UC Berkeley
SEMM Reports Series

Title
A new family of quadrilateral thick plate finite elements based on linked interpolation

Permalink
bttgs:ggescholarshiQ.orgéucgitem43tr319gg
Authors

Auricchio, Ferdinando
Taylor, Robert

Publication Date
1993-10-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3tr319qp
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SEMM-93/10

STRUCTURAL ENGINEERING,
MECHANICS AND MATERIALS

A NEW FAMILY OF QUADRILATERAL
THICK PLATE FINITE ELEMENTS
BASED ON LINKED INTERPOLATION

by
FERDINANDO AURICCHIO

ROBERT L. TAYLOR

October 1993

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



A NEW FAMILY OF QUADRILATERAL
THICK PLATE FINITE ELEMENTS
BASED ON LINKED INTERPOLATION

F.Auricchio R.L.Taylor

Department of Civil Engineering
University of California at Berkeley, Berkeley, CA 94720 USA

Abstract

We present a new family of quadrilateral finite elements developed
within the framework of a shear deformable plate theory. All the
elements take advantages of the so-called linked interpolation, i.e. an
higher order interpolation for the transverse displacement is obtained
using the discrete parameters of the rotational field. Based on an
extensive set of mixed patch tests, a careful study of the element
behaviors is performed. Moreover, the results for a large group of
standard numerical examples are presented, together with the results
from three other elements available in the literature. All the elements
show proper rank, good interpolating capacity and no locking effects
in the limiting case of thin plate.

1 INTRODUCTION

In the development of a planar beam element within the context of Euler-
Bernoulli theory, it has always been considered natural to introduce three
degrees of freedom at each node ( the two in-plane displacements and one
rotation) and include a contribution of the nodal rotations to the transverse
displacement, i.e. to link the transverse displacement field to the discrete



Plate FE’s based on linked interpolation F.Auricchio and R.L.Taylor 2

nodal rotations. This is usually done to guarantee an higher order polyno-
mial in the transverse displacement than in the rotations, as required since
the latter are just the derivative of the former. However the use of linked
interpolation leads to even more important properties in the case of shear
deformable beams, as presented in References {25, 26] and discussed in Sec-
tion 4 of this work: it in fact allows for constant shear strain, hence avoiding
locking effects in the limiting thin case.

Despite such interesting conclusion derived within a one-dimensional beam
theory, the corresponding two-dimensional analogue has never been explored
too deeply. Examples of two dimensional theories in which the displacement
field is linked to the nodal rotational parameters can be found in literature for
the case of plane elasticity analysis [1], while examples for bending problems
can be found in the work of Auricchio and Taylor [2], Taylor and Auricchio
[27], Zienkiewicz et al. [36], Xu [31, 32], Xu et al. [33].

The paper is organized as follow. We start with a brief overview of the
linear elastic shear deformable plate theory adopted, with an appropriate
variational framework. After that, we introduce a mixed finite element ap-
proximation together with the requirements for the convergence of the for-
mulation; we also discuss a complete series of mixed patch tests which allow
to assess the quality of the interpolation scheme. We then describe a new
family of finite elements developed within the plate theory previously ad-
dressed and present the results both for the patch tests and a large set of
standard numerical tests. In order to make appropriate evaluation of the
performance of the elements proposed, we also report the results for other
three finite elements available in literature.

2 A linear thick plate theory

Early developments of a thick plate theory, which include both bending de-
formation and the primary effects of transverse shear deformation, are com-
monly attributed to Mindlin [14] and Reissner [20]. The theory presented
here is a simplification of those originally proposed and due to its simplicity it
can be thought either as a degeneration from the three-dimensional elasticity
“theory or as an example of the the so-called direct approach [8, 15, 21, 22].
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(Geometry and load

With the term plate we refer to a flat thin body, occupying the domain:

n={<x,y,z>e7e3 | ze [—-;f,+-’2f},(x,y>eAcR2}

where the plane z = 0 coincides with the mid-surface of the undeformed plate
and the transverse dimension, or thickness h, is small compared to the other
two dimensions. Furthermore, the loading is restricted to be applied only in
the direction normal to the mid-surface.

Kinematics

Limiting the discussion to the realm of infinitesimal kinematics, we assume
that:

u(z,y,2) = 20,(z,y)
(2.1) v(z,y,2) = — z0.(z,y)
w(z,y,2) = w(z,y)

where u, v and w are the displacements along the z, y and z axes, respec-
tively, and 8, and 6, are the rotations of the transverse line elements about
the r and y axes. Accordingly, a straight line element, normal to the plate
mid-surface in the undeformed configuration, remains straight, but not nec-
essarily normal to the deformed mid-surface, allowing for transverse shear
deformations. As a direct consequence of equation 2.1, we may introduce a
(generalized) displacement vector u with components:

o w
o
0y
The basic kinematic ingredients are the curvature, K, and the shear strain,

T, defined as:

Rex ay,x
K = Ryy ¢ = ~0yy
’{xy 63/;3/ 0-”4‘ ' &
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which can be collected in a (generalized) strain E:

()

Both the curvature and the shear strain can be expressed in terms of w and
@ as follow: ‘

K=L8 , I=l[ed+Vu]

where:
- ; 5
P oz %,
_|1_9 _| 01 _ ) oz
L= By 0 , e= [ 1 0 ] , V= i
_9 9 dy
L Oz Oy |

with L and V differential operators and e the so-called alternating matrix. As
a consequence of the kinematic assumptions, we may distinguish between in-
plane bending strains (s, €,, Vzy) and transverse shear strains (s, 7). In
the thin plate theory the transverse shear strains are assumed to be zero, thus
providing constraint equations which allow to express 8, and 8, as derivatives
of the transverse displacement w. Conversely, in the thick plate theory we
allow for non-zero shear deformations.

Stresses and stress resultants

Due to the predominant behavior associated with the two in-plane dimen-
sions, the normal stress in the z direction is negligible compared to the other
stresses; hence, we may assume:

o, =10

Although this position is inconsistent with a general three-dimensional theory
and is not present in the work by Reissner (where o, varies through the
thickness), we may also adopt it since it does not influence the development
of a viable finite element formulation.
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Consistent with the strain behavior, we may distinguish between in-
plane stresses (05, 0y, Tey) and transverse shears (7;.,7yz). Their integration
through the thickness defines the stress resultants per unit length:

h

h h

2 Z z
M, = /  oyxdz , M, = /  oyedz , My = / ' Tey2dz
» b n

F

h

B A
Sy = /_2,1 Te2dz 5, Sy =/* Tyzd2

.3
2

2

For notational convenience, we collect the resultants in a (generalized) stress

3
M
-{%)
where: M
M=< M, , S= { g” }
M, =Y

Constitutive relation

Assuming the material to be elastic, it is possible to derive a corresponding
elastic stress-strain constitutive relation for the plate, in the form:

¥ =DE

In particular, for the case of isotropic homogeneous plate, the previous rela-
tion can be specialized as:

(e=[5 8 {5}

where:
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with E being the Young ’s modulus, v the Poisson ratio, G the shear modulus.
Finally, k is a factor, introduced to correct the inconsistency between the
transverse shear strain, which is constant throughout the thickness, and the
shear stress, which is not constant; k£ depends on the plate properties and is
often set equal to 5/6 for isotropic homogeneous plates.

3 VARIATIONAL STRUCTURE

As discussed in Reference [2], the elastic plate field equations can be derived
from a functional II, based on the potential energy principle for the bending
and on the Hu-Washizu principle for the transverse shear energy:

(w,8,T,S) = % /A [K” () D:K ()] dA + -;— /A [r™D,r| dA
- /A [ST (T — Vuw — e6)] dA + Lo,

where II.,; describes the loads and the boundary effects. Taking the variation
of II with respect to I, we get:

(3.1) /AarT (S — Dsf) dA =0

Depending on the desired approach to the problem, this equation can be
satisfied in a strong or in a weak sense. Since we limit our discussion only
to the case of linear elastic plate, we may choose to satisfy equation 3.1 in a
strong (pointwise) sense; accordingly, we get:

S=D,I' or T'=D;'S
Substitution of this relation into II returns a new functional:
1
ILi(,6,5) = 5 /A K7 (6) DK (6)] dA

1
2J4

where we use the fact that D;7 = D!, If we now take the variation with
‘respect to S, we get:

- /. [65"D;s]da+ [ [T (Vu+e8)] dA =0

[STDS_IS] dA + /:4 [ST (Vw + ee)] dA + ey
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and a strong satisfaction of this equation returns the potential energy func-
tional, leading to a classical displacement formulation. Since it is well from
the literature that a displacement formulation is ill-conditioned in the limit-
ing case of thin plate (generating the so called locking), we turn to a weak
satisfaction of the functional II;.

4 A BEAMELEMENT WITH TRANSVERSE
SHEAR STRAINS

In the present section, following References [25, 26], we illustrate some of
the interesting properties, that can be obtained through the use of linked
interpolation. To make our point, we consider the simple case of a shear
deformable beam. A displacement field for bending may be defined as:

u=20(z) , w=uw(x)

where z defines the axis of the beam, z is the coordinate in the transverse
direction, u is the displacement in the z direction, @ is a rotation about the y
axis, and w is the transverse displacement. The curvature and the transverse
shear strain are given by:

kK = 0,

vy = 04w,

Linear isoparametric interpolation may be used for describing the element
geometry:

x = NYOX + N2 (&R

where x = {z,y} and x* = {z%, y'}7 are the nodal coordinates and the shape
functions are defined as:

1 1
NE =518 . N =11+
‘We can do a similar choice for the rotation field:

6= N'(£)0" + N*(¢)6?
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where 6! and 2 indicates the nodal rotations. For the transverse displace-
ment we want an higher order expression such to guarantee consistency be-
tween the transverse displacement and the rotations in the limiting case of
thin beam, when the latter are just the derivative of the former; so we may
add a hierarchical quadratic term to the linear field:

w= NY(€)d' + N ()02 + N*(¢) A

where the @' are the nodal transverse displacements. The shape function
associated with the hierarchical degree of freedom is given by:

N(¢)=(1-¢%)
Accordingly, the curvature and the shear strain are:

_1 H2 Al
(4.1) =070

___1_ a2 Al £‘1 42 P Y _i A}
(4.2) 'y-—L(w w)+2(0 +6%)+ ¢ 2(9 6") LAw

where [ indicates the length of the bar. Note that the curvature is constant,
whereas the shear strain is linear in €.
The equilibrium of the beam requires:

dS
8‘;‘*‘(1 0
dM
w7 =0

where S is the transverse shear force resultant, M is the bending moment,
and q is the transverse loading intensity per unit length. Thus, static equi-
librium of a beam requires the shear to be related to the derivative of the
moment. This is for example the case of a cantilever beam loaded by a con-
centrated end force, for which the shear is constant, whereas the bending
moment varies linearly with length. Accordingly, for constant cross-section,
the strains given by 4.1 and 4.2 lead to an inconsistency with the requirements
~of static equilibrium and using the above interpolation fields the solution will
always be approximate, i.e. the presented formulation does not allow for con-
stant shear strain in the presence of bending behavior. This phenomenon is
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reflected in a finite element analysis by locking of the element in the case of
thin beams.

However, it is interesting to notice that the problem so far described can
be by-passed with an appropriate choice of the hierarchical parameter A.
Requiring the vanishing of the term in brackets in equation 4.2 yields a linked
interpolation for the transverse displacement:

(43) = NYE)D* + N ()a? + TN ~ i)
Using this new discrete field, the shear strain is now constant:
1 - N
7= 00— @) 4 50 +07)

and it can be shown that the corresponding stiffness matrix is identical to the
one obtainable using a linear transverse displacement and a reduced 1-point
integration.

The results given above are useful in constructing the displacement field
interpolations for bending of plates in which shear strains are to be retained
(e.g., see [28]). It is also very interesting to note that the use of a linked
interpolation helps in terms of satisfaction of the mixed patch test (discussed
in Section 6), which requires to have as few parameter as possible in the
transverse displacement interpolation. This may be achieved either by us-
ing an inconsistent interpolation (e.g., the Heterosis element of Hughes and
Cohen [10]) or by interpolations which use parameters of the other fields as
enumerated above.

5 Mixed finite element solution

In the previous sections the equations governing a simple thick plate theory
together with a variational formulation have been presented. We now discuss
a solution strategy within the class of mixed finite elements.

Following a mired approach, we approximate the fields w, 8 and S with
independent interpolation schemes, in the following form:

w = NyWw+ N0
(5.1) 0 = Ny
S = N.S
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where:

~

w, 6,8
are the degrees of freedom of the discretized system and:
N w o N wh N 6 > Ns

are sets of shape functions. Again note that the rotational field is used to
increase the polynomial order of the displacement field and this is explicitly
stated by the N, shape functions. As discussed in the introduction and
explained in details for the simpler case of the beam in the previous section,
we have basically three reasons for using linked interpolation:

e with an appropriate choice of the N4 shape functions we are able to
obtain a constant shear strain along each side of the finite element,

e we guarantee a higher order interpolation for the transverse displace-
ment than for the rotational field, as is required for the thin plate
situation, when the latter are simply the derivative of the former,

e we have a transverse displacement interpolation with as few nodal pa-
rameter as possible, which is required for a satisfaction of the mixed
patch test, as discussed in the next section.

Within the framework of a thick plate theory, the same technique has been
already used by the authors in References [2, 27], by Zienkiewicz et al. in
Reference [36], by Xu in References [31, 32] and by Xu et al. in Reference
[33].

After we introduce the interpolation schemes into II;, the minimization
of the functional leads to the usual algebraic system:

0 0 A W £,
(5.2) 0 K, B 8 Y={ 1
AT BT _H S 0
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where:
T
A = /A (VN,)T N,dA
_ T T
- /A (VNuo)T N,dA + /A (eNy)T N,dA
K, = /A (LNy)T Dy (LN,) dA

H = /A NTDIIN,dA

and f,, and f; are the load and the boundary terms.

Choosing the interpolating function for the shear S to be linearly indepen-
dent within each element, the shear parameters S may be statically condense
at the element level, resulting in a displacement-like formulation only in the
W and @ unknowns. Accordingly, the last row of the previous system of linear
algebraic equations can be solved in terms of S:

§=H'ATw + H BT

and substitute back in the other two rows of the system, giving:
AH'AT  AH'BY W) _ [ f,
BH'AT K,+BH BT || 6 | | fs
6 Requirements for convergence of a mixed
formulation

Convergence is the property by which the approximate solution obtained
from a discrete scheme such as a finite element model converges to the ex-
act solution for successive mesh refinements. Consistency and stability are
sufficient requirements to imply convergence: consistency ensures that the
discrete model reproduces the exact continuum model for the limiting case
of infinite number of degrees of freedom, while stability ensures that the
solution of the discrete system is unique and not ill-conditioned.

Within a standard displacement finite element approach, the stability
can be tested by checking that the stiffness matrix has the appropriate rank,
while consistency is verified by the patch test. The original patch test was
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introduced by Irons [6, 12] based on a physical reasoning and establish the
capacity of the discrete model to exactly reproduce constant strain states for
simple patches of elements. Thereafter, other works have elaborated on the
meaning and the importance of the test [13, 19, 24, 29, 30].

The convergence of a mixed finite element scheme is however more com-
plex to verify and the mathematical conditions to be satisfied is embedded in
the work of Babuska (3, 4] and Brezzi [7], which are based on quite involving
mathematical arguments. Willing to remain in a more physical framework,
an extended version of the patch test viable for mixed formulations has been
presented and discussed in literature [16, 17, 18]. Clearly, the results obtain-
able from this type of analysis are not comparable in term of completeness
and robustness with a rigorous convergence analysis, but still the authors
retain that a carefully designed patch test can be considered as a valuable
approach to investigate the quality of the interpolation scheme.

In what follows, we describe in some details a set of patch tests of a mixed
finite element formulation for the thick plate theory.

e Constant strain. This is the original patch test and consist in check-
ing that the discrete formulation is able to reproduce exactly all the
constant strain states of the quantities involved in the functional of the
specific problem. The satisfaction of this test guarantees consistency
of the formulation and at the same time allows for a check of the com-
puter code. Accordingly, for a thick plate problem, the following states
must be reproduced:

— Constant bending curvature. The plate is clamped along one edge
and subjected to constant bending moment along the opposite
edge; all the rotations in the direction orthogonal to the constant
bending direction are kept fixed, to get a simple curvature prob-
lem.

— Constant shear strain. The plate is clamped along one edge and
subjected to constant shear force along the opposite edge; all the
rotations are fixed in order to prevent bending.

— Constant twisting strain. The plate is simply supported along two
edges and subject to distributed constant edge twisting moments
along the other two edges.
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The test should be performed both on single element meshes and simple
patches, with regular and non-regular element geometry, as shown in
Figures 1-2. To investigate the locking in the limiting case of thin
plates, it is important to run all the described test both for the cases of
a thick and a thin plate. Moreover, between the thick and the thin case
it is appropriate to keep the bending stiffness constant for the constant
curvature test and the shear stiffness constant for the constant shear
strain test !, such that both the thin and the thick cases should return
the same numerical responses.

e Eigen-analysis of specific modes. In this test, we perform the eigen-
analysis of simple meshes which are allowed only specific deformation
paths; accordingly we can study separately the bending, the shear and
the twist eigen-modes. In particular, we suggest as appropriate to

~consider all the meshes presented in Figures 1-2, for both the thin
and the thick case, with boundary conditions specified as on the three
constant strain test.

This analysis allows to evaluate how many modes are available to rep-
resent the bending and the shear response. To check and stress any
tendency of the element to lock as well as ill-behaviors of the formu-
lation in the limiting thin plate case, the bending stiffness should be
kept constant for all the eigen-analysis.

e Counts of the degrees of freedom. This part of the mixed patch
test consists in checking some simple algebraic inequalities involving the
number of unknowns. For the particular formulation here discussed, the
requirements are:

(61) g + Ty Z ng 5, TN Z Ny

where 7., ng and n, stand for the number of degrees-of-freedom of W,
6 and S respectively. This test represent a necessary condition for the
stability of the discrete problem, since they are necessary conditions
for the solvability of the system 5.2. ‘

These counting relations should be satisfied for any generic finite el-
ement mesh and usually are checked for different patches (including

ITo keep the bending stiffness constant the Young’s modulus must be scaled propor-
tional to 1/t3, while for keeping the shear stiffness constant it must be scaled by 1 /t.
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7

both single elements and meshes with several elements, either with a
maximum or a minimum number of essential boundary conditions).

Eigen-analysis of the stiffness matrix. The eigenvalues of the
stiffness matrix are computed and the presence of zero eigenvalues in
excess of the number of rigid body modes is assessed, since it indicates
rank-deficiency (or zero energy modes). Again the analysis is performed
for the meshes shown in Figures 1-2, for the thick and thin case.

The importance of this test is related to the fact that solving more
general problems using rank-deficient elements can lead to instability
in the solution and often results in non converging solutions (such as
oscillations fluctuating around the exact solution) or occasionally in a
singular global stiffness matrix. The presence of extra zero eigenvalues
at a multi-element level must be considered as an index of possible ill-
conditioned behavior and non-robustness of the formulation. If such
singularity exists only for a single element, the issue is not so clear but
still remain non desirable.

FINITE ELEMENT APPROXIMATION

We now present a new family of quadrilateral finite elements, developed
within the thick plate theory discussed in Section 2.

7.1 A new family of thick plate finite elements

All the elements here described are of iso-parametric type, with four nodes.
We use the usual bi-linear shape functions to map the parent domain in
natural coordinates (£,7) to its real domain; accordingly the quadrilateral
region occupied by each element may be expressed by

4
X = ZN‘xi

t=1




Plate FE’s based on linked interpolation F.Auricchio and R.L.Taylor 15

where x = {z,y}7 and x* = {z¢,y'}? are the nodal coordinates %; N* are the
bi-linear shape function:

Sl : :
Nt = 1 (1 +€’£) (1 + 77‘77)
following for example the definition of Reference [9].

The elements have three external (global) displacement degrees-of-freedom
at each vertex ¢: the transverse displacement w; and the two components
of the rotation along the z-y coordinate axes, #° and 9;, respectively. In
addition, to improve the interpolation, they might have internal internal ro-
tational degrees-of-freedom, associated with bubble functions.

The transverse displacement interpolation is taken as a simple linear func-
tion, enhanced by quadratic terms expressed in terms of the normal compo-
nents of the nodal rotations for each side of the element:

4 4
w=Y N -3 Ni, L' (81 - 6)
i=1 i=1
where 67{1 and HA; are the components of the rotations of nodes 7 and 7 in the
direction normal to the i-j side, while L' is the length of the side between
nodes ¢ and j (Figure 3). The N!, are appropriate shape functions of the
form:

N, (1-€) (1)
Nod Mo l_ L) a+ga-»)
I N (TI6) (- ()
N, (1-& 1=

The interpolation for the rotational fields is what distinguishes the three
elements here presented. All the elements use at least a linear field, enriched
progressively with internal modes associated with bubble functions; the dif-
ferent interpolation schemes adopted are concisely presented in the following
table:

Q4L0 = =31, N"?. .
Q41 = 6=%%, N'O + MAb
Q43 = 6=Y% N§ +M [A@l N nA(f’J

2The indices ¢ and j always range in {1, 2, 3,4}.
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with;:

Aq 6t Al Al ~2 A2 ~3 A3

8 = A7 = AT = Y Af = e
Lo} a0 ={ 0] ar= {35 ] = {25

where 8' (¢t =1,..,4) are the nodal rotations, A@', A§% A are the internal
rotational degrees of freedom, M = (1—£%)(1—9?) is a bubble function. The
last number in the element name indicates the number of bubble modes in
the rotational field.

Finally, the shear interpolation is equal for all the three elements. In
natural coordinates we choose:

Se | _ | St+nS?
Sy [T ST4£5
where §? (j = 1,..,4) are parameter local to each element. Accordingly to

the transformation discussed in Reference [23], the interpolation field in the
mapped element may be expressed as:

Sl

S — Sg _ |10 Fan FR¢ 52
CUS ) [01 Fhn Fi¢ 5°

5'4

where:
: Oz; Oz;

F = ?9?|E=n=o , FS= gn*ls:n:o

The integration for the stiffness computation are performed numerically
and we use respectively two, three and four integration points in each direc-
tion, respectively for the Q4L0, Q4L1, Q4L3 elements.

For the results reported in the next section, the finite element load is
consistent with the transverse displacement interpolation.

8 NUMERICAL EXAMPLES

The performance of the family of finite elements previously discussed has
been checked on all the patch tests discussed in Section 6 and on several
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standard numerical tests. The elements have been implemented into the
Finite Element Analysis Program (FEAP) [34, 35] and this environment has
been used for all the computations.

The solutions have always been compared with those obtained from other
well performing elements available in literature. In particular we choose the
T3L element [27] and the Q4L element [36], which are also based on a linked
interpolation concept, the former being a triangular element; moreover, we
report the results from the T1 element, described in References [9] and [11].
When available, analytical or series solutions are also reported.

The test problems are organized in the following order:

e Patch test: stability assessment
e Patch test: consisténcy assessment
e Square plate

Circular plate

e Skew cantilever plate
e Simply supported skew plate

Only uniform loading is considered, since the transverse displacement for
a concentrated load is infinite for a theory which includes the effects of shear
deformation.

8.1 Patch test: stability assessment

The algebraic requirements of equation 6.1 have been checked on different
meshes (including both single elements and meshes with several elements,
either with a maximum or a minimum number of essential boundary condi-
tions). For the count purpose we assume that one shear parameter is always
shared between the side of two adjacent elements.

All the elements pass this test except Q4L0 in the 2 x 2 mesh with all the
boundary fixed.

Since the constraint count is just a necessary condition for the stability
of the formulation, an eigen-analysis on the stiffness matrix for patches of
one or more elements (Figures 1-2) is performed, as described in section 6.
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We consider a thick and a thin case, L/h = 10 and L/h = 1000 respectively,
with z = 2. The presence of the correct number of zero eigen-values has been
checked. All the elements proposed in the present work pass this test (Tables
1-4), while we recall that element Q4L does not, as described in Reference
[36].

Recalling that we keep the bending stiffness constant while reducing the
thickness (going from the thick plate to the thin one), it is extremely inter-
esting to observe the number of growing eigenvalues, which are clearly those
associated with the shear part of the stiffness: note that Q4L0, Q4L1, Q4L3
have respectively four, two and no growing eigenvalues. To really test the
-elements we consider also an extremely thin plate, L /h = 100000 (Table 5-6),
and you may note that while the eigen-values for the regular mesh show no
ill-condition, for the distorted case Q4L3 seems to lose the rigid body motion
eigen-values and this is due to round-off during the static condensation of
the internal parameters (rotational degrees of freedom associate with bubble
modes and shear parameters).

8.2 Patch test: consistency assessment

To assess consistency the capacity of exactly reproducing constant strain
states has been tested again on the meshes of Figures 1 and 2, for a thick
and a thin case (L/h =10 and L/h = 1000). To highlight pathologies in the
limiting case of thin plates, the bending stiffness is kept constant during the
constant curvature test, while the shear stiffness is kept constant during the
constant shear strain test.

All the elements proposed in Section 6 pass the above consistency tests.
Note however that T1 does not pass the test perfectly for the case of non-
regular mesh; to show this, in Table 7 we report the results for the constant
shear strain test with the ratio between the displacements of nodes b and ¢
(Figure 1). The same problem can be retrieved if the non-regular mesh of
Figure 2 is used.

We also perform the eigen-analysis of the meshes which may be vibrate
only with specific modes; the idea is to study separately the bending, the
shear and the twisted modes. In Table 8 we reported the eigen-values for the
case of the shear modes only, where the bending stiffness is kept constant
between the thin and the thick problems.
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8.3 Square plate

A square plate is modeled using meshes of the type presented in Figure 4.
Two simply supported boundary conditions are considered: soft and hard,
discussed in References [9] and [34]. The results for a clamped plate are also
presented.

The side length of the plate is L = 1 and both a thick (L/h =10,k = 0.1)
and a thin plate (L/h = 1000,~ = 0.001) are considered. The material

properties are:

E=1092 , »=03

The numerical results are presented in Tables 9-14. The series solution for
the thin plate applies to both the case of soft and hard support; the series
solution for the thick plate (accounting for the shear deformation) is reported
only for the case of hard boundary condition, since a solution for a thick soft
simply supported boundary condition is more difficult to compute as the
twist moments must vanish at each edge.

8.4 Circular plate

Also for the circular geometry (Figure 5) ® two values of the thickness (A = 0.1
and A = 1) have been considered to simulate a thin and a thick plate. The
radius R is set equal to 5.0, the load is ¢ = 1.0 and the material properties
are:

E=1092 , v=03

The numerical results are presented in Tables 15-18, together with an ana-
lytical solution, which can be computed in closed form, both for the case of
simply supported and clamped boundaries.

8.5 Skew cantilever plates

A skew cantilever plate clamped along the boundary 3-4 (Figure 6) is ana-
lyzed using three different values of the skew angle, 3, between 20° and 60°;
the 8x8 mesh with S= 40° is represented in Figure 7. The material properties

3The mesh is generated using three blocks of elements and the central nodes has coor-
dinate (2.1R, 2.1R), where R is the radius of the plate.
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used are:
E=10.92 , v=0.3

with thickness h = 4, side length L = 100 and unit uniform load. The
solution is expressed in term of displacement at points 1 and 2 (Figure 6)
and is reported in Tables 19-21.

8.6 Simply supported skew plate

We consider a highly skewed plate (8 = 60°), simply supported along all
boundaries. The plate has side length 100, the load is 1.0 and two different
thickness are considered. The material properties are:

E=1092 , v=03

The displacement and the two principal bending moments at the center of
the plate are reported in Tables 22-23.

In addition, in Table 24 we perform a comparison of the element perfor-
mances in terms of energy, as suggested in Reference [5]. The properties used
are:

E=30E7T , v=03
with thickness ¢t = 0.01, side length I = 1 and unit uniform load.

CLOSURE

In the present paper we present a new family of quadrilateral finite elements
developed within the framework of a shear deformable plate theory. All the
elements take advantages of the so-called linked interpolation, i.e. an explicit
dependence of the transverse displacement on the discrete rotational field.
The reasons which make convenient the use of this type of interpolation can
be summarized as follow:

e with an appropriate choice of the N4 shape functions we are able to
obtain a constant shear strain along each side of the finite element,

® we guarantee a higher order interpolation for the transverse displace-
ment than for the rotational field, as is required for the thin plate
situation, when the latter are simply the derivative of the former,




Plate FE’s based on linked interpolation F.Auricchio and R.L.Taylor 21

e we have a transverse displacement interpolation with as few nodal pa-
rameter as possible, which is required for a satisfaction of the mixed
patch test.

We performed a careful study of the element behaviors, based on an extensive
set of mixed patch test. Moreover, the results for a wide group of standard
numerical examples are presented, together with the results from three other
elements available in literature. All the elements show proper rank, good
interpolating capacity and no locking effects in the limiting case of thin plate.
In particular, one of the element discussed, Q4L1, seems to be the most
convenient in terms of computational costs versus performances.
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Q4L0 | 1.0077TE+02 | 1.0077E+02 | 3.2149E+01 | 2.9167E+01 | 1.3000E+00 | 7.0000E-01
4.0639E-01 | 4.0639E-01 | 5.0805E-02 | -4.9420E-15 | 3.8067E-15 | -2.2559E-15
Q4L1 | 3.2149E+01 | 2.9167E+01 | 5.8593E+00 | 5.8593E+00 | 1.3000E+00 | 7.0000E-01
2.9671E-01 | 2.9671E-01 | 5.0805E-02 | 8.2070E-16 | -4.3691E-16 | 2.5602E-16
Q4L3 | 5.8593E+00 | 5.8593E+00 | 4.6029E+00 | 2.6200E4-00 | 1.3000E+400 | 7.0000E-01
2.9671E-01 | 2.9671E-01 | 4.4467E-02 | 1.0747E-15 | 4.9788E-16 | -1.5759E-16
T1 9.1000E+01 | 9.1000E+01 | 3.2149E+401 | 2.9167E401 | 1.3000E+00 | 7.0000E-01
4.5000E-01 | 4.5000E-01 | 5.0805E-02 | 8.2750E-15 | -5.3812E-15 | 3.3604E-16

Table 1: Eigenvalues thick regular mesh (L/t = 10)
Q4L0 [ 1.1344E+02 | 1.0885E+02 | 3.4813E401 | 3.2055E+01 | 1.3317E+00 | 6.9367E-01
4.3973E-01 | 3.7457E-01 | 4.6793E-02 | 9.1290E-15 | 1.3183E-15 | -3.8474E-16
Q4L1 | 3.4884E401 | 3.2274E4-01 | 6.4926E+00 | 5.4018E400 | 1.3315E+00 | 6.9107E-01
3.1996E-01 | 2.7546E-01 | 4.6754E-02 | 8.5528E-16 | -5.7383E-16 | 4.3584E-16
Q4L3 | 6.5052E+00 | 5.4639E+00 | 4.6317TE+00 | 2.6741E+00 | 1.3302E+00 | 6.8876E-01
3.1919E-01 | 2.7517E-01 | 4.0814E-02 | 7.8272E-16 | -6.5417E-16 | -4.3370E-16
T1 1.0118E+402 | 9.9528E+4-01 | 3.5361E+01 | 3.2498E+01 | 1.3282E+400 | 6.8962E-01
4.8377E-01 | 4.2317E-01 | 4.6886E-02 | 3.4031E-15 | 2.4513E-15 | -2.0133E-15

Table 2: Eigenvalues thick irregular mesh (L/t = 10)
QAL0 | 1.0072E+06 | 1.0079E+06 | 3.1500E+05 | 2.9167E+05 | 1.3000E+00 | 7.0000E_01
4.0656E-01 | 4.0656E-01 | 5.1852E-02 | 8.9187E-11 | -1.7118E~-11 | -2.6383E-12
Q4L1 | 3.1500E+05 | 2.9167E+05 | 6.1808E+00 | 6.1808E+00 | 1.3000E+00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 5.1852E-02 | -1.5015E-11 | -4.0098E-12 | 1.7169E-12
Q4L3 | 6.1808E+00 | 6.1808E4-00 | 5.1675E+00 | 2.8785E+-00 | 1.3000E+400 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 4.5282E-02 | 2.7542E-12 | -1.9937TE-12 | -1.2406E-12
T1 9.1000E+05 | 9.1000E+05 | 3.1500E+05 | 2.9167E+05 | 1.3000E400 | 7.0000E-01
4.5000E-01 | 4.5000E-01 | 5.1852E-02 | -4.4830E-11 | -2.2291E-11 | 3.7136E-12

Table 3: Eigenvalues thin regular mesh (L/t = 1000)
QAL0 | 1.13305+06 | 1.0881E+06 | 3.4174E+05 | 3.2031E405 | 1.3319E+00 | 6.9382E-01
4.3993E-01 | 3.7473E-01 | 4.7686E-02 | -9.0690E-11 | 1.2309E-11 | 5.3036E-12
Q4L1 | 3.4234E+05 | 3.2224E+05 | 6.8437E+00 | 5.6614E+00 | 1.3317E+00 | 6.9123E-01
3.2015E-01 | 2.7562E-01 | 4.7645E-02 | -2.2938E-11 | 5.5739E-12 | -2.7524E-12
Q4L3 | 6.8572E400 | 5.7206E400 | 5.1477E+00 | 2.0142E400 | 1.3304E-+00 | 6.8002E-01
3.1938E-01 | 2.7534E-01 | 4.1503E-02 | 4.3076E-10 | -4.1579E-10 | 1.5338E-10
T1 | LOI17E+06 | 9.9527E+05 | 3.4712E+405 | 3.2484E+05 | 1.3284E+00 | 6.8970E-01
4.8383E-01 | 4.2318E-01 | 4.7761E-02 | 9.9054E-11 | 4.5190E-12 | 3.5108E-12

Table 4: Eigenvalues thin irregular mesh (L/t = 1000)
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Q4L0 | 1.0072E+10 | 1.0072E+10 | 3.1500E+09 | 2.9167E+09 | 1.3000E+00 | 7.0000E-01
4.0656E-01 | 4.0656E-01 | 5.1852E-02 | -9.6140E-07 | 2.7706E-07 | -7.3916E-08
Q4L1 | 3.1500E+09 | 2.9167E+09 | 6.1808E+00 | 6.1808E-+00 | 1.3000E+00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 5.1852E-02 | -1.1430E-07 | 4.9166E-08 | 1.1797E-08
Q4L3 | 6.1808E+00 | 6.1808E+00 | 5.1676E+00 | 2.8786E+00 | 1.3000E+00 | 7.0000E-01
2.9690E-01 | 2.9690E-01 | 4.5282E-02 | 8.3655E-08 | 4.4954E-08 | 8.8698E-09
T1 | 9.1000E+09 | 9.1000E+09 | 3.1500E+09 | 2.9167E+09 | 1.3000E+00 | 7.0000E-01
4.5000E-01 | 4.5000E-01 | 5.1852E-02 | -1.4452E-07 | 1.4444F-07 | 1.1585E-07

Table 5: Eigenvalues extremely-thin regular mesh (L/¢t = 100000)

is kept constant (i.e D = 10.92/t)

Q4L0 | 1.1339E+10 | 1.0881E+10 | 3.4173E+09 | 3.2031E+09 | 1.3319E+00 | 6.9382E-01
4.3993E-01 | 3.7473E-01 | 4.7686E-02 | -7.1913E-08 | -5.9541E-08 | 4.9550E-08
Q4L1 | 3.4234E+409 | 3.2224E+09 | 6.8437TE+00 | 5.6615E+00 | 1.3317E+00 | 6.9123E-01
3.2015E-01 | 2.7562E-01 | 4.7645E-02 | -2.3181E-07 | 4.0241E-08 | 7.0141E-10
Q4L3 | 8.2814E+00 | 7.0049E+00 | 3.7847E+00 | 1.7357E+00 | 1.2235E+00 | -1.1484E+00
7.2832E-01 | 4.2503E-01 | -9.8894E-02 | 7.2956E-02 | -2.5870E-02 | 7.1905E-03
T1 1.0117E+10 | 9.9527E409 | 3.4T12E+09 | 3.2484E+09 | 1.3284E+00 | 6.8979E-01
4.8383E-01 | 4.2318E-01 | 4.7761E-02 | 6.3630E-07 | -1.4301E-07 | -7.5890E-08
Table 6: Eigenvalues extremely-thin irregular mesh (L/t = 100000)
Square Non-square
wy W, wp w, wy /1w,
Q4L0 | thin | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
thick | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
Q4L1 | thin | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
thick | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
Q4L3 | thin | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
thick | 2.85714E-01 2.85714E-01 | 2.85714E-01 3.42857E-01 1.200000
T1 thin | 2.85714E-01 2.85714E-01 | 2.76524E-01 3.53237E-01 1.277418
thick | 2.85714E-01 2.85714E-01 | 2.76524E-01 3.53237E-01 1.277418
- Table 7: Patch test for constant shear: single element test. The shear stiffness
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Square

Non-square

Q4L

thin
thick

0.17500100D+-05
0.18500000D+-01

0.29166767D+05
0.30166667D+01

0.15646963D+05
0.16646863D+01

0.3138
0.3238

7132D+05
7032D+01

Q4L1

thin
thick

0.19719946D+-00
0.19208532D+00

0.11666864D+05
0.13587520D+-01

0.39709610D+01
0.17373139D+00

0.1168
0.1368

9361D-+05
8255D401

Q4L3

thin
thick

0.19719946D+-00
0.19208532D+00

0.36433992D+00
0.33828310D+00

0.17568047D+00
0.17216654D+00

0.3626
0.3389

9779D+00
2319D-+00

T1

thin
thick

0.17500100D+05
0.18500000D+01

0.29166767D+-05
0.30166667D+01

0.15429836D+05
0.16429736D+01

0.3237
0.3337

6907D+-05
6807D+01

Table 8: Patch test for constant shear: single element eigen-analysis. The
bending stiffness is kept constant (i.e. D = 10.92/¢3)

Q4L0 Q4L1 Q4L3

qL* qL* qL* qL® qL* gL*

Mesh | w / (555) | M/ (g | Y/ () 1M/ (o) | Y/ G | M/ G
2x2 | 0.437475 151841 0.453375 151285 0.460162 4.54977
4x4 | 0.449288 4.91023 0.454985 4.92130 0.456143 4.93074
8x8 0.456865 5.03404 0.458668 5.04011 0.458810 5.04132
16x16 | 0.460264 5.07833 0.460760 5.08024 0.460771 5.08034
32x32| 0461316 5.09121 0.461444 5.09172 0.461444 5.00172
T3L 0.460839 5.09002 0.460839 5.00002 0.460839 5.09002

Q4L 0.461793 5.09626 0.461793 5.09626 0.461793 5.09626

T1 0.461267 5.90037 0.461267 5.90037 0.461267 5.90037

Table 9: Simply supported square plate L/h = 10, h = 0.1, soft boundary:
displacements and moments at the center.

Q4L0 Q41 QaL3

qL® qL* qL* gL* qL* gL*®

Mesh ' w /(70 | M/ (359 1Y/ GG | M/ Gag) | ¥/ Gap) M/ (3
2x2 0.367595 3.66614 0.410641 4.47850 0.422938 4.41903
4x4 0.371920 4.03808 0.407200 4.70696 0.412569 4.73452
8x8 0.404151 4.76176 0.406506 4.76741 0.409106 4.78732
16 x 16 0.406064 4.78309 0.406395 4.78330 0.407642 4.79448
32 x 32 0.406221 4.78744 0.406397 4.78840 0.406954 4.79334
T3L 0.406408 4.78978 0.406408 4.78978 0.406408 4.78978

; Q4L 0.408609 4 80917 0.408609 4.80917 0.408609 4.80917
T1 0.406230 4.78703 0.406230 4.78703 0.406230 4.78703
Ser.thin 0.406235 4.78863 0.406235 4.78863 0.406235 4.78863

Table 10: Simply supported square plate L/h = 1000, » = 0.001, soft bound-
ary: displacements and moments at the center.
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Q4L0 Q4L1 Q4L3
gL* qgL* ¢L* gL qL* gL’
Mesh | w/ (i |1 M/ (5@ | ¥/ (o) | M/ G v/ Gop) 1M/ 555
2x2 0.415492 4.41062 0.426066 4.35708 0.426243 4.35309
4x4 0.424718 4.69703 0.427176 4.68143 0.427199 4.68134
8x8 0.426655 4.76582 0.427269 4.76185 0.427270 4.76185
16 x 16 0.427128 4.78294 0.427281 4.78194 0.427281 4.78194
32 x 32 0.427245 4.78721 0.427283 4.78696 0.427283 4.78696
T3L 0.427177 4.78915 0.427177 4.78915 0.427177 4.78915
Q4L 0.427288 4.78841 0.427288 4.78841 0.427288 4.78841
T1 0.427256 4.78681 0.427256 4.78681 0.427256 4.78681
Ser.thick 0.427284 4.78863 0.427284 4.78863 0.427284 4.78863
Table 11: Simply supported square plate L/h = 10, A = 0.1, hard boundary:
displacements and moments at the center.
Q4L0 Q4L1 Q4L3
qlL* qlL? qL? qL? qlL? qL?
Mesh | w/(ggap) | M/ Ggg) | v/ (i) | M/ (59) | » / (T | M/ Gag
2x2 0.014215 0.16490 0.405589 4.31045 0.403673 4.34455
4x4 0.295853 3.64487 0.406215 4.67080 0.405862 4.68141
8x8 0.403722 4.76207 0.406221 4.76047 0.406157 4.76186
16 x 16 0.406037 4.78292 0.406223 4.78209 0.406218 4.78194
32 x 32 0.406194 4.78721 0.406233 4.78697 0.406233 4.78696
T3L 0.406150 4.78747 0.406150 4.78747 0.406150 4.78747
Q4L 0.406232 4.78841 0.406232 4.78841 0.406232 4.78841
T1 0.406205 4.78681 0.406205 4.78681 0.406205 4.78681
Ser.thin 0.406235 4.78863 0.406235 4.78863 0.406235 4.78863
Ser.thick 0.406237 4.78863 0.406237 4.78863 0.406237 4.78863

Table 12: Simply supported square plate L/h = 1000, &~ = 0.001, hard
boundary: displacements and moments at the center.
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Q4L0 Q4L Q4L3
qL* qL* qL* qL? gL* qL?
Mesh | w/ (555) M/ (355 v/ (555 | M/ G |V Gaan) M/ (559
2x2 0.120869 1.83728 0.141112 1.81582 0.142038 1.81129
4x4 0.143734 2.20661 0.148518 2.19685 0.148574 2.19683
8x8 0.148768 2.29139 0.149969 2.28896 0.149974 2.28898
16 x 16 0.150036 2.31280 0.150337 2.31220 0.150337 2.31220
32 x 32 0.150356 2.31819 0.150431 2.31804 0.150431 2.31804
T3L 0.150382 2.31734 0.150382 2.31734 0.150382 2.31734
Q4L 0.150442 2.31954 0.150442 2.31954 0.150442 2.31954
T1 0.150436 2.31906 0.150436 2.31906 0.150436 2.31906
Ser.thick 0.1499 2.31 0.1499 2.31 0.1499 2.31

Table 13: Clamped square plate L/h = 10, A = 0.1: displacements and
moments at the center.

Q4Lo Q4L1 Q4L3
qL* qL? qL* qL? qL* qL?
Mesh | w / (3505) | M/ (G | Y/ (gap) | M/ (359 | W/ (T | M/ (5gp)
2x2 0.170639 3.24026 0.105259 1.82404 0.114593 1.73130
4x4 0.105329 2.66584 0.120794 2.16255 0.123603 2.16287
8x8 0.095705 1.98067 0.125263 2.25739 0.125839 2.25898
16 x 16 0.124064 2.26452 0.126319 2.28233 0.126369 2.28271
32 x 32 0.126341 2.28799 0.126491 2.28855 0.126495 2.28858
T3L 0.126429 2.28798 0.126429 2.28798 0.126429 2.28798
Q4L 0.126496 2.29003 0.126496 2.29003 0.126496 2.29003
T1 0.126511 2.28974 0.126511 2.28974 0.126511 2.28974
Ser.thin 0.1260 2.31 0.1260 2.31 0.1260 2.31
Ser.thick 0.1262 2.31 0.1262 2.31 0.1262 2.31

Table 14: Clamped square plate L/h = 10, A = 0.1: displacements and
‘moments at the center.
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Q4L0 Q4L1 Q4L3
Mesh w M w M w M
1 41.3303 | 4.87119 | 42.1964 | 4.80443 | 42.2268 | 4.80156
2 41.4817 | 5.08801 | 41.7599 | 5.06826 | 41.7631 | 5.06807
4 41.5669 | 5.13909 | 41.6406 | 5.13370 | 41.6408 | 5.13369
8 41.5911 | 5.15189 | 41.6098 | 5.15051 | 41.6098 | 5.15051
16 41.5973 | 5.15515 | 41.6020 | 5.15480 | 41.6020 | 5.15480
T3L | 41.5971 | 5.15445 | 41.5971 | 5.15445 | 41.5971 | 5.15445
Q4L | 41.6021 | 5.15479 | 41.6021 | 5.15479 | 41.6021 | 5.15479
T1 41.5864 | 5.15398 | 41.5864 | 5.15398 | 41.5864 | 5.15398
Exsol. | 41.5994 | 5.1563 | 41.5994 | 5.1563 | 41.5994 | 5.1563

Table 15: Simply supported circular plate R/h = 5, A = 1: displacements
and moments at the center.

Q4L0 Q4L1 Q4L3
Mesh w M w M w M
1 39621.4 | 4.85234 | 40577.1 | 4.81943 | 40596.4 | 4.80020
2 39714.8 { 5.05350 | 40026.6 | 5.07216 | 40028.6 | 5.06636
4 39805.8 | 5.13734 | 39881.4 | 5.13376 | 39881.5 | 5.13343
8 39825.3 | 5.15181 | 39844.1 | 5.15048 | 39844.1 | 5.15047
16 39830.0 | 5.15514 | 39834.7 | 5.15479 | 39834.7 | 5.15479
T3L 39828.7 | 5.15448 | 39828.7 | 5.15448 | 39828.7 | 5.15448
Q4L 39834.7 | 5.15479 | 39834.7 | 5.15479 | 39834.7 | 5.15479
T1 39819.0 | 5.15398 | 39819.0 | 5.15398 | 39819.0 | 5.15398
Ex.sol. | 39831.5 | 5.1563 | 39831.5 | 5.1563 | 39831.5 | 5.1563

Table 16: Simply supported circular plate R/h = 50, h = 0.1: displacements
and moments at the center.

Q4L0 Q4L1 Q4L3
Mesh w M w M w M
1 8.19394 | 1.42709 | 9.05855 | 1.36193 | 9.09004 | 1.35689
2 10.6597 | 1.88271 | 10.9378 | 1.86286 | 10.9410 | 1.86264
4 11.3256 | 1.99401 | 11.3993 | 1.98860 | 11.3995 | 1.98860
8 11.4947 | 2.02187 | 11.5134 | 2.02049 | 11.5134 | 2.02049
16 11.5372 | 2.02889 | 11.5419 | 2.02854 | 11.5419 | 2.02854
T3L 11.5207 | 2.02665 | 11.5207 | 2.02665 | 11.5207 | 2.02665
Q4L 11.5419 | 2.02854 | 11.5419 | 2.02854 | 11.5419 | 2.02854
T1 11.5488 | 2.03007 | 11.5488 | 2.03007 | 11.5488 | 2.03007
Ex.sol. | 11.5513 | 2.0313 | 11.5513 | 2.0313 | 11.5513 | 2.0313

Table 17: Clamped circular plate R/h = 5, h = 1: displacements and mo-
ments at the center.
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Q4L0 Q4L1 Q4L3

Mesh w M w M w M
1 6482.28 | 1.40553 | 7455.06 | 1.37082 | 7459.88 | 1.35520
2 8892.34 | 1.84809 | 9206.67 | 1.86743 | 9206.64 | 1.86100
4 9564.48 | 1.99227 | 9640.09 | 1.98868 | 9640.21 | 1.98834
8 9728.96 | 2.02179 | 9747.72 | 2.02046 | 9747.74 | 2.02045
16 9769.85 | 2.02888 | 9774.55 | 2.02854 | 9774.55 | 2.02854
T3L 9753.53 | 2.02667 | 9753.53 | 2.02667 | 9753.53 | 2.02667
Q4L | 9774.55 | 2.02854 | 9774.55 | 2.02854 | 9774.55 | 2.02854
T1 9781.39 | 2.03007 | 9781.39 | 2.03007 | 9781.39 [ 2.03007
Ex.sol. | 9783.48 | 2.0313 | 9783.48 | 2.0313 | 9783.48 | 2.0313

Table 18: Clamped circular plate R/h = 50, h = 0.1: displacements and
moments at the center.

Q4L0 Q4L1 Q4L3

Et° Et? Et° Et° Et? Et

Mesh | wy (x EF) wy (x m) wy (x ;EZ) wy (x ;—EZ) wy (x ;J_LT) wy (x -q—iz)
2x2 1.14643 0.93056 1.26594 0.97725 1.29491 0.98087
4x4 1.35205 1.00747 1.38267 1.02304 1.38749 1.02658
8x 8 1.41224 1.03358 1.41728 1.03839 1.41807 1.03939
16 x 16 1.42502 1.04109 1.42666 1.04272 1.42686 1.04291
32 x 32 1.42930 1.04363 1.42993 1.04416 1.42997 1.04419
T3L 1.42892 1.04384 1.42892 1.04384 1.42892 1.04384
Q4L 1.43091 1.04484 1.43091 1.04484 1.43091 1.04484
T1 1.43003 1.04376 1.43003 1.04376 1.43003 1.04376

Table 19: Skew cantilever plate with 8 = 20°: displacements at point 1 and

point 2.

Q4L0 Q4L1 Q4L3
Et Et® Et? Et? Et? Et>
Mesh | wy (x it wa (x It wy (x m) wy (x E{) wi (x ﬁ;) wy (x m)
2x2 0.78142 0.436628 0.92707 0.462879 0.96089 0.462620
4x4 1.03700 0.508903 1.08247 0.518871 1.08861 0.518886
8x8 1.14291 0.534552 1.15095 0.537510 1.15155 0.537747
16 x 16 1.17212 0.542788 1.17523 0.544236 1.17537 0.544351
32 x 32 1.18332 0.546431 1.18513 0.547204 1.18516 0.547226
.T3L 1.18401 0.547079 1.18401 0.547079 1.18401 0.547079
Q4L 1.18685 0.548103 1.18685 0.548103 1.18685 0.548103
T1 1.18482 0.546408 1.18482 0.546408 1.18482 0.546408

Table 20: Skew cantilever plate with 8 = 40°: displacements at point 1 and

point 2
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Q4L3

Q4L0 Q4L1
Et3 Et3 Et3 Et3 Et3 3
Mesh Wi (X E—L—‘* Wa (X q—L-z) Wi (X -(]-EZ) W2 (X E‘z) w1 (X Q-F) Wo (X -&F)
2x 2 0.416628 0.102638 0.594765 0.103799 0.617981 0.101386
4x4 0.627058 0.128497 0.706588 0.130982 0.713873 0.130738
8x8 0.762912 0.143078 0.793401 0.146167 0.794249 0.146099
16 x 16 0.818908 0.1509008 0.832221 0.153292 0.832321 0.153297
32 x 32 0.843262 0.155250 0.850080 0.156835 0.850096 0.156838
T3L 0.850237 0.157198 0.850237 0.1567198 0.850237 0.157198
Q4L 0.851822 0.157164 0.851822 0.157164 0.851822 0.157164
T1 0.845001 0.155380 0.845001 0.155380 0.845001 0.155380
Table 21: Skew cantilever plate with 8 = 60°: displacements at point 1 and
point 2.
Q4L0 QaLl Q4L3
Mesh w M1 M2 w M1 M2 w Ml Mj,g
® Lt | L% | oI’ LT | L? | o2 ' | If | oI?
100D 100 100 100D 100 100 100D 100 100
2x2 0.227448 | 34.6260 | 9.52345 | 0.516197 | 8.7T1856 | -6.98057 | 0.563523 | 1.18538 | 0.62440
4x4 0.253486 | 6.37392 | 1.96260 | 0.415295 | 4.61806 | 0.48784 | 0.431559 | 1.82111 | 0.89319
8x8 0.356071 | 2.06756 | 1.03514 | 0.404688 | 2.08695 | 1.16959 | 0.420489 | 1.91164 | 1.06425
16 x 16 | 0.393561 | 1.88090 | 1.05898 | 0.414588 | 1.92960 | 1.11344 | 0.418855 | 1.93078 | 1.10869
32 x 32 | 0.409510 | 1.90980 | 1.09094 | 0.419246 | 1.93671 | 1.11974 | 0.419989 | 1.93854 | 1.12175
T3L 0.419586 | 1.93657 | 1.12122 | 0.419586 | 1.93657 | 1.12122 | 0.419586 | 1.93657 | 1.12122
Q4L 0.426951 | 1.96183 | 1.14877 | 0.426951 | 1.96183 | 1.14877 | 0.426951 | 1.96183 | 1.14877
T1 0.403831 | 1.88974 | 1.07009 | 0.403831 | 1.88974 | 1.07009 | 0.403831 | 1.88974 | 1.07009

Table 22: Simply supported skew plate L/h = 100, A = 1, soft boundary:
displacements and moments at the center.
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Q4L0 Q4L1 Q4L3

w M1 Mg w M1 MQ w M1 Mg

Mesh L =2 =L =2 - -z

qL* qL? qL? qL* qL? qL? qL* qL? qL?

100D 100 100 100D 100 100 100D 100 100
2x2 | 0.167484 | 42.3622 | 12.8100 | 0.514182 | 8.74371 | -6.90521 | 0.562471 | 1.18545 | 0.62348
4x4 |0.143751 | 2.74687 | 0.92239 | 0.412490 | 4.76668 | 0.28582 | 0.430168 | 1.81880 | 0.89235
8x8 |0.227808 | 1.44158 | 0.63561 | 0.354657 | 2.01223 | 1.06249 | 0.418027 | 1.90693 | 1.06332
16 x 16 | 0.324388 | 1.66299 | 0.82846 | 0.358479 | 1.78555 | 1.00688 | 0.413714 | 1.92057 | 1.10435
32 x 32 | 0.365821 | 1.78218 | 0.93491 | 0.382498 | 1.83752 | 1.01352 | 0.412125 | 1.91715 | 1.09843
T3L | 0.412734 | 1.91781 | 1.00098 | 0.412734 | 1.91781 | 1.09998 | 0.412734 | 1.91781 | 1.09998
Q4L | 0.423520 | 1.95282 | 1.14021 | 0.423520 | 1.95282 | 1.14021 | 0.423520 | 1.95282 | 1.140621
T1 | 0.361559 | 1.76889 | 0.91530 | 0.361559 | 1.76889 | 0.91530 | 0.361559 | 1.76889 | 0.91530

Table 23: Simply supported skew plate L/h = 1000, A = 0.1, soft boundary:
displacements and moments at the center.

Table 24:

Energy

Mesh Q4L0 Q4L1 Q4L3 T3L Q4L

2x2 10.186062 | 0.361146 | 0.470719 | 0.383241 | 0.285103

4x4 | 0.179283 | 0.254242 | 0.272841 | 0.267398 | 0.256943

8 x 8 |0.228214 | 0.250221 | 0.262314 | 0.261721 | 0.261289
16 x 16 | 0.247832 | 0.259143 | 0.261949 | 0.262122 | 0.262455
32 x 32 | 0.256664 | 0.262193 | 0.262669 | 0.262921 | 0.262708
Ref. [5] | 0.265868 | 0.265868 | 0.265868 | 0.265868 | 0.265868

Simply supported skew plate L/h = 100, 2 = 1, soft boundary:
displacements and moments at the center.
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& External dofs

Figure 1: Single element meshes for patch test. Regular and non-regular

mesh.
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A& External dofs

Figure 2: Multi element meshes for patch test. Regular and non-regular
mesh.
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X & External dofs

Figure 3: Design of the linked shape function N, for the a-b side.
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DISPLACEMENT 1
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X = 0.00E+00

Y = 0.00E+00

FEAP

Figure 4: Typical mesh for square plate (8 x 8 elements). The contour of the

vertical displacement (Q4L1) is also reported.
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DISPLACEMENT 1
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Figure 5: Typical mesh for circular plate (48 elements). The contour of the
“vertical displacement (Q4L1) is also reported.
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Figure 6: Geometry of the skew cantilever plate.
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DISPLACEMENT 1
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Figure 7: Typical mesh for skew cantilever plate (8 x 8 elements). The
contour of the vertical displacement (Q4L1) is also reported.
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DISPLACEMENT 1
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- Figure 8: Typical mesh for skew simply supported plate (8 x 8 elements).
The contour of the vertical displacement (Q4L1) is also reported.
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