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Abstract

An accurate estimation of driver vigilance is crucial for re-
ducing fatigue-related incidents and traffic accidents. Despite
advances in the field of fatigue detection, effective utilization
of multimodal information remains a major challenge. Addi-
tionally, prevalent methodologies predominantly focus on lo-
cal features, overlooking the importance of global features in
this context. To solve the above problems, we propose the deep
channel attention transformer (DCAT) model, which can effec-
tively utilize multimodal information and extract local-global
features for fatigue detection regression tasks. We first intro-
duce a novel multimodal approach that integrates electroen-
cephalography (EEG) and electrooculogram (EOG) data, cap-
italizing on their complementary strengths to enhance the un-
derstanding and assessment of fatigue states. Then, the DCAT
model utilizes multimodal information by extracting local and
global features using channel attention and transformer en-
coder modules, respectively. Our evaluation of the SEED-VIG
and SADT public datasets showcases the model’s superior per-
formance compared to that of the state-of-the-art baselines.
Keywords: Electroencephalography (EEG); Electrooculo-
gram (EOG); Driver vigilance estimation; Transformer; Chan-
nel attention.

Introduction
Gobal concerns about public safety have intensified with the
increasing incidence of traffic accidents, which are predom-
inantly attributed to driver fatigue. With the increase in au-
tomobile usage and driving intensity, fatigued driving has
emerged as a significant cause of accidents. Therefore, the
detection and prevention of fatigued driving are crucial tasks
in traffic safety research.

Fatigue detection methods are generally categorized into
subjective assessment, behavioral assessment, and physical
testing methods. While subjective assessments provide valu-
able tools, their accuracy is limited by individual psycholog-
ical factors. Behavioral assessments, which involve moni-
toring facial expressions and body postures, are subject to
environmental interference. Consequently, there has been
growing interest in physiological indicators, such as elec-
troencephalogram (EEG), electrooculogram (EOG), and elec-
tromyogram (EMG) signals, for assessing human body states.
These methods offer comprehensive health information and
accurately reflect fatigue levels, thus holding a promising fu-
ture in fatigue assessment. Nevertheless, several challenges
remain unresolved:

Multimodal information integration has not yet been
optimally leveraged for its full potential. A substan-

tial body of work has focused on unimodal detection us-
ing various physiological signals, including EEGs, EOGs,
and EMGs. Y. Zhang et al. (2022) introduced an automatic
weighting variable to adaptively and quantitatively assess the
significance of different feature dimensions. This approach
effectively addresses the challenge of limited EEG training
samples. G. Zhang and Etemad (2023) distilled EEG rep-
resentations using knowledge distillation via capsule based
architectures and used it for various tasks including fatigue
detection with good results. Nevertheless, as illuminated by
the findings of (Zheng & Lu, 2017; Pan et al., 2023), the syn-
ergy of different physiological signals is crucial, because they
provide complementary information. Consequently, harness-
ing the power of multimodal information efficiently emerges
as a pivotal challenge.

The local-global features of multimodal information de-
serve more attention. The need for global feature extraction
is particularly crucial given the intricate and interconnected
nature of brain functions. The utilization of advanced analyt-
ical techniques, such as neural networks, plays a pivotal role
in identifying and interpreting these global features. The self-
attention mechanism is adaptable at handling sequential data
(Vaswani et al., 2017). Its capacity to weigh and integrate
information from various parts of the input sequence allows
for a more holistic and comprehensive representation of the
global features. This capability aligns well with the complex-
ity of brain signals, where the interplay of different neural
activities and their collective influence on fatigue states is es-
sential for accurate detection and analysis. In summary, this
approach proves advantageous when dealing with challenges.

To address these issues, we propose the deep channel at-
tention transformer (DCAT) model for multimodal EEG and
EOG inputs. We first perform a simple fusion of the multi-
modal data, followed by DCAT to accomplish effective ex-
traction of local-global features and for fatigue detection re-
gression tasks. In summary, our contributions include the fol-
lowing:

1. By integrating EEG and EOG data, we developed a novel
multimodal fatigue detection paradigm. This approach,
leveraging the complementary strengths of EEG and EOG,
offers a comprehensive methodology for identifying of fa-
tigue states.

2. We propose an advanced DCAT model to enhance the fa-
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Figure 1: The complete architecture of the paradigm, which consists mainly of input representation and DCAT. The input
representation is responsible for extracting features from the raw data and DCAT is responsible for fatigue detection.

tigue detection accuracy. This model excels in extracting
global features from multimodal inputs, significantly im-
proving performance and showing potential for fatigue as-
sessment, thus advancing multimodal data processing tech-
niques.

3. We conducted extensive evaluations using the SEED-VIG
and SADT public datasets. The experimental results show
that our model achieves state-of-the-art performance in fa-
tigue detection, proving its practical applicability in real-
world scenarios.

Method
Architecture Overview
Figure 1 shows an introduction to the whole structure, includ-
ing the Input Representation, which handles the raw data for
both modalities, and the DCAT model for fatigue detection.
Input representation is used to complete the initial feature ex-
traction of multimodal information. DCAT is subdivided into
four parts: the Conv layer, the deep channel attention (DCA)
layer, the Transformer layer, and the regression layer. Specif-
ically, in the Conv layer, the 2D-CNN is used to extract pre-
liminary shallow features. The shallow features are input into
the next layer of the DCA to efficiently extract deep local
features. Then Multi-Head Self-Attention in Transformer is
used to extract the neglected global features. The extraction
of global features can improve the robustness of the model.
In the final regression layer, some processing was performed
and linear layers were used to accomplish the regression task.

Input Representation
This module is pivotal for transforming raw EEG and EOG
signals into pertinent features that enhance the predictive ac-
curacy of the model. The module encompasses three primary
processes: Data Processing, Feature Extraction, and Feature
Fusion.

Data processing: To mitigate artifact and reduce computa-
tional effort, both EEG and EOG signals are initially down-
sampled from 1000 Hz to 200 Hz. The data were further
refined using bandpass filtering (1-50 Hz) and bandstop fil-
tering (49-51 Hz). In this study, we also extracted full-band
features with a 2 Hz frequency resolution for comprehensive
analysis.

Feature Extraction: Building upon prior research(Shi, Jiao,
& Lu, 2013; Duan, Zhu, & Lu, 2013; Pan et al., 2023),
we utilized power spectral density (PSD) and differential en-
tropy (DE) as our primary features, with an 8-second non-
overlapping window, due to their proven effectiveness in
alertness detection and emotion recognition within brain-
computer interfaces. For enhanced feature refinement, tech-
niques such as the moving average (MA) and linear dynamic
system (LDS) are applied to these segments, resulting in four
distinct feature sets: PSD-MA, DE-MA, PSD-LDS, and DE-
LDS.

Feature Fusion: For EEG and EOG with correlated and
complementary information, early fusion methods involving
direct and simple splicing are more robust than late fusion
methods are. Therefore, we fused the EEG and EOG signals
into a mixed matrix:
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X f used
i =

{
xeeg

i ∪ xeog
i : ∀i ∈ [1,N]

}
(1)

where N denotes the number of subjects and i denotes the
i-th subject. Accordingly, we have

f usedl ( ft ,ch,w f ) : ∀l ∈ [1,L] (2)

where f usedl denotes a sample after fusion, ft denotes the
number of features we extracted, and ch denotes the total
number of channels, and w f denotes the 25 divided frequency
bands.

Deep Channel Attention Transformer

1) Conv layer: We first use a convolutional layer to extract
the original features, map the features into a different feature
space and extract the spatial features with a convolutional ker-
nel in the convolutional layer to learn useful information from
the data. Specifically, the fusion feature f usedl [ ft ,ch,w f ]
passes through a 2D-CNN with a step size of s and a padding
of p, followed by a rectified linear unit (ReLU) layer.

2) Deep Channel Attention layer: In this layer, we use
multi-layer efficient channel attention (ECA) (Wang et al.,
2020) to extract deeper localized features. The specific struc-
ture of the ECA is shown in Figure 2. ECA represents an
innovative advancement in convolutional neural network ar-
chitectures and is designed to enhance feature representation
through a dynamic channelwise attention mechanism.

Figure 2: Diagram of the efficient channel attention (ECA)
module. GAP stands for global average pooling.

The process begins with a step that compresses the spatial
dimensions while retaining critical information across differ-
ent channels. For the specific implementation we used global
average pooling (GAP). This step allows for fast computa-
tion of features along the channel dimensions while avoiding
dimensionality reduction. The next section utilizes channel
attention to capture local cross-channel interactions, which is
intended to be both efficient and effective. Given the aggre-
gated feature y, channel attention can be learned by

ω = σ(Wy) (3)

The ECA module employs a band matrix Wk to learn the
channel attention:


w1,1 . . . w1,k 0 0 . . . . . . 0

0 w2,2 . . . w2,k 0 . . . . . . 0
...

...
...

...
. . .

...
...

...
0 . . . 0 0 . . . wC,C−k+1 . . . wC,C


Wk involves k×C parameters, where k denotes the number

of neighbors and C denotes the number of channels. By doing
so, the weights of yi will consider only his k neighbors, and
we can obtain the following result:

ωi = σ(
k

∑
j=1

w j
i y j

i ),y
j
i ∈ Ω

k
i (4)

where Ωk
i indicates the set of k adjacent channels of yi. In

the specific experiments, we used a one-dimensional convolu-
tion for the implementations, with k representing the size of
the convolution kernel. To avoid unnecessary computation,
the size of the convolution kernel depends on the channel di-
mension C.The kernel size k can be adaptively determined by

k = ψ(C) =

∣∣∣∣ log2 C
γ

+
b
γ

∣∣∣∣
odd

(5)

where |t|odd indicates the nearest odd number of t. In the
experiments, we set y and b to 2 and 1, respectively. Subse-
quent to convolution, the extracted features undergo a non-
linear transformation through an activation function, normal-
izing them for the next step. The final step involves scaling
the original input by these normalized features, thereby em-
phasizing more informative elements and suppressing fewer
relevant ones. This design enhances not only the represen-
tational capacity of the network but also the computational
demand. This results in significant improvements in learn-
ing effectiveness without substantial computational overhead.
Between each ECA layer, we also use a residual network(He
et al., 2016) to prevent gradual explosions.

The core of the ECA mechanism is to assign different im-
portance to the features of different channels, which can cap-
ture local attention across channels without dimensionality
reduction, in contrast to the traditional attention mechanism
(Hu, Shen, & Sun, 2018), which reduces the number of pa-
rameters and computational complexity. This attention mech-
anism can be further enhanced by multi-layer ECA, where
each layer can adjust and optimize the feature representation
at different levels, allowing the model to perform better in
extracting deeper and more complex features.

3) Transformer layer: In previous research, global features
have often been overlooked. Given the presence of global
correlation in biosignals, extracting global features of multi-
modal information is extremely beneficial for improving the
robustness of the model. In this module, we choose an en-
coder module from the transformer to extract global features,
compensating for the limited receptive field of the convolu-
tional module. The output of the preceding module is lin-
early transformed and subsequently fed into the Q, K, and
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V (query, key, value) components. The encoder architecture,
leverages a dot product operation to ascertain the correlation
among various tokens. This is accomplished by applying the
dot product between the Q and K matrices. To mitigate the
risk of vanishing gradients and ensure a stable training pro-
cess, a scaling factor is judiciously introduced. Subsequently,
the resultant matrix undergoes normalization through a Soft-
max function, which effectively generates a weighting matrix,
commonly referred to as the attention score. This attention
score is then strategically applied to the V matrix through an-
other dot product, culminating in a weighted representation
that embodies the focused attention mechanism of the model.
In the case of self-attention, the contents of Q, K, and V re-
main consistent.The computation is as follows:

Attention(Q,K,V ) = So f tmax(
QKT
√

dk
)V (6)

The term dk represents the length of a token. In addition,
we also employ a multihead attention (MHA) mechanism to
further enhance the diversity of features. In this mechanism,
tokens are evenly divided into h parts. Each part is individu-
ally fed into a self-attention module for computation. Finally,
the results from each part are concatenated to obtain the final
output. The entire process can be represented as follows:

MHA(Q,K,V ) = [head0; ...;headh−1] ,

headl = Attention(Ql ,Kl ,Vl)
(7)

where Ql , Kl , and Vl represent the query, key, and value
matrices, respectively, for the l-th attention head. In addition,
the fitting ability of the model was enhanced. The residual
connection followed by layer normalization (LN) occurred
between the feedforward layer and the MHA layer. The in-
put and output dimensions of this module remain unchanged.
Within the entire Transformer layer, the encoder structure is
repeated N times.

4) regression layer: This layer transforms features into a
continuous output value confined between 0 and 1. It com-
mences with a LayerNorm module, which normalizes the in-
put across its features. Following normalization, an AvgPool
layer effectively reduces the data dimensionality while pre-
serving essential information, and adapting to varying input
sizes. Subsequently, the data are subjected to a linear trans-
formation via the linear layer, mapping it to a singular output
value per instance, in line with the regression objective. This
process concludes with the application of the tanh activation
function and further adjustments to move and scale the out-
put range to [0, 1], thus ensuring that the output of the layer
is best suited for regression tasks that require bounded con-
tinuous prediction.

Experiment and Results
Datasets
To evaluate our proposed model, we selected the SEED-VIG
(Zheng & Lu, 2017) and SADT (Cao et al., 2019) datasets for

testing. The SEED-VIG dataset consists of 23 participants.
The EEG and EOG signals were sampled at a rate of 1000
Hz. The EEG signals were recorded using 18 electrodes (in-
cluding a reference electrode), while the EOG signals were
recorded using 4 electrodes. The sustained attention driv-
ing task (SADT) dataset consists of 27 participants, and the
experiment lasts for 60-90 minutes, during which only EEG
data are recorded.

Experiment Details
Due to the disparity in the data range between EEG and EOG
data, we employed a normalization technique to control for
their distributions. The construction and training of DCAT
was performed on an NVIDIA 4060Ti, utilizing Python 3.8
and PyTorch. All the data are divided into the training set
and the test set according to the ratio of 8:2, and five cross-
validation methods are carried out. We employed the AdamW
optimizer to effectively train our model.

Evaluation Method
To evaluate the effectiveness of the DCAT model, we em-
ployed two metrics: the root mean square error (RMSE) and
the Pearson correlation coefficient (PCC). The RMSE is cal-
culated as follows:

RMSE(Y,Ŷ ) =

√
1
N

∑
N
i=1(yi − ŷi)

2 (8)

where yi represents the actual values and ŷi represents the
predicted values.

The PCC is calculated as follows:

PCC(Y,Ŷ ) =
∑

N
i=1(yi − y)(ŷi − ŷ)√

∑
N
i=1(yi − y)2

∑
N
i=1(ŷi − ŷ)2

(9)

where yi represents the actual values, ŷi represents the pre-
dicted values, ȳ represents the mean of the actual values, and
¯̂y represents the mean of the predicted values. In summary,
our objective is to train the model to achieve lower RMSE
values and higher PCC values.

Comparison Method
In the development and assessment of our DCAT model, a
key focus has been its comparative analysis against a range
of state-of-the-art methods and established baseline models.
We compare the DCAT with the following baselines:

• (G. Zhang & Etemad, 2023):A novel knowledge distilla-
tion pipeline is currently available for use in capsule-based
architectures for distilling EEG representations.

• (Pan et al., 2023):A new multimodal detection method
for estimating driver vigilance is introduced, incorporating
residual attention blocks and a capsule attention mecha-
nism.

• (Ding, Zhang, & Eskandarian, 2022):EEG-Fest, a novel
solution, is presented as a generalized few-shot model de-
signed to address existing limitations.
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Table 1: Comparison of the performance results of different methods on the SEED-VIG and SADT datasets

PaperPaperPaper MethodMethodMethod DatasetDatasetDataset RMSERMSERMSE PCCPCCPCC

(Jiang et al., 2020) O-MV-T-TSK-FS SADT 0.2+ -

(G. Zhang & Etemad, 2021) LSTM-CapsAtt SEED-VIG 0.029 0.989

(Song et al., 2021)
DCRA E
DCRA M SEED-VIG

0.035
0.023

0.980
0.985

(Y. Zhang et al., 2022) AWIRVFL
SEED-VIG
SADT

0.063
0.108 -

(Ding et al., 2022) EEG-Fest SEED-VIG 0.030 0.980

(G. Zhang & Etemad, 2023) Distillation SEED-VIG 0.025 0.993

(Pan et al., 2023) Res-att-capsnet
SEED-VIG
SADT

0.0160.0160.016
0.108 -

Ours DCATDCATDCAT
SEED-VIG
SADT

0.018
0.128

0.9980.9980.998
-

• (Y. Zhang et al., 2022):An auto-weighting incremental ran-
dom vector functional link (AWIRVFL) network model
was proposed for EEG-based driving fatigue detection.

• (G. Zhang & Etemad, 2021):An architecture consisting of
a deep long short-term memory (LSTM) network followed
by a capsule attention mechanism is described.

• (Song, Zhou, & Wang, 2021): This model employs a cou-
pling layer to connect two single-modal autoencoders, con-
structing a joint objective loss function optimization model
which comprises single-modal loss and multi-modal loss.

• (Jiang et al., 2020):An online multi-view and transfer TSK
fuzzy system for driver drowsiness estimation is proposed,
utilizing the 1st-order TSK fuzzy system and integrating
the nature of multi-view settings into the existing transfer
learning framework.

Comparison with State-of-the-Art Methods
In our comprehensive analysis, the DCAT model was eval-
uated against various state-of-the-art methods on the SEED-
VIG and SADT datasets. In regard to the SEED-VIG dataset,
we adopted a 5-fold cross-validation method to evaluate the
model’s performance, mirroring the approach in other stud-
ies. The results are presented in Table 1. As shown in the re-
sults, DCAT demonstrated a remarkable RMSE of 0.018 and
a PCC of 0.998. This performance notably surpasses that of
established methods such as Distillation and AWIRVFL. Res-
att-capsnet achieved optimal performance on two datasets,
which may be attributed to experimental methodologies dis-
tinct from ours. Specifically, the application of ten-fold cross-
validation enabled the extraction of a richer set of features.
This performance indicates that the whole model can effec-
tively utilize effective channel information to enhance repre-
sentation learning. Experimental results on the SADT dataset

Table 2: Comparison of our architecture with unimodal fea-
tures and multimodal features

ModalityModalityModality RMSE±SDRMSE±SDRMSE±SD PCC±SDPCC±SDPCC±SD

EEG 0.0213±0.0017 0.9967±0.0005

EOG 0.0296±0.0021 0.9936±0.0009

EEG+EOGEEG+EOGEEG+EOG 0.0180±0.00230.0180±0.00230.0180±0.0023 0.9977±0.00070.9977±0.00070.9977±0.0007

are also presented in Table 1, where the DCAT model demon-
strates exceptional performance, confirming its robustness
and effectiveness. The results from this dataset further em-
phasize the significant contributions of the channel attention
and Transformer mechanisms within DCAT, as seen in the
marked improvements over the baselines and other SOTA
methods.

Through this comparative analysis, it is evident that the in-
tegration of deep learning with channel attention mechanisms
in a Transformer framework, as employed in DCAT, not only
enhances the model’s performance but also contributes signif-
icantly to its ability to accurately and reliably detect fatigue
states from EEG and EOG data.

Ablation Experiment
Modality
To address the current challenge that multimodality cannot
be effectively utilized, we propose an approach to feature
fusion using early fusion. In this study, we employed two
modalities, EEG and EOG, for fatigue detection. EEG reveals
changes in electrical signal activity in the cerebral cortex, es-
pecially within specific frequency bands. The EOG captures
variations in muscle activity in the frontal region, particularly
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Table 3: Ablation Study of the DCA and Transformer
DCADCADCA TransformerTransformerTransformer DatasetDatasetDataset RMSERMSERMSE
✓ SEED-VIG 0.0312

✓ SEED-VIG 0.0231
✓ ✓ SEED-VIG 0.01800.01800.0180
✓ SADT 0.1390

✓ SADT 0.1348
✓ ✓ SADT 0.12800.12800.1280

blinking and saccades, which are closely related to fatigue.
We performed unimodal and multimodal tests on the SEED-
VIG dataset, and the results are shown in Table 2. Accord-
ing to Table 2, multimodal features are superior to unimodal
features for fatigue detection. The results demonstrated that
there was a certain amount of complementary information
between the EEG and EOG multimodality and that the in-
formation could be learned and utilized by the model. By
combining the features from both modalities, we obtained a
more comprehensive fatigue state indicator. Consistent with
the findings of previous researchers, our multimodal fatigue
detection approach yielded promising results.

Module
In previous studies, local features have often been focused on
in multimodal information at the expense of global features.
To solve this problem, we propose DCA and Transformer
modules to extract local and global features, respectively. In
order to validate the effectiveness of our proposed DCA and
Transformer modules, we conducted ablation experiments on
both. The results are presented in Table 3. The results outline
the impact of these modules on different datasets in terms of
the RMSE.

Table 3 shows that the individual applications of the ECA
module and the Transformer module significantly improved
the RMSE for both the SEED-VIG and SADT datasets.
Specifically, for the SEED-VIG dataset, using the ECA mod-
ule alone resulted in an RMSE of 0.0312, while employing
the Transformer module alone further reduced the RMSE by
0.0231. Notably, the combination of both the ECA and Trans-
former modules yielded the best performance with the lowest
RMSE of 0.0180. The situation is similar for on SADT. These
results clearly indicate that while both the ECA and Trans-
former modules independently contribute to performance im-
provements, their combined usage synergistically enhances
the model’s accuracy, as evidenced by the lowest RMSE val-
ues obtained in both datasets.

To further demonstrate the functionality of each module,
we used the uniform manifold approximation and projec-
tion (UMAP) method to visualize the process of feature ex-
traction and the results of which are shown int Figure 3.
EEG+EOG represents the original data after the input repre-
sentation layer, EEG+EOG D represents the feature after the
DCA layer, and EEG+EOG T represents the feature after the

Transformer layer. Figure 3 shows that points with the same
characteristics converge as the model depth increases. The
results further validate the role of both the ECA and Trans-
former modules in feature extraction.

Figure 3: UMAP was used to visualize the role of feature
extraction for various types of modules.

By focusing on PSD and DE features from EEG and EOG
signals, the ECA has enhanced our understanding of brain
and eye activities. Its adaptive channel recalibration effec-
tively captures the dynamic nature of these signals. The ECA
uses a one-dimensional convolution approach, maintaining
the richness of the original features while avoiding the com-
plexity observed in traditional attention mechanisms. The
Transformer encoder outperforms the other methods, benefit-
ing from its parallel computing capability and direct model-
ing of the entire input. Furthermore, the design of multi-head
attention in the encoder layer further enhances the model’s
ability to capture different subspaces of features, thereby im-
proving its representational power. To summarize, both mod-
ules are integral parts of the model.

Conclusion
We designed a model called DCAT that can be used for fa-
tigue detection by effectively extracting local-global features
of EEG and EOG multimodal information, and the main mod-
ules included the ECA and Transformer modules. The ECA
module was utilized to extract channel-specific local features,
while the transformer was employed to capture global fea-
tures. The experimental results demonstrate that our model
achieves state-of-the-art performance, thereby validating the
complementary nature of EEG and EOG information. Fur-
thermore, we conducted ablation experiments to further ana-
lyze the roles of each module in our model.
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