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Abstract 

Many tasks that are easy for humans are difficult for machines. 

Particularly, while humans excel at tasks that require 

generalising across problems, machine systems notably 

struggle. One such task is the Synthetic Visual Reasoning Test 

(SVRT). The SVRT consists of a range of problems where 

simple visual stimuli must be categorised into one of two 

categories based on an unknown rule that must be induced. 

Conventional machine learning approaches perform well only 

when trained to categorise based on a single rule and are unable 

to generalise without extensive additional training to tasks with 

any additional rules. Multiple theories of higher-level 

cognition posit that humans solve such tasks using structured 

relational representations. Specifically, people learn rules 

based on structured representations that generalise to novel 

instances quickly and easily. We believe it is possible to model 

this approach in a single system which learns all the required 

relational representations from scratch and performs tasks such 

as SVRT in a single run. Here, we present a system which 

expands the DORA/LISA architecture and augments the 

existing model with principally novel components, namely a) 

visual reasoning based on the established theories of 

recognition by components; b) the process of learning complex 

relational representations by synthesis (in addition to learning 

by analysis). The proposed augmented model matches human 

behaviour on SVRT problems. Moreover, the proposed system 

stands as a more realistic account of human cognition, wherein 

rather than using tools that have been shown successful in the 

machine learning field to inform psychological theorising, we 

use established psychological theories to inform developing a 

machine system. 

Keywords: visual reasoning; visual tasks; relational 

reasoning; symbolic-connectionist model; computational 

modeling  

Introduction 

Machine learning (ML) systems have shown great success at 

many tasks, even sophisticated ones like playing chess or 

video games (e.g., Campbell, Hoane & Hsu, 2002; Vinyals et 

al., 2019). However, ML systems still fail to match human 

performance when it comes to generalising between tasks or 

to untrained goals or exemplars in the same task, or when the 

goals change within the same task (e.g., Bowers, 2017).  

A telling example is given by the Synthetic Visual 

Reasoning Task (SVRT; Fleuret et al., 2011). The SVRT 

consists of simple A/B categorization problems that are 

solved by finding a relation (or a small set of relations) that 

define a category. An example of two of the SVRT problems 

is given in Figure 1. In problem #1 relation same_shape 

defines category A membership and different_shape defines 

category B. In problem #4 categories are defined by the 

relations inside and outside. Humans solve such tasks with a 

few exposures, make few errors and easily switch from one 

problem to another (Fleuret et al., 2011). However, ML 

systems require thousands of exposures, the error rates 

fluctuate highly, require training for each class of problems 

separately, and most networks rely on rote memorisation and 

break when the strategy fails (e.g., when exposed to new 

exemplars; Fleuret et al., 2011; Kim, Ricci & Serre, 2018).  

 

 
 

Figure 1: Examples of images to be categorised in two 

SVRT problems. 

 

The SVRT is interesting, at least in part, because it is a 

microcosm of human visual reasoning. Solving SVRT 

problems seems to require representing each problem in 

terms of objects and relevant relations, and then reasoning 

based on these representations.  

There can be no doubt that ML approaches have had 

resounding successes in many areas of visual reasoning. 

Unsurprisingly, a great deal of recent work in modelling 

visual reasoning processes has relied on successful ML 

approaches (e.g., Ding et el., 2020; Webb, Sinha & Cohen, 

2021; Wu et al., 2020). However, that the SVRT is easily 

solved by humans, and so difficult for ML systems is 

potentially telling. Perhaps ML approaches are not such good  

Category A 

Category B 

#1 #4 
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Figure 2: The pipeline: A model of human visual reasoning. 

 

proxies of human vision. Inspired by recent work from Lovett 

and Forbus (2017), who used the SME model of analogy to 

account for performance on Raven’s progressive matrices, 

we took an approach to accounting for SVRT performance 

inspired by psychological theories of human vision, learning, 

and reasoning. 

In the following we present an end-to-end pipeline for 

solving the SVRT. Rather than using successful ML 

techniques at each decision point, though, we employed 

successful psychological theories. The resulting system, 

given pixels, learns representations of relations, and moves 

on to reasoning. 

The Pipeline: A Model of Human Visual 

Reasoning 

In this section we describe the pipeline components. The 

pipeline comprises a mix of well-known psychological 

models as well as principally novel components developed 

specifically for the pipeline. The existing components are 

described at a very high level (with citations to the original 

works). Novel components are presented in more detail. 

Early Vision 

The first component of the pipeline is a highly simplified 

blackboxed version of early vision (Figure 2). The early 

visual system delivers, among many other things, contour 

information and simple absolute spatial features (e.g., 

Cowey, 1979; Simoncelli & Olshausen, 2001; Treisman & 

Gormican, 1988). Our early vision system takes in pixel 

images and, using the functionality of the OpenCV library 

(Bradski, 2000), extracts features such as contours, x and y 

coordinates of contour points, and x and y coordinates of the 

centroids of fully bounded contours. These features are fed 

into the object representation component. 

Object Representation 

Object representation is performed by a simplified two-

dimensional version of the JIM model by Hummel and 

Biederman (1992). JIM implements Biederman’s (1987) 

Recognition-by-Components theory. The original JIM model 

used geons to represent object parts and relations between 

them. In our simplified 2D version, instead of geons the 

model computes the set of 3 triangles that best fill any 

bounded contour (or blob, taken to be a single object; see 

Hummel & Biederman 1992). Figure 3a demonstrates one of 

the shapes used in SVRT and its representation by a set of 

unique triangles and their spatial arrangement. We use 

triangles because they are easy to compute and maintain 

angle magnitudes when scaled. To inscribe three triangles 

into a contour, the contour is divided into three sub-contours, 

starting from the point furthest from the centroid; the first, 

last and furthest from the centroid points of a sub-contour 

serve as triangle vertices.  

Figure 3b shows a contour with the same shape, but smaller, 

which have the same set of the triangles, thus allowing the 

model to represent same_shape using characteristic triangles 

and their relations, just like JIM does with geons.  

 

 
 

Figure 3: a) An SVRT object represented as a set of 

unique triangles and their spatial arrangement; b) an object 

of the same shape, but smaller size, represented by an 

identical set of triangles. 

a)  b)  
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The DORA Model 

The next two components of the pipeline are based on the 

existent Discovery of Relation by Analogy (DORA) model 

(Doumas et al, 2008; 2022). This is the phase where the 

pipeline learns by analysis. In brief, DORA starts with 

representations of objects coded as flat (non-symbolic) 

vectors of absolute features (e.g., those provided by the early 

visual system). It learns to detect invariants of spatial 

relations, and then learns structured (i.e., symbolic) relational 

representation of spatial relations, such as above. Below we 

give a brief overview of the knowledge representations that 

DORA learns as they are necessary for explaining the novel 

mechanisms developed for the later components in the 

pipeline. Full details of the model appear in Doumas et al. 

(2008; 2022).  

Figure 4 illustrates the macrostructure of the DORA 

network. The model consists of several layers of 

bidirectionally connected units. At the bottom layer, feature 

units define specific properties and encode type information 

of predicates and objects (Hummel & Holyoak, 2003). The 

next three layers of the model comprise its long-term-

memory (LTM). These units (called token units, or tokens) 

represent specific instances (tokens) of progressively more 

conjunctive concepts (see below). At any given time, a subset 

of the units in LTM is potentiated into an active memory 

(Cowan, 2001). Active memory consists of two mutually 

exclusive sets, the driver, the model’s current focus of 

attention, and the recipient, representations in active memory 

that are available for comparison with the driver units. 

 

 

Figure 4: Macrostructure of the DORA network. 

 

DORA learns structured relational representations in a 

format we have termed LISAese (after the LISA model of 

Hummel & Holyoak, 2003). Figure 5 illustrates a 

representation of the above (ball, paddle) in LISAese. A 

proposition in LISAese is represented as a hierarchy of 

progressively more localist units. At the bottom of the 

hierarchy, feature units encode the properties of objects and 

relational roles (or predicates). In the token layers, T1 units 

conjunct sets of features into tokens of specific objects and 

roles (e.g., a unit might specify that a paddle object has 

features x, y, and z), T2s conjunct bound role-object pairs 

(e.g., a unit might specify that a T1 unit representing a ball 

and the T1 unit representing higher-than-something are 

bound into a role-filler pair), and T3s conjunct sets of role-

object bindings into multi-place relations (e.g., a unit might 

specify that the T2 unit representing higher-than-

something+ball, and the T2 unit representing lower-than-

something+paddle are part of the whole proposition above 

(ball, paddle)).  

While the conjunctive token units are sufficient to carry 

binding information for the purposes of long-term storage, 

during processing binding information must be carried 

independently of the item so bound (i.e., the binding signal 

must be dynamic; see Doumas & Hummel, 2005; Hummel, 

2011). In active memory, binding information is carried 

explicitly and independently (see Doumas & Hummel, 2012) 

by the temporal sequence of firing. Specifically, as illustrated 

in Figure 5, DORA uses systematic asynchrony of firing to 

bind roles to fillers (i.e., bound roles and fillers fire in direct 

sequence and out of phase with other bound role-filler pairs). 

Through a process of comparison, DORA learns LISAese 

predicate representations without supervision. The resulting 

representations are functional predicates and allow the model 

to account for over 50 phenomena from the psychological 

literature (for a review, see Doumas & Martin, 2018). 

Recently (Doumas et al., 2020), the model has been extended 

to learn featural representations of relational invariants from 

absolute (non-relational) magnitude representations. 

Consequently, the model learns structured relational 

predicates from absolute (non-relational) non-structured 

reorientations of objects. That is, starting with 

representations of objects with features encoding absolute 

magnitude information (e.g., total area in pixels), the model 

learns representations of spatial relations such as larger, 

wider, and above.  

 

 
 

Figure 5: Representation of the proposition above (ball, paddle) 

in DORA. Color of units indicates temporal sequence. The blue 

and red higher and ball units fire in sequence, followed by the 

orange and green lower and paddle units. When higher and ball are 

active, the purple higher+ball T2 unit is active. When lower and 

paddle are active, the brown lower+paddle T2 unit is active. The 

grey above (ball, paddle) P unit is active throughout. At time t(1), 

blue, purple, and grey units are active; at time t(2) red, purple, and 

grey units are active; at time t(3) orange, brown, and grey units are 

active; at time t(4) green, brown, and grey units are active. 
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Figure 6: An example of the compression process. The model starts with two propositions that share an object bound to two roles 

simultaneously in the driver. The model builds a ternary relational structure in the recipient, where the same object is connected to a higher-

order compressed predicate represented by the connections to the two higher-order feature units. 

 

Compression 

Solving visual reasoning tasks such as SVRT requires more 

than simple metric spatial relations. The SVRT problems 

require representing more complex relations such as inside, 

same_shape, in_contact, and so forth. The next component of 

the pipeline is compression, a mechanism for combining 

multiple learned predicates into more complex predicates. 

This is the phase where the pipeline leans by synthesis. For 

example, concepts like supports can be represented as a 

combination of below and in contact. In addition, 

compression allows the model to conserve resources by 

reducing multiple predicates that require binding resources 

into a single predicate. The compression routine accounts for 

data from a study of human category learning in which 

participants learned categories defined by novel 

combinations of relations (Shurkova & Doumas, 2021). 

The compression routine runs in DORA if an object in 

active memory is bound to two or more roles simultaneously. 

Figure 6 demonstrates the process which compresses two 

roles an object is bound to into a more complex higher-order 

role represented by two higher-order features (here, between). 

Figure 6a shows an example of two relational structures in 

the active memory, where one of the objects is bound to two 

roles simultaneously (y is bound to h and l). As seen in Figure 

6b, first, this object is activated in the driver. The model 

recruits a copy of an object unit in the recipient along with 

the T2 and T3 units in the higher levels of LTM. Next (Figure 

6c-d) the roles bound to the object compete through lateral 

inhibition and become active in sequence. The active 

predicate unit in the driver with no active unit in the recipient 

signals the model to recruit a higher-order feature unit which 

learns the connections to the features of the active predicate 

(see Hummel & Holyoak, 2003). Figure 6f demonstrates how 

the rest of the original propositions are added to result in a 

higher-order ternary proposition shown in Figure 6g. 

The compression routine allows DORA to build 

representations that are structured—i.e., they can be bound to 

arguments—and facilitates learning important compositional 

concepts like supports or inside. 

Relevant Dimension Isolation 

Thus, the pipeline model learns complex relations by 

compressing simpler ones, learned previously. However, it 
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would be useless for the model to compress all simple 

relations it has learned. To compress the correct relations, the 

model needs to select them somehow. 

We account for this phenomenon with a simple 

mathematical model. The model is a supervised high-

sensitivity Bayesian model represented as:  

 

p(θ|Xi) = f(Xi|θ) p(θ), 

 

where p(θ) is the prior of relevancy of a simple relation, 

f(Xi|θ) is the model of comparing the instances of stimuli, and 

p(θ|Xi) is the posterior. The initial assumption is that all 

dimensions are equally relevant. 

 In brief, the model is fed instances of stimuli that exemplify 

a particular complex relation, such as ‘inside’. We take this 

step to be equivalent to a child receiving labels for similar 

observed instances. The model compares across these 

instances and updates the posterior for the presence or 

absence of a particular simple relation in the exemplars. The 

model keeps the simple relations that are maximally 

predictive of the complex relation. 

Relational Reasoning 

The last component of the pipeline, shown in blue, is the 

reasoning module, which can perform tasks such as 

schematisation, generalisation, and/or categorisation. These 

processes are based on the LISA/DORA mapping algorithm 

(Hummel & Holyoak, 2003). The model compares sets of 

structural representations and learns mappings between 

elements that have alignment. The details of these 

mechanisms are provided in Doumas et al. (2008). In brief, 

the model represents the stimulus in the driver with the set of 

relational structures learned during the pretraining phase, 

queries the LTM, tries to map the structures in the driver and 

the recipient, and attempts to categorise with feedback. 

Simulations 

Pretraining 

The model started with no knowledge (i.e., all connections 

with weight zero). We gave DORA experience to novel 2D 

shapes designed to be completely unlike SVRT images (e.g., 

Figure 7). Specifically, we gave DORA exposure to 600 

images like those in Figure 7, each containing between 2 and 

6 objects. During each exposure, the image was run through 

the image pre-processor, which identified the contours, called 

an enclosed contour an object, and represented the object in 

terms of its absolute metric dimensions in pixel space, and 

the proxy JIM model, which represented each object in terms 

of its constituent “geons”. The output of these systems was 

encoded in DORA’s LTM as object units connected to feature 

units representing the raw pixels. DORA then attempted to 

compare sets of images and learned representations of simple 

spatial relations in an unsupervised fashion as described 

above (see Doumas et al., 2022 for details).  

After the initial representation learning, we gave the model 

a set of labelled instances to teach it more complex concepts. 

We gave the model 40 labelled instances of 18 more complex 

concepts like inside, same shape, to the centre, on a diagonal 

(12 were concepts that were important for the SVRT 

problems, and 6 were unrelated concepts so that not all 

DORA’s complex representations were directly relevant to 

the SVRT). This portion of the training was semi-supervised, 

as all 40 exemplars for a concept were presented sequentially, 

and labels in DORA served as an invitation to compare. 

When DORA received the first two instances of a concept it 

compared them (because of their shared label) and attempted 

to perform relevant dimension isolation and compression. 

The result was compared the next exemplar from the 

sequence, and so on for all 40 exemplars. After learning, the 

model had learned representations of all 18 complex 

concepts.  

 

 
Figure 7: An example of a pretraining image for the model. 

Synthetic Visual Reasoning Task 

After pretraining, we fed the model SVRT problems, one at a 

time – the same way the human participants solved them in 

the original study (Fleuret et al., 2011). The model ran the 

same algorithms, without the learning, on SVRT problems. 

When the model saw the first exemplar, it represented it in 

terms of relations that it has already learned and guessed the 

category. With the consecutive exemplars, the model looked 

at an image, represented it in terms of the relations, and then 

by performing mapping with the first exemplar tried to 

identify which relations were predictive of category 

membership. 

SVRT consist of 23 visual problems. The images in each 

problem need to be classified into two categories based on a 

combination of relations, such as bigger_than, inside, 

in_contact, form_a_line, etc. See Figure 1 for an example. 

There were 20 human participants in the original study. 

Participants solved all 23 problems in one sitting. They were 

presented with one image at a time. If the participant 

categorised 7 consecutive images correctly, the problem was 

counted as “solved” and the next problem was presented. If 

the problem was not solved in 35 trials, it was counted as a 

“fail” and the participant moved to another problem. 

Results and Discussion 

Figure 8 provides the results of the simulations. One instance 

of DORA ran through all the problems in a sequence. One 

DORA  run  was  counted  as  one  participant.  The  graph in  
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Figure 8: The results of running the visual reasoning model on 23 SVRT problems compared to the performance of human participants in 

Fleuret et al. (2011). 

Figure 8a shows the average number of attempts it took 

human participants and DORA to solve each problem; a 

successful attempt was a streak of 7 successful categorisation 

trials; the attempts with the streak of less than 7 were 

unsuccessful. 

The graph in Figure 8b shows the proportion of fails on 

each problem: a participant (or an instance of DORA) had 

failed to solve a problem if 35 instances were categorized 

without success. 

Humans were able to solve almost all problems with few 

fails. DORA did as well as humans on some of the problems 

and outperformed humans on others. We return to DORA’s 

“superhuman” performance in the General Discussion.  

DORA’s performance is in stark contrast to traditional ML 

approaches as it learns to perform the SRVT very quickly and 

generalises prior knowledge from a completely different 

context (exposure to unrelated shapes) to the SVRT (just as 

humans do). While CNNs are trained on an order of a million 

of examples for each problem (e.g., Kim et al., 2018) DORA 

is able to solve SVRT from 2-5 exemplars, one problem after 

the other.  

On two problems that DORA failed, several stimuli were 

problematic to classify as “same shape” upon examination. 

When the “bad” stimuli were omitted, the model did not fail. 

As we do not have human data from the original study on 

which stimuli in each problem human participants found 

problematic to classify, it would be interesting to run a study 

examining whether DORA finds the same stimuli difficult to 

categorise. 

General Discussion 

We have proposed a visual reasoning pipeline that is able to 

solve visual categorisation problems from pixels. The 

pipeline is composed of components motivated by successful 

psychological theories. We have shown that the resulting 

model outperforms machine learning systems in visual SVRT 

tasks and does a much better job matching humans’ 

behaviour on these tasks. In addition, our results add to the 

growing body of work (e.g., Doumas & Hummel, 2010; 

Lovett & Forbus, 2017) positing that aspects of visual 

reasoning might be best modelled by a system that represents 

and reasons about relations. 

While on some of the SVRT problems DORA’s 

performance closely matched the performance of human 

participants, on other problems DORA’s performance was 

superhuman. In short, while humans tended to be very good 

at most of the SVRT problems, they did struggle on a few, 

and DORA showed no such difficulty, performing well on all 

problems. However, unlike human participants, DORA had 

perfect memory, had no bias as to which relations to focus 

on, had a much smaller representational vocabulary, and its 

ability to focus on the task without attending to distractors as 

humans do. In the future we will work to identify the source 

of DORA’s advantage, which will serve as an opportunity to 

falsify the approach if it is not subject to the same limitation 

as humans.  

This work provides evidence for efficacy of taking 

psychological theories and data as a very real motivator for 

computational reasoning systems. We argue that it is fruitful 

to investigate integrating successful computational 

psychological accounts with some combination of ML 

methods as necessary, particularly for blackboxed 

components and using psychology-motivated models for 

more comprehensive theory building. Thus, instead of taking 

successful ML components and having them stand as proxies 

for psychological theory, what we do is we take successful 

psychological models and create a fuller account of some 

cognitive phenomena.  
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