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Abstract

Non-linear Filtering for State Space Models – High-Dimensional Applications and

Theoretical Results

by

Jing Lei

Doctor of Philosophy in Statistics

and the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Peter Bickel, Chair

State space models are powerful modeling tools for stochastic dynamical systems

and have been an important research area in the statistics community in the last several

decades. This thesis makes contributions to the filtering problem, a key inference problem

in general state space models. Our work in this area is motivated by both high-dimensional,

nonlinear applications such as numerical weather forecasting and fundamental theoretical

problems such as the convergence of filters.

First we study the ensemble Kalman filters (EnKF), a popular class of filtering

methods in geophysics because they are easy to implement in large systems. However,

their behavior in non-Gaussian situations is only partially understood. We compare two
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common versions of EnKF’s under non-Gaussianity from a robustness perspective. The

results support previous empirical studies on the same issue and provide additional insight

in choosing a free parameter in the EnKF algorithms. Second, we consider the filtering

problem in high dimensional situations such as numerical weather forecasting. We re-

view the EnKF from a statistical perspective and analyze its sources of bias. Then we

propose a new method to reduces the bias, namely the non-linear ensemble adjustment

filter (NLEAF). The one-step consistency of the NLEAF is studied and the performance

is examined through simulations in two common testbeds in the weather forecasting lit-

erature. Finally we look at the theoretical properties of another popular class of filtering

methods, the sequential Monte Carlo (SMC) filter. The convergence of SMC filters has

been a challenging problem in both probability and statistics. The previous results ei-

ther depend on strong mixing conditions which only hold in compact spaces or provide

no rates of convergence or are under weak notions of distance, limiting the application of

their practical use. We provide checkable sufficient conditions under which explicit rates

of convergence of the SMC filter can be derived. The conditions essentially requires the

regularity of the tail behavior of the process and they are general enough to include a wide

class of autoregressive models as well as Gaussian linear models.

Professor Peter Bickel
Dissertation Committee Chair
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Chapter 1

Introduction

A state space model consists of an underlying unobservable process – the (hid-

den) state process, and a sequence of incomplete and noisy functions of the state – the

observation process. Usually the state process is assumed to be Markovian therefore it is

also known as the hidden Markov model especially when the state space is discrete. State

space models originated in engineering in the early sixties with the most famous names

being the Kalman–Bucy filter (Kalman, 1960; Kalman & Bucy, 1961) and Baum with an

early version of EM algorithm (Baum & Petrie, 1966; Baum et al., 1970). After their

appearance, state space models have been continuously used in control engineering and

speech recognition. In the last two decades it has become an important area in probability

and statistics because of its wide application in engineering, computer sciences, biology,

econometrics and geophysics. For a thorough introduction of state space models and its

applications we refer the reader to the book chapter by Künsch (2001).

Specifically, a state space model features a Markovian state process {Xi ∈ X =
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R
p, i ≥ 0} with transition kernel q(·, ·):

(Xi+1|Xi = x) ∼ q(x, ·), i ≥ 0,

and an observation sequence {Yi ∈ Y = R
d, i ≥ 1}, where Yi’s are conditionally indepen-

dent given Xi’s, with likelihood g(·; ·):

(Yi|Xi = x) ∼ g(·;x), i ≥ 1.

The joint distribution of (Xi, Yi)
t
i=1 is determined by q, g and φ0, the initial distribution of

X0. Typical inference tasks in state space models include: 1) estimation of parameters in

the dynamics q(·, ·) and/or the observation mechanism g(·; ·) Bickel et al. (1998); Olsson

& Rydén (2008); and 2) calculating the conditional distribution, φi|s, of state variables Xi

given the observations Y s
1 Liu & Chen (1998), where Y s

1 = (Y1, . . . , Ys)
T . Calculating φi|s

for s = i, s > i and s < i are called filtering, smoothing and predicting, respectively. This

thesis focuses on the filtering problem. Therefore from now on we assume that q and g

are known.

1.1 The filtering recursion

Let pZ(·) denote the density function of a random variable Z. The conditional

density of Xi given Y s
1 is specially written as φi|s(·).

The dependence structure of a state space model can be described by the follow-

ing diagram:
. . . −−−−→ Xi−1 −−−−→ Xi −−−−→ Xi+1 −−−−→ . . .





y





y





y

. . . Yi−1 Yi Yi+1 . . .
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This graph representation leads to some basic recursive formulas which we state without

proof (see Künsch (2001)).

Suppose at time i ≥ 1 we have obtained φi−1|i−1, then the one-step forecast

distribution of Xi giving Y i−1
1 is obtained by applying the Markov transition kernel q on

the density function φi−1|i−1:

φi|i−1(xi) =

∫

φi−1|i−1(xi−1)q(xi−1, xi)dxi−1. (1.1)

When the new observation Yi = yi is available, the distribution of Xi given Y i
1 = yi

1 (the

filtering distribution) is obtained by applying Bayes rule to the forecast density φi|i−1 with

likelihood function gi :

φi|i(xi) =
φi|i−1(xi)gi(xi)
∫

φi|i−1(x)gi(x)dx
, (1.2)

where

gi(·) := g(yi; ·).

The most famous example of recursive filtering is the Kalman filter. Consider a

Gaussian linear State space model:

Xt = FXt−1 + Ut, (1.3)

Yt = HXt + Vt, (1.4)

for all t ≥ 1 and Ut
iid∼ N(0,Σ), Vt

iid∼ N(0, R) are Gaussian random variables. Then

φt|t−1 ∼ N(µt|t−1,Σt−1), with

µt|t−1 = Fµt−1, (1.5)
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Σt|t−1 = FΣt−1F
T +R. (1.6)

Moreover, φt|t ∼ N(µt|t,Σt|t), with

µt|t = µt|t−1 +Kt(yt −Hµt|t−1), (1.7)

Σt|t = (I −KtH)Σt|t−1, (1.8)

where

Kt = Σt|t−1H
T
(

HΣt|t−1H
T +R

)−1
(1.9)

is the Kalman gain.

Unfortunately, except a few special cases such as the Gaussian linear model men-

tioned above and the finite state hidden Markov chain (Baum & Petrie, 1966), in general

the prediction (1.1) and Bayes update (1.2) do not permit any close-form solutions. Usu-

ally this difficulty is tackled by ensemble filtering methods which use Monte Carlo methods

to approximate the conditional distributions. A general ensemble filtering algorithm can

be outlined as following:

A general ensemble filtering algorithm

1. (Initialize) Generate random sample {xj
0}n

j=1, from initial distribution φ0. Set time

t = 0.

2. t→ t+ 1.

(a) (One-step forecasting) Generate random sample

{xt|t−1}n
j=1

iid∼ φ̂t|t−1(x) :=
1

n

n
∑

j=1

q(xj
t−1, x).
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(b) (Update) Generate random sample

{xj
t}n

j=1
iid∼ φ̂t|t(x) ∝ φ̂t|t−1g(yt;x).

The forecasting step is usually straightforward because the Markov kernel is known. How-

ever the update step is much more sophisticated because of the unknown normalization

constant in the target distribution in step (b) and the Bayes operator used in the update

step is non-linear and hence intractable. Moreover, if the dimensionality of Xt or Yt is

high, the method might face the “curse of dimensionality”. That is, the sample size n has

to be prohibitively large to ensure convergence. There have been both practical update al-

gorithms which work for high-dimensional data such as the ensemble Kalman filter (EnKF,

Evensen (1994)) and methods with nice theoretical properties but with poor scalability

in dimensionality (sequential Monte Carlo –SMC– filter, Gordon et al. (1993)). Major

open problems in ensemble filtering include, but are not limited to, 1) understanding the

behavior of ensemble Kalman filters under non-Gaussian situations; 2) designing of better

filtering algorithms that are less biased than the EnKF but more stable than SMC filters;

and 3) develop convergence results for SMC filters. In the rest of this chapter we review

the related works in each of these directions and highlight our contributions.

1.2 The ensemble Kalman filter and the issue of non-Gaussianity

The ensemble Kalman filter (EnKF),an empirical version of the Kalman filter,

is mostly used in geophysical data assimilation and has performed successfully in high

dimensional models (Evensen, 2007). Like other ensemble filtering algorithms, the EnKF
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also uses a random sample (ensemble) to represent the forecasting and filtering distribu-

tions. From now on, we will adopt the ensemble filtering terminology. The random sample

and a single sample point will be called “the ensemble” and “a particle”, respectively.

In the update step, the EnKF pretends that φt|t−1 is Gaussian and the observa-

tion is linear with Gaussian noise at in (1.4). Therefore the ensemble is updated to have

the updated mean and variance, as in the Kalman filter. There have been two major ver-

sion of EnKF’s, the stochastic update and the deterministic update. Stochastic methods

(Houtekamer & Mitchell, 1998; Evensen, 2003) directly use the Kalman gain together with

random perturbations:

xj
t = xj

t|t−1 +Kt(yt −Hxt − ǫjt ), (1.10)

with ǫjt
iid∼ N(0, R), where the matrices H and Kt are defined as in Equations 1.3 – 1.9.

This is an extension of the Kalman filter update of the mean (Eq. 1.7), where the additive

error term is used to adjust the updated covariance.

On the other hand, deterministic methods (Anderson, 2001; Bishop et al., 2001)

use a deterministic transformation on the forecast ensemble, which is also known as a

special case of the Kalman square-root filter (Tippett et al., 2003):

xj
t = µt +At(x

j

t|t−1
− µt|t−1), (1.11)

where the matrix At satisfies AtΣt|t−1A
T
t = Σt. Again, µt, µt|t−1, Σt, and Σt|t−1 are

defined as in Equations 1.3 – 1.9.

It is obvious that both methods are asymptotically unbiased under Gaussian lin-

ear models. An important open problem is their behavior under non-Gaussian situations.

Following the direction of Lawson & Hansen (2004), we compare the asymptotic behavior
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of the two versions of EnKF’s under non-Gaussianity through a robustness perspective.

Our question is: which method is more stable against non-Gaussianity? Here “stability”

is a statistical notion which refers to the analysis being not seriously biased when the

forecast distribution is slightly non-Gaussian. Another notion of “stability” is introduced

by Sacher & Bartello (2009) which refers to the size of analysis error covariance being

large enough to cover the true analysis center.

In Chapter 2 we give a rigorous analysis of the sensitivity of the two EnKFs to

non-Gaussianity of the forecasting ensemble based on the notion of robustness in statistics.

We show that the stochastic filter is more robust than the deterministic filter especially

when the position of outliers is wild and/or the observation is accurate. Simulation results

support our calculation not only for the L2 distance but also for other quantities such as

the third moment. These findings are consistent with those in Lawson & Hansen (2004).

Moreover, such a comparison can be extended to many other types of model violations,

such as the modeling error in the observation and the observation model. On the other

hand, we also show that such a stability criterion leads to a natural choice of the orthogonal

matrix in the unbiased ensemble square root filter Sakov & Oke (2007); Livings et al.

(2008). Chapter 2 is based on Lei et al. (2009).

1.3 Improving the EnKF: the NLEAF algorithm

The EnKF update formulas (1.10) and (1.11) are both variants of the Kalman

filter in the sense that they adjust only the first and second moments of the forecasting

ensemble {xj

t|t−1}n
j=1. A simpler way to generate a sample with the desired mean and
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variance would be to sample directly from the corresponding Gaussian distribution. How-

ever, this method is not successful at least in the weather forecasting literature because

the forecasting distribution is strongly non-Gaussian. For example, the forecasting sample

may have clusters or may be tilted, sampling from a Gaussian will lose this information.

Using proper transformation on the sample points as in Equations (1.10) and (1.11) may

partially retain such information.

When the forecast distribution φt|t−1 is non-Gaussian, adjusting only the first two

moments will inevitably introduce bias in the updated ensemble. On the other hand, one

needs some simple update procedures for very large data sets such as those in numerical

weather forecasting. Therefore it is highly desirable to find a method with less bias for

non-Gaussian distributions while being scalable in dimensionality.

A natural approach to obtain higher accuracy for general non-linear non-Gaussian

filtering problem is to sample from the whole conditional distribution, rather than focusing

only on the first two moments. This approach, known as the particle filter (SMC filter),

was introduced by Gordon et al. (1993)1. The basic idea of the update from φt−1|t−1 to

φt|t is directly generating independent random samples from the target distribution

φ̂t|t(x) ∝
1

n

n
∑

j=1

q(xj
t−1, x)g(yt;x), (1.12)

where {xj
t−1}n

j=1
iid∼ φ̂t−1|t−1, and the recursion starts from φ̂0|0 = φ0. Here the notation φ̂

means the estimated function φ. For details about sampling schemes, we refer the reader

to Künsch (2005).

It is straightforward to show that the particle filter is consistent for general mod-

1In this thesis, the terms “SMC filter” and “particle filter” will be used interchangeably.
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els provided that the Markov kernel q and likelihood function g are smooth. However, as

many other non-parametric methods, it suffers from the curse of dimensionality. Bengts-

son et al. (2008) showed that under simple Gaussian models, the particle filter collapse in

a single step unless the sample size n grows exponentially in the dimension of Yt. Here the

filter collapse means all particles become identical and the updated distribution becomes

a point mass.

Particle filters have been used in numerical weather forecasting in low dimensional

problems (Anderson & Anderson, 1999). Some early efforts toward high-dimensional cases

include Bengtsson et al. (2003), who extended the EnKF to Gaussian mixtures. Their

method can also be viewed as a hybrid of the EnKF and PF, combining the computational

advantage of ensemble Kalman filters and the accuracy of particle filters.

In Chapter 3 we develop the NonLinear Ensemble Adjustment Filter (NLEAF)

as another combination of the advantages of both the EnKF and the PF. The basic idea is

to view the EnKF as a regression of the hidden state on the observations and then instead

of using the Kalman filter update, one can use more accurate techniques such as impor-

tance sampling to update the moments to avoid serious bias in non-Gaussian nonlinear

models. It is theoretically justifiable under certain (possibly strong) conditions. In numer-

ical experiments, it gives very competitive performance in a 40 dimensional synthesized

atmospheric model.
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1.4 Convergence of Sequential Monte Carlo Filters

Sequential Monte Carlo filters (particle filters, Gordon et al. (1993); Liu & Chen

(1998); Künsch (2005)) have been a major breakthrough in non-linear state space models.

This is probably due to both the fast development of accurate physical models and the

rapid growth of computing power. Using empirical approximation, the infinite-dimensional

object φt|t can be represented by a random sample (ensemble) of sample points (particles)

independently drawn from it. In principle, such an ensemble allows one to approximate

the conditional expectation of any function of Xt given the observations:

Ê(f(Xt)|yt
1) =

1

n
f(xj

t|t).

Two major issues in the study of SMC filters are 1) the development of accurate

and efficient algorithms for sampling problem of form (1.12) since the target distribution

is known only up to a normalizing constant; and 2) the relationship between the approx-

imation error and the ensemble size n since the errors are propagated non-linearly over

time. Our interest is in the second problem. That is, we assume that one can generate

exact random samples from (1.12). The sampling issue is of course very important and

we refer the reader to Künsch (2005) for a nice discussion.

To formalize the question, we look at the distance between the approximation

and the truth:

||φ̂t|t − φt|t||,

where || · || is some norm of continuous functions. In particular, the L1 norm (or total
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variation) norm

||f ||TV =
1

2

∫

|f(x)|dx

is commonly studied and is also considered in this thesis.

At a first glance, by the continuity of the Markov operator and Bayes operator,

it is easy to establish consistency

||φ̂t|t − φt|t|| → 0, as n→ 0,

by induction on t. However, such an argument indicates that in order to keep the approx-

imation error small, n needs to grow exponentially in t, the length of the time range. It

is more interesting to ask the relationship between ensemble size n and the time-uniform

approximation error:

sup
1≤i≤t

||φ̂i|i − φi|i||,

or

sup
t≥0

E||φ̂t|t − φt|t||.

Then the problem is how large n needs to be in order to have the time-uniform approxima-

tion error be small? Controlling the above quantities requires conditions that the sampling

error does not grow over time even with a finite sample size.

Time-uniform convergence of SMC filters has been a challenging topic in both

probability and statistics because the Bayes operator is non-linear and usually intractable.

The first breakthrough is due to Del Moral & Guionnet (2001), who established uniform

convergence under strong mixing conditions which typically hold in compact state spaces.
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The key assumption is

σ−a(x) ≤ q(x′, x) ≤ σ+a(x), ∀ x′, x,

where 0 < σ− ≤ σ+ are positive constants and a(·) is a fixed density function. This

condition is originally proposed to show the stability of the optimal filter (true filter).

That is, the conditional chain forgets its initial distribution geometrically fast, which is

an important building block in the proof of uniform convergence of SMC filters.

Recently, Douc et al. (2009b) suggested a possible extension of the results from

compact spaces to general spaces, provided that the observation is informative enough so

that the hidden state stays within a compact set with overwhelming probability. This

idea is used to establish the filter stability instead of convergence of SMC filters. Heine &

Crisan (2008) and van Handel (2009) tried to make the similar idea work for SMC filters.

However, their results are under weaker notions of norm instead of the commonly used

total variation norm and do not provide rates of convergence.

In Chapter 4 we obtain convergence results for non-compact state spaces by

analyzing the tail behavior of the Markov kernel and observation likelihood function. Our

conditions cover a much broader family of models including a general class of nonlinear

autoregressive models and stationary Gaussian linear models.
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Chapter 2

Ensemble Kalman Filters under

Non-Gaussianity

The ensemble Kalman filter (EnKF, Evensen (1994, 2003, 2007)) has become

a popular tool for data assimilation because of its computational efficiency and flexibil-

ity (Anderson, 2001; Whitaker & Hamill, 2002; Ott et al., 2004; Bengtsson et al., 2003;

Evensen, 2007). In various versions of EnKFs, one major difference is how to get the

updated ensemble after obtaining the updated mean and variance. Stochastic methods

(Houtekamer & Mitchell, 1998; Evensen, 2003) directly use the Kalman gain together

with random perturbations. On the other hand, deterministic methods (Anderson, 2001;

Bishop et al., 2001) use a non-random transformation on the forecast ensemble, which is

also known as a special case of the Kalman square-root filter (Tippett et al., 2003).

The analysis error of EnKF consists of two parts: the use of a linear analysis

algorithm that is suboptimal for all except Gaussian distributions; and the variance caused
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by using only a finite sample. The latter is studied for the stochastic filter by Sacher &

Bartello (2008, 2009). In this chapter we study the first part of error, that is, the error

caused by non-Gaussianity.

Following the direction of Lawson & Hansen (2004), who did empirical compar-

ison of the stochastic and deterministic filters, in this work we attempt to quantify the

difference between these two methods under non-Gaussianity, through the perspective of

robustness. It is known that in a Gaussian linear model both methods are consistent

(Furrer & Bengtsson, 2007). However, when the forecasting distribution is non-Gaussian

both methods are biased even asymptotically, where the bias refers to the deviation from

the true conditional distribution or equivalently the distribution given by the Bayes rules.

Suppose the previous updated ensemble is approximately Gaussian. After propagation

through the non-linear dynamics, the resulting forecast ensemble will be slightly non-

Gaussian if the time interval is short. Figure 2.1 gives such an example by looking at

the first two coordinates of the Lorenz 63 3-dimensional system1, where the previous up-

date ensemble is Gaussian but the forecasting ensemble has some outliers. Therefore one

would expect some bias in EnKF update due to the non-Gaussianity, and the bias could

be different for different implementation of EnKF. Our question is: which method is more

stable against non-Gaussianity? Here “stability” is a statistical notion which refers to the

analysis being not seriously biased when the forecast distribution is slightly non-Gaussian.

Another notion of “stability” is introduced by Sacher & Bartello (2009) which refers to

the size of analysis error covariance being large enough to cover the true analysis center.

1The Lorenz 63 system (Lorenz, 1963) is a three dimensional continuous chaotic system, which is very
sensitive to initial conditions in the discrete-step form. It has been used to test filtering methods in many
data assimilation research works (see Anderson & Anderson, 1999; Bengtsson, Snyder, & Nychka, 2003).
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Figure 2.1: The scatter plots of the previous updated ensemble (left) and the forecast
ensemble (right) in the Lorenz 63 system (simulated using fourth order Runge-Kutta
method with step size 0.05, propagated 4 steps).

We give a rigorous analysis of the sensitivity of the two EnKFs to non-Gaussianity of the

forecasting ensemble based on the notion of robustness in statistics.

We show that the stochastic filter is more robust than the deterministic filter

especially when the position of outliers is wild and/or the observation is accurate. Sim-

ulation results support our calculation not only for the L2 distance but also for other

quantities such as the third moment. These findings are consistent with those in Lawson

& Hansen (2004). Moreover, such a comparison can be extended to many other types of

model violations, such as the modeling error in the observation and the observation model.

On the other hand, we also show that such a stability criterion leads to a natural choice

of the orthogonal matrix in the unbiased ensemble square root filter Sakov & Oke (2007);
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Livings et al. (2008).

In Section 2.1 we introduce the ensemble Kalman filters, with a brief discussion

on the large-ensemble behavior of the EnKF. Section 2.2 contains the main part of our

comparison, beginning with some intuition in Section 2.2.1; The basic concepts of asymp-

totic robustness can be found in Hampel et al. (1986), and we give a brief summary in

Section 2.2.2; In Section 2.2.3 we state our analytical results. Finally, in Section 2.3, we

present various numerical experiments.

2.1 Ensemble Kalman filters

2.1.1 The Kalman filter

Consider a Gaussian linear model:

y = Hx + ǫ,

where x ∈ R
p is the hidden state variable, y ∈ R

q the observation, ǫ ∈ R
q an independent

random noise, and H ∈ R
q×p the observation matrix. Assuming all the variables are

Gaussian:

x ∼ N(µf ,Pf), ǫ ∼ N(0,R),

then the updated state variable x|yo given a specific observation yo is still Gaussian2:

x|yo ∼ N(µa,Pa),

with

µa = (I − KH)µf + Kyo, Pa = (I − KH)Pf , (2.1)

2Throughout this chapter we use superscript “f” and “a” to denote “forecast” and “analysis (update)”
respectively.
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where K = PfHT
(

HPfHT + R
)−1

is the Kalman Gain. Throughout this chapter we

always assume that Pf and R are positive definite.

Several practical issues arise in geophysics. First, the state variable is driven

by non-linear geophysical dynamics, so its exact distribution is unknown and certainly is

non-Gaussian. Usually only a random sample from the distribution is available. Second,

the linear form of the observation is, again, only an approximation. The true observation

model y = h(x) + ε might involve a nonlinear h(·), or h(·) might even have no explicit

functional form (e.g., a black-box function). These problems are partially addressed, as

described below, by the ensemble Kalman filter.

2.1.2 The ensemble Kalman filter

Suppose (xf(i))ni=1 is an i.i.d (independent, identically distributed) sample from

the forecast distribution of the state variable xf . The ensemble Kalman filter update

consists of the following steps:

1. Let µ̂f and P̂f be the sample mean and covariance.

2. Estimate the Kalman gain: K̂ = P̂fHT
(

HP̂fHT + R
)−1

.

3. Update the mean and covariance according to the Kalman filter:

< µ̂a >= (I − K̂H)µ̂f + K̂yo, < P̂a >=
(

I − K̂H
)

P̂f ,

where < · > denotes the expectation over the randomness of the update procedure.

If the update is deterministic, then < µ̂a >= µ̂a and < P̂a >= P̂a.
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4. Update the ensemble (xf(i))n1 → (xa(i))n1 , so that

1

n

n
∑

i=1

xa(i) = µ̂a,
1

n− 1

n
∑

i=1

(xa(i) − µ̂a)(xa(i) − µ̂a)T = P̂a. (2.2)

It is worth noting that in practice, the sample covariance matrix P̂f is not computed

explicitly. Instead, it is sufficient to compute P̂fHT = 1
n−1

∑

(xf(i))
(

Hxf(i)
)T

, which is

computationally more efficient if p is much larger than q.

The stochastic and the deterministic filters differ in step 4. In the stochastic

filter,

xa(i)
s = xf(i) + K̂(yo − Hxf(i) + ǫ(i)), ∀1 ≤ i ≤ n, (STO.)

where ǫ(i)
iid∼ N(0, R). The intuition is to use directly the Kalman gain to combine the

forecast ensemble member xf(i) and the observation yo, using additive noise ǫ(i) to adjust

the total variance of the updated ensemble, as if the perturbed observation associated

with xf(i) is another possible value of random variable y. In some applications in order

to reduce the sampling error of the noise, ǫ(i)’s are adjusted by a shifting and rescaling to

ensure one of the following:

• ǫ(i)’s have zero mean.

• ǫ(i)’s have zero mean and covariance R.

• ǫ(i)’s have zero mean, covariance R and zero covariance with X
(i)
f ’s.

When the ensemble size n is large, such a shifting and rescaling is negligible and all these

variants are equivalent to the update given by (STO.). Therefore the analysis in this

chapter is applicable to these variants too.
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The deterministic filter works in a different way:

x
a(i)
d = µ̂a + Â(xf(i) − µ̂f), ∀1 ≤ i ≤ n, (DET.)

where Â satisfies ÂP̂fÂT = P̂a. Loosely speaking, the matrix Â can be viewed as the

square root of the difference between P̂a and P̂f . The matrix Â is not unique in the

multivariate case. Suppose n > p and P̂f is full rank, then Â has the general form:

Â = (P̂a)
1
2U(P̂f)−

1
2 , (2.3)

where U is any p × p orthogonal matrix chosen by the user. See Tippett et al. (2003);

Sakov & Oke (2007) for further discussion on the choice of U. If n ≤ p and P̂f is not

full rank, (2.3) no longer holds but one can work on the principal components of the state

space instead of the whole state space as described in Ott et al. (2004).

There is another formula for the update step of the deterministic filter using the

right-multiplication:

x
a(i)
d = µ̂a +

n
∑

j=1

â′ij(x
f(j) − µ̂f). (2.4)

This formula can be shown to be closely related to (DET.) when the filter is unbiased,

i.e., 1
n

∑n
i=1 x

a(i)
d = µ̂a (Tippett et al., 2003; Livings et al., 2008). We will use the left-

multiplication throughout this chapter because: 1) it has a clear geometrical interpreta-

tion; 2) we assume that n is large.

In practical applications, good performance of the EnKFs defined by (STO.) and

(DET.) depends on a sufficiently large ensemble and on system dynamics and observation

models that are sufficiently close to linear. For example, the EnKF will dramatically

underestimate Pa with small ensembles as it is analytically described by Sacher & Bartello
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(2008). As a result, covariance localization and covariance inflation have been widely

used to overcome such practical difficulties (Whitaker & Hamill, 2002; Ott et al., 2004;

Anderson, 2003, 2007).

2.1.3 The large-ensemble behavior of the EnKF

If n → ∞, then by law of large numbers, everything converges to its population

counterpart. That is, µ̂f P→ µf , P̂f P→ Pf , K̂
P→ K, µ̂a P→ µa, P̂a P→ Pa, and Â

P→ A where

A = (Pa)
1
2 U(Pf)−

1
2 is the population counterpart of Â. Here

P→ denotes convergence in

probability3. Let δx denote the point mass at x (i.e., a probability distribution that puts

all its mass at x), then intuitively the empirical updated distributions F̂s = 1
n

∑

δ
x

a(i)
s

and F̂d = 1
n

∑

δ
x

a(i)
d

should converge weakly to the distribution of the random variables

(I − KH)x + K(y + ǫ) and µa + A(x − µf), respectively. In fact it can be shown that

the above intuition is true (Proposition 2.5.1). As a result, our comparison between the

stochastic filter and the deterministic filter will be based on the comparison between these

two limiting distributions.

2.2 Comparing the stochastic and the deterministic filters

2.2.1 Intuition and the contaminated Gaussian model

A simple and natural deviation from Gaussianity is a contaminated Gaussian

model:

xf ∼ Fr = (1 − r)F + rG, (2.5)

3For a sequence of random variables αn, n ≥ 1, and constant β, αn
P
→ β means that for any δ > 0,

limn→∞ P (|αn − β| > δ) = 0.
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where, without loss of generality, F = N(0,P), G = N(t,S), where P and S are positive

definite, and 0 ≤ r < 1 is the amount of contamination. The interpretation of model

(2.5) is that we assume a proportion of (1 − r) of the forecast ensemble are drawn from a

Gaussian distribution centered at 0, with covariance P, while the rest are outliers coming

from another Gaussian distribution centered at t with covariance S. Since we use the

Gaussian distribution G = N(t,S) to model the outliers, we would expect G to be much

different from F = N(0,P), the majority of the forecast ensemble. That is, we expect

(t, S) to be somewhat extreme: ||t||2 >> 0 and/or ||S||2 >> ||P||2. For example, a large4

t and small S mean that the outliers forms a small cluster far away from the majority,

while a small t and a large S mean that the outliers are widely dispersed. Also, denote

Fo,r(·|y) the true distribution of xa, here the subindex “o” stands for “optimal”. Again,

the optimal updated distribution refers to the one given by the Bayes rule. Similarly,

the corresponding limiting updated distributions of EnKFs are denoted by Fs,r(·|y) and

Fd,r(·|y), respectively. Here we keep in mind that t and S are fixed. For simplicity, we

focus on the case q = p and P = Ip.

The merit of a filter can be characterized naturally in terms of the distance

between the updated density and the optimal density fo,r. Recall that if xf is Gaussian,

i.e., r = 0, then Fs,0 and Fd,0 are both Gaussian, with the same mean and covariance

agreeing with the optimal conditional distribution: Fs,0 = Fd,0 = Fo,0 = N(µa
o,P

a
o). Now

the question is, when r 6= 0, i.e., xf is non-Gaussian, which one is closer to Fo,r?

We take a quick look at the densities of Fo,r, Fs,r and Fd,r in a simple one-

4Here and throughout this chapter, by saying a vector or matrix is large we mean its L2 norm is large.
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dimensional setup similar to Lawson & Hansen (2004), but with r = 0.05 (right column

of Figure 2.2). The original figure in Lawson & Hansen (2004) with r = 0.5 are included

in the left column for comparison. We choose t = 8, S = 1, and y = 0.5, which makes

y a plausible observation from Fr. We consider three values of R: In the top row, R =

Pf
r/4, where Pf

r is the variance of Fr. In this case the observation is accurate, which

indicates that the likelihood function is highly unimodal (with a single high peak). As a

result, the stochastic filter approximates the true density better because adding Gaussian

perturbations to the bimodal ensemble will make the distribution more unimodal. In the

middle row R = Pf
r, where the accuracy is modest and it is hard to tell which filter

gives better approximation to the truth. Finally, in the bottom row we have R = 4Pf
r,

a relatively inaccurate observation. Now when the two components are equally weighted

(left column), the stochastic incorrectly populates the middle part because of the random

perturbation while the deterministic retains the bimodal structure. In the right column,

when the weights of two components are very unbalanced, the deterministic update is

closer to the optimal for a wide range of x near the origin. However, it carries more

outliers due to the small bump at +7, which might cause a larger bias in the higher

moments.

2.2.2 The robustness perspective

Robustness (Hampel et al., 1986) is a natural notion of the stability of an in-

ference method against small model violation. Intuitively, a “good” method should give

stable outcomes when the true underlying distribution deviates slightly from the ideal dis-
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Figure 2.2: The density plots for Fo,r (solid); Fs,r (dotted) and Fd,r (dash-dotted). Pa-
rameters: t = 8, S = 1, R = kPf

r. k = 0.25 (top row); k = 1 (middle row); k = 4 (bottom
row). r = 0.5 (left column); r = 0.05 (right column).

tribution. In the context of EnKF, the ideal distribution refers to the Gaussian forecast

distribution under which the EnKF gives unbiased analysis. In parameter estimation, let

g(F̂n) be the estimator of parameter from the empirical distribution F̂n, and g(F ) denotes

its population counterpart, which is usually the large-sample limit of g(F̂n). Suppose the

true distribution is (1 − r)F + rG, a contaminated version of F , for some small r > 0.

Then the estimator becomes g((1 − r)F + rG). The robustness of g at F means that no

matter what G looks like, g((1 − r)F + rG) should be close to g(F ) as long as r is small.

The quantification of this idea leads to the Gâteaux derivative and the influence function.

The Gâteaux derivative and the influence function Following the above notation,

the estimator can be viewed as a function of r, the amount of contamination. The Gâteaux

derivative of g at F in the direction of G is defined by

ν(G,F ; g) = lim
r→0+

g((1 − r)F + rG) − g(F )

r
. (2.6)
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Intuitively, the Gâteaux derivative measures approximately how g is affected by an in-

finitesimal contamination of shape G on F .

If G = δt is a point mass at t, then one can define

IF(t;F, g) = ν(δt, F ; g),

which is the influence function of g at F . There is a close analogy between the influence

function and Green’s function. In both cases, the general solution to a linear problem

is a superposition of the solution to point mass problems. It can be shown that, under

appropriate conditions, (see Bickel and Doksum, ch. 7.3),

ν(G,F ; g) =

∫

IF(t;F, g)dG(t). (2.7)

As a result, the function IF(·;F, g) reflects the robustness of g at F . An important criterion

in designing robust estimators is a bounded influence function:

sup
t

|IF(t;F, g)| <∞.

Intuitively, this means that distorting any small proportion of the data can not have a big

impact on the outcome.

2.2.3 Comparison from the robustness perspective: analytical results

In our study, the parameter, and hence the estimator, is a distribution. For any

fixed x, y, the Gâteaux derivatives of the conditional densities at x are5, under Model

(2.5),

ν(G,F ; fs(x|y)) = lim
r→0+

fs,r(x|y) − fs,0(x|y)

r
=

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

(2.8)

5In this chapter we use f(·) = F ′(·) as the density function of F (·), whenever possible. E.g., fs,r(·|y) is
the density function of Fs,r(·|y). For succinctness, we will use fs,r instead of fs,r(·|y) without confusion.
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for the stochastic filter, and

ν(G,F ; fd(x|y)) = lim
r→0+

fd,r(x|y) − fd,0(x|y)

r
=

∂

∂r
fd,r(x|y)

∣

∣

∣

∣

r=0

(2.9)

for the deterministic filter. In our contaminated Gaussian model, the ideal distribution

is F = N(0, I) and G = N(t,S) is the contamination distribution. Recall again that

fs,0 = fd,0 = fo,0, then equations (2.8) and (2.9) are comparing fs,r(x|y) and fs,r(x|y)

with fo,0(x|y) respectively.

However, the quantities in (2.8) and (2.9) involve not only x but also y, the

random observation. In order to take all x as well as the randomness of y into account,

we integrate the square of the Gâteaux derivatives and take expectation over y under its

marginal distribution when r = 0, which is N(0, I +R). Finally, the quantities indicating

the robustness of the EnKFs are

Ey

(∫

ν2(G,F ; fs(x|y))dx

)

= Ey

[

∫ (

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

(2.10)

for the stochastic filter, and

Ey

(∫

ν2(G,F ; fd(x|y))dx

)

= Ey

[

∫ (

∂

∂r
fd,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

(2.11)

for the deterministic filter.

On the other hand, note that

∂

∂r

[∫

(fs,r(x|y) − fs,0(x|y))2dx

]

= 2

∫

(fs,r(x|y) − fs,0(x|y))
∂

∂r
fs,r(x|y)dx,

and

∂2

∂r2

[
∫

(fs,r(x|y) − fs,0(x|y))2dx

]
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= 2

∫ (

∂

∂r
fs,r(x|y)

)2

dx + 2

∫

(fs,r(x|y) − fs,0(x|y))
∂2

∂r2
fs,r(x|y)dx.

Evaluate the above derivatives at r = 0, we have

∂

∂r

[

Ey

∫

(fs,r(x|y) − fs,0(x|y))2 dx

]∣

∣

∣

∣

r=0

= 0.

and

∂2

∂r2

[∫

(fs,r(x|y) − fs,0(x|y))2dx

]∣

∣

∣

∣

r=0

= 2

∫ (

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx.

Taking expectation over y,

Ey

[

∫
(

∂

∂r
fs,r(x|y)

∣

∣

∣

∣

r=0

)2

dx

]

=
1

2

∂2

∂r2

[

Ey

∫

(fs,r(x|y) − fs,0(x|y))2 dx

]∣

∣

∣

∣

r=0

,

As a result, the quantity defined in (2.10) has a straightforward interpretation:

It is the second derivative of the expected square of L2 distance between fs,r and fs,0.

The same argument also holds for the deterministic filter. So a smaller value in (2.10) (or

(2.11)) indicates a slower change in the updated distribution when r changes from zero to

non-zero.

Our main theoretical results are summarized in the following theorems:

Theorem 2.2.1. In model (2.5), we have

(i) For all R,S

lim
||t||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx = ∞, (2.12)

and

0 < lim
||t||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
< 1; (2.13)
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(ii) For all R, t,

lim
||S||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx = ∞, (2.14)

and

0 < lim
||S||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
< 1; (2.15)

(iii) For all t,S,

lim
||R||2→0

Ey

∫

ν2(G,F ; fs(x|y))dx = ∞, (2.16)

and

lim
||R||2→0

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
= 0. (2.17)

Proof. The proof is included in Section 2.6.

Parts (i) and (ii) of Theorem 2.2.1 indicate that neither of the two filters has

bounded Gâteaux derivative over all possible contaminations. However, when the contam-

ination is wild, the stochastic filter is more stable than the deterministic filter. Loosely

speaking, when there are outliers in the forecast ensemble, the Kalman filter will suffer

from its non-robustness due to the use of the sample mean and sample covariance matrix.

The deterministic filter is affected more because its rigid shifting and re-scaling (in order

to make the exact covariance) leaves no chance to correct the outliers, while the stochastic

filter uses a “softer” method to adjust the ensemble mean and covariance by using random

perturbations. It is thus more resilient to outliers because there is some chance that the

outliers are partially corrected by the random perturbations. This effect can also be seen
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in the top right plot of Figure 2.2. Moreover, it also implies that, in the multivariate case,

when the contamination is wild, the deviation in the updated density is largely determined

by the magnitude, not the orientation, of t and/or S. As shown later in Section 2.3, the

asymptotic result also holds even for moderately large choices of ||t||2 and ||S||2.

Part (iii) indicates that stochastic filter is more stable when the observation is

accurate. This result nicely supports the intuitive argument in Lawson & Hansen (2004):

the convolution with a Gaussian random perturbation in the stochastic filter makes the

updated ensemble closer to Gaussian while the deterministic might push the edge-members

in the ensemble to be far-outliers and have the major component in the mixture overly

tight.

The case that ||R||2 → ∞ is particularly interesting. Intuitively, a very large

||R||2 indicates a very non-informative observation. Thus the conditional distribution

should be close to the forecast distribution. As a result, one should expect little change on

the forecast ensemble when ||R||2 is large. This intuition suggests choosing the orthogonal

matrix U = I in the deterministic filter, the benefit of which can be seen through Theorem

2.2.2:

Theorem 2.2.2. If in (2.3) we choose U = I, then for all t,S,

0 < lim
||R||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx <∞, (2.18)

and

lim
||R||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
= 1. (2.19)
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Otherwise, we have

lim
||t||2→∞

lim
||R||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
= 0, (2.20)

and

lim
||S||2→∞

lim
||R||2→∞

Ey

∫

ν2(G,F ; fs(x|y))dx

Ey

∫

ν2(G,F ; fd(x|y))dx
= 0. (2.21)

Proof. See Section 2.6.

Theorem 2.2.2 is easy to understand. Intuitively, when R is large, we have

µa ≈ µf and Pa ≈ Pf in the Kalman filter. Here U = I implies A ≈ I, which means

making little change on the forecast ensemble. In Section 2.3 we will see that the choice

of U = I does beat other choices even for moderately large R, S and t. The issue of

choosing the orthogonal matrix in the square root filter has been discussed in Sakov &

Oke (2007), which mainly focuses on the right-multiplication case. Theorem 2.2.2 suggests

a stable choice of the left-multiplying orthogonal matrix which means the corresponding

right-multiplying orthogonal matrix is stable due to the correspondence between the left

and right-multiplication in unbiased square root filters (Livings et al., 2008) if p < n.

Remark 2.2.3. Theorems 2.2.1 and 2.2.2 concern the effects caused by a large t, S and

R separately, by means of sending one quantity to infinity while keeping others fixed. In

fact, these quantities do interact in the optimal and EnKF updates, which will affect the

comparison in a much more complicated manner. Although in this more interesting case

analytical results seem hard to derive, we do think these theorems provide some qualitative

view of the comparison as we will see in the numerical experiments.
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2.2.4 Connection to bias comparison

The robustness tells us about the stability of the filters when the data distribution

is nearly ideal. However, as mentioned earlier, a more direct comparison would be to just

look at the bias, that is, the difference between the limiting distribution of the updated

ensemble (fs,r and fd,r), and the optimal conditional distribution (fo,r). A first observation

is that when r is small, then fo,r ≈ fo,0, i.e., fo,r would mostly be as if there is no

contamination at all, as long as y is not too far from 0 or not too close to t, which is often

the case when ||t||2 ≫ 0 and yo is randomly drawn from fr. This can be seen from the

fact that

Fo,r = (1 − π(r))N(µa
o,1,P

a
o,1) + π(r)N(µa

o,2,P
a
o,2), (2.22)

where, letting φ(x;µ,P) be the density of N(µ,P) at x,

π(r) =
rφ(y; t,S + R)

rφ(y; t,S + R) + (1 − r)φ(y; 0, I + R)
,

and, for j = 1, 2, with the convention that µf
1 = 0, Pf

1 = Pf , µf
2 = t, and Pf

2 = S,

Kj = Pf
j(P

f
j + R)−1, µa

j = (I − Kj)µ
f
j + Kjy, Pa

j = (I −Kj)P
f
j .

For the proof of (2.22), we refer the reader to Bengtsson et al. (2003) and references

therein. As a result, when ||t||2 ≫ 0, and y not far from 0, we have π(r)/r ≈ 0.

As a result, we have fo,r ≈ fo,0, for large t. Note further that fs,0 = fd,0 = fo,0,

which means that fs,r−fo,r ≈ fs,r−fo,0 = fs,r−fs,0. That is, robustness actually indicates

small bias. In Section 2.3 we present simulation results to verify this idea.

A limitation of our analysis to this point is that the L2 distance provides only par-

tial information about the deviation of the analysis distribution from the optimal (Bayes)
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update. In fact, data assimilation is best evaluated by 1) the distance between the anal-

ysis center and the true posterior center and 2) the size of the analysis covariance which

needs to be large enough to have the analysis ensemble cover a substantial proportion

of the true posterior distribution including its center. These two criteria are labeled in

Sacher & Bartello (2009) as “accuracy” and “stability” respectively (recall that in this

chapter the notion of “stability” is different). In the context of large ensemble behavior,

the analysis center is almost the same for the stochastic filter and the deterministic filter.

Therefore they should perform similarly in this aspect given they are starting from the

same forecast ensemble. On the other hand, although both filters have the same second

order statistics, the updated ensemble is distributed differently for a non-Gaussian prior.

This difference will affect the future forecast ensemble and hence the filter performance in

sequential applications, which needs to be explored further.

Another class of criteria are higher order moments since in a non-Gaussian distri-

bution the higher moments contain much information about the distribution. In the next

subsection we consider the third moment as another measure of performance to support

our previous results.

2.2.5 The third moment

The third moment is an indication of the skewness of the distribution. Therefore

it seems a natural criterion beyond the first two moments to evaluate the updated ensem-

ble. Lawson & Hansen (2004) also considered the ensemble skewness in their experiments.

Here for presentation simplicity we consider the one dimensional model given by (2.5).
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Assuming model (2.5), let Ms(y) =
∫

x3fs(x|y)dx be the third moment of the

limiting updated distribution given by the stochastic filter and similarly define Md(y) for

the deterministic filter. Then we have the following theorem:

Theorem 2.2.4. Under model (2.5), if both Xf ∈ R
1 and Y ∈ R

1, then

(i) For all S and y

lim
|t|→∞

|ν(G,F ;Ms(y))| = ∞, and lim
|t|→∞

|ν(G,F ;Ms(y))|
|ν(G,F ;Md(y))| < 1. (2.23)

(ii) For all t and y,

lim
|S|→∞

|ν(G,F ;Ms(y))| = ∞, and lim
|S|→∞

|ν(G,F ;Ms(y))|
|ν(G,F ;Md(y))| < 1. (2.24)

Proof. See Section 2.6.

These results are similar to those in the previous theorems, except that the third

moment is a scalar which allows us to derive results for each value of y. The intuition

behind Theorem 2.2.4 can be seen from Figure 2.2, where the deterministic filter tends

to produce two components which are less spread and further away from each other than

in the stochastic filter. As a result, the deterministic filter puts a little more density in

the region which are likely outliers (the bump near =7 on the bottom right plot). Despite

maintaining the right mean and covariance, these outliers will have a substantial impact

on the higher moments as shown in Theorem 2.2.4. The empirical comparison of the bias

of the third moments is provided in Section 2.3.
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2.3 Simulation results

In this section we present simulation results comparing the performance of the

two versions of ensemble Kalman filters. As we will see later, the simulations do support

the analytical results and intuitive discussion in Section 2.2.3 and 2.2.4.

2.3.1 The 1-dimensional case

In the 1-dimensional case, n random samples are drawn from Fr = (1−r)F +rG

as described in model (2.5), under different combinations of model parameters (r,R, t,S)

as defined in Section 2.2.1. Both versions of EnKF are applied to the same random sample

and observation from which the optimal conditional distribution is calculated. We first

check the expected square of L2 distance as a measure of bias as a direct verification of

Theorem 2.2.1 and 2.2.2, then we look at the third moment to further confirm our results.

The expected square of L2 distance Once all the parameters in Model (2.5) are

specified, for any value of y, the functions fs,r(x), fd,r(x) and fo,r(x) can be calculated

analytically. The expected square of L2 distances

Ey

∫

(fs,r(x) − fo,r(x))2 dx, and Ey

∫

(fd,r(x) − fo,r(x))2 dx (2.25)

are calculated numerically. That is, y is simulated many times, and for each simulated

value of y the above integrals are calculated numerically and averaged. In Table 2.1, we

set t = 8, S = 1, the same setup as in Figure 2.2. Actually the simulation is quantifying

the difference between the density curves shown in Figure 2.2, except that it takes further

expectation over all possible values of y. Three different values of R are chosen according
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Table 2.1: Mean square L2 distance to the true conditional distribution in 1-D, with t = 8,
S = 1, averaged over 1000 realizations of y. Numbers in parentheses indicate standard
deviations for each result. Recall that the contamination distribution G = N(t,R)

R = 0.25Pf
r R = Pf

r R = 4Pf
r

Sto. 0.369(0.195) 0.435(0.105) 0.112(0.037)
r=0.05

Det. 0.409(0.405) 0.586(0.137) 0.150(0.051)

Sto. 0.255(0.112) 0.286(0.094) 0.099(0.029)
r=0.1

Det. 0.356(0.350) 0.464(0.161) 0.150(0.054)

Sto. 0.117(0.034) 0.124(0.006) 0.055(0.005)
r=0.5

Det. 0.240(0.156) 0.199(0.064) 0.050(0.018)

to its relative size with Pf
r = var(x|Fr). This result supports the analysis in Section 2.2.3

and the intuition in Section 2.2.4: when r is small, fs,r is closer to fo,r. Moreover, it seems

that the asymptotic statement can be extended to much larger value of r, e.g., r = 0.5

as shown in Table 2.1. The expectation over y is approximated by averaging over 1000

simulated values of y (standard deviations are shown in the parentheses).

The third moment The EnKF forces the updated ensemble to have the correct first and

second moment, therefore the third moment becomes a natural criterion of comparison.

The empirical third moments of the two updated ensembles are compared with the optimal

third moment which is calculated analytically.

Here, instead of taking expectation over y, we investigate the impact of the

value y on the comparison. That is, we look at all y ∈
[

−2(1 + R)
1
2 , 2(1 + R)

1
2

]

, which

covers a majority of probability mass in Fr. In the experiment, (R,S) ∈ {1/4, 1, 4}2 , and

t ∈ {1, 10, 30, 50, 100}. We choose (n, r) = (500, 0.05). Several representative pictures

are displayed in Figure 2.3. We see that for small t, both filters give very small bias for

almost the whole range of y, and when t gets bigger, the stochastic filter gives smaller bias
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Figure 2.3: The conditional third moments. Horizontal coordinate: the observation y;
vertical coordinate: EFo,rx

3 (solid), E
F̂s,r

x3 (dotted) and E
F̂d,r

x3 (dash-dotted). Param-

eters: t = 1 (top row), t = 10 (second row), t = 50 (third row), t = 100 (bottom row);
R = S = 1 (left column), R = 1,S = 4 (middle column), R = S = 4 (right column).

for a wide range of y, which covers the majority of probability mass of its distribution.

Moreover, the difference is enhanced by larger values of R and S.



2.3. SIMULATION RESULTS 36

2.3.2 2-dimensional case

In the 2-dimensional case, our theory claims that it is the magnitude (i.e., the

smallest eigenvalue) of the covariance matrices that determine the amount of deviation.

However, in the finite sample simulation, it seems necessary to consider not only the

magnitude, but also different orientations of the matrices. We consider two instances:

• Orientation 1 : P = I2, R = c1R0 and S = c2S0, where (c1, c2) ∈ {1/4, 1, 4}2 tunes

the magnitude of R and S, where R0 = diag(1.5, 1), and S0 is a simulated 2 by 2

Wishart matrix:

S0 =









1.15 0.14

0.14 0.70









.

• Orientation 2 : In this case we consider a contamination distribution G with very

different shape from F , i.e., S0 that has very different orientation from P = covF (x).

Here we choose P to be, up to a scaling constant, the covariance matrix of the

stationary distribution of the first two coordinates in the Lorenz 63 system, and S0

is obtained by switching the eigenvalues of P .

P =









1.06 1.05

1.05 1.35









, S0 =









1.35 −1.05

−1.05 1.06









.

Here S0 has the same eigenvectors as Σ, but with the eigenvalues switched. That is,

P = Q









d1 0

0 d2









QT, S0 = Q









d2 0

0 d1









QT,

where Q is a orthogonal matrix and d1 = 0.15, d2 = 2.27 are eigenvalues of P and

S0. The other settings are the same as above expect that R0 = I2.
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Figure 2.4: The contour of the densities of the two components in Orientation 2 (up to
shift). Left: N(0,P); right: N(0,S). The levels are (from inner to outer): 0.2, 0.15, 0.1,
0.05.

The contour of the two Gaussian densities are plotted in Figure 2.4.

In the deterministic algorithm we try two choices of U in (2.3). The first is simply

to choose U = I. The second choice is based on the “ensemble adjustment Kalman filter”

(EAKF) proposed by Anderson (2001). Similar to the 1-dimensional case, the expectation

over y is approximated by averaging over 120 simulated y. Standard deviations are shown

in the parentheses. Some representative results are summarized in Table 2.2, where r =

0.05, c2 = 1, and t = (10, 10) (other values make no qualitative difference).

Recall that c1 indicates the size of R. We can see that for small c1, the stochastic

filter is remarkably less biased, agreeing with the experiments in Lawson & Hansen (2004).
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Also note that in Model (5) both the forecast and the analysis distribution are a mixture

of two Gaussian components, where the major component (i.e., the one with a weight

close to 1) contains mostly “normal” ensemble members whereas the minor component

(the one whose weight is close to 0) contains mostly ensemble members that are likely

outliers. When the observation is accurate, the optimal filter puts more weight on the

major Gaussian component. On the other hand neither of the two EnKFs adjusts the

component weights in the analysis. The two components in the analysis distribution given

by the deterministic filter are less spread than those given by the stochastic filter. In

order to have the same covariance, the less spread components have to be moved further

away from each other. As a result, the outliers tends to be even more outlying in the

deterministic update. An instance of this intuition can be seen in the right panel of

Figure 2 where the deterministic filter always produces a small bump in the right tail,

especially for small observation errors.

Another interesting observation is the comparison of the choices of the rotation

matrix U. For small observation noise, the difference is negligible. One can imagine

that when the observation is accurate, the optimal analysis distribution tends to be closer

to a Gaussian, whose distribution is determined by the first two moments, therefore the

rotation does not make too much difference. While when c1 gets bigger, the analysis

ensemble becomes much less Gaussian and the choice U = I shows significant advantage

as compared with the EAKF, agreeing with Theorem 3. This basically says that when

the observation is very uninformative, there is no need to change, and hence no need to

rotate, the ensemble.
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Table 2.2: Mean square L2 distance to the true conditional distribution in 2-D, with
t = (10, 10), r = 0.05, c2 = 1, averaged over 120 realizations of y. Numbers in parentheses
indicate standard deviations for each result.

c1 = 1/4 c1 = 1 c1 = 4 c1 = 16

Sto. .035(.040) .041(.039) .043(.031) .040(.027)
Orient. 1 Det. (U = I) .462(.114) .183(.093) .100(.071) .065(.055)

Det. (EAKF) .454(.111) .183(.094) .105(.075) .086(.058)

Sto. .066(.142) .047(.071) .049(.056) .050(.051)
Orient. 2 Det. (U = I) .492(.224) .204(.119) .114(.098) .077(.079)

Det. (EAKF) .500(.207) .208(.118) .128(.101) .103(.085)

Moreover, the results shown in Table 2.2 also confirm the theory in that only the

magnitude of the contamination matters since similar behavior is observed for two very

different shapes of contamination distribution.

2.4 Conclusion

We have studied the large-ensemble performance of ensemble Kalman filters using

the robustness approach. In the contaminated Gaussian model, the updated distribution

is another mixture with two components, where the stochastic filter is more stable against

small model violation due to the fact that its main component in the updated distribution

is closer to that of the optimal filter. Our theoretical results are supported by intensive

simulation over a wide range of the model parameters, agreeing with the empirical findings

in Lawson & Hansen (2004), where the intuitive argument says that deterministic shifting

and re-scaling exaggerates the dispersion of some ensemble members.

Although our study focuses on large-ensemble behavior under a classical model,

our method can be extended in at least two directions. First, the influence function theory



2.5. LARGE-ENSEMBLE BEHAVIOR OF ENKFS 40

enables one to study other shapes of contamination, rather than Gaussian. Second, in

geophysical studies the model deviation might come from the observation, instead of the

state variable. In other words, the modeling error could come from the mis-specification

of the distribution of the observation error. The approach developed in this chapter is

applicable to analysis of situations where the observation error is not exactly Gaussian.

The choice of the orthogonal matrix U in the deterministic filter is an unsettled

issue in data assimilation literature. Our L2-based stability criterion gives an answer to

this question which is intuitively reasonable: you do almost nothing when the observation

is uninformative.

In practice, there are many factors determining which filtering method to use,

such as the computational constraints, the modeling error, the particular prediction task,

and the specific shapes of the forecasting distribution and error distribution, etc. But this

cannot be done before we fully understand the properties of all the candidates. We hope

our study contributes to that understanding.

2.5 Large-ensemble behavior of EnKFs

Following the discussion in Section 2.1.3, we have:

Proposition 2.5.1. As n→ ∞, we have

F̂s ⇒ Fs, F̂d ⇒ Fd,

where Fs and Fd are the distribution functions of (I−KH)xf+K(y+ǫ) and µa+A(xf−µf),

respectively.
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Our theoretical result on comparing the stochastic and deterministic filters are

based on Fs and Fd.

Proof. We show the weak convergence of F̂s. The proof for F̂d is similar.

Let J be a random index uniformly drawn from {1, . . . , n}. Let Ẑn = (I −

K̂H)xf(J) + K̂(y + ǫ(J)) and Zn = (I − KH)xf(J) + K(y + ǫ(J)). Then Ẑn ∼ F̂s, and

Zn ∼ Fs, so it is enough to show that Ẑn − Zn
P→ 0.

Consider the random variable W = Hxf − y − ǫ. For any ξ > 0, δ > 0, one

can find an M large enough such that P (||W ||2 ≥ Mξ) ≤ δ/2. On the other hand, since

K̂ − K
P→ 0, one can find Nξ,δ such that P (||K̂ − K||2 ≥ 1/M) ≤ δ/2 whenever n ≥ Nξ,δ.

Then for all n ≥ Nξ,δ, we have

P
(

||Ẑn − Zn||2 ≥ ξ
)

= P
(

||(K̂ − K)(Hxf(J) − y − ǫ(J))|| ≥ ξ
)

≤ P
(

||K̂ − K||2 ≥ 1/M
)

+ P
(

||Hxf(J) − y − ǫ(J)||2 ≥Mξ
)

= P
(

||K̂ − K||2 ≥ 1/M
)

+ P (||Hx − y − ǫ||2 ≥Mξ)

≤ δ/2 + δ/2

= δ.

Remark 2.5.2. In Proposition 2.5.1, there is nothing special about Gaussianity, so the

result holds for any random variable xf such that Exf = µf ,Var(xf) = Pf .
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2.6 Proofs of the main theorems

Proof of Theorem 2.2.1

We give a sketchy proof for part (i), the argument applies similarly to other parts.

We first consider the simpler case: t = ρt0, where ||t0||2 = 1.

Letting K = (I +R)−1, B = I−K, Γ = ttT +S− I, A = A(0) = B
1
2 U for some

orthogonal U, and Vs = BΓBT − AΓAT, then, in the deterministic filter, we have

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

=

[

−1

2
tr
(

B−1Vs

)

+ (ΓKy + B−1(B − A)t)T(x − Ky)

+
1

2
(x − Ky)TB−1VsB

−1(x −Ky) − 1

]

φ(x;Ky,B) + φ(x;Ky + At,ASAT).

Then it can be shown, via some algebra, that

Ey

∫
(

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

)2

dx = C · ad(t0)ρ
4 + Pd(ρ) + e−κdρ2

Qd(ρ), (2.26)

where Pd(ρ) and Qd(ρ) are polynomials of degree 3; C > 0 is a constant depending only

on B; κd > 0 is a constant; and

ad(t0) =
1

2
tr(t0t

T
0 Kt0t

T
0 B) +

1

16
E
(

zT
(

B
1
2 t0t

T
0 B

1
2 − Ut0t

T
0 UT

)

z
)2
. (2.27)

On the other hand, in the stochastic filter,

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

=
[

(ΓKy)T(x− Ky) − 1
]

φ(x;Ky,B) + φ(x;Ky + Bt,BSBT + KRKT).

Similarly,

Ey

∫
(

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

)2

dx = C · as(t0)ρ
4 + Ps(ρ) + e−κdρ2

Qs(ρ), (2.28)
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where Ps(ρ) and Qs(ρ) are polynomials of degree 3; C is the same constant as in (2.26);

κs > 0 is a constant; and

as(t0) =
1

2
tr(t0t

T
0 Kt0t

T
0 B). (2.29)

Note that ||B 1
2 t0||2 < ||Ut0||2, for all t0 6= 0. Therefore,

lim
ρ→∞

Ey

∫

ν2 (G,F ; fs(x|y)) dx = ∞, and lim
ρ→∞

Ey

∫

ν2 (G,F ; fs(x|y)) dx

Ey

∫

ν2 (G,F ; fd(x|y)) dx
=
as(t0)

ad(t0)
< 1.

The statement of Theorem 2.2.1 (i) follows easily via a standard argument using the

compactness of the set {t0 ∈ R
p : ||t0||2 = 1}.

The proofs for part (ii) and (iii) are simply repeating the argument above on S

and R, respectively.

2.6.1 Proof of Theorem 2.2.2

The argument is essentially the same as in the proof of Theorem 2.2.1. Starting

from the easy facts:

lim
||R||2→∞

K = 0, lim
||R||2→∞

B = I, and lim
||R||2→∞

A = U,

then

lim
||R||→∞

∂

∂r
fd,r(x)

∣

∣

∣

∣

r=0

=

[

((I − U)t)Tx +
1

2
xT(Γ − UΓUT)x − 1

]

φ(x; 0, I) + φ(x;Ut,USUT),

and

lim
||R||→∞

∂

∂r
fs,r(x)

∣

∣

∣

∣

r=0

= −φ(x; 0, I) + φ(x; t,S).
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The rest of the proof is simply repeating the argument for the proof of Theorem 2.2.1 (i)

and (ii).

2.6.2 Proof of Theorem 2.2.4

The result is straight forward if one realizes that Fs,r and Fd,r are both Gaussian

mixtures with two components. One can calculate analytically the parameters of each

component. Then straight calculus gives:

ν(G,F ;Ms(y))

=β3t3 +
(

3α3β + 6αβ2
)

t2 +
(

3α2β + 3β2 + 3β3(S − 1)
)

t+ (S− 1)(3α3β + 6αβ2),

(2.30)

and

ν(G,F ;Md(y))

=β
3
2 t3 +

(

3α3β + 6αβ2
)

t2 +
(

3α2β + 3β2 − 3β
3
2 + 3β

1
2 S
)

t+ (S − 1)(3α3β + 6αβ2),

(2.31)

where

α =
y

1 + R
, β =

R

1 + R
.

Then the results in Theorem 2.2.4 follows immediately because 0 < β < 1 for all R.
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Chapter 3

Improving the EnKF: the NLEAF

Algorithm

In this chapter we consider state space models (SSM) with state sequence {Xt :

t ≥ 1} and observation sequence {Yt : t ≥ 1} with the following form:

Xt+1 = ft(Xt, Ut), ft(·, ·) : R
p × [0, 1] 7→ R

p,

(Yt|Xt = x) ∼ g(·;x), g(·; ·) : R
q × R

p 7→ R
+.

(3.1)

where Ut is a random variable independent of everything else with uniform distribution on

[0, 1] and g(·;x) is a density function for each x. The state variable Xt evolving according

to the dynamics ft(·, Ut) is usually of interest but never directly observed. Instead it

can only be learned indirectly through the observations Yt. SSM have been widely used in

sciences and engineering including signal processing, public health, ecology, economics and

geophysics. For a comprehensive summary, please see Fan & Yao (2003); Künsch (2001).

A central problem in SSM is the filtering problem: assume that f(·, ·) and g(·; ·) are known,
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how can one approximate the distribution of Xt given the observations Y t
1 := (Y1, . . . , Yt)

and the initial distribution of X0, for every t ≥ 1? A related problem of much practical

interest is the tracking problem: for a realization of the SSM, how can one locate the

current hidden stateXt based on the past observations Y t
1 ? Usually the filtered expectation

E(Xt|Y t
1 = yt

1) can be used as the best guess for Xt.

A closed form solution to the filtering problem is available only for a few special

cases such as the Gaussian linear model (Kalman filter). The Kalman filter variants for

non-linear dynamics include the extended Kalman filter (EKF), the unscented Kalman

filter (UKF, Julier & Uhlmann (1997)) and the Ensemble Kalman filter (EnKF, Evensen

(2003)). The ensemble Kalman filter (EnKF), a combination of sequential Monte Carlo

(SMC, see below) and the Kalman filter, mostly used in geophysical data assimilation, has

performed successfully in high dimensional models (Evensen, 2007).

Despite the ease of implementation of the Kalman filter variants, they might

still be seriously biased because the accuracy of the Kalman filter update relies on the

linearity of the observation function and the Gaussianity of the distribution of Xt given

yt−1
1 , both of which are likely to fail in reality. Another class of ensemble filtering technique

is sequential Monte Carlo (SMC (Liu & Chen, 1998)) method, or the particle filter (PF,

Gordon et al. (1993)), which feature a fully non-parametric update and are less biased

under general non-linear models.

The basic idea of the PF (also the EnKF) is using a discrete set of n weighted

particles to represent the distribution of Xt, where the distribution is updated at each

time by changing the particle weights according to their likelihoods. It can be shown
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that the PF is consistent under certain conditions, e.g., when the hidden Markov chain

{Xt : t ≥ 1} is ergodic and the state space is compact (Künsch, 2005), whereas the EnKF

in general is not (Le Gland et al., 2009; Lei et al., 2009).

A major challenge arises when p, q are very large in model (3.1) while n is rela-

tively small. In typical climate models p can be a few thousands with n being only a few

tens or hundreds. Even Kalman filter variants cannot work on the whole state variable

because it is hard to estimate very large covariance matrices. It is also known that the

particle filter suffers from the “curse of dimensionality” due to its nonparametric nature

Bengtsson et al. (2008) even for moderately large p. As a result, dimension reduction

must be employed in the filtering procedure. For example, a widely employed technique

in geophysics is “localization”: the whole state vector and observation vector are decom-

posed into many overlapping local patches according to their physical location. Filtering

is performed on each local patch and the local updates are pieced back to get the up-

date of the whole state vector. Such a scheme works for the EnKF but not for the PF

because the former keeps track of each particle whereas the PF involves a reweighting/re-

sampling step in the update of each local patch and there is no straightforward way of

reconstructing the whole vector since the correlation among the patches is lost in the local

reweighting/resampling step.

To sum up it is desirable to have an non-linear filtering method that is easily

localizable like the EnKF and adaptive to non-linearity and non-Gaussianity like the PF.

In this chapter we propose a nonlinear filter that combines the advantages of both the

EnKF and the PF. This is a filter that keeps track of each particle and uses direct particle
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transformation like the EnKF while using importance sampling as the PF to avoid serious

bias. The new filter, which we call the Non-Linear Ensemble Adjustment Filter (NLEAF),

is indeed a further combination of the EnKF and the PF in that it uses a moment-

matching idea to update the particles while using importance sampling to estimate the

posterior moments. It is conceptually and practically simple and performs competitively

in simulations. Single step consistency can be shown for certain Gaussian linear models.

In Section 3.1 we describe EnKF and PF with emphasis on the issue of dimension

reduction. The NLEAF method is described and the consistency issue is discussed in

Section 3.2. In Section 3.3 we present the simulation results on two synthesized chaotic

systems which are common testbeds used in numerical weather forecasting.

3.1 Ensemble filtering at a single time step

Since the filtering methods considered in this chapter are all recursive, from now

on we focus on a single time step and drop the time index t whenever there is no confusion.

Let Xf denote the variable (Xt|yt−1
1 ) where the subindex f stands for “forecast”, and Y

denote Yt. Let Xu denote the conditional random variable (Xt|yt
1).

Suppose the forecast ensemble {x(i)
f }n

i=1 is a random sample from Xf , and the

observation Y = y is also available. There are two inference tasks in the filtering/tracking

procedure:

(a) Estimate E(Xu) to locate the current state.

(b) Generate the updated ensemble {x(i)
u }n

i=1 , i.e., a random sample from Xu, which



3.1. ENSEMBLE FILTERING AT A SINGLE TIME STEP 49

will be used to generate the forecast ensemble at next time.

3.1.1 The ensemble Kalman filter

We first revise the Kalman filter in a one-step context. Assuming a Gaussian

forecast distribution and a linear observation model

Xf ∼ N(µf ,Σf ),

Y = HXf + ǫ, ǫ ∼ N(0, R),

(3.2)

then Xu = (Xf |y) is still Gaussian:

Xu ∼ N(µu,Σu),

where

µu = µf +K(y −Hµf ), Σu = (I −KH)Σf , (3.3)

and

K = ΣfH
T (HΣfH

T +R)−1 (3.4)

is the Kalman gain.

The EnKF (Evensen, 1994, 2003, 2007) approximates the forecast distribution

by a Gaussian with the empirical mean and covariance, then updates the parameters using

the Kalman filter formula. Recall the two inference tasks listed in the beginning of this

section. The estimation of E(Xu) is straightforward using the Kalman filter formula. To

generate the updated ensemble, a näıve (and necessary if in the Gaussian case) idea is

to sample directly from the updated Gaussian distribution. This will, as verified widely
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in practice, lose much information in the forecast ensemble, such as skewness, kurtosis,

clustering, etc. Instead, in the EnKF update, the updated ensemble is obtained by shifting

and re-scaling the forecast ensemble. A brief EnKF algorithm is described as below:

The EnKF procedure

1. Estimate µ̂f , Σ̂f .

2. Let K̂ = Σ̂fH
T (HΣ̂fH

T +R)−1.

3. µ̂u = (I − K̂H)µ̂f + K̂y.

4. x
(i)
u = x

(i)
f + K̂(y −Hx

(i)
f − ǫ(i)), with ǫ(i)

iid∼ N(0, R).1

5. The next forecast ensemble is obtained by plugging each particle into the dynamics:

x
(i)
t+1,f = ft(x

(i)
u , ui), i = 1, . . . , n.

Under model (3.2) the updated ensemble is approximately a random sample from

Xu and that µ̂u → µu as n → ∞. The method is biased if the model (3.2) does not hold

(Furrer & Bengtsson, 2007). Large sample asymptotic results can be found in Le Gland

et al. (2009), where the first two moments of the EnKF are shown to be consistent under

the Gaussian linear model, see also Lei et al. (2009).

3.1.2 The particle filter

The particle filter (Gordon et al., 1993; Liu & Chen, 1998) also approximates

the distribution of Xf by a set of particles. It differs from the EnKF in that instead

1In step 4 there is another update scheme which does not use the random perturbations ǫ(i). This
deterministic update, also known as the Kalman square-root filter, is usually used to avoid sampling error
when the ensemble size is very small (Anderson, 2001; Bishop et al., 2001; Whitaker & Hamill, 2002;
Tippett et al., 2003; Lei et al., 2009).
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of assuming a Gaussian and linear model, it reweights the particles according to their

likelihood. Formally, one simple version of the PF acts as the following:

A simple version of the particle filter

1. Compute weight Wi =
g(y;x

(i)
f

)
∑n

j=1 g(y;x
(i)
f

)
for i = 1, . . . , n.

2. The updated mean µ̂u =
∑n

i=1 x
(i)
f

g(y;x
(i)
f

)
∑n

i=1 g(y;x
(i)
f

)
.

3. Generate n random samples x
(1)
u , . . . , x

(n)
u i.i.d from {x(i)

f }n
i=1 with probability P (X

(1)
u =

x
(i)
f ) = Wi for i = 1, . . . , n.

It can be shown (Künsch, 2005) that under strong conditions such as compactness

of the state space and mixing conditions of the dynamics, the particle approximation

of the forecast distribution is consistent in L1 norm uniformly for all 1 ≤ t ≤ Tn, for

Tn → ∞ subexponentially in n. However, it is well-known that the PF has a tendency

to collapse (also known as sample degeneracy) especially in high-dimensional situations,

see Liu (2001), and rigorous results in Bengtsson et al. (2008). It is suggested that the

ensemble size n needs to be at least exponential in p to avoid collapse.

Another fundamental difference between the PF and the EnKF is that in the PF,

x
(i)
u is generally not directly related to the x

(i)
f because of reweighting/resampling. Recall

that in the EnKF update, each particle is updated explicitly and x
(i)
u does correspond to

x
(i)
f . This difference materializes in the dimension reduction as discussed below.

3.1.3 Dimension reduction via localization

Dimension reduction becomes necessary for both the EnKF and PF when X and

Y are high dimensional, e.g., in numerical weather forecasting X and Y represents the
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underlying and observed weather condition. It is usually the case that the coordinates

of the state vector X and observation Y are physical quantities measured at different

grid points in the physical space. Therefore it is reasonable to assume that two points far

away in the physical space have little correlation, and the corresponding coordinates of the

state vector can be updated independently using only the “relevant” data (Houtekamer

& Mitchell, 1998; Bengtsson et al., 2003; Ott et al., 2004; Anderson, 2007). Formally,

let X = (X(1), ...,X(p))T . One can decompose the index set {1, . . . , p} into L (possibly

overlapping) local windows N1, . . . , NL such that |Nl| ≪ p and
⋃

lNl = {1, . . . , p}, and

correspondingly decompse {1, . . . , q} into {N ′
1, . . . , N

′
L} such that |N ′

l | ≪ q and
⋃

lN
′
l =

{1, . . . , q}. Let Xf (Nl) denote the subvector of Xf consisting of the coordinates in Nl,

and similarly define Y (N ′
l ). Y (N ′

l ) is usually chosen as the local observation of local state

vector Xf (Nl).

The localization of the EnKF is straightforward: For each local window Nl and

its corresponding local observation window N ′
l , one can apply the EnKF on {x(i)

f (Nl)}n
i=1

and y(N ′
l ) with local observation matrix H(N ′

l , Nl), which is the corresponding submatrix

of H. In the L local EnKF updates, each coordinate of X might be updated in multiple

local windows. The final update is a convex combination of these multiple updates. Such

a localized EnKF has been successfully implemented in the Lorenz 96 system (a 40 di-

mensional chaotic system, see Section 3.3) with the sample (ensemble) size being only 10

(Ott et al., 2004). The localization idea will be further explained in Section 3.2.1. To be

clear, we summarize the localized EnKF as simply L parallel runs of EnKF plus a piecing

step:
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The localized EnKF

1. For l = 1, . . . , L, run the EnKF on {x(i)
f (Nl)}n

i=1 and y(N ′
l ), with local observation

matrix H(N ′
l , Nl). Store the results: µ̂u(Nl) and {x(i)

u (Nl)}n
i=1.

2. For each j = 1, . . . , p, let µ̂u(j) =
∑

l:j∈Nl
wj,lµ̂u(Nl; j), and

x
(i)
u (j) =

∑

l:j∈Nl
wj,lx

(i)
u (Nl; j), where X(Nl; j) is the coordinate of X(Nl) that

corresponds to X(j), and

wj,l ≥ 0,
∑

l:j∈Nl
wj,l = 1.

The choices of local windows Nl, N
′
l and combination coefficients wj,l can be

pre-determined since in many applications there are simple and natural choices. They

can also be chosen in a data-driven fashion. For example, as we will explain later, the

Kalman filter is essentially a linear regression of X on Y . Therefore for each coordinate of

X one can use sparse regression techniques to select the most relevant coordinates in Y .

Similarly the choice of wj,l in the algorithm can be viewed as a problem of combining the

predictions from multiple regression models and can be calculated from the data (Breiman,

1996; Yang, 2001; Bunea et al., 2007). We will return to this issue in Section 3.2.1.

On the other hand, such a dimension reduction scheme is not applicable to the

PF because each particle is reweighted differently in different local windows. In words,

the reweighting breaks the strong connection of a single particle update in different local

windows and it is not clear how to combine the updated particle across the local windows.

This can be viewed as a form of sample degeneracy: in high dimension situations, a particle

might be plausible in some coordinates but absurd in other coordinates.

So far, the properties of the EnKF and the PF can be summarized as in Table
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Table 3.1: A quick comparison of the EnKF and the PF.

consistent stable localizable

EnKF ✕ X X

PF X ✕ ?

3.1, where the only check mark for the PF is higher accuracy. A natural idea to reduce

the bias of EnKF is to update the mean of X using importance sampling as in the PF.

Meanwhile, a possible improvement of the PF is avoiding the reweighting/resampling step.

One possibility is generating an ensemble using direct transformations on each particle

as in the EnKF. In the next section we present what we call the “nonlinear ensemble

adjustment filter” (NLEAF) as a combination of the EnKF and the PF. Some relevant

works (Bengtsson et al., 2003; Chorin & Tu, 2009) also have the flavor of combining the

EnKF and the PF, but both involve some form of resampling, which destroys the spatial

smoothness of the forecast ensemble.

3.2 The NonLinear Ensemble Adjustment Filter (NLEAF)

3.2.1 A regression perspective on the EnKF and two sources of bias

In equation (3.4), the Kalman gain KT is simply the linear regression coefficient

of Xf on Y . In fact, from Model (3.2) we have Cov(X,Y ) = ΣfH
T and Var(Y ) =

HΣfH
T + R, therefore KT = Var(Y )−1Cov(Y,Xf ). The conditional expectation of Xf

given y is

µf +K(y −Hµf ) := m1(y).

Let y(i) = Hx
(i)
f + ǫ(i) be an observation given Xf = x

(i)
f then (x

(i)
f , y(i)) is a
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random sample from the joint distribution of (Xf , Y ). m̂1(·) = µ̂f + K̂(· − Hµ̂f ) is an

estimator of m1(·). The update step of the EnKF can be written as

x(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)). (3.5)

Under Model (3.2) we have that (Xf −m1(y)|Y = y) ∼ N(0,Σu) where Σu does not

depend on y. Note further that
(

x
(i)
f , y(i)

)

∼ (Xf , Y ), so x
(i)
f −m1(y

(i)) is a random draw

from N(0,Σu). Therefore x
(i)
u = m1(y)+x

(i)
f −m1(y

(i)) is a random draw from N(µu,Σu)

by noting that m1(y) = µu, which validates the update formula (3.5).

The procedure described above is an abstraction of the EnKF which can be

viewed as a solution to the sampling problem of generating a random sample of (Xf |Y = y)

given a sample of Xf . Classical approaches to this problem includes rejective sampling and

importance sampling (with possibly a resampling step). However, the approach described

above uses direct transformations on the particles x
(i)
f , with randomness involved only in

generating y(i). This procedure is effective in the sense that each particle in the forecast

ensemble correspond to exactly one particle in the updated ensemble, without sample

degeneracy.

Based on the discussion above, an effective way of updating the ensemble is

directly transforming each particle so that the transformed particles have the desired

distribution. In a Gaussian linear model, it suffices to adjust the mean by a simple shift

as in equation (3.5) and the posterior variance is implicitly obtained by generating the

random number x
(i)
f − m̂1(y

(i)). For general models where the likelihood function g(y;x)

and the forecast distribution are not Gaussian, the EnKF introduces bias from two sources.

The first source of bias is estimating E(Xf |Y = y) using a linear function of y.
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If the model is non-Gaussian non-linear, E(X− m̂1(y)) would be non-zero even asymptot-

ically. As a result, the updated ensemble {x(i)
u }n

i=1 no longer has the desired mean m1(y).

We call this bias the first order bias which is due to using the wrong estimator m̂1(·).

On the other hand, under non-Gaussian non-linear models, the two variables

(Xf |Y = y)−m1(y) and (Xf |Y = y′)−m1(y
′) will also have different shape, because higher

order moments might depend on Y as well. Although this will not cause any problem in

the current step if one is only interested in the ensemble average, it might cause problems

in the future since such a bias in shape will be propagated by the dynamics. We call this

bias the higher order bias.

3.2.2 Reducing the first order bias: the NLEAF algorithm

According to the previous discussion, reducing the first order bias amounts to

finding a better estimator for m1(·), which can be written as the following,

m1(y) = E(Xf |Y = y) =

∫

xpf (x)g(y;x)dx
∫

pf (x)g(y;x)dx
,

where pf (·) is the density of Xf . Given a random sample {x(i)
f }n

i=1 from Xf , a well-

known non-parametric estimator is using importance sampling (Hammersley & Hand-

scomb, 1965):

m̂1(y) =

∑n
i=1 x

(i)
f g(y;x

(i)
f )

∑n
i=1 g(y;x

(i)
f )

.

Based on this idea, we propose an alternative to the EnKF update: the first

order NLEAF algorithm. It is a direct generalization of the EnKF by using importance

sampling to estimate m1(·):

The first order NLEAF
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1. Generate y(i) ∼ g(·;x(i)
f ), for i = 1, . . . , n.

2. Estimate m1(·) by m̂1(·) =
∑n

i=1 x
(i)
f

g(·;x(i)
f

)
∑n

i=1 g(·;x(i)
f

)
.

3. Updated mean µ̂u = m̂1(y). Updated particle x
(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)).

This approach is valid if L
(

Xf −m1(y
(i))|y(i)

)

≈ L (Xf −m1(y)|y), where L(X) denotes

the distribution of the random variable X. That is, L(Xf |y) depends on y mostly in terms

of the mean. A simple example is the Gaussian linear model, where only the posterior

mean depends on y. One can also expect such a situation when the likelihood g(y;x) has

a lighter tail than the forecast distribution Xf . To formalize, let

η = sup
y′,y

TV
(

L(Xf −m1(y
′)|y′),L(Xf −m1(y)|y)

)

,

where TV(L1,L2) = supA |PL1(A)−PL2(A)| denotes the total variation distance between

two distributions L1 and L2. Then the smaller η is, the better is the approximation given

by the first order NLEAF. To state a rigorous result, we need the following technical

conditions on the likelihood function g(x; y) which make the argument simple.

(A0) Xf has density function f(·) > 0.

(A1) 0 < g(x; y) ≤ M < ∞ for all (x, y), supx∈Rp,y∈K |xg(x; y)| ≤ MK < ∞ for all

compact K ⊂ R
q.

(A2) For any compact set K ⊆ R
q, there exists a measurable function vK(x), such that

E(v2
K(X)) <∞ and for any y1, y2 ∈ K,

max (|xg(x; y1) − xg(x; y2)|, |g(x; y1) − g(x; y2)|) ≤ vK(x)|y1 − y2|.
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The conditions A1 and A2 are standard conditions for the maximal inequalities in empirical

processes. They imply that the likelihood function x 7→ g(x; y) (x 7→ xg(x; y)) depends on

y continuously, which controls the complexity of the class of functions x 7→ g(x; y) (x 7→

xg(x; y)) indexed by y and enables the use of the classical results of empirical processes.

They also imply that the observation Y provides information for the whole vector of X,

which precludes the degenerate situations such as X = (X1,X2)
T and Y = h(X1). These

conditions are reasonably general, including models like g(x; y) ∝ φ(|x − y|) with φ(·)

decaying fast enough, e.g., for the Gaussian density function one can find the vK(x) is

bounded by a constant. We have the following theorem whose proof is in Section 3.5:

Theorem 3.2.1. Suppose
(

x(i), y(i)
)

, i = 1, . . . , n is an i.i.d sample from the joint distri-

bution of (Xf , Y ). Let x
(i)
u , i = 1, . . . , n, be the updated particles given by the first order

NLEAF algorithm. For any y, consider the empirical distribution

F̂u(A|y) =
1

n
δ
x
(i)
u

(A), ∀A,

where

x(i)
u = m̂1(y) + x

(i)
f − m̂1(y

(i)).

Also let Fu(A|y) = P (Xf ∈ A|y) be the true conditional measure. Then, under (A0-A2)

for Borel set A with λ(∂A) = 0, we have

lim sup
n→∞

|F̂u(A|y) − Fu(A|y)| ≤ η, a.s.,

where λ(·) is the Lebesgue measure and ∂A := Ā\A◦ is the boundary of A, with Ā and A◦

being the compact closure and interior of A, respectively.
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A by-product of the proof of Theorem 3.2.1 is the consistency of mean update:

Corollary 3.2.2. Under (A0-A2), we have for any y,

m̂1(y) → m1(y), a.s., n→ ∞.

Under the Gaussian linear model we have η = 0. The above results indicate the

consistency of the NLEAF of order one:

Corollary 3.2.3. Under Model (3.2), for any y,

F̂u
d→ Fu, a.s., n→ ∞.

3.2.3 Second order correction

The basic idea of NLEAF algorithm can be easily generalized to correct the sec-

ond order moment. Note that the conditional variance can be estimated using importance

sampling as following:

m̂1(y) =

∑n
i=1 g(y;x

(i)
f )x

(i)
f

∑n
i=1 g(y;x

(i)
f )

, (3.6)

m̂2(y) =

∑n
i=1 g(y|x

(i)
f )(x

(i)
f − m̂1(y))(x

(i)
f − m̂1(y))

T

∑n
i=1 g(y;x

(i)
f )

. (3.7)

If the likelihood g(·; ·) is not known explicitly (eg, y is generated by a black-box function),

one may use regression methods to estimate the conditional moments. For example, the

EnKF uses a linear regression of Xf on Y to find m̂1(y). However, under general models,

one might need more general methods, such as polynomial regressions, to avoid serious

bias. This idea is further explained in Section 3.3.2.
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Based on the estimated conditional variance in (3.7), one can easily develop a

second order NLEAF algorithm. Now the update is naturally chosen as

x(i)
u = m̂1(y) + (m̂2(y))

1
2

(

m̂2

(

y(i)
))− 1

2
(

x
(i)
f − m̂1

(

y(i)
))

. (3.8)

The update formula is intuitively reasonable: Suppose x, y ∈ R
1, then a large m2(y

(i))

means that the region where x
(i)
f lies in is highly uncertain which is possibly due to the

irregular behavior of the dynamics in that region. Such a particle x
(i)
f can provide little

information on the true hidden state, therefore it is down-weighted in the transformation

ξi, which tends to drag x
(i)
f towards µ̂u = m̂1(y) in the updated ensemble.

It should be noted that the update x
(i)
u is apparently not unique. For example, for

any orthogonal matrix U , one can define x
(i)
u = ξi(x

(i)
f ;U) through the function ξi(x;U):

ξi(x;U) = m̂1(y) + (m̂2(y))
1
2 U

(

m̂2

(

y(i)
))− 1

2
(

x− m̂1

(

y(i)
))

.

It is easily seen that the choice of U does not change the first two moments of L
(

ξi(Xf ;U)|y(i)
)

.

The choice U = I is natural in the sense that under Model (3.2) with Σu = σ2I, if U = I

then the second order NLEAF is asymptotically equivalent to the first order NLEAF,

which is proved to be consistent. This is analogous to the issue of choosing the scaling

matrix in the Kalman square-root filter (Lei et al., 2009). In the rest of this chapter, we

will focus on the natural choice U = I.

3.2.4 Localization for the NLEAF algorithm

As seen above, the NLEAF algorithm is similar to the EnKF in that it updates

each particle explicitly instead of resampling. As a result, one may expect a similar
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localization procedure as described in Section 3.1.3 applicable to the NLEAF algorithm.

Recall that the EnKF localization involves three major steps:

a) Decompose the state vector Xf into local windows Xf (Nl), l = 1, . . . , L, find the

corresponding local observation vector Y (N ′
l ), and the local likelihood function

gl(y(N
′
l );xf (Nl));

b) Update each localized ensemble;

c) Construct the whole updated ensemble by combining the local updated ensembles.

In step a), one can usually construct a local window for each coordinate of Xf , where

Xf (Nj) is the subset of coordinates most relevant to Xf (j), j = 1, . . . , p. One can also

choose these coordinates by subject knowledge. For example, in geophysics each coordinate

corresponds to a physical location, then one can choose the coordinates in a neighborhood

of the physical location of Xf (j). Or one can use data-driven variable selection procedures

to determine the relevant neighborhood Xf (Nj). The choice of N ′
j is similar. In many

cases the special structure of the observation model (the second equation in (3.1)) enables

natural and simple solutions. For example, under the linear model Y = HXf + ǫ, if

H is sparse or banded, it is possible to find a submatrix Hj = H(N ′
j , Nj) such that

Y (N ′
j) ≈ HjXf (Nj) + ǫ(N ′

j), where N ′
j is a subset of 1, . . . , q such that yN ′

j
is the local

observation corresponding to Xf (Nj).

Once step a) is done, in step b) one only needs to apply the NLEAF algorithm

as described above on each of the localized ensemble. The major issue is step c). Re-

call that the local windows overlap with each other, therefore each coordinate might be
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updated simultaneously in multiple local patches. To be concrete, for any local window

Nj ⊆ {1, . . . , p}, let N ′
j ⊆ {1, . . . , q} be the corresponding local observation window, and

gj(xNj
; yN ′

j
) be the local likelihood function. Define Nk, N

′
k and gk(·; ·) similarly for an-

other local window Nk. Suppose r ∈ Nj ∩ Nk, then Xf (r) is updated in both of these

two local windows. From now on we consider the first order and second order NLEAF

separately.

In the first order NLEAF, we write the update formula for the mean in both

local windows as in equation (3.5):

µ̂u(Nj) = m̂1,j(y(N
′
j)),

µ̂u(Nk) = m̂1,k(y(N
′
k)),

where m̂1,j(·) denotes the local estimation of m1,j(·) := E(Xf (Nj)|y(N ′
j)). Recall that we

denote (Nj ; r) the position of the index r in the vector Nj. Then µ̂u(Nj ; r) and µ̂u(Nk; r)

can be viewed as predictions of Xf (r) given different sets of predictors, namely Y (N ′
j) and

Y (N ′
k), respectively. A natural method of combining the predictions of the same variable

from different models is convex combination, which is chosen either conventionally or in

a data-driven manner (Breiman, 1996; Yang, 2001; Bunea et al., 2007). In our numerical

experiment we follow the conventional choice described in Ott et al. (2004) where the

combination is simply averaging the updates in a few spatially coherent local windows. It

is straightforward that this combination procedure is also applicable to the update of each

single particle for exactly the same reason. However, a theoretically justifiable method of

pasting together local updates is still to be developed.
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On the other hand, the above method of combining local updates does not apply

directly to the second order NLEAF because in equation (3.8) the left-multiplication of

the matrix (m̂2(y))
1
2
(

m̂2(y
(i))
)− 1

2 mixes the coordinates in the local window, which makes

coordinates in the left hand side no longer an estimate of the corresponding coordinate of

the state variable, which invalidates the convex combination.

3.3 Numerical experiments

We present numerical experiments on two dynamical systems, both proposed by

E. Lorenz in studying the predictability of chaotic systems. These systems have been

widely used as test beds for atmospheric data assimilation methods (Bengtsson et al.,

2003; Ott et al., 2004; Anderson, 2007).

3.3.1 Experiments on L63

The L63 system is first introduced by Lorenz (1963), as one of the earliest study

of chaos. This three dimensional system is determined by an ordinary differential equation

dx(τ)

dτ
= −σx+ σy, (3.9)

dy(τ)

dτ
= −xz + rx− y, (3.10)

dz(τ)

dτ
= xy − bz, (3.11)

where τ denotes the time, (x(τ), y(τ), z(τ))T is the state vector and (b, σ, r) are parameters

of the system. When b = 8/3, r = 28 and σ = 10, the system is chaotic and its orbit is

the well-known Butterfly Attractor.
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In the simulation the system is discretized using the fourth order Runge-Kutta

method. It is clear that the linearity of the evolution of the state vector between two

successive time points depends on the length of the time interval ∆τ between t and t+ 1

which we call the step size: The smaller is ∆τ , the more linear is the evolution between t

and t+ 1.

In the simulation, there is a hidden true orbit {xt, t ≥ 0}. The starting point,

x0, of the true orbit is randomly chosen from the attractor. At the starting time, an

ensemble of state vectors {x(i)
0 }n

i=1, surrounding x0 is available (e.g., perturbations of x0

with random noise or a random sample from a small neighborhood of x0 in the attractor).

For all t > 0 a noisy observation yt = xt + ǫt is available with

ǫt
iid∼ N(0, σ2I3). (3.12)

At each time t ≥ 1, The updated ensemble average is used as the best single estimate of

xt. Therefore, the data assimilation performance is evaluated by the root mean squared

error (RMSE):

RMSE =

√

1

p
||µ̂u,t − xt||22. (3.13)

We consider two time steps: 0.05 and 0.2, corresponding to the nearly linear case

and the non-linear case respectively. In each case the system is propagated 2000 steps and

at each time the data assimilation is performed using four different methods: the EnKF,

the PF, the first order NLEAF (NLEAF1) and the second order NLEAF (NLEAF2), each

with an ensemble of size 400. Also we consider three values of σ2 in (3.12): 0.25, 1 and 4,

corresponding to different levels of the observation accuracy.
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Figure 3.1: Average RMSE over 2000 cycles.

In Figure (3.1) we see that the EnKF gives the largest RMSE because of the non-

linear dynamics. The NLEAF2 performs the best under all circumstances considered here.

When step size is small, the system is nearly linear so that the NLEAF1 performs better

than the PF. When the step size is large and the distribution is significantly non-Gaussian

and non-linear, the PF shows some advantage against the NLEAF1 which ignores the

higher order moments.

3.3.2 Experiments on L96

The L96 system is introduced in (Lorenz, 1996) in the study of predictability of

high dimensional chaotic systems. The state vector is 40 dimensional, and the dynamics

is given by an ODE as follows:

dxj(t)

dt
= (xj+1 − xj−2)xj−1 − xj + 8, for j = 1, . . . , 40, (3.14)
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where x0 = x40, x−1 = x39 and x41 = x1. This system mimics the evolution of some

meteorological quantity at 40 equally spaced grid points along a latitude circle. The

system is discretized with a time step of ∆τ = 0.05, which is analogous to a 6 hour in the

real world.

Although the dimensionality of the L96 system is still far from the reality, it

has been challenging for many standard data assimilation methods including the Kalman

filter variants. Among the vast literature, we mention only two previous works: Ott et al.

(2004) considered the localized ensemble Kalman filter in an approximately linear case

(δτ = 0.05) and a complete observation, that is

Yt = Xt + ǫt, ǫt
iid∼ N(0, I40). (3.15)

We call this set-up the easy case. On the other hand, Bengtsson et al. (2003) studied a

localized Gaussian mixture filter in a highly non-linear case (δτ = 0.4) and an incomplete

observation: for j = 1, . . . , 20,

Yt(j) = Xt(2j − 1) + ǫt(j), ǫt
iid∼ N(0, I20/2). (3.16)

We call this set-up the hard case.

The major criterion is still the RMSE defined in (3.13). Moreover, because

of its dimensionality and resemblance to real atmospheric data, we do care about the

computation, where the main restriction is the ensemble size.

We consider both the easy case and the hard case. The system is propagated

2000 steps from a random starting point with data assimilation performed at each step.

Because of the localization, we do not use the second order NLEAF. Instead, we use a
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variant of NLEAF1, namely NLEAF1q, with the letter “q” for “quadratic”, in which the

function m1(·) = E(Xf |Y = ·) is estimated using a quadratic regression of Xf on Y . To be

concrete, in the NLEAF1q algorithm m̂1(·) is the minimizer over all quadratic functions

m(·) of the square loss:
n
∑

i=1

(

m(y(i)) − x
(i)
f

)2
.

We consider the NLEAF1q algorithm because we believe sometimes g(·, ·) may not be

available explicitly and the y’s are generated by a black-box function of x. We emphasize

that in the NLEAF1q algorithm, the function g(·, ·) is pretended to be unknown and not

used.

In both NLEAF1 and NLEAF1q, the localization is as described in Section 3.1.1,

which is also essentially the same as in Ott et al. (2004): Let l be a pre-chosen window size.

For each j = 1, . . . , 40, let Nj = (j − l, . . . , j, . . . , j + l) be the local window centered at j.

The corresponding local observation window N ′
j is the local observations of X(Nj). For

example, if l = 2, then N1 = (39, 40, 1, 2, 3). In the easy case, N ′
1 = (39, 40, 1, 2, 3) since

the observation is complete (eq. (3.15)); In the hard case the observation is incomplete

(eq. (3.16)) and we have N ′
1 = (20, 1, 2).For each j, the coordinate X(j) of the state

variable X is updated in 2l + 1 local windows. In the first order NLEAF algorithm, for

k ∈ Nj , X(j) is updated in the local window Nk using the conditional expectation given

yN ′
k

(or y
(i)
N ′

k

). Similar to the scheme proposed in Ott et al. (2004), we combine the local

updates of Xf (j) from Nj−1, Nj and Nj+1 by simply averaging them. One can also use a

data-driven method at a higher computational cost (Breiman (1996); Yang (2001); Bunea

et al. (2007)).
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Table 3.2: Summarizing statistics of RMSE’s over 2000 time steps in the hard case. En-
semble size = 400.

NLEAF NLEAFq EnKF XEnsF

mean med std mean med std mean med std mean med std

0.65 0.63 0.20 0.71 0.67 0.22 0.83 0.75 0.31 0.92 0.85 0.31

The hard case

In the hard case we compare four methods: the NLEAF1; the NLEAF1q; the

mixture ensemble filter (XEnsF Bengtsson et al. (2003)); the EnKF without localization.

Following the set-up in Bengtsson et al. (2003), the ensemble size is fixed to be 400. The

system is run for a total of 2000 time steps. At each time step three different filtering

methods are applied to obtain the updates individually, resulting an RMSE value for each

method. We compare the performance of NLEAF1 and NLEAF1q directly with those

reported in Bengtsson et al. (2003), summarized in Table 3.2, where we see similar results

as in the L63 experiment: The NLEAF1 gives much smaller RMSE than both the XEnsF

and the EnKF. This is the first time the authors see the average RMSE goes below 0.7 in

this set-up.

The easy case

In the easy case we compare three methods: the NLEAF1, the NLEAF1q and

the local ensemble transform Kalman filter (LETKF) proposed by Ott et al. (2004), which

achieves the best known performance in this set-up, with an average RMSE of about 0.2

using an ensemble as small as 10. It is reported that enlarging the ensemble size does not

improve the accuracy of EnKF (LETKF) while the NLEAF is expected to work better for
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Figure 3.2: Average RMSE over 2000 cycles in the easy case of L96 system, ensemble size
= 400.

larger ensembles. Here we consider different ensemble sizes ranging from 10 to 400. The

result is summarized in Figure 3.2 where only the mean of the average RMSE is plotted.

The median and the variance are qualitatively similar to those presented in the hard case

and are omitted here. We see that the LETKF still gives the best performance especially

for small ensemble sizes. The NLEAF1 becomes competitive when the ensemble size is

moderately large. From the plot it is also reasonable to expect even smaller RMSE of

NLEAF1 given even larger ensembles. The performance of NLEAF1q is not as good as

the other two methods but we believe it is of practical interest since it requires much less

a priori knowledge on the observation mechanism.
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An intermediate case

So far both the easy and the hard cases are of practical interests: The easy case

is analogous to 6-hour operational data assimilation; The hard case challenges forecast in

the presence of high nonlinearity and incomplete observation which is often the case in

practice. As a result, it would be interesting to consider an intermediate case where the

time step is still short as in the easy case but the observation is incomplete as in the hard

case, with a larger observation noise:

Yt(j) = Xt(2j − 1) + ǫt(j), ǫt
iid∼ N(0, 2I20). (3.17)

Again we let the ensemble size vary from 10 to 400. The results are summarized in Figure

3.3. Now the NLEAF1 and NLEAF1q gives much better relative results than in the

easy case. The NLEAF1 is competitive for a ensemble as large as 100. Here again we

see the potentiality of improvement for the NLEAF1 when the ensemble gets large. The

NLEAF1q algorithm does a decent job for large ensembles too.

It should be noted that the LETKF tends to lose accuracy when the ensemble

size gets beyond 20. There are two possible reasons for this phenomenon: first, the method

of combining updates in different local windows might not be optimal for this set-up in

varying ensemble sizes; second, the the mis-specification of the linear model assumed by

the ensemble Kalman filter incurs a larger bias when the ensemble size gets large.



3.4. CONCLUSION 71

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

ensemble size

av
er

ag
e 

R
M

S
E

 

 

LETKF
NLEAF1
NLEAF1q

Figure 3.3: Average RMSE over 2000 cycles in the intermediate case of L96 system,
ensemble size = 400.

3.4 Conclusion

As the increasing availability of both sophisticated climate models and massive

sequential data, scientific applications such as numerical weather forecasting pose new

challenges on statistical inference on high-dimensional nonlinear state space model. The

proposed NLEAF algorithm is a combination of the traditional ensemble Kalman filter

and particle filter which is adaptive to the nonlinearity of the dynamics and also easily

scalable to high-dimensional situations. In two classical test beds for atmospheric data

assimilation, very simple NLEAF algorithms give reasonably good performances. They

outperforms the state-of-art methods in the nonlinear set-up, while still being competitive

even in the linear situation where the EnKF is expected to be nearly optimal. We also

observe that the NLEAF algorithm has the potential to improve its accuracy for larger

ensembles, while the EnKF does not. Furthermore, the NLEAF algorithm is flexible and
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allows the observation model to be unknown and estimated from the data, which makes

itself more applicable for many real world problems where the observation error can hardly

be specified a priori.

There are still issues to be addressed. For example, the localization for NLEAF of

order two or higher will be useful since we observed a substantial improvement of accuracy

by NLEAF2 in the L63 system. A further question is that whether the NLEAF algorithm

can be used in combination with other dimension reduction methods such as manifold

learning and regularization. Finally, it would be interesting to do more simulations with

non-Gaussian observations which is a realistic situation in geophysical sciences. In this

case, one can expect even better relative performance for the NLEAF algorithm.

3.5 Proofs

3.5.1 Proof of Theorem 3.2.1

Suppose (x
(i)
f , y(i)), i = 1, . . . , n is an i.i.d sample from the joint distribution of

(Xf , Y ), For any y, consider the empirical distribution

F ∗
u (A|y) =

1

n
δ
x
∗(i)
u

(A), ∀A,

with

x∗(i)u = m1(y) + x
(i)
f −m1(y

(i)).

Note that the NLEAF update in equation (3.5) uses m̂1(·) instead of m1(·). The

rough idea is that if m̂1(·) approximates m1(·) well enough, one might expect x
(i)
u ≈ x

∗(i)
u

and the result follows from Hoeffding’s inequality. To show that x
(i)
u does approximates
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x
∗(i)
u we use the empirical process theory. The maximal inequality of the empirical process

requires the majority of y(i) lies in a compact set, which is of high probability if the

compact set is large enough.

For any 0 < ǫ < 1, one can find a compact set K(ǫ) such that P (Y ∈ K) ≥ 1− ǫ.

Define the set J as

J = {i : y(i) ∈ K(ǫ)}.

Consider the event

E1 =

{ |J |
n

≥ 1 − 2ǫ

}

,

then we have, by Hoeffding’s inequality,

P (E1) ≥ 1 − exp
(

−2nǫ2
)

. (3.18)

Let B(ǫ) = infy∈K(ǫ)

∫

g(y;x)f(x)dx > 0. Consider the events

E2 =

{

sup
y∈K(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(y;x
(i)
f ) −

∫

g(y;x)f(x)dx

∣

∣

∣

∣

∣

≤ min

(

B(ǫ)

2
,
B2(ǫ)

8M(ǫ)

)

}

,

where M(ǫ) = MK(ǫ) as defined in Assumption A1, and

E3 =

{

sup
y∈K(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

x
(i)
f g(y;x

(i)
f ) −

∫

xg(y;x)f(x)dx

∣

∣

∣

∣

∣

≤ B(ǫ)ǫ

8

}

.

By assumption A1 and A2 and the maximal inequality of empirical process (van der Vaart,

2001; Talagrand, 1994), there exist functions ci(ǫ), i = 1, 2, such that

P (EC
2 ) ≤ c1(ǫ)n

q−1 exp (−nc2(ǫ)) ,

and

P (EC
3 ) ≤ c1(ǫ)n

q−1 exp (−nc2(ǫ)) .
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Note that on E2
⋂

E3, we have |m̂1(y) −m1(y)| ≤ ǫ/2, for all y ∈ K(ǫ). As a result, on

E2
⋂

E3, we have,

|x(i)
u − x∗(i)u | ≤ ǫ, ∀i ∈ J.

Then we have, on E1
⋂

E2
⋂

E3,

F̂u(A|y) =
1

n

n
∑

i=1

1A(x(i)
u ) ≥ 1

n

∑

i∈J

1A(x(i)
u )

≥ 1

n

∑

i∈J

1
A−

ǫ
(x∗(i)u )

≥ 1

n

n
∑

i=1

1A−
ǫ
(x∗(i)u ) − |JC |

n

≥ 1

n

n
∑

i=1

1A−
ǫ
(x∗(i)u ) − 2ǫ,

where the set A−
ǫ is defined as

A−
ǫ = {x ∈ A : D(x, ǫ) ⊆ A},

with D(x, ǫ) being the ǫ-open ball centering at x.

Consider event E4:

E4 =

{

1

n

n
∑

i=1

1A−
ǫ
(x∗(i)u ) ≥ Fu(A−

ǫ |y) − η − ǫ

}

.

Again, note that 1A−
ǫ
(x

∗(i)
u ) are independent Bernoulli random variables with probability

at least Fu(A−
ǫ |y) − η, by Hoeffding’s inequality, we have

P (E4) ≥ 1 − exp(−2nǫ2).

Then on
⋂4

k=1Ek, we have

F̂u(A|y) − F (A|y) ≥ F (A−
ǫ |y) − F (A|y) − η − 3ǫ
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= −η − ρ−(ǫ) − 3ǫ,

where ρ−(ǫ) = F (A|y)−F (A−
ǫ |y) is a continuous non-decreasing function of ǫ with ρ−(0) =

0 because λ(∂A) = 0. As a result, there exists functions C1(ǫ) > 0, C2(ǫ) > 0 independent

of n, such that

P
(

F̂u(A|y) − Fu(A|y) ≥ −η − ǫ
)

≥ 1 − C1(ǫ)n
q−1 exp (−C2(ǫ)n) .

A similar bound for the other direction can be obtained using the same argument. By the

Borel-Cantelli lemma we have,

∣

∣

∣F̂u(A|y) − Fu(A|y)
∣

∣

∣ ≤ η + ǫ, a.s.

Note that the above convergence is for any ǫ > 0, therefore we have

∣

∣

∣
F̂u(A|y) − Fu(A|y)

∣

∣

∣
≤ η, a.s.
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Chapter 4

Uniform Convergence of

Sequential Monte Carlo Filters

In this chapter we consider state space models which consist of a Markovian state

process {Xi ∈ X = R
p, i ≥ 0} with transition kernel q(·, ·):

(Xi+1|Xi = x) ∼ q(x, ·), i ≥ 0,

and an observation sequence {Yi ∈ Y = R
d, i ≥ 1}, where Yi’s are conditionally indepen-

dent given Xi’s, with likelihood g(·; ·):

(Yi|Xi = x) ∼ g(·;x), i ≥ 1.

The joint distribution of (Xi, Yi) is determined by q, g and φ0, the initial distribution ofX0.

Models of this form are also known as hidden Markov model (Künsch, 2001; Cappé et al.,

2005). Typical inference tasks in state space models include: 1) estimation of parameters

in the dynamics q(·, ·) and/or the observation mechanism g(·; ·) (Bickel et al., 1998; Olsson
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& Rydén, 2008); and 2) calculating the conditional distribution, φi|s, of state variables Xi

given the observations Y s
1 (Liu & Chen, 1998), where Y s

1 = (Y1, . . . , Ys)
T . Calculating φi|s

for s = i, s > i and s < i are called filtering, smoothing and predicting, respectively. State

space models have found wide application in signal processing, robotics, biology, finance,

and geophysics. For a thorough introduction and more related problems on state space

models, we refer the reader to Liu (2001); Künsch (2001); Cappé et al. (2005).

This chapter focuses on the filtering problem which has been a classical topic in

probability and statistics. The major challenge is that in general the object φi|i cannot be

characterized by a finite number of parameters except in few special cases. Gordon et al.

(1993) proposed a novel approach to approximate the conditional distributions in a non-

parametric fashion, which is now known as particle filters (see also sequential Monte Carlo

methods Liu & Chen (1998), recursive Monte Carlo filters Künsch (2005)). The basic idea

is using a discrete set of sample points to represent the state space, while the distribution

is updated at each time step by modifying the weights associated to each sample point,

followed by an optional resampling step. Particle filters can easily be implemented in

general state space models and can be proved to be consistent. Doucet et al. (2001)

provides a thorough introduction to the basic theory and application of particle filters.

Despite the fast development of particle filters in both theory and applications,

an important question that remains open is how to quantify the relationship between the

approximation error, the sample size and the time interval length. The aim of this chapter

is to study the time-uniform convergence of the particle filter approximation. For example,

let φ̂i|i be the approximation of φi|i. What can we say about the relationship between the
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time-uniform approximation error

sup
1≤i≤t

||φ̂i|i − φi|i||

and the sample size n? Here || · || can be any suitable function norm.

Many previous results about time-uniform convergence (Del Moral & Guionnet,

2001; Le Gland & Oudjane, 2004; Künsch, 2005) depends on mixing conditions on the

state process of the form:

c−a(·) ≤ q(x, ·) ≤ c+a(·), ∀x ∈ X , (4.1)

for some density function a(·) and positive constants c−, c+. Condition (4.1) was originally

introduced to show the filter stability (also known as the “forgetting” property). The filter

is called stable if

||φi|i[φ0, Y
i
1 ] − φi|i[φ

′
0, Y

i
1 ]|| → 0

as i→ ∞ for any pair of initial distributions (φ0, φ
′
0).

However, (4.1) is often too strong to hold when X is not compact. Many recent

works on filter stability have successfully weakened the strong assumption of (4.1), ex-

tending the theory to non-compact state spaces (Douc et al., 2009b,a). In the meantime,

similar extensions for particle filter theory have also appeared. Heine & Crisan (2008)

developed time-uniform convergence in the weak sense for a class of truncated particle

filters in autoregressive models with informative observations. van Handel (2009) proved

time-average convergence in terms of the bounded Lipschitz norm under conditions that

hold for certain autoregressive models.
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This chapter extends the uniform convergence theory of particle filters by devel-

oping non-asymptotic upper bounds on the uniform approximation error as functions of

the sample size n for models in which the function q and g have appropriate tail behavior.

To be specific, our methods are particulary applicable to autoregressive models of the

form:

Xi = a(Xi−1) + Ui,

Yi = b(Xi) + Vi.

In the first case where Ui is heavy-tailed and Vi light-tailed, we show that

sup
i>0

E
∣

∣φ̂i|i − φi|i
∣

∣ ≤ c0n
−c,

for some c ∈
(

0, 1
2

)

depending on the tail behavior of Ui, and constant c0 depending on

the model only.

In another case, where a, b are linear and Ui, Vi are Gaussian, we show that

E

(

sup
1≤i≤t

∣

∣

∣
φ̂i|i − φi|i

∣

∣

∣

)

≤ c1t
2

(

c2
∨

√
n

t1+2cθ

)ν

exp
(

− c3n

t2+4cθ

)

+ 3t−
θ−2
2 + c4t

−c5θ,

for any θ > 0, with constants ν, c, and ci, i = 1, . . . , 5 depending on the model only.

In the first case, the result is on the time supremum of the expected total variation

norm at each time step, therefore it is stronger than the similar results in Heine & Crisan

(2008) and van Handel (2009), which did not consider the total variation norm. As for

the second case, a similar result is available in Künsch (2005, Theorem 2), which relies

largely on (4.1) as well as the compactness of X and Y.
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In Section 4.1 we briefly review some prerequisites about optimal filtering in

general state space models, which are useful for the later discussion. In Section 4.2 we

develop the theory for models with heavy-tailed state process and light-tailed observation.

In Section 4.3 we give an alternative set of conditions, paying special attention to the

Gaussian linear model. The proofs are included in Section 4.4.

4.1 Preliminaries on filtering

Recall that the function pZ(·) denotes the density of random variable Z. The

conditional density of Xi given Y s
1 is specially written as φi|s(·).

The dependence structure of a state space model can be described as the following

diagram:
. . . −−−−→ Xi−1 −−−−→ Xi −−−−→ Xi+1 −−−−→ . . .





y





y





y

. . . Yi−1 Yi Yi+1 . . .

This graph representation leads to some basic recursive formulas which we state without

proof (see Künsch (2001)).

4.1.1 The forward propagation and Monte Carlo approximation

Suppose at time i ≥ 1 we have obtained φi−1|i−1, then the one-step forecast

distribution of Xi giving Y i−1
1 is obtained by applying the Markov transition kernel q on

the density function φi−1|i−1:

φi|i−1(xi) =

∫

φi−1|i−1(xi−1)q(xi−1, xi)dxi−1. (4.2)
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When the new observation Yi = yi is available, the distribution of Xi given Y i
1 = yi

1 is

obtained by applying the Bayes rule on the forecast density φi|i−1 with likelihood function

gi :

φi|i(xi) =
φi|i−1(xi)gi(xi)
∫

φi|i−1(x)gi(x)dx
, (4.3)

where

gi(·) := g(yi; ·).

In practice the prediction (4.2) and Bayes update (4.3) do not permit any analyti-

cal forms. Particle filters tackle this difficulty using Monte Carlo methods to approximate

the conditional distributions. We consider the recursive Monte Carlo (RMC, Künsch

(2005)) filter as a generic form of particle filters.

In RMC filters, the integral in (4.2) is substituted by averaging over a random

sample:

φ̂i|i−1(xi) =
1

n

n
∑

j=1

q(xj
i−1, xi), (4.4)

where {xj
i−1, j = 1, . . . , n} is an i.i.d sample from φ̂i−1|i−1. The Bayes update step is not

much different:

φ̂i|i(xi) =
φ̂i|i−1(xi)gi(xi)
∫

φ̂i|i−1(x)gi(x)dx
.

The recursion starts from φ̂0|0 = φ0|0 = φ0. See Künsch (2005) for a detailed discussion

on implementation details of RMC filters.
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4.1.2 The operator notation

In later discussions we will find operator notation for the recursion introduced

by Künsch (2005) quite helpful.

Define the Markov transition operator Q:

Qφ(x) =

∫

φ(x′)q(x′, x)dx′,

for any density function φ(·). The Bayes operator B is defined as

B(φ, g)(x) =
φ(x)g(x)

∫

φ(x′)g(x′)dx′
,

for a pair of density φ(·) and likelihood g(·). As a result, the forward recursion can be

written as

φi|i = B(Qφi−1|i−1, gi) := Fi−1φi−1|i−1.

For RMC approximation, define the random Markov transition kernel Q̂ as

Q̂φ(x) =
1

n

n
∑

j=1

q(zj , x),

with {zj , j = 1, . . . , n} an i.i.d sample from φ(·). Therefore, the RMC recursion becomes

φ̂i|i = B(Q̂φ̂i−1|i−1, gi) := F̂i−1φ̂i−1|i−1.

The following equations show how the desired density and its approximation is obtained

from the beginning:

φi|i = Fi−1Fi−2 . . . F0φ0|0, (4.5)

φ̂i|i = F̂i−1F̂i−2 . . . F̂0φ0|0. (4.6)
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We wish to control

||φ̂i|i − φi|i||TV,

where || · ||TV refers to the total variation norm:

||f ||TV :=
1

2

∫

|f(x)|dx,

for any function f . In the rest of this chapter, we simply use |f | as ||f ||TV whenever f is

a function.

Loosely speaking, the Monte Carlo approximation Q̂ of Q will introduce a sam-

pling error of order OP

(

n−
1
2

)

at each time step. Such an error will subsequently be

propagated by the Bayes operators B(·, gi) which is non-linear and might be expand-

ing (Künsch, 2001, Lemma 3.6). Therefore, propagating through multiple Bayes operator

might result in an exponential growth of the sampling error. One can bypass this difficulty

by looking at a different way of getting φi|i from φ0|0.

4.1.3 The backward recursion and the alternative filter representation

Define the backward function βi,s:

βi,s(xi) =















pY s
i+1

(

ys
i+1

∣

∣Xi = xi

)

, i ≤ s− 1.

1, i ≥ s.

It is easy to check that for all i ≤ s − 1, βi,s follow a simple but very useful backward

recursion:

βi,s =

∫

q(xi, xi+1)gi+1(xi+1)βi+1,s(xi+1)dxi+1. (4.7)
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The backward function can be used to calculate φi|s for s > i:

φi|s = B(φi|i, βi,s).

The alternative representation relies on the following well-known lemma:

Lemma 4.1.1. For any s ≥ 1, the conditional chain {Xi, 0 ≤ i ≤ s} given Y s
1 = ys

1 is a

(possibly non-homogenous) Markov chain, with transition kernel Fi|s : X × BX 7→ [0, 1]:

Fi|s(xi, A) =

∫

A
q(xi, xi+1)gi+1(xi+1)βi+1,s(xi+1)dxi+1

βi,s(xi)
,

for any xi ∈ X and measurable set A, where BX denotes the Borel σ-filed on X .

We refer the reader to Cappé et al. (2005) for a proof of Lemma 4.1.1.

Lemma 4.1.1 suggests an alternative representation of equation (4.5):

φs|s = Fs−1|s . . . F0|sB
(

φ0|0, β0,s

)

, (4.8)

or more generally for all i ≤ s− 1 and any density φ

Fs−1 . . . Fiφ = Fs−1|s . . . Fi|sB(φ, βi,s). (4.9)

Equations (4.8) and (4.9) show how to obtain φs|s with only a single Bayes

operator followed by a sequence of Markov operator. This is the origin of most studies

on filter stability, because the Markov operator is contracting under total variation norm:

for any Markov operator F and densities f1, f2

|Ff1 − Ff2| ≤ δF |f1 − f2|, (4.10)

for some 0 ≤ δ(F ) ≤ 1. Clearly we have for any pair of Markov kernels F and F ′,

δ(FF ′) ≤ δ(F )δ(F ′). (4.11)
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4.1.4 Controlling error propagation in RMC filters

To use Eq. (4.8) and (4.9) in RMC theory, we first introduce the intermediate

Monte Carlo approximations of φs|s. For 0 ≤ i ≤ s, define

φ
(i)
s|s = Fs−1 . . . FiF̂i−1 . . . F̂0φ0|0 = Fs−1 . . . Fiφ̂i|i.

That is, the density we would get if we only apply Monte Carlo approximations up to time

i. Apparently φ
(s)
s|s = φ̂s|s and φ

(0)
s|s = φs|s.

Consider the following decomposition of the total approximation error for φs|s:

∣

∣

∣
φ̂s|s − φs|s

∣

∣

∣
≤

s
∑

i=1

∣

∣

∣
φ

(i)
s|s − φ

(i−1)
s|s

∣

∣

∣
. (4.12)

The ith term in the RHS of (4.12) is the contribution of the sampling error at time i to the

total approximation error. Using Eq. (4.9) and the fact that B(B(φ, g), h) = B(φ, gh),

we have

φ
(i)
s|s = Fs−1|s . . . Fi|sB

(

φ
(i)
i|i−1, giβi,s

)

= Fs−1|s . . . Fi|sφ
(i)
i|s, (4.13)

φ
(i−1)
s|s = Fs−1|s . . . Fi|sB

(

φ
(i−1)
i|i−1 , giβi,s

)

= Fs−1|s . . . Fi|sφ
(i−1)
i|s . (4.14)

By (4.13), (4.14) and contracting property of Markov kernels, the ith term of

(4.12) is bounded by

∣

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣

∣ =
∣

∣

∣B
(

φ
(i)
i|i−1, giβi,s

)

−B
(

φ
(i−1)
i|i−1 , giβi,s

)∣

∣

∣

=
1

2

∫

∣

∣

∣

∣

∣

∣

φ
(i)
i|i−1(xi)gi(xi)βi,s(xi)

∫

φ
(i)
i|i−1(x

′
i)gi(x′i)βi,s(x′i)dx

′
i

−
φ

(i−1)
i|i−1 (xi)gi(xi)βi,s(xi)

∫

φ
(i−1)
i|i−1 (x′i)gi(x′i)βi,s(x′i)dx

′
i

∣

∣

∣

∣

∣

∣

dxi

≤
∫

∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ gi(xi)βi,s(xi)dxi

∫

φ
(i−1)
i|i−1 (xi)gi(xi)βi,s(xi)dxi

, (4.15)
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where the last inequality follows from the argument of Lemma 3.6 in Künsch (2001).

Inequality (4.15) is the major building block of the arguments in the rest of this

chapter. In the next two sections we present two arguments which lead to different bounds

on (4.15), from which the uniform convergence is then established.

4.2 Light-tailed observations and heavy-tailed state processes

4.2.1 General conditions and preliminary results

Our main assumptions consist of three parts:

1. Conditions on q(·, ·): basic conditions such as bounded and Lipschitz.

2. Conditions on g(·; ·): bounded, Lipschitz and light-tailed (to be specified later).

3. Conditions on the relationship between q and g: g(y; ·) has lighter tails than both

q(·, x) and q(x, ·) for all y and x.

For conditions on q(·, ·), we simply require

(A1) q(·, ·) is bounded and Lipschitz: supx,x′ q(x, x′) ≤ M < ∞, where M is a positive

constant; and |q(x, x′)− q(x, x′′)| ≤ A|x′ − x′′|, for all (x, x′, x′′) with some constant

A <∞.

As for conditions on g(·; ·), first look at (4.15) in the relatively simpler case i = s.

When i = s, we have βi,s ≡ 1, and the numerator of (4.15) becomes

∫

∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
gi(xi)dxi. (4.16)
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Note that

φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

=
1

n

n
∑

j=1

q(xj
i−1, xi) −

∫

q(xi−1, xi)φ
(i−1)
i−1|i−1(xi−1)dxi−1,

with
(

xj
i−1, j = 1, . . . , n

)

an i.i.d sample from φ
(i−1)
i−1|i−1. As a result, one would expect

the above quantity is of order OP (n−
1
2 ). Then intuitively the integral in (4.16) is of the

same order provided that gi(xi) is integrable. To give a rigorous argument, one needs to

bound
∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
simultaneously for all xi, which is a well-studied problem

in empirical process theory. Unfortunately, supxi

∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
is hard to bound

because the class of functions {q(·, xi) : xi ∈ X} might be too rich. However, since in the

integral (4.16),
∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ is multiplied by gi(xi), the xi’s outside a compact

set becomes negligible if gi decays fast enough. More concretely, we wish to find functions

g̃i and ḡi, such that

• gi ≤ g̃iḡi.

• supxi

∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
g̃i is small, with high probability.

•
∫

ḡi <∞.

The idea is that we want the function gi to spare some of its light tail to control the

sampling error simultaneously for each xi, while the remaining part of gi still behaves like

a density. Based on this idea, we formally introduce the definition of light-tailed functions:

Definition 4.2.1 (Light-tailed functions). A function g(x) is light-tailed with parameter

(A,M,α, γ), if it there exists non-negative functions ḡ(x) and g̃(x) such that
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(S1) 0 ≤ g(x) ≤ g̃(x)ḡ(x).

(S2)
∫

ḡ(x)dx ≤M , and supx ḡ(x) ≤M .

(S3) g̃(·) is bounded and Lipshctiz: supx g̃(x) ≤ M ; |g̃(x) − g̃(x′)| ≤ A|x − x′| for all

(x, x′).

(S4) For all δ > 0, there exists a set K(δ) with diam(K(δ)) ≤ αδ−γ , such that g̃(x) ≤ δ

for all x /∈ K(δ).

These conditions simply require the function g(·) can be decomposed as products

of a function g̃ which decays at least polynomially fast and a function ḡ which is more or

less like a density (possibly scaled). For example, if g(y;x) = exp{−α1|y− x|α2} for some

positive α1, α2, one can choose g̃y(·) = ḡy(·) = g
1
2 (y; ·).

Remark 4.2.2. The constants A, M (and κ, introduced below) appear in multiple state-

ments. They are chosen to be large (or small) enough to satisfy all the statements.

Remark 4.2.3. In the following arguments we let cj , j = 1, 2, 3, 4, be positive constants that

do not depend on anything other than the parameters (A,M,α, γ, κ) which determined

by the model and their value might vary among difference displays. Also in the argument

about a particular observation sequence yt
1, the corresponding functions g̃yi

, ḡyi
, and sets

Kyi
in Definition 4.2.1 are written simply as g̃i, ḡi and Ki.

Light-tailed functions as defined above are of interest because of the following

lemma whose proof is in Section 4.4.1:

Lemma 4.2.4. For any q(·, ·) satisfying (A1), g̃(·) satisfying (S3), (S4), then for any
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ǫ > 0

P



sup
xi

∣

∣

∣

∣

1

n

n
∑

j=1

q(xj
i−1, xi) −

∫

φ(xi−1)q(xi−1, xi)dxi

∣

∣

∣

∣

g̃(xi) ≥ ǫ





≤ c1

(

c2
∨√

nǫ
)p(1+γ)

exp
(

−c3nǫ2
)

, (4.17)

with positive constants c1, c2, c3 depending only on the model, and γ is the constant defined

in (S4) for function g̃, and p is the dimensionality of the state space X .

Our conditions on g(·; ·) simply requires it to be light-tailed:

(A2) For every y ∈ Y, the likelihood function g(y; ·) is light-tailed with common parameter

(A,M,α, γ).

Assumptions (A1) and (A2) enable one to bound the integral in (4.16). However,

when i 6= s, we still need to control βi,s, which can be completely unbounded from either

above or below. However, because βi,s appears in both the denominator and numerator

in (4.15), one can expect some cancelation. This is possible if one can separate Xi from

the far future. In particular, we consider the following assumption:

(A3) For every y, there exists a set Cy ⊆ X , such that for all x, x′, y,

min

{∫

Cy
q(x, x′)g(y;x′)dx′

∫

q(x, x′)g(y;x′)dx′
,

∫

Cy
g(y;x)q(x, x′)dx

∫

ḡ(y;x)q(x, x′)dx
,

1

M

∫

Cy

g(y;x)dx

}

≥ κ > 0,

where ḡ(y; ·) and g̃(y; ·) are the corresponding functions defined in (S1-S4) for g(y; ·).

Here κ ≤
∫

C0
φ0(x0)dx0 ≤ 1 is a positive constant independent of (x, x′, y). Since

there is no Y0, we conventionally set y0 = 0 and the corresponding set Cy0 = C0.
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Condition (A3) is useful in showing cancelation of βi,s in (4.15), as expected (see Lemma

4.4.6 in Section 4.4.1). It is essentially requiring that the observation provides more

information about current state than the previous and future state, which is satisfied

when the likelihood has lighter tails than the transition kernel. Also, in the following we

use Ci to denote Cyi
as defined in (A3).

Now we state a lemma which provides an upper bound on the conditional tail

probability of the propagated single step sampling error
∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣. Its proof can be

found in Section 4.4.1:

Lemma 4.2.5. Assuming (A1-A3), then there exist positive constants c1, c2, c3 depending

on the model only , such that for any ǫ > 0 and 1 ≤ i ≤ s,

P
{

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣ > ǫξi

∣

∣

∣Y s
1

}

≤ c1

(

c2
∨√

nǫ
)p(1+γ)

exp
(

−c3nǫ2
)

,

where

ξi = sup
Ci−1×Ci

q−1(xi−1, xi),

with p being the dimension of state space X and γ defined in (A2).

Lemma 4.2.5 immediately suggests the following corollary, which provides an

upper bound of the propagated sampling error introduced at time i, at the expected rate

OP (n−
1
2 ).

Corollary 4.2.6. Assuming (A1-A3), then

E
(

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣

∣

∣

∣
Y s

1

)

≤ c1ξi√
n
,

with some constant c1 depending on the model only.
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Further refinements By definition, the total variation distance between two density

functions is always no more than 1, therefore

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣ ≤ 1.

Then one can try to bound the expected propagated approximation error at time i by

E
∣

∣

∣
φ

(i)
i|s − φ

(i−1)
i|s

∣

∣

∣
≤ E

(

1
∧ c1√

n
ξi

)

,

where the rate of decay as n→ ∞ depends on the tail behaviors of both q(·, ·) and g(·; ·).

Another useful technique for tighter bounds is taking into account the contracting

property of Markov kernels Fi|s. Note that by (4.10)

∣

∣

∣φ
(i)
s|s − φ

(i−1)
s|s

∣

∣

∣ ≤ δ

(

s−1
∏

i

Fi|s

)

∣

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣

∣ .

As a result, if one can show the contraction of the product kernel

δ

(

s−1
∏

i

Fi|s

)

decays exponentially as s− i increases, then it is possible to get a rate of convergence that

is uniform over time.

4.2.2 Case study: functional autoregressive model

Consider a non-linear non-Gaussian state space model which has been considered

in Douc et al. (2009b) (see also Le Gland & Oudjane (2003)):

Xi = a(Xi−1) + Ui,

Yi = b(Xi) + Vi,

(4.18)
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for i ≥ 1 with X0 ∼ φ0. Here (Ui) and (Vi) are two independent sequences of random

variables, with probability density pU and pV on X = Y = R
p. For presentation simplicity

we focus on the scalar case p = 1. Extensions to p > 1 is straightforward.

Condition (A1) and (A2) Now the transition kernel q(·, ·) becomes

q(x, x′) = pU (x′ − a(x)).

Therefore condition (A1) is satisfied when pU is bounded and Lipschitz:

||pU ||∞ ≤M <∞, |a(x) − a(x′)| ≤ a+|x− x′|. (4.19)

On the other hand, the likelihood function is

g(y;x) = pV (y − b(x)).

Then (A2) holds if pV (·) satisfies the light-tailed condition (S1-S4) and b(·) is one-to-one

differentiable with Jacobian b′ bounded and bounded a way from zero:

b− ≤ |b′(x)| ≤ b+, ∀x. (4.20)

Too see this, it is enough to verify (S1-S4) for g(y;x) with constants (A,M,α, γ) indepen-

dent of y. Suppose pV is light-tailed with constants (A0,M0, α0, γ0), let p̄V and p̃V be cor-

responding functions satisfying (S1-S4). Let ḡ(y;x) = p̄V (y−b(x)), g̃(y;x) = p̃V (y−b(x)).

Then ||ḡ(y;x)||∞ ≤M0, ||g̃(y;x)||∞ ≤M0, supx,x′ |g̃(y;x) − g̃(y;x′)| ≤ A0|x− x′| and

∫

ḡ(y;x)dx =

∫

p̄V (y − b(x))dx

≤
∫

p̄V (y − z)

∣

∣

∣

∣

db−1(z)

dz

∣

∣

∣

∣

dz
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≤ (b−)−1M0.

For any δ > 0, let KV (δ) be the corresponding set for p̃V in (S4). Consider Ky(δ) =

b−1 (y −KV (δ)). Then g̃(y;x) ≤ δ for any x ∈ Ky(δ). Meanwhile we have diam (Ky(δ)) ≤

(b−)−1 diam(Ky(δ)) ≤ (b−)−1α0δ
−γ0 . Therefore g(y;x) is light-tailed with parameter

(

A0,
(

1 ∨ (b−)−1
)

M0, (b−)−1α0, γ0

)

. In the following discussion, we always assume that

pV satisfies (S1-S4) with corresponding p̃V and p̄V .

Condition (A3) Condition (A3) requires ḡ to have lighter tails than the transition

kernel. Here it would be enough to assume that p̄V has lighter tails than pU . Formally,

(A3) holds if pU and pV satisfy, in addition to (4.19), (4.20),

• For any x, pU (x) = pU (|x|), non increasing on [0,∞). Moreover, for all w ≥ 0 and

w′ ≥ 0,

pU (w + w′)
pU(w)pU (w′)

≥ r > 0. (4.21)

• For any y, pV (y) = pV (|y|), and pV , p̄V are non increasing on [0,∞) and satisfy

∫

[pU(cx)]−2 p̄V (x)dx <∞, ∀c > 0. (4.22)

• The initial distribution also has lighter tail than pU :

∫

[

pU(a−1
+ b−x)

]−1
φ0(x)dx <∞. (4.23)

Similar conditions are also considered by Douc et al. (2009b) in the study of filter

stability. (4.21) indicates a somewhat heavy tail of pU , which is satisfied for exponential,

logistic and Pareto-type tails (not for Gaussian). The condition of pU , pV and p̄V being
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non decreasing on [0,∞) can be relaxed to have them non increasing on [L,∞) and strictly

positive on [0, L] (Douc et al., 2009b). The case L = 0 is qualitatively not special but

allows concise presentation.

To verify condition (A3), we first specify the sets Cy:

Cy := {x : |x− b−1(y)| ≤ D},

with a constant D to be chosen later with

inf
[0,D]

p̃V > 0, (4.24)

which is reasonable for choices of p̃V (x) such as 1
∧ |x|−γ and pλ

V for some γ > 0 or

0 < λ < 1.

Under these conditions, one can show the following lemma verifying (A3):

Lemma 4.2.7. Assuming (4.19)-(4.24), then for each y the correspondingly defined Cy’s

satisfy

min

{∫

Cy
q(x, x′)g(y;x′)dx′

∫

q(x, x′)g(y;x′)dx′
,

∫

Cy
g(y;x)q(x, x′)dx

∫

ḡ(y;x)q(x, x′)dx
,

1

M

∫

Cy

g(y;x)dx

}

≥ κ > 0,

where κ does not depend on (x, x′, y).

The proof is in Section 4.4.2.

Now we have verified all the conditions necessary to apply Lemma 4.2.5. We

next develop a bound for the term E
(

1
∧

C√
n
ξi

)
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Controlling ξi Under the autoregressive model (4.18), using (4.21) repeatedly, we have

for i ≥ 2

ξi = sup
Ci−1×Ci

p−1
U (xi − a(xi−1))

= sup
Ci−1×Ci

p−1
U

(

xi − b−1(Yi) + b−1(Yi)

−a(b−1(Yi−1)) + a(b−1(Yi−1)) − a(xi−1)
)

≤ cp−1
U (b−1(Yi) − a(b−1(Yi−1)))

≤ cp−1
U (b−1(Yi) −Xi +Xi − a(Xi−1) + a(Xi−1) − a(b−1(Yi−1)))

≤ cp−1
U (b−1

− Vi)p
−1
U (Ui)p

−1
U (a+b

−1
− (Vi−1)), (4.25)

note again that the constant c may take different values in different displays.

Therefore, we have for any θ > 0

E

(

1
∧ c√

n
ξi

∣

∣

∣

∣

Vi, Vi−1

)

≤ c√
n
p−1

U (b−1
− Vi)p

−1
U (a+b

−1
− Vi−1)

∫ θ

−θ

p−1
U (u)pU (u)du+

∫

[−θ,θ]c
pU (u)du

=
cθ√
n
p−1

U (b−1
− Vi)p

−1
U (a+b

−1
− Vi−1) + P (|U1| > θ). (4.26)

The case i = 1 is similar. Actually (4.26) still holds if note that

ξ1 = sup
C0×C1

p−1
U (x1 − a(x0)) (4.27)

≤ sup
C0×C1

p−1
U (b−1

− V1)p
−1
U (U1)p

−1
U (a+b

−1
− |X0|).

As a result, we obtain the following bound on the expected one step propagated

sampling error.
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Proposition 4.2.8. Under Model (4.18), assuming (4.19)-(4.24), we have

E
(

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣

)

≤ E

(

1
∧ c1√

n
ξi

)

≤ c1θ√
n

+ P (|U1| > θ),

for some constant c1 depending only on the model.

Making use of Markov kernels Fi|s Another lemma from Douc et al. (2009b) will

enable one to make use of the contraction of Markov kernels Fi|s. We state it without

proof:

Lemma 4.2.9. Under Model (4.18), assuming (4.19)-(4.24), then

δFi|sFi−1|s
≤ ρ < 1, ∀ 1 ≤ i ≤ s− 1,

for some constant ρ depending only on the model.

From Lemma 4.2.9 and (4.11) we have

δ

(

s−1
∏

i

Fi|s

)

≤ ρ⌊ s−i
2 ⌋ ≤ ρ−

1
2
√
ρs−i,

which implies that

E
(∣

∣

∣φ
(s)
s|s − φs|s

∣

∣

∣

)

≤
s
∑

i=1

E
∣

∣

∣φ
(i)
s|s − φ

(i−1)
s|s

∣

∣

∣

≤
s
∑

i=1

ρ−
1
2
√
ρs−iE

∣

∣

∣
φ

(i)
i|s − φ

(i−1)
i|s

∣

∣

∣

≤
(

c1θ√
n

+ P (|U1| > θ)

) s
∑

i=1

ρ−
1
2
√
ρs−i

≤ c1θ√
n

+ c2P (|U1| > θ). (4.28)

The results obtained so far can be summarized in the following theorem:
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Theorem 4.2.10. Under Model (4.18), assuming (4.19)- (4.24), then there exists con-

stants c1 and c2, such that

sup
s≥0

E
∣

∣

∣
φ

(s)
s|s − φs|s

∣

∣

∣
≤ c1θ√

n
+ c2P (|U1| > θ), ∀ θ > 0.

Theorem 4.2.10 indicates that the time-uniform expected approximation error is

bounded by the sum of two parts: one determined by the sample size and one by the tail

behavior of the state noise. In general, one can always choose a θ to optimize the rate of

convergence.

Example 4.2.11. If the state noise U1 has Pareto-type (power law) tails:

P (|U1| > θ) = O(θ−c),

for some c > 0, then one can choose θ = n
1

2+2c , and Theorem 4.2.10 yields:

sup
s≥0

E
∣

∣

∣φ
(s)
s|s − φs|s

∣

∣

∣ = O(n−
c

2+2c ).

Example 4.2.12. If the state noise U1 has exponential tails:

P (U1 > θ) = O
(

e−θc
)

,

for some 0 < c ≤ 1, then one can choose θ =
(

1
2 log n

)
1
c and

sup
s≥0

E
∣

∣

∣
φ

(s)
s|s − φs|s

∣

∣

∣
= O

((

(log n)
1
c + 1

)

n−
1
2

)

= o(n−
1
2
+δ),

for any δ > 0. That is, when U1 has exponential tails, the rate of convergence suggested

by Theorem 4.2.10 can be arbitrarily close to n−
1
2 .
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4.3 Conditions based on normalization: the Gaussian case

4.3.1 When the state process is not heavy-tailed

The conditions developed in Section 4.2 work well for models with heavy-tailed

state transition kernel and light-tailed likelihood. However, Condition (A3) does not hold

when the transition kernel and likelihood have similar tail behavior. One common example

is the Gaussian linear model:

Xi = aXi−1 + σUi,

Yi = Xi + τVi,

with X0 ∼ N(µ0, σ
2
0) and Ui, Vi independent standard Gaussian random variables. Again,

for presentation simplicity we consider the scalar case. Extension to the vector case is

straightforward provided that the matrix a is non-singular and Ui, Vi are non-degenerate.

In such a model Condition (A3) usually fails because the observation Yi no longer provides

overwhelming control on Xi. However, one can nevertheless have light-tailed likelihood,

which is the key to prove Lemma 4.2.4. Therefore similar results might be obtained if one

can control βi,s and the denominator of (4.15) using alternative methods. Following this

direction, we consider a normalized version of function giβi,s:

β∗i,s =
giβi,s
∫

giβi,s
,

where the integrability of giβi,s is guaranteed if gi is light-tailed. The normalization tries

to put β∗i,s on the same order of magnitude as φi|i−1, because |φi|i−1| = |β∗i,s| = 1
2 . Then
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we can substitute giβi,s by its normalized version in (4.15):

∣

∣

∣
φ

(i)
s|s − φ

(i−1)
s|s

∣

∣

∣
≤
∫

∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ β∗i,s(xi)dxi

∫

φ
(i−1)
i|i−1 (xi)β∗i,s(xi)dxi

, (4.15’)

Consider the following alternative to (A2)

(A2’) For all 1 ≤ i ≤ s ≤ t, β∗i,s is light-tailed with common parameters (A,M,α, γ).

Conditions (A2’) is generally harder to check than (A2) since it involves the

normalization of the whole backward functions βi,s. However, this is possible in some

structured models as illustrated in the following example.

4.3.2 Example: Gaussian autoregressive model

Consider a one dimensional model (multivariate models are qualitatively similar):

for all i ≥ 1

Xi = aXi−1 + σUi,

Yi = Xi + τVi,

where Ui, Vi are independent standard Gaussian variables. Assume X0 ∼ N(µ0, σ
2
0) and

|a| < 1. This model is only of theoretical interest since we can use the explicit Kalman

filter in this situation.

Forward recursion: computing φs|s Suppose 1 ≤ i ≤ t, then φi|i = ψ(·;µi, σ
2
i ), a

Gaussian density with mean µi and variance σ2
i following a recursion:

σ2
i =

(a2σ2
i−1 + σ2)τ2

(a2σ2
i−1 + σ2) + τ2

, (4.29)
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µi = aρiµi−1 + (1 − ρi)yi, (4.30)

where

ρi =
τ2

a2σ2
i−1 + σ2 + τ2

.

Clearly

τ2σ2

τ2 + σ2
= σ2

− ≤σ2
i ≤ σ2

+ = σ2, (4.31)

τ2

a2σ2 + σ2 + τ2
= ρ− ≤ρi ≤ ρ+ =

τ2(σ2 + τ2)

aτ2σ2 + (τ2 + σ2)
(4.32)

for all i ≥ 1.

Backward recursion: computing β∗i,s In a Gaussian linear model the function βi,s is

also proportional to a Gaussian density. For 1 ≤ i ≤ s,

βi,s(x) ∝ ψ(x;µi,s, σ
2
i,s),

where for all 1 ≤ i ≤ s− 1,

σ2
i,s =

(

σ2
i+1,s + σ2

)

τ2

σ2
i+1,s + σ2 + a2τ2

, (4.33)

µi,s = a−1ρi,sµi+1,s + (1 − ρi,s)yi, (4.34)

with µs,s = ys, σ
2
s,s = τ2, and

ρi,s =
a2τ2

σ2
i+1,s + σ2 + a2τ2

.

Similarly we have

τ2σ2

a2τ2 + σ2
= (σ∗−)2 ≤ σ2

i,s ≤ (σ∗+)2 = τ2, (4.35)
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a2τ2

τ2 + σ2 + a2τ2
= ρ∗− ≤ ρi,s ≤ ρ∗+ =

a2τ2(a2τ2 + σ2)

τ2σ2 + (a2τ2 + σ2)2
. (4.36)

The fact that β∗i,s ∝ βi,s and
∫

β∗i,s = 1 indicates β∗i,s(x) = ψ(x;µi,s, σ
2
i,s). There-

fore (A2’) holds easily by taking β̄∗i,s = β̃∗i,s =
(

β∗i,s

)
1
2
, with constants (A,M,α, γ) depend-

ing only on (a, σ, τ), since σi,s is bounded from up and below uniformly for all i, s. Note

also that β̃i,s has Gaussian tail, so condition (S4) holds for any positive constant γ, here

we just choose any arbitrary γ = γ0, with the corresponding constant α = α0.

Lower bound of the denominator From the forward recursion we know that

φi|i−1(xi) = ψ
(

xi;µi|i−1, σ
2
i|i−1

)

,

with µi|i−1 = aµi−1 and σi|i−1a
2 = σ2

i−1 + σ2. Then

∫

φi|i−1β
∗
i,s =

1
√

2π(σ2
i|i−1 + σ2

i,s)
exp

(

−1

2

(µi|i−1 − µi,s)
2

σ2
i|i−1 + σ2

i,s

)

≥ 1
√

2π(a2σ2
+ + σ2 + (σ∗+)2)

exp

(

1

2

(µi|i−1 − µi,s)
2

aσ2
− + σ2 + (σ∗−)2

)

= c1 exp
(

−c2(µi|i−1 − µi,s)
2
)

. (4.37)

The next step is to develop an upper bound of |aµi−1 − µi|s| uniformly for all i, s. Let

ξt = max{|Ui|, |Vi|, 0 ≤ i ≤ t}.

Lemma 4.3.1. Assuming 0 < |a| < 1, then there exists constant c1 depending on the

model only, such that for all 0 ≤ i ≤ s ≤ t,

max {|µi|, |µi,s|, 0 ≤ i ≤ s} ≤ c1ξt.

The following lemma shows that ξt = OP (
√

log t).
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Lemma 4.3.2. Define event

E∗ = {ξt ≤
√

θ log t},

for some θ > 0. Then for all t ≥ 2,

P (E∗) ≥ 1 − 3t−
θ−2
2 . (4.38)

Then we have our main result about the Gaussian linear model:

Theorem 4.3.3. Under the Gaussian linear model, assuming 0 < |a| < 1, then, there

exists positive constants c and c0, . . . , c3, depending on the model only, such that for every

0 < ǫ ≤ c0t
−cθ,

P

(

sup
1≤s≤t

∣

∣φ
(s)
s|s − φs|s

∣

∣ ≥ ǫ

)

≤ c1t
2

(

c2
∨

√
nǫ

t1+cθ

)p(1+γ)

exp

(

− c3nǫ
2

t2+2cθ

)

+ 3t−
θ−2
2 , (4.39)

where θ is a free parameter defined as in Lemma 4.3.2, and γ is a constant defined as in

(S4) which depends only on the model.

The proofs of Lemma 4.3.1, 4.3.2 and Theorem 4.3.3 are in Section 4.4.3.

In Theorem 4.3.3 letting ǫ = c0t
−cθ, and using the fact that sups

∣

∣φ
(s)
s|s−φs|s

∣

∣ ≤ 1,

one immediately get an upper bound of the expected uniform approximation error:

Corollary 4.3.4. Under the same conditions of Theorem 4.3.3, there exits positive con-

stants c, c1, . . . , c4 depending on the model only, such that

E

(

sup
1≤s≤t

∣

∣φ
(s)
s|s − φs|s

∣

∣

)

≤ c1t
2

(

c2
∨

√
n

t1+2cθ

)p(1+γ)

exp
(

− c3n

t2+4cθ

)

+ 3t−
θ−2
2 + c4t

−cθ. (4.40)
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In Theorem 4.3.3 and Corollary 4.3.4 the approximation bound is no longer

uniform in t. However, it is about the uniform approximation error up to time t instead of

the expected approximation error at each time, as we considered in the previous section.

These results implies that it is enough to have the sample size n to increase polynomially

in t in order to control the uniform approximation error. In fact, if t is large, it is enough

to have nt = t2+4cθ+η, for any η > 0.

4.4 Proofs

4.4.1 Proofs of Section 4.2.1

We take three steps to prove Lemma 4.2.5.

Controlling the numerator

We first prove Lemma 4.2.4, which provides partial upper bound for the numer-

ator of (4.15).

Before proving Lemma 4.2.4, we introduce some useful concept in empirical pro-

cesses (van der Vaart & Wellner, 1996, Ch. 2). Here let F be any family of functions and

|| · || be any function norm.

Definition 4.4.1 (Bracketing numbers). Given two functions fl and fu, the bracket [fl, fu]

is the set of all functions f with fl ≤ f ≤ fu. An δ-bracket is a bracket [fl, fu] with

||fu − fl|| ≤ δ. The bracketing number N[] (δ,F , || · ||) is the minimum number of δ-

brackets needed to cover F .
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A related notion is the covering number:

Definition 4.4.2 (Covering numbers). The covering number N(δ,F , || · ||) is the minimal

number of balls {g : ||g − f || < δ} of radius δ needed to cover F .

The proof of Lemma 4.2.4 requires an upper bound of the bracketing number of

the function class F ≡ {f(x, x′) : x 7→ q(·, x′)g̃i(x
′)|x′ ∈ X}, which is in turn bounded

by the corresponding covering number. A useful result relating the covering number and

bracketing number is the following:

Lemma 4.4.3 (Theorem 2.7.11, van der Vaart & Wellner (1996)). Let F be a class of

functions x 7→ f(x, x′) indexed by a parameter x′ ∈ K. Suppose that

|f(x, x′) − f(x, x′′)| ≤ d(x′, x′′)F (x), ∀x, x′, x′′,

for some metric d on the index set and function F . Then for any norm || · ||,

N[] (δ,F , || · ||) ≤ N

(

δ

2||F || ,K, d
)

.

Proof of Lemma 4.2.4. Let f(x, x′) : x 7→ q(x, x′)g̃(x′) and F = {f(·, x′) : x′ ∈ X}. We

want to control the bracketing number N[](δ,F , || · ||∞).

First note that f(x, x′) is Lipschitz in x′ under Conditions (A1) and (A2):

|f(x, x′) − f(x, x′′)|

≤|g̃(x′)q(x, x′) − g̃(x′)q(x, x′′)| + |g̃(x′)q(x, x′′) − g̃(x′′)q(x, x′′)|

≤2AM |x′ − x′′|. (4.41)
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For any δ > 0, let K(δ/M) as defined in (S4) with respect to g̃, we have for all

x′ ∈ K(δ/M)c,

0 ≤ f(x, x′) ≤ q(x, x′)δ/M ≤ δ.

Let Fδ = {f(·, x′) : x′ ∈ K(δ/M)}, then the above inequality indicates:

N[](δ,F , || · ||∞) ≤ N[](δ,Fδ , || · ||∞) +N[](δ,F\Fδ , || · ||∞)

≤ N[](δ,Fδ , || · ||∞) + 1. (4.42)

On the other hand, let || · ||X be the Euclidean norm on the state space, then by

(S4),

N

(

δ

4AM
,K

(

δ

M

)

, || · ||X
)

≤
(

4AMdiam (K(δ/M))

δ
+ 1

)p

≤
(

4αAM1+γδ−γ

δ
+ 1

)p

. (4.43)

Therefore, using Lemma 4.4.3, (4.42), and (4.43) we have

N[] (δ,F , || · ||∞) ≤N[](δ,Fδ , || · ||∞) + 1

≤N
(

δ

4AM
,Ki

(

δ

M

)

, || · ||X
)

+ 1

≤
(

4αAM1+γδ−γ

δ
+ 1

)p

+ 1

≤2

(

(4αAM1+γ +M2(1+γ))δ−γ

δ

)p

=

(

c(A,M,α, γ)

δ

)p(1+γ)

, (4.44)

where the last inequality uses the fact that δ ≤ M2 since K(M) can be chosen as empty

if δ > M2.
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By a classical result in empirical processes (Talagrand, 1994, Theorem 1.1), there

exists positive constants c1, c2 such that for any ǫ > 0,

P



sup
xi

∣

∣

∣

∣

1

n

n
∑

j=1

q(xj
i−1, xi) −

∫

φ(xi−1)q(xi−1, xi)

∣

∣

∣

∣

g̃(xi) > ǫ





≤c1
(

c2
∨√

nǫ
)p(1+γ)

exp

(

−2nǫ2

M4

)

.

Note that the result of Lemma 4.2.4 is uniform with respect to the underlying

measure φ. Substitute φ by φ
(i−1)
i−1|i−1 we have

Corollary 4.4.4. Under (A1) and (A2), there exists constants c1, c2 depending on the

model only, such that for any ǫ > 0, 1 ≤ i ≤ s,

P

(

sup
xi

∣

∣

∣
φ

(i)
i|i−1(xi) − φi|i−1(xi)

∣

∣

∣
g̃(xi) > ǫ

)

≤ c1

(

c2
∨√

nǫ
)p(1+γ)

exp

(

−2nǫ2

M4

)

.

Controlling the denominator

We have the following lemma providing a partial lower bound for the denominator

of (4.15):

Lemma 4.4.5. Under (A1-A3), we have, for any 1 ≤ i ≤ s− 1, conditioning on Y s
1 ,

inf
xi∈Ci

φ
(i−1)
i|i−1 (xi) ≥ κξ−1

i .

proof of Lemma 4.4.5. for i ≥ 2, by assumption (A3), for all xi ∈ Ci

φ
(i−1)
i|i−1 (xi)
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≥
∫

φ
(i−1)
i−1|i−1(xi−1)q(xi−1, xi)dxi−1

≥
∫

Ci−1

φ
(i−1)
i−1|i−1

(xi−1)q(xi−1, xi)dxi−1

≥ξ−1
i

∫

Ci−1

φ
(i−1)
i−1|i−1(xi−1)dxi−1

=ξ−1
i

∫

Ci−1

∫

φ
(i−1)
i−2|i−2(xi−2)q(xi−2, xi−1)dxi−2gi−1(xi−1)dxi−1

∫ ∫

φ
(i−1)
i−2|i−2

(xi−2)q(xi−2, xi−1)dxi−2gi−1(xi−1)dxi−1

=ξ−1
i

∫ ∫

Ci−1
q(xi−2, xi−1)gi−1(xi−1)dxi−1φ

(i−1)
i−2|i−2(xi−2)dxi−2

∫ ∫

q(xi−2, xi−1)gi−1(xi−1)dxi−1φ
(i−1)
i−2|i−2(xi−2)dxi−2

≥ξ−1
i κ

∫ ∫

q(xi−2, xi−1)gi−1(xi−1)dxi−1φ
(i−1)
i−2|i−2

(xi−2)dxi−2

∫ ∫

q(xi−2, xi−1)gi−1(xi−1)dxi−1φ
(i−1)
i−2|i−2(xi−2)dxi−2

≥ξ−1
i κ.

For i = 1, we have according to (A3), for all x1 ∈ C1

φ1|0(x1)

=

∫

φ0(x0)q(x0, x1)dx0

≥κ
∫ ∫

C0

φ0(x0)q(x0, x1)dx0

≥ξ1
∫

C0

φ0|0(x0)dx0

≥ξ1κ.

Controlling the effect of βi,s

Lemma 4.4.6. Under (A2-A3), we have for all 1 ≤ i ≤ s, and all ys
1,

∫

Ci
gi(xi)βi,s(xi)dxi

∫

ḡi(xi)βi,s(xi)dxi
≥ κ2. (4.45)
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proof of Lemma 4.4.6. When i = s, we have βi,s ≡ 1, then the result follows easily from

(A3) and the fact that κ ≤ 1.

When i ≤ s− 1, by (A3),

∫

Ci

gi(xi)βi,s(xi)dxi

≥ inf
Ci

g̃i

∫

Ci

ḡi(xi)βi,s(xi)dxi

≥κ
∫ ∫

Ci

ḡi(xi)q(xi, xi+1)dxigi+1(xi+1)βi+1,s(xi+1)dxi+1

≥κ2

∫ ∫

ḡi(xi)q(xi, xi+1)dxigi+1(xi+1)βi+1,s(xi+1)dxi+1

=κ2

∫

ḡi(xi)βi,s(xi)dxi.

Putting things together

Now we can put Corollary 4.4.4, Lemma 4.4.5 and 4.4.6 together to control the

RHS of (4.15), thereby proving Lemma 4.2.5.

Proof of Lemma 4.2.5. From Equation (4.15) and Lemma 4.4.5 and 4.4.6, we have

∣

∣

∣
φ

(i)
i|s − φ

(i−1)
i|s

∣

∣

∣

≤
∫

∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ gi(xi)βi,s(xi)dxi

∫

φ
(i−1)
i|i−1 (xi)gi(xi)βi,s(xi)dxi

≤
supxi

[∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
g̃i(xi)

]

∫

ḡi(xi)βi,s(xi)dxi

infCi
φ

(i−1)
i|i−1 (xi)

∫

Ci
gi(xi)βi,s(xi)dxi

≤ ξi
κ3

sup
xi

[∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ g̃i(xi)
]

. (4.46)
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Therefore,

P
(

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣ ≥ ǫξi

∣

∣

∣Y s
1

)

≤P
(

sup
xi

[∣

∣

∣φ
(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣ g̃i(xi)
]

≥ κ3ǫ

)

≤c1
(

c2
∨√

nǫ
)p(1+γ)

exp
(

−c3nǫ2
)

, (4.47)

for constants c1, c2 and c3 depending only on the model.

4.4.2 Proofs of Section 4.2.2

The proofs follow largely from Douc et al. (2009b, Lemma 10,11 and 12). First

we have the following lemma:

Lemma 4.4.7 (Lemma 10 of Douc et al. (2009b)). Assume diam(C) < ∞. Then for all

x ∈ C and x′ ∈ X ,

ρ(C)hC(x′) ≤ q(x, x′) ≤ ρ−1(C)hC(x′), (4.48)

with

ρ(C) = rpU (diam(C)) ∧ inf
|u|≤diam(C)

pU ∧
(

sup
|u|≤diam(C)

pU

)−1

,

hC(x′) = 1 (x′ ∈ a(C)
)

+ 1 (x′ /∈ a(C)
)

pU (|x′ − a(z0)|),

where r is defined in (4.21) and z0 is an arbitrary element of C. In addition, for all x ∈ X

and x′ ∈ C,

ν(C)kC(x) ≤ q(x, x′), (4.49)

with

ν(C) = inf
|u|≤diam(C)

pU ,
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kC(x) = 1 (a(x) ∈ C) + r1 (a(x) /∈ C) pU (|z′ − a(x)|),

where z′ is an arbitrary element in C.

Proof of Lemma 4.2.7. Choose Cy = {x : |x− b−1(y)| ≤ D}, for some D > 0.

We first show

inf
y

∫

Cy
g(y;x)dx

∫

g(y;x)dx
> 0.

In fact

∫

Cc
y

pV (y − b(x))dx ≤
∫

Cc
y

pV

(

b−|b−1(y) − x|
)

dx ≤
∫

|x|≥D

pV (b−|x|)dx,

which is independent of y. Also note that
∫

pV (y − b(x))dx is bounded from below uni-

formly in y by change of variables and the assumption that the Jacobian of b is bounded.

Now we can choose D large enough so that
∫

|x|≥D
pV (b−|x|)dx < infy

∫

pV (y − b(x))dx.

Then we have

inf
y

∫

Cy

g(y;x)dx > 0.

Then we are going to show

inf
y,x

∫

Cy
q(x, x′)g(y;x′)dx′

∫

q(x, x′)g(y;x′)dx′
> 0, (4.50)

which is equivalent to

inf
y,x

∫

Cy
q(x, x′)g(y;x′)dx′

∫

Cc
y
q(x, x′)g(y;x′)dx′

> 0.

Note that in Lemma 4.4.7 the constants ρ(Cy) and ν(Cy) depends on Cy only

through its diameter. That is, ρ(Cy) and ν(Cy) depends only on D which is independent

of y. As a result, in the following arguments we will drop the dependence on y when using

these notations.
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Consider two cases:

1. a(x) ∈ Cy.

In this case kCy(x) ≡ 1 as define in Lemma 4.4.7. We have

∫

Cy
q(x, x′)g(y;x′)dx′

∫

q(x, x′)g(y;x′)dx′
≥ ν

M

∫

Cy
g(y;x′)dx′

∫

g(y;x′)dx′
≥ ν

M
inf
y

∫

Cy
g(y;x′)dx′

∫

g(y;x′)dx′
> 0, (4.51)

where we used the fact q(x, x′) ≤ ||pU ||∞ ≤M .

2. a(x) /∈ Cy.

In this case kCy(x) = rpU(|b−1(y) − a(x)|) as defined in Lemma 4.4.7, where z′ is

chosen as b−1(y). In (4.21) let w = x′−a(x), w′ = b−1(y)−x′, then by monotonicity

of pU (4.21) we have

pU (|w + w′|) ≥ pU (|w| + |w′|) ≥ rpU(|w|)pU (|w′|),

which implies

pU (|x′ − a(x)|)
pU (|b−1(y) − a(x)|) ≤ r−1p−1

U (|b−1(y) − x′|).

Therefore, using (4.22)

∫

Cy
q(x, x′)g(y;x′)dx′

∫

Cc
y
q(x, x′)g(y;x′)dx′

≥
rνpU(|b−1(y) − a(x)|)

∫

Cy
g(y;x′)dx′

∫

Cc
y
pU(|x′ − a(x)|)pV (y − b(x′))dx′

≥
r2ν

∫

Cy
g(y;x′)dx′

∫

Cc
y
p−1

U (|b−1(y) − x′|)pV (y − b(x′))dx′

≥
r2ν

∫

Cy
g(y;x′)dx′

∫

Cc
y
p−1

U (|b−1(y) − x′|)pV (b−|b−1(y) − x′|)dx′

≥
r2ν

∫

Cy
g(y;x′)dx′

∫

|z|≥D
p−1

U (|z|)pV (b−|z|)dz

≥
r2ν infy

∫

Cy
g(y;x′)dx′

∫

|z|≥D
p−1

U (|z|)pV (b−|z|)dz
> 0, (4.52)
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where the last inequality is based on (4.22) and the fact that pV = p̃V p̄V ≤ Mp̄V .

Note that the bounds of both (4.51) and (4.52) are independent of y and x. As a

result (4.50) is true.

It remains to show

inf
y,x′

∫

Cy
g(y;x)q(x, x′)dx

∫

ḡ(y;x)q(x, x′)dx
> 0. (4.53)

The argument is very similar to those of (4.50). Again, consider two cases:

1. x′ ∈ a(Cy).

In this case hCy(x′) ≡ 1, and we have

∫

Cy
g(y;x)q(x, x′)dx

∫

g(y;x)q(x, x′)dx
≥
ρ
∫

Cy
g(y;x)dx

M
∫

ḡ(y;x)dx
≥ ρ

M2
inf
y

∫

Cy

g(y;x)dx > 0. (4.54)

2. x′ /∈ a(Cy).

In this case hCy(x′) = pU(|x′ − a(b−1(y))|) choosing z0 = b−1(y) in Lemma 4.4.7,

and
∫

Cy
g(y;x)q(x, x′)dx

∫

ḡ(y;x)q(x, x′)dx
≥
ρpU (|x′ − a(b−1(y))|)

∫

Cy
g(y;x)dx

∫

Cc
y
p̄V (y − b(x))pU (x′ − a(x))dx

. (4.55)

It suffices to show

∫

Cc
y

p−1
U (|x′ − a(b−1(y))|)pU (x′ − a(x))p̄V (y − b(x))dx

is bounded uniformly for all y and x′.

Again, let w = x′−a(x), w′ = a(x)−a(b−1(y)). Then |w+w′| = |x′−a(b−1(y))| > L.

Therefore

pU (|w + w′|) ≥ pU (|w| + |w′|) ≥ rpU(|w|)pU (|w′|),
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which indicates

p−1
U (|x′ − a(b−1(y))|)pU (x′ − a(x)) ≤ r−1p−1

U (|a(x) − a(b−1(y))|).

Also note that for all z, z′ ∈ X ,

p−1
U (|a(z) − a(z′)|) ≤ p−1

U (a+|z − z′|).

As a result,

∫

Cc
y

p−1
U (|x′ − a(b−1(y))|)pU (x′ − a(x))p̄V (y − b(x))dx (4.56)

≤
∫

Cc
y

r−1p−1
U (|a(x) − a(b−1(y))|)p̄V (y − b(x))dx

≤r−1

∫

Cc
y

p−1
U (a+|z − z′|)p̄V (y − b(x))dx

≤r−1

∫

|x|>D

pU (a+|x|)p̄V (b−x)dx

<∞,

where the last inequality uses (4.22). Therefore (4.53) is true because the bounds in

(4.54) and (4.56) do not depend on y or x′.

4.4.3 Proofs of Section 4.3

Proof of Lemma 4.3.1. We will simply show

sup
1≤i≤t

|µi−1| ≤ c1ξt, sup
1≤i≤s≤t

|µi,s| ≤ c2ξt,
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for some constant c1, c2. The proof for |µi,s| is essentially the same. For the first inequality,

the recursive formula (4.30) implies

|µi| = |aρiµi−1 + (1 − ρi)Yi| (4.57)

=

∣

∣

∣

∣

∣

∣

i−1
∑

j=0

ajρi . . . ρi−j+1(1 − ρi−j)Yi−j

∣

∣

∣

∣

∣

∣

=





i−1
∑

j=0

(aρ+)j



 (1 − ρ−) max
1≤j≤i

|Yj|

=
1 − ρ−
1 − aρ+

max
1≤j≤i

|Yj|,

where ρ−, ρ+ are defined in (4.32). Therefore it suffices to show max1≤i≤t |Yi| ≤ c1ξt for

some c1 > 0:

|Yi| = |Xi + τVi| = |aXi−1 + σUi + Vi|

=

∣

∣

∣

∣

∣

∣

τVi +
i
∑

j=0

ai−jσUj

∣

∣

∣

∣

∣

∣

≤
(

τ +
σ

1 − a

)

ξt. (4.58)

On the other hand, let h = σ2

τ2 , and hi,s =
σ2

i,s

τ2 , then (4.33) becomes

hi,s =
hi+1,s + h

hi+1,s + h+ a2
.

Let h0 ∈ (0, 1) be the fixed point of the above recursion:

h0 =
1 − h− a2 +

√

(1 − h− a2)2 + 4h

2
.

Note also that hs,s = 1, then the recursion formula for hi,s indicates:

|hi,s − h0| ≤
(

1 − h0

h+ a2

)s−i

|1 − h0|.
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It is easy to check that 0 < 1−h0
h+a2 < 1. Therefore hi,s → h0 exponentially fast as s − i

increases. Furthermore, there exists constant k, such that for all s− i ≥ k,

hi,s ≥
1 − a2 − h

2
.

As a result, we have for any s− i ≥ k,

∣

∣

∣

ρi,s

a

∣

∣

∣
≤ |a|
a2 + h+ 1−a2−h

2

≤ 2|a|
2|a| + h

< 1.

Then

µi,s =
ρi,s

a
µi+1,s + (1 − ρi,s)yi

=
s−1
∑

j=i

(

j−1
∏

l=i

ρl,s

a

)

(1 − ρj,s)yj +





s−1
∏

j=i

ρj,s

a



 ys (4.59)

The desired inequality follows using the fact that

∣

∣

∣

∣

∣

j−1
∏

l=i

ρl,s

a

∣

∣

∣

∣

∣

≤
(

2|a|
2|a| + h

)j−i(2|a| + h

2|a|
ρ∗+
|a|

)k

.

Proof of Lemma 4.3.2. For a standard Gaussian random variable U ,

P (|U | > m) =
2√
2π

∫ ∞

m

e−
1
2
u2
du ≤ 2√

2π

∫ ∞

m

u

m
e−

1
2
u2
du

=
2√
2πm

e−
m2

2 . (4.60)

Let m =
√
θ log t, we have

P (|U | >
√

θ log t) ≤ 2√
2πθ log t

t−
θ
2 .

Therefore, for t ≥ 2.

P (ξt >
√

θ log t) ≤ (2t+ 2)
2√

2πθ log t
t−

θ
2 ≤ 3t−

θ−2
2 .
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Proof of Theorem 4.3.3. On E∗, by (4.37), and Lemma 4.3.1, there exists constants κ and

c depending on the model only, such that

∫

φi|i−1(xi)β
∗
i,s(xi)dxi ≥ κt−cθ. (4.61)

Then one would expect that
∫

φ
(i−1)
i|i−1β

∗
i,s is lower bounded too if φ

(i−1)
i−1|i−1 is close to φi−1|i−1.

For 0 < ǫ ≤ κ
2Mtcθ , where M > 0 is defined in (S1-S4) for function β∗i,s, define the events:

Ei =
{∣

∣

∣φ
(i)
i|i − φi|i

∣

∣

∣ ≤ ǫ
}

.

Then on Ei−1
⋂

E∗, the denominator of (4.15’) is lower bounded by

∫

φ
(i−1)
i|i−1 β

∗
i,s ≥

κ

2tcθ
.

Consider events Ei,s:

Ei,s =

{

sup
xi

∣

∣

∣
φ

(i)
i|i−1(xi) − φ

(i−1)
i|i−1 (xi)

∣

∣

∣
β̃∗i,s(xi) ≤

κǫ

2Mt1+cθ

}

.

We have on Ei−1
⋂

Ei,s

⋂

E∗,

∣

∣

∣φ
(i)
s|s − φ

(i−1)
s|s

∣

∣

∣ ≤
∣

∣

∣φ
(i)
i|s − φ

(i−1)
i|s

∣

∣

∣ ≤ ǫ

t
.

Therefore

Es ⊇
s
⋂

i=1

(

Ei−1

⋂

Ei,s

⋂

E∗
)

.

Note also that E0 is simply the whole probability space, therefore it is easy to show

Es ⊇ E∗⋂




s
⋂

i=1

i
⋂

j=1

Ej,i



 ,
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and hence
t
⋂

s=1

Es ⊇ E∗⋂
(

t
⋂

s=1

s
⋂

i=1

Ei,s

)

.

By Lemma 4.2.4, there exists constants c1, c2, c3 depending on the model only,

such that

P (Ei,s) ≥ 1 − c1

(

c2
∨

√
nǫ

t1+cθ

)p(1+γ)

exp

(

−c3
nǫ2

t2+2cθ

)

,

where c is the same as in (4.61).

Therefore,

P

(

t
⋂

s=1

Es

)

≥ 1 − c1t
2

(

c2
∨

√
nǫ

t1+cθ

)p(1+γ)

exp

(

−c3
nǫ2

t2+2cθ

)

− 3t−
θ−2
2 .

In other words, we have for all 0 < ǫ ≤ κ
2Mtcθ ,

P

(

sup
1≤s≤t

∣

∣φ
(s)
s|s − φs|s

∣

∣ ≥ ǫ

)

≤ c1t
2

(

c2
∨

√
nǫ

t1+cθ

)p(1+γ)

exp

(

− c3nǫ
2

t2+2cθ

)

+ 3t−
θ−2
2 , (4.62)

with positive constants c1, c2, c3 depending only on (a, τ, σ) and c is the constant in (4.61).
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