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Do Learning Communities Increase First Year College Retention? 

Evidence from a Randomized Control Trial  
 
 

Tarek Azzam, Michael D. Bates, and David Fairris 

May, 2022 
 
Abstract:  

In this paper, we estimate the impact of a learning community on first-year college retention at a 

four-year public research university using a randomized control trial (RCT) for those students 

who opt into the experiment. Intent-to-treat and local-average-treatment-effect estimates reveal 

no discernable programmatic effects. We also generate estimates of program impact using 

observational techniques and find estimated impacts that are positive, large and statistically 

significant. We explore a variety of selection processes to better understand the differences 

between the RCT and observational estimates and to reflect on the generalizability of the RCT 

results for various other populations of interest. Non-random selection into the experimental 

sample accounts for the major difference in the two estimates and also cautions against 

generalizing the RCT result for populations outside the experiment. Keywords: higher education, 

experimental design, generalizability, selection on unobserved variables. 
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Introduction  

In the past few decades, colleges have responded to the challenge of improving first-year 

college retention by creating freshmen year learning communities (Pitkethly and Prosser, 2001; 

Kyndt et al., 2017; Xerri, Radford, and Shacklock, 2018).1 Learning communities bring together 

small groups of students, typically into thematically-linked courses for at least one term during 

freshmen year, in the hopes that students will better engage with course material, support one 

another socially and academically, and thereby enhance academic success, first-year retention, 

and ultimately graduation. An independent study in 2010 by the John N. Gardner Institute for 

Excellence in Undergraduate Education found that 91% of reporting institutions claimed to 

possess a learning community of some form or another at their institution (Barefoot, Griffin, and 

Koch, 2012).  

We utilize a randomized control trial (RCT) design, linked to student record data, to 

explore the extent to which a First-Year Learning Community (FYLC) program at a four-year 

research university increases first-year student retention. At the outset, and during the period for 

which our analysis takes place, students voluntarily enrolled in the program, and so 

randomization occurs within this self-selected student population. We offer “intent to treat” 

(ITT) estimates of the effect of being randomized into treatment from among students in this 

population. Though there is relatively high compliance with the randomization, some students 

who were randomly assigned to the program ended up not taking it, and some students who were 

not assigned to the program made their way into the program nonetheless. Due to this two-sided 

noncompliance with the randomization we also estimate the “local average treatment effect” 

(LATE) of the program’s impact among those compliers who are moved to treatment or non-

treatment by the randomization. The ITT and LATE estimates of program impact reveal no 

                                                           
1 First-year retention rates vary significantly across higher education institutions and institutional types. For 

full-time students, first-year retention rates are close to 80% at four-year public and private institutions, and close to 
50% at two-year institutions (U.S. Department of Education, 2017). At elite four-year institutions, first-year 
retention can be as high as 99%, whereas at lesser-known regional institutions that award four-year degrees, first-
year retention rates can be as low as 40% (U.S. News and World Report, 2018).  
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statistically significant effect on first-year retention. This is the first study of which we are aware 

to generate estimates from an RCT design of the impact of a learning community on first-year 

retention at a four-year university.  

In the absence of randomization, many researchers in this literature employ observational 

analyses to study program impact, conditioning on variables available in student records and 

using methods such as OLS, nonlinear estimation, and propensity score matching on the full 

sample of freshmen to estimate the effect of the FYLCs on first-year retention. We mimic this 

exercise to explore whether these estimates closely match the results found in the RCT. We find 

stark differences in estimated impacts between the two approaches, with the observational 

methods revealing large and statistically significant benefits of the program and the RCT 

uncovering little discernable impact. 

We explore a variety of selection processes to better understand the differences between 

the RCT and observational estimates and to reflect on the generalizability of the RCT results for 

various other populations of interest. As it happened, this last question is not a matter of idle 

curiosity; shortly after the completion of our analysis, and based largely on the positive results of 

an in-house observational analysis of program impact, the FYLC was expanded to populations 

beyond those who opt-in voluntarily. 

We begin this exploration by comparing retention rates, based on both observable and 

unobservable attributes, for the untreated within the experiment and the larger group of students 

who did not select into the experiment at all. Next, because there was a group of students who 

made their way into treatment even though they did not participate in the RCT, we consider 

whether they have similar outcomes to those who participated in the randomization before 

receiving treatment. And, finally, we consider students who voluntarily enrolled in the 

experiment but did not comply with the randomization by either not showing up to their assigned 

treatment or by crossing over from assigned control to taking treatment. 

Our results reveal that those students who express a desire to enroll in the RCT are, in 

many observed respects, selected from more vulnerable segments of the student population – 
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they tend, for example, to have lower high-school GPAs, lower SAT scores, and come from less-

advantaged backgrounds. However, we also show that the experimental population possess 

unobserved characteristics – presumably, things like grit, determination, focus, and commitment 

– which make them even more likely to succeed in college than their peers who did not enroll in 

the study. This positive selection on unobserved variables holds for both those who do and do 

not receive treatment. Moreover, we find no evidence of nonrandom noncompliance within the 

experiment.  

Nonrandom selection into the RCT accounts for the positive observational estimates of 

the program’s impact on retention. This positive selection also clearly demonstrates that the 

experimental population is not representative of the remainder of the freshman class. Given this 

positive selection on unobserved variables persists among both treated and untreated, we believe 

it would be unreasonable to assume the LATE generalizes to the population of students outside 

the experiment. Indeed, earlier work establishes the absence of unobserved differences in the 

outcome as a criterion for the generalizability of results. However, the absence of selection into 

noncompliance within the experiment suggests the LATE is likely to generalize to the entire 

experimental population.  

The paper is organized as follows: First, we describe in greater detail the learning 

community literature, the FLYC at this institution, the nature of the randomized control trial 

design, and the data to be used in the analysis. Second, we describe the empirical methodology, 

followed by the results. The final section offers a summary discussion and conclusion.  

 

Background and Data 

While there are many published evaluations of first-year learning experience programs 

broadly defined and still more conducted by in-house researchers, the set of studies focused on 

such first-year learning communities is restricted.2 Of those focused on learning communities 

                                                           
2 See Barefoot, et al. (1998) and Pascarella and Terenzini (2005) for early reviews and Angrist, Lang, and 
Oreopoulis, (2009), Bettinger and Baker, (2014), and Paloyo, Rogin, and Siminski, (2016) for more recent examples 
of evaluations of first-year experience programs more generally. 
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specifically, some observational studies utilize advanced techniques, such as propensity score 

matching (Clark and Cundiff, 2011; Provencher and Kassel, 2019), instrumental variables (Pike, 

Hansen, and Lin, 2011; Hansen and Schmidt, 2017), Heckman’s two-step procedure (Hotchkiss, 

Moore, and Pitts, 2006), and longitudinal analysis (Millea et al. 2018).  However, in each, the 

exogeneity assumptions necessary for causal interpretation of the results may be problematic.  

There are some RCT studies that also estimate the impact of learning communities on 

various programmatic outcomes. Two of these studies estimate the impact of remedial learning 

communities on retention rates in two-year community college settings (Scrivener et al. (2008) 

and Visher et al. (2012). Both find small positive effects on performance in remedial courses, 

though no effects on first-year retention. Interestingly, Scrivener et al. (2008) find in a two-year 

follow-up study that program participants were 5 percentage points more likely still to be 

pursuing their degree than control group members. However, causal effects identified in the 

community college setting are likely to differ from those at four-year institutions. Community 

colleges typically draw differentially from the academic and soft-skills distributions. Four-year 

universities also tend to provide more opportunities for a community to develop naturally 

through on-campus housing and additional extra-curricular programs. Consequently, the effects 

of learning communities on retention at four-year institutions warrants further examination.   

The third RCT evaluation of learning communities provides the closest study to the one 

at hand. Russell (2017) examines the effects of experimental study groups at the Massachusetts 

Institute of Technology. While the overall effects on program participants are of mixed sign, 

small in magnitude, and noisy, subgroups of participants do display large, positive, marginally 

statistically significant program effects on some outcomes such as GPA and majoring within a 

STEM field. First-year retention was not an outcome variable that was evaluated in this study 

and effects on male, racial majority, and high income students are not reported. 

The First-Year Learning Community (FYLC) we study exists in the largest college of a 

major, four-year public research university with now over 20,000 students. The student 

population is very diverse, ethnically, racially, and socio-economically. Nearly 40 percent of 
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entering freshmen are from underrepresented backgrounds (African American, Native American, 

and Chicano/Latino), over 50% would qualify as first-generation college graduates, and roughly 

one-third come from family incomes under $30,000. While in many respects the university is 

representative of four-year public, and even some private, institutions of higher education, in 

other respects, especially in regards to the diversity of the student population, it is arguably less 

representative.  

The FYLC program began on a small scale, with roughly 200 students, at a time when the 

campus was growing rapidly and there was a sense on campus that students – and freshmen in 

particular – were facing larger and more impersonal classes. The program is modeled after 

learning community programs in which two or more courses are linked around a specific theme 

(Laufgraben, Shapiro and Associates, 2004; Kuh, Kinzie, Schuh, Whitt and Associates, 2005; 

Zhoa and Kuh, 2004). The general format may vary across institutions but the basic idea is 

similar and the intention is the same: that students will better engage with course material, 

support one another socially and academically, and thereby enhance academic success, first-year 

retention, and ultimately graduation. Increasing first-year retention rates was the primary 

institutional measure of the FYLC’s success according to the founding Associate Dean and 

Director of the program under study.  

The FYLC program at this institution possesses a variety of curricular and extra-

curricular activities for enrolled freshmen. The primary curricular piece is a set of year-long 

thematic courses – each course based, for example, on a theme such as “Human Rights” or 

“Justice” – and participating students enroll in one thematic course for their entire freshman year. 

This course constitutes one of four or perhaps five courses taken by a student each term. A 

FYLC course is smaller than an average lecture course at the University – 75 students rather than 

the typical 100-500 students – and is taught by three different ladder-ranked faculty members, 

typically from three different disciplinary fields, for each of the three freshman year terms. As 

with most large lecture courses, students in FYLC courses break up into “discussion sections” 
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once a week with a graduate student teaching assistant. However, every effort is made to have 

both the group of students and the T.A. remain together throughout all three terms of the course. 

In addition to these curricular aspects, the program offers extra-curricular events – including trips 

to museums and college basketball or soccer games – throughout the year. Students in the FYLC 

program are obligated to engage in behavioral activities that are meant to enhance academic 

success – such as meeting with professors and teaching assistants, separately, at least once during 

each term – and to attend both academic and cultural events on campus, such as a faculty lecture 

and a concert. 

With the help of a Fund for the Improvement of Post-Secondary Education (FIPSE) grant 

from the Department of Education, student capacity in the FYLC was increased over a two-year 

period in order to provide sufficient sample size for analysis. The random assignment feature 

was institutionalized in the following way: Program staff solicited intent to participate 

commitments from incoming freshmen following communications about the program to both 

parents and students prior to freshman orientation. Every entering freshman received the same 

information about the program and was encouraged to enroll in the lottery in order to participate. 

The goal was to receive expressions of interest by 1,000 incoming freshmen each year, 450 of 

whom would then be randomly assigned to the available program seats and the others would be 

assigned to the control condition. This would allow us to detect an effect of about 0.05 change in 

first-year college retention at a power of 0.9, similar to that detected in Scrivener et al. (2008).  

The new random assignment regime roughly approximates the old program 

implementation procedure, but with several differences that conceivably could have affected 

program participation and program outcomes. Under the former regime, program participants 

were essentially drawn from among the self-selected student population (i.e., those who would 

have expressed an intent to enroll had they been asked) on a “first-come, first-served basis” 

during consecutive course enrollment sessions at freshmen orientation. Under the new regime, 

treatment is randomly assigned from the self-selected population and given permission to enroll 

in the program in advance of orientation. Under the old regime, non-participants were either 
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unaware of the program or found that the FYLC classes were filled if they tried to enroll in them 

during orientation. Under the new regime, the control population knew of the program and 

elected to be enrolled in it, but was never notified that they had “lost” the lottery, only possibly 

finding out that this was the case if they attempted and were unable to enroll in the program 

during course enrollment at orientation. Finally, under random assignment students and parents 

were given greater opportunity to discuss the program before being given an opportunity to 

enroll.  

A fundamental assumption of RCTs is that the behavior of the control population is not 

affected by the knowledge that they are part of an experiment in which they will be compared to 

the treated population and so act differently than they normally would to overcome a perceived 

disadvantage. As is the case in many experimental studies, we cannot guarantee that this 

assumption holds in the present case. However, several factors lead us to believe that it might. 

First, study participants were unaware of the RCT analysis itself – that there would be treated 

and control samples and an evaluation of certain outcomes on each. Instead, they were informed 

that random assignment would be used to allocate scarce space to students interested in the 

program. Second, there are various opportunities on campus for students to enhance their 

academic performance and foster greater connections with fellow students and the institution 

more generally, however, none of these programs is in great supply and none resembles the full 

activities and support available through the FYLC program. 

Among the widely available opportunities for enhancing academic performance on 

campus, there is tutoring in select courses and note-taking and test-taking skills tutorials 

conducted at the Learning Center. Freshmen who are struggling academically at the end of their 

first term are offered a unit-bearing course that imparts some of these same skills and requires 

that students engage more academically by, for example, visiting their professors during office 

hours. There are also plenty of opportunities to become more socially connected to fellow 

students, such as fraternities and sororities, and to the institution more generally, such as concerts 

and art openings. However, apart from the Honors Program, which accepts a very small number 
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of high-performing freshmen to engage with ladder faculty in small-group seminar settings, there 

is nothing resembling the FYLC program for freshmen at this institution. The Honors Program 

solicits applications and admits students well before FYLC applicants are informed of their 

allocation status.  

Data for this analysis come from student records on the two freshman cohorts during the 

years for which the program capacity was increased by virtue of the federal grant. A unique 

feature of our analysis is that in addition to retention and demographic information for the self-

selected population who applied to be part of the program, we also gather information on the 

remainder of the freshman class who at the outset expressed no interest in program participation. 

Having information on the non-experimental population is unfortunately rare in RCT designs. 

We use this additional information to shed light on the nature of various selection issues which 

are impossible to explore without it.  
 
Table 1: Student Background Characteristics 

 Assigned 
Control 

Assigned 
Treatment 

Difference  Lottery 
Sample 

Non-lottery 
Sample 

Difference 

High-school 3.46 3.46 0.01  3.46 3.53 -0.07*** 
GPA   (0.02)    (0.01) 
SAT math 494.25 498.65 4.40  496.57 544.40 -47.83*** 
   (6.15)    (3.63) 
SAT writing 491.42 496.40 4.98  494.04 508.33 -14.29*** 
   (5.77)    (3.29) 
SAT verbal 488.00 491.14 3.14  489.65 502.39 -12.73*** 
   (5.88)    (3.31) 
Female 0.68 0.69 0.01  0.69 0.50 0.19*** 
   (0.02)    (0.01) 
1st generation 0.63 0.62 -0.01  0.62 0.56 0.07*** 
   (0.02)    (0.01) 
Low income 0.60 0.62 0.01  0.61 0.56 0.05*** 
   (0.02)    (0.01) 
Lives on  0.74 0.75 0.01  0.75 0.71 0.04*** 
Campus   (0.02)    (0.01) 
N 741 824 1,565  1,565 6,566 8,131 

 Low income is defined as family income below $30,000. Robust standard errors are in 
parentheses. 
 

We begin by aggregating the two cohorts into a single sample for the purpose of analysis.  
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This yielded a sample of 8,131 students, 1,565 of whom applied to be part of the FYLC, and 824 

of whom were chosen through the lottery system to be part of the program. In addition to first-

year retention (where, 1=returned for a second year at this institution, and 0=did not return), we 

have a host of student background characteristics from student records that are used as control 

variables in the analyses to follow. Table 1 lists these characteristics variables and shows their 

means for three primary populations of interest.  

None of the background variables is meaningfully or statistically significantly different 

across those assigned to the treatment or control. However, this is decidedly not the case when 

we compare students who self-selected into the lottery with those who chose not to enter the 

lottery. The Table 1 results reveal that these two groups are statistically different with regard to 

every observed background characteristic. Moreover, with the exception of being proportionately 

substantially more female and slightly more likely to live on campus, the ways in which the 

lottery students differ would suggest they possess greater vulnerability to attrition between the 

first and second year of college. They possess lower SAT scores (nearly 10 percent below 

average for math), slightly lower high-school GPAs, and they are substantially more likely to be 

a first-generation college student and from a low-income family.3   

Table 2: Populations within the setting  

Notes: R indicates participation in the RCT, Z indicates assignment to treatment, and D indicates 
receipt of treatment (enrollment in the first-year-learning community). 
 

As mentioned above, there are three important instances of migration between assigned 

groups in the data. Of the 824 students initially assigned to the treatment group, 170 did not 

attend any of the program courses or services, and are thus referred to as “no shows.”  Of the 741 
                                                           
3 We discuss this matter further below and show that each of these traits is correlated with lower retention in 
Table A1 in Appendix A. 

Name Condition  Population Share 
Compliant Treated  R=1, Z=1, D=1  8.0 
Compliant Control  R=1, Z=0, D=0  7.8 
No-shows  R=1, Z=1, D=0  2.1 
Crossovers R=1, Z=0, D=1  1.4   
Never-ever takers R=0, D=0  79.3 
Nonrandomized takers R=0, D=1  1.3 
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students assigned to the control group, 108 students migrated to treatment (as “crossovers”) and 

enrolled in FYLC courses (with permission of the program director, and presumably as a partial 

replacement for those no-shows from the assigned treated group). Finally, 117 of the 6,566 

students who did not initially express an interest in the program migrated to treatment (also with 

permission of the program director), and are referred to as “nonrandomized takers.” Table 2 

describes the various populations of freshmen within the setting of our analysis.   

 
None of these groups is a random draw from the entering freshman class. As shown in 

Table A2 in Appendix A, those who ultimately receive treatment are in some instances 

statistically significantly different from those in their original assignment category on almost 

every observable dimension. While none of these violations of initial assignment bias the “intent 

to treat” estimates of program impact, they do present complications in estimating the effects of 

treatment itself. However, their presence also provides opportunities to explore the extent to 

which our estimated LATE can be generalized to the entire experimental sample and to the 

remaining freshman class. 

The possibility of nonrandom sample selection into RCTs has received earlier attention.4 

Our analysis contributes to a small but growing literature that combines RCTs with outcome data 

from observational settings to examine selection into experiments on the basis of unobserved 

variables.5 The closest methodological work to the method we introduce is Hartman et al. 

(2015). Hartman et al. (2015) propose a test comparing the outcomes (adjusted for observed 

covariates) of those who receive treatment within the randomized sample to those who receive 

                                                           
4 For an early example see Hausman and Wise (1979) and for recent examples see Cole and Stuart (2010), Andrews 
and Oster (2018), Ghanem, Hirshleifer, Ortiz-Becerra (2018), and Bo and Galiani (2021). 
5 See Tian and Pearl (2000), Bartlett et al. (2005), Prentice et. al. (2005), Karlan and Zinman (2009), Alcott (2015), 
Altidag et al. (2015), Gechter (2015), Hartman et al. (2015), Lise et al. (2015), Sianesi (2017), Galiani, et al. (2017), 
and Walters (2018) for examples. 
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treatment otherwise. However, their “strong ignorability of treatment assignment” may fail from 

selection on unobserved variables either into the experiment or into treatment in the 

observational setting.6  Nonrandom selection into treatment in observational settings is common, 

and by itself has no bearing on the validity of RCT results. In contrast, nonrandom selection on 

unobserved variables, which may include differences in responsiveness to treatment, directly 

calls into question the representativeness of the RCT (see Janzing, Peters, and Schölkopf, 2017; 

and Bo and Galiani, 2021). Our test for nonrandom selection into RCTs is designed to help 

researchers identify nonrandom selection on unobserved variables specifically into experiments 

so that we can better discern whether an RCT has a representative sample, and whether its results 

are likely to generalize. 

Empirical Methodology  

We divide the empirical analysis into three sections.  

Analysis 1: Estimating treatment effects using the RCT 

In the first analysis, we utilize the RCT design to identify the intent to treat effect of the 

FYLC on first-year retention, as well as the average treatment effect on those who complied with 

the randomization. We maintain four assumptions which are commonly invoked when using 

randomized control trials. First, we assume proper randomization within the experiment, such 

that unobserved variables including responsiveness to treatment do not differ in 

expectation between those assigned to treatment and those assigned to the control group. Second, 

we assume no independent effect of assignment within the experiment, ruling out disappointment 

or compensatory effects. Third, we assume monotonicity such that assignment to treatment does 

not lower the probability that any participant enters the treatment. Finally, we maintain the stable 

                                                           
6 The strong ignorability of treatment assignment assumption from Hartman et al. (2015) holds that the 
expectation of the potential outcome given treatment status and participation are equal between experimental 
and non-experimental participants. Violation from selection into treatment in the observational setting or 
selection into the experiment itself would prohibit their methods from recovering the population parameter, 
which is their primary objective. However, this test is not informative regarding the generalizability of RCT. 
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unit treatment value assumption, which holds that individuals’ responsiveness to treatment is 

unaffected by the number of others who also receive treatment (Rubin, 1980). Given these 

assumptions, we are able to estimate the causal “intent to treat” effects of the program using 

standard approaches. 

Due to the ease of interpretation, we begin by estimating a linear probability model using 

ordinary least squares among the population who selected into the lottery according to the 

following specification: 

 𝑌𝑌𝑖𝑖 = 𝛼𝛼 + 𝑍𝑍𝑖𝑖𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝜖𝜖𝑖𝑖, (1) 

where Yi indicates whether student i remained in school the following year, Zi indicates whether 

individual i entered and won the lottery, and Xi is a rich vector of student background 

characteristics discussed in the “Data” section above. As causal identification does not hinge on 

the covariates we conduct the analysis both with and without conditioning on Xi. We prefer to 

include these controls because doing so generally provides more efficient estimates that remain 

consistent.7  We repeat the exercise using logit to respect the binary nature of the dependent 

variable under a quasi-maximum likelihood estimation (QMLE) framework to obtain 

heteroscedasticity robust standard errors (Gourieroux, Monfort, and Trognon, 1984).   

Were compliance with the lottery perfect, the average intent to treat estimate would also 

provide an estimate of the average effect of treatment for the experimental sample. However, due 

to the two-way non-compliance, estimates of the intent to treat may be misleading regarding the 

efficacy of treatment, because they ignore contamination of the treatment and control groups. We 

attempt to uncover the average effect of the treatment on the compliers using 2SLS with the 

lottery as an instrumental variable for enrollment in the FYLC. In the non-linear specification, 

we use a control function approach in which we treat the endogeneity in FYLC by adding the 

first-stage residuals in the logit estimation of equation (1) following Vytlacil (2002) and 

                                                           
7 However, the inclusion of covariates may introduce finite sample bias, which may give reason to prefer the 
nonparametric approach. For references see Yang and Tsiatis (2001), Tsiatis et al. (2008), Schochet (2010), and Lin 
(2013). 
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Wooldridge (2014).8 While this procedure provides us with internally-valid, causal estimates of 

the effect of treatment, without further assumptions these estimates hold only for the whose 

treatment status is determined by the randomization.  

Analysis 2: Estimating treatment effects using an observational analysis  

In the second analysis, we conduct a conventional observational analysis of program 

impact on the entire treated population, including the compliant treated, the crossovers and the 

nonrandomized takers. The control population includes the compliant control, the no-shows and 

the never-ever takers. The observational designs we consider are still commonly used by in-

house institutional researchers and appear in much of the earlier-published program evaluation 

studies of first-year learning communities, in the context of both voluntary and mandated 

enrollment.  

We first estimate the effect of enrollment in the FYLC on first-year retention using 

unconditional OLS regressions, covariate adjusted OLS regressions, and logit QMLE analysis. 

This analysis is similar to the that used to identify our average intent to treat estimates except 

that here we use the full sample of freshman entrants and treatment is measured by an indicator 

for enrollment in the FYLC (Di) instead of by an indicator for winning the lottery (Zi). We 

supplement this analysis by adding propensity score matching techniques, which are used by 

Clark and Cundiff (2011), for example, to evaluate the efficacy of a FYLC without random 

assignment. We estimate the average treatment effect on the treated by averaging over the 

difference between the retention of each treated student and the retention of the student in the 

remaining population who is most similar to the treated student, but did not receive treatment. 

We adopt the standard practice of using logit to estimate the propensity scores. We perform all 

analyses both on the full sample as well as the sample in which estimated propensity scores are 

between 0.1 and 0.9, out of respect for the overlap assumption and in accordance with the rule of 

thumb provided by Crump, et al. (2009).9 We bootstrap the standard errors to account for 

                                                           
8 Since the included residuals are estimated, the standard errors we use for inference must account for possible 
estimation error. Consequently, we bootstrap both stages to estimate the standard errors. 
9 We illustrate the overlap in these populations in Figure A1 in Appendix A.  
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estimation error. In all analyses, we use the same vector of observed covariates that is used in 

Analysis 1 above.  

Analysis 3: Decomposition, selection and generalizability   

In the third analysis, we explore a variety of selection processes within the full population 

setting. We use a decomposition framework to better understand the differences in the RCT and 

observational estimates and to reflect on the external validity of the RCT results to populations 

beyond the compliers.    

We offer a decomposition analysis of different forms of selection that can account for the 

difference between the RCT and observational results. Selection on unobserved variables may 

originate from selection into the experiment, selection into treatment of the nonrandomized 

takers outside the experiment, or through noncompliance within the RCT itself.10  We begin by 

temporarily ignoring the imperfect compliance within the RCT, estimating the following 

difference-in-differences decomposition of the OLS estimate in which the intercept and 

treatment coefficient from the OLS estimation are allowed to differ according to whether 

students participated in the RCT:   

𝑌𝑌𝑖𝑖 = 𝜶𝜶 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝑅𝑅𝑖𝑖𝜋𝜋1 + 𝐷𝐷𝑖𝑖𝜋𝜋2 + 𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑖𝑖𝜋𝜋3 + 𝜀𝜀𝑖𝑖.   (2) 

The reference group is composed of those who did not sign up for the RCT and never received 

treatment – that is, the never-ever takers. The coefficient 𝜋𝜋1 on the RCT indicator (Ri) picks up 

the difference in retention between the never-ever takers and the compliant controls plus no-

shows.11 Di is an indicator for the treated population, and the coefficient on the stand alone Di 

indicator (𝜋𝜋2) picks up the difference in outcomes between the treated (nonrandomized takers) 

and untreated (never-ever takers) from outside the experiment. The estimated coefficient on the 

interaction of Di with Ri (𝜋𝜋3) picks up the additional difference in outcomes for those treated 

within the experiment – the compliant treated and crossovers versus the compliant controls and 

                                                           
10 See Table 2 for greater clarity on the populations we consider.  
11 An assumption inherent in the causal identification strategy of RCTs is that the behavior of the randomized 
control group that relates to the various outcome measures is not altered in reaction to its control condition and 
eventual comparison with a treated population. 
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no-shows – beyond the difference in outcomes between the treated and untreated outside of the 

RCT. Thus, 𝜋𝜋3 is the difference-in-differences estimate, 𝜋𝜋2 + 𝜋𝜋3 provides the estimated impact 

of treatment within the RCT, and 𝜋𝜋1 + 𝜋𝜋3 is the difference in outcomes between the treated 

groups, one inside and the other outside the RCT.  

This decomposition can illuminate whether the difference in results of the RCT and 

observational analyses are driven by different estimated effects within the nonrandomized and 

randomized populations or by differences in the populations themselves. For instance, imagine a 

setting in which the observational estimate of programmatic impact on retention are larger than 

those from the RCT. In that setting, observing 𝜋𝜋2� > 0 and 𝜋𝜋3� < 0 may indicate that the 

difference in estimates is driven by larger estimated treatment effects in the nonrandomized 

population than in the randomized population. A non-zero 𝜋𝜋3� may indicate heterogeneous 

treatment effects within and outside of the RCT. However, it may just as easily also result from 

selection into treatment among the nonrandomized, or selection into the experiment on other 

unobserved variables. In contrast, 𝜋𝜋1� shows the difference in expected outcomes between two 

groups of untreated students, and 𝜋𝜋1� + 𝜋𝜋3� is the difference in expected outcomes between those 

who receive treatment within and outside the experiment, respectively. Statistically significant 

coefficients here would seem to indicate the difference in observational and RCT results may be 

driven by selection into the RCT itself. 

We also use the results from estimating equation (2) to reflect on matters of external 

validity. If 𝜋𝜋1� and  𝜋𝜋1� + 𝜋𝜋3� are both small and statistically insignificant, this offers some 

assurance that there is no sign of selection into the experiment, as any differences in unobserved 

characteristics would load on these parameters. With both the treated and untreated within the 

RCT closely representing the treated and untreated individuals in the broader population, we may 

be more comfortable generalizing the RCT results to the larger population outside the 

experiment. If 𝜋𝜋1� and  𝜋𝜋1� + 𝜋𝜋3�  are of opposite signs, this may indicate selection into treatment 

outside of the experiment, which prevents us from learning about selection into the experiment 

itself. Thus, a statistically significant 𝜋𝜋1� or a statistically significant 𝜋𝜋1� + 𝜋𝜋3� alone cannot 
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indicate nonrandom selection into the RCT. However, finding that 𝜋𝜋1� and 𝜋𝜋1� + 𝜋𝜋3� are both 

statistically significant and possess the same signs suggests selection into the experiment on 

unobserved variables, which may include heterogeneous treatment effects.12 In all of these cases, 

the experimental sample would not be deemed representative. Given that 𝜋𝜋1� + 𝜋𝜋3� incorporates 

possible differences in treatment effects by RCT participation, we believe it would be 

unreasonable to assume homogeneous treatment effects under these circumstances. Indeed, under 

the definition of external validity found in both Janzing, Peters, and Schölkopf (2017) and Bo 

and Galiani (2021), selection on unobserved variables into a particular experiment is sufficient to 

indicate external invalidity.  

In the above analysis, we assume that compliance with assigned randomization within the 

experiment is perfect. To address the various selection processes associated with this 

noncompliance, we further decompose the OLS effects using indicators to separate out the six 

populations outlined in Table 2 as shown in equation (3) below:13  

𝑌𝑌𝑖𝑖 = 𝜶𝜶 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝑅𝑅𝑖𝑖𝛿𝛿1 + 𝐷𝐷𝑖𝑖𝛿𝛿2 + 𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑖𝑖𝛿𝛿3 + 𝑍𝑍𝑖𝑖 × 𝑅𝑅𝑖𝑖𝛿𝛿4 + 𝑍𝑍𝑖𝑖 × 𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑖𝑖𝛿𝛿5 + 𝜀𝜀𝑖𝑖. (3)   

Here, since 𝑍𝑍𝑖𝑖 indicates assignment to treatment, 𝑍𝑍𝑖𝑖 × 𝑅𝑅𝑖𝑖 allows us to separate out the no-shows 

from the compliant controls and 𝑍𝑍𝑖𝑖 × 𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑖𝑖 allows for separation of the compliant treated from 

the crossovers. Accordingly,  𝛿𝛿1�  compares the conditional outcomes of the compliant controls 

and never-ever takers,  𝛿𝛿2� compares the nonrandomized takers to the never-ever takers,  𝛿𝛿3� gives 

the additional estimated impacts of treatment for the crossovers relative to the estimated impacts 

for the nonrandomized takers,  𝛿𝛿4� compares conditional outcomes for the no-shows and 

compliant controls, and  𝛿𝛿5� indicates whether estimated non-compliance is significantly different 

for those who were treated versus those who were not treated.  

From these coefficients we can compare any two populations. For instance 𝛿𝛿1� + 𝛿𝛿4� and 

𝛿𝛿1� + 𝛿𝛿3� may be relevant to assessing selection into the RCT population. 𝛿𝛿1� + 𝛿𝛿4� provides the 

                                                           
12 See Appendix B for proof of this statement. As this is a joint hypothesis, we follow Brinch et al. (2017) in using 
the larger of the two p-values for statistical inference. We provide the corresponding rationale in Appendix C. 
13 This exercise is an extension of Huber’s (2013) test for ignorability of non-compliance. Similar examinations of 
selection into compliance can be found in Angrist (2004), Black et al. (2017), Brinch et al. (2017), Kowalski (2016, 
2018), and Bertanha and Imbens (2019). We add to these the sample participation margin. 
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comparison of no-shows to never-ever takers, both of whom avoid treatment though the no-

shows at least expressed an interest by enrolling in the RCT. And 𝛿𝛿1� + 𝛿𝛿3� compares crossovers 

to nonrandomized takers. Here again we need both sums to have the same sign to indicate 

nonrandom selection on unobserved variables into the RCT. 

Applying Huber (2013) to this context, testing for the significance of 𝛿𝛿4� and 𝛿𝛿4� + 𝛿𝛿5� 

indicates whether noncompliance within the RCT is ignorable. Due to the exogeneity of 

assignment, having either be significant is sufficient to reject ignorable noncompliance. 

However, were both to be small and statistically insignificant, we may be comfortable 

generalizing the LATE to the remainder of the RCT population, even if we cannot generalize 

beyond it.  

 

Empirical Results 
Analysis 1: The ITT and the LATE estimates of program effect from the RCT design 

appear in Panels A and B, respectively, of Table 3. The ITT estimates are not altered in any 

meaningful way by the introduction of controls, and are the same whether estimated by OLS or 

logit QML. The quantitative magnitude of the ITT – a roughly two percentage point increase in 

the retention probability – is not insubstantial, but the estimates have large standard errors and 

none are close to being statistically different from zero at any conventional threshold. Some may 

worry about the lack of power due to a binary outcome in this case. As a result, we also perform 

a similar analysis with GPA as the outcome variable, which possesses increased power. We find 

no statistically significant effect of the FYLC on grades as well.14  

Panel B gives the LATE estimates, while Panel C provides the first-stage estimates, 

which reveal that the randomization provides a strong instrumental variable in explaining 

                                                           
14 With regard to the analysis of 1st year GPA, at a power of 0.9 our desired sample size would allow us to detect an 
effect of 0.07 grade points. Our data contain 2nd year cumulative GPA for just the first cohort. For analysis on 2nd 
year GPA at a power of 0.9 our desired sample size would allow us to detect an effect of 0.10 grade points. We 
include the RCT results of the FYLC program on GPA in Table A2 in the Appendix A. 
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variation in FYLC participation. The estimated local average treatment effect of the program is 

roughly one percentage point larger than the intent to treat estimates, but once again these 

estimates are imprecisely estimated and thus statistically insignificantly different from zero.  

The control function residuals in column 3 of Panel B preview results from a portion of 

the analysis presented below in Analysis 3. The coefficient estimate is small and far from 

statistically significant. Thus, we fail to reject the null hypothesis of ignorable noncompliance. 

This provides the first piece of reassurance that the compliers do not appear to be systematically 

selected among those who opt into the experiment. 

Table 3: RCT estimates 
 (1) (2) (3) 
 Retention Retention Retention 

Panel A: ITT effects of winning lottery on first-year retention (reduced form estimates) 
Assigned FYLC 0.019 0.018 0.018 
 (0.015) (0.015) (0.014) 
    
Panel B: Estimated LATEs of FYLC on 1st year retention (2nd Stage estimates) 
FYLC 0.029 0.027 0.027 
 (0.022) (0.022) (0.022) 
Residuals   -0.004 
   (0.029) 
    
Panel C: Effect of lottery assignment of treatment status (1st stage estimates) 
Assigned FYLC 0.648*** 0.648*** 0.648*** 
 (0.019) (0.019) (0.019) 
    
Observations 1565 1565 1565 
Retention Mean 0.910 0.910 0.910 
Controls No Yes Yes 
Model LPM LPM QML 

The first two column report results from linear models whereas column (3) reports estimates 
from nonlinear estimation. Logit was used in QML estimation. The control function residuals 
used with QML in panel B were estimated using OLS. Column (1) is an unconditional estimate 
whereas columns (2) and (3) include baseline covariates. Robust standard errors in parentheses. 
Bootstrap standard errors with 500 replications were used for inference in QML control function 
estimation. *** p<0.01, **p<0.05, * p<0.1. 
 

Analysis 2: If the evaluation of program impact had not relied on random assignment, but 



                                                     20 
 

rather had utilized an observational research design, how would the estimated program impact 

have differed? We present the results from observational approaches to estimate the program 

impact where the treated, including crossovers, nonrandomized takers in addition to the 

compliant treated, are compared to non-participants that include the compliant control, no-shows, 

and never-ever takers in Table 4.  

Contrary to the findings from the RCT design, the Table 4 results reveal an estimated 

coefficient on the treatment variable in the observational analysis that is positive and statistically 

significant regardless of specification or procedure invoked. Moreover, the estimated quantitative 

impact is large – ranging from a 2.7 to 5.2 percentage point gain in retention probability by 

virtue of participation in the FYLC. Furthermore, in Panel B we restrict attention to the 

observations in which the overlap is thick (with propensity scores ranging from 0.1 to 0.9). Here 

the estimated effects are even larger with coefficient estimates all over 5 percentage points with 

similar p-values ranging from 0.03 to less than 0.001.  

Table 4: Observational analysis estimates of program effects.  
 (1) (2) (3) (4) (5) 
Panel A: Full sample 
FYLC 0.038*** 0.049*** 0.052*** 0.044** 0.027* 
 (0.010) (0.011) (0.013) (0.020) (0.016) 
Observations 8131 8131 8131 8131 8131 
Mean 0.91 0.91 0.91 0.91 0.91 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 
  
Panel B: Sample restricted on propensity score 
FYLC 0.050*** 0.052*** 0.058*** 0 .050*** 0.054*** 
 (0.013) (0.013) (0.017) (0.023) (0.015) 
Observations 3816 3816 3816 3816 3816 
Mean 0.88 0.88 0.88 0.88 0.88 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 

Robust standard errors in parentheses. Bootstrap standard errors with 500 replications were used for 
inference on propensity score matched estimates of the treatment on the treated. The restricted sample 
uses only observation for which there is overlap with propensity scores greater than 0.1 and less than 
0.9. For PSM we present the estimated average treatment on the treated as well as estimates of the ATE. 
*** p<0.01, ** p<0.05, * p<0.1. 
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Based on the observed differences among the treated and control populations and the way 

in which retention probabilities are negatively correlated with those differences, analysts 

employing such observational analyses might be tempted to hypothesize that the observational 

results are underestimates of true program impact. Indeed, such reasoning underlies the bounds 

of ATEs proposed in Andrews and Oster (2018). However, as we restrict the sample to that for 

which there is more overlap on observed covariates, the observational estimates universally grow 

away from the estimated LATE. We explain the basis for this finding in an exploration of the 

differences between the observational and RCT results below.  

Analysis 3: What accounts for the differences in the observational and RCT results? And 

to what extent are the RCT findings generalizable to other populations of interest? Table 5 

presents the results from estimating equation (2) – in columns (1) and (2) – and equation (3) – in 

columns (3) and (4). Below these results in the table, we give the relevant population 

comparisons of interest to our analysis and discussed in the methodology section above. Looking 

at the population comparisons for the column (2) results, we see that among those who receive 

no treatment, those who participate in the experiment are 3.8 percentage points more likely to 

persist in college (p-value of 0.001). Here, neither comparison group was treated; the difference 

is in selection. Next, we examine the coefficients on RCT and RCTxFYLC to compare retention 

between the nonrandomized takers and the treated participants in the experiment. We find that 

those who entered the RCT are 6.4 percentage points more likely to persist (p-value of 0.054). 

This difference is despite the fact that both received treatment.  

Turning to the results of the fully interactive model presented in columns (3) and (4), we 

see, in rows three through six of the population comparisons, that accounting for noncompliance 

within the experiment does little to change our results above; we continue to observe substantial 

positive selection into the experimental sample among both the treated and untreated. Because 

those who enter the RCT exhibit higher persistence than those who do not, among both treated 

and untreated individuals, the evidence indicates positive selection on unobserved characteristics 
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into the RCT, which drives the differences between the observational and RCT results.15  

Table 5: Full-sample decomposition testing selection into and within the RCT  
 (1) (2) (3) (4) 
 Retention Retention Retention Retention 
     
RCT (R) 0.028** 0.038*** 0.026** 0.038*** 
 (0.011) (0.011) (0.013) (0.013) 
FYLC (D) -0.016 -0.002 -0.016 -0.002 
 (0.033) (0.032) (0.033) (0.032) 
RCT x FYLC 0.038 0.026 0.036 0.026 
 (0.036) (0.035) (0.044) (0.044) 
RCT x Assigned FYLC (Z)    0.009 0.002 
   (0.025) (0.025) 
RCT x Assigned FYLC x FYLC   -0.003 -0.001 
   (0.038) (0.038) 
     

Population Comparisons 
     
𝜋𝜋1� comparing NET vs (CC+NS) 0.028** 0.038***   
 [0.014] [0.001]   
𝜋𝜋1� + 𝜋𝜋3� comparing NRT vs (CT+CO) .066** .064*   
 [0.050] [0.054]   
𝛿𝛿1�  comparing NET vs CC   .026** .038*** 
   [0.039] [0.003] 
𝛿𝛿1� + 𝛿𝛿4� comparing NET vs NS   0.035 0.039* 
   [0.128] [0.079] 
𝛿𝛿1� + 𝛿𝛿3� comparing NRT vs CO   0.062 0.064 
   [.141] [0.128] 
𝛿𝛿1� + 𝛿𝛿3� + 𝛿𝛿4� + 𝛿𝛿5�    0.067** 0.065* 
              comparing NRT vs CT   [0.049] [0.055] 
𝛿𝛿4� + 𝛿𝛿5� comparing CO vs CT   0.005 0.001 
   [0.852] [0.969] 
     
N 8131 8131 8131 8131 
Controls  No Yes No Yes 

All results are from OLS regressions and present the decomposition of the results from Table 5. Robust 
standard errors in parentheses. P-values of the linear combination above are in brackets. NET=never-ever 
takers; CC=compliant controls; NS=no-shows; NRT=nonrandomized takers; CT=compliant treated; and 
CO=crossovers. Columns (2) and (4) add controls. Columns (3) and (4) add indicators assignment to the 
FYLC and the same indicator interacted with participating in it. The omitted category for these 
regressions is composed of those never-ever takers who do not enter the RCT and do not enter the FYLC. 

                                                           
15 Following the conservative inference described in Appendix C, we reject the joint hypothesis of no selection or 
opposed signs with p-values of 0.050 or 0.054 depending on whether we adjust for covariates. Confidence 
intervals are even tighter using randomization inference as shown in Appendix D. 
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*** p<0.01, **. p<0.05, * p<0.1. 

Combined with the negative selection into the experiment based on observed 

characteristics, reported in the descriptive statistics section above and in appendix Table A1, this 

analysis leads to a rather striking conclusion: While students who select into the experiment 

possess observed correlates – such as lower SAT scores, lower high-school GPAs, and be 

substantially more likely to be a first-generation college student and from a low-income family -- 

which render them vulnerable with regard to first-year retention, their observed vulnerabilities 

appear to be combined with unobserved characteristics – such as grit, determination, and focus – 

that more than make up for these observed weaknesses. 

Finally, regarding the issue of external validity of the RCT, the large positive selection on 

unobserved variables into the experiment suggests that the RCT results lack external validity for 

the non-experimental population. However, we find little difference between those who comply 

with their assignments and those who do not.16 The coefficient on FYLC shows the difference 

between the no-shows and the assignment-compliant untreated is 0.002 (with a p-value of 0.959). 

Among the treated the last row of Table 5 shows that the difference between the crossovers and 

compliant treated participants is 0.001 (with a p-value of 0.969). These results reveal no 

discernable selection within the experiment itself, suggesting that the ATE for the experimental 

sample is unlikely to differ from the LATE and that the RCT findings are likely to extend to the 

noncompliant crossovers and no-shows.   

 

Conclusions 

We utilize an RCT design to estimate the impact of a learning community on first-year 

college retention for those students who self-select into the program. The results are the first of 

their kind to employ an RCT to address this question at a four-year college or university. We find 

that both the “intent to treat” and the “local average treatment effect” estimates of program 

                                                           
16 We further directly test for ignorable noncompliance described in Huber (2013) in Table A4 in the Appendix A. 
We find little difference between those who comply with their assignments and those who do not both among the 
treated and untreated, suggesting such noncompliance is ignorable. 
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impact are small and statistically insignificantly different from zero. The first-year learning 

community program at this institution had no measureable causal effect on student retention into 

the second year of college for the treated population.  

Next, we turn to an analysis of program impact using observational approaches, which 

are still employed widely by in-house institutional researchers. The results reveal an estimated 

impact on retention that is positive, large and statistically significant regardless of specification 

or procedure (OLS or propensity-score matching).  Further analysis reveals that the driving force 

behind the difference in the observational and experimental estimates of program impact is the 

statistically meaningful difference in retention prospects between those who do and do not enter 

the lottery. Interestingly, we find that, comparatively, lottery participants (whether or not they 

receive treatment) possess observed characteristics – including lower high-school GPAs and 

lower SAT scores – that render them less likely to return for sophomore year, but unobserved 

characteristics – presumably, things like grit, determination and focus – that statistically and 

quantitatively more than make up for these observed vulnerabilities in terms of retention 

prospects. 

Finally, we explore issues related to external validity of the RCT results, focusing on 

different possible populations of interest, and using statistically significant differences in 

unobserved propensities to persist as our criterion for external invalidity. While the RCT findings 

may serve as a causal and unbiased estimate of program impact for the students who self-

selected into the study, nonrandom selection into the program cautions against generalizing these 

results to the population who did not enroll in the experiment. We also test for generalizability of 

the RCT findings to other populations within the experiment who failed to comply with the 

random assignment – i.e., the group that migrated from treatment to control and the group that 

did the reverse. We find little difference in unobserved propensities to persist for these two 

groups, and so it seems reasonable to generalize the “local average treatment effect” estimate of 

program impact to the remaining experimental population.  
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Appendix for online publication: 

Appendix A: Additional figures and tables 

Figure A1: Overlap in the propensity scores by treatment status 

 

Figure notes: Propensity scores estimated using logit. 
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Table A1: Observed predictors of 1st year college retention 
 (1) (2) (3) 
 Retention  Retention  Retention  
    
High-school GPA 0.06*** 0.07*** 0.07*** 
 (0.010) (0.011) (0.012) 
SAT Math 0.01* 0.01** 0.01** 
 (0.005) (0.005) (0.006) 
SAT Writing 0.00 0.00 0.00 
 (0.007) (0.007) (0.007) 
SAT Verbal 0.01 0.01 0.01 
 (0.006) (0.007) (0.007) 
On Campus 0.04*** 0.04*** 0.04*** 
 (0.009) (0.009) (0.010) 
Female 0.01 0.01 0.01 
 (0.008) (0.008) (0.009) 
First Generation -0.02** -0.02** -0.02** 
 (0.008) (0.009) (0.009) 
Low Income -0.00 -0.01 -0.00 
 (0.008) (0.009) (0.009) 
Cohort 0.00 0.00 0.00 
 (0.007) (0.008) (0.008) 
    
N 8131 7252 6449 

SAT scores are divided by 100 for presentation. Robust standard errors are in parentheses. All 
regressions use OLS and also include cohort indicators and indicators for missing covariates. 
Column (1) is estimated using the whole sample. Column (2) is estimated with only the 
untreated. Column (3) is estimated using those who do not enter the RCT and do not receive 
treatment. *** p<0.01, ** p<0.05, * p<0.1.  
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Table A2: Observable differences between treated and untreated in different populations 
 (1) (2) (3) 
 FYLC FYLC FYLC 
High-school 0.010 -0.007 -0.007** 
GPA (0.041) (0.036) (0.003) 
SAT math -0.059*** -0.053*** -0.010*** 
 (0.021) (0.017) (0.002) 
SAT writing -0.023 -0.022 0.001 
 (0.028) (0.025) (0.003) 
SAT verbal 0.066** 0.050** 0.006** 
 (0.027) (0.023) (0.003) 
Female 0.053 0.051* 0.013*** 
 (0.033) (0.027) (0.003) 
1st generation 0.013 -0.001 0.009** 
 (0.035) (0.033) (0.004) 
Low income 0.072** 0.014 -0.006* 
 (0.035) (0.033) (0.004) 
Lives on  0.017 0.059** 0.003 
campus (0.034) (0.028) (0.004) 
N 824 741 6572 

SAT scores are divided by 100 for presentation. Robust standard errors are in parentheses. All 
regressions use OLS and also include cohort indicators and indicators for missing covariates. 
Column (1) is estimated with those assigned to treatment. Column (2) is estimated with those 
assigned to the control group. Column (3) is estimated using those who do not enter the RCT. 
*** p<0.01, ** p<0.05, * p<0.1.  
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Table A3: RCT estimates of the effects on GPA  
Panel A: Intent to treat effects of winning lottery on first and second year GPA (reduced form 
estimates) 
 (1) (2) (3) (4) 
 1st Year GPA 1st Year GPA 2nd Year GPA 2nd Year GPA 
Won lottery 0.016 0.018 0.015 -0.016 
 
 

(0.030) (0.027) (0.038) (0.036) 

 
Panel B: Estimated LATEs of FYLC on 1st and 2nd year GPA (2nd Stage estimates)  
FYLC 0.024 0.027 0.022 -0.018 
 (0.045) (0.042) (0.053) (0.053) 
     
     
Panel C: OLS 1st stage estimates of the effect of winning the lottery on FYLC participation 
Won lottery 0.649*** 0.649*** 0.706*** 0.709*** 
 (0.020) (0.019) (0.028) (0.027) 
     
Observations 1489 1489 662 662 
GPA Mean 2.812 2.812 2.901 2.901 
Controls No Yes No Yes 
     

All estimates are from linear regressions. Columns (1) and (3) are unconditional estimates 
whereas columns (2) and (4) include baseline covariates. 1st GPA includes FYLC course grade. 
2nd year GPA only exists in our data for the earlier cohort. Robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1. 
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Table A4: Testing for selection of compliers within the RCT  

 (1) (2) 
Won lottery 0.009 0.003 
 (0.025) (0.025) 
FYLC 0.019 0.025 
 (0.029) (0.030) 
Won lottery x FYLC -0.003 -0.002 
 (0.038) (0.038) 
   
Observations 1565 1565 
Controls No Yes 
Sample Lottery Lottery 

All results are from OLS regressions. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1 Column (1) presents the results from a simple regression of retention on indicators for 
winning the lottery, entering the FYLC after entering the lottery, and winning the lottery and 
entering the FLYC. In column (2), we add controls. 
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Appendix B: Selection into the RCT proposition and proof 

Let 𝑌𝑌0𝑖𝑖 and 𝑌𝑌1𝑖𝑖 be outcomes in states of the world where individual i does not and does receive 

treatment. Consider the following unconditional regression in under perfect compliance with the 

experiment: 

𝑌𝑌𝑖𝑖 = 𝛼𝛼 + 𝑅𝑅𝑖𝑖𝜋𝜋1 + 𝐷𝐷𝑖𝑖𝜋𝜋2 + 𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑖𝑖𝜋𝜋3 + 𝜀𝜀𝑖𝑖,   (4) 
 

such that 𝜋𝜋1 = 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 0), 𝜋𝜋2 = 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0,𝐷𝐷 = 1) −

𝐸𝐸(𝑌𝑌0|𝑅𝑅 =,𝐷𝐷 = 0), 𝜋𝜋3 = 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 0) − [𝐸𝐸(𝑌𝑌0|𝑅𝑅 =,𝐷𝐷 = 0) −

𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 0)]− 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 0), and  𝜋𝜋3 + 𝜋𝜋1= 𝐸𝐸(𝑌𝑌1|𝑅𝑅 =

1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0,𝐷𝐷 = 1). 

 

Proposition: 𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 > 0 or 𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 < 0 can only be justified through heterogeneous 

effects, selection on unobserved variables into the experiment or both under (A1) proper 

randomization and (A2) no independent effect of assignment within the experiment, and (A3) the 

stable unit treatment value assumption.  

 

Proof by contradiction: Suppose also (A4) no selection on unobserved variables into the 

experiment, [𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 1) = 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0) and 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 1) = 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0)], and (A5) 

homogenous effects of treatment, [𝐸𝐸(𝑌𝑌1 − 𝑌𝑌0) = 𝐸𝐸(𝑌𝑌1 − 𝑌𝑌0|𝑅𝑅 = 𝑗𝑗,𝐷𝐷 = 𝑘𝑘) for 𝑗𝑗 = 0, 1 and 𝑘𝑘 =

0, 1]. Without loss of generality consider the case where 𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 > 0. Under assumptions 

(A1) – (A4), we rewrite the inequalities regarding 𝜋𝜋1 and  𝜋𝜋3 + 𝜋𝜋1 as the following: 

𝜋𝜋1 = (1 − 𝑃𝑃)−1{𝑃𝑃[𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 1)]} > 0, (B1) 

𝜋𝜋1 + 𝜋𝜋3 = 𝑃𝑃−1{(1 − 𝑃𝑃)[𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 1)]}>0. (B2) 

Further under no selection on unobserved variables into the experiment (A4), 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 =

1) > 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) > 𝐸𝐸(𝑌𝑌0|𝑅𝑅 = 0,𝐷𝐷 = 0).  Under homogenous treatment effects (A5), 

𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0,𝐷𝐷 = 1) > 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 1) > 𝐸𝐸(𝑌𝑌1|𝑅𝑅 = 0,𝐷𝐷 = 0), which contradicts equation (B2).  
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Appendix C: Joint hypothesis inference: 

We wish to perform inference over the hypothesis that 𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 > 0 or 𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 >

0.  We follow Brinch et al. (2017) in evaluating the hypothesis that both coefficients are the 

same sign with three steps. First, we test whether both treated and untreated lottery participants 

have higher outcomes than the treated and untreated non-experimental populations respectively. 

We may conduct this intersection test by performing two separate one-sided t-tests in which we 

control for the familywise error rate associated with having multiple hypotheses. We again 

follow Brinch et al. (2017) in using the conservative Bonferroni correction in which the 

corrected p-value on the hypothesis that both inequalities hold versus the alternative that at least 

one inequality does not hold is two times the largest of the p-values from the two one-sided t-

tests. Bonferroni tests are known to be under-powered and researchers may gain power by 

instead using a step-down procedure as in Romano and Wolf (2005). Secondly, we repeat the 

procedure for the test of the joint hypothesis that both treated and untreated experimental 

participants experience lower outcomes than their respective non-experimental comparisons. 

Finally, we test whether (𝜋𝜋1,𝜋𝜋3 + 𝜋𝜋1 > 0) is included in the union of two subsets. As each of the 

two subsets is formed by the intersection of two one-sided tests, we may apply the result from 

Berger (1982), which shows that the p-value for the test that selection into the experiment among 

the treated and untreated is either both positive or both negative is the lower of the two corrected 

p-values from the first two steps. Because p-values for one-sided tests are half the p-values for 

the two-sided tests, in this application, the Bonferroni correction and application of Berger 

(1982) leaves us with the largest p-value of the original two-sided t-test in cases where both 

coefficients are the same sign. 
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Appendix D: Randomization Inference 

As a robustness exercise, we couple the decomposition presented in the main text with an 

analogous nonparametric randomization inference exercise. Here, we test the sharp hypothesis 

that there are no differences in outcomes between those who enter and those who do not enter the 

experiment within each treatment status. We do this using two different approaches following 

Young (2019). In each of 10,000 repetitions, we randomly assign each individual within the 

treated and non-treated populations to the “lottery” according to the binomial distribution, 

keeping the shares of the treated and untreated populations who enter the lottery constant at 87 

percent and 11 percent respectively. In the first approach, we find the average differences (𝜋𝜋0𝑝𝑝�  

being the average difference in retention by lottery participation for those who do not receive 

treatment and 𝜋𝜋1𝑝𝑝�  serving as the same for the treated) between the placebo lottery assigned 

groups. We then compare the differences in retention observed under the actual lottery 

participation decisions to the distribution of placebo differences we observe under random 

assignment of “lottery participation.” The share of placebo differences whose magnitudes are 

more extreme than the magnitude of the difference using actual lottery assignment may sensibly 

be interpreted as the p-values of the differences using actual lottery participation. Secondly, we 

do the same using the t-statistics on the difference rather than the difference itself. These 

approaches avoid possible finite sample bias and apply minimal assumptions or structure to the 

data, while providing valid and transparent inference.  

Figure D1 presents the distribution of estimated differences in retention among the 

untreated (on the left) and among the treated (on the right) when “lottery participation” is 

randomly assigned in each of 10,000 repetitions. We show the estimated difference in retention 

using the actual lottery participation using a red vertical line. Following Young (2018), we repeat 
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the exercise using the t-statistics presented in Figure D2.  

In each case the red line lies on the far-right side, indicating that the realized differences 

in retention between those who actually do and do not participate in the experiment are unlikely 

to result from pure chance. As described above, the p-values from our randomization tests 

correspond closely to the share of squared differences (or F-statistics) from the placebo 

assignment that are larger than the squared differences (or F-statistics) that arrived at using the 

actual realization of lottery assignment. Among the untreated, the corresponding p-values using 

squared raw differences and F-statistics are 0.021 and 0.024.  Among the treated, the 

corresponding p-values are 0.018 and 0.027. In both cases we find strong positive selection into 

the experimental sample and reject the null of no selection. The distribution of squared 

differences and F-statistics are shown in Figures D3 and D4 and Table D1 provides the 

nonparametric unconditional differences in retention rates between the experimental and non-

experimental populations stratified by treatment status with the accompanying p-values as well 

as the mean and the first, fifth, tenth , fiftieth, nintieth, ninty-fifth, and ninty-ninth percentile of 

the placebo differences when lottery participation is randomly assigned. In each case, 

randomization inference provides similar or smaller p-values than those constructed from the 

Huber-White robust standard errors. 
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Figure D1: Distribution of placebo 𝜋𝜋� where “lottery participation” is randomly assigned 

 

Notes: Binomial random assignment to lottery participation with probabilities of 
inclusion in the lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated 
reflecting the shares observed in the data. Distributions constructed from 10,000 repetitions. The 
red vertical lines denote the differences in the mean retention between experimental and non-
experimental populations within treatment status. 
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Figure D2: Distribution of placebo t-statistics where “lottery participation” is randomly assigned 

 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status.  
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Figure D3: Distribution of squared placebo coefficients 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the squared differences in the mean retention between experimental and non-
experimental populations within treatment status. 
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Figure D4: Distribution of F-statistics 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status. 
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Table D1: Nonparametric randomization testing results 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Statistics estimate p-value mean p1 p5 p10 p50 p90 p95 p99 
Coefficients           
Untreated           
Actual 𝜋𝜋0� 0.028 0.021         
Placebo 𝜋𝜋0�   0.000 -0.028 -0.020 -0.016 0.000 0.016 0.021 0.029 
Treated           
Actual 𝜋𝜋1� 0.067  0.018         
Placebo 𝜋𝜋1�   0.000 -0.061 -0.044 -0.035 -0.000 0.037 0.048 0.069 
           
t-statistics           
Untreated           
Actual t0 2.27 0.024         
Placebo t0   0.047 -2.120 -1.536 -1.212 0.025 1.333 1.745 2.516 
Treated           
Actual t1 2.38 0.027         
Placebo t1   -0.100 -2.984 -1.950 -1.489 -0.008 1.164 1.472 2.032 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. P-values 
constructed from the share of squared placebo estimated coefficients (t-statistics) greater than the 
squared actual estimated coefficients (t-statistics). The distribution of these squared statistics are 
shown in figures B3 and B4. 

 




