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Executive Summary 

The ideal dynamic user-optimal (DUO) route choice problem is to determine vehicle 

flows on each link at each instant of time resulting from drivers using actual minimal- 

time routes. Actual route time is the travel time incurred while driving along the 

route. In a previous paper, we presented a route-based optimal control model for the 

ideal DUO route choice problem. However, this model is not appropriate for large 

scale transportation networks because some degree of route enumeration is necessary 

to solve the model. In this paper, we first present the traffic network constraints and 

link-based DUO route choice conditions. Then, we introduce a link-based variational 

inequality (VI) formulation for the ideal DUO route choice problem so that route 

enumeration can be avoided in both the formulation and the solution procedure. By 

proving the necessity and sufficiency of this VI, we demonstrate that the VI formulation 

is equivalent to the link-based DUO route choice conditions. 
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1 Introduction 

With the advance of Intelligent Vehicle Highway Systems (IVHS), there is a crucial 

need to develop mathematical models to provide real-time traffic information to be 

used in the Advanced Traveler Information Systems (ATIS). Dynamic traffic network 

models are such methods which have good potential to be applied for large-scale urban 

transportation networks. 

Yagar (1971), Hurdle (1974) and Merchant and Nemhauser (1978a) were among the 

first to consider dynamic models for congested traffic networks. But the assumptions 

of these models are very limiting and they are unsuitable for application to general 

large-scale networks. Important breakthroughs began to occur in the late 1980s when 

IVHS ignited the potential applicability of such models to the next generation of surface 

transportation systems. 

The study of dynamic route choice models over a general road network was begun 

by Merchant and Nemhauser (1978a, 1978b) who presented a dynamic system-optimal 

(DSO) route choice model for a many-to-one network. Subsequently, Carey (1987) 

reformulated the Merchant-Nemhauser problem as a convex nonlinear program which 

has analytical and computational advantages over the original formulation. DSO route 

choice models over a multiple origin-destination (0-D) network were established by 

using optimal control theory (Friesz et all 1989; Ran and Shimazaki, 1989a). Recently, 

many simulation-based DSO route choice models have also been proposed by various 

researchers] especially for freeway corridor problems (Chang et al, 1993). 

Another important dynamic generalization of the static user equilibrium concept 

is dynamic user-optimal (DUO) route choice. Friesz et a1 (1989) proposed a DUO 

route choice model by considering the equilibration of instantaneous unit route costs. 



Furthermore, a generalized DUO route choice model over a multiple origin-destination 

network was presented by Wie, F'riesz and Tobin (1990). By defining the exit flow as 

a control variable, Ran and Shimazaki (198913) presented a DUO route choice model 

which considered the equilibration of instantaneous travel times. Subsequently, Ran, 

Boyce and LeBlanc (1993) formulated a set of new instantaneous DUO route choice 

models with flow propagation constraints. Recently, Janson (1991) presented a set of 

operational DUO route choice models using average link travel time/flow relationships 

and proposed a heuristic solution algorithm. Ghali and Smith (1993) also presented a 

set of dynamic network models using packets to represent traffic flows on links. 

The choice of departure time has been addressed by several researchers, including 

Abkowitz (1981) and Hendrickson and Plank (1984), who developed work trip schedul- 

ing models. De Palma et a1 (1983) and Ben-Akiva et a1 (1984) modeled departure 

time choice over a simple network with one bottleneck using the general continuous 

logit model. Mahmassani and Herman (1984) used a traffic flow model to derive the 

equilibrium joint departure time and route choice pattern over a parallel route net- 

work. Mahmassani and Chang (1987) further developed the concept of equilibrium 

departure time choice and presented the boundedly-rational user equilibrium concept 

under which all drivers in the system are satisfied with their current travel choices, and 

thus feel no need to improve their outcome by changing to an alternate choice. 

The static user-optimal route choice problem was formulated as an equivalent set of 

inequalities by Smith (1979). Later on, Dafermos (1982) developed an elastic demand 

model with disutility functions using the variational inequality (VI) approach. An elas- 

tic demand model with demand functions was introduced by Dafermos and Nagurney 

(198413). Fisk and Boyce (1983) also presented a 

for network equilibrium travel choice problems. 

set of alternative VI formulations 

Nagurney (1993) summarized the 
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modeling and algorithmic aspects of VI models for static traffic assignment problems. 

Recently, Friesz et a1 (1993) formulated a VI model for the simultaneous departure 

time/route choice problem. Smith (1993) also presented a route-based VI formulation 

using the packet representation of vehicle groups. Both dynamic models are route- 

based, which need explicit route enumeration in both formulation and solution. 

However, since the dynamic traffic flow does not have constant flow rate during 

propagation, the route-based VI can not be transformed into a link-based VI. Thus, 

it is very difficult to develop a solution algorithm for route-based VI without explicit 

route enumeration. It is generally understood that explicit route enumeration for large 

transportation networks is infeasible. Therefore, this problem is becoming the most 

critical constraint for route-based VI models to be applied in realistic transportation 

networks. 

In order to overcome this problem, we develop a link-based VI route choice model 

in this paper. In addition to this significant contribution, we note that our formulation 

approach is different from others and has more of a traffic engineering background. 

The link-based ideal dynamic user-optimal (DUO) route choice model is presented for 

a network with multiple origin-destination pairs. In Section 1, the network constraints 

for the dynamic traffic network model are first introduced. In Section 2, we present 

the definition of ideal DUO and its corresponding ideal DUO route choice conditions. 

The dynamic traffic network constraints are summarized in Section 3. Then, a general 

link-based variational inequality formulation of the ideal DUO route choice problem is 

proposed. The proofs of necessity and sufficiency are given to demonstrate that this 

VI model is equivalent to the link-based ideal DUO route choice conditions. Finally, 

some discussions on the VI route choice model are presented and some future studies 

are proposed. 
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2 Dynamic Network Constraints 

Here, we consider a network with multiple origins and destinations. The traffic network 

is represented by a directed graph with nodes and directed links. A node can represent 

either an origin or a destination, or simply an intersection. The index r denotes an 

origin node and the index s denotes a destination node. 

Consider a fixed time period [0, T ]  where T is the time sufficient for all persons 

departing during the peak period to complete their trips. We define 

xCa(t) = number of vehicles traveling on link a at time t; 

x r ( t )  = number of vehicles traveling on link a with 
origin r and destination s at time t. 

All variables with superscripts rs denote the variables with origin r and destination s. 

We have by definition that 

T S  

Let ua(t) denote the inflow rate into link a at time t and va(t)  denote the exit flow 

rate from link a at time t. The inflows and exit flows, ua(t) and va(t), are both control 

variables. The state variable for link a is the number of vehicles xa(t)  on link a. The 

state equation for link a can then be written as 

dxy (t) 
d t  

= uY(t)  - vLS(t) Vu, r, s. 

We assume that the number of vehicles on link a at initial time t = 0 equals zero: 

Thus, the number of vehicles on link a at any time t is 
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We require that all variables are nonnegative at all times: 

ZT,(t) 2 0, zlT,(t) 2 0, v8"t) 2 0, tla, r, s. (5) 

Denote the required instantaneous flows from origin node r to destination node s 

at time t as f r s ( t ) ,  which is a given function of time. Also denote A ( j )  as the set of 

links whose tail node is j (after j ) ,  and B( j )  as the set of links whose head node is j 

(before j), where j is any node including origin node r and destination node s. The 

flow conservation at an intermediate node j ( j  # r, s) for each 0-D pair requires that 

the flow exiting from links pointing into node j at  time t equals the flow entering links 

which leave node j at time t .  Thus, the flow conservation equations can be expressed 

as 

q ( t )  = U T , @ )  V j  # r ,  s. 
a E W  a W j )  

Conservation of flow at  origin node r ( r  # s) requires the flow originating at  origin T 

at  time t to  equal the flow entering the links which leave origin r at time t. Thus, the 

flow conservation equations for the origin nodes can be expressed as 

uY(t)  = f y t )  Vr # s; s. 

Denote the instantaneous flows arriving at destination node s from origin node r 

at  time t as the control variable eTs(t ) ,  and let e r ( t )  denote these flows over route p 

at time t. Conservation of flow at destination node s (s # r )  requires the flow exiting 

at destination s at time t to equal the flow exiting the links which lead to destination 

s at  time t. Thus, the flow conservation equations for the destination nodes can be 

expressed as 

vis(t)  = ers( t )  Vr;  s # r. 
aEB(s) 

5 



Denote E,'"(t) as the cumulative number of vehicles arriving at destination s by time 

t from origin r through route p.  By definition, it follows that 

dE,'"(t) 
d t  

= ey( t )  VP ,  T ,  s # r. 

At the initial time t = 0, 

E,'"(O) = 0 ,  vP, r, s. 

By definition, the variables must be nonnegative at all times: 

It is necessary to ensure that the entering and exiting flows, as well as the vehicles 

remaining on links, are consistent with the link travel times. We write these constraints 

using actual link travel times. 

The actual travel time ~,[z,(t), ua(t) ,  va(t)] ,  or simply ~ , ( t ) ,  over link a is assumed 

to be dependent on the number of vehicles z,(t), the inflow ua(t) and the exit flow 

va( t )  on link a at time t. We assume the travel time ~ , ( t )  on link a is the sum of two 

components: 1) a flow-dependent running time gla[za(t), ua(t)]  over link a and 2) a 

queuing delay ga,[z,(t), va(t)] .  It follows that 

The two components gla[z,(t), ua(t)] and gaa[z,(t), 21a(t)] of the time-dependent link 

travel time function T,[x,(t), ua(t), va(t)J are assumed to  be nonnegative and differen- 

tiable with respect to xa( t ) ,  ua(t) and x,(t), va(t) ,  respectively. 

We formulate the constraints relating link flows to link times as follows. Let z&(t) 

denote the number of vehicles on link a using route p between 0-D pair rs  at time t .  

By definition, 

vu. 
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For any intermediate node j # T on route p ,  denote a subroute fi as the section of route 

p from node j to destination s. For any link a E B( j ) ,  vehicles on link a using route p 

at  any time t must result in either: 

1. extra vehicles on downstream links on subroute f i  at time t + ~ , ( t ) ,  or 

2. inweased exiting vehicles at the destination at time t + ~ , ( t ) .  

It follows that 

We refer the reader to Ran, Boyce and LeBlanc (1993) for more details. There are also 

capacity constraints and oversaturation constraints for time-dependent traffic flows in 

the network. The exit flow capacity constraints are combined in the dynamic link 

travel time functions as suggested by Ran et a1 (1992). For other physical capacity 

constraints and oversaturation constraints, we leave them for the situations where the 

model is implemented on a realistic traffic network because those constraints will largely 

increase the computational burden. The detailed discussion of those constraints can 

be found in Ran (1993). 

3 The Ideal DUO Route Choice Conditions 

Since we are considering a continuous time problem and assuming that the link travel 

times are increasing with inflows and number of vehicles on links, the flow propagation 

constraints presented in Section 1 automatically guarantee that the first-in-first-out 

(FIFO) requirement for flows on a given route can be satisfied. We note that the 

FIFO requirement may be violated in a discrete time situation. We also note that the 

traditional BPR functions are no longer applicable in a dynamic traffic network problem 
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where time-dependent queuing and spillback problems occur. A set of time-dependent 

link travel time functions for signalized arterial links have been proposed by Ran et a1 

(1992). Those link travel time functions are similar to the above general link travel 

time functions. It is our intention that the realistic link travel time functions will be 

employed when our VI route choice model is implemented for realistic transportation 

networks. 

Consider the flow which originates at  node T at time t and is destined for node s. 

There is a set of routes { p }  between 0 -D pair (r ,  s). Define qiS(t) as the travel time 

actually experienced over route p by vehicles departing origin r toward destination s 

at  time t .  We use a recursive formula to compute the route travel time qi"(t) for all 

allowable routes. Assume route p consists of nodes (r ,  1,2, - a ,  i, - . , s). Denote $(t)  

as the travel time actually experienced over route p from origin r to node i by vehicles 

departing origin T at time t .  Then, a recursive formula for route travel time qiS(t) is: 

Qp, r, i; i = 1,2 ,  - a ,  s; 

where link a = (i - 1, i) .  

Denote ~ ' " ( t )  as the minimal travel time experienced by vehicles departing from 

origin T to destination s at time t. Then, ~ ' " ( t )  = min, vis@). ~ ' " ( t )  is a functional 

of all link flow variables at time w 2 t ,  i.e., ~ ' " ( t )  = 7r's[u(w),v(w),z(w); w 2 t].  This 

functional is neither a state variable nor a control variable, and it is not fixed. This 

functional is not available in closed form. Nevertheless, it can be evaluated when u(w) ,  

v(w)  and z (w)  are temporarily fixed (as in a Frank-Wolfe algorithm), which is all that 

is required for solving the model. 

Then, we propose a definition of DUO that reflects the ideal route choice behavior 

of travelers as in Ran, Boyce and LeBlanc (1992). The formulation of the ideal DUO 
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route choice problem will be based on the underlying choice criterion that each traveler 

uses the route that minimizes his/her actual travel time when departing from the origin 

or any intermediate node to his/her destination. 

Ideal DUO: If, f o r  each 0-D pair at each instant of time, the actual travel 

t imes experienced b y  travelers departing at the same t ime are equal and 

minimal, the dynamic traf ic  flow over the network is in an  ideal dynamic 

user-optimal state. 

The above definition can also be called a predictive or anticipatory DUO, since the 

actual route travel time is predicted using the corresponding route choice model. This 

model assumes each traveler will have perfect information about the future network 

conditions and will comply with the guidance instructions based on ideal DUO route 

choice conditions. We note that in an ideal DUO, a route p between r and s is being 

used at  time t if fiS((t) > 0. In the following, we write a set of route-based ideal DUO 

route choice conditions based on the above definition: 

f,'"(t) - .'"(t)] = 0 

QPl r, s;  

QP, r, s. 

QP, r, s; 

Most of the current ideal DUO route choice models are formulated using the above 

route-based DUO route choice conditions. Since explicit route enumeration can not be 

avoided when directly using the above conditions, we seek to derive a set of link-based 

ideal DUO route choice conditions as follows. 

Unlike in the previous dynamic route choice models, we now write the equivalent 

mathematical inequalities for the ideal DUO definition using link and node variables, 
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in contrast to the route-based formulation. In this case, for any route from origin T to 

destination s, link a is defined as used at time t if uy( t )  > 0. 

Define 7rri* ( t )  as the minimal travel time actually experienced by vehicles departing 

origin T to node i at  time t ,  the asterisk denoting that the travel time is computed 

using ideal DUO traffic flows. For link a = (i, j ) ,  the minimal travel time 7rrj* ( t )  from 

origin T to j should be equal or less than the minimal travel time 7rri* ( t )  from origin 

T to i plus the actual link travel time ~ , [ t  + 7rri* (t)] at time instant [t + 7rri* ( t )] ,  where 

this time instant is the earliest clock time when the flow departing origin T at time t 

can enter link a. It follows that 

7rTri'(t) + T,[t + 7rri* ( t )]  2 7 r r j * ( t )  vu = (2, j ) ,  T .  (19) 

If, for each 0-D pair T S ,  any departure flow from origin T at time t enters link a at  the 

earliest clock time [t + rri* ( t )] ,  or uy[t + 7rri* ( t )]  > 0, then the ideal DUO route choice 

conditions require that link a is on the minimal travel time route. In other words, 

the minimal travel time 7 r r j * ( t )  for vehicles departing origin T toward node j at time 

t should equal the minimal travel time 7rri*(t) for vehicles departing from origin T to 

i plus the actual link travel time ~ , [ t  + 7rri* ( t )]  at time instant [t + 7rrpi* (t)].  It follows 

that 

The above equation is also equivalent to the following: 

[7rr j*( t )  - 7rTr"(t) - T,[t + 7rri* (t)]] uY'[t + 7 r r i * ( t ) ]  = 0 vu = (2, j ) ,  T ,  s. (21) 

Thus, the link-based ideal DUO route choice conditions can be summarized as follows: 

7rri* ( t)  + T,[t + 7rrz* (t)] 2 7rrj* ( t)  vu = (2, j ) ,  r ;  (22) 
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p i *  ( t )  + Ta[ t  + TTi* ( t )]  - TTj* (t)] uy* [t + I r T i *  ( t )]  = 0 VU = (Z,j), T ,  s; (23) 

In the appendix, we prove that the above link-based ideal DUO route choice condi- 

tions imply the route-based ideal DUO route choice conditions (16)-(18). We note that 

a similar set of link-based ideal DUO route choice conditions were proposed by Kuwa- 

hara and Akamatsu (1993). In their formulation, they use a different representation of 

departure/arrival times for traffic flows. 

4 Link-Based Variational Inequality Forrnulat ion 
of Ideal DUO Route Choice 

The static user-optimal route choice problem has been formulated as both route- 

based and link-based variational inequality models by various researchers. Since the 

traffic flow is assumed constant with no dispersion during progression, the route-based 

VI and link-based VI are convertible. In a time-dependent traffic network, the dynamic 

flow is no longer constant and traffic dispersion has to be taken into account in flow 

propagation. Because of these reasons, the dynamic route-based VI route choice model 

can not be transformed into a dynamic link-based VI route choice model. Thus, it 

is very difficult to develop a solution algorithm for the dynamic route-based VI route 

choice model without explicit route enumeration. Therefore, a link-based dynamic VI 

route choice model and other link-based dynamic travel choice models are of critical 

importance to the success of dynamic network equilibrium modeling. 

In this section, the constraint set for our dynamic route choice problem is first 

summarized as follows: 
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Relationship between state and control variables: 

dx; 
dt 
-- - uY(t)  - vL"(t) Vu, r, s; 

dEp'" ( t )  
dt = e; ( t)  QP, r, s # r ;  

Flow conservation constraints: 

Flow propagation constraints: 

Boundary conditions: 

E,'"(O) = 0, QP, r, s; 

zY(0) = 0, Vu, r, s. 
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Denote !2Lj* ( t )  as the difference between the minimal travel time from origin T to node 

j and the travel time from origin T to node j via the minimal travel time route from 

origin T to node i and link u for vehicles departing from origin T at  time t. It follows 

that 

OL'* ( t )  = xri* ( t )  + Ta[ t  + xri* ( t )]  - xrj* ( t )  vu,  r ;  a = ( 2 , j ) .  (37) 

In order to simplify the presentation, we rewrite the link-based ideal DUO route choice 

conditions as follows: 

q *  ( t )  2 0 vu = (2, j ) ,  r ;  (38) 

u'a"* [t + 7 f i *  ( t)]  n;i* ( t )  = 0 vu = (2, j ) ,  r, s;  (39) 

uY[t + 7rri* (t)] 2 0 vu = (2, j ) ,  T ,  s. (40) 

Then, the equivalent link-based variational inequality formulation of ideal DUO route 

choice conditions (38)-(40) may be stated as follows. 

Theorem 1. The dynamic traffic flow pattern satisfying constraints (25)- 

(36) is in an ideal DUO route choice state if and only if it satisfies the 

variational inequality problem: 

n;j* ( t)  { u?[t + IFi*  (t)] - u?'[t + 7rri* ( t ) ] }  2 0 
rs a 

Proof of Necessity. 

We need to prove that the ideal DUO route choice conditions (38)-(40) imply the 

variational inequality problem (41). For any link a, a feasible inflow at time [t+xri* ( t )]  

is 

u?[t + TITTi* ( t)] 2 0. (42) 

13 



Multiplying DUO route choice condition (38) with equation (42), we have 

uy [t + 7rTa* (t)] c y *  ( t )  2 0 vu, T ,  s; a = (2 ,  j ) .  (43) 

We subtract the second ideal DUO route choice condition (39) from equation (43) and 

obtain 

{ uY[t + 7rTi* ( t)]  - uTff*[t + 7rri* ( t ) ] }  @* ( t)  2 0 Vu, r ,  s; a = (2, j ) .  (44) 

Summing equation (44) for all links a and all 0-D pairs T S ,  it follows that 

{ uY[t + 7P' (t)] - uTff*[t + 7rri* ( t ) ]}  a;j* ( t )  2 0 where a = (2, j ) .  (45) 
T S  a 

Proof of Sufficiency. 

We need to prove that any solution uy* [t+7rTi* ( t)]  to the variational inequality problem 

(41) satisfies the ideal DUO route choice conditions (38)-(40). For any 0-D pair T S ,  

any link a in some route p from origin T to destination s, let a = (2, j ) .  

Case (i) .  If 

q ' [ t  + 7rrZ*(t)] > 0, (46) 

we define a pair of successive link inflow patters us ( t)  and u- ( t)  for link b = ( 1 ,  m) and 

0-D pair cd at time t as follows: 

u+(t) = {utcd[t + ~ " ' * ( t ) ] ,  V b = ( 1 ,  m); c,  d } ,  

where 

Ut"d[t + 7rd*  ( t)]  = uTL"'[t + TTi* ( t)]  + E ,  

if cd = T S ,  b = ( 1 ,  m) = (2 ,  j )  = a,  otherwise, 

U p q t  + Td* ( t )]  = u;d* [t + 7rc1* ( t)];  

14 
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and 

u-(t) = { U i C d [ t  + 7rcl* ( t )] ,  v b = ( 1 ,  m); c, d } ,  

where 

U p [ t  + 7r"1*(t)] = uTag*[t + 7rri* (t)] - E ,  

if cd = TS, b = ( 1 ,  m) = (2, j )  = a, otherwise, 

U p [ t  + 7rc1* (t)] = u;d* [t + 7rd* (t)].  (52) 

If we choose 0 < E < ur* [ t  + rri* ( t )] ,  then u+(t) and u-(t) induce two feasible route 

flow patterns through network flow constraints (25)-(36). Substituting now u+(t) into 

the variational inequality problem (41), we have 

which implies 

n:j*(t) 2 0. 

Similarly, substituting u-(t) into the variational inequality (41) yields 

Hence, combining equations (54) and (55), we have 

Case (ii). If 

u',"*[t + 7rri* (t)] = 0, 
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then the above defined u+(t) is still feasible. Therefore, equations (54) is valid, i.e., 

Concluding from equations (56) and (58), we obtain 

Clearly, from either equations (46) and (56) in Case (i) or equations (57) and (58) in 

Case (ii), it follows that 

u'a"*[t + TTi* ( t )]  @* (t) = 0, 

while, by definition, it always holds that 

21, Ts*  [t + Triv ( t)]  2 0. 

Since 0 -D  pair T S  and link a are assumed to be arbitrarily chosen, equations (59)- 

(61) are just the link-based ideal DUO route choice conditions (38)-(40). Therefore, 

variational inequality (41) is a sufficiency condition for ideal DUO route choice con- 

ditions (38)-(40). Since we proved the necessity and sufficiency of the variational 

inequality problem (41) in the above, we state that the VI problem is equivalent to the 

ideal DUO route choice conditions (38)-(40). The proof is complete. 

5 Concluding Remarks 

In this paper, a link-based VI model for ideal DUO route choice is proposed. The 

necessity and sufficiency proofs of the VI model demonstrate that this model is con- 

sistent with the link-based ideal DUO route choice conditions. Because the constraint 

set is compact and the travel time function is continuous, the existence of this VI can 

be easily proven (Nagurney, 1993). However, the uniqueness of this VI requires strong 
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monotonicity conditions for the travel time function. The rigorous proof of uniqueness 

will be given in a subsequent paper. 

The main advantage of such a link-based VI formulation is that the explicit route 

enumeration can be avoided. This feature allows our model to be applicable for large- 

scale dynamic transportation networks with general link travel time functions. 

The link-based VI model for ideal DUO route choice can be extended to include 

departure/arrival time choice and mode choice as well. Our next step is to develop 

some efficient solution algorithms for the ideal DUO route choice VI model. We expect 

that the Frank-Wolfe and diagonalization techniques proposed by Boyce et a1 (1991) 

can be applied to solve this model. Other solution algorithms, such as the projection 

algorithm, implemented by Nagurney (1986) for VI models for static network equi- 

librium problems are also extendable for our dynamic VI problem. We note that the 

solution algorithm for our ideal DUO route choice VI model has to  be implemented on 

an expanded time-space network proposed in Boyce et a1 (1991). 

Appendix: Relationship of Route-Based and Link- 
Based Ideal DUO Route Choice Conditions 

Lemma 1: The link-based ideal DUO route choice conditions (38)-(40) 

imply the route-based ideal DUO route choice conditions (16)-(18). 

Proof: 

We need to prove that under the link-based ideal DUO route choice conditions 

(38)-(40), for each 0-D pair rs,  any vehicle flows departing from origin r at time t 

must arrive at  destination s at the same time by using the minimal actual travel time 

routes. 
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For simplicity, we first consider the case having only two route departure flows 

fr"(t) > 0, f;"(t) > 0 for one 0 -D  pair rs  at time t .  It follows that 

Suppose fr"(t),  f;"(t) take route 1 and route 2, respectively. Route 1 and route 2 

are minimal-travel-time routes generated under the link-based ideal DUO route choice 

conditions. For simplicity, assume that route 1 comprises 4 links: 1 = (r ,  h) ,  2 = 

(h,i),..-,4 = ( j , s ) ;  and route 2 comprises 5 links 5 = (r ,k) ,6  = (k,Z),-..,9 = 

(m, s). Note that route 1 and route 2 may have overlapping links. Also note that 

this assumption can be generalized to any route with any number of links. Using the 

link-based ideal DUO route choice conditions (38)-(40), we have 

u;"'(t) > 0, uY[t + 7rrh*(t)] > 0, - , uY[t + 7rr-i*(t)] > 0 (63) 

u'5"*(t) > 0, uY[t + 7rrk* (t)] > 0, * * , uy[t  + 7rrm* ( t )]  > 0 (64) 

This is because route 1 and route 2 are generated under the link-based ideal DUO route 

choice conditions (38)-(40) so that there are inflows over links I, 2, . , 9  over route 1 

and route 2. If route 1 and route 2 do not have overlapping links, the inflow on each 

link over route 1 and 2 is positive at  the instant of time when departure flows arrive 

at the link. It follows that 

u;;* ( t)  > 0, u;;[t + 7rrk* ( t )]  > 0, * * * , u;;[t + 7rrm* (t)] > 0 (66) 

where the second subscripts 1 and 2 represent route 1 and 2, respectively. Note that 

the instants of time when departure flows arrive at the links are ensured by the link- 

based ideal DUO route choice conditions (38)-(40). For example, [t + 7rTh*(t)3 is the 
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instant of time when departure flow f:" ( t)  arrives at link 2. In other words, if departure 

flows frs( t)  > 0, flS(t) > 0 satisfy the link-based ideal DUO route choice conditions 

(38)-(40), we can obtain equations (65)-(66). 

If route 1 and route 2 have overlapping links, (65)-(66) still hold. For example, if link 

2 equal link 6 (route 1 and route 2 are overlapping on link 2), [t+rrh* (t)]  = [t +rrk* ( t)]  

is the instant of time when departure flows arrive at link 2. Both flows must experience 

the same link travel time ~ 2 [ t  + xrh* ( t ) ]  and exit link 2 at the same time [t + rri* (t)] .  

Then the inflows on subsequent links over route 1 and route 2 still satisfy equations 

(65)- (66). 

Denote the arrival flows over route 1 and 2 as e;S[t+r'S* ( t )] ,  ey[t+rrs* ( t )] ,  which are 

associated with departure flows f{"(t), fiS(t), respectively. Note that route 1 and route 

2 are minimal-travel-time routes. Using the route-based flow propagation constraints 

(14) for the last links 4 = ( j ,  s) and 9 = (m, s) over route 1 and 2, we obtain that 

where 

rrs* ( t )  = rrj* (t)  + T& + rrj* ( t )]  = rrm* (t)  + T g [ t  + rrm* (t)]  

are the two sets of inflows over route 1 and 2, respectively. Since these flows are 

positive, we conclude that the departure flows frs(t), fiS(t) arrive at destination s at 

the same time [t + rrs* (t)].  Thus, the link-based ideal DUO route choice conditions 
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guarantee that for 0 -D  pair rs, flows departing at time t have the same arrival time 

[t + 7 f S *  ( t)] .  

If we consider a general case having multiple route departure flows f,''(t) > 0 for 

any 0-D pair rs at time t ,  the above analysis still applies to any positive departure 

flow over any route p between 0 -D  pair rs. Therefore, the link-based ideal DUO route 

choice conditions (38)-(40) imply the route-based ideal DUO route choice conditions 

(16)-( 18). 
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