is possible to impart the MOF 
designable attributes onto the metal catalyst. This includes variation of organic linker’s length 
and functional groups as well as incorporation of multiple metal ions into the MOF enclosures. It 
is clear that acidity, both of Lewis and Brønsted type, should be another likely avenue of 
modifying the enclosures and accessing completely different kind of reactivity for these 
traditional catalyst systems. Indeed, the interfacing of acidic MOFs with metal nanoparticles in 
the way we envision here provides even a more powerful means of making mesoscopic systems 
when coupled with multivariate MOFs. Here, nanometer regions replete with acidic sites can be 
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intermingled with regions of moderate acidity or even basic sites. Thus one can potentially 
design the interior of the MOF to have compartments of different scales of acidity that are linked 
but which potentially can operate differently; aspects very common in biology while remaining 
uncommon in synthetic systems. 
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