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Abstract

Cyclic fluctuations in hypothalamic–pituitary–gonadal axis (HPG-axis) hormones exert

powerful behavioral, structural, and functional effects through actions on the mam-

malian central nervous system. Yet, very little is known about how these fluctuations

alter the structural nodes and information highways of the human brain. In a study of

30 naturally cycling women, we employed multidimensional diffusion and T1-

weighted imaging during three estimated menstrual cycle phases (menses, ovulation,

and mid-luteal) to investigate whether HPG-axis hormone concentrations co-

fluctuate with alterations in white matter (WM) microstructure, cortical thickness

(CT), and brain volume. Across the whole brain, 17β-estradiol and luteinizing hormone

(LH) concentrations were directly proportional to diffusion anisotropy (μFA; 17β-

estradiol: β1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: β1 = 0.111,

HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly propor-

tional to CT (β1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions,

FSH and progesterone demonstrated opposing relationships with mean diffusivity

(Diso) and CT. These regions mainly reside within the temporal and occipital lobes,

with functional implications for the limbic and visual systems. Finally, progesterone

was associated with increased tissue (β1 = 0.66, HDI = [0.607, 15.845]) and

decreased cerebrospinal fluid (CSF; β1 = �0.749, HDI = [�11.604, �0.903]) vol-

umes, with total brain volume remaining unchanged. These results are the first to

report simultaneous brain-wide changes in human WM microstructure and CT
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coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in

both classically known HPG-axis receptor-dense regions (medial temporal lobe, pre-

frontal cortex) and in other regions located across frontal, occipital, temporal, and

parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have sig-

nificant structural impacts across the entire brain.

K E YWORD S

brain structure, brain volume, cortical thickness, diffusion imaging, hormones, magnetic
resonance imaging, menstrual cycle

Practitioners Points

• 17β-estradiol and luteinizing hormone (LH) were positively associated with diffusion

anisotropy.

• Follicle-stimulating hormone and progesterone demonstrated opposing relationships with

mean diffusivity and cortical thickness in several regions.

• Progesterone was positively associated with tissue volume and negatively associated with

cerebrospinal fluid volume.

1 | INTRODUCTION

On average, people who menstruate experience about 450 menstrual

cycles throughout the lifespan (Chavez-MacGregor et al., 2008). Driv-

ing these cycles are rhythmic fluctuations in hypothalamic–pituitary–

gonadal axis (HPG-axis) hormones such as sex steroids (17β-estradiol

and progesterone) and pituitary gonadotropins (luteinizing hormone

[LH] and follicle-stimulating hormone [FSH]). The cycle begins with

menses, signaling the start of the follicular phase and the gradual rise

of 17β-estradiol concentrations stimulated by FSH (Baird, 1987). Just

before ovulation (release of a mature egg), three “ovulatory” hor-

mones (17β-estradiol, LH, and FSH) reach peak values; post-ovulation,

the luteal phase begins, during which progesterone peaks and 17β-

estradiol remains high (Stricker et al., 2006). Fluctuations in concen-

trations of these hormones have been found to coincide with varia-

tion in functional brain activation, such as within the anterior

cingulate cortex during reinforcement learning or within the default

mode network at rest (Beltz & Moser, 2020). In addition, fluctuations

of these hormones can induce or exacerbate neurological and psychi-

atric symptomatology (Handy et al., 2022). Due to the widespread

presence of gonadal hormone receptors in the mammalian brain

(Barth et al., 2015), HPG-axis hormones exhibit powerful neuromodu-

latory effects that influence synaptic plasticity (Haraguchi et al., 2012)

and dendritic spine density (Woolley & McEwen, 1993). Yet, despite

the functional and cellular importance of these hormones, neuroimag-

ing research dedicated to our understanding of the human brain as an

endocrine organ makes up a very small percentage of all neuroimaging

studies (Taylor et al., 2021).

In human neuroscience, the majority of published work has docu-

mented how menstrual cycle-driven hormonal fluctuations may or

may not influence brain communication at rest (functional connectiv-

ity) and brain functional activation when completing spatial naviga-

tion, working memory, verbal fluency, and emotion processing tasks,

among others (Dubol et al., 2021; Le et al., 2020; Pletzer et al., 2019).

Far less is known about hormonal influences on the anatomical high-

ways and nodes that allow for such functional communication to

occur (Dubol et al., 2021). Broadly speaking, these “highways” are the

white matter (WM) tracts that transfer information between gray mat-

ter (GM) regional nodes; both highways and nodes may vary in struc-

tural properties. Studies typically assay these neuroanatomical

variables noninvasively using diffusion tensor imaging

(WM microstructure) and voxel-based morphometry (GM volume).

WM microstructure has been found to be altered across hormonal

transition periods, including puberty, postmenopausal estrogen ther-

apy, and gender-affirming hormone treatment (Ha et al., 2007;

Herting et al., 2012; Kranz et al., 2017). Only a handful of studies have

investigated time-varying changes in WM microstructural properties

across a natural menstrual cycle (i.e., not affected by pharmacological

interventions). These studies suggest that both WM volumetric and

diffusion properties are predominantly altered during the ovulatory

phase of the cycle, or correlated with 17β-estradiol concentrations

(Barth et al., 2016; De Bondt, Van Hecke, et al., 2013; Meeker

et al., 2020; Şafak, 2019).

A larger corpus of work has probed the effect of menstrual cycle

stage on regional and global GM volume. GM morphology appears to

be sensitive to hormonal transition periods, including puberty, oral

contraceptive use, and pregnancy (Herting et al., 2014; Hoekzema

et al., 2017; Lisofsky et al., 2016). Only a small body of studies has

investigated time-varying changes in GM morphology across a natural

menstrual cycle. GM morphology tends to change in concert with

ovulation and/or 17β-estradiol (Barth et al., 2016; De Bondt

et al., 2016; De Bondt, Jacquemyn, et al., 2013; Franke et al., 2015;

Hagemann et al., 2011; Petersen et al., 2015), although GM morpho-

logical alterations are also observed more broadly when comparing

luteal and follicular cycle phases (Lisofsky et al., 2015; Meeker

et al., 2020; Ossewaarde et al., 2013; Pletzer et al., 2010;
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Protopopescu et al., 2008) and tied to circulating progesterone con-

centrations (Pletzer et al., 2018; Taylor et al., 2020). A recent

dense-sampling study by Zsido et al. (2023) conducted ultra-high field

imaging of the medial temporal lobe (MTL) and found significant volu-

metric changes corresponding with 17β-estradiol and progesterone

concentrations, as well as their interaction (Zsido et al., 2023).

The above studies are, to our knowledge, the only to map time-

varying changes in structural variables across a natural menstrual

cycle, highlighting the relative paucity of studies in this area, particu-

larly in the case of WM microstructure. Compounding the issue for

WM microstructure is the measurement typically employed; WM

microstructure is commonly assessed with fractional anisotropy

(FA) and mean diffusivity (MD) derived from diffusion tensor images

(DTI) (Le Bihan et al., 2001). Despite their widespread adoption for

assessing WM “integrity” in clinical populations (Clark et al., 2011), FA

and MD directly scale with fiber orientation dispersion, making them

sensitive to the participant-specific presence of crossing, kissing, or

fanning fibers (Vos et al., 2012). Any single voxel within much of the

WM could contain an FA value drawn from a trimodal distribution

based on the number of fiber crossings (Volz et al., 2018). Addition-

ally, measures derived from DTI are voxel-averaged and do not

account for the heterogeneity of brain tissue at the sub-voxel level

(Topgaard, 2019). However, recent developments in multidimensional

diffusion imaging techniques offer a means to account for complex

WM fiber configurations and sub-voxel heterogeneity when imaging

human WM microstructure (Topgaard, 2017). As opposed to simple

voxel-averaging, multidimensional diffusion imaging (also known as

q-space trajectory imaging [QTI]) allows for the estimation of parame-

ter distributions within each voxel, providing greater disentanglement

of intersecting diffusion properties and offering a clearer picture of

the underlying WM microstructure (Topgaard, 2017, 2019; Westin

et al., 2016). These properties include diffusion tensor “size” (degree

of free, unrestricted [isotropic] diffusion and typically aligned with

increased water content), “shape” (degree of directional [anisotropic]

diffusion along WM tracts and putative measure of tissue integrity),

and “orientation” (degree of fiber crossing in a voxel). Multidimen-

sional diffusion parameters include an improved estimate of MD (here

called “Diso”), as well as an improved estimate of FA (called “micro-

fractional anisotropy” or μFA) which is robust to fiber orientation and

overcomes the associated limitations of FA (Andersen et al., 2020;

Ikenouchi et al., 2020; Lasič et al., 2014). The primary aim of this work

is to therefore use recent advancements in multidimensional diffusion

imaging of the WM to investigate whether menstrual cycle-driven

HPG-axis hormone fluctuations coincide with changes in WM

microstructure.

We also report HPG-axis hormone-associated changes in GM

cortical thickness (CT). Previous work has mainly correlated HPG-axis

hormones with changes in GM volume obtained through voxel-based

morphometry, for which results can be heavily influenced by spatial

smoothing, image co-registration imperfections, and voxel-wise cor-

rection for multiple comparisons (Whitwell, 2009). On the other hand,

CT modeling techniques can provide greater sensitivity (Hutton

et al., 2009) than volumetric analyses. Additionally, CT measures

mimic functional network organization and predict clinical

symptomatology (He et al., 2007; Pettigrew et al., 2016). Together,

these imaging measures (multidimensional diffusion parameters and

CT) will provide the clearest combined account to date of how HPG-

axis hormones may influence the anatomical highways and nodes of

the brain.

In addition, a third aim of this study is to assess HPG-axis

hormone-associated changes in brain volume. No study, to our knowl-

edge, has investigated whether hormone-related changes in WM

microstructure and CT coincide with HPG-axis hormone-related

changes in estimates of total brain volume. A previous study identified

peak GM volume and decreased cerebrospinal fluid (CSF) at ovulation

(Hagemann et al., 2011); yet, the dynamic relationships between total

brain volume, tissue volume, and CSF volume across the menstrual

cycle are largely unknown and can provide insight into the potential

mechanisms behind short-term WM and GM structural changes.

The current study addresses documented methodological con-

cerns in the field of menstrual cycle neuroimaging by achieving direct

hormone assay, whole brain analyses, and a robust sample size (Dubol

et al., 2021). We extend previous work by assaying concentrations of

four HPG-axis hormones (17β-estradiol, progesterone, LH, and FSH)

and recording multidimensional diffusion and T1-magnetization pre-

pared rapid gradient echo (MPRAGE) anatomical images from a group

of 30 naturally cycling young women. In order to capture significant

variation in hormone concentrations, we obtained data for each par-

ticipant during three estimated menstrual cycle time-points: menses,

ovulation, and the mid-luteal phase. We then employed a Bayesian

framework to test if concentrations of each hormone would credibly

associate with within-individual WM and GM architecture, both at the

whole brain and predefined region levels. Finally, we examined

whether these hormones are associated with changes in whole brain,

tissue, and CSF volume. We hypothesized that we would observe a

directly proportional relationship between hormones known to peak

at ovulation (17β-estradiol, LH, FSH) and μFA, as well as an inversely

proportional relationship between these hormones and MD. We also

predicted that CT would be tied to changes in 17β-estradiol and pro-

gesterone concentrations.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 30 naturally cycling, healthy female participants (mean

age = 21.73 years; range = 18–29) completed all study recruitment,

prescreening, and protocol procedures. Participants reported belong-

ing to the following racial/ethnic groups: White non-Hispanic/Latino

(10), Hispanic/Latino (6), Black/African-American (1), West Asian/

Middle Eastern (1), East Asian (6), and Southeast Asian (6).

Study inclusion criteria were assessed via self-report and required

that participants be between the ages of 18–30, be nulliparous, have

not used any hormonal or implant birth control within 3 months prior

to onset of study involvement, have never undergone hormonal
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therapy, have no plans to begin birth control or become pregnant

within the upcoming year, and have a relatively regular (21–40 days

length) menstrual cycle. Exclusionary criteria were also assessed via

self-report and included contraindications to Magnetic resonance

imaging (MRI; nonremovable metal, incompatible medical devices,

hearing loss/tinnitus, claustrophobia) and medical history of clinically

significant reproductive, cardiovascular, neurological, or psychiatric

conditions (other than mild–moderate mood or attention deficit disor-

ders). Two participants reported a history of mild–moderate depres-

sion and/or anxiety. One participant reported an ADHD diagnosis;

this was the only participant to report current use of prescription

medication. All participants provided written informed consent for

study procedures approved by the University of California, Santa Bar-

bara's Institutional Review Board/Human Subjects Committee.

Participants were recruited as part of a wider women's/menstru-

ating individuals' hormonal health study via digital flyers sent to the

University of California, Santa Barbara community (Babenko, 2023).

To assess eligibility, participants completed the following: a prescreen-

ing video call to ensure understanding of study procedures, the UCSB

Brain Imaging Center's MRI screening form, and a comprehensive

health questionnaire, which assessed participant demographics, his-

tory of substance usage, and mental and reproductive health topics,

for which they received $10 compensation if deemed eligible. Of a

total sample of 46 eligible participants, 30 completed all 3 experimen-

tal sessions involving MRI scans and blood draws. Of these 30 partici-

pants, 22 completed at least 1 month of researcher-supervised

menses and ovulation test tracking prior to the menstrual cycle con-

taining their initial session. Due to study timing constraints, the

remaining eight participants began cycle-tracking within the same

cycle as their initial session. Participants were paid $60 per MRI ses-

sion, and those who completed a full three cycles of preinitial session

remote cycle tracking earned an additional $50, totaling $190–$240/

participant.

2.2 | Menstrual cycle tracking procedures

Researchers engaged in cycle tracking in order to, as closely as possi-

ble, schedule experimental sessions that would match the three

phases of participants' individual cycles. To begin, participants were

asked to self-report to researchers their menses start and end dates,

as well as share any previous cycle tracking data they may have col-

lected for personal use. Researchers then calculated average cycle

lengths from these reports, which were used to predict future sched-

uling of sessions. Cycle length information was updated as new men-

ses tracking data was collected. Menses sessions were scheduled

based on a combination of self-reported previous menses onset, self-

reported menses symptom onset, and ovulation test results.

In order to schedule ovulation and luteal sessions, participants

were given 40 mL disposable plastic urine cups and ovulation testing

strips, which measure urine levels of LH (Easy@Home, Premom).

Experimenters informed participants of their predicted “fertile-win-

dow” (on average within a range of 3–15 days depending on

prediction certainty), during which ovulation was likely to occur. Par-

ticipants were asked to complete ovulation self-tests and send a clear

photo of results by 8 p.m. during all “fertile-window” days. Using the

Premom mobile application, experimenters obtained a ratio of LH-

to-control line darkness, for which any result >0.80 was considered to

be positive for ovulation. If a participant's ovulation test results never

produced an LH-to-control line exceeding 0.80, their ovulation test

was considered to be positive according to their individual peak value

determined from their history of study cycle tracking. After complet-

ing cycle tracking, experimenters informed participants of their poten-

tial ovulation session dates, during which they were asked to send in

their ovulation test results by 9 a.m. If their ovulation test result ratios

were >0.80 (or at the level of their previous individually determined

peak), they were asked to come in that day to complete study proce-

dures. If the participant was unable to be scheduled that same day for

any reason, their tracking data were logged and the session was post-

poned to their following cycle.

Mid-luteal sessions were scheduled based on both average cycle

length and ovulation testing data. Using individualized cycle prediction

data, experimenters scheduled mid-luteal sessions during the pre-

dicted midpoint between ovulation and start of next menses. If a par-

ticipant could not be scheduled within their predicted menses,

ovulation, or mid-luteal windows for that cycle, then experimenters

postponed the session to the next cycle. If a participant received a

SARS-CoV-2 vaccine/booster or diagnosis, or reported ingestion of

emergency contraceptives, they waited at least one complete men-

strual cycle (menses-to-menses) prior to returning for any additional

sessions.

2.3 | Experimental protocol

Participants underwent three experimental MRI sessions each, which

were scheduled to coincide with three estimated phases of their

menstrual cycle: menses (based on self-report), ovulation (based on

ovulation test results), and mid-luteal phase (estimated to be mid-

way between ovulation window and predicted start of menses).

Order of sessions was counterbalanced such that 15 participants

began with the menses session, 14 participants with the ovulation

session, and 1 began with the mid-luteal session (due to study timing

constraints). Using a subgroup analysis, we show that brain–

hormone relationships are not meaningfully confounded by experi-

ment session order effects (see Supplementary Information

Table S9). Sessions lasted for 3 h, typically took place during the

hours of 11 a.m.–4 p.m., and did not all necessarily occur within the

same monthly cycle. Participants were instructed to maintain their

typical daily routines on session days. Upon arrival for their session,

experimenters screened the participant for SARS-CoV-2 according

to the University of California, Santa Barbara's Office of Research

COVID safety guidelines. Then, participants were instructed to

change into scrubs, underwent a blood draw completed by a licensed

phlebotomist (see Section 2.4), and completed a 1-h MRI scanning

protocol (see Section 2.5).
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2.4 | Blood sample acquisition and processing

In order to assess serum levels of the gonadal hormones 17β-estradiol

and progesterone, as well as the pituitary gonadotropins LH and FSH,

a licensed phlebotomist collected a blood sample (<8.5–10 cc) from

each participant during each session (three samples/participant). The

phlebotomist used a BD Diagnostics vacutainer push button to start

an intravenous line (hand or forearm), and then used a 10 mL vacutai-

ner SST tube (BD Diagnostics) to collect the sample. After collection,

the sample was allowed 30 min to clot at room temperature, and was

then centrifuged (2100 revolutions per minute [RPM] for 10 min).

From the centrifuged samples, experimenters aliquoted 1 mL of serum

into three 2 mL microtubes, which were subsequently stored in a

�80�C freezer until 2 of the microtubes (per participant) were shipped

for processing at the Endocrine Technologies Core (ETC) at the Ore-

gon National Primate Research Center (ONPRC, Beaverton, OR). The

third microtube was stored as a backup in case any damage occurred

to the samples during shipment for testing.

Gonadal steroid hormone concentrations were obtained using

ultrahigh-performance liquid chromatography-heated electrospray

ionization-tandem triple quadrupole mass spectrometry (LC-MS/MS)

on a Shimadzu Nexera-LCMS-8060 instrument (Kyoto, Japan). The

dynamic range for both 17β-estradiol and progesterone was 0.002–

20 ng/mL, with the following lower quantification limits, intra-assay

variations, and accuracies, respectively: 0.002 ng/mL, 2.1%, and

100.9% for 17β-estradiol, and 0.010 ng/mL, 12.3%, and 106.3% for

progesterone. Pituitary gonadotropin concentrations were obtained

using a Roche cobas e411 automated clinical immunoassay platform

(Roche Diagnostics, Indianapolis, IN). The assay range for both LH and

FSH was 0.1–200 mIU/mL, while the intra- and interassay coefficients

of variation were respectively 2.3% and 2.4% for n = 2 LH assays, and

0.9% and 1.0% for n = 2 FSH assays.

2.5 | MRI acquisition and processing

Following each session's blood draw, participants underwent MRI in a

Siemens 3 T Prisma scanner with a 64-channel phased-array head/

neck coil. First, high-resolution T1-weighted MPRAGE anatomical

scans were acquired (TR = 2500 ms, TE = 2.22 ms, FOV = 241 mm,

T1 = 851 ms, flip angle = 7�, with 0.9 mm3 voxel size). Following the

anatomical scan, a series of 4 spherical b-tensor (b = 0, 100–500,

1000, 1500 s/mm2; 3 diffusion directions) and 4 linear b-tensor

(b = 500, 1000, 1500, 2000 s/mm2; 6, 10, 16, and 30 diffusion direc-

tions) QTI diffusion sequences that have been shown to have good

contrast-to-noise ratio (Martin et al., 2020) were collected

(TR = 6308 ms, TE = 80 ms, diffusion gradient amplitude = 80.0 mT/

m, FOV = 230 mm, flip angle = 90�, 2.0 � 2.0 mm2 in-plane resolu-

tion, 4.0 mm slice thickness, iPAT factor = 2).

MRI preprocessing was conducted with Advanced Normalization

Tools (ANTs; Avants et al., 2011) and MATLAB (MathWorks, Inc.).

First, T1-weighted anatomical data were skull-stripped with antsBrai-

nExtraction.sh. In order to create individualized participant WM and

GM tissue masks, we first segmented the skull-stripped anatomical

data using the ANTsPy (https://github.com/ANTsX/ANTsPy)

kmeans_segmentation function, which outputted probability maps of

participant WM, GM, and CSF. We then binarized these probability

maps (all values >0 = 1) to obtain WM, GM, and CSF tissue masks.

Second, for each participant, we calculated region of interest

(ROI)-specific mean values of six QTI-derived multidimensional diffu-

sion parameters, which describe facets of diffusion tensor size, shape,

and orientation. To do this, we first used an open-source, MATLAB

pipeline for multidimensional diffusion MRI (https://github.com/

markus-nilsson/md-dmri) to complete motion and eddy current cor-

rection of diffusion data, as well as estimation of voxel-wise brain

maps of size-shape-orientation diffusion tensor distributions (DTDs)

using the “dtd” method (Nilsson et al., 2018; Topgaard, 2019). Then,

using ANTs, we spatially normalized participant DTD diffusion data

and HCP1065 Population-Averaged Tractography Atlas probabilistic

WM region masks (thresholded at ≥50%; Yeh, 2022) to their

participant-specific anatomical space, where all further calculations

were conducted. Next, we utilized the participant-specific WM tissue

masks to extract WM voxels from DTD data, which was then seg-

mented into 64 ROIs using the HCP1065 atlas masks. Then, for each

ROI, we calculated mean values of parameters describing diffusion

tensor size (average isotropic diffusivity [Diso, a metric of MD] and

normalized variation in isotropic diffusivity [Vison]), tensor shape (nor-

malized mean squared anisotropy [D2
anison], μFA, and FA), and tensor

orientation (fiber orientation parameter [OP]; for descriptions of each,

see Section 2.6). Finally, because we had no a priori hypotheses for

hemisphere-specific effects, we averaged homologous ROI mean

values across hemispheres, leading to a total of 34 bilateral WM

region values per diffusion parameter per participant session. Supple-

mentary analyses exploring hemispheric differences did not find

meaningful differences from the original analysis (see Supplementary

Information Tables S5 and S6).

Third, for each participant, we calculated cortical and subcortical

ROI-specific mean values of CT. We used anatomical as opposed to

diffusion imaging to obtain CT due to the known limitations of diffu-

sion imaging for detecting neurite density (Lampinen et al., 2019). To

do this, we first utilized participant-specific GM tissue masks

to extract GM voxels from their respective anatomical images. Then,

we used the ANTsPy DiReCT algorithm to estimate CT across the

GM. DiReCT has been shown to have good scan-rescan repeatability

and outperform FreeSurfer in prediction of CT measures (Tustison

et al., 2014). In order to segment the GM into ROIs, we first obtained

20 Open Access Series of Imaging Studies (OASIS) young, healthy

adult brains and their respective Desikan-Killiany-Tourville (DKT;

31 per hemisphere, 62 total) cortical labels as defined by the Mind-

boggle project (Klein & Tourville, 2012). We then spatially normalized

these labels to participant anatomical space, where we used antsJoin-

tLabelFusion.sh to obtain customized DKT-31 cortical region labels

for each participant (Wang et al., 2013). Next, we utilized these cus-

tomized participant-specific labels to segment the CT data and subse-

quently calculated mean CT values for each ROI in participant-specific

anatomical space. Due again to a lack of a priori hypotheses for
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hemisphere-specific effects, we averaged the mean CT values of

homologous right and left hemisphere ROIs. This led to a total of

31 bilateral GM region CT values per participant session. Supplemen-

tary analyses exploring hemispheric differences did not find meaning-

ful differences from the original analysis (see Supplementary

Information Tables S7 and S8).

Finally, for each participant session, we calculated total brain vol-

ume, tissue volume, and CSF volume. To do this, we used ANTsPy

label_geometry_measures with the previously generated k-means seg-

mentation masks to calculate volume (mm3) for the whole brain (WM

+ GM + CSF), brain tissue (WM + GM), and CSF (CSF mask only).

This led to a total of three volume values per participant session.

2.6 | Multidimensional diffusion parameters

For each participant, we estimated six voxel-wise multidimensional

diffusion parameters describing diffusion tensor size (mean isotropic

diffusivity; Diso, normalized variation in isotropic diffusivity; Vison),

shape (normalized mean squared anisotropy; D2
anison, FA, μFA), and

orientation (OP).

In order to calculate the diffusion tensor size (Diso and Vison) and

shape (D2
anison) parameters as defined by Topgaard (2019), we first

estimated voxel-wise distributions of parallel (Djj) and perpendicular

(D⊥) component diffusivities (in 10�8 m2/s). Then, with these values,

mean isotropic diffusivity (Diso) and normalized diffusion anisotropy

(Danison, represented in Topgaard, 2019 as DΔ) were calculated

(Topgaard, 2019, equation 2). We then took the expected values (E[x])

of Diso and Danison to obtain E[Diso] (from now on referred to as Diso),

which is equivalent to mean diffusivity (MD), and E[Danison], which

contains similar information as other measures of tensor shape/

anisotropy, such as μFA (Topgaard, 2019, equations 9 and 10). To

obtain Vison, we calculated the variance of isotropic diffusivity (V[Diso];

Topgaard, 2019, equation 11), which was then normalized by D2
iso.

Visualizations of Diso, D
2
anison, and Vison are shown in Figure 1a.

In order to calculate the remaining parameters describing tensor

shape (μFA, FA) and orientation (OP), we drew on other sources of

QTI theory (Lasič et al., 2014; Westin et al., 2016). More specifically,

μFA was calculated according to equation 14 in Lasič et al. (2014).

The orientation dispersion parameter (OP), also known as “micro-

scopic orientation coherence,” or the ratio of micro- to macroscopic

anisotropy in a voxel, was calculated according to equation 33 in

F IGURE 1 Multidimensional diffusion size-shape-orientation properties captured via q-tensor imaging and diffusion tensor distribution (DTD)

modeling within a voxel (cube). (a) top row: Increased Diso represents an increase in isotropic diffusion tensor size (greater isotropic diffusion is
represented as larger spheres). Diso can be employed as an index of mean diffusivity. Middle row: Increased Vison represents an increase of
variation in isotropic diffusion tensor size (variety of sphere size). Bottom row: Increased D2

anison represents an increase in diffusion tensor
anisotropy and a change in tensor shape (tensor shape changes from sphere to ellipse). DTD modeling is sensitive to microstructural variation at
the sub-voxel level, such as within voxels that contain half isotropic diffusion and half anisotropic diffusion (represented here as a mixture of
ellipses and spheres). (b) DTD modeling also allows for the estimation of other parameters describing tensor shape (conventional fractional
anisotropy [FA], micro-fractional anisotropy [μFA]) as well as diffusion tensor orientation (orientation parameter [OP]). Left: In voxels with
random orientation and isotropic diffusion (lack of parallel WM fiber bundle), FA, μFA, and OP are equal to 0. Right top: In voxels with a single
white matter (WM) fiber bundle traveling in one direction, FA, μFA, and OP equal 1. Right bottom: In voxels with crossing fibers (OP<1), FA
decreases in value while μFA remains equal to 1 (robust to crossing fibers). After DTD modeling, we calculated WM regional summary values of
DTDs that describe facets of diffusion tensor size, shape, and orientation. Figure design is based on Topgaard (2019).
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Westin et al., 2016. The OP ranges from 0 (diffusion in all directions

equally, whether it be isotropic or anisotropic) to 1 (parallel diffusion

in one direction). As discussed in Lasič et al. (2014), equation 22, FA

can be derived from μFA and OP; thus, participant μFA and OP data

were used to calculate their respective FA maps. Both μFA and FA

range from 0 (completely isotropic diffusion) to 1 (completely aniso-

tropic diffusion); however, in voxels with diffusion in multiple direc-

tions (high OP), μFA is designed to be robust to these orientation

changes, see Figure 1b (Lasič et al., 2014). Group-averaged multidi-

mensional diffusion parameter brain maps are shown in Figure 2.

2.7 | Statistical analyses

All analyses were conducted using Python (version 3.7.10). We first

aimed to verify that our session timing successfully captured group-

level natural variation in gonadal steroid hormones (17β-estradiol, pro-

gesterone) and pituitary gonadotropins (LH, FSH) consistent with

known typical menstrual cycle-related hormone fluctuations for

young, naturally cycling women (Stricker et al., 2006). To do this, one-

way analyses of variance (ANOVAs) using the Pingouin (0.5.3) pack-

age were conducted that examined the effect of session type (menses,

ovulation, mid-luteal) on HPG-axis hormone concentration. Then, to

determine specific session-level differences in HPG-axis

concentrations, we conducted post hoc paired-sample Wilcoxon

signed rank tests (statannot 0.2.3), which controlled for the non-

normality of underlying HPG-axis hormone concentration distribu-

tions. Differences were considered significant if they met a

Bonferroni-adjusted p-value of p < .0167 (p = .05/3 sessions).

Next, we tested whether: (1) HPG-axis hormone concentration

levels are associated with changes in WM diffusion tensor size-

shape-orientation parameters at the whole brain and region-specific

levels, (2) HPG-axis hormone concentration levels are associated with

changes in CT at the whole brain and region-specific levels, and

(3) HPG-axis hormone concentration levels are associated with

changes in brain volume. To test these relationships, we conducted

Bayesian hierarchical regression models to assess whether partici-

pants' HPG-axis hormone concentration values were related to their

respective WM diffusion, CT, and volumetric measures across all

three sessions. We sampled posterior distributions using No U-Turn

sampling Hamiltonian Monte Carlo, implemented with the PyMC3

package (Salvatier et al., 2016). After tuning the sampler's step size to

an acceptance level of 0.95, posteriors were sampled in four parallel

chains of 10,000 samples (40,000 total) with an additional initial 5000

samples per chain (tuning samples were then discarded). We required

that no chain contain any divergences and that no posterior's R value

(the ratio of variance within chains to the variance of pooled chains)

would be greater than 1. We then calculated highest density intervals

(HDIs; the Bayesian equivalent of a confidence interval) using the

default settings (i.e., 94% density) in the arviz package (Kumar

et al., 2019). Tables outlining the models described below can be

found in the Supplementary Information.

In order to test the first two questions, 28 total models were run:

24 WM diffusion-hormone models (6 diffusion measures [Diso, Vison,

Danison, μFA, FA, OP] � 4 hormones [17β-estradiol, progesterone, LH,

FSH]), and 4 CT-hormone models (CT � [17β-estradiol, progesterone,

LH, FSH]). We first separately z-score normalized the brain measures

across sessions within each region for each participant, and z-score

normalized the HPG-axis hormone concentrations across sessions

within each participant. We then fitted a hierarchical model, with the

lowest level (Level 1) sampling β0n,r and β1n,r regression coefficient

posteriors at each brain region r for each participant n. This level

allowed for the testing of region-specific brain–hormone relationships

for each individual participant. The next level of the hierarchy (Level

2) constrained the distributions of β0n,r and β1n,r to be drawn from

group-level (across all participants) Gaussian distributions, that is,

β0n,r � N(μβ0(r),σβ0(r)) and β1n,r � N(μβ1(r),σβ1(r)). Here, the group-level

μβ1(r) parameter posterior reflects the expected value of the brain–

hormone relationship at the whole-group level within a region r, while

σβ1(r) reflects the variation in this relationship across participants at

that region, that is, “shrinkage.” The next layer of the hierarchy (Level

3) accounted for whole brain effects at the group level by constraining

μ(r) and σ(r) parameters to be drawn from hierarchical Gaussian distri-

butions, that is, μ(r) � N(Mμ,Σμ) and σ(r) � N(Mσ,Σσ). Here, the group-

level Mu(β1) parameter reflects the expected value of the whole brain

(across all regions) brain–hormone relationship across all participants,

while Mσ(β1) reflects the average whole-brain shrinkage (i.e., the

F IGURE 2 Multidimensional diffusion parameter maps averaged
across all 30 participants. Top row: Diso (left) is greater (brighter) in
regions of greater isotropic (free water) diffusion, such as within

ventricles. In contrast, Vison (middle) is lower (darker) in the ventricles
due to the uniform lack of restriction on isotropic diffusion, leading to
lower variety in diffusion tensor size. D2

anison (right) is greater in the
white matter (WM) due to increased anisotropy, similarly to measures
of fractional anisotropy (FA). Bottom row: micro-fractional anisotropy
(μFA, left) remains high in WM regions with crossing fibers (lower
orientation parameter [OP] values, right), while FA (middle) decreases
in regions where OP is low.
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variation in this relationship across participants). M and Σ parameters

were respectively constrained with uninformative Gaussian (μ � N

(0,1)) and half-Gaussian (σ�halfN(1)) priors. This modeling framework

allowed us to assess credible relationships for both specific regions

and for the whole brain within the same model.

To assess credible relationships at the region-specific level (Level

2), we first computed a deterministic posterior (dr), which scaled the

expected value by the shrinkage, that is, μβ1/σβ1. For whole-brain

effects (Level 3), we computed another deterministic posterior (D),

which was the average whole brain (across all regions) brain–hormone

relationship at the group level, scaled by the average shrinkage (varia-

tion across participants) of this relationship, that is, Mu(β1)/Mσ(β1). We

then considered relationships credible if the HDI of posteriors dr or

D exceeded the region of practical equivalences (ROPEs; Makowski

et al., 2019) determined with null-generative simulations using identi-

cal data structure (i.e., 34 regions for WM diffusion or 31 regions for

CT, 30 participants, 3 sessions, variables drawn from a z-distribution;

see Supplementary Information). For the 24 WM diffusion-hormone

models and 4 CT-hormone models that were run, these ROPEs were

respectively (�0.35 to 0.35) for dr posteriors and (�0.06 to 0.06) for

D posteriors.

Finally, for the third question, we tested whether HPG-axis hor-

mones are associated with changes in total brain volume, tissue vol-

ume, and CSF volume. In order to examine brain volume-hormone

relationships, 12 models (3 volume measures [total brain, tissue,

CSF] � 4 hormones [17β-estradiol, progesterone, LH, FSH]) were run.

As before, we z-score normalized the brain measures across sessions

for each participant and normalized the HPG-axis hormone measures

across sessions within each participant. For these volume-hormone

models, “regions” are not defined as atlas ROIs, but as our three

whole-brain volumetric areas of interest (total brain, tissue, and CSF)

obtained via ANTs brain segmentation. These volume-hormone

models featured nearly the same structure as the previously described

WM diffusion-hormone and CT-hormone models; yet, there was no

bottom layer associated with individual brain regions. Unlike previous

models, each model only examined relationships within one volumet-

ric brain area and did not calculate whole brain effects as an aggregate

of individual regions. Instead, the lowest level (Level 1) sampled β0n

and β1n parameter posteriors at a singular brain volumetric area

(whole brain, tissue, CSF) for each participant n, and the second level

(Level 2) constrained these distributions to be drawn from group-level

Gaussian distributions, that is, β0n � N(μβ0, σβ0) and β1n � N(μβ1, σβ1).

As before, the group-level μβ1 parameter posterior reflects the

expected value of the group-level brain–hormone relationship within

the brain volumetric area, while σβ1 reflects variation in this relation-

ship across individuals at in that area, that is, “shrinkage.” μ and σ

parameters were respectively constrained with uninformative Gauss-

ian (μ � N(0,1)) and half-Gaussian (σ�halfN(1)) priors. As before, we

assessed relationships by computing a deterministic posterior (D),

which scaled the expected value by the shrinkage, that is, μβ1/σβ1.

Here, we imposed a ROPE of (�0.35 to 0.35) for D posteriors, deter-

mined with null-generative simulations using identical data structure

(1 brain volumetric area, 30 participants, 3 sessions, variables drawn

from a z-distribution).

3 | RESULTS

3.1 | HPG-axis hormone concentrations

In the first step of our analyses, we verified that HPG-axis hormone

concentrations varied across the three experimental sessions coincid-

ing with estimated menstrual cycle phases (menses, ovulation, and

mid-luteal). For our study population, group mean participant cycle

length (average across all tracked cycles for a given participant) was

31.20 days (range = 24.44–43.82). A summary of median HPG-axis

hormone concentration values by estimated phase can be found in

Table 1. We confirmed that, across estimated cycle phases, HPG-axis

hormone concentrations significantly (p < .05) varied: 17β-estradiol

(F = 40.20, p < .001, η2 = .47), progesterone (F = 65.93, p < .001,

η2 = .61), LH (F = 38.65, p < .001, η2 = .47), and FSH (F = 47.69,

p < .001, η2 = .48).

Post-hoc paired Wilcoxon signed-rank tests found that within-

subject group-level differences in HPG-axis hormone concentration

levels were consistent with known patterns of HPG-axis hormone

fluctuations across a typical menstrual cycle in young, naturally cycling

women (Stricker et al., 2006). Significance was defined according to a

Bonferroni-adjusted p-value of p < .0167 (p = .05/3 sessions). Over-

all, we observed a group-level pattern of moderate levels of FSH and

relatively low concentrations of 17β-estradiol, progesterone, and LH

during menses sessions, relatively high concentrations of

17β-estradiol, LH, and FSH during ovulation sessions, and relatively

high concentrations of progesterone/moderate concentrations of

17β-estradiol during mid-luteal sessions. Specifically, 17β-estradiol

concentrations (Figure 3a) were significantly greater during the ovula-

tion and mid-luteal sessions when compared with menses (p < .0001),

while the difference between ovulation and mid-luteal sessions did

not pass the Bonferroni-adjusted p-value (p = .028). Progesterone

concentrations (Figure 3b) were significantly greater during the mid-

luteal session when compared with ovulation and menses, as well as

during the ovulation session when compared with menses (p < .0001).

LH concentrations (Figure 3c) were greater during the ovulation ses-

sion when compared with both menses and mid-luteal sessions

(p < .0001); menses and mid-luteal sessions did not significantly differ

(p = .62). Similarly, FSH concentrations (Figure 3d) were greater dur-

ing the ovulation session when compared with both menses (p < .001)

and mid-luteal (p < .0001) sessions, while menses was found to have

greater concentrations when compared with the mid-luteal session

(p < .0001).

3.2 | HPG-axis hormone and WM microstructure
relationships

Next, we tested if HPG-axis hormone concentrations (17β-estradiol,

progesterone, LH, FSH) are associated with six WM multidimen-

sional diffusion parameters that describe aspects of diffusion tensor

size (mean isotropic diffusivity size [Diso], variation in isotropic diffu-

sivity size [Vison]), shape (mean squared anisotropy [D2
anison], μFA,

FA), and orientation (OP). Note that tables report unadjusted
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regression coefficients (β weights), while relationships were only

considered credible (positive or negative) if an estimate of effect size

(i.e., shrinkage-adjusted coefficients) for whole brain (D) or region-

specific relationships (dr) exceeded defined regions of practical

equivalence (ROPEs; D: [�0.06 to 0.06], dr: [�0.35 to 0.35]; see

Section 2.7).

TABLE 1 Median values of group serum HPG-axis hormone concentrations by session type.

Session 17β-estradiol (pg/mL) Progesterone (ng/mL) LH (mIU/mL) FSH (mIU/mL)

Menses 26.0 (17.25, 31.0) 0.09 (0.07, 0.18) 4.64 (3.06, 6.26) 5.88 (4.56, 7.09)

Ovulation 200.0 (125.0, 267.5) 0.65 (0.53, 1.06) 43.69 (21.21, 59.96) 9.81 (6.15, 13.54)

Mid-luteal 125.0 (83.25,167.5) 11.0 (5.48, 17.25) 4.67 (2.33, 9.72) 2.70 (2.10, 3.94)

Note: Values in table are reported as median (Q1,Q3).

Abbreviations: FSH, follicle-stimulating hormone; HPG, hypothalamic–pituitary-gonadal; LH, luteinizing hormone.

F IGURE 3 Variation in hypothalamic–pituitary–gonadal axis hormone concentrations across three experimental scanning sessions coinciding
with estimated menstrual cycle phases (N = 30). One-way ANOVAs found significant estimated phase on hormone concentration effects for all
four hormones studied (p < .001). Significant differences in within-subject hormone concentrations between sessions ([a]: 17β-estradiol, [b]:
progesterone, [c]: LH, [d]: FSH) were determined by Wilcoxon signed-rank tests and defined with a Bonferroni-adjusted p < .0167. *** indicates
p < .001, **** indicates p < .0001, ns indicates no significance found. Gray points indicate individual participant values. FSH, follicle-stimulating
hormone; LH, luteinizing hormone.
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3.2.1 | Whole brain

Beginning with credible relationships across the whole brain (Table 2),

hierarchical Bayesian regression models found that whole-brain rela-

tionships between WM diffusion parameters and hormones differed

depending on whether we were examining associations with diffusion

tensor size, shape, or orientation.

With parameters related to size (Table 2), we first observed that

Diso (a measure of isotropic diffusivity size and index of MD) was posi-

tively associated with progesterone concentrations (β1 = 0.258,

D = 0.593, HDI = [0.46, 0.732]), and negatively associated with LH

and FSH (LH: β1 = �0.211, D = �0.516, HDI = [�0.648, �0.397];

FSH: β1 = �0.299, D = �0.796, HDI = [�1.001, �0.619]). Mean-

while Vison (variation in isotropic diffusivity size) was positively

associated with 17β-estradiol and LH (17β-estradiol: β1 = 0.132,

D = 0.311, HDI = [0.209, 0.419]; LH: β1 = 0.085 D = 0.193, HDI =

[0.097, 0.288]). No other relationships credibly exceeded the ROPE.

Overall, these results indicate that the mean size of isotropic diffusiv-

ity (MD) demonstrated both positive (progesterone) and negative (LH,

FSH) relationships with hormone concentrations, while variation in

the size of isotropic diffusivity exhibited positive relationships with

17β-estradiol and LH.

Next, with parameters related to shape (Table 2), we first

observed that D2
anison (a measure of mean squared anisotropy) was

positively associated with 17β-estradiol, LH, and progesterone (17β-

estradiol: β1 = 0.182, D = 0.381, HDI = [0.289, 0.48]; LH:

β1 = 0.115, D = 0.293, HDI = [0.182, 0.405], progesterone:

β1 = 0.090, D = 0.162, HDI = [0.081, 0.247]). Meanwhile, μFA was

positively associated with 17β-estradiol and LH (17β-estradiol:

β1 = 0.145, D = 0.305, HDI = [0.211, 0.4]; LH: β1 = 0.111,

D = 0.261, HDI = [0.157, 0.364]). In contrast, progesterone was posi-

tively associated with conventional FA (β1 = 0.105, D = 0.219,

HDI = [0.121, 0.322]). All other relationships did not credibly exceed

the ROPE. Overall, these results indicate that multidimensional diffu-

sion parameters that assess diffusion tensor shape (D2
anison and μFA)

exhibited positive relationships with 17β-estradiol and LH, similar to

the pattern observed above for the size parameter Vison. Interestingly,

progesterone holds a positive relationship with conventional FA,

another measure of diffusion tensor shape, highlighting a discrepancy

between what these anisotropy parameters may represent. Finally,

with parameters related to orientation (OP), we observed no credible

associations (Table 2).

3.2.2 | Region-specific

We next tested relationships between HPG-axis hormone concentra-

tions and WM diffusion parameters at the region-specific level within

the same hierarchical Bayesian regression models (Table 2). Overall,

only the size parameter Diso (index of MD) was credibly associated

with hormone concentrations at the regional level (Figure 4). More

specifically, concentrations of progesterone and FSH were associated

with Diso in multiple regions, but in opposing directions. FSH

(Figure 4, top row) was negatively associated with Diso in 17 regions;

in seven of those, progesterone (Figure 4, bottom row) was also posi-

tively associated with Diso (corpus callosum forceps major, corpus cal-

losum tapetum, fornix, frontal parahippocampal cingulum, optic

radiation, posterior corticostriatal tract, posterior thalamic radiation).

In all credible regions, region-specific relationships trended in the

same direction as the respective whole-brain effects (i.e., FSH: nega-

tive, progesterone: positive). No credible region-specific relationships

were observed between any hormones and either shape or orienta-

tion WM diffusion parameters. These results indicate that, in several

overlapping regions across the brain, progesterone and FSH concen-

trations had opposing influence uniquely on size parameters, that is,

they exhibited opposing relationships with MD. Further region-

specific visualization of relationships between hormone estimates and

TABLE 2 Whole-brain beta weights and credibility tests for all
white matter diffusion hierarchical Bayesian regression models.

Relationship β1 D HDI of D

Diso–17β-estradiol �0.055 �0.123 [�0.22, �0.031]

Diso–progesterone 0.258a,b 0.593 [0.46, 0.732]

Diso–LH �0.211a �0.516 [�0.648, �0.397]

Diso–FSH �0.299a,b �0.796 [�1.001, �0.619]

Vison–17β-estradiol 0.132a 0.311 [0.209, 0.419]

Vison–progesterone �0.043 �0.074 [�0.155, 0.003]

Vison–LH 0.085a 0.193 [0.097, 0.288]

Vison–FSH 0.056 0.105 [0.025, 0.189]

D2
anison–17β-estradiol 0.182a 0.381 [0.289, 0.48]

D2
anison–progesterone 0.090a 0.162 [0.081, 0.247]

D2
anison–LH 0.115a 0.293 [0.182, 0.405]

D2
anison–FSH 0 0.001 [�0.093, 0.095]

μFA–17β-estradiol 0.145a 0.305 [0.211, 0.4]

μFA–progesterone 0 0 [�0.082, 0.082]

μFA–LH 0.111a 0.261 [0.157, 0.364]

μFA–FSH 0.065 0.132 [0.04, 0.219]

FA–17β-estradiol 0.052 0.090 [0.012, 0.167]

FA–progesterone 0.105a 0.219 [0.121, 0.322]

FA–LH 0.027 0.049 [�0.031, 0.133]

FA–FSH �0.045 �0.093 [�0.179, 0]

OP–17β-estradiol �0.005 �0.010 [�0.095, 0.071]

OP–progesterone 0.043 0.086 [�0.001, 0.178]

OP–LH 0.030 0.067 [�0.027, 0.163]

OP–FSH 0.026 0.056 [�0.037, 0.152]

aA credible whole brain relationship (HDI of D lies outside of the ROPE

[�0.06–0.06]).
bCredible relationships at the region-specific level (HDI of dr lies outside of

the ROPE [�0.35–0.35] for at least one region). Beta weights and

credibility tests for individual region Diso-FSH and Diso-progesterone

relationships are located in Tables S1 and S2.

Abbreviations: FA, fractional anisotropy; FSH, follicle-stimulating

hormone; HDI, highest density interval; LH, luteinizing hormone; OP,

orientation parameter; ROPE, region of practical equivalence; μFA, micro-

fractional anisotropy. Credible/significant results are shown in bold values.
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Diso are provided in the Supplementary Information (Figures S1 and

S2 and Tables S1 and S2).

3.3 | HPG-axis hormone and CT relationships

We next tested whether changes in HPG-axis hormone concentra-

tions (17β-estradiol, progesterone, LH, FSH) are associated with

changes in mean ROI GM CT estimates derived from T1-MPRAGE

images. Again, relationships were only considered credible (positive or

negative) if an estimate of effect size (i.e., shrinkage-adjusted coeffi-

cients) for whole brain (D) or region-specific relationships (dr)

exceeded defined regions of practical equivalence (ROPEs; D: [�0.06

to 0.06], dr: [�0.35 to 0.35]; see Section 2.7).

3.3.1 | Whole brain

Beginning again with credible relationships across the whole brain

(Table 3), hierarchical Bayesian regression models found that whole

brain CT was uniquely associated with FSH (β1 = 0 .162, D = 0.395,

HDI = [0.115, 0.678]). Progesterone trended toward a negative rela-

tionship with CT, but the relationship did not reach the criteria for

F IGURE 4 White matter regions where follicle-stimulating hormone (FSH)–Diso (top row) and progesterone–Diso (bottom row) relationships
are credible (N = 30). Top row: Blue indicates the 17 regions where within-subject increases in FSH concentrations were credibly associated with
a decrease in mean region Diso (an index of mean diffusivity [MD]) across the three sessions (negative relationship). Across the whole brain, FSH
and luteinizing hormone (LH) concentrations were credibly negatively associated with Diso (LH not credible at the region-specific level). Bottom
row: Red indicates the 7 regions where within-subject increases in progesterone concentrations were credibly associated with an increase in
mean region Diso across the three sessions (positive relationship). Across the whole brain, progesterone concentrations were also credibly
positively associated with Diso. Both FSH and progesterone were associated with changes in Diso in seven shared regions (corpus callosum forceps
major, corpus callosum tapetum, fornix, frontal parahippocampal cingulum, optic radiation, posterior corticostriatal tract, posterior thalamic
radiation), but in opposing directions matching their respective whole-brain trends (FSH: negative, progesterone: positive).

TABLE 3 Whole-brain beta weights and credibility tests for all
cortical thickness (CT) hierarchical Bayesian regression models.

Relationship β1 D HDI of D

CT–17β-estradiol 0.065 0.191 [0.059, 0.325]

CT–progesterone �0.099a �0.197 [�0.453, 0.066]

CT–LH 0.071 0.198 [0.006, 0.401]

CT–FSH 0.162a,b 0.395 [0.115, 0.678]

aA credible whole brain relationship (HDI of D lies outside of the ROPE

[�0.06–0.06]).
bCredible relationships at the region level (HDI of dr lies outside of the

ROPE [�0.35–0.35] for at least one region). Beta weights and credibility

tests for individual region CT-FSH and CT-progesterone relationships are

located in Supplementary Tables S3 and S4.

Abbreviations: FSH, follicle-stimulating hormone; HDI, highest density

interval; LH, luteinizing hormone; ROPE, region of practical equivalence.

Credible/significant results are shown in bold values.
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credibility (β1 = �0.099, D = �0.197, HDI = [�0.453, 0.066]). We

did not observe credible wholebrain relationships for any of the other

considered hormones.

3.3.2 | Region-specific

We tested relationships between hormones and CT at the region-

specific level within the same hierarchical Bayesian regression models

(Table 3). Overall, CT was associated with both progesterone and FSH

at the region-specific level.

More specifically, FSH was positively associated with CT in eight

regions (Figure 5, top row). Progesterone was also associated with CT

in eight regions (Figure 5, bottom row), but the relationship between

progesterone and CT associations did not always follow its negative

whole brain trend. Progesterone was negatively associated with CT in

six regions, and positively associated with CT in two regions.

Both FSH and progesterone exhibited relationships with CT in six

shared regions (fusiform gyrus, isthmus cingulate, lateral orbitofrontal

gyrus, lingual gyrus, parahippocampal gyrus, and pericalcarine cortex);

in each of these regions with shared FSH and progesterone influences

over CT, relationships trended in opposite directions from each other.

We did not observe any credible region-specific relationships

between CT and either 17β-estradiol or LH. Based on these results,

we observed that FSH and progesterone were associated with CT in

opposite directions within several overlapping regions, similarly to the

region-specific pattern observed for the WM parameter, Diso (MD).

However, unlike what was found in the WM, region-specific relation-

ships between progesterone and CT sometimes deviated from the

relationships seen at the whole brain level. Further region-specific

visualization of relationships between hormone estimates and CT are

provided in the Supplementary Information (Figures S3 and S4 and

Tables S3 and S4).

3.4 | HPG-axis hormone and brain volume
relationships

We finally tested whether changes in HPG-axis hormone concentra-

tions (17β-estradiol, progesterone, LH, FSH) are associated with

within-subject changes in total brain volume, tissue volume, and CSF

volume (Table 4). Note that in this case, there was no layer to the

F IGURE 5 Cortical regions where follicle-stimulating hormone (FSH)-cortical thickness–(CT, top row) and progesterone-CT (bottom row)
relationships are credible (N = 30). Top row: Red indicates regions where within-subject increases in FSH concentrations were credibly associated
with an increase in mean region CT across the three sessions (positive relationship). These regions include the fusiform gyrus, isthmus cingulate,
lateral occipital gyrus, lateral orbitofrontal gyrus, lingual gyrus, parahippocampal gyrus, pericalcarine cortex, and the precuneus. Across the whole
brain, FSH concentrations were credibly positively associated with CT. Bottom row: Blue indicates regions where within-subject increases in
progesterone concentrations were credibly associated with a decrease in mean region CT across the three sessions (negative relationship).
Positive FSH–CT relationships were also credible for these areas. These regions include the fusiform gyrus, isthmus cingulate, lateral orbitofrontal
gyrus, lingual gyrus, parahippocampal gyrus, and the pericalcarine cortex. Red indicates regions where progesterone was credibly associated with
an increase in CT (positive relationship). These regions include the precentral gyrus and the superior parietal lobule.
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hierarchical model associated with individual brain regions, such that

each variable here relates to a whole brain measure of a volumetric

area. These whole-brain relationships were considered credible (posi-

tive or negative) if an estimate of effect size (i.e., shrinkage-adjusted

coefficients, or D) exceeded a defined ROPE which is equivalent to

that of a single region in the previous models (�0.35 to 0.35).

Hierarchical Bayesian regression models found that progesterone

was credibly positively associated with tissue volume (β1 = 0.66,

D = 2.616, HDI = [0.607, 15.845]) and negatively associated with

CSF volume (β1 = �0.749, D = �2.709, HDI = [�11.604, �0.903]);

no other hormones exhibited relationships with tissue or CSF vol-

umes. We did not observe credible total brain volume relationships

for any of the considered hormones.

4 | DISCUSSION

In the current study, we tested whether menstrual cycle-driven

HPG-axis hormone concentrations in 30 naturally cycling women are

associated with within-subject WM microstructural, GM CT, and brain

volume changes at both whole brain and region-specific levels.

Group-level HPG-axis hormone concentrations measured during three

estimated phases of the menstrual cycle (menses, ovulation, and mid-

luteal) were confirmed to fluctuate in accordance with expected

values (Stricker et al., 2006). 17β-estradiol, LH, and FSH (hormones

that peak during ovulation) were associated with increased whole

brain WM microstructural anisotropy (μFA), whole-brain variation in

isotropic diffusion tensor size, and whole brain and region-specific CT

(FSH only), as well as decreased whole brain and region-specific iso-

tropic diffusion (Diso, from here on referred to as “mean diffusivity”
[MD]). In contrast, progesterone (which peaks during the luteal phase)

was associated with increased MD at both the whole brain

and region-specific levels, increased and decreased region-specific CT,

and increased tissue/decreased CSF volume.

4.1 | HPG-axis hormones and WM microstructure

While recent work has identified menstrual cycle-related structural

changes in singular regions such as the hypothalamus, hippocampus,

and fornix, the current study is the first to report widespread WM

microstructural changes associated with cycle-driven hormone fluctu-

ations (Baroncini et al., 2010; Barth et al., 2016; De Bondt, Van

Hecke, et al., 2013; Protopopescu et al., 2008). Our results suggest a

global decrease in freely diffusing WM water when FSH is elevated,

likely during the follicular and ovulatory phases. The ovulatory phase

is also likely marked by increased anisotropic diffusion and variation in

tensor size, which correlate with high 17β-estradiol and LH levels.

With increased progesterone levels, likely during the luteal phase, we

then see a global increase in freely diffusing WM water and tissue vol-

ume. While FSH and progesterone-associated changes in MD were

credible at the region-specific level, HPG-axis hormone-associated

fluctuations in anisotropy and MD identified here were overall not

restricted to singular WM bundles.

Previous work has identified 17β-estradiol-associated increases in

hippocampal FA and 17β-estradiol/LH-associated decreases in fornix

MD in naturally cycling women (Barth et al., 2016; De Bondt, Van

Hecke, et al., 2013). Similarly, our results suggest an ovulatory hor-

mone (17β-estradiol and LH)-associated pattern of increased anisot-

ropy, as well as decreased limbic system MD. On the other hand,

progesterone was found to be positively associated with

MD. Şafak, 2019 observed increased apparent diffusion coefficients

(diffusivity) across the whole brain in the luteal (high progesterone)

vs. follicular (low progesterone) phases, though the results were not

TABLE 4 Beta weights and
credibility tests for all brain volume
hierarchical Bayesian regression models.

Relationship β1 D HDI of D

Total brain volume–17β-estradiol 0.111 0.341 [�0.774, 2.332]

Total brain volume–progesterone �0.053 �0.101 [�0.625, 0.434]

Total brain volume–LH 0.081 0.173 [�0.471, 0.86]

Total brain volume–FSH 0.066 0.167 [�0.655, 1.239]

Tissue volume–17β-estradiol 0.279 2.203 [�0.461, 20.52]

Tissue volume–progesterone 0.660a 2.616 [0.607, 15.845]

Tissue volume–LH �0.193 �1.058 [�10.497, 1.008]

Tissue volume–FSH �0.452 �1.366 [�6.281, �0.14]

Cerebrospinal fluid–17β-estradiol �0.292 �2.631 [�24.278, 0.535]

Cerebrospinal fluid–progesterone �0.749a �2.709 [�11.604, �0.903]

Cerebrospinal fluid–LH 0.183 1.262 [�1.205, 11.979]

Cerebrospinal fluid–FSH 0.484 1.907 [0.18, 12.87]

aCredible relationships at the whole brain volumetric area level (HDI of D lies outside of the ROPE

[�0.35–0.35]).
Abbreviations: FSH, follicle-stimulating hormone; HDI, highest density interval; LH, luteinizing hormone;

ROPE, region of practical equivalence. Credible/significant results are shown in bold values.
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statistically significant. In the current study, progesterone was para-

doxically found to also increase with FA (a ratio of anisotropy/isot-

ropy). FA's known sensitivity to factors outside of cell microstructure,

such as fiber orientation, may explain this discrepancy (Volz

et al., 2018). While FA may provide adequate representation of WM

microstructure in isolated tracts with parallel bundles, track-specific

changes in FA in this study and others may be compromised when

investigating across the whole brain due to potential interactions

between WM structural changes and crossing fiber anatomy. Our

whole brain volume observations provide context to this finding. The

observed positive relationship between progesterone and tissue vol-

ume contained within a static total brain volume would cause this tis-

sue to expand into the ventricles, leading to the observed decrease in

CSF volume. This change may cause displacement of crossing fiber

locations within the WM, thus inducing spurious alterations in FA

values. A previous study of seven individuals across the cycle also

identified an inverse relationship between tissue (in their case, GM)

and CSF volumes, albeit with conflicting results (progesterone nega-

tively associated with GM volume and positively associated with CSF

volume; Hagemann et al., 2011). Differing image processing methods

and individual differences in brain–hormone relationships may

account for this discrepancy; future investigations are needed with

larger and more diverse cohorts.

4.2 | Potential mechanisms of HPG-axis hormone-
associated WM microstructural changes

While the mechanism driving cycle-dependent changes in diffusion

parameters across the whole brain are unknown, here we consider a

few putative mechanisms. Both estradiol and progesterone are impli-

cated in the upregulation of cell myelination and myelin repair

(Arevalo et al., 2010; Schumacher et al., 2012). Yet, this study found

that 17β-estradiol was associated with increased anisotropy (often

claimed to represent increased WM “integrity”/myelination), while

progesterone was associated with increased diffusivity. Due to the

limited resolution of diffusion imaging, these parameters are sensitive

to changes in several factors, including myelin content, axon density

(Friedrich et al., 2020), and interstitial/extracellular fluid volume, mak-

ing it difficult to pinpoint exactly which factor is contributing to these

diffusion property changes.

The molecular, physiologic, and anatomic effects of HPG-axis hor-

mones are widespread, targeting astrocytes, microglia, and NMDA

receptors, among other sites (Brann et al., 2007). Therefore, it is

unlikely that only one mechanism describes the brain–hormone rela-

tionships observed with MRI. Here we consider one potential factor

that is directly related to our primary MRI measure (water diffusion):

aquaporin-4 (AQP4). APQ4 is a water channel ubiquitous in astrocyte

end feet located on brain capillaries (Wardlaw et al., 2020). AQP4 is

implicated in facilitating water movement between perivascular

spaces (Virchow-Robin spaces) and the interstitial fluid, rendering its

role integral for maintaining brain water and ion homeostasis, a pro-

cess especially apparent during post-injury edema formation (Sun

et al., 2007; Wardlaw et al., 2020). Rodent studies have identified

inhibitory effects of estradiol on AQP4; for example, estradiol treat-

ment was found to prevent AQP4 expression after a rodent model of

ischemic brain edema formation was induced (Shin et al., 2011). In

contrast, progesterone has been implicated in counteracting estra-

diol's inhibitory effects on brain water accumulation (Soltani

et al., 2016), a mechanism that may underlie our observed positive

relationship between progesterone and MD. Yet, while HPG-axis hor-

mones have been linked to aquaporin functioning in human reproduc-

tive organs, the link between AQP4 and HPG-axis hormones in the

human brain is largely unknown and requires further study (He

et al., 2006).

4.3 | HPG-axis hormones and CT

With regard to CT, exogenous (e.g., via oral contraceptives) and

endogenous changes in HPG-axis hormone concentrations have been

associated with alterations in region-specific cortical and subcortical

GM morphology (Hoekzema et al., 2017; Lisofsky et al., 2016;

Paternina-Die et al., 2024; Petersen et al., 2015; Taylor et al., 2020;

Zsido et al., 2023). This study is the first, to our knowledge, to report

widespread CT changes directly correlated with HPG-axis hormone

concentration fluctuations across the whole brain. FSH was associ-

ated with increased CT and progesterone was associated with

decreased CT within several shared regions, including the parahippo-

campal and fusiform gyri. Similarly, previous work has identified

increased cortical GM volume in the right fusiform and parahippocam-

pal gyri, as well as increased left hemisphere CT, in the early follicular

(i.e., preovulatory, low progesterone) vs. luteal (high progesterone)

phases (Meeker et al., 2020; Pletzer et al., 2010). Additionally, 17β-

estradiol (typically low during the early follicular phase and elevated

during the luteal phase) has been negatively associated with anterior

cingulate cortex GM volume (De Bondt, Jacquemyn, et al., 2013). Our

finding that progesterone is associated with both increased and

decreased CT suggests that the directionality of HPG-axis hormone-

GM morphology relationships may vary widely across regions. While

most previous work has observed decreased regional GM CT or vol-

ume during the luteal phase, a study assessing amygdala morphology

found increased GM volume during the luteal phase, implicating that

GM volume fluctuation patterns may vary by region (Ossewaarde

et al., 2013). Within the MTL, cycle-driven progesterone-GM volume

relationship directionality has varied across subregions (Taylor

et al., 2020; Zsido et al., 2023). In our findings, we see that the differ-

ence in progesterone–CT relationship valence lies between more

superior motor/parietal (positive association) and more inferior orbito-

frontal/occipital/limbic (negative association) regions. One potential

cause could be the heterogeneity of 17β-estradiol and progesterone

hormone receptor locations across the brain, with known dense con-

centrations in prefrontal, subcortical, cerebellar, and limbic regions

(Barth et al., 2015). Another factor to consider is regional differences

in the biomechanical alteration of brain tissue (compression, stretch-

ing, etc.) in response to whole-brain morphological shifts (Prange &
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Margulies, 2002). Based on these results, brain–HPG-axis hormone

relationships should not be assumed to be uniform across all regions.

4.4 | Potential mechanisms of HPG-axis hormone-
associated CT changes

The observed cycle-associated changes in CT may be due to a variety

of factors. Neuromodulatory factors beyond synaptic transmission,

such as 17β-estradiol, have been shown to increase astrocytic Ca2+

and lead to neural activity-independent slow modulation of cerebral

blood flow (Iadecola & Nedergaard, 2007). Additionally, arterial spin

labeling MRI has identified increased frontal pole cerebral blood flow

during the follicular phase, albeit with a very small sample of women

(Otomo et al., 2020). Thus, the observed changes in CT may be due to

hormone-driven alterations in cerebral blood flow. However, HPG-

axis hormone-associated volumetric changes in the MTL have been

found to be independent of cerebral blood flow (Zsido et al., 2023),

casting doubt on this explanation. Rodent studies have identified rapid

(timescale of hours to days) estradiol and progesterone-mediated

changes in hippocampal cell spine/synapse density (Woolley &

McEwen, 1993). Additionally, hormone treatment with estradiol has

been found to increase prefrontal cortex spine number and density in

nonhuman primates (Hao et al., 2006; Tang et al., 2004), though some

investigations failed to observe this effect (Young et al., 2013). Future

investigations are needed to determine whether human menstrual

cycle-driven changes in CT reflect short-term changes in synaptic

plasticity, and why brain–hormone relationships may vary across cor-

tical and subcortical regions.

4.5 | Behavioral, functional, and clinical
implications

Although we do not currently report functional consequences or cor-

relates of structural brain changes, our findings may have implications

for hormone-driven alterations in behavior and cognition. Notably,

our results point to FSH vs. progesterone-associated opposing effects

(MD and CT) in several shared WM and GM regions. These identified

regions are mainly limbic (fornix, parahippocampal gyrus, cingulate)

and temporo-occipital (fusiform and lingual gyri, pericalcarine cortex,

optic radiation, posterior thalamic and corticostriatal tracts). Within

our sample, FSH was the only hormone that exhibited moderate

values during the menses (early follicular) session. Thus, our observed

structural changes may be due to a preovulatory/early follicular (mod-

erate FSH) versus postovulatory/luteal (high progesterone) “seesaw”
effect, or may be directly linked to FSH and progesterone values. A

wide body of evidence supports the idea that progesterone is

a powerful modulator of limbic structures, rapidly altering hippocam-

pal subfield structure (Taylor et al., 2020; Woolley & McEwen, 1993)

and exhibiting paradoxical anxiolytic (Frye et al., 2006) and negative

affect-promoting properties through action on GABA-A receptors

(Bäckström et al., 2011). Additionally, progesterone has been linked to

changes in network dynamics outside of the limbic system (Arélin

et al., 2015; Pritschet et al., 2020; Syan et al., 2017). Along with these

findings, our results support the notion that progesterone not only

acts on the limbic system, but also on structural and functional net-

works across the whole brain. While progesterone has been more

widely studied, very little is known about how endogenous FSH

affects the human brain in young women. Network analyses of a sin-

gle woman's menstrual cycle found that pituitary gonadotropin

(LH and FSH) concentrations were coupled with network community

frequency (Greenwell et al., 2023); however, future investigations are

needed to assess this finding across populations. Our findings that

FSH is associated with significant GM and WM structural changes

highlights the need for further study of pituitary gonadotropins and

the mechanisms that underlie their action on the human brain. The

current study did not directly link changes in WM microstructure or

CT to behavioral outcomes. Yet, network neuroscience has identified

interdependence between anatomical and functional network proper-

ties (Bullmore & Sporns, 2009). Our reported widespread alterations

in regional WM and GM structural properties, which span across ana-

tomical networks, may couple with significant changes in brain net-

work function. These changes could underlie the significant

behavioral and symptomological fluctuations commonly experienced

across the cycle. Finally, our results suggest that HPG-axis hormones

may be significant modulators of whole brain water dynamics and

WM cell architecture. Understanding how HPG-axis hormones may

affect water diffusion measures in humans could have significant clini-

cal implications. For example, sex and age differences in post-brain

injury outcomes could be explained by differing hormonal effects on

the brain injury response, such as brain water accumulation (Gupte

et al., 2019). Our findings prompt the need to incorporate measures

of WM tissue structure into future studies of HPG-axis hormone

fluctuations.

4.6 | Limitations and future considerations

While this study has significant strengths due to its within-subject

design and reliable brain measures, several limitations exist. Data were

only sampled at three time points/participant, providing sparse sam-

pling to our regression model and leaving out associations that occur

during the other days of the menstrual cycle. We estimated schedul-

ing of the ovulation and luteal sessions through at-home ovulation

tests, which can be positive across multiple days, or, for some individ-

uals, never reach the “positive” threshold as defined by the test man-

ufacturer. Because of this, ovulation and mid-luteal sessions may not

have captured the exact ovulation or mid-luteal day for all partici-

pants. Despite this, significant fluctuations in HPG-axis hormones

were captured, allowing us to achieve the primary aim of associating

brain measures with HPG-axis hormone concentrations (as opposed

to cycle phase). Future dense-sampling studies are needed to fill these

information gaps. The correlational nature of this work means that

true causality between HPG-axis hormones and brain structure could

not be established. Other HPG-axis hormones not considered here
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may influence brain structural changes across the menstrual cycle.

Examples include testosterone, which has been found to increase dur-

ing the ovulatory phase but have day-to-day variability that exceeds

cycle-related variability, and dehydroepiandrosterone-sulfate, which

has been found to decrease during the mid-luteal phase (Bui

et al., 2013; Hamidovic et al., 2022). Future analyses of these hor-

mones and their relationships to brain structure are needed. Alter-

ations in brain structural measures may also be due to nonhormone

factors that coincide with menstrual cycle rhythms. While this study

aimed to address this by assessing brain-HPG-axis hormone

(as opposed to cycle phase) relationships, future population studies

with pharmacological hormone suppression are needed to establish

causality. Additionally, while the current work has a larger sample size

than many previous menstrual cycle studies, larger consortium studies

are warranted to truly establish brain–hormone associations at the

population level. All participants were adults under the age of 30 at

time of study, but menstrual cycle-driven brain–hormone associations

may evolve throughout the lifespan. Further study in younger and

older age groups is needed to better understand this relationship. The

CT changes described here are based on standard T1-MPRAGE

images, which may miss more localized/subregional changes that we

are not able to detect. Further study of brain–hormone relationships

at the subregion level is warranted. Finally, an analysis consisting of

40 separate Bayesian models may pose a risk for susceptibility to

Type 1 error. However, our imposition of a ROPE based on null-

generative models serves as a conservative protection for multiple

comparisons.

5 | CONCLUSIONS

HPG-axis hormones (17β-estradiol, progesterone, LH, FSH) were

associated with significant modulations of WM microstructure and

CT. Naturally cycling young women experience widespread brain

structural changes in concert with HPG-axis hormone fluctuations.

While modulation of the MTL is more established, structural and func-

tional networks across the brain should be considered in HPG-axis

hormone research. Investigation of brain–hormone relationships

across networks is necessary to understand human nervous system

functioning on a daily basis, during hormone transition periods, and

across the human lifespan.

ACKNOWLEDGMENTS

The authors thank Jan Martin and Frederik Bernd Lund at the Institute

of Radiology, University Hospital Erlangen, Friedrich-Alexander-Uni-

versität Erlangen-Nürnberg (FAU), Erlangen, Germany for providing

software code for the gradient tensor waveforms. We would also like

to thank Mario Mendoza for MRI assistance, as well as Drs. Laura

Pritschet, Shuying Yu, Caitlin Taylor, and Tyler Santander for advising

on study procedures. The research was supported by the Institute for

Collaborative Biotechnologies under Cooperative Agreement

(W911NF-19-2-0026) and contract (W911NF-19-D-0001) from the

Army Research Office. The content of the information does not

necessarily reflect the position or the policy of the Government and

no official endorsement should be inferred. For blood sample proces-

sing, the Endocrine Technologies Core (ETC) at Oregon National Pri-

mate Research Center (ONPRC) is supported (in part) by NIH grant

(P51 OD011092) for operation of the Oregon National Primate

Research Center. Research reported in this publication was supported

by the Office of the Director, National Institutes of Health of the

National Institutes of Health under award number (S10OD026701).

The content is solely the responsibility of the authors and does not

necessarily represent the official views of the National Institutes of

Health.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study will be openly avail-

able in a data repository upon publication of the article.

ORCID

Elizabeth J. Rizor https://orcid.org/0000-0002-5833-4471

Viktoriya Babenko https://orcid.org/0000-0002-0510-8016

Neil M. Dundon https://orcid.org/0000-0001-6246-1775

Renee Beverly-Aylwin https://orcid.org/0009-0001-9760-573X

Alexandra Stump https://orcid.org/0000-0003-4361-0610

Emily G. Jacobs https://orcid.org/0000-0003-0001-5096

Scott T. Grafton https://orcid.org/0000-0003-4015-3151

REFERENCES
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