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Poisson-Boltzmann (PB) electrostatics is a well established model in biophysics, In this paper, we present an efficient algorithm to further acceler-
however its application to large scale biomolecular processes such as protein-proteinate the solution of the PB equation. By proper coupling of single and
encounter is still limited by the efficiency and memory constraints of existing numer- double layer potentials as discussed by Rokﬁliﬂe derive a Fred-
ical techniques. In this paper, we present an efficient and accurate scheme whichholm second kind integral equation formulation for systems with an
incorporates recently developed numerical techniques to enhance our computational arbitrary number of domains (molecules). Similar formulations are
ability. In particular, a boundary integral equation (BIE) approach is applied to  used for single domain problems by Juffer et7al_i,ang and Subra-
discretize the linearized PB equation; the resulting integral formulas are well con- maniamf? and Boschitsch et &l. Compared with “direct” formula-
ditioned and are extended to systems with arbitrary numbers of biomolecules. The tions where Green’s second identity is applied, the condition num-
solution process is accelerated by Krylov subspace methods and a new version ofher of our system does not increase with the number of unknowns,
the fast multipole method (FMM). In addition to the electrostatic energy, fast cal- hence the number of iterations in the Krylov subspace based methods
culations of the forces and torques are made possible by using an interpolation pro- js pounded. For the matrix vector multiplications in each iteration,
cedure. Numerical experiments show that the implemented algorithm is asymptoti- ywe use the new version FMM developed for the screened Coulombic
cally optimal O(N) in both CPU time and required memory, and application to the  jnteraction (Yukawa potential) by one of the authors and collabora-
acetylcholinesterase-fasciculin complex is illustrated. tors.lo Compared with the original FMM, the plane wave expansion

. o based diagonal translation operators dramatically reduce the prefactor

In recent years, due to the rapid advances in biotechnology, bptlhe O(N) new version FMM, especially in three dimensions where

the temporal and spatial scales of biomolecular studies have beenyifreak-even point of approximately 600 for 6 digits precision is nu-
creased significantly: frorsinglemolecules to interacting molecularmerically observed.

gﬁ:v:g:élslﬂi :ngetlcl), tﬁgd ;;%n;cg}iﬁ:g:;ggrﬁciﬁl%riosmu?iléfls ?gccgfsfgg Whereas most previous PB electrostatics algorithms have mainly
y phy P ocused on the energy calculations, calculations of the PB forces and

In these studies, the electrostatics modeled by the well-establis, Sdues are also essential in many cases such as in dynamics simula-

Poisson-Boltzmann (PB) equation has been shown to play an Impafag ™, yhi algorithm, we introduce &(N) interpolation scheme in

tant role under physiological solution conditions. Therefore, its ag. ot hrocessing stage for calculating the forces and torques. This
curate and efficient numerical treatment becomes extremely impor: ; X 2 12
gme improves previo@(N<) results based on BERL

tant, especially in the study of large scale dynamical processes suc?lcg ; s )

protein-protein association and dissociation in which the PB equat@®undary integral equation formulations.

has to be solved separately during a simulation. When Green’s second identity is applied, traditional BIEs for the lin-
Traditional numerical schemes for PB electrostatics include thedarized PB equations for a single domain (molecule) take the form

nite difference methods, where difference approximations are used on

structured grids describing the computational domain, and finite eled e [PV, . 0@™  0Gpt i 1

ment methods in which arbitrarily shaped biomolecules are discretize@(‘o|p - ?{S Got 5~ Wq S + Dint quka, PeS
using elements and the associated basis functions. The resulting alge- 1)
braic systems for both are commonly solved using multigrid or do- !

main decomposition accelerations for optimal efficiency. However, ad ext }{Pv[iu @ + % ext}ds €s @)
the grid number (and thus the storage, number of operations, and co@-"? ~ Js P an on @ » P

dition number of the system) increases proportionally to the volume . o . B

size, finite difference and finite element methods become less efficléhgredy" is the interior potential at surface positiprof the molecu-
and accurate for systems with large spatial sizes, e.g. as encounteredbmainQ, S=9Q is its boundary, i.e., solvent-accessible surface,
in protein association and dissociation. Alternative methods inclug@' is the exterior potential at positiop, Djy is the interior dielec-
the boundary element (BEM) and boundary integral equation (Bl constantgy is thekth source point charge of the molecuiejs
methods. In these methods, only the surfaces of the moleculestleereciprocal of the Debyeikitkel screening length determined by
discretized, hence the number of unknowns is greatly reduced. Unfbe ionic strength of the solutiom is the outward normal vectot,
tunately, in earlier versions of BEM, the matrix is stored explicitly arid an arbitrary point on the boundary, aRW represents the principal
the resulting dense linear system is solved using Gauss eliminatioryalae integral to avoid the singular point wher- p in the integral
thatO(N?) storage an_m(N3) operations are required, whees the gquations. In the formulagp; = e andug; = eXFZ(*K\E*pr are
number of nodes defined on the surface to discretize the integral as:ind tal soluti fth T —rp| dina P AT | d Poi
discrete summations using appropriate quadrature. Even with the@ﬁ undamental solutions ot the corrésponding ~oISson and Foisson-

celeration afforded by Krylov subspace methods, direct evaluatioqgézrgatnn eqltj_agions,_ resp(ictivel_y. T?}?She Eequitions ?an bg feasily ehx-
the N(N — 1)/2 pairs of interactions in the summations still require nded to muiti-gomain systems in which £q. 3 1S enforced for eac
prohibitive O(N2) operations. individual domain and the integration domain in Eq. 2 includes the

. . 8ollection of all boundaries.
In the last twenty years, novel numerical algorithms have been e:l_ lete th ¢ th luti in the interior (Eq. 1) and
veloped to accelerate the calculation of thisbody problem from 10 Complete the system, the solutions in the interior (Eq. 1) and ex-

the originalO(N2) direct method to th€©(NIlogN) hierarchical “tree teric;r (Ea.2) age matched by the boundary conditigfis= ¢*' and
code™ 2 and fast Fourier transform (FFT) based algorithms includil@;nt% = Dext%- Using these conditions, we can defifie= ¢

the particle-mesh Ewald (PME) methddind later to the asymptoti- gndpy — M:I as the new unknowns and recover other quantities us-
cally optimalO(N) fast multipole method (FMM$,and eventually to ing boungary integrals of andg. Unfortunately, theoretical analy-

a new version FMM with an optimized prefactoror the PB equa- sis shows that the corresponding equation systent fandh is in

tion, however, only the original FMM and FFT based techniques hayeneral a Fredholm integral equation of the first kind and hence ill-
been introduced into the BEM/BIE formulations. Numerical expertonditioned. i.e., when solved iteratively using Krylov subspace meth-
ments show that the original FMI@IaIthough asymptotically optimal ods, the number of iterations increases with the number of unknowns,
and well suited for multiscale time stepping schemes, is less efficiend the resulting algorithm becomes inefficient for large systems. In-
for problem sizes of current interest when compared with the tree cstad of this “direct formulation”, in our method, we adapt a technique
and FFT base®(NlogN) techniques, due to the huge prefactor imtroduced by Rokhlifi where the single and double layer potentials
O(N). are combined in order to derive an optimized second kind Fredholm



integral equation. Similar techniques have been used by Juffefetal. ~ Form local expansion for Pe| |
d oth . . . t t'dﬁsl5 h t of th each box at the finest level -
and others in engineering computatiors,> however most of them from all points 5 located . . .
focus on single molecule cases. In the following, we present a well-  outside of the target and .
conditioned derivative BIE formulation (second kind Fredholm equa- neighbor boxes \ o !° *
tion) for multiple biomolecule systems, in whigh=1,---,J repre- Calculate potential, using : : e
sents the separated molecules: local expansion, for each —__ [+ | s —— " 2n0" §oX
point 7 in the target box -

J .pv ) . oo Rl | o. |.

(i+})f _ (Gpt—U )ht*(}@*%)”dslt The potential generated . argét bax
2¢ ' 2/'PT z S pt pt e on an t by points inthe target 1 * {»o *
J and the neighbor boxes o |, o .
1 . is evaluated directly LA h
+Tzzqkj6pkj, peS,i:L..J, ) ]
ext T Flgure 1: schematic showing the source poifitand evaluation poin® in the new
version FMM. In BEM implementation, the source points are centered at the surface tri-
(} N i)h _ i/PV[(aGpt ~loupt, 1 0°Gpt _ 02upt )ft]dsj angular elements. P P
2 2P ~Js "o € dng €'0ngdn  Angdn
J . _ -
+ 1 Z ZQki 9Cpi , peS,i=1.J 4) for each box, the huge prefactor makes the original FMM less com-
Dext T & ono ’ petitive with the tree code and other FFT based methods.

) _ ) In 1997, a new version of FMM was introduced by Greengard and
As our formulas have the same integrands on different domain Sgkhlir® for the Laplace equation. Compared with the original FMM,
faces, FMM calculation is convenient and the same as in the singlgjane wave expansion based diagonal translation operator is intro-
molecule case. Also, due to the small number of iterations for cQficed and the original 189 operations were reduced toR+ 2P3.
vergence, the solution of an arbitrary system is directly obtained jpyour algorithm, we adapt the new version of FMM for the screened
solving the PB equations only once, which differs from previous "petoulomb interactions (corresponding to the linearized PB kernel) de-
turbation” scheme for two-domain systefs'® veloped by one of the authors and his collaborat8r&reliminary
New version fast multipole method numerical experiments show that the overall break even point of the
When Egs. (3)-(4) are discretized, the resulting linear system is wégw version FMM becomes 600 with 6-digit accuracy, and about 400
conditioned and can be solved efficiently using Krylov subspace mefr-3-digit. However, the new version FMM is more complicated than
ods. As the number of iterations is bounded, the most time consunting original FMM in programming and theory, and we are unaware of
part becomes the convolution type matrix vector multiplication in eaghy previous implementations for the linearized PB equation.
iteration. In this section, we discuss how this can be accelerated byhgov subspace methods and mesh generation
new version FMM. In our algorithm, a parallel iterative methods package for systems of
The fundamental observation in the multipole expansion badiewar equations PIM23 is used. Several iterative schemes are avail-
methods is that the numerical rank of the far field interactions is retble in the package including the GMRES method, biconjugate gradi-
tively low and hence can be approximatedmyerms (depending on ents stabilized (BiCGStab) method, and transpose-free quasi-minimal
the prescribed accuracy) of the so-called “multipole expansion”  residual (TFQMR) algorithm. Preliminary numerical experiments
show that the GMRES method converges faster than other methods,

. N 1 P m=n mYn(e, e) which agrees with existing analyses. Because the memory required
®R 6,9 = .ZCIi B ZOW; RANTTEY () by the GMRES method increases linearly with the iteration nurkber
i= n= -

and the number of multiplications scales Ii%kzN, for largek, the
whereY" are the spherical harmonics aMJ" the multipole coeffi- GMRES procedure becomes very expensive and requires excessive
cients. For arbitrary distribution of particles (meshes), a hierarchigagmory storage. For these reasons, instead of a full orthogonaliza-
oct-tree (in 3D) is generated so each particle is associated with #fin procedure, GMRES can be restarted evgrgteps wherdg < N

ferent boxes at different levels, and a divide-and-conquer strategisisome fixed integer parameter. The restarted version is often denoted
applied to account for the far field interactions at each level in the GMRESKg). Currently a detailed comparison of different Krylov
tree structure. In the “tree code” developed by Apbahd Barnes subspace methods is being performed and results will be reported in
and Hut? as each particle interacts with 189 boxes in its “interactid@ter Papers. ) _ _ _
list” through P terms of multipole expansions at each level and there T0 discretize the boundary integral equations, a triangular mesh is
are O(logN) levels, the total amount of operations is approximateienerated using the package MSHSand zero and extremely small
189P2NlogN. The tree code was later improved by Greengard aAff@ elements are mO.dIerd by a mesh _checklng procedure in our algo-
Rokhlin in 1987% In their original FMM, local expansions (under d/thM- A typical mesh is shown in the Fig. 2 (top right).

different coordinate system) orce and torque calculations _ o
In addition to energy calculation, an improved procedure is imple-

~ N 1 P m=n = nom mented to calculate the force and torque. Compared with previous
PR 6,9 = _ZQi BoRl Y > L-RY(0,9)  (6) O(N2) schemes! 12the complexity of the new procedure@gN). In
1= Pl n=om=n the calculation, the full stress tensor on the boundary includes contri-

are introduced to accumulate information from the multipole expe@ptions from conventional Maxwell stress tensor as well as the ionic
sions in the interaction list whete! are local expansion coefficients PFeSSure Is given

As the particles only interact with boxes and other particles at the finest 1 1

level, and information at higher levels is transferred using a combi- Tij = DextEEj — EDexthéij — EDextK2<P25ij7 (7
nation of multipole and local expansions as explained in Fig. 1, the

original FMM is asymptotically optimaD(N). However, because thewhereE is the electrostatic field an8;j the Kronecker delta func-
multipole to local translation requires a prohibitive B8%perations tion. For the gradient of the potential, an interpolation scheme is used
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Figure 3: The prism constructed on a triangular element. The shadowed triangle is
one of the boundary elements, n,, nz are three unit normal vectors at the three nodles,
is a parameter to describe the third dimensional position of the prism.

Further, in each iteration, we compare the new version of FMM with
direct method for different resolutions (up to 81,920 BEs). Numerical
results in Fig. 4 show that the CPU time (on a Dell dual 2.0 GHz P4
desktop with 2 GB memory) for the new version of FMM scales lin-
early with the number of BEs with correlation coefficient 0.984, and
quadratically for the direct integration method with correlation coeffi-

Energies (kcal/mol)

1 (@) , cient 0.999. For a system with 81,920 surface element¢he new
1) , 2) version FMM is approximately 40 times faster than direct method.
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Figure 2:(a) The surface potential map of AChE and Fas2 at separation Af The
two green arrows indicated & andM show the force (0.10, -0.03, -0.69) and torque

(-0.35, -1.03, -2.8), respectively, which are scaled for visualization. (b1) The electrostatic
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potential profiles as functions of separations along a predefined direction: the total elec-

trostatic interaction potential U, electrostatic desolvation energies due to AChE and Flaféure 4'L0g-|og plot of CPU time vs. the number of elements for the calculation on
cavities, respectivel{Uynba-typeMeans the interaction energy obtained in a similar way %ssphere caée .

that in UHBD where the ligand polarization is not presétfenpolaris @ nonpolar contri-
bution from a simple surface term. (b2) The,y—,z— components of forces, and torques
as functions of the separation distances along a predefined direction. The memory requirements of our methods are tested on large
biomolecule systems witN;iom atoms. Numerical experiments show
that the overall memory requirement scales linearly with the number
to construct a trivariate function in the vicinity of the molecular susf surface elements. Compared with existing finite difference and fi-
face. For each triangular element on the surface, we construct a siitgl element schemes, orders of magnitude reduction in memory us-
three-sided prism as shown in Fig. 3. In the prism, the potentialige has been observed in simulations on a nicotinic receptor (30, 385
linearly interpolated, and the total PB forEeand torqueM acting on atoms) with 194, 428 elements and 97, 119 vertices. In our algorithm,
each molecule are calculated by integrations ef [T (x)-dSx) and we noticed that the majority of computer memory is allocated to store
M = [gre(x) x [T(x)-dS(x)], whererc(x) represents a vector from thethe neighboring list and the corresponding near-field coefficients, the
center of mass of the target molecule to the surface pgiand the size of which mainly relies on the total number of BEs and the level
dot and cross vector multiplications are applied to the vector and té1-box subdivision. Depending on a tradeoff between memory and
sor quantities. speed, at each iterative step these coefficients can either be saved as
Computational performance. in a memory-intensive mode or be discarded as in a memory-saving
To assess the accuracy of the algorithm, we first consider a sphefizagle. We note that without sacrificing the accuracy, the number of
cavity of radius 50 with one positive charge located at its center, aritgar-field elements for each vertex can normally be up-bounded by a
compare the numerical solutions with analytical ones. The surfacé¥ed numbers. Hence, the size of neighboring list is also up-bounded
discretized at various resolution levels (from 320 to 81, 920 elemerg)sN, which leads t@(N) overall memory usage.
by recursively subdividing an icosahedron. Numerical results showTo further illustrate the performance of our fast BIE technique on
that the relative potential error decreases with increased numbeprotein electrostatic calculations, we computed the electrostatic sol-
elements, from- 8% (320 BESs) to less than@.% (81,920 BEs). vation energies of Fasciculinll, a 68 residue protein, and compared
As for the efficiency, we noticed that regardless of the surface refite algorithm performance with the multigrid finite difference algo-
lution, the GMRES iteration steps never exceed 10, which numericailpym, as implemented in the widely used software APB%or all
confirms that the derivative BEM formulation is well-conditionectalculations, the AMBER atomic charges and radii were assigned.



A probe radius of 1.53 was used to define the dielectric interfacestatic energies at closer distances seem to be surprising. This should
The dielectric constants were taken as 2.0 for solute and 80.0 for §&lbalanced by the non-polar interactions. If we take a simple model to
vent. We want to mention that the two program codes employ vefyd the surface tertthonpolar= YAS, y= 0.058 kcalmol—1 .,&72,23 to
different algorithms and data structures, hence an exact comparigeount for the nonpolar contributions, the total binding energy profile
between them would be difficult. Also, APBS is designed primarilghe purple line shown in Fig. 2 (b1)) will show favorable interactions
for massively parallel computing, it has an integrated mesh gendta-the AChE-Fas2 complex.

tion routine, and it solves the PB equations twice to obtain the solva-The origin of the large unfavorable electrostatic interaction at closer
tion energy. Nevertheless, the preliminary results given below shg@parations can be attributed to the electrostatic desolvation, an effect
that present algorithm provides better speed and memory performafig€to the unfavorable exclusion of the high dielectric solvent around
than the current version of A.PBS. Fpr APBS galculatlons, when usigge protein when the other one approaches (Elcockzé).aT.he green
a161x 129x 161 grid with grid spacing of 0.2, the computed elec- g red lines in Fig. 2 (b1) show the electrostatic desolvation energies
trostatic solvation energy is -525.5 kcal/mol, and the calculation tak@SachE and Fas2 respectively. When AChE and Fas2 stay close,
250.8 seconds of total CPU time and 742.8 megabytes of memoryte are large desolvation penalties, but the electrostatic desolvation

our desktop machine. When using a finer grid of 22861 225, gnergies decrease rapidly when two molecules are separatefl Ay
the total CPU time is increased to 599.9 seconds, memory increaseglriner.

to 1784.6 megabytes and the total solvation energy is -522.8 kcal/moly
For our calculation to achieve the same Ie\gel of accuracy, the surfgﬁ
mesh was generated with vertex density o3, which results in a b
total of 21, 430 triangular elements and 10, 717 vertices. In this ¢ Bx structure. The presence of this energy minimum arises from the

the computed solvation energy is -522.0 kcal/mol, and the calculatijl} i ation effects that tend to minimize the total interaction energy
takes 129 seconds requiring only 90 megabytes of memory if runn, Ben Fas? is close to AChE.

in a memory-saving mode while the job completes in 44 seconds e . . .
o . I - . e present BEM method gives the full PB interaction energy that
?nu(;ggg 486 megabytes of memory if running in a memory IntenSIYﬁherently takes into account both the desolvation and polarization

contributions from two proteins. In conventional electrostatic inter-
Protein-protein interaction of the acetylcholinesterase (AChE) action calculations as in the UHBD packaféor protein-substrate
and fasciculinll (Fas2). Many experimental and theoretical studiegystems, the reaction field of only one molecule (usually protein) is
have established that electrostatic interactions dominate the ACBEmputed, and then acts on the atomic charges of the other one. The
Fas2 binding process, and increase the binding rate by about twob@ife line in Fig. 2 (b1) shows the interaction energies obtained with
ders of magnitudé™?2 However, in the initial Brownian dynamicsthis type of calculation. Whereas it is in good agreement with the full
(BD) simulations of AChE-Fas2 encounter, the methods for solvif@ energies at large separationsgA), it deviates greatly at short dis-
electrostatics are not rigorous in the sense that the polarization &mtes, which emphasizes the importance of using more rigorous PB
electrostatic desolvation effects are neglected to reduce the comgeetrostatics in simulating the AChE-Fas2 encounter process.
tational cost. Using these approximate methods, the calculated emajthough more work is presently underway to combine this code
counter rates tend to be overestimated especially at high ionic conggifh BD simulations for calculating association rates of enzyme-
tration. In seeking to demonstrate the energetic discrepancies that gistrate or protein-protein encounters, we show some early results on
occur by using our BEM-based method as compared to the previghisforce and torque calculations in Fig. 2 (b2). The forces and torques
one, we calculate the interaction energies, forces and torques for aaf€more sensitive to the atom/mesh clashes, which exhibit very large
ries of structures at different separation distances between AChE fi¢tuations at short ranges belovxﬁ&data not shown). Across the
Fas2. These structures are generated by displacing Fas2 away {@@le separation range, the forces along x and y directions are close to
the binding site, along a selected direction with possibly least clashgso, while the z component varies from -1.0 to -0.65 koal~1-A-1.
The AChE-Fas2 distance in bound complex is about 28.3n all Since the direction of the Fas2 displacement is close to the z-axis (-0.4,
calculations, the ion concentration is set to 50 mM, which is equiv@2, 0.89), the force results are consistent with the energy calculations,
lent to a Debye-Ifickel screening length of 138 The meshes areand also suggest that this direction may be close to one of the real as-
generated at a density of 1402, A single mesh is generated if twosociation pathways within this spatial range. Fig. 2 (b2) also shows
molecular surfaces are separated by less thanahile for the further torque calculation in all three x, y and z directions. Those significant
separations the system is treated as two separate domains withvisiges suggest that the molecular orientation will be adjusted along
meshes. this association pathway.

Fig. 2 (a) shows the mutually polarized electrostatic potentigk9nclusions and discussion
mapped to the molecular surfaces of AChE and Fas2-afldA dis- In this paper, an efficient algorithm with optimal computational com-
placement of Fas2. Not surprisingly, the potential surfaces exhiplixity is presented for the numerical solution of the linearized PB
qualitative electrostatic complementarity at the binding interface. Fjectrostatics. It uses a BIE formulation with unknowns defined only
2 (b1) shows the electrostatic interaction energy and electrostatic gesthe surface, and is accelerated by the new version of FMM and
olvation profiles for the AChE-Fas2 complex as a function of centd¢rylov subspace methods. The algorithm enables the computational
center distances. Although the data at short range may not be quaiitidy of relatively large biological systems fundreds of thousands
tatively accurate due to the atomic and mesh clashes when AChE afiadns) on a PC computer, and has been applied to the simulation of
Fas2 are close in (from29.0A to 33.0A), Fig. 2 shows some in- AChE and Fas2 protein-protein interactions.
teresting results that will not be expected from previous approximateUnfortunately, all-atom molecular dynamics and BD simulations
models. Clearly, the electrostatic interaction energy (black line)vigth full PB calculation for large systems still exceed the presently
favorable for binding at separations further than®3®ut becomes in- available computer capability. To overcome this hurdle, several tech-
creasingly positive at closer separations. The long-range electrostaitities are being pursued to further increase the efficiency of the
attraction is the dominant driving force for Fas2-AChE binding, whigbresent algorithm for dynamical simulations, including (a) paralleliza-
accounts for the observed electrostatic enhancement of the bindiog of the present code and (b) a new multiscale time stepping method
rate in experiments. However, given the fact that the AChE-Fas2 camirich utilizes the efficiency of our algorithm for electrostatics calcula-
plex has a high binding affinity, the unfavorably high positive electréons. For (a), previous studies show that the BIE method and new ver-

nother interesting observation is that the electrostatic interaction
@rgy profile shows a minimum at the distance~083A (Fig. 2
1)), which corresponds to a/bdisplacement of Fas2 from the com-



sion of FMM have excellent scalability for parallel computation; and
for (b), as different temporal scales are readily available in the FMM
structures, larger time step sizes can be used for the slowly varying far
field interactions represented by the local and multipole expansions,
and smaller step sizes for the rapid local interactions. In addition, the
present fast BIE framework can be readily extended to solving other
equations, such as the diffusion equations arising from the study of
ion permeation and ligand diffusion processes. Results along these
directions will be reported in the future.
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ing Resource, the NSF Center for Theoretical Biological Physics,
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