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Abstract

Overcoming the Common Challenges
in Differential Gene Expression Analysis Studies

by
Yan Huang
Doctor of Philosophy in Statistics
University of California, Berkeley

Professor Haiyan Huang, Chair

The ability to analyze gene expression data has had a fundamental impact
in the biological sciences and on our understanding of the causes and mech-
anisms of disease. However, a significant statistical challenge is posed by the
combination of the small number of replicates together with the large number
of genes leading to an undesirable level of misclassified genes when identifying
genes with differential expression levels. When multiple gene expression data
sets are generated under the same set of experimental conditions, the ques-
tion arises as to how to efficiently combine this information. Several methods
in the literature have been suggested to aggregate ranked data from multiple
sources. We introduce a new classifier, underpinned by Bayesian principles,
called Peer Reinforced Ranker (PR-Ranker) which uses density estimation to
approximate the probability that a gene is differentially expressed given a col-
lection of ranked lists.

Our classifier is amenable to theoretical analysis when the number of genes
and lists is large using the theory of large deviations. Under modest technical
assumptions we show that asymptotically PR-Ranker has the smallest loss of
any rank aggregation procedure. Moreover, we prove that other more ad hoc
methods, such as Borda, have a strictly higher asymptotic rate of loss.

While the theoretical results are asymptotic, we perform a series of simulation
studies that demonstrate that our classifier outperforms existing methods on
datasets of realistic size for biological data. Furthermore, we show that the
outperformance is even greater when the lists exhibit varying levels of noise
or when some sources are corrupted. PR-Ranker automatically adapts to



varying data quality and efficiently combines the data from different sources.
Finally we apply PR-Ranker to a gene expression data set in a preeclampsia
study. The top ranked genes identified were known to be biologically relevant
to preeclampsia and our method achieved a substantially higher Consistency
Index than other rank aggregation procedures.



In fond memory of my beloved father, Hua Huang.
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Chapter 1

Introduction

Gene expression profiling technology has opened the door for researchers to
study the activities of tens of thousands of genes at a time and the technology
has become one of the major achievements in experimental molecular biology.
A growing amount of gene expression data is generated every year, awaiting
scientist to reveal the hidden biological information in them.

One remarkable effort in gene profiling analysis is the detection of genes
that are differentially expressed (DE) under two or more experimental or bio-
logical conditions. Due to cost and time constraints biologists normally have
the resources to study only a limit number of the differentially expressed genes
(DEG) detected in the analysis. Because of this, methods in differential gene
expression (DGE) studies revolve around establishing a rank list of the genes
to prioritize genes that demonstrate strong evidence that they are DE.

Traditionally gene expression datasets were analyzed individually. The
major difficulties in gene expression analysis are due to two intrinsic properties
of gene expression data: the small number of replicates and the large number
of genes. The first property makes getting a reliable sample statistic (such as
the sample variance) difficult; the second property inevitably introduces the
multiple testing problem. Many methods have been developed to tackle these
challenges.

As more gene expression data generated under the same set of experimental
or biological conditions became available, a new class of rank aggregation
methods emerged. These methods combine the results from multiple studies
by using the rank statistics calculated from the individual studies. There
are many benefits of using a rank-based approach to aggregate results from
different experiments. For one, rank statistics are scale invariant; secondly,
rank-based methods usually require few distributional assumptions.

In this thesis we develop a rank aggregation method for classifying DEG.
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Our approach is based on Bayesian principles and we prove using large devi-
ation theory that our classifier has the smallest loss among all the rank-based
classifiers. In addition, through simulations and a real data application we
show that our classifier is robust in the presence of data corruption or when
the strength of signal varies among the results being combined.

Our method is broadly applicable and can be used to combine datasets
collected with different kinds of sequencing technology which includes, but
is not limited to, microarray and RNA-seq. In fact, the applications of our
method are not restricted to gene expression datasets and can be any rank
datasets that satisfy the few assumptions of our model.

1.1 Background

Gene expression profiling technology enables scientists to study simultaneously
the behavior of tens of thousands of the genes of an organism under a certain
condition in one experiment. For example, one of the most popular gene
expression profile applications is to detect changes in gene expression levels
across changes in phenotype or under different experimental conditions. If
a given gene’s expression level’s change can be associated with a change in
phenotype, then perhaps the gene plays a role in the initiation or progression
of the phenotype of interest. For example, one focus of functional genomics
is the study of understanding and curing disease. It is well known that many
genetic alternations signify presence of abnormalities or diseases. For instance,
point mutations might induce altered protein or changes in expression level
[21], loss or gain of gene copies—which might result in reduced or increase
in expression level-are related to tumor suppression or oncogene activation,
respectively, and methylation might cause changes in expression level and is
also related to oncogene tumor suppressors [41].

In DGE analysis studies, researchers are interested in detecting changes
in gene expression levels across variations in a phenotype. A gene whose
expression level varies in response to changes in a particular phenotype of
interest worths the attentions of researchers to further investigate the gene’s
role in the initiation or progression of a particular change in the phenotype.
However, DGE analyses often face analytical challenges in areas, such as, data
normalization and statistical analysis. In the next section we will focus our
discuss on the major statistical challenges presented in DGE analyses.
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1.2 Challenges in Gene Expression Analysis

One major challenge in gene expression statistical analyses is introduced by
the small number of replicates accompanied with the large number of genes
properties of gene expression data.

Small Sample Size

Cost and biological constraints often lead to insufficient replicate samples for
obtaining stable and accurate variance estimates for the analysis. In addition,
even in the cases where a relatively large number of samples are available often
times the measurements are technically replicated samples taken from a small
number of tissues/cells; i.e., the number of biologically replicated samples
is small. Thus, it is difficult to separate the biological variation from the
systematic measurement errors in the data. As a result, the small sample
size property of the data creates a serious obstacle in DE gene detections
since most traditional statistical methods are based on the assumption that
the samples are independent and identically distributed (i.i.d.) measurements
from a distribution and that the sample size is sufficiently large.

Large Number of Genes

Another difficulty in gene expression analysis was imposed by the large num-
ber of genes in experiment. For example, it is estimated that there are at
least about 20k human protein-coding genes [18]. Suppose gene expressions
are measured under two experimental conditions, control and treatment, and
suppose one would like to identify the set of genes that are differentially ex-
pressed under the treatment condition. One can calculate the p-values against
the null hypothesis that there is no change in the mean gene expressions under
the two conditions; however, running 20k hypotheses increases the chance of
getting at least one test wrong. For example, if we run the tests at 5% signif-
icance level, even if the null hypotheses were all true (i.e., none of the genes
are DE) the number of genes that would be identified as DE with the tests
just by random chance would be about 20,000 x .05 = 1000.

We will next review some of the existing statistical methods that have been
developed specifically for analyzing gene expression data with the aforemen-
tioned properties.



Chapter 2

Review of Existing Methods

As mentioned in the last chapter the major obstacles in gene expression anal-
ysis are due to the the large number of genes and the small number of samples
in gene expression data. Many statistical methods have been proposed to
overcome these problems.

Among these methods, information sharing often tends to play an impor-
tant role in guiding the development of the techniques to remedy the small
sample size issue; for the issue with the large number of genes, some algo-
rithms for controlling family-wise error rate and for controlling false discovery
rate have been proposed. The methods for analyzing biologically defined gene
sets rather than individual genes have also been proposed; these methods group
genes with similar biologically roles into a group and test the significance of
the gene set rather than the individual genes; such approach respects the bi-
ological relationship between the genes and reduces the number of hypothesis
tests required (in turn lessening the issue with multiple testing).

On the other hand, as more gene rank lists (i.e., lists of ranks that sort
genes according to the strength of evidence that they are DE) became more
readily available, aggregating results produced by different experiments under
the same set of biological or experimental conditions has increasingly gained
in popularity; the objective of these aggregation methods is to increase the
power of the tests and to reduce the false positive error rate by combining
information obtained from multiple experiments.

We will describe these methods in the context of a DGE study with two
experimental conditions: control and treatment. Note that most of these
methods can be extended to the case when there are multiple experimental
conditions; however, for simplicity of the notations the case of two experimen-
tal conditions will be utilized here for the demonstration.

Suppose in a DGE study the biologist observes the expressions for gene
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i xfy..af, and xf,..xf, under the control and treatment conditions, re-
spectively, where m, and m; are the number of replicates for gene ¢ under
the control and treatment conditions, respectively. The goal of DGE analysis
is to provide the biologist a list of genes whose expressions are believed to
be altered under the treatment condition compared to that under the con-
trol condition. As mentioned in the previous chapter these genes are often
of particular interest to biologists since they often play special roles in some
biological process.

A common practice in DGE analyses is to rank all the genes of interest
according to their p-values against the null hypothesis that there is no change
in the mean DGE. From a practical point of view, getting a gene rank list is
as useful, if not more, as finding a set of statistically significant genes. For
instance, even if there were 200 genes found to be significantly differentially
expressed, the researcher might have the resource to look at only the 100 most
significant ones; on the other hand, in the case where there was no gene being
classified as significant, the researcher might still want to investigate the top
ranked genes.

To identify the genes of interest one could construct a two-sample Welch
t-test for gene ¢ with the t-statistics:

t, = Lt T Tie (2.1)
Si
where ¢ = 1,...,n. Here 7, = ¥ 2}, and 7, = ¥ 27, are the gene
expression sample means for the treatment and control groups, respectively,
and

52 52
s = it 4t (2.2)
my me

is the estimated standard error (SD) for the sample mean differences, where
1276 _ Ek;lgﬁiizxi7C)2 and S?’t _ Zk:tl(;i’izxi,ty
and treatment groups, respectively.

There are several issues with using the Welch t-test for the application in
discussion. First, due to the small sample sizes in the data the estimate, s;,
of the standard deviation (SD), is often unstable. Secondly, because of the
large number of genes, testing all the genes simultaneously raise the issue of
multiple testing.

The rest of this chapter will be broken down into two main sections. Section
2.1 describes the more traditional methods that were developed to handle

the two issues in DGE analysis; these methods deals with the results from

are the sample SD for the control
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one DGE study at a time. Section 2.2 reviews some novel approaches that
aggregate results from multiple experiments; such aggregation methods have
become increasingly popular because of the rising availability of datasets that
are suitable for this kinds of methods.

2.1 Single List Approaches

Regulating Variance Estimations with Peer Genes

When dealing with one dataset at a time the classical t-test seems to be one
of the most intuitive tests to use to rank the genes. However, the performance
of the the t statistic is greatly dependent on the accuracy of the variance
estimate of the differential expressions. Technical and cost constraints usually
prevent biologists from obtaining large enough samples to obtain a reliable
estimate on the variance. Small sample size and multiplicity are the technical
obstacles that often induce unstable estimate of the variances. For example,
even though the chance of getting a variance estimate that is much different
from the size of the true variance is small for an individual gene, because of the
large number of genes being tested it is inevitable that some of the variance
estimates are much smaller than the true variance. As a result the small
variance estimates inflate the test statistic and some of the non-DE genes will
be falsely classified as significant [28]. Having these inflated test statistics are
particularly unfavorable—since the percentage of truly differentially expressed
genes is very small, the inflated test statistics will have greater damaging
impact on the sensitivity of the test.

To adjust for the unstable variance estimates due to the small sample size,
various approaches have been proposed to group genes in a meaningful way to
artificially “increase” the sample sizes. The granularity of the groups ranges
from using the entire set of genes being studied to numerous subsets of the
genes. The common theme among these approaches is to allow information
sharing among genes that are similar to each other in some way. Although the
number of replicates of each gene is small, perhaps one can take advantage of
the large number of genes and use the information from other genes to regulate
the variance estimate for the gene of interest.

Information Sharing among all Genes

The multivariate empirical Bayes statistic proposed by Tai and Speed [54]
and the James-Stein-type shrinkage method proposed by Opgen-Rhein and
Stimmer [44] both use some global quantity of the gene set, such as the median
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of the sample variances of all the genes in the dataset, as a regulator for the
variance estimate for a single gene.

The multivariate empirical Bayes statistic proposed by Tai and Speed [54] is
a modified version of the usual likelihood ratio statistic applied to hierarchical
models. In the context of the paper by Tai and Speed a hierarchical model
is used to regularize the variance estimate. To regulate the DGE variance
estimate, prior distributions are put on the mean and the variance of a gene
and the hyper-parameters of the priors are estimated from the data for all
other genes. The idea is that if the distribution of the mean has a wide spread
then more information is needed to be borrowed from other genes to regularize
the variance estimate for a particular gene. Although initially this multivariate
hierarchical empirical Bayesian model makes the calculation on the likelihood
ratio statistic difficult, a proposed transformation of the data that separates
the DGE into two independent parts—i.e., constant and non-constant parts—
gives a close form of the statistic.

The intuition behind Tai and Speed’s model is that although the number
of replicates for each gene is small, perhaps one can pool genes that are similar
in some way and try using the properties shared by these pooled genes to get
a better estimate of the variance.

Opgen-Rhein and Stimmer proposed the James-Stein-type shrinkage method
[44] that utilizes the global information shared by all the genes. The method
searches for an estimator that is in the form of a linear combination of the
sample variance and an regulator calculated by using some global information
of the genes in the dataset, such as the median of the variances of all genes.
Given a loss function the shrinkage factor is the one that minimizes the cor-
responding risk. Note that this shrinkage method requires much more relaxed
assumptions on the data than the multivariate empirical Bayes model since it
does not make any distributional assumptions on the data. However, although
the solution of this method has a close form in case of a quadratic loss function
is used, the solution is not guaranteed to have a close form in general.

In regard to the methods discussed in this section, although information
sharing seems to be a good idea, we are concerned with using global informa-
tion to smooth the variance estimate; since the number of genes in a dataset
is usually very large, utilizing the global information is likely to result in over-
smoothing. One might argue that both the empirical Bayes and the Jame-
Stein-type statistics can be easily modified to use local rather than global
information as a smoother; however, the difficulty comes in when one has to
decide on defining the subsets for local information sharing.
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Grouping According to Sample Mean Expressions

A couple of more localized information-sharing methods have been reviewed
by Huang and Pan [26]. One is to smooth (either with or without weights)
the sample variances (for each experimental condition) for genes with similar
mean expression levels. A similar but more complex approach is to, first, use
a linear model to predict the gene expression variance for each gene. Then,
smooth the predicted gene expression variances for genes with similar mean
expression levels. Huang and Pan suggested using LOESS for the smoothing.
Both of these methods were built on the assumption that the variance of the
gene expression levels is a function of the mean [26] (and there is empirical
evidence to support this) so genes with similar expression level have similar
variances.

Grouping Similar Genes: Model Based Variance Estimation

Cai and Giannakis extended the idea of smoothing the estimated variance
values based on expression sample mean values and introduced a method that
groups genes not only by using their mean expression values but also the
variances of the expressions: it organizes the genes with similar means and
variance/covariance structures into clusters and estimates the variance for a
particular gene by using the genes that are within the cluster. Then, Cai and
Giannakis suggested using the estimated variances in the calculation for s;
in (2.2) instead. The attractiveness of this approach is that it respects the
biological structure of the dataset.

Recall that in our setup with two experimental conditions z7,...x{,, and
x}y...xf,,, are the gene expression levels for gene i under the control and
treatment conditions, respectively, where m, and m, are the number of repli-
cates for gene ¢ under the control and treatment conditions, respectively. Let
X; = (2.0, 2.2}, ]. Cai and Giannakis’ approach is built on the as-
sumption that x; follows a Normal mixture model; i.e., the probability density

function of x; is

K
Fxi) =Y mful@il e, Si)
h—1

where 0 < 71, < 1, with Zszl T, = 1, is the mixing proportion of cluster k and
Jr (x| g, i) is the density function for the Normal distribution with mean
i and covariance Xj:
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Here 7y, py, X and K, where k = 1,..., K, are the unknown parameters
that need to be estimated. The Normal mixture model assumption here is rea-
sonable since many distributions can by approximated by the Normal mixture
model with proper choice of the parameters.

The EM algorithm was utilized to estimate the parameters {m }H< |, {pr }E,

and {X;}5 | in the mixture model. (The EM algorithm is an iterative proce-
dure for maximizing the log likelihood function of 8 given the data X: L(0|X),
where @ contains all the parameters that need to be estimated; i.e.,
0 is the set of {m } |, {ps}, and {Z;}5 | . Instead of maximizing L(6]|X)
at every iteration, the EM algorithm maximizes a function that is a lower
bound on L(0|X). This lower bound of the log likelihood function can be
chosen with the aid of the Jensen’s inequality for convex functions. Jensen’s
inequality applies here because the log likelihood function is a concave function
of the parameters that we are trying to estimate for the given data.)

An important point to note here is that the mixture model allows genes
with similar mean and variance to share their information among them. In
addition, as we will see next that with different forms of the cluster variance
3, the model has the flexibility to accommodate different assumptions about
the variances for the replicates.

Three forms of the cluster variance ¥, were proposed by Cai and Giannakis:

1. model 1: 3, = \ L,

2. model 2: 2k = diag </A\k,CImC7 Xk,tImt);
3. model 3: ﬁ]k = diag <5\k1, R j\km> .

Model 1 says that all the expression replicates for the genes in the same
cluster share the same variance; model 2 says that all the replicates under
the control condition have the same variance, and similarly for the replicates
under that treatment condition; finally, model 3 says that all the replicates
could have different variances.

Then, Bayesian information criterion (BIC) was used to choose the best
candidate for K and the best model for the variance:

BIC = 2log|L(6)] — nylog(n) (2.3)
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~

where L(0) is the likelihood of the data with the estimated parameters con-
tained in @ and n, is the number of independent parameters. (BIC can be
thought of as a variation of the scaled maximum likelihood plus an additional
term that penalizes overfitting.)

Discussion

The model proposed by Cai and Giannakis allows more flexibility for the bio-
logical structure of the dataset compared to the smoothing methods reviewed
by Huang and Pan. In Cai and Giannakis’s approach different forms of the
cluster variance model different relationships between the replicates. In ad-
dition, because the clusters could have different sizes, the variances could be
approximated with genes of different group sizes; (in contrast, the methods
reviewed by Huang and Pan use a fixed window size for the smoothing).

Compared to the hierarchical empirical Bayes and the shrinkage models,
the model based clustering method proposed by Cai and Giannakis uses local
information rather than global information to avoid over-smoothing; however,
the model based clustering method has a more restricted constraint since it
assumes that the replicates are uncorrelated when the hierarchical empirical
Bayes model relaxes that assumption.

Another disadvantage of Cai and Giannakis’ method is that it could become
computationally intensive when the number of genes being studied becomes
large. Given that the number of genes in gene expression data is usually large,
this posts a practical limitation on the method.

Controlling the Error Rate for Multiple Testing

As discussed in Section 1.2 one of the obstacles in gene expression analysis is
induced by the large number of genes in gene expression datasets. A typical
gene expression dataset comprising at least a few thousands of genes; thus,
testing for all the genes in the dataset simultaneously brings up the concern of
multiple testing. Even if one could estimate the variances in the denominator
of the t-statistics accurately, running tests on all the genes in the dataset
simultaneously will inevitably inflate the the family-wise type I error rate
(FWER). Recall that the type I error in hypothesis testing is the error of
rejecting the null hypothesis when it is actually true. With a single test we
can control the type I error by setting the significance level of the test. In the
context of our problem for a single gene we test the null hypothesis that the
gene is non-DE under the treatment condition and we can use the conventional
value 0.05 for the significance level of the test, a. However, the upper bound
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for FWER increases quickly as the number of tests increases. To see this note
that if we test n genes independently at the a level, then

P(Making a type I error in one test) < «
— P(Not making a type I error in a test) > 1 — «
= P(Not making a type I error in n tests) > (1 — a)"
—> P(Making at least one type I error in n tests) <1 — (1 —a)" (2.4)

Thus, the upper bound for the FWER grows exponentially with the number
of tests. For instance, for 100 genes and with o = 0.05 the chance of mistakenly
identifying at least one non-DE gene as DE could be as large as 1 — (1 —
0.05)1% ~ 99.4%; thus, there is little control on the FWER when n is large.

Numerous methods have been proposed to control for the FWER for mul-
tiple testing problems. Instead of following the traditional procedure for hy-
pothesis testing and rejecting the null hypothesis when the p-value of the test
is smaller than «, these methods defined an adjusted p-value and use it in
place of the original p-value.

Controling for Family-wise Error Rate

From (2.4) one can see that if we replace the original p-value for gene 1,
pi,t = 1,...,n with the adjusted p-value, p; = 1 — (1 — p;)™, then using the
significance level a on the adjusted p-values will keep the FWER under «;
this adjustment was proposed by Sidak [50]. The Sidak p-value adjustment is
a single step procedure [14] since it performs the same form of adjustment on
the p-values for all the hypotheses regardless of the ordering of the unadjusted
p-values.

Another well-known single step p-value adjustment procedure for multiple
testing is the Bonferroni procedure, which replaces the original p-value p; with
the adjusted p-value p; = min{1,np;}. Note that with this adjustment and
again using « as the significance level

FWER = P(Making at least one type I error in n tests)

< Z P(Making a type I error on test i)

=1

n
a
SE — =«
—'n
=1
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Although it is still widely being used, the Bonferroni procedure is one of
the most conservative procedures for controlling FWER in multiple testing
problems. In fact, in general even though single step adjusted p-values are
simple to calculate, they tend to result in low power for the tests because
they are too conservative [14]. Another disadvantage of using single step p-
value adjustment procedures in gene expression analyses is that some of these
procedures, such as the Sidak [50] procedure, assumes independence between
the test statistics; however, in gene expression studies dependence exists within
groups of genes because of the co-regulation among them [14]. Methods for
controlling FWER with adjusted p-values without the assumption that the
genes are independent have been developed; e.g., see Dudoit et al [14].

Controlling for False Discovery Rate

As mentioned before Bonferroni and Sidak are two conservative methods that
often result in low power of the tests. Another way to control the error rate
in multiple testing problems is to control for the false discovery rate (FDR):

FDR = E (#teStS being wrongly called positive)

#tests being called positive

Controlling FDR rather than FWER has its practical attractiveness since
biologists are often willing to tolerate some amount of error in the list of
genes statisticians provide for investigation, and having a few positive is more
preferable than not detecting the positives at all.

Benjamini and Hochberg [4] first proposed the notion of false discovery
rate in 1995 and provided an algorithm to select the tests to reject; the goal
of the algorithm is to limit the FDR to a user-defined level. To illustrate
the algorithm let’s suppose that we would like to limit the FDR to a. The
algorithm first sorts the p-values of the tests in an increasing order: pg) <
Pe) < -+ < pm)- Then, for each ordered p-value, p;) the algorithm checks if
the inequality {p; < i} is satisfied. The cutoff for the tests is the largest
p-value that satisfies the inequality, so all the tests with p-values less than or
equal to the cutoff will be rejected.

Besides its practical appeal another benefit of the Benjamini-Hochberg
algorithm is that it can be modified to control the FDR even when the tests
are dependent [5]. Let Hy = NH{, where H} is the null hypothesis that gene
1, is non-DE and ¢ = 1,2,...,n. Thus, Hy is the null hypothesis that all the
genes are non-DE.

Assume that the {H¢;7 = 1,2,...,n} are independent. One can estimate
the distribution of the t-statistics under Hy by permuting the control and
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treatment labels for all the genes [24]; if the dataset is structured in such a
way that the rows correspond to the genes and the columns correspond to
the replicates, this means permuting the columns of the dataset. Note that
permuting the columns preserves the biological dependence between the genes.

For any given cutoff value for the t-statistics (calculated with the gene
expression dataset), one can use the permutation distribution of the t-statistics
to estimate the FDR for the case of rejecting all tests with t-statistics smaller
or equal to the cutoff [24]. It can be shown that this procedure involving
the permutation distribution of the t-statistics is equivalent to the Benjamini
-Hochberg algorithm [24] and that the FDR estimated with the permutation
procedure is a consistent estimator of the FDR. For more detailed information
on FDR please see Benjamini et al [4, 5] and Storey et al [51, 52].

Gene Set Enrichment

Besides the methods that assess genes individually and then compare the p-
values of the statistics across all genes to obtain a gene rank list estimate, there
are also methods working with gene sets rather than individual genes. There
are several reasons to consider the differential expression of sets of genes rather
than individual genes themselves. Examining sets of genes allows researchers to
analyze changes of the level of a biological pathway and this approach may have
more relevance than single-gene analysis for complex diseases such as cancer
and diabetes. Grouping genes into sets decreases the number of hypothesis
tests and lessens the problem that arises for multiple testing. Furthermore, an
analysis of gene sets rather than genes may have more statistical power under
certain circumstances. [1]

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) is a method that determines the differ-
ential expression of sets of genes between two phenotypes using gene expression
data. The sets of genes are predetermined from existing biological literature
and are meant to contain genes that are related by biological function, chro-
mosomal location, or regulation [53].

Although GSEA is the most widely-used method of its kind, many others
exist for the purpose of finding differentially expressed gene sets. Among
methods whose first step is to assign a scoring statistic at the individual gene
level, the procedures roughly fall under the same general framework: first,
individual gene-level statistic are computed for each gene in the dataset, then
an optional transformation of this gene-level statistics is made in the event
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that one wishes to account for both up- and down-regulation or to improve the
robustness of the statistic. One then uses the gene-level statistics for a given
gene set to compute the gene set statistic for that set. Finally, the significance
of the gene set is then determined by using a permutation procedure (that
permutes either the gene labels or the phenotype labels depending on the
assumption made in the null hypothesis) [1]. GSEA suggested several options
for the gene-level statistics—most commonly used is the signal-to-noise ratio—
and the suggested gene set level statistic is the Kolmogorov-Smirnov statistic,
followed by a permutation test to determine significance [53].

Other Methods

In addition to GSEA proposed by Subramanian et al, several other efforts
developed similar methods contemporaneously. One such method is called
Significance Analysis of Function and Expression (SAFE). In this method,
the Welch t-statistic was chosen as the measure of gene-level differential ex-
pression and the Wilcoxon rank sum as the gene-set level statistic due to the
unknown correlation structure between gene expression levels [3|. Another
method incorporates linear regression into GSEA in order to adjust for known
explanatory covariates, such as chromosomal rearrangement status in certain
cancers, to identify influential samples, or to evaluate model fit [45]. A third
method proposed by Tian et al was developed to analyze GSEA’s sensitivity
to the gene set size and the influence of the gene sets not under consideration.
This method was also designed to account for the correlation structure within
and between gene sets [56].

Other researchers have sought to improve GSEA. Parametric Analysis of Gene
Set Enrichment (PAGE) seeks to improve the power of GSEA by assuming a
normal distribution and calculating a Z-score as the gene set statistic. Al-
though they claim to be able to detect more significant gene sets with smaller
p-values than GSEA, no mention is made of a correction for multiple hypothe-
sis testing [31]. Jiang and Gentleman point out that overlap between gene sets
can make it difficult to determine which set is responsible for the differential
expression. In such cases, they suggest dividing the sets into their shared and
unique components and analyzing the these groups separately, since genes that
are shared among different biological pathways may be regulated differently
than genes that are regulated independently. Furthermore, they advocate us-
ing principle component analysis to determine which gene sets can be reduced
to two or three dimensions, and they claimed that genes in those sets are likely
to be co-regulated [29].
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Discussion

In summary, GSEA and methods alike incorporate the biological interpreta-
tions of the gene relationship in the analysis. Grouping genes into sets and
analyzing the sets rather than individual genes also help lessen the problem of
multiple testing. However, just as it is difficult to determine on how to divide
genes into appropriate groups to get a better estimate of the variance, it is
also challenging to accurately define gene sets for the analysis and GSEA is
extremely dependent on the scope, composition, and accuracy of the gene sets
used in the analysis. For more information see [1].

2.2 Multiple List Approaches: Rank-Based
List Aggregation

In this section we will review some methods that take a completely different
approach than the ones we have described so far. As there have been more
datasets produced by different platforms and labs becoming available, methods
to aggregate gene expression datasets measured under the same set of biological
or experimental conditions have become popular [60, 12, 37].

The scale-invariant property of rank statistics makes them advantageous
over the statistics used in single-list approaches since datasets from different
sources are not always directly comparable. In addition, rank-based methods
are more robust in general since ranks are less affected by outliers than other
test statistics such as the t-test statistics.

The multiple testing problem that we discussed previously can also be
improved by comparing the ranking results across lists. One of the early
attempts of combining multiple DGE analyses to identify DE genes was made
by Rhodes et al. Rhodes et al [47, 48] proposed using the Benjamini and
Hochberg algorithm that we discussed in Section 2.1 to calculate the adjusted
p-values for the genes in each list, and then defining the significant genes as
the ones with small adjusted p-values in at least J lists, where the value of J
was chosen by permutation testing. The procedure proposed by Rhodes can
be viewed as using a two-stage filtering process to keep the false positive error
rate low. The first round of the filtering was done by using the Benjamini and
Hochberg algorithm; this step controls the FDR within each list. The second
round of the filtering was done by checking the results across lists to remove
genes that land on the top ranks of a particular list just by random chance.
The advantage of combining individual list results is apparent in this example;
having the second filtering helps to improve the power without compromising
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the sensitivity of the test: since one can check the result of one list against
that of other lists to alleviate the multiple testing problem and removing the
false positives in the top list allows more room for the the true positives.

We will next review a few methods that are popular and representative in
rank-based gene expression analysis aggregation applications. The review is
not meant to be exhaustive but to lay the groundwork for the motivations of
our method.

Borda and Spearman Footrule for Complete Lists

Borda count is one of the most well-known algorithms used to aggregate pref-
erence rank lists [37, 16]. The method was devised in 1770 initially as a voting
system.

We will describe the Borda classifier in the case where complete lists are
available; i.e., in the case where all the lists are ranking the same set of items
and there are no missing ranks. Borda suggested giving each item on a partic-
ular list a score that is the number of items ranked below this item on the list
(this means that items that are ranked high on an individual list will receive
a high score); then, to aggregate the lists Borda suggested taking the sum of
the scores across the lists; finally, the items are then sorted in a decreasing
order according to the sums [6]. In mathematical notations and in the context
of gene ranking, supposed there are L rank lists and N genes. For each list
j=1,...,L and for gene i = 1,..., N, the Borda total score is

B(i) = %j_y (N = 15(3))

where r;(7) is the rank for item ¢ on list j. Then, to get the aggregated rank
list the genes will be ranked starting from the largest Border total score.

Note that for complete lists Borda’s method is equivalent to ranking according
to the averages of the ranks for each gene across the lists (with the smallest
average first).

Another example where a seemingly more complicated procedure is equiv-
alent to a simple algorithm is the Spearman Footrule [46]. The Spearman
Footrule (SF) is a distance metric measuring how different two rank lists are.
According to the SF procedure the optimal aggregated rank list is the list that
minimizes the SF distance between the aggregated rank list and the individual
lists. For complete lists it can be shown that the SF procedure is equivalent to
ranking according to the median of the ranks for each item across the lists [60].
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The attractiveness of Borda’s total score and the SF procedure is that they are
intuitive and computationally easy as they can be computed in linear time.

MC Algorithms for Complete Lists

Another heuristic way to combine multiple rank lists is to use Markov Chain
(MC) algorithms. The use of Markov Chain algorithms for aggregating rank
lists received the attention from the community when it was first proposed by
Dwork to combine ranking results from multiple internet search engines [16].
The algorithm mimics the procedure when a ranker is continuously given pairs
of items to compare.

In the context of gene expression data each gene is being represented by a
state in the MC algorithm so for a total of n genes the size of the transition
matrix should be n x n. Heuristically, the (7, j) entry on the transition matrix
represents the estimated weight that gene j would be ranked ahead of gene
7; i.e., gene j would be more likely to be DE compared to gene i. After all
the (i, 7) entries are filled, an adjustment is then made to the entries so that
all entries will be positive; the purpose of this technical step is just to make
the MC irreducible so that there exits a unique stationary distribution for the
MC. The genes are then ranked according to the stationary distribution with
the gene with the highest stationary probability being the first.

Let M be the transition matrix used for the MC algorithm. Some sugges-
tions to assign the values of the weights have been made by DeConde et al
and Dwork et al [16, 12]:

e Majority rule: M (i,j) = 1 If gene j is ranked ahead of gene i at least
50% of the times among the lists; otherwise, M (i, j) = 0;

e Frequency rule: M(i,j) = the fraction of times gene j is ranked ahead
of gene ¢ among the lists;

e Minority/Specialist protection rule: M (i,j) = 1 If gene j is ranked ahead
of gene 7 at least once among the lists; otherwise, M (7, j) = 0.

After assigning the weights, the entries on each row of the matrix M will
be rescaled and adjusted slightly so that the entries on the row will sum up to
one and all the entries will be positive. The adjustment to make all the entries
positive is necessary to ensure that the MC is irreducible.
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Dwork et al mentioned that solving for the stationary distribution directly
is computationally intensive [16] and suggested using simulations to improve
the efficiency of the algorithm.

Borda and MC Algorithms for Incomplete Lists

Modifications can be made to the rank-based aggregation algorithms that we
have discussed so far to make them adaptable to incomplete lists (i.e., lists
with at least one list that misses at least one of the gene that is ranked by
another list) [12, 37].

One suggestion is to add a preprocessing step to treat the missing values
of the ranks for the Borda algorithm [37]. The procedure of this step varies
depending on the cause for the missing ranks. For list j, if the reason for the
missing ranks is because we only have the ranks for the top-k genes from the
experiment that produced list j (i.e., the experiment originally did rank the
genes that are now with missing ranks in list j; however, we do not know what
ranks exactly the experiment assigned to these genes but we know that the
ranks for these genes were lower than k in the experiment; this case is common
if one gets the unaggregated ranks from publications that report only the top-
ranked results), then Lin suggested assigning the rank & + 1 to all the genes
with missing values on list j. On the other hand, if the reason for the missing
data is that the gene was never being studied in the experiment that produced
list j (this is common when combining data from different platforms) then it
was suggested to assign an NA to the rank value. After preprocessing the
rank lists one can then proceed with the Borda algorithm described in Section
2.2.

For the MC algorithms the value 0.05 is assigned as the weights for the
genes with missing ranks. This is an intermediate value between the maximum
and the minimum weights defined in the MC algorithms for complete lists and
the choice of the value 0.05 is somewhat arbitrary.

Attempt to Improve Data Quality with Truncated Lists

It is suggested that one could use the value k + 1 to replace the ranks for all
the genes ranked below £ if one believes that the ranks for these genes are not
reliable [37]. While this seems to be a reasonable approach it is practically
challenging since it is difficult to decide on the value of k without knowing the
distribution of the gene expressions. We will show with simulations that the
quality of the algorithm is dependent on the choice of the k value.
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Discussion

In summary there are numerous advantages of using rank-based methods to
aggregate results from multiple studies:

e Rank statistics are more robust in general and less sensitive to outliers;

e Rank statistics are scale-invariant (with respect to the distribution of
the data that are used to generate the ranks) and therefore are excellent
choice for combining datasets that are not always directly comparable;

e The methods rely on few or no assumptions about the underlying distri-
bution of the gene expressions;

e Comparing results across lists lessen the multiple testing problem and
as the number of the lists increases the statistical power of the method
increases.

As a result these methods have increasingly gained in popularity. However,
there are two main drawbacks about these methods:

e Many of the rank-based aggregation algorithms were constructed heuris-
tically; this makes it difficult to theoretically analyzing the behaviors of
the algorithm.

e In addition, procedures such as the MC algorithms are computationally
intensive as the number of genes and the number of lists increase.

Inspired by the rank aggregation methods that we have reviewed we will
propose a classifier that possess the strengths of the rank-based aggregation
methods that we have discussed to a great extent. In addition, we will propose
a theoretical framework that allows us to study the behavior of our classifier
when the number of the genes and the number of lists go to infinity. Our
method is computationally less intensive compared to the MC algorithms and
has a smaller asymptotic error rate compared to Borda and other ranking
methods that are based on a statistic that is a function of the individual
ranks.
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Chapter 3

Theoretical Analysis

3.1 General Setup of the Problem

The general setup of the problem is the following. Suppose that there are
n genes and we are interested in finding out which of these n genes are DE
under a set of biological conditions (treatment conditions) compared to an-
other set of controlled conditions. In addition, suppose that J sources did
experiments on the same set of n genes independently and measured the gene
expressions under the same set of aforementioned control and treatment con-
ditions. Based on the t-statistics of the gene expressions under control and
treatment conditions, each of the J sources then ranked the genes according
to their t-statistics. (Note that we are using ranks based on t-statistics here
as an example. In general, a broad range of statistics can be used as long as
they satisfy Assumption 3.5.1.)

Inspired by previous work in this area [54] where genes are ranked according
to the degree of evidence against the null hypothesis that the gene is not
differentially expressed, we rank genes according to the conditional probability
P(the gene is DE | test results 1, ..., J).

We assume that gene expressions are measured independently on genes
from two classes: DE and non-DE genes. There are J independent lists, each
consisting of measurements on the same set of n genes. Let d be the proportion
of the DE genes; we assume that d is fixed for all lists and remains constant
as n — oco. We also assume i.i.d. relations between the lists given the class
labels and with appropriate scaling.

We are focused on the case where only ranks are known to us (i.e., we do
not have the measurement values that generated the ranks) and we need to
determine which genes are DE based on only the ranks. This is quite common
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in practice. Even in the case when the raw data is available the use of different
technologies in different studies results in gene expression measurements that
are not directly comparable across studies.

3.2 Main Result

In Section 3.3 we define a Peer Reinforced Reranker (PR-Ranker) classifier,
CpR, for identifying genes that are DE. Our main result establishes that our
classifier is asymptotically optimal among all classifiers where only rank infor-
mation is given. We let LpR denote the expected probability that a gene is
misclassified by our classifier Cpp. We will eventually prove Theorem 3.2.1.

Theorem 3.2.1. Given data subject to Assumption 3.5.1 the classifier Cpp
achieves an error rate

. 1
I8, 7 OB PR ) =
where n is the number of genes and J is the number of lists of genes. No other
rank based estimator can achieve an error rate with a smaller value of p.

We will later prove a stronger result, that no other procedure which has
access to the t-statistics of the differential expressions of the genes and which
may use the underlying distributions of the differentially expressed and non-
differentially expressed genes can achieve a better rate. While this result is
asymptotic, in Chapter 4 we give simulation results showing that our classifier
outperforms other methods for realistic values of n and J.

3.3 Motivation

Suppose an object was tested independently by J laboratories and from the
test results we need to draw a conclusion as to whether the object is positive
of certain condition; e.g., in the context of our project, a gene is tested by J
independent sources and we want to determine whether the gene is DE based
on the J lists of rankings. In the ideal case if P(object is +| test results 1, ..., J)
were attainable, ranking according to such probability would give us the op-
timal ranking result. Alternatively, note that since the tests are independent



CHAPTER 3. THEORETICAL ANALYSIS 22

given the object

P(object is + [test results 1, ..., J)
_ P(object is +)P(test results 1, ..., J|object is +)
P(test results 1, ..., J)
P(object is +) H;le P(test result jlobject is +)
P(test results 1, ..., J)

The probability in the denominator is usually difficult to estimate without
knowing the joint distribution of the test results. Instead, we rank according
P(object is+|test results 1,...,J) . . . .
t F(object is_ which is equivalent to and more convenient than
object is—|test results 1,...,J)

using P(object is + [test results 1, ..., J). Now,

P(object is + |test results 1, ..., J)
P(object is — |test results 1 J)
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]P’ object is

P(object is —
P(object is +

P(object is + [test result j)
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( )\’
( )
<Pgobject is —; ) /-1

ﬁ P(object is + |test result j)
P(object is +

e 1 — P(object is + |test result j)

P(object is +)

fixed regardless of what the individual test results are; therefore, if all objects
have the same probability of being positive, ranking according to the product
of the conditional odd ratios gives us an equivalent way as ranking according
to P( object is +| test results 1,..., J).

Furthermore, with the monotonic property of logarithm, ranking accord-
ing to the product of the conditional odd ratios is also equivalent to ranking
according to the sum of the log conditional odd ratios

Zl ( P(object is + |test result j) )

P(object is + |test result j)

o J—1
Note that in the last expression above, the quantity (M) is
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As a result, we have established that ranking according to P(object is +|
test results 1, ..., J) is equivalent to ranking according to

J P(object is +|test result j) . . . . .
Zj:1 log <I—P(object S H[test result J) ) and since in practice the latter is a quantity

that is easier to obtain, our ranking estimator will be constructed according
to this quantity.

Proposed Approach

For each gene i we let B; be the event that it is differentially expressed and let
R{ be its rank in list j. Our proposed method was motivated by the question
“what is the best one can do to estimate P(B;|R!) in the case where the only
information given is the ranks of the genes on each list." We propose a solution
to the problem by providing an approximation to P(B;|R}) and ranking genes

according to,
J A~ .
P(B;| R’
E log ﬂ (3.1)
1 —P(B;i|R;)

Jj=1

where I@(BAR{) is our estimated probability which will be shown to converge
to P(B;|R) as the number of genes and the number of lists increase. Conse-
quently, our solution converges to the optimal solution as the number of genes
and number of lists increase. Because our solution is an approximation to
the optimal solution, our solution will outperform Borda when the number of
genes and the number of lists are large.

3.4 Notations

In terms of notations, we use tilde ~ to denote quantities relating to the DE
gene population and asterisk (*) to denote quantities relating to the mixture
population. For example, we let 79 and T7 be the minus of the absolute values
of the t-test statistics on list j for a gene from the non-DE and DE classes,
respectively, and ¢’(t) and ¢’ (t) be the associated densities respectively. Fur-
thermore, we let F¥(t) and FY(t) be the CDFs associated with ¢/ (¢) and ¢/ (t),
respectively. For the mixture model, define F*/(t) := (1—d)F?(t)+dF?(t) and
¢*i(t) == (1 — d)¢(t) + d¢ (t) ¥V t < 0, and let T be the associated random
variable; i.e., 7%/ is the minus of the absolute value of the t-test statistic from
the mixture of two classes on list j, and F*/ is its associated CDF.

In addition, let R{ be the rank for gene ¢ on list j; similarly, let Tij be
the minus of the absolute values of the t-test statistics on list j for gene i.
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We assume that ranking is defined in a descending order; ! this way genes
with t-statistics further away from zero will be ranked ahead of genes that are
close to zero; such ranking order is consistent with the convention used in the
existing literature in the area [54]. Let (U7,...,UJ) be the ordered statistics
of the (T7, ..., T7). For example, if (T}, T}, T4) = (0.3, —1.5, —0.2) for genes
1,2 and 3 on list 1 then their ranks on list 1 would be (R}, R}, R}) = (2,1, 3)
and (U}, U;,U3) = (—1.5,-0.3,—0.2).

To make the notations simpler we assume that given the class labels (i.e.,
DE and non-DE gene classes) the 77’s are i.i.d. random variables from each
of the two distributions, one for the DE genes and one for the non-DE genes.

We follow the usual convention and denote the inverse CDF of F™*/ to be
(F*)~Y(p) = inf{t; F*(t) > p} and let F¥(t) be the empirical CDF (ECDF)
that associates with T7; i.e., F¥(t) = w,v t € R. Welet A, = AJ
denote the event that the gene ranked r (among n genes) in list j is DE and
define

P (r) = P(AL) = P(B; | R = 7).

Let #/(r) be the gene index for the gene that is ranked r on list j, so
jo(r) = r. In addition, let R;” = (3;_, R}) — R! be the aggregate ranking of
gene ¢ in all the lists except list j.

3.5 Proposed Classifier and Assumptions

We will say that gene 7 is provisionally classified as DE in list j if R, 7 is among
the dn smallest among all the genes. This is equivalent to being ranked in the
top dn genes by Borda applied to all the lists, except list j. Let h/(r) denote
the indicator that the gene with rank r on list j is provisionally classified as
DE according to the aggregated ranking of all other lists other than list 7,

h?(r) : = I(gene ranked 7 on list j is provisionally classified as DE)
_ [(#{i R <R} < dn)

Tnstead of ranking the minus of the absolute values of the t-test statistics in a descending
order, we can also rank the absolute values of the t-test statistics in an ascending order;
however, by defining 7™ be the minus of the absolute values of the t-test statistics, the
empirical CDF associates with T will be directly proportional to the ranks of T*. Such
definition of 7™ will make our notation cleaner in the later steps and this is why definite T
this way.
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We define ¢/ (), to be a smoothed version of h(r), as
Z r'e{lin} hj(r,)
C]j (7“) _ v’ —r|<y/n .
" #{re{l:n}:|r—rl </n}

By averaging over a range of r we can approximate the likelihood that a
gene will be provisionally classified as DE based on its rank in list 5. It will
become clear later in the chapter that ¢/ (r) is a form of density estimation
for pZ (r), the actual probability of being DE for a gene with rank 7 on list
J. Our definition of ¢/ (r) is somewhat arbitrary in terms of the window size
for the smoothing and is chosen for the sake of simplicity in terms of the
notations used in the proof. In practice we would suggest using a more sophis-
ticated smoothing procedure such as LOWESS (Locally Weighted Scatterplot
Smoothing).

Our classifier Cp computes

@ (1)
Zl g< qn(RJ))) (3.2)

for each gene i and classifies the top dn genes as DE and the remaining (1—d)n
genes as non-DE. This score gives a ranking based on how much we believe
a gene is DE. We will establish Theorem 3.2.1 for this estimator under the
following assumption on the density of the t-statistics.

Assumption 3.5.1. We assume that the negative absolute value of the t-
statistics from each class form a continuous distribution on (—oo,0) and that
the distribution for the DE class has a more negative mean than that for the
non-DE class.

We also assume that for all t < 0

1. Full support: ¢’(t) and @(t) are positive and continuous.

2. Contiguity: 0 < ¢y zg ; < ¢o for some cy,co > 0; and that lim,_, 0028

¢ for some finite positive constant c.
3. Stochastic Domination: That for all t <0, F(t) < F(t).

In practice Assumption 3.5.1.2 says that the distributions of the absolute
values of the t-statistics for the DE genes and the non-DE genes should have
a reasonable overlap. The case in which ¢ = 0 is trivial (i.e., in the case where
the DE genes have much bigger absolute values of t-statistics overall) and does
not impose much technical challenge; therefore the case ¢ = 0 is not of our
interest.
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3.6 Proof of Theorem 3.2.1

Proof Outline

Our proof is comprised of three parts.

Part I: We observe that if we were given p/ (r), then the probability that
a gene ranked r is DE could be obtained by plugging this quantity into (3.1)
and doing so will give us the ideal estimator for the probability. Section 3.6
then analyzes the behavior of our smoothed provisional classifier ¢/ (r). We
first note in proposition 3.6.1 that as n becomes large the function p*(r/n),
where

o do(F*~'(a))
P (a) do(F=1(a)) + (1 — d)p(F*(a))’

will give a value that is close to p’(r). This motivates us to compare the
asymptotic behavior of our smoothed provisional classifier to that of p/*(r/n).
Then, Propositions 3.6.3 and 3.6.5 together show that when n and J are large,
our smoothed provisional classifier ¢/ (r) is close to p*(r/n) with high proba-
bility.

Part II: In Section 3.6 we observe that if we were given the distributions of
the negative of the absolute values of the t-statistics then for a particular gene
the estimator (we will refer to this estimator as the simplified Bayes estimator)
constructed by using the t-statistics for the gene across lists will be almost as
good as the Bayes estimator constructed by using the t-statistics for all the
genes across the lists.

Part III: In Section 3.6 we study another estimator ¢/ (which is based
on ranks rather than the negative of the absolute values of the t-statistics)
and show that asymptotically (! behaves similarly to the simplified Bayes
estimator. Then, we calculate the normalized log loss for ¢/ and compare this
loss with the loss for the ranking produced by using our smoothed provisional
classifier. We then finally show that asymptotically (! and our classifier give
similar loss; thus, our estimator is asymptotically optimal.

The Behavior of the Smoothed Provisional Classifier

Proposition 3.6.1. The rank based estimator satisfies
max |p)(r) — p7*(r/m)| = 0

in probability, as n — oo.
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We will first give an intuitive interpretation of what Proposition 3.6.1 says.
We expect the gene ranked 7 to have t-statistic approximately at F*~1(r/n).
Given that a gene has an unconditional probability d of being DE, conditional
on the t-statistic of the gene’s expressions, ¢, Bayes rule implies that the prob-

. L. . _ do(t) .. .. .
ability that it is DE is TO-de® Combining these principles motivates

the definition of p’*(«). However, to establish uniform convergence there are
a number of challenges; first of all, F*~!(r/n) may not be concentrated for
small r; secondly, there is dependence between the ranks. We defer the proof
of the proposition to the appendix section.

The uniform convergence in proposition 3.6.1 is important as it ensures
that for large n, the error between p’ (r) and p’*(r/n) can be controlled simul-
taneously for all genes. In the later steps of the proof we will see that such
an error bound is necessary to show that our proposed ranking method is a
reliable and stable method asymptotically.

To analyze ¢/ () we will compare it with another quantity where provisionally
DE is replaced with actually DE. We define h;(r) = I(By () the indicator that
the gene ranked r on list j is in fact DE and define

E : re{l:n} hj(r>
o r—r'|</n
ar) ps

“#r ety r—r[ < Vi)

As we establish in the following lemma, this closely approximates p’*(r/n).

Lemma 3.6.2. For each list 7,
max |¢;,(r) — p”(r/n)| = 0
T
in probability as n — oo.

Proof. Without loss of generality we will treat the case for r < n/2, the case
of r > n/2 follows similarly.

Let N, = #{r' € {1 : n} : |r — 1| < y/n} be the size of the set we are
averaging over and note that /n < N, < 2y/n+ 1. Recall that A is the event
that the gene ranked r on list j is DE and U/ is the t-statistic for the gene
ranked 7 in list j. Let us write 77 as the smallest sigma-algebra generated by
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(U{,..,U,I%,, ... }. Then,
1T
@ (r) :F Z Iy,
" =1V (r—/n)
1 T . .
= > [La —PANFL) + P(AFL)]
" t=1v(r—/n)

For k < r + /n, define
Mk::{o’k | k< 1V (= Vi)
D t=1v(r— i) [1a, = P(A(|F]_;)], otherwise.
Note that
1. E(My) < 2|y/n] +1 < oo;
2. Since My € F] Vn, M, is adapted to the filtration F7;

3. E(My|F]_)) = B([My-1 + Lo, — P(Ax|Fr1)]|F)
= M1 + E(La, | Fi_y) — P(AR|F}_y) = Mj1.
Thus, M is a martingale with respect to ]—“,g. Moreover, note that | M — M|

is uniformly bounded by 1. Thus, for any ¢ > 0 by the Azuma-Hoeffding
inequality

A .
P||— Z (14, = P(AdF)]| > €
" e=1v(r—/n)
1

<P(|M, 4z — M— jm_1yvol > V/ne)

<2exp (—n—62> =o(1/n).
2(2y/n+1)
Taking a union bound we have shown that
1 r+y/n '
max = Y [La — P(AJFL) \ =0,

=1V (r—/n)
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in probability as n — oo. Thus it suffices to prove that

r4+v/n
1 : N
max - > P(AFL,) =P (r/n)| — 0 (33)
{=1V(r—y/n)

in probability as n — oo which follows as a consequence of equation (A.1).
This completes the proof of the lemma.
O

Let H,, be the ECDF of % for all indices v’s for genes from the non-DE

class on list 7 and similarly, let I:Tn be the ECDF of % for all indices v’s for
genes from the DE class.

Note that H,(z) = F,(F* '(x)). Thus, for a gene ranked r among all the
genes, H,(r/n) gives its normalized rank among the non-DE genes. By almost
surely uniform convergence of ECDF to the true CDF and by almost surely
uniform convergence of empirical quantile to the true quantile we have

H,(2) " H(z) == F(F*(2)) uniformly ¥ 0 <z < 1 as n — oo.
Similarly,
Hy(x) %% H(z) == F(F* Y (2)) uniformly ¥V 0 < z < 1 as n — .

Define H,(fj)(x) to be the ECDF for 1R,/ for v € {index for non-DE
genes}, the aggregated ranks obtained by summing up the normalized rankings
of each of the non-DE genes across all J lists, except list j. Let H(=7) be the
CDF of the sum of (J — 1) ii.d. random variables, each with CDF H(z).
Then, g converges almost surely pointwisely to H(~7). Similarly, f[,(fj),
the counterpart of Hi )(x) for DE genes, converges almost surely pointwisely
to H9, the CDF of the sum of (J — 1) random variables, each with CDF
H(z).

Define

H(@) = (1 - d)H ) (2) + dH ) (z), V0 < 2 < 1.
With this notation we can define the limiting behavior of ¢/. We define

In this equation H=7)((H*)~1(d)) represents the average fraction of non-
DE genes that are classified as DE (false positive rate) by our classifier, while
HD((HED*)71(d)) represents the fraction of DE genes correctly classified as
DE (true positive rate).
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Proposition 3.6.3. For each j,
max |¢;,(r) — ¢ (r/n)| = 0

in probability as n — oo.

For a fixed list j, let I' denote the total number of non-DE genes that are
provisionally classified as DE (i.e., total number of false positives) and let T’
denote the total number of DE genes ranked that are provisionally classified
as DE (i.e., total number of true positives). Then by almost surely uniform
convergence of ECDF to the true CDF and almost surely uniform convergence
of empirical quantiles to the distribution quantiles we have

‘n<—1r_ o = BT @) S HE(HT) @) (34
and ~
= B @) 55 A () o) (3.5)
as n — oQ.

Conditional on being DE (respectively non-DE), every gene is equally likely
to be classified DE given the ranking from list j. Hence if we condition on
¢ (r),T, T we have that the conditional distribution (¢ (r)|¢(r),T,T) is given
by N%(Wl + W3) where N, = #{r" € {1:n}: |r' —r| < /n} is the length of
the window of genes used to estimate ¢/ (r) and

Wy ~ hypergeometric((1 — d)n, T, N.(1 — cj,’l(r)))

and B '
Wy ~ hypergeometric(dn, I', N,¢/(r)).

The sum Wy + Ws is the total number of genes that we would provisionally
classify as DE among the sample of NV, genes. In particular, W; is the number
of false positive and W, is the number of true positive in the sample. We
can think of this as if we divide the population of genes into two classes:
n(1 — d) non-DE genes and nd DE genes, and we also divide our sample into
two sub-samples: we first take a sample of size N,.(1— ¢ (r)) from the (1 —d)n
non-DE genes among which ﬁ portion of them are misclassified as DE;
W1 is the number of genes being misclassified as DE in our sample. Then, we
take another sample of size N, ¢ (r) from the nd DE genes among which -
portion of them are correctly classified as DE; W, is the number of genes being
correctly classified as DE in this sample. We will control Wy, W5 through the
following claim.
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Claim 3.6.4. For all r,

p (|t L] > el @00 T) < 20 (-1
ST

2
W, T . N, €
_ < —
P (‘ N ndqn(r) > e) < 2exp ( 5

We will show this for W5, the case of Wi will follow similarly. Let S, be
the o-field generated by {A’_ VA Al @ (r),T, T} for k € {r—|v/n],...r+

[vn]} and let S, =, be the set {#(r),T,T}. For k € {r— |\/n],....r +
|v/n]}. Define X as

and

E(W, | @(r),D.T) = LN, @ (r), if k=7 — | Vn] - 1;
Xy = E(W,|Sy) = S B(Wa|Sk), if [r] — || <k <r+|yn|—1
Wy if k =7+ [/n].

By construction X}, is a martingale with respect to S with bounded increments
| Xx — Xk_1| < 1. Hence by the Azuma-Hoeffding inequality

1 r A
- o ~J
P < N, ( V2 ndqu"(T))

=P (| X, i) = X m] | > Mo | @), TT)
2

< 2exp (—N; > = o(1/n). (3.6)

> €| qg;m,r,f)

This completes the proof of the claim.



CHAPTER 3. THEORETICAL ANALYSIS 32

Now for the proof of the proposition, note that
P(max |g(r) — ¢ (r/n)]| > ¢
Wl (7") I i €
_ 11—’ ) > —
R e LRI B

r .
+P (max‘wjif(r) —q’ (r)‘ > 6)

T

<P (max

Cond™ 3

Wl ™

+P <m = (1~ 0D + g ) = /)| > )

<y w (]%” e R AO) az<r>,r,f)

e (- e >

T

@(r), T, f)

+P <m g L= )+ ) = /)| > ) -

Wl ™

By Claim 3.6.4 and a union bound the first two terms in the sum are o(1). For
the final term,

P (o | (= 00 + o) = 0 o) > )
< o(1) + P max [HS ) () (@)(1 - g(r)

+ HO(H)HD)R) - ¢ (r/m)] > ©)
— 0

as n — oo where the first term o(1) follows from equations (3.4) and (3.5),
and triangle inequality together with the result of a union bound.
The final limit follows by Lemma 3.6.2. Combining the above estimates we
have that
IP’(mraX @ (r) — ¢ (r/n)| > €) =0

which completes the proof.

Proposition 3.6.5. The function ¢*’(a) converge uniformly to p’™* as J —
o0, that is . '

lim sup [¢*/ () — p*(a)] = 0

J—=oo g
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By Proposition 3.6.3 and the definition of ¢*/ it suffices to prove that as
J — o0,

as n — oo. B

Let 1 and g be the means of the distributions H(x) and H(x) respectively,
the limiting distributions of the ranks of the non-DE and DE genes. By the
stochastic domination assumption in Assumption 3.5.1 we have that g < pu.

Define v as the average v := %‘7, so we have that g <~ < pu.

Since the distributions % and H(9) are for the sum of J—1 independent
copies of the normalized ranks, by the Central Limit Theorem we have that
HE) (y(J—=1)) = 0and H)(y(J—1)) = 1 as J — oo. This in term implies
that

HE (] = 1)) = (L= )H T (0] = 1) + dH (] = 1)) = d

as J — oo. Now let u; be the quantity such that H(_j)*(uJ) = d. Then,

A (uy) = DT = 1) + [H () = H (- 1)

Since HED(y(J—1)) — 1, we will establish (3.7) by showing that |H 9 (u;)—
HED(y(J —1))| — 0 as J — oo. We have that

|H D (uy) — H (y(J — 1))
= LAl uy) — dA (7~ 1)
< cll dHD (uy) + (1 — d)YH9 (uy)
—dHD(y(J = 1)) — (1 = d)HED (4(J = 1))

1 ’ , 1 ,
— [HO" (ug) = HOP (0] = )| = 5l = O (5] = 1)] = 0

as J — oo, where the inequality follows from the fact that (dH9(uy) —
dHD(y(J —1))) and (1 —d)H ") (uy) — (1 —d)HED (y(J —1))) always have
the same sign. Hence H9((H-D*)=1(d)) — 1 establishing equation (3.7).
Equation (3.8) follows similarly. This completes the proof of the lemma.
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Optimal Unrestricted Inference

In order to establish the asymptotic optimality of our rank based estimator
we will consider the performance of a Bayesian estimator in the case where
the parameters of the model are known (i.e., the distribution of F'(t), F'(t) are
given) and where all the t-statistics of all the lists are given. Let G; denote the
o-algebra generated by {Tj }i=1.., the t-statistics for gene ¢ and let G denote
the o-algebra generated by all the t-statistics {G;}i=1.. . By Bayes rule the
conditional probability that gene i is DE given G; is

A1 o(T7)
AIT o(T7) + (1= I, o(T))
In the following lemma we show that the conditional probability above is

asymptotically almost identical to that when we condition on the full set of
t-statistics.

.....

& =P[B; | G] = (3.9)

Lemma 3.6.6. For each 1,
E[P[B; | G] = P[Bi | G| — 0 (3.10)
as n — oo.

We defer the proof of Lemma 3.6.6 to the appendix. Let A be the set of
genes ¢ with the dn largest values of P[B; | G]. The optimal selection of dn
genes is then A and the probability that a gene is misclassified is

ﬁBayes,n,J := PP[gene misclassified] = ( ZIP’ (B | G] + Z P[B; | G] )
€A zE.A“

This is the smallest misclassification rate of any estimator.

It is, however, simpler to rank genes according to & and with this in mind
we let A" be the set of genes with the dn largest values of &. This simplified
Bayes estimator has classification error

Lons=E( SPIBI 1G]+ S PIB|G]).

ic A’ i€ Ale
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By optimality of the full Bayesian classifier we of course have that ﬁBayes g <
Lep, . In the other direction

ﬁBayeS,n,J ( ZP [Bi [ G]+ Z PB; | g)

€A zGAC
0(1)+E(%Z (1-&)+ Z&)
€A ZGAC
0(1)+E(%Z (1—&) + Z@)
ice A ZGA’C
=o(1) + E(% Z]P’[Bf | Gi] + % Z P[B; | gz])
e A ieAe
= 0(1) + ,C&n,(] (3'11)

where the first inequalities follow by Lemma 3.6.6 and the second inequality
follows by the definition of A’ as the set of dn genes with the largest values of
&. Thus

|£Bayes,n,J — Len,g| = o(1), (3.12)

so, as n — 0o, the simplified Bayesian classification is essentially as good.
Now conditional on the {B;} the &; are conditionally independent and so the
ECDF of the & converges almost surely to Z(z) the CDF of &;. Then

=~1(1—d) 1
lim L, ; = / xd=(z) + / (1 —x)d=(x).
" 0 E-1(1-d)
Then by equation (3.12) we have that
lim ,Cg,n’(] = lim EBayes nd

which we denote 'CBayes g In the next section we show that our estimator
asymptotically achieves this level.

Asymptotic Error analysis

Let

-1 (RS
( d ) H;] 1 1qq(]?R)J)

J
L+ (5T I s

G =
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and e (R
-1 J p?*(R] /n)
¢ = ( d ) HJ 1 1—pi*(R! /n)
’ d (Rl /n)
L+ (T) ITj- T—p= (Rl /m)
Since ) = ) is an increasing function of z, the ordering of the (; is the

l-i-(Td)J 1

. : J_ah(R)
same as the ordering according to [ | =1 gl (7}
alent to choosing the dn genes with the largest values of (;. Our construction
of ¢/ was designed to approximate p’* as demonstrated in Proposition 3.6.5
together with Proposition 3.6.3 so we begin by considering ¢/ and comparing

and thus our classifier is equiv-

Lemma 3.6.7. For each list j,

o do(T?
max |p’* (R} /n) — —— o) —| — 0 (3.13)
i do(T}) + (1 — d)o(T7)
wn probability as n — oo and hence
max —&| — (3.14)

in probability as n — oo.

Proof. By the Glivenko-Cantelli Theorem
max |F*(T?) — Rl /n| — 0
in probability as n — oo and since
do(1})
do(T7) + (1= d)o(T7)

and p’*(a) is uniformly continuous on [0, 1] we have equation (3.13). Now
plugging the approximation of equation (3.13) into the formula for ¢’ and
using the fact that we have that p’*(«) is bounded away from 0 and 1 we have
that

PENTY)) =

—1 —J da(Tj)
/ ( d ) HJ 1(1 d) (
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in probability as n — oco. Rearranging the second term, we have that

1-d\J-1 1/ do(T?) J i
)" 1= (-dg(1{) d]T;-, o(T7) — ¢
9 Z

d T
1—d\/=1 177 de(T?) T i ~ 7 N
L+ (579" him aeas d1i— o(T7) + (1 = &) [T, o(T7)

k3

which competes the proof of equation (3.14). O

Let C¢r denote the classifier which takes the dn genes with the highest value
of ¢ and let L, ; denote its misclassification rate. Then since

max | ¢ — ]P’[BAQ]‘ 0
by (3.10) and (3.14) we can apply the same argument as equation (3.11) to
get that

h}ln LCI,”:J = £Bayes7J'

We are now ready to establish our main result, Theorem 3.2.1 giving the
asymptotic error rate for our estimator. Let R and R be random variables
with CDFs, H(x) and H(x) respectively. These are the limiting distributions
as n — oo of % and %, the normalized ranks of non-DE and DE genes

respectively. For independent copies &/ and R’ we define

i p(IY) 5. P (RY)
Z7 = log <T*(R])> ) Z7 = log (T*(JSJ))

as asymptotic limits of the building blocks of our estimator. We will use large

deviation theory, a summary of which is given in Section A.2 of the appendix,

to analyze > ; Z7 and Y i 77 and then compare this with our estimator. As

n — oo, conditional on gene i being non-DE (! converges in distribution to
(51) " exn(, 2)
1+(159) " exp(3; 29)
()" ew(s, 2)

1+(54) " exp(3; Z9)

As we have assumed that the lists are independent and identically dis-
tributed the random variables Z7 and Z7 are also i.i.d. By the assumption on
the densities that 0 < C; < ¢(t)/¢(t) < Cy it follows that p*/(«) is bounded
away from 0 and 1. Thus 79 and Z’ are bounded random variables with finite
mean. The density of R’ is given by d~'p*(r) and since log(p/(1 — p)) is a

. Similarly conditional on gene i being DE (] converges in

distribution to
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strictly increasing function of p we have that

Similarly, since the density of R’ is (1 —d)~!(1 — p*(r)) we have that

EZ? < /01 log (%) dr

and so EZ/ < EZJ. Since Z? and Z7 are bounded, their moment generating
functions exist and we can apply Cramer’s Theorem [15] and the theory of
large deviations. For any EZ < z < EZ, there are smooth functions 7(z) and

7(z) such that

1 1 .

5 log (]P)(j Zj:ZJ > z)) — n(2)
and

J

%log <IP’(% S 7 < z)) L2,

Both 7 and 7 are smooth functions and n(EZ) = j(EZ) = 0, and since
n is strictly decreasing and 7 is strictly increasing on the interval (EZ, EZ ),
there exists EZ < z < EZ such that 7(zo) = 7j(z). We use this threshold to
analyze L, 5. Let Ay denote the genes with the dn highest values of (] so

1 1
,C / - —E c - .
¢, J 0 E 1BZ+nEE 131
1€EAy lEAg

Since the number of non-DE genes classified DE must equal the number of DE
genes classified non-DE we in fact have,

Lopy = %E > g = %IE > 1,

€Ay i€ Ag
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For some fixed y let M, = {i : (! > y}. Then since Ay is defined as the genes
with the largest dn values of (] either M, C Ay or M, C Ag. Then either

S Y iy

€A, €My,
or
E 1, < g 1,
i€Ag ieMg

and so for any v,

L, < %E Z lpe + %E Z 1p,

i€M, iE€Mg
— 9P(B,, ¢ < y) + 2P(B, ¢ > )
—2dP(/ <y|B)+201-dB(G >y| B).  (3.1)

Taking the threshold

(3.16)

we have that

i Lo < Im2dP(G < go | B) +2(1 = PG > y | BY)

= 2dP(= ZZJ<ZO)+21— ZZJ>ZO

j 1

< exp (Jn(z0) + o(J)) .

For the other direction we have that for any y, either

PR =D PR

€A, 1€EMy

d i > > 1,

icAg ieMg

or
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It follows that

1
lim Loy > i —]E'{ g, S 1p

i€ My, ieMg,
= min {P(l zJ: 77 < %), (1 — d)IE”(l zJ: 77> %)}
J =R JT =
= exp (Jn(z0) + 0o(J)) . (3.17)
Hence with p = 1(zp) we have that

o1
h§n 7 log ﬁBayes,J = p.

Proof of the Main Result

Proof of Theorem 3.2.1.

We are now ready to establish the asymptotic loss rate Lpg of our classi-
fier Cpg and establish the main theorem. Now fix € > 0. Recalling Proposi-
tions 3.6.1 and 3.6.3 we have that

max [p},(r/n) = p”(r/n)| = 0, max|q,(r/n) — ¢ (r/n)]
in probability as n — oo. By Proposition 3.6.5 we have that

sup |p* (z) — ¢’ (x)] = 0

as J — o0o. Altogether, by the triangle inequality, this implies that for any
d > 0 for there exists J(d) such that for all J > J(0) we have that

li7ILnIP’ [mﬁlx|qfl(r/n) —p*(r/n)| > 5} — 0.

We can choose J'(9) large enough such if D is the event

lim P[D] = 1. (3.18)

then for all J > J'(0),

We may pick § > 0 small enough such that

n(z—9) <n(z)+e  1(z+3) <nlz)+e
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As Cpp involves ranking the genes according to ¢; and selecting the dn largest,
by the same argument as (3.15) we have that

LpR,,. s < 2dP(G < wo | Bi) +2(1 = d)P(¢; > yo | B). (3.19)
where yq is defined as in (3.16). Now
limsupP(¢; < yo | By)

_ hmsupP< Zlog (1 K qn(;])) > 2| Bi>

7j=1

. 1 P (RY) c
< hmnsupIP)<j Zlog (W) > 2940 | BZ-) + P[Df]

M“

<hmsupIP’< >z0+(5>

= exp (n(zo + 5)J + 0(J)>. (3.20)

where the first equality is by manipulating (; and g, the first inequality is
by the definition of D, the second is by equation (3.18) and the fact that

conditional on B; that % Zj | log < () )> is distributed as < Z ! 79, The

]*(RJ

final equality follows from the fact that 7 is the large deviation rate function
Z7. We similarly have that

limsupP(¢; > yo | Bf) < exp (77(,20 —0)J + 0(J)>. (3.21)
Substituting equations (3.20) and (3.21) into (3.19) we have that

limsup LpR ,, ; = exp (ﬁ(zo +6)J + 0(J)> + exp (n(zo —0)J + 0(J)>,
and hence we have that
}1_{1;0 lim sup log(,CPR ) < n(zo) +e

As this holds for all € > 0 we have that

1
lim lim sup log(LpR,, ;) < n(z0) = p,

J—o0

the same as the optimal Bayesian rate which completes the proof.



CHAPTER 3. THEORETICAL ANALYSIS 42

Sub-optimality of alternative methods
The Borda method aggregates ranks, scoring genes according to

J
>
: n '
7j=1
and selecting the dn genes with the highest scores. Similarly, the approach
of [37] scores genes according to the sum of the truncated ranks,

J 1
— min{-R!, 7}.
>~ min{- Rl 7)

J=1

Both of these classifiers are examples of a more general approach of what we
will call a generalized rank based (GRB) classifier. Such a classifier will take a
bounded continuous function g : [0,1] — R, rank genes according to the score

J

> o(R))

=1

and select the dn genes with the highest scores. When the lists are identically
distributed and p(r) = p*/(r) then the classifier C¢ is an element of this class
with "
p(r
g« (1) = log( = () ). (3.22)
In the following theorem we will show that, up to linear transforms, the only
asymptotically optimal GRB classifier is C..

Theorem 3.6.8. Let L, ,, ; be the misclassification rate of a generalized rank
based classifier with function g(r). If g(r) is not of the form

g(r) = ag.(r) +b

for some a,b € R then

1
lim i -1 n . 2
Jim Tim sup — 0g(Lygny) > p (3.23)

In particular, since the classifiers of Borda and truncated Borda are not
chosen according to the Bayesian log-odds ratio, the classifier Lpg , ; has an
asymptotically lower misclassification rate.
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Proof. As in Section 3.6 let R and R be random variables with CDFs, H (x)
and H (x) respectively and let R’ and R denote independent copies of these
distributions. Any reasonable function g must have that Eg(R) > Eg(R).
Indeed suppose that Eg(ﬁ) < Eg(R) then by the law of large number,

J J
1
jZ g(R)) — Eg(R), Z (R7) = Eg(R)

K‘ I

almost surely as J — oo and so

hm hmsupﬁgnj — 1,

—00

that is the misclassification rate tends to 1 as the number of lists tends to
infinity and equation (3.23) holds trivially as p < 0. If Eg(R) = Eg(R) then
set 02 = Var(g(R)), o2 = Var(g(R)). Then by the Central Limit Theorem

(9(R’) —Eg(R)) — N(0,0” Z (R)) = N(0,5%)

-
B

j=1

in distribution as J — oo. Choose some z large enough such that
(1—-d)P(N(0,1) > z/o) +dP(N(0,1) > z/0) = a < d.

Then the fraction of genes with score greater than JEg(R) + 2/ J converges
to a.. So if n and J are large enough, we will have that all genes with score
at least JEg(R) 4 zv/J are selected by the classifier. The number of non-DE
genes with score above JEg(R) + 2v/J is asymptotically dnP(N(0,1) > 2/7)
and so a constant fraction of genes are misclassified and so

limsuplimsup £y, ;7 > 0
J—o0 n

and hence

1
lim lim sup i log(Lyny) =0> p.

J—o00 n

Thus it is sufficient to consider the case Eg(R) > Eg(R). We will analyze this
using the theory of large deviations described in Appendix A.2. By Cramer’s
Theorem there exists 7(z) = 7,(z) such that for > Eg(R),

J
1
T(x) = lim log]P’ Zg
j=1
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where

(z) = inf log(E(exp(0g(R)))) — 0.

>

Let 0, = 0, 4 be the unique 6 achieving the infimum such that
7(x) = log(E(exp(f.9(R)))) — xb,.

Equivalently, if p is the measure of R on [0, 1] and j4 is the tilted measure
defined by the Radon-Nikodym derivative

d#gﬂ(r) . ef9(")

du(r)  E(exp(fg(R)))

then we have that
7(x) = —H(pg0. 1),

the relative entropy of 149, with respect to . Moreover,

1
/gﬁﬂ%mzx
0

and
T(z) = —H(uge,|p) = —  inf  H(|p) (3.24)

' fy g(r)dp >a
where 149, is the unique measure to achieve the infimum. Similarly there
exists 7(z) such that for © < Eg(R),

T(x) = li(gn log P( = Z

J

>4
= inf log(E(exp(—0g(R)))) + Oz.

0>0

<

RY) < )
R

Let zy € (Eg(R),Eg(R)) be chosen such that
7'(33'0) = ?(iCo)

Similarly to the analysis yielding equation (3.17) we have that

L. 1 - ~
lim limsup —1log(Lyn.s) = 7(20) = —H(ugo. 1) = —H (i, _g, |i)-

J—o0 n

Comparing to Section 3.6 have that n(x) = 7, (x) and the optimal asymptotic
misclassification rate is

p= Tg*(Zo) = —H(,Ug*’g*’lu),
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where 6, := 0, ,,. Similarly we can write n(z) = 7, (v) and

p=Tg(20) = —H(n,, g |1t)-
We claim that in fact

/"Lg*ae* = /"Lg*7§*' (325)
Since by Proposition 3.6.1 the probability that the gene ranked r is DE with
probability asymptotically p(r/n) we have that

du 1 dp 1
e p _ = =
Furthermore as

we have that
Pt~ (1= p) s P~ ()1 plr))

where Z, Z are normalizing constants. Since

([%“W%MWZAENM%WﬂAZ%

and fo Gx(7)dpig, o(r) is strictly increasing in 6 it follows that equation (3.25)
holds and the measures are equal.
Now suppose that (3.22) does not hold. Let

1
x* - / g(r>dru’g*,9*
0

be the expected value of g(r) under the measure ji4, g,. We will assume without
loss of generality that x, > xq, the case of x, < xy will follow similarly. Now
note that gy, # pg, 0, since g and g, are not linear combinations of each
other so the reweighed measures must be different. By equation (3.24) since

fO dlug* 9* ) > 2o,
T(w0) = —H (p1g,0,, 1) > —H (p1g.0.|10) = p
as [igp,, is the unique minimizer of inf , I () (1) <a H(y'|p). Hence we have

that ]
hm lim sup — 5 log(Lgn,1) = 7(z0) > p,

J—oo n

which completes the proof. O
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Chapter 4

Simulation Study

4.1 Metrics for Performance Evaluation

ROC Curve

The receiver-operating-characteristic (ROC) curve is one of the most popular
graphical devices for assessing the overall performance of a classifier. For a
binary classification system an ROC curve gives a graphical representation
of the relationship between the sensitivity and the specificity of a classifier.
Sensitivity and Specificity are defined as the following [19]:

#True Positive
# Positive

Sensitivity =

and ,
#True Negative

# Negative

An ROC curve plots sensitivity against 1-specificity for a classifier when
different threshold values are used for the classification (see the example in
Section 4.4).

For two randomly chosen elements, one from the positive class and the other
from the negative class, the area under the ROC (AUC) gives an estimate of the
probability that the classifier thinks the positive item is more likely to belong
to the positive class than the negative element [24]. Thus, when comparing
multiple classifiers one often prefers the classifier with the largest AUC.

We will explain more in details about interpreting results with an ROC
curve in the simulation result section.

Specificity =
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PR Curve

The precision-recall (PR) curve is another graphical device that is commonly
used to assess the overall performance of a classifier. Precision is defined as:

#True Positive
#Significants

and Recall is equivalent to sensitivity:

Precision =

Recall = Sensitivity.

Note that precision is (1 — FDR) for the FDR that we discussed in Section
2.1. As mentioned in Section 2.1 controlling FDR has its practical appeal
since biologists are often willing to tolerate some amount of error. In addition,
when the positive class has a much smaller proportion than the negative class
in the dataset, the PR curve also gives a better presentation than the ROC
curve, especially when one is more concerned with identifying the positive than
the negative class correctly. Again, we will discuss this in more details in in
Section 4.4.

One important point to note is that a classifier with performance that
dominates over other classifiers on an ROC curve will also dominates over
other classifiers on the PR curve, and vice versa [11]. Thus, when one classifier
does consistently better than other classifiers for all threshold values on one
of these

4.2 Implementation of the PR-Ranker
Algorithm

Let n be the total number of genes, J be the number of lists, and d be the
number of DE genes among the n genes. Let fr’f be the rank for gene ¢ on list
7, and let h{ denoted the indicator that the gene ¢ on list j is provisionally
classified as DE according to the aggregated ranking of all the lists but list j.
Also, let A7 be the event that the gene ranked r on list j is DE. Finally, let w
be the arm length of the window for the smoothing step (see Section 4.4 about
how to select a window size).
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PR-Ranker Algorithm

Step 1 Calculate h{ :

Step l.a For j = 1,2,...,.J, aggregate the ranks from all the lists,
except from list 7, by summing up the ranks for each gene
across the lists;

Step 1.b For each list j, rank the genes according to the aggregated
ranks obtained in Step 1.a so that the gene with the smallest
aggregated rank being the first; ties are resolved randomly;

Step 1.c For each gene i, i = 1,2,...,n, on list j, assign 1 to h{ if
the gene is ranked among the top d genes in the rank list
obtained in Step 1.b.

Step 2 Estimate P(AJ) with smoothing

Step 2.a For gene 7 on list j, estimate P(A?) by averaging h{ for all
the genes whose original rank on list j is no more than w
away from the original rank of gene i on list j.

Step 2.b  Adjust @(Aﬁ) If @(Aﬁ) < 0.01, replace @(Aﬁ) with 0.01;
If P(AJ) > 0.99, replace it with 0.99; otherwise, keep the
original P(A?) value.

Step 3 Estimate the sum of the log ratios: For each i, calculate
PAl
E{zllog(#@:ﬁ)).
Step 4 Final ranking: Rank genes according to the estimated sum obtained
in Step 3 so that the gene with the largest estimated sum is ranked the
first.

4.3 Simulation Data

Most part of our simulation analysis is based on the following setup with some
variations.

We assume that there are J independent rank lists, each with n genes.
The values that we will consider for n are 2000, 4000, 6000, 8000, and 10000,
and for J are 4,6,8, and 10. Unless noted otherwise, we set the number
of iteration to be 500 for each case that we study. On each list the gene
expressions are i.i.d. observations drawn from two classes, one for the DE and
one for the non-DE genes. There are 4 replicates for the control group and 4
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for the treatment group. The percentage of DE genes for each list is d = 0.05
and d remains constant across the lists. Unless stated otherwise, the same
set of genes remain being DE throughout all the lists. For non-DE genes we
simulate their expressions under both control and treatment conditions from
the standard Normal distribution N(0,1). For DE genes we simulate their
expressions under the control condition from the standard Normal distribution
N(0,1); however, under the treatment condition the expressions of the DE
genes are simulated from N (f;;,7;) for gene i on list j where i is taken from
the set of the indices for DE genes; here the mean fi;; is drawn from the
uni form distribution over [—3, —.5] U [.5,3], and the variance 7; is drawn
from 1i=|fi;linverseGamma(2.4,1.4), where inverseGamma(2.4,1.4) is the
inverse-gamma distribution with shape parameter 2.4 and scale parameter 1.4;
note that this inverse-gamma distribution has mean % =1.

The setup described above was inspired by the simulation setup in [9], ex-
cept that in [9] there is an additional step to generate the mean expressions
for the non-DE genes for the control and treatment groups; however, these
means will cancel each other out in the calculation of the differential expres-
sion between the treatment and the control groups since both groups have the
same mean for the non-DE genes. This is why we skip the step of generat-
ing expression means for the non-DE genes here. In addition, we added the
factor 1=|f1;;| for the distribution of the variance 67, to mimic the biological
relationship between the mean difference and the variance of the differential
expressions; such pattern is often observed in gene expression data (see Figure
5.2 in Section 5.3 for an example). The purpose of having %75 is to rescale
the mean of &?j back to 1 so that our setup would be more consistent with the
setup used in [9)].

We will refer to the setup described above as the base-case in the rest of
the sections in this chapter since other cases that we will considered in the

following sections are variations of the base-case.

4.4 Results

Performance in the Base-case

Figures 4.1 (ROC curves) and 4.2 (PR curves) show the performance of the
three classifiers, Borda (solid black), SF (dashed black) and PR-Ranker (solid
green), for the base-case. We vary the number of genes

(n = 2000, 4000, 6000, 8000, 10000) for different list numbers (J = 4, 6, 8,
10). On both panels of plots we see that our classifier dominates over the
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other two classifiers. When the number of lists is small SF performs better
than Borda even though both of them perform worse than our classifier. As
the number of lists increases the performance of SF and Borda converges;
however, both methods fall short compared to our method. In the cases where
there are 10 lists, all three classifiers perform well and their performance is
almost indistinguishable; however, compared to the other two classifiers, our
classifier maintains a lower FDR when the sensitivity is close to 1 (see the right
column of the PR curve plots in Figure 4.2), and a higher sensitivity when the
specificity is close to 1 (see the right column of the ROC curve plots in Figure
4.1).

To interpret the information shown on the ROC and PR curves, we use
the upper-left plot (n = 2000, J = 4) on each penal for illustration.

To produce the ROC curve we evaluated the performance of the classifiers
for each of the thresholds 1,2, 3, ...,2000; e.g., when the threshold was 1, each
classifier would identify the top ranked gene chosen by the classifier as DE and
the rest of the genes as non-DE; then similarly, when the threshold was 2, each
classifier would identify the top two genes as DE and so on. For a point on
the ROC curve the x- and the y-coordinates correspond to the fraction of false
positives (FP) among all the negatives and the fraction of true positives (TP)
among all the positives, respectively, for a particular threshold value. Since
the total numbers of positives and negatives remain constant for all threshold
values and since FW FER can be approximated with ##gffes N Tmflgepgatives
when the fraction of the positives in the population is very small, an ROC curve
can be used to estimate the percentage of TP being captured by a classifier for
a certain amount of FWER being tolerated. For instance, on the upper-left
plot of Figure 4.1 we see that, on average, in order for our method to identify
about 90% of the DE genes we would misclassify about 5% of the non-DE genes
as DE. This 5% might not seem much at the first glance. However, note that
there are 2000 x .05 = 100 DE genes and 2000 — 100 = 1900 non-DE genes in
the sample. Thus, this means that in order to discover 90 DE genes we will also
misclassify about 1900 x .05 = 95 non-DE genes as DE. This means that if we
would like to provide the biologist a list of genes that would cover about 90% of
the DE genes, the list would contain about 50% non-DE genes. As we can see in
this example, an ROC curve does not take into account the imbalance in sizes
of the two classes and could depict a misleading optimistic picture. Because
of this, one often prefers using the PR curve to evaluate the performance of a
classifier. As mentioned in Section 4.1, Precision = (1— FDR). Thus, if one is
more concerned with the FDR associated with the classifier, a PR curve will
give a better graphical representation for the analysis.
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We now look at the PR curves on the upper-left panel of Figure 4.2. For a
point on the PR curve the x- and the y-coordinates correspond to the fraction
of TP among all the positives and the fraction of TP among all the significants,
respectively, for a particular threshold value. On the upper-left panel of Figure
4.2 we see that for our proposed classifier, PR-Ranker, when the x-value of
the PR curve is about 60% the y-value is at least 90%; however, the y-value
decreases quickly for bigger x-values and particularly for x bigger than 80%.
This means that if one were happy to discover about only 60% of the DE genes
our classifier would do pretty well in this case and would make no more than
10% errors (i.e., we can keep the FDR less than 10%) among the genes that
we identified; however, the price of identifying the remaining 40% of the DE
genes becomes higher and higher, in terms of FDR.
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In summary, our classifier, PR-Ranker, outperforms Borda and SF in the 20
cases that we considered. As the number of lists increases the performance of
all three classifiers improves. In the case when there are 10 lists, our classifier
wins only by a small margin.

Lastly, even though the ROC curve is a popular choice in applications, as
we can see this example, there is a practical appeal of the PR curve. Because
of this we will use the PR curve, instead of the ROC curve, for the remaining
of the simulation analysis, even though the ROC curve measures something
that are more directly close to what our method is trying to optimize (i.e., the
total number of false negatives and positives; see the theoretical development
of our classifier in Chapter 3).

Asymptotic Loss

In this section we will use simulations to give a demonstration of the main
theorem that we proved in Chapter 3. Recall that Theorem 3.2.1 says that
our classifier has an asymptotic loss that satisfies the following relationship:

1
lim lim leg(ﬁRank,n,J) =p.

J—00 n—0o0

An immediate result is that for large n and J

log(LpR,,, ;) = Jp;

i.e., the log-loss of our classifier can be approximated by a linear function
of the number of lists with slope p when n and J are large. In Section 3.6
we showed that any other GRB classifier (except the ones that are equivalent
to ours with some positive scale change; i.e., the ones that produce the same
ranking results as ours) will have a p value bigger than ours.

In this section we will study the asymptotic behaviors of the three classifiers
and verify the result of Theorem 3.2.1. To do so we select an unrealistically
large value for n, the number of genes, and let n = 40, 000; then, we calculate
the log average misclassification rate for each classifier for the cases when
there are J = 3,4,...,30 lists. The misclassification rate is defined by the
total percentage of the false positives and negatives when the classifier calls
the top d ranked genes significant, where d is the true number of DE genes.

We will show that asymptotically

e the logarithmic loss of our classifier is always smaller compared to that
of Borda (which is a GRB classifier);



CHAPTER 4. SIMULATION STUDY 25

e both Borda and our classifier have log-loss values that are a linear func-
tion of the number of the lists J.

Although the SF classifier does not fall directly into the category of GRB
classifiers (since the statistic that SF uses to rank is not a linear function of
some functions of the ranks; see the definition of GRB classifier in Section 3.6)
, we will include the log estimated loss for SF here as well for the comparison.

Figure 4.3 plots the log average misclassification rate v.s. the number of
lists for each of the classifiers. We superimpose a least-square regression line
on the points to emphasize the linear trend of the points for each classifier.
Note that the slope of each line is the estimated value for p for the associate
classifier. As shown on Figure 4.3 our classifier has a slope clearly smaller than
that for the other two classifiers. This is consistent with the result stated in
Theorem 3.2.1.
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Figure 4.3: Solid green: PR-Ranker, dashed steel blue: SF, solid black: Borda
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Robustness in Presence of Corrupted Lists

In this section we study the robustness of the classifiers in the presence of
corrupted lists. For each iteration of the simulation we modify the setup in
the base-case and include a fraction, b, of corrupted lists where b = 0,0.25,0.5.

In Figure 4.4 the first row of the plots shows the performance of the clas-
sifiers when are no corrupted lists, the second row shows the case when % of
the lists are corrupted, and the third row is for the case when half of the lists
are corrupted. We fix n, the number of genes, to be 5000 for this part of
the simulation; then, we generate the corrupted rank lists from the discreet
uniform distribution unif{1,2,...;n}.

As we can see on Figure 4.4 that all three classifiers perform worse when
part of the data is corrupted than when there is no corruption; in addition, the
performance of the classifiers decreases as the fraction of the corrupted lists
increases. However, our classifier still performs respectably better than the
other two classifiers, especially with a sufficient number of lists. For example,
when there are 16 lists, even with half of them being corrupted our classifier
is still able to identify over 80% of the DE genes with high precision.
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To understand why our classifier performs almost as badly as the other two
classifiers when there are only 4 lists with half of them being corrupted, let’s
recall the steps in our algorithm in Section 4.2. The ability of our classifier
depends on how well we can estimate (A7) , the probability that the gene
ranked 7 on list j is DE. In addition, the quality of this estimate depends on
two factors: the quality of h{ in Step 1 and the smoothing procedure in Step
2 of the algorithm.

For a good list, say, list j, h{ is calculated based on the ranks in the good
lists plus the random noise contributed from the corrupted lists. Because the
groupings for the smoothing are of reasonable quality for list 7 (since list j has
reasonable original rankings), I/F\’(Aﬁ) is a estimator for P(A7) with large noise
coming from the corrupted lists.

On the other hand, for a corrupted list, say, list j’, because the members in
a group for the smoothing are collected randomly due to the random nature of
the ranks in a corrupted list, all genes are expected to have similar values for
P(AJ). As a result when we calculate the sum of the log ratio in Step 3 of the
algorithm, the corrupted lists do not play their parts much in discriminating
the genes since all genes will have similar estimated P(A7) values.

Therefore, when the number of good lists is small, with a high proportion
of corrupted lists the estimate of the sum of the log ratio becomes highly
variable; an example of this be seen on the lower-left plot (the one for 4 lists
with 50% corrupted ones) of Figure 4.4.

To further demonstrate the aforementioned concept we look at an extreme
case when there are 75% corrupted lists. From Figure 4.5 we see that our
classifier does terribly when there is only one good list among four lists; indeed,
our classifier behaves as a classifier that just randomly uniformly selects a gene
to classify as DE. To understand this behavior note that there is only one good
list in this case, and for this good list P(AJ) was calculated based on three
corrupted lists that are generated from the uniform distribution. Therefore,
roughly speaking in this case our classifier gathers information from 4 random
lists and this explains the poor performance of our classifier.
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PR curves for comparisons when 75% of the lists
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are corrupted
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Note that even in the extreme case when there are 75% corrupted lists,
the performance of our method gradually increases as the number of lists
increases. In fact, our classifier does considerably better than the other two
classifier when there are 16 lists in total and with only 4 good lists. This is

because in this case our method weighs

the information from the good lists

more (since the corrupted lists do not play their parts much in discriminating
the genes). In Figure 4.6 we show that our classifier’s performance continues
improving at a higher rate than the other two classifiers as the number of lists

grows.
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PR curves when 75% of the lists are corrupted
Total #lists = 20, 24.
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Figure 4.6: , dashed steel blue: SF, solid black: Borda

In summary, we show in this section that compared to Borda and SF our
classifier is much more robust in the presence of corrupted lists. In addition,
the performance of our classifier grows at a noticeably faster rate than the
other two methods as the number of lists grows. A strong strength of our
classifier is that it down-weighs the information from corrupted lists.

Effect of Variation of the Signal Strength

In this section we study the behavior of our classifier in the case when the
strength of the signal varies among the lists. We will consider two scenarios.
In the first case, we dampen the signal by changing the distribution for fi;;
from wniform{[—3,—.5] U [.5,3]} to uniform{3[—3,—.5] U 3[.5,3]}. In the
second case, we vary the strength of signal across the lists and draw fi;; from
uniform{%[—3,—.5] U <[5,3]} for j = 1,2,...,J. Note that on average the
Joog _JUHD) g+l ]

j=1J — ~2J2 — 29 2

two cases have similar strength of signal (since %Z
for J that is not too small).
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In Figure 4.7 when the signal strength is fixed we see that our classifier
performs worse than the other two when the number of genes n and the number
of lists J are small. With 8 lists or more our classifier performs similarly as
the other two.
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PR curves for the case when the strength of the signal is halved
with fixed strength of singal for all lists
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Figure 4.7: Solid green: PR-Ranker, dashed steel blue: SF, solid black: Borda

On the other hand, when the signal strength varies Figure 4.8 shows that
our classifier improves significantly over the other two classifiers as the number
of lists grows. The reasoning behind this phenomenon is similar to what was
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explained in the previous section (Section 4.4); because our method down-
weighs information from lists of low quality, our classifier performs more su-
periorly when the strength of the signal varies among the lists.
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Robustness when d is unknown

In the development of our classifier (Chapter 3) we assumed that the value of d,
the true number of DE genes, is known. We also use this piece of information
in our algorithm to provisionally classify genes to be DE. In this section we will
investigate the behavior of our classifier when one uses an estimated value for d.
We consider the cases when the estimate of d is ad, where o = 0.5,1, 2, 3,4, 5.

In Figure 4.9 we see that with different factor of d our classifier performs
quite similarly. In addition, with 10 lists the performance of the classifier is
almost indistinguishable with different choices of a.

More importantly in Figure 4.10 where we zoom in on the plots we see that
the quality of our classifier decreases slightly as the estimate on d deviates from
the true value of d. We looked at the higher values of o (up to 15) and this
pattern continues consistently.
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PR curves for PR-Ranker for the case when d is unknown
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Figure 4.9: Performance of our classifier when ad is used as the cutoff for classifying
provisionally DE genes, where @ = 0.5,1,2,3,4,5; d = .05 is the true fraction of the
DE genes in the data.
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Figure 4.10: Performance of our classifier when ad is used as the cutoff for classifying
provisionally DE genes, where @ = 0.5,1,2,3,4,5; d = .05 is the true fraction of the
DE genes in the data.
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Improving Borda with Truncation is Cutoff Dependent

There is a suggestion that one can improve the quality of the aggregated
ranking by adding a preprocessing step to use the top-k lists of the original
rank lists [37]. This means to truncate the ranks on the original rank lists
by replacing all rank values bigger than k£ with k& + 1 before the aggregation.
The motivation behind this preprocessing step is that the top ranks are more
reliable and the data usually becomes noisy for the larger ranks [23, 37, 38|.
We explore this approach in this section.

Figure 4.11 shows the performance of Borda with top-k lists where k =
Bd, 3 =0.5,1,2,3,4,5. We see that the performance of Borda improves as 3
becomes bigger. However, from Figure 4.12 we see that the performance of
Borda starts to decline for 5 bigger than 7.
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Figure 4.11: Performance of Borda with truncation at 8d , where 8 = 0.5,1,2,3,4,5
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PR curves: performance of Borda with various truncation values, where
8=5,7,9,11,13
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Figure 4.12: Performance of Borda with truncation at Sd where g =5,7,9,11,13 and

d = 0.05 is the true fraction of the DE genes in the data
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From the result above one might think that using a big value for 8 would be
a good choice for the truncation in general. However, we now investigate the
effect of the truncation factor § further with a different underlying distribution
and show that Borda behaves quite differently in this case. We modify the
base-distribution and amplify the signal by changing the differential expression
mean from fi;; ~ uniform{[—3, —.5]U[.5, 3|} to 2f;; while keeping the variance
the same as before. Then, for each of the lists we randomly select half of the
DE genes and draw their expression values from the distribution for the non-
DE genes. This means that we boost the signals for the DE genes in general
but randomly mask the signals of half of the DE genes for each list. Figure
4.13 shows the performance of Borda under this new distribution. Note that
now the smaller values of g are the better choices for Borda’s performance.
The ( values, such as 5 and 7, that are good for the previous distribution now
weaken the performance of the classifier drastically.
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PR curves: performance of truncated Borda

73

with the new distribution

n=2000,J=4 n=2000,J=6 n=2000,J=8 n=2000,J=10
1.00 = === 1.00 1.00 1.00
0.75 = 0.75 4 0.75 4 0.75 4
c < c <
2 2 2 2
] 2 2 2
§O.50- @OSO- §0v50- EOSO-
a [ a [
0.25 - 0.25 0.25 0.25
\ \ |
T T T T T T T T T T T T T T T T T T T T
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Recall Recall Recall Recall
n=4000,J=4 n=4000,J=6 n=4000,J=8 n=4000,J=10
1.00 f —— 1.00 1.00 1.00
0.75 = 0.75 0.75 0.75
c < c <
s S s s
2 2 2 2
g 0.50 - § 0.50 g 0.50 g 0.50
o o< o o«
0.25 = 0.25 0.25 0.25
\ \ |
T T T T T T T T T T T T T T T T T T T T
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Recall Recall Recall Recall
n=6000,J=4 n=6000,J=6 n=6000,J=8 n=6000,J=10
1.00 o —— 1.00 o 1.00 4 1.00 o
0.75 = 0.75 4 0.75 4 0.75 4
< < c <
s s s s
] 2 ] 2
§050- §O50- 5050- §O50-
o o o o
0.25 = 0.25 4 0.25 4 0.25 4
\ \ \
T T T T T T T T T T T T T T T T T T T T
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Recall Recall Recall Recall
n=8000,J=4 n=8000,J=6 n=8000,J=8 n=8000,J=10
1.00 = —= 1.00 4 1.00 4 1.00
0.75 0.75 0.75 0.75
c < c <
S S S s
2 2 2 2
g 0.50 - g 0.50 g 0.50 g 0.50
a [ o [
0.25 = 0.25 0.25 0.25
\ \ |
T T T T T T T T T T T T T T T T T T T T
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Recall Recall Recall Recall
n=10000, J =4 n=10000,J=6 n=10000,J =8 n=10000,J=10
1.00 f —— 1.00 1.00 4 1.00
0.75 = 0.75 0.75 0.75
c < c <
s s s s
2 2 2 2
%050- @050- §050- @050-
o o o o
0.25 = 0.25 4 0.25 4 0.25
\ \ |
T T T T T T T T T T T T T T T T T T T T
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Recall Recall Recall Recall

p-value

0.5

N o w

Figure 4.13: Performance of Borda in the case where the signals are stronger in general
but for each list the signals of 50% of the DE genes are masked
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Figure 4.14 shows the performance of the classifier, SF, with the new distri-
bution. Note that different values of 3 affects the performance of the classifier
vastly. Furthermore, in some cases (e.g., when the number of lists is 4 or 6)
no [ value gives a result (in terms of precision) that dominates over all other
[ values.

Figure 4.15 shows the performance of our classifier with the new distribu-
tion. Note that the value of a (as in ad, the cutoff for classifying provisionally
DE genes) does not affect the performance of the classifier as much as how
affects the performance of Borda and SF. In addition, it is worth noting that
the choice of o becomes less important as the number of the lists grows; for
10 lists the performance of the classifier becomes practically indistinguishable
for various choices of the value for a.
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PR curves: performance of truncated SF under the new distribution
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Figure 4.14: Performance of SF in the case where the signals are stronger in general
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PR curves: performance of our classifier under the new distribution
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Figure 4.15: Performance of our classifier in the case where the signals are stronger in
general but for each list the signals of 50% of the DE genes are masked; ad is used as
the cutoff for classifying provisionally DE genes, where oo = 0.5,1,3,5,7,9
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In summary, this section we study the behavior of the Borda and SF classi-
fiers when they are applied to datasets with truncated ranks. This truncation
procedure was suggested by previous literature to aim at improving data qual-
ity. However, in our analysis we see that the performance of the classifiers
are sensitive to the choice of the cutoff for the truncation and that different
underlying distributions require different values for the truncation in order for
the classifiers to achieve the optimal performance; in particular, some choice
of the value for truncation drastically weakens the performance of Borda and
SF. This could be problematic when the desired factor for d, where d is the
true number of DE genes, is large. For example, if the desired cutoff is 6d,
an over- or under- estimate on d by a factor of 2 will change the cutoff for
the truncation to be 3d or 12d and such big change is likely to affect the per-
formance of the classifiers. In addition, since the underlying distribution of
the gene expressions is usually unknown, it is difficult to decide on the best
cutoff value to use for the truncation as the optimal choice of the cutoff value
depends on the underlying distribution. In contrast, our classifier behaves in a
stable manner among the difference choices for the cutoff value used to classify
genes as provisionally DE. More importantly, for our classifier the choice for
the cutoff value becomes practically insignificant for the performance of the
classifier when the number of the lists is large.

Technical Notes
Choice of the Smoothing Factor for PR-Ranker

The window size w = n2 was chosen somewhat arbitrary in the proof-the
main reason for the choice was to keep the notation straightforward. In fact,
the exponent could be replaced with any positive real number that is less than
1 and the proof would still be carried out exactly the same way. We also use
this value % for our simulation study. Different choices of the window size will
affect the performance of the classifier slightly.

In practice, one can use a more advanced method, such as LOWESS (Lo-
cally Weighted Scatterplot Smoothing) or cubic smoothing spline, for the
smoothing. Packages for these smoothing methods are available in R.

In practice we suggest using a more advanced method, such as the LOWESS
(Locally Weighted Scatterplot Smoothing) or cubic smoothing spline. To
choose a value for smoothing parameter for these more advanced methods,
one can look at the data to find a value that gives a monotonic decreasing
shape for the probability that we are trying to smooth.
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If one prefers to do the smoothing manually with a fixed window size and
equal weights, when the list is short, one needs to be careful about that the
window for the smoothing is not too large; otherwise, there might be a problem
with over-smoothing. In general, we recommend keeping the window size to
no more than ; of the number of the genes (otherwise, we would include more
than half of the list of the genes in our smoothing window); i.e.,

nY 1
Z o<z
n 4
where n is the number of genes, w is the power raised to calculate the arm

size of the window size. This means that the window size should satisfy the
criterion

4.5 Discussion

Through the simulation analysis in this chapter we see that our method outper-
forms two well-known rank-based aggregation methods, Borda and SF, under
various simulation conditions. While Borda and SF weigh the information in
each list equally, our classifier automatically adapt to data quality between
lists and down-weighs the information from the lists of lower quality. This
property of our classifier is particularly valuable since in practice there maybe
a varying level of noise in datasets collected in different experiments and with
different technologies.
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Chapter 5

Application

In this chapter we apply our algorithm to a set of data collected on 157 pla-
centa samples to identify genes that can potentially serve as biomarkers for
preeclampsia. Preeclampsia is the most serious hypertensive disorder of preg-
nancy and is one of the major causes of maternal deaths. In Western Europe
and North America preeclampsia occurs to 2-5% of pregnancies and this figure
increases to as high as 18% in some parts of Africa [36, 59.

Although the placenta is considered to be the primary cause of preeclamp-
sia [42], the exact cause of the disorder is believed to be multifactorial; for
example, the disorder has higher incident rate among women who are nulli-
parous, or with pre-existing metabolic, vascular or renal disease [22].

Because of the multifactorial nature of the condition, the heterogeneity in
patient samples has led to inconsistent results in past studies [35, 17, 32]; in
addition, previous studies have produced results that have been shown to have
low sensitivity [35]. Consequently, no consensus has been reached for the list
of genes that are associated with the disorder [35, 17, 32].

In this chapter we apply the three classifiers (Borda, SF and PR-Ranker)
to a gene expression dataset that is collected from 157 placenta samples and
analyze and compare the results produced by the classifiers.

5.1 Data Description

The dataset that we use for the analysis in this chapter is from the study
conducted by Leavey et al [35]. There are a total of 157 placenta samples
(77 control and 80 treatment samples). The samples were acquired from the
patient sample set at the Research Centre for Women’s and Infants’ Health
BioBank (Mount Sinai Hospital, Toronto, Canada). Four tissue biopsies were
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collected and processed into powder per placenta by the BioBank and mRNA
was extracted from the placental samples and sent to the Princess Margaret
Genomics Centre (Toronto, Canada) for hybridization against Human Gene
1.0 ST Array chips (Affymetrix). The microarray data was then normalized
by using the Affy package in R 3.0.1. Some genes were filtered out for qual-
ity control. The resulting dataset contains the expressions of 14651 genes.
The microarray data can be found in the Gene Expression Omnibus (GEO)
database [35].

5.2 Method and Metrics Used

We analyze the performance of the three classifiers (Borda, SF and PR-Ranker)
by investigating two properties of the classifiers: consistency and sensitivity.

For consistency, we divide the control replicates into two subsets of similar
sizes, and do the same for the treatment replicates. From each pair of control-
treatment subsets we sample, without replacement, 4 samples of controls and
4 samples of treatments. Then, a t-statistic is calculated with the 4 control
and 4 treatment samples for each gene; after that the 14651 genes are ranked
by using their t-statistics, such that, the gene with the biggest absolute value
of the t-statistics being ranked first. This creates the rank list for one pseudo
study. We then continue drawing samples from the same pair of control-
treatment subsets (samples drawn for making the previous lists can be drawn
again) to make more pseudo rank lists until we collect the desirable number
of pseudo rank lists. The same procedure is repeated for the other pair of
control-treatment subsets. We now have two set of pseudo ranking lists and
can see whether a classifier will generate similar rank results when applied to
these two sets of rank lists.

We use the Consistency Index proposed by Kuncheva [34] to assess the
consistency of a classifier. Suppose that there are n genes and an algorithm
calculates two aggregated rank lists for the two set of rank lists described in the
previous paragraph. Let k£ be any positive integer such that k =1,2,... ,n—1.
For a given k there are two set of top-ranked k genes, A and B, according to
the two aggregated lists. The consistency index for the sets A and B is defined
to be

Un — k2
k(n —k)’

where U = | AN B| is the cardinality of the intersection of the subsets A
and B. Note that the consistency index has the following properties:

I(A,B) =
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e For a fixed k the consistency index is monotonically increasing with U;

o -1 < I(AB) £1; I,(AB) = -1 when ¥ = 0 and k£ = %, and
I, (A,B) =1 when ¥ =k for all k;

e The consistency index should be around 0 for any two randomly gener-
ated independent rank lists since in this case the expected value for ¥
is % which implies that the expected value of the consistency index is
ZEro.

The procedure to assess the sensitivity of the classifiers will be described
in the result section.



CHAPTER 5. APPLICATION 82

5.3 Exploratory Analysis of the Data

The (log transformed) gene expressions in the dataset have identical distri-
butions for the control and treatment groups (see figure 5.1); this is due to
normalization. Note that the distributions are slightly right skewed even after
taking logs transformation for the original gene expression data; this indicates
that the original data is even more right skewed.

Distributions of normalized log gene expressions
for control and treatment groups

0.254

0.204

0.159
conditions

control

Density

treatment

0.101

0.059

0.004

6 9 12 15
Log gene expressions

Figure 5.1: Histograms for the distributions of the normalized gene expressions
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We also look at the relationship between the estimated SE of the sample
mean difference and the difference of the sample means. We superimpose the
LOWESS curve of the data on top of the scatterplot to emphasize the positive
relationship between the x- and y- variables. We see a positive relationship
between the two variables. This validates the reasonable choice of the distri-
butions used in our simulation study.

SE(sample mean difference) v.s. sample mean difference

For the entire dataset Zoomed-in version

0.30
|

estimated SE(sample mean difference)
estimated SE(sample mean difference)
0.06
|

0.05
|

T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 0.0 0.1 0.2 0.3 0.4

sample mean difference sample mean difference

Figure 5.2: Scatterplot for estimated SE v.s. sample mean difference for gene expres-
sions
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5.4 Results

Assessing Consistency

As described in Section 5.2 we split the data randomly into two halves and
generate J pseudo rank lists from each half. We iterate this process 400 times.
The values that we consider for J are 5, 10, 20, and 40. For our classifier
we need to select an estimated value for the percent of DE genes. Previous
literature suggest the range for this number to be 2.5-10% [8, 55, 39|. Figure
5.3 shows the values of the consistency index for each method when we estimate
the percent of DE genes to be 5%; we calculate the consistency index for the
top-k subsets for £ < 1000 since the values for k£ greater than 1000 are not
practically interesting.

All three methods improve significantly as the number of lists increases.
Similar to the simulation results the relative performance of our method in-
creases with the number of lists, and our method outperforms the other two
classifier substantially the number of lists is large.
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Consistency Index for the Classifiers
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Figure 5.4 shows the consistency index when 40 lists are used for our
method when the value of the estimated fraction of DE genes is 0.025, 0.05
and 0.10. Note that the choice of the estimated value for the fraction of the
DE genes does not affect the performance of our classifier much. This shows
the robustness of our classifier.

Consistency Index for Our Classifier
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Assessing Sensitivity

In this section we generate 40 rank lists, each is done by sampling 4 control and
4 treatment samples from the original dataset; then, we ask each classifier to
aggregate the 40 rank lists. We repeat this process 1000 times. We record the
genes that show up on the top-20 of the list. Figure 5.5 displays the genes that
show up on the top-20 of the aggregated list at least 500 times, i.e., at least
half of the time, for each classifier. There are 16 such genes for our classifier,
15 for Borda and 14 for SF. We display these genes along with the frequencies
they show up in the top-20 list.

There are 10 genes (FLT1, FSTL3, FLNB, NDRG1, SASH1, TPBG,
SH3PXD2A, OCRL, P4HA1, COL17A1) that are are commonly selected by
all three methods, and these genes are colored with red color in Figure 5.5.

Among these 10 commonly selected genes, the association to preeclamp-
sia has been biologically corroborated for 7 (FLT1, FSTL3, FLNB, NDRGI,
SASH1, SH3PXD2A, COL17A1) of them [40, 20, 2, 49]. There is also evidence
that supports the up-regulation of TPBG [43]. We cannot find strong evidence
that links OCRL to preeclampsia and there are mixed views on whether PAHA1
is linked to the disorder [30, 25].

We will focus our attention on the 8 commonly selected genes whose as-
sociations to preeclampsia are supported by previous publications (i.e., all 10
commonly selected genes, except OCRL and PAHA1). From Figure 5.5 we see
that over 80% of the time our classifier ranks 7 of these 8 genes in the top-20.
In comparison, Borda captures only 4, and SF only 3, of the 8 genes over
80% of the time. In addition, for 4 (FLT1, FSTL3, FLNB, NDRG1) of the
confirmed genes our method selects each of them to be in the top-20 list with
an overwhelmingly high probability (over 95% chance); in fact, our classifier
selects gene FLT1 100% of the time and FLT'1 is well-known to be associated
with preeclampsia [40]. In contrast, Borda captures only 3 and SF only 1 of
the 8 confirmed genes over 95% of the time. This shows that our method has
higher sensitivity compared to the other two methods.
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Figure 5.5: Genes that are commonly selected by all three classifiers are in red
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H Gene ID Ours Borda SF H

EFNB1 ° °
EROI1L °
HTRA4
KRT19 °
MYOT7B °
PIK3CB °
PROCR °
SFXN3 °
SH3BP5 ° °
SMARCA1 ° °
SPAG4 °

Table 5.1: Top-20 genes that are selected by only some of the classifiers

Additional Findings

Table 5.1 lists the genes that are selected by at least one method but not by
all. For example, gene EFNBI is selected by Borda and SF but not by our
classifier.

Four genes (ERO1L, HTRA4, PIK3CB, SFXN3) are detected by our clas-
sifier but not by Borda and SF.

An extensive literature links the role of HTRA4 in early onset preeclamp-
sia |62, 27, 61]; early-onset preeclampsia is associated with wide-spread en-
dothelial injury and dysfunction and high levels of HTRA4 has been shown
to impede endothelial proliferation and repair [62, 27, 61]. The exact role of
gene ERO1L in the Pathogenesis of Preeclampsia is not as well understood as
that of HTRAA4, but it is believed that the gene plays a role in fetal energy
metabolism and is linked to preeclampsia [33]. We cannot find biological ex-
periments that study the role of PIK3CB in preeclampsia; however, the gene
was detected in a number of significant pathways in an enrichment analysis for
the hypertension disorder [58|. A review of the literature did not find previous
links between SFXN3 and preeclampsia.

In this chapter we apply the classifiers of interest to a gene expression
dataset to understand the hypertension disorder, preeclampsia. We observe
that our classifier produces more consistent results in 400 pseudo-experiments;
in particular, the consistency of our classifier grows in a substantially faster
rate than the other two classifiers.

In addition, we study the top-ranked genes selected by the classifiers in
1000 pseudo-experiments. 10 genes (FLT1, FSTL3, FLNB, NDRG1, SASHI,
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TPBG, SH3PXD2A, OCRL, P4HA1, COL17A1) were selected by all classi-
fiers. Except for OCRL and P4HA1, the links to preeclampsia have been
established in biological studies. Our classifier shows higher sensitivity since it
selects the 8 biologically confirmed genes with noticeably higher frequencies.

Therefore, we conclude that our classifier is more superior than the other
two classifier in terms of consistency and sensitivity.
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Chapter 6

Conclusion

The capacity of studying the expressions of tens of thousands of genes simulta-
neously has led to remarkable discoveries in biological sciences. One of the ma-
jor challenges in gene expression statistical analysis is induced by two intrinsic
properties of a typical gene expression dataset: the small number of replicates
and the large number of genes. While traditionally gene expression datasets
were analyzed one at a time, the opportunity for improving statistical analysis
accuracy arose when recently a growing number of gene expression datasets
measured under the same sets of biological or experimental conditions have
become available. Due to the different technologies that were used in studies
it is common that the datasets generated from various studies are not directly
comparable. Aggregating study results through rank statistics is a favorable
approach because rank statistics are scale invariant, require few distributional
assumptions and are more robust in general.

As shown in the Simulation Study Chapter, we see that our classifier, PR-
Ranker, has a lower misclassification rate compared to other rank aggregation
methods, such as Borda and SF. The strength of our classifier is manifested
in situations where some of the rank lists are of low quality. Previous litera-
ture has proposed applying a rank truncation procedure on the original rank
lists as a preprocessing step to try to improve the quality of the aggregated
rank. However, the performance of such procedure is cutoff dependent and
the optimal cutoff value for the truncation varies depending on the underlying
distribution that generates the ranks. In practice, the underlying distribution
that generates the ranks is usually unknown, and in this case truncating the
original ranks is likely to cause the performance of the classifier to be less
stable. Our classifier aggregates complete rank lists and has the ability of
automatically adapting to data quality between lists and down-weighing the
information from the lists of lower quality. This property of our classifier is
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particularly valuable in practice since data quality often varies among different
experiments and technologies.

In addition, the algorithm of our classifier is constructed in a such a way
that it is well-suited to do a theoretical analysis on and we show in the Theo-
retical Analysis Chapter that asymptotically our classifier has the lowest mis-
classification rate in the entire class of the GRB classifiers. Besides that, our
classifier has an algorithm that is simple to apply in practice.

Lastly, it was noted in the Theoretical Analysis Chapter that our classifier
requires modest distributional assumptions. In the Application Chapter we
show in a case where the (log transformed) gene expression data is skewed
and departs from the Gaussian distribution that our classifier outperforms the
other two classifiers in terms of both consistency and sensitivity.
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Appendix A

Appendix

A.1 Proof of Propositions 3.6.1 and 3.6.6

In this section we will establish the proof of Proposition 3.6.1 which will follow
from the next lemma.

Let F/ denote the sigma-algebra generated by
{U],..,UJ; A)..., Al}. Also define the reversed sigma-algebra denoted FJ* gen-
erated by {U?,...,UJ; AJ..., A7} where AJ is the indicator that the gene ranked
r in list j is DE and U/ is the r-th order statistic of the t-statistics for list j.

Lemma A.1.1. The conditional probability of being DE for ranked genes sat-
1sfies

j - ) %k

1§I7¥l§a2}7{z/3 P[A, | F)_i] = p"(r/n)] =0 (A1)
- * g%

max |PLA [ Fria] = p" (/)] =0 (A.2)

i probability as n — oo.

Proof. We will prove the first of these two equations, the second will follow
similarly. Let S, = dn — E;ll 14,, that is the number of DE genes associated
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with genes ranked r through n. Applying Bayes rule we have,

P(A.|F!_,, U, € dt)
=P(A.|F!_,, U, >t,U, € dt)
P(A,, U, € dt|F’_,, U, > t)
TP(A,L U, € dt|F U, > 1)+ P(A, U, € dt|F)_,, U, > 1)
Seo(t)/(1— F(t))dt
TS0/ (1= F(t)dt + (n — (r — 1) = S,)6(0)/(1 — F(1))dt

We define the function

N s/(1-F(t)
$/(1=F(0) + (1 - a = 5)(0(0)/6(t))/(1 - F(1)

y(s,t,a) =

and so
P(A,|F,—1,U, € dt) = y(S,/n,t, (r —1)/n).

Now, since the variable ¢ is defined on the whole negative real line, we do a
change of variables so that g is defined on a compact set and is uniformly
continuous

U(s,v,a) =y(s,1 —1/v, ).
By our assumptions on the densities, ¢ and (Z the function g is uniformly
continuous on the domain

D.:={(s,v,a):0<s,v,a<1—¢s+a<1—¢} (A.3)

for any € > 0.
Therefore, we have that

P(A,.|F ;) :/ P(A,, U, € dt|F’_,)dt

Ui

~ [ B, € a5 ot ¢~ e

Ui—1

=E[y(S,/n, Uy, (r — 1)/n)|F_,)
[ (S0/m = D/mIFL

Let G* denote the CDF of ——= - T* which are bounded random variables with
full support on [0, 1]. By the Glivenko-Cantelli Theorem [15] G, the ECDF
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of the T} converges almost surely uniformly to G* since it is a mixture of two
i.i.d. sequences of random variables. Following the approach of the proof in
[57] we can also show that G*~! — G*~! almost surely uniformly. It follows
that

1
— G r/n)| =0
x| — G (r/m)
almost surely. In fact a stronger quantitative statement from the large devia-
tion theory for empirical distribution functions says that for any fixed § > 0,
for some ¢(d) > 0,

max |

IP’@ L /)| > 5| < exp(—c(8)n).

1-U,

Thus

P {IP’ {y 1 | o~ G > 6 ]—“Z_l] > nﬂ < n2 exp(—c(d)n).

and so for any 0 > 0,

1-U,

r

max P {| — G Hr/n)| > 6| ff_l] —0
almost surely. Similarly

max
T

S _(1- ﬁ(F*l(r/n)))‘ 0

n

almost surely. It follows that

mox (8 |30 /n, = = /T | = 900 = B /). G/, D) 0

1-U,
Now

9= F(F (r/n), G r/n), =) = y(1 = F(F*(r/m), (/). )

_ do(F*"(r/n))
dp(F*=1(r/n)) + (1 = d)p(F*=(r/n))
=p"(r/n)

which completes the proof. O]
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Proof of Proposition 3.6.1.
The proof follows by averaging over the conditioning.

Proof of Proposition 3.6.6.

Consider the probability distribution Q where instead of having exactly dn
DE genes, each gene is DE independently with probability d so N = ). 15,
the total number of DE genes, has distribution Bin(n,d). Then we have that

P() = Q(-| N = dn),

that is conditional on there being exactly dn DE genes under Q, it is the same
model as the original P. The advantage of Q is that each gene is independent.
Note that under Q we have that

Q[B; | Gl =Q[B; | Gi] = ¢&:.
Now
P[Bi [ G]=Q[B; | G,N = dn]
and so if N_; = N — 1p,, the number of DE genes apart from 7, then by Bayes
rule
Q[B; | G,N = dn|
Q[B: | GIQIN =dn,| G, Bi] + Q[Bf | GQ[N = dn, | G, Bf]
_ EQIN =dn—1,] ]
GQIN_; =dn—1,| G] 4+ (1 = §)Q[N_; = dn, | G]

Hence if we prove that for any € > 0,

p(| Bl

l_ 1‘ > e) — 0, (A.4)

then we will show that
P(|Q[B; | G,N =dn| —&| >¢) — 0,

which will establish the lemma. Let B be the o-algebra generated by the
{B;}i=1....n, the information on which genes are differentially expressed. Con-
ditional on B the &; are conditionally independent. Define

p=Eg | B, p:=E}|B]

Then
d=E[§] = (1 - d)u+ dp.
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and

El& | Bl = plpe + plp,.
Setting S := ), & we then have that E[S | ¢cB] = ) E[¢; | B] = dn. By the
Azuma-Hoeffding inequality for any ¢,

IP’(‘S - dn’ > ty/n | B) < 2exp(—t?/2),

and hence unconditionally
IP’(’S — dn’ > t\/ﬁ) < 2exp(—t*/2),

By our assumption that 0 < ¢; < 28 < co we have that for some ¢ > 0 that

§ <& < 1= foralli. Setting 02 = > &(1 —¢&;) we have that 0% > nd(1—4).
Define S_; = S — & and 02, = 0% — &(1 — &). Under Q, conditional on G the
1p, are independent Bernoulli random variables with probabilities &. Hence
by the Local Central Limit Theorem (see [10] Theorem 1.1) we have that

QN =Fk,|G) = exp (— (k= 5-1)/(202))) +o(n~"/?)

\/_a_

as n — oo. For any fixed ¢, for large enough n when |[S_; — dn| < /nt 4+ 1 we
have that

QN_l—dn 1,] g

— <
‘ _; =dn,| G| 1’_6
Hence

Q[N_; = dn, | g

hmsupIP’(‘ —1’ >€> <11msupIP’(|S_1—dn| > /nt + 1)

<limsupP(|S — dn| > ty/n)
< exp(—t?/2).
This holds for all ¢ > 0 which establishes equation (A.4) and hence the lemma.

A.2 Large Deviations and Cramer’s Theorem

The proofs of the main theorems make crucial use of the theory of large de-
viations to establish the optimal error rates for our rank based estimators.
Here we recall some basic results, see for instance [13]. Let Xj, Xs,... be
a sequence of independent and identically distributed random variables with
measure g. Then Cramer’s Theorem gives the probability that the partial sum
S, =Y, X; is much greater than its expected value.
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Theorem A.2.1 (Cramer’s Theorem). If for some ¢ > 0, Elexp(0.X;)] < oo
then there exists a function ¢(z) such that for all z > E[X;] we have that

.1 1 .
o(z) = h}ln - logIP’[HSn > 2] = éﬁﬁ log E[exp(6X;)] — 6z < 0. (A.5)

The large deviation rate function ¢ can be expressed in terms of the relative
entropy. The relative entropy of x with respect to p is denoted by defined as

H(p'|p) = / log (Cg;,g)) ) dyl' ().

The rate function ¢(x) can be written as

2) = — inf H(y
() o (" [ )

that is the smallest relative entropy over all measures ' with mean at least
z. When the random variable X is almost surely bounded with essential
supremum M < oo, for any E[X;] < z < M there exists ¢/ which achieves the
supremum and moreover is given by the Radon-Nikodym derivative

d,u’(r): exp(6.r)
dp(r)  Elexp(6.X1)]

where 6, is the 6 that achieves the infimum in (A.5). Since relative entropy is
strictly convex this is the unique infimum.





