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Abstract

Statistical and machine learning approaches predict drug-to-target relationships from 2D small-

molecule topology patterns. One might expect 3D information to improve these calculations. Here 

we apply the logic of the Extended Connectivity FingerPrint (ECFP) to develop a rapid, 

alignment-invariant 3D representation of molecular conformers, the Extended Three-Dimensional 

FingerPrint (E3FP). By integrating E3FP with the Similarity Ensemble Approach (SEA), we 

achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and 

equivalent receiver operating characteristic performance. We identify classes of molecules for 

which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel 

drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them 

experimentally with ligand efficiencies from 0.442 – 0.637 kcal/mol/heavy atom.

*Corresponding Author: keiser@keiserlab.org. Phone: 415-886-7651. 

Source Code
Code for generating E3FP fingerprints is available at https://github.com/keiserlab/e3fp/tree/1.1 under the GNU Lesser General Public 
License version 3.0 (LGPLv3) license. All code necessary to reproduce this work is available at https://github.com/keiserlab/e3fp-
paper/tree/1.1 under the GNU LGPLv3 license.
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Introduction

Many molecular representations have arisen since the early chemical informatics models of 

the 1970s, yet the most widely used still operate on the simple two-dimensional 

(topological) structures of small molecules. Fingerprints, which encode molecular 2D 

substructures as overlapping lists of patterns, were a first means to scan chemical databases 

for structural similarity using rapid bitwise logic on pairs of molecules. Pairs of molecules 

that are structurally similar, in turn, often share bioactivity properties1 such as protein 

binding profiles. Whereas the prediction of biological targets for small molecules would 

seem to benefit from a more thorough treatment of a molecule’s explicit ensemble of three-

dimensional (3D) conformations2, pragmatic considerations such as calculation cost, 

alignment invariance, and uncertainty in conformer prediction3 nonetheless limit the use of 

3D representations by large-scale similarity methods such as the Similarity Ensemble 

Approach (SEA)4,5, wherein the count of pairwise molecular calculations reaches into the 

hundreds of billions. Furthermore, although 3D representations might be expected to 

outperform 2D ones, in practice, 2D representations nonetheless are in wider use and can 

match or outperform them3,6–8.

The success of statistical and machine learning approaches building on 2D fingerprints 

reinforces the trend. Naive Bayes Classifiers (NB)9–11, Random Forests (RF)12,13, Support 

Vector Machines (SVM)9,14,15, and Deep Neural Networks (DNN)16–20 predict a molecule’s 

target binding profile and other properties from the features encoded into its 2D fingerprint. 

SEA and methods building on it such as Optimized Cross Reactivity Estimation (OCEAN)21 

quantify and statistically aggregate patterns of molecular pairwise similarity to the same 

ends. Yet these approaches cannot readily be applied to the 3D molecular representations 

most commonly used. The Rapid Overlay of Chemical Structures (ROCS) method is an 

alternative to fingerprints that instead represents molecular shape on a conformer-by-

conformer basis via Gaussian functions centered on each atom. These functions may then be 

compared between a pair of conformers22,23. ROCS however must align conformers to 

determine pairwise similarity; in addition to the computational cost of each alignment, 

which linear algebraic approximations such as SCISSORS24 mitigate, the method provides 

no invariant fixed-length fingerprint (feature vectors) per molecule or per conformer for use 

in machine learning. One way around this limitation is to calculate an all-by-all conformer 
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similarity matrix ahead of time, but this is untenable for large datasets such as ChEMBL25 

or the 70-million datapoint ExCAPE-DB26, especially as the datasets continue to grow.

Feature Point Pharmacophores (FEPOPS), on the other hand, use k-means clustering to build 

a fuzzy representation of a conformer using a small number of clustered atomic feature 

points, which simplify shape and enable rapid comparison27,28. FEPOPS excels at scaffold 

hopping, and it can use charge distribution based pre-alignment to circumvent a pairwise 

alignment step. However, pre-alignment can introduce similarity artifacts, such that explicit 

pairwise shape-based or feature-point-based alignment may nonetheless be preferred27. 

Accordingly, 3D molecular representations and scoring methods typically align conformers 

on a pairwise basis2,3. Another promising method, Torsion Fingerprint Deviation (TFD), 

requires a preliminary atom mapping between molecules to ensure comparison of the correct 

torsion angles29. An alternative approach is to encode conformers against 3- or 4-point 

pharmacophore keys that express up to 890,000 or 350 million discrete pharmacophores, 

respectively30,31. The count of purchasable molecules alone, much less their conformers, 

however, exceeds 200 million in databases such as ZINC (zinc.docking.org)32, and the 

structural differences determining bioactivity may be subtle. Atom-pair fingerprints are one 

potentially more scalable approach, with natural implementations in 2D and 3D amenable to 

comparison33,34.

To directly integrate 3D molecular representations with statistical and machine learning 

methods, we developed a 3D fingerprint that retains the advantages of 2D topological 

fingerprints. Inspired by the widely used circular ECFP (2D) fingerprint, we develop a 

spherical Extended 3D FingerPrint (E3FP) and assess its performance relative to ECFP for 

various systems pharmacology tasks. E3FP is an open-source fingerprint that encodes 3D 

information without the need for molecular alignment, scales linearly with 2D fingerprint 

pairwise comparisons in computation time, and is compatible with statistical and machine 

learning approaches that have already been developed for 2D fingerprints. We use it to 

elucidate regions of molecular similarity space that could not previously be explored. To 

demonstrate its utility, we combine E3FP with SEA to predict novel target-to-drug activities 

that SEA could not discover using ECFP and confirm experimentally that they are correct.

Results

The three-dimensional fingerprints we present are motivated by the widely-used two-

dimensional (2D) Extended Connectivity FingerPrint (ECFP)35, which is based on the 

Morgan algorithm36. ECFP is considered a 2D or “topological” approach because it encodes 

the internal graph connectivity of a molecule without explicitly accounting for 3D structural 

patterns the molecule may adopt in solution or during protein binding. While ECFP thus 

derives from the neighborhoods of atoms directly connected to each atom, a 3D fingerprint 

could incorporate neighborhoods of nearby atoms in 3D space, even if they are not directly 

bonded. We develop such an approach and call it an Extended Three-Dimensional 

FingerPrint (E3FP).

Axen et al. Page 3

J Med Chem. Author manuscript; available in PMC 2018 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A single small molecule yields multiple 3D fingerprints

Many small molecules can adopt a number of energetically favorable 3D conformations, 

termed “conformers”. In the absence of solved structures, it is not always apparent which 

conformer a molecule will adopt in solution, how this may change on protein binding, and 

which protein-ligand interactions may favor which conformers37. Accordingly, we generate 

separate E3FPs for each of multiple potential conformers per molecule. E3FP encodes all 

three-dimensional substructures from a single conformer into a bit vector, represented as a 

fixed-length sequence of 1s and 0s (Figure 1a). This is analogous to the means by which 

ECFPs represent two-dimensional substructures. To encode the three-dimensional 

environment of an atom, E3FP considers information pertaining not only to contiguously 

bound atoms, but also to nearby unbound atoms and to relative atom orientations 

(stereochemistry). We designed this process to be minimally sensitive to minor structural 

fluctuations, so that conformers could be distinguished while the set of conformers for a 

given molecule would retain a degree of internal similarity in E3FP space.

The binding-relevant conformers of most small molecules are not known a priori. 
Accordingly, prior to constructing any 3D fingerprint, we generate a library of potential 

conformers for the molecule, each of which in turn will have a unique fingerprint. We 

employed a previously published protocol using the open-source RDKit package38, wherein 

the authors determined the number of conformers needed to recover the correct ligand 

conformation from a crystal structure as a function of the number of rotatable bonds in the 

molecule, with some tuning (see Experimental Section).

E3FP encodes small molecule 3D substructures

The core intuition of E3FP generation (Figure 1a) is to draw concentrically larger shells and 

encode the 3D atom neighborhood patterns within each of them. To do so, the algorithm 

proceeds from small to larger shells iteratively. First, as in ECFP, we uniquely represent each 

type of atom and the most important properties of its immediate environment. To do so, we 

assign 32-bit integer identifiers to each atom unique to its count of heavy atom immediate 

neighbors, its valence minus neighboring hydrogens, its atomic number, its atomic mass, its 

atomic charge, its number of bound hydrogens, and whether it is in a ring. This can result in 

many fine-grained identifiers, some examples of which are visualized as differently colored 

atoms for the molecule cypenamine in Figure 1a and for larger molecules in Figure 1b–c.

At each subsequent iteration, we draw a shell of increasing radius around each atom, 

defining the neighbors as the atoms within the shell as described above. The orientation and 

connectivity of the neighbors–or lack thereof (as in Figure 1c, red circle, expanded in Figure 

S1)–is combined with the neighbors’ own identifiers from the previous iteration to generate 

a new joint identifier. Thus, at any given iteration, the information contained within the shell 

is the union of the substructures around the neighbors from the previous iterations merged 

with the neighbors’ orientation and connectivity with respect to the center atom of the 

current shell. The set of atoms represented by an identifier therefore comprise a three-

dimensional substructure of the molecule.
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We continue this process up to a predefined maximum number of iterations or until we have 

encountered all substructures possible within that molecule. We then represent each 

identifier as an “on” bit in a sparse bit vector representation of the entire conformer (Figure 

1a, bitvector). Each “on” bit indicates the presence of a specific three-dimensional 

substructure. The choice of numerical integer to represent any identifier is the result of a 

hash function (see Experimental Section) that spreads the identifiers evenly over a large 

integer space. Because there are over four billion possible 32-bit integers and we observe far 

fewer than this number of molecular substructures (identifiers) in practice, each identifier is 

unlikely to collide with another and may be considered unique to a single atom or 

substructure. Since this still remains a mostly empty identifier space, we follow the 

commonly used approach from ECFP, and “fold” E3FP down to a shorter bitvector for 

efficient storage and swift comparison, adapting the 1024-bit length that has been effective 

for ECFP46,39 (Table S2).

To demonstrate the fingerprinting process, Figure 1a steps through the generation of an 

E3FP for the small molecule cypenamine. First, four carbon atom types and one nitrogen 

atom type are identified, represented by five colors. As cypenamine is fairly small, E3FP 

fingerprinting terminates after two iterations, at which point one of the substructures consists 

of the entire molecule. The slightly larger molecule alphaprodine takes an additional 

iteration to reach termination (Figure 1b). Figure 1c and Figure S1 demonstrate the same 

process for CHEMBL21099025. This molecule is more complex, with 13 distinct atom 

types, and in the conformation shown reaches convergence in three iterations. Because the 

molecule bends back on itself, in the second and third iterations, several of the identifiers 

represent substructures that are nearby each other in physical space but are not directly 

bound to each and other and indeed are separated by many bonds (e.g., red circle in Figure 

1c). 2D fingerprints such as ECFP are inherently unaware of unconnected proximity-based 

substructures, but they are encoded in E3FP.

SEA 3D fingerprint performance exceeds that of 2D in binding prediction

We were curious to determine how molecular similarity calculations using the new E3FP 

representations would compare to those using the 2D but otherwise similarly-motivated 

ECFP fingerprints. Specifically, we investigated whether the 3D fingerprint encoded 

information that would enhance performance over its 2D counterpart in common chemical 

informatics tasks.

The ECFP approach uses several parameters, (e.g., ECFP4 uses a radius of 2), and prior 

studies have explored their optimization39. We likewise sought appropriate parameter 

choices for E3FP. In addition to the conformer generation choices described above, E3FP 

itself has four tunable parameters: 1) a shell radius multiplier (r in Figure 1a), 2) number of 

iterations (i in Figure 1a), 3) inclusion of stereochemical information, and 4) final bitvector 

length (1024 in Figure 1a). We explored which combinations of conformer generation and 

E3FP parameters produced the most effective 3D fingerprints for the task of recovering 

correct ligand binders for over 2,000 protein targets using the Similarity Ensemble Approach 

(SEA). SEA compares sets of fingerprints against each other using Tanimoto coefficients 

(TC) and determines a p-value for the similarity among the two sets; it has been used to 
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predict drug off-targets4,5,40,41, small molecule mechanisms of action42–44, and adverse drug 

reactions4,45,46. For the training library, we assembled a dataset of small molecule ligands 

that bind to at least one of the targets from the ChEMBL database with an IC50 of 10 μM or 

better. We then generated and fingerprinted the conformers using each E3FP parameter 

choice, resulting in a set of conformer fingerprints for each molecule and for each target. We 

performed a stratified 5-fold cross-validation on a target-by-target basis by setting aside one 

fifth of the known binders from a target for testing, searching this one fifth (positive data) 

and the remaining non-binders (negative data) against the target using SEA, and then 

computing true and false positive rates at all possible SEA p-value cutoffs. For each target in 

each fold, we computed the precision recall curve (PRC), the receiver operating 

characteristic (ROC), and the area under each curve (AUC). Likewise, we combined the 

predictions across all targets in a cross-validation fold to generate fold PRC and ROC 

curves.

As there are far more negative target-molecule pairs in the test sets than positives, a good 

ROC curve was readily achieved, as many false positives must be generated to produce a 

high false positive rate. Conversely, in such a case, the precision would be very low. We 

therefore expected the AUC of the PRC (AUPRC) to be a better assessment of parameter 

set47. To simultaneously optimize for both a high AUPRC and a high AUC of the ROC 

(AUROC), we used the sum of these two values as the objective function, AUCSUM. We 

employed the Bayesian optimization program Spearmint48 to optimize four of five possible 

E3FP parameters (we did not optimize fingerprint bit length, for simplicity of comparison to 

ECFP fingerprints) so as to maximize the AUCSUM value and minimize runtime of 

fingerprinting (Figure S2).

We constrained all optimization solely to the choice of fingerprint parameters, on the same 

underlying collection of precomputed molecular conformers. For computational efficiency, 

we split the optimization protocol into two stages (see Experimental Section). This yielded 

an E3FP parameter set that used the three lowest energy conformers, a shell radius multiplier 

of 1.718, and 5 iterations of fingerprinting (Figure S4). After bootstrapping with 5 

independent repeats of 5-fold cross-validation using E3FP and ECFP4 on a larger set of 

308315 ligands from ChEMBL20, E3FP produced a mean AUPRC of 0.6426, exceeding 

ECFP4’s mean AUPRC of 0.5799 in the same task (Figure 2c,e; Table 1). Additionally, 

E3FP’s mean AUROC of 0.9886 exceeds ECFP4’s AUPRC of 0.9882 (Figure 2d–e; Table 

1). Thus, at a SEA p-value threshold p ≤ 3.45×10−47, E3FP achieves an average sensitivity 
of 0.6976, specificity of 0.9974, precision of 0.5824, and F1 score of 0.6348. ECFP4 

achieves 0.4647, 0.9986, 0.6236, and 0.5325, at this p-value threshold. ECFP4 is unable to 

achieve the high F1 score of E3FP, but at its maximum F1 score of 0.5896 it achieves a 

sensitivity of 0.6930, a specificity of 0.9966, and a precision of 0.5131 using a p-value 
threshold p ≤ 3.33×10−23. To ensure a fair comparison, we subjected ECFP to a grid search 

on its radius parameter and found that no radius value outperforms ECFP4 with both 

AUPRC and AUROC (Table S1). Additionally, fingerprints with longer bit lengths did not 

yield significant performance increases for E3FP or ECFP4, despite the expectation that 

longer lengths would lower feature collision rates (Table S2); indeed, it appears that 

increasing the fingerprint length reduced the performance of E3FP. RDKit uses slightly 

different atomic invariants for its Morgan fingerprints than E3FP’s default Daylight 
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invariants, but we found that RDKit’s invariants with E3FP (‘E3FP-RDKit’) produced no 

significant difference in fingerprint performance (Table 1). By design, this optimization and 

consequent performance analysis does not attempt to quantify novelty of the predictions, nor 

assess the false negative or untested-yet-true-positive rate of either method.

Having found that SEA-E3FP using RDKit-generated conformers outperformed SEA-

ECFP4, we tested whether E3FP could still better enrich for known actives by using crystal 

structure conformers from the Protein DataBank (PDB). Using SEA, we queried 32,639 

known ligands across 24 targets in ChEMBL20 that lacked crystal conformations against 

sets of 1446 unique target-bound ligands from the PDB. We generated E3FP fingerprints for 

ChEMBL20 using RDKit conformers as before, while calculating the E3FP fingerprints for 

the PDB reference ligands on RDKit-generated (E3FP-RDKit) or crystal conformers (E3FP-

PDB). While ECFP4’s AUPRC of 0.5718 exceeded E3FP-RDKit’s 0.5235 (Figure S5a), 

E3FP-RDKit achieved a higher AUROC (0.8440 vs 0.8127) and AUC of the enrichment 

curve (AUEC) (0.8291 vs. 0.7992) relative to ECFP4 (Figure S5b–c). Interestingly, crystal 

conformers yielded poorer performance by all metrics, perhaps due to limitations of RDKit 

conformer generation. To test this, we repeated the same experiment using only the 1446 

unique ligands from the PDB to populate test and train sets, with no ChEMBL test ligands, 

but the trend persisted (Figure S5d–f).

We note that E3FP was optimized here for use with SEA, and SEA inherently operates on 

sets of fingerprints, such as those produced when fingerprinting a set of conformers. Most 

machine learning methods, however, operate on individual fingerprints. To determine how 

well E3FP could be integrated into this scenario, we repeated the entire ChEMBL-wide 

cross-validation with four common machine learning classifiers: Naive Bayes Classifiers 

(NB), Random Forests (RF), Support Vector Machines with a linear kernel (LinSVM), and 

Artificial Neural Networks (NN). As these methods process each conformer independently, 

we computed the maximum score across all conformer-specific fingerprints for a given 

molecule, and used that score for cross-validation. Operating on E3FP, the RF, NN, and 

LinvSVM classifiers matched or exceeded SEA PRC performance (Figure S6), although 

only RF matched SEA’s AUROC (Figure S7). The same classifiers achieved higher 

AUPRCs using ECFP4, but at the cost of lower ROC performance for RF and LinSVM 

(Figure S7). In general, the machine learning methods underperformed when using E3FP 

compared to ECFP4. When we instead took the bitwise mean of all conformer-specific 

E3FPs to produce one single summarizing “float” fingerprint per molecule, we observed an 

improvement across all machine learning methods except for LinSVM. The most striking 

difference was for RF, where performance with “mean E3FP” then matched ECFP4.

3D fingerprints encode different information than their 2D counterparts

2D fingerprints such as ECFP4 may denote stereoatoms using special disambiguation flags 

or identifiers from marked stereochemistry (here termed “ECFP4-Chiral”)35. E3FP encodes 

stereochemistry more natively. Conceptually, all atoms within a spatial “neighborhood” and 

their relative orientations within that region of space are explicitly considered when 

constructing the fingerprint. To quantify how stereochemical information contributes to 

E3FP’s improved AUPRC over that of ECFP4, we constructed three “2D-like” limited 
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variants of E3FP, each of which omits some 3D information and is thus more analogous to 

ECFP. The first variant, which we term “E2FP,” is a direct analogue of ECFP, in which only 

information from directly bound atoms are included in the identifier and stereochemistry is 

ignored. This variant produces similar ROC and PRC curves to that of ECFP4 (Figure 2c–d; 

Figures S8–S9). A second variant, “E2FP-Stereo,” includes information regarding the 

relative orientations of bound atoms. E2FP-Stereo achieves a performance between that of 

ECFP4 and E3FP, demonstrating that E3FP’s approach for encoding stereochemical 

information is effective (Figure 2c–d). The third variant, “E3FP-NoStereo,” includes only 

the information from bound and unbound atoms. E3FP-NoStereo performs slightly better 

than E3FP in both ROC and PRC analysis (Figure 2c–d), indicating that E3FP’s enhanced 

performance over ECFP4 in PRC analysis is due not only to the relative orientations of 

atoms but also due to the inclusion of unbound atoms. All variants of E3FP with some form 

of 3D information outperformed both ECFP4 and ECFP4-Chiral (Figure 2c–d; Figures S8–

S9).

On average, the final E3FP parameters yield fingerprints with 35% more “on” bits than 

ECFP4, although if run for the same number of iterations, ECFP is denser. Thus E3FP 

typically runs for more iterations (Figure S4c–d). Folding E3FP down to 1024 bits results in 

an average loss of only 1.4 bits to collisions. The TCs for randomly chosen pairs of 

molecules by E3FP are generally lower (Figure 2a–b) than those for ECFP4, and there are 

fewer molecules with identical fingerprints by E3FP than by ECFP4. The final E3FP 

parameter set outperforms ECFP up to the same number of iterations (Table S1, Figure 2c–

d). Intriguingly, E3FP outperforms ECFP4 at this task on a per-target basis for a majority of 

targets (Figure 2f).

We assessed E3FP’s performance relative to several other 3D molecular comparison 

methods. First, we used FastROCS to compute maximum ROCS shape (ROCS-shape) and 

shape plus color (ROCS-combo) TCs among all molecules in ChEMBL20, on the same set 

of conformers used for E3FP. This took six days using eight graphics processing units 

(GPUs), or approximately 74.7 central processing unit (CPU) years (Table S3). We then 

performed 5-fold cross-validation to enrich for correct ligands (actives) by maximum 

pairwise TC. E3FP and ECFP4 achieved the highest areas under the enrichment curve 

(AUECs) of 0.9907 and 0.9918, whereas ROCS-shape achieved an AUEC of 0.9240, and 

ROCS-combo achieved an AUEC of 0.9703 (Figure S11a). Correspondingly, we observed a 

weak correlation between individual E3FP and ROCS conformer-pair scores, particularly for 

ROCS-combo (Figure S11b–e). Finally, we asked how these methods would correlate with 

root mean square deviation (RMSD) on optimally aligned conformer pairs, as a separate 

baseline. To address this, we randomly sampled 1,000 pairs, typically comparing one 

molecule’s conformer to a conformer of another molecule, and found that none of the above 

methods was a good predictor of RMSD on maximum common substructure (MCS; Figure 

S12a–d). However, we observed better correlations with RMSD when we recomputed these 

analyses, as well as the 3D pharmacophoric Torsion Fingerprint Deviation (TFD)29, using 

10,000 random same-molecule conformers instead (Figure S12e–h).
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Fourteen molecular pairs where 3D and 2D fingerprints disagree

To explore cases where E3FP and ECFP4 diverge, we computed E3FP versus ECFP4 

pairwise similarity scores (Tanimoto coefficients; TCs) for all molecule pairs in ChEMBL20 

(red markers in Figure 2a). We then manually inspected pairs from four regions of interest. 

Pairs representative of overall trends were selected, with preference toward pairs that had 

been assayed against the same target (Table S4). The first region contains molecule pairs 

with TCs slightly above the SEA significance threshold for E3FP but below the threshold for 

ECFP4 (denoted by ‘x’ markers). These predominantly comprise small compact molecules, 

with common atom types across multiple orders or substituents on rings (Figure 3a). Some 

of these molecules are already reported to interact with the same protein targets. For 

instance, CHEMBL11321725 binds to GABA-B receptor with an IC50 of 280 nM, while 

CHEMBL11390725 binds GABA-B with a similar IC50 of 500 nM (Figure 3a)49. In another 

example, CHEMBL32943125 binds to inducible, brain, and endothelial human nitric-oxide 

synthases with IC50s of 10.0 μM, 10.1 μM, and 59 μM, respectively50, while 

CHEMBL36584925 binds to the same targets at 3.1 μM, 310 nM, and 4.7 μM51. The black 

asterisk alongside this pair marks similar affinities for the first target (within 1 log), and the 

orange asterisks affinities for the second two, each spanning two logs. Red asterisks mark 

targets whose affinities differ by more than two logs, but no such cases were found for this 

region.

The second region (red crosses in Figure 2a) contains molecule pairs with TCs considered 

significant both in 2D and in 3D, but whose similarity was nonetheless greater by 3D 

(Figure 3b). For instance, the molecule pairs often differed by atom types in or substituents 

on a ring, despite a high degree of similarity in 3D structures. In the case of 

CHEMBL15826125 and CHEMBL33319325, the molecules bind to carbonic anhydrase II 

with near-identical affinities of 3.6 nM and 3.3 nM52. Interestingly, the 2D similarity of this 

pair is barely above the significance threshold. In another example, the molecules 

CHEMBL18685625 and CHEMBL30654125 achieve markedly similar pharmacological 

profiles, as the first binds to the inducible, brain, and endothelial human nitric-oxide 

synthases with IC50s of 1.2 μM, 2.8 μM, and 10.5 μM53, whereas the second was reported at 

2.9 μM, 3.2 μM, and 7.1 μM54. On the other hand, two other pairs somewhat differ in 

binding profile: while CHEMBL21871025 binds to metabotropic glutamate receptors 2 and 3 

with Kis of 508 nM and 447 nM, CHEMBL883925 binds to these targets more potently, at 

40.6 nM and 4.7 nM55. Likewise, the binding profiles of CHEMBL25514125 and 

CHEMBL27080725 to histamine H3 receptor differed by approximately an order of 

magnitude, with respective Kis of 17 nM and 200 nM56.

The third region (red squares in Figure 2a) contains molecule pairs significant in 2D but not 

in 3D (Figure 3c), and the fourth region (red diamonds in Figure 2a) contains pairs identical 

by 2D yet dissimilar in 3D (Figure 3d). These examples span several categories: First, the 

conformer generation protocol failed for some pairs of identical or near-identical molecules 

having many rotatable bonds, because we generated an insufficient number of conformers to 

sample the conformer pair that would attain high 3D similarity between them (not shown). 

Second, in cases where the 2D molecules do not specify chirality, the specific force field 

used may favor different chiralities, producing artificially low 3D similarity. As an example, 
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CHEMBL2042925 and CHEMBL2130925 (Figure 3c) have relatively similar affinities for 

vesicular acetylcholine transporter at 200 nM and 40 nM57 despite their low 3D similarity. 

Third, some pairs consist of molecules primarily differentiated by the size of one or more 

substituent rings (Figure 3c–d). ECFP4 is incapable of differentiating rings with 5 or more 

identical atom types and only one substituent, while E3FP substructures may include larger 

portions of the rings. The role of ring size is revealed in the target affinity differences for one 

such pair: CHEMBL26357525 binds to the κ opioid, μ opioid, and nociceptin receptors with 

Kis of 100 nM, 158 nM, and 25 nM, while CHEMBL35465225 binds to the same receptors 

notably more potently at 2.9 nM, 0.28 nM, and 0.95 nM58. Fourth, many pairs consist of 

molecules primarily differentiated by the order of substituents around one or more chiral 

centers (Figure 3c–d). The molecules CHEMBL14854325 and CHEMBL3586025, for 

example, bind to HIV type 1 protease with disparate Kis of 560 nM59 and 0.12 nM60 despite 

their exceptionally high 2D similarity of 0.853 TC. Likewise, CHEMBL180755025 and 

CHEMBL312531825 have opposing specificities for the human sodium/glucose 

cotransporters 1 and 2; while the former has IC50s of 10 nM and 10 μM for the targets61, the 

latter has IC50s of 3.1 μM and 2.9 nM62. In another example, despite being identical by 

standard 2D fingerprints, the stereoisomers CHEMBL205176125 and CHEMBL205197825 

bind to maltase-glucoamylase with IC50s of 28 nM versus 1.5 μM, and to sucrase-isomaltase 

at 7.5 nM versus 5.3 μM63. The stereoisomers CHEMBL30167025 and CHEMBL5882425, 

however, show a case where 3D dissimilarity is a less effective guide, as both molecules 

bind to the muscarinic acetylcholine receptors M1-M4 with generally similar respective 

IC50s of 426.58 nM versus 851.14 nM, 95.5 nM versus 851.14 nM, 1.6 μM versus 794.33 

nM, and 173.78 nM versus 794.33 nM64. Similarly, CHEMBL60693725 and 

CHEMBL60693825 have low similarity in 3D but bind to σ opioid receptor with IC50s of 37 

and 34 nM65.

E3FP predicts correct new drug off-targets that are not apparent in 2D

As E3FP enhanced SEA performance in retrospective tests (Figure 2c–d), we hypothesized 

that this combination might identify novel interactions as yet overlooked with two-

dimensional fingerprints. We therefore tested whether SEA with E3FP would make correct 

drug-to-target predictions that SEA with ECFP4 did not make. Using a preliminary choice of 

E3FP parameters (Table S5), we generated fingerprints for all in-stock compounds in the 

ChEMBL20 subset of the ZINC15 (zinc15.docking.org) database with a molecular weight 

under 800 Da. As our reference library, we extracted a subset of ChEMBL20 comprising 

309 targets readily available for testing by radioligand binding assay in the Psychoactive 

Drug Screening Program (PDSP)66 database. The distribution of Tanimoto coefficients 

between these two molecule sets resembles that of pairwise molecules in ChEMBL20 

(Figure 2, Figure S13a–b). Histograms plotting representative drug pairwise similarities 

against the ligand sets of their predicted targets (Figure S13c–e) demonstrate that almost all 

ECFP4 TC fall below the SEA TC cutoff for significance, while approximately half of 

E3FP’s TCs exceed its SEA TC cutoff. Using SEA on this library, we identified all drug-to-

target predictions with a p-value stronger than 1×10−25. To focus on predictions specific to 

E3FP, we removed all predictions with a p-value stronger than 0.1 when counter-screened by 

SEA with ECFP4, resulting in 9,331 novel predicted interactions. We selected eight 

predictions for testing by binding assay; of these, five were inconclusive, and three bound to 
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the predicted target subtype or to a close subtype of the same receptor (Table S5–S8). We 

address each of the latter in turn.

The E3FP SEA prediction that the psychostimulant and antidepressant67–69 cypenamine 

(CHEMBL2110918), for which we could find no accepted targets in the literature despite its 

development in the 1940s, would bind to the human nicotinic acetylcholine receptor 

(nAchR) α2β4 was borne out with a Ki of 4.65 μM (Figure 4c; Table S8). Of note, this 

corresponds to a high ligand efficiency (LE) of 0.610 kcal/mol/heavy atom (see 

Experimental Section). An LE greater than 0.3 kcal/mol/heavy atom is generally considered 

a promising drug candidate70. As any prediction is only as specific as the reference ligand 

data from ChEMBL upon which it was based, we assayed cypenamine against multiple 

subtypes of nAchR. Cypenamine also bound to the nAchR subtypes α3β4 and α4β4 with 

Ki’s of 2.69 and 4.11 μM (Figure 4d–e, Table S8) and ligand efficiencies of 0.637 and 0.616 

kcal/mol/heavy atom.

Anpirtoline (CHEMBL1316374) is an agonist of the 5-HT1B, 5-HT1A, and 5-HT2 receptors, 

and an antagonist of the 5-HT3 receptor, with Ki’s of 28, 150, 1490, and 30 nM, 

respectively71,72. However, we predicted it would bind to the nAchRs, of which it selectively 

bound to α3β4 at a Ki of 3.41 μM and an LE of 0.536 kcal/mol/heavy atom (Figure 4d, 

Table S8). In this case, the motivating SEA E3FP prediction was for the α4β2 subtype of 

nAchR, for which the experiment was inconclusive, suggesting either that the ligand 

reference data from ChEMBL distinguishing these subtypes was insufficient, or that the 

SEA E3FP method itself did not distinguish among them, and this is a point for further 

study.

Alphaprodine (CHEMBL1529817), an opioid analgesic used as a local anesthetic in 

pediatric dentistry73, bound to the muscarinic acetylcholine receptor (mAchR) M5 with a Ki 

of 771 nM and an LE of 0.442 kcal/mol/heavy atom (Figure 4b, Figure S14e). We found no 

agonist activity on M5 by alphaprodine by Tango assay74,75 (Figure S15b), but we did find it 

to be an antagonist (Figure S16). Intriguingly, alphaprodine also showed no significant 

affinity for any of the muscarinic receptors M1-M4 up to 10 μM (Figures S14a–d), indicating 

that it is an M5-selective antagonist. Muscarinic M5 selective small molecules are rare in the 

literature76. Whereas its M5 selectivity would need to be considered in the context of its 

opioid activity (μ, κ, and δ opioid receptor affinities however are not publicly available), 

alphaprodine nonetheless may find utility as a M5 chemical probe, given the paucity of 

subtype-selective muscarinic compounds. Interestingly, the E3FP SEA prediction leading us 

to the discovery of this activity was for the muscarinic M3 receptor, to which alphaprodine 

ultimately did not bind and for which alphaprodine showed no agonist activity (Figure 

S15a). This highlights not only the limitations of similarity-based methods such as SEA for 

the discovery of new subtype-selective compounds when none of that type are previously 

known, but also the opportunity such methods provide to identify chemotypes and overall 

receptor families that merit further study nonetheless.
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Discussion and Conclusions

Three results emerge from this study. First, we encode a simple three-dimensional molecular 

representation into a new type of chemical informatic fingerprint, which may be used to 

compare molecules in a manner analogous to that already used for two-dimensional 

molecular similarity. Second, the 3D fingerprints contain discriminating information that is 

naturally absent from 2D fingerprints, such as stereochemistry and relationships among 

atoms that are close in space but distant in their direct bond connectivity. Finally, as small 

molecules may adopt many structural conformations, we combine conformation-specific 3D 

fingerprints into sets to evaluate entire conformational ensembles at once. This may be of 

interest in cases where different conformations of a molecule are competent at diverse 

binding sites across the array of proteins for which that same molecule is, at various 

potencies, a ligand.

We devised a simple representation of three-dimensional molecular structures, an “extended 

3D fingerprint” (E3FP), that is directly analogous to gold standard two-dimensional 

approaches such as the extended connectivity fingerprint (ECFP). As with two-dimensional 

fingerprints, this approach enables pre-calculation of fingerprints for all conformers of 

interest in an entire library of molecules once. Unlike conventional 3D approaches, 

similarity calculations in E3FP do not require an alignment step. Consequently, E3FP 

similarity calculations are substantially faster than standard 3D comparison approaches such 

as ROCS (Table S3, Figure S10). Furthermore, E3FP fingerprints are formatted identically 

to ECFP and other 2D fingerprints. Thus systems pharmacology approaches such as SEA4,5, 

Naive Bayes Classifiers11, SVM14, and other established machine learning methods may 

readily incorporate E3FPs for molecular conformers without modification. While choices of 

E3FP’s parameter space might be specifically optimized for the machine learning method in 

question, we have demonstrated that E3FP’s highest-performing parameter choice for SEA 

(Figure 2c–d) produces fingerprints that likewise perform well for SVM, random forests, 

and neural networks (Figures S6–S7).

To explore the role of 2D vs 3D features in the discriminatory power of molecular 

fingerprints, we progressively disabled capabilities specific to E3FP, such as stereochemistry 

encoding (termed “E3FP-NoStereo”) and non-bonded atom relationships (termed “E2FP-

Stereo”), eventually arriving at a stripped-down version of E3FP (termed “E2FP”) that, 

much like ECFP, encodes only 2D information. We evaluated the consequences of removing 

these three-dimensional features on performance in retrospective machine learning tasks 

(e.g., Figure 2c–e; Table 1; Figures S8–S9) We found that inclusion of non-bonded atoms 

was a more important contributor to performance than stereochemical information. 

Intriguingly, while progressively adding stereochemical information and inclusion of 

nonbonded atoms produces marked improvement over ECFP4, inclusion only of nonbonded 

atom information produces the highest performance fingerprint of all, perhaps because 3D 

orientations of larger substructures are implicitly encoded within shells purely by relative 

distances. This observation leads us to believe that a more balanced inclusion of 

stereochemical information and nonbonded atoms may produce an even higher performing 

fingerprint. Historically, 3D representations have typically underperformed 2D ones such as 

ECFP7, and this has always been the case with Similarity Ensemble Approach (SEA) 
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calculations in particular6. Here, however, we find that E3FP exceeds the performance of 

ECFP4 in its precision-recall curve (PRC) and matches that of ECFP4 in its receiver-

operating characteristic curve (ROC) area under the curve (AUC) scores (Figure 2c–e; Table 

1; Figures S8–S9). While the ROC curve evaluates the general usefulness of the fingerprint 

for classification by comparing sensitivity and specificity, the precision-recall evaluates how 

useful the method is for real cases where most tested drug-target pairs are expected to have 

no affinity. The increased performance in PRC curves when using E3FP over ECFP4 

therefore indicates an increased likelihood of predicting novel drug-target pairs that will be 

experimentally born out with no loss in predictive power.

E3FP’s utility for this task became especially clear when we used it to predict novel drug to 

protein binding interactions. To do so, we examined only strong SEA predictions with E3FP 

(SEA-E3FP; p-value ≤ 1×10−25) that could not be predicted using SEA with ECFP4 (SEA-

ECFP; p-value ≥ 0.1). We considered this a challenging task because on-market drugs might 

be expected to have fewer unreported off-targets in general than a comparatively newer and 

less-studied research compound might. Furthermore, much of the prior work in chemical 

informatics guiding molecule design and target testing has been motivated by 2D 

approaches2,7,77. Accordingly, approximately half of the new predictions were inconclusive 

in this first prospective test of the method (Tables S5 and S7). Nonetheless, many also 

succeeded with high ligand efficiencies (LEs), and these included unique selectivity profiles 

(Figure 4). In one example, SEA-E3FP successfully predicted that alphaprodine would also 

act as an antagonist of the M5 muscarinic receptor, which to our knowledge is not only a 

new “off-target” activity for this drug, but also constitutes a rare, subtype selective M5 

antimuscarinic ligand76. The M5 muscarinic receptor has roles in cocaine addiction78, 

morphine addiction79, and dilation of cerebral blood vessels, with potential implications for 

Alzheimer’s disease80. Study of M5 receptors has been hindered by a lack of selective 

ligands. Due to serious adverse reactions81, alphaprodine was withdrawn from the market in 

the United States in 1986 and is therefore unlikely to be applied as a therapeutic. However, 

alphaprodine might be explored not only as a chemical probe for studying M5, but also as a 

reference for future therapeutic development.

Anpirtoline and cypenamine, likewise predicted and subsequently experimentally confirmed 

to bind previously unreported off-targets among the nicotinic receptors, exhibited 

exceptional LEs (0.536 – 0.637 kcal/mol/heavy atom), a commonly used metric of 

optimization potential. Recent patents combining psychostimulants with low-dose 

antiepileptic agents for the treatment of attention deficit hyperactivity disorder (ADHD) 

incorporate cypenamine82,83, and nicotinic agents improve cognition and combat ADHD84. 

Given likewise the association of nicotinic acetylcholine receptor (nAchR) α4 gene 

polymorphisms with ADHD85, a combination of traditional psychostimulant activity with 

“non-stimulant” nAChR activity via α4 might improve anti-ADHD efficacy. Whereas 

cypenamine’s micromolar binding concentration to nAchR is likely below the plasma 

concentrations it reaches at steady state, its exceptional LEs at nAchR may support further 

optimization of this pharmacology. As with cypenamine, anpirtoline may serve as a well-

characterized starting point for further nAchR optimization, and secondarily, its serotonergic 

activity may serve as a guide to explore cypenamine’s likely serotonergic activity. 
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Anpirtoline’s benign side effect profile, combined with the nAchR α3β4 subunit’s role in 

nicotine addiction86 and the lack of α3β4 specific drugs87, motivate further exploration.

We find that, whereas E3FP’s performance matches or exceeds that of ECFP4 under 

multiple retrospective metrics, and whereas it leads to new off-target predictions 

complementing those of ECFP4 with SEA, there are cases where the more traditional 2D 

representation yields higher retrospective performance. It would be difficult to tease out the 

impact that 2D has of necessity made in guiding the design and testing of such molecules, 

and only time will tell whether ECFP4’s higher performance in these cases is due to true 

pharmacology or historical bias. However, we currently find that ECFP4 outperforms E3FP 

on specific targets using SEA (Figure 2f) and in general when applying other machine 

learning methods (Figures S6–S7). Similarly, ECFP4 performs well on highly flexible 

molecules, owing to the difficulty of a small conformer library representing the flexibility of 

these molecules. Conversely, E3FP’s potential for discerning similar target binding profiles 

is best realized when comparing molecules with a high degree of conformational similarity 

on the one hand or on the other one or more chiral centers. As is evident from their 

respective PRC plots, E3FP typically discriminates SEA predictions more than ECFP4 does, 

thereby achieving a better precision-recall ratio, at the initial cost of some sensitivity (Figure 

2c). However, this also allows E3FP to consider more distant molecular similarity 

relationships while maintaining greater discriminatory power than ECFP4 does at this range. 

It would be interesting to explore whether some of these more distant relationships might 

also be regions of pharmacological novelty.

One longtime advantage of 2D molecular representations has been their ability to implicitly 

sidestep the question of conformation. Whereas heroic effort has gone into solving the 

crystallographic conformations of hundreds of thousands of small molecules88,89, the 

binding-competent 3D conformations for millions of research25 and purchasable32 small 

molecules are not known. Furthermore, polypharmacology exacerbates this problem, 

wherein a single small molecule can bind many protein partners, as it is not always the case 

that the molecule in question will adopt the same conformation for each binding site2. 

Powerful methods to enumerate and energetically score potential conformations exist90–92, 

but it falls to the researcher to prioritize which of these conformers may be most relevant for 

a given protein or question. Treating the top five, ten, or more most energetically favorable 

conformers as a single set, however, may be an alternate solution to this problem. We 

originally developed SEA so as to compare entire sets of molecular fingerprints against each 

other4, so it seemed natural to use it in a conformational-set-wise manner here. Furthermore, 

because SEA capitalizes on nearest-neighbor similarities among ligands across sets of 

molecules, we expected that it might analogously benefit from nearest-neighbor similarities 

in conformational space, on a protein-by-protein basis. This may indeed be the case, 

although we have not attempted to deconvolve E3FP’s performance in a way that would 

answer whether different E3FPs, and hence different conformations, of the same molecule 

most account for its predicted binding to different protein targets.

The E3FP approach is not without its limitations. E3FP fingerprints operate on a pre-

generated library of molecular conformers. The presence of multiple conformers and 

therefore multiple fingerprints for a single molecule hampers machine learning performance 
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in naive implementations (Figures S6–S7), as flexible molecules dominate the training and 

testing data. We anticipate higher numbers of accepted conformers to only exacerbate the 

problem. The full conformational diversity of large, flexible molecules pose a substantial 

representational challenge as well (Figure 3c–d). As E3FP depends upon conformer 

generation, a generator that consistently imposes specific stereochemistry on a center 

lacking chiral information may produce artificially low or high 3D similarity (Figure 3c). 

Furthermore, the core intuition of E3FP hinges on the assumption that most binding sites 

will have differing affinities for molecules with diverging stereochemical orientations, such 

as stereoisomers. Due to site flexibility, this is not always the case (Figure 3c–d).

Despite these caveats, we hope that this simple, rapid, and conformer-specific extended 

three-dimensional fingerprint (E3FP) will be immediately useful to the broader community. 

To this end, we have designed E3FP to integrate directly into the most commonly used 

protein target prediction methods without modification. An open-source repository 

implementing these fingerprints and the code to generate the conformers used in this work is 

available at https://github.com/keiserlab/e3fp/tree/1.1.

Experimental Section

Generating Conformer Libraries

To maximize reproducibility, we generated conformers following a previously published 

protocol38 using RDKit93. For each molecule, the number of rotatable bonds determined the 

target number of conformers, N, such that: N=50 for molecules with less than 8 rotatable 

bonds, N=200 for molecules with 8 to 12 rotatable bonds, and N=300 for molecules with 

over 12 rotatable bonds. We generated a size 2N pool of potential conformers.

After minimizing conformers with the Universal Force Field92 in RDKit, we sorted them by 

predicted energy. The lowest energy conformer became the seed for the set of accepted 

conformers. We considered each candidate conformer in sorted order, calculated its root 

mean square deviation (RMSD) to the closest accepted conformer, and added the candidate 

to the accepted set if its RMSD was beyond a predefined distance cutoff R. Optionally, we 

also enforced a maximum energy difference E between the lowest and highest energy 

accepted conformers. After having considered all 2N conformers, or having accepted N 
conformers, the process terminated, yielding a final set of conformers for that molecule.

We tuned this protocol using three adjustable parameters: (1) the minimum RMSD between 

any two accepted conformers, (2) the maximum computed energy difference between the 

lowest energy and highest energy accepted conformers, and (3) the number of lowest energy 

conformers to be accepted (fingerprinted). We generated two different conformer libraries by 

this protocol. In the first (rms0.5), we used a RMSD cutoff R=0.5, with no maximum energy 

difference E. In the second (rms1_e20), we chose a RMSD cutoff R=1.0, with a maximum 

energy difference of 20 kcal/mol.

Enumerating Protonation States

Where specified, we generated dominant tautomers at pH 7.4 from input SMILES using the 

CXCALC program distributed with ChemAxon’s Calculator Plugins94. We kept the first two 
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protonation states with at least 20% predicted occupancy. Where no states garnered at least 

20% of the molecules, or where protonation failed, we kept the input SMILES unchanged. 

Conformer generation for each tautomer proceeded independently and in parallel.

ECFP Fingerprinting

To approximate ECFP fingerprints, we employed the Morgan fingerprint from RDKit using 

default settings and an appropriate radius. ECFP4 fingerprints, for example, used a Morgan 

fingerprint of radius 2. Where ECFP with stereochemical information is specified, the same 

fingerprinting approach was used with chirality information incorporated into the 

fingerprint. An ECFP fingerprint is a bitvector, where a specific bit indicates the presence of 

a 2D molecular substructure at a given circular radius.

E3FP Fingerprinting

Given a specific conformer for a molecule, E3FP generates a 3D fingerprint, parameterized 

by a shell radius multiplier r and a maximum number of iterations (or level) L, analogous to 

half of the diameter in ECFP. E3FP explicitly encodes stereochemistry. As with ECFP, an 

E3FP fingerprint is by default a bitvector, where a specific bit indicates the presence of a 3D 

molecular substructure.

Generating Initial Identifiers

Like ECFP, E3FP generation is an iterative process and can be terminated at any iteration or 

upon convergence. At iteration 0, E3FP generation begins by determining initial identifiers 

for each atom based on six atomic properties, identical to the invariants described in35 : the 

number of heavy atom immediate neighbors, the valence minus the number of neighboring 

hydrogens, the atomic number, the atomic mass, the atomic charge, the number of bound 

hydrogens, and whether the atom is in a ring. For each atom, the array of these values are 

hashed into a 32-bit integer, the atom identifier at iteration 0. While the hashing function is a 

matter of choice, so long as it is uniform and random, this implementation used 

MurmurHash395.

Generating Atom Identifiers at Each Iteration

At each iteration i where i > 0, we consider each atom independently. Given a center atom, 

the set of all atoms within a spherical shell of radius i · r centered on the atom defines its 

immediate neighborhood, where the parameter r is the shell radius multiplier (Figure 1a). 

We initialize an array of integer tuples with a number pair consisting of the iteration number 

i and the identifier of the central atom from the previous iteration.

For each non-central atom within the shell, we add to the array an integer 2-tuple consisting 

of a connectivity identifier and the atom’s identifier from the previous iteration. The 

connectivity identifiers are enumerated as an expanded form of those used for ECFP: the 

bond order for bond orders of 1–3, 4 for aromatic bonds, and 0 for neighbors not bound to 

the central atom. To avoid dependence on the order in which atom tuples are added to the 

array, we sort the positions of all but the first tuple in ascending order. 3-tuples are then 

formed through the addition of a stereochemical identifier, followed by re-sorting. This 

process is described in detail below.
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We then flatten the completed array into a one-dimensional integer array. We hash this 1D 

array into a single new 32-bit identifier for the atom and add it to an identifier list for the 

iteration, after optional filtering described below.

Adding Stereochemical Identifiers

We generate stereochemical identifiers by defining unique axes from the sorted integer 2-

tuples from the previous step combined with spatial information. First, we determine the 

vectors from the center atom to each atom within the shell. Then, we select the first unique 

atom by atom identifier from the previous iteration, if possible, and set the vector from the 

central atom to it as the y-axis. Where this is not possible, we set the y-axis to the average 

unit vector of all neighbors. Using the angles between each unit vector and the y-axis, the 

atom closest to 90 degrees from the y-axis with a unique atom identifier from the previous 

iteration defines the vector of the x-axis (Figure 1a).

We then assign integer stereochemical identifiers s. Atoms in the y > 0 and y < 0 

hemispheres have positive and negative identifiers, respectively. s=±1 is assigned to atoms 

whose unit vectors fall within 5 degrees of the y-axis. We divide the remaining surface of the 

unit sphere into eight octants, four per hemisphere. The x-axis falls in the middle of the s=±2 

octants, and identifiers ±3–5 denote remaining octants radially around the y-axis (Figure 1a). 

If unique y- and x-axes assignment fails, all stereochemical identifiers are set to 0.

Combining the connectivity indicator and atom identifier with the stereochemical identifier 

forms a 3-tuple for each atom, which, when hashed, produces an atom identifier dependent 

orientation of atoms within the shell.

Removing Duplicate Substructures

Each shell has a corresponding substructure defined as the set of atoms whose information is 

contained within the atoms in a shell. It includes all atoms within the shell on the current 

iteration as well as the atoms within their substructures in the previous iteration. Two shells 

have the same substructure when these atom sets are identical, even when the shell atoms are 

not. As duplicate substructures provide little new information, we filter them by only adding 

the identifiers to that iteration’s list that correspond to new substructures or, if two new 

identifiers correspond to the same substructure, the lowest identifier.

Representing the Fingerprint

After E3FP runs for a specified number of iterations, the result is an array of 32-bit 

identifiers. We interpret these as the only “on” bits in a 232length sparse bitvector, and they 

correspond to 3D substructures. As with ECFP, we “fold” this bitvector to a much smaller 

length such as 1024 by successively splitting it in half and conducting bitwise OR operations 

on the halves. The sparseness of the bitvector results in a relatively low collision rate upon 

folding.

Variants of E3FP

For comparisons against ECFP, we disabled specific features of the E3FP fingerprinting 

process to determine the contribution of that feature to E3FP’s overall performance. Unlike 
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ECFP, full E3FP considers neighboring atoms that are not bound to the central atom. 

Disabling this feature produces a similar fingerprint to ECFP, termed ‘E2FP-Stereo,’ 

because it still contains stereochemical identifiers. Additionally disabling stereochemical 

identifiers produces a very similar fingerprint to default ECFP, which we term ‘E2FP.’ 

Conversely, if we disable only the addition of stereochemical identifiers while still 

considering unbound neighbors, we produce the ‘E3FP-NoStereo’ fingerprint.

Fingerprint Set Comparison with SEA

The similarity ensemble approach (SEA) is a method for searching one set of bitvector 

fingerprints against another set4. SEA outputs the maximum Tanimoto coefficient (TC) 

between any two fingerprint sets and a p-value indicating overall similarity between the sets. 

SEA first computes all pairwise TCs between the two fingerprint sets. The sum of all TCs 

above a preset pairwise TC threshold T defines a raw score. For a given fingerprint, SEA 

calculates a background distribution of raw scores empirically4. This yields an observed z-
score distribution, which at suitable values of T follows an extreme value distribution 

(EVD). For values of T ranging from 0 to 1, comparing goodness of fit (chi-square) to an 

EVD vs a normal distribution determines an optimal range of T, where the empirical z-score 
distribution favors an EVD over a normal distribution. In this EVD regime we may convert a 

z-score to a p-value for any given set-set comparison.

K-fold Cross-Validation with SEA

We performed k-fold cross-validation on a target basis by dividing the ligands of at least 10 

μM affinity to each target into k sets per target. For a given fold, k-1 ligand sets and their 

target labels together formed the training data. The remaining ligand sets and their target 

labels formed the test data set. Due to the high number of negative examples in the test set, 

this set was reduced by ~25% by removing all negative target-molecule pairs that were not 

positive to any target in the test set. Conformers of the same ligand did not span the train vs 

test set divide for a target. For each fold, conformer fingerprint sets for molecules specific to 

the test set were searched against the union of all training conformer fingerprints for that 

target, yielding a molecule-to-target SEA p-value. From the −logp-values for all test-

molecule-to-potential-target tuples, we constructed a receiver operatoring characteristic 

(ROC) curve for each target, and calculated its area under the curve (AUC). We likewise 

calculated the AUC for the Precision-Recall Curve (PRC) at each target. For a given fold, we 

constructed an ROC curve and a PRC curve using the -log p-values and true hit/false hit 

labels for all individual target test sets, which we then used to compute a fold AUROC and 

AUPRC. We then computed an average AUROC and AUPRC across all k folds. The 

objective function AUCSUM consisted of the sum of the average AUROC and AUPRC. For 

some analyses, we additionally computed the enrichment curve (EC), also known as 

cumulative recall curve, which reports the fraction of actives recovered (sensitivity) as a 

function of percent of database screened96.

Optimizing Parameters with Spearmint

E3FP fingerprints have the following tunable parameters: stereochemical mode (on/off), 

nonbound atoms excluded, shell radius multiplier, iteration number, and folding level. 

Additional tunable parameters for the process of conformer generation itself are the 
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minimum RMSD between conformers, the maximum energy difference between 

conformers, and how many of the first conformers to use for searching. This parameter 

space forms a 8-dimensional hypercube. Of the 8 dimensions possible, we employed the 

Bayesian optimization program Spearmint48 to explore four: shell radius multiplier, iteration 

number, number of first conformers, and two combinations of values for the RMSD cutoff 

and maximum energy difference between conformers. We evaluated the parameter sets by an 

objective function summing ROC and PRC AUCs (AUCSUM), and Spearmint proposed 

future parameter combinations. The objective function evaluated k-fold cross-validation with 

the similarity ensemble approach (SEA) as described in the following section.

For the first stage, the dataset consisted of 10,000 ligands randomly chosen from 

ChEMBL17, the subset of targets that bound to at least 50 of these ligands at 10 μM or 

better, and the objective function used was the AUPRC. Spearmint explored values of the 

shell radius multiplier between 0.1 and 4.0 Å, the number of lowest energy conformers 

ranging from 1 to all, and maximum iteration number of 5. Additionally, two independent 

conformer libraries were explored: rms0.5 and rms1_e20 (see above). 343 unique parameter 

sets were explored. We found that the best parameter sets used less than 35 of the lowest 

energy conformers, a shell radius multiplier between 1.3 and 2.8 Å, and 2–5 iterations. The 

conformer library used did not have an apparent effect on performance (data not shown).

For the second stage, we ran two independent Spearmint trajectories with a larger dataset 

consisting of 100,000 ligands randomly chosen from ChEMBL20, the subset of targets that 

bound to at least 50 of these ligands at 10 μM or better, and the AUCSUM objective function. 

We employed the CXCALC program94 to determine the two dominant protonation states for 

each molecule at physiological pH, and then conformers were generated using an RMSD 

cutoff of 0.5. The number of fingerprinting iterations used in both trajectories was optimized 

from 2 to 5, but the two trajectories explored different subsets of the remaining optimal 

parameter ranges identified during the first stage: the first explored shell radius multipliers 

between 1.3 and 2.8 Å with number of conformers bounded at 35, while the second explored 

shell radius multipliers between 1.7 and 2.8 Å with number of conformers bounded at 20. 

Spearmint tested 100 parameter combinations in each trajectory.

During optimization, we observed that the simple heuristic used by SEA to automatically 

select the TC threshold for significance resulted in folds with high TC cutoffs having very 

high AUPRCs but low AUROCs due to low recall, while folds with low TC cutoffs had 

lower AUPRCs but very high AUROCs (Figure S3). Several folds in the latter region 

outperformed ECFP4 in both AUPRC and AUROC (Figure S3c). We therefore selected the 

best parameter set as that which produced the highest AUCSUM while simultaneously 

outperforming ECFP4 in both metrics. For all future comparisons, the TC cutoff that 

produced the best fold results was applied to all folds during cross-validation.

K-fold Cross-Validation with Other Classifiers

We performed k-fold cross-validation using alternative classifiers in the same manner as for 

SEA, with the following differences. We trained individual classifiers on a target by target 

basis. In the training and test data, we naively treated each conformer fingerprint as a distinct 

molecular fingerprint, such that the conformer fingerprints did not form a coherent set. After 
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evaluating the target classifier on each fingerprint for a molecule, we set the molecule score 

to be the maximum score of all of its conformer fingerprints.

For the Naive Bayes (NB), Random Forest (RF), and Support Vector Machine with a linear 

kernel (LinSVM) classifiers, we used Scikit-learn version 0.18.1 (https://github.com/scikit-

learn/scikit-learn/tree/0.18.1). We used default initialization parameters, except where 

otherwise specified. For the RF classifier, we used 100 trees with a maximum depth of 25. 

We weighted classes (positive and negative target/molecule pairs) to account for class 

imbalance. For LinSVM kernel, we applied an l1 norm penalty and balanced class weights 

as for RF.

We implemented Artificial Neural Network (NN) classifiers with nolearn version 0.6.0 

(https://github.com/dnouri/nolearn/tree/0.6.0). We trained networks independently for each 

target using 1024-bit input representations from either E3FP or ECFP4. The NN architecture 

comprised 3 layers: an input layer, a single hidden layer with 512 nodes, and an output layer. 

We used dropout97 as a regularizer on the input and hidden layers at rates of 10% and 25%, 

respectively. The hidden layer activation function was Leaky Rectified Linear98 with default 

leakiness of 0.01. The prediction layer used softmax nonlinearities. We trained networks 

trained for 1000 epochs with early stopping to avoid overfitting, by monitoring the previous 

75 epochs for lack of change in the loss function. The final softmax layer contained 2 tasks 

(classes), one corresponding to binding and the other corresponding to the absence of 

binding. This softmax layer produced a vector corresponding to the probability of a given 

molecule being a binder or non-binder given the neural network model. We calculated 

training error using a categorical cross entropy loss.

Enriching for Actives using PDB Ligands

To assess the impact of crystal conformers on E3FP’s performance, we used target/ligand 

pairs annotated in scPDB v. 201399. We filtered it to those 24 targets that could be mapped 

to ChEMBL20 and had at least 25 ligands in crystal conformations. The set of 1446 unique 

PDB ligands was the union of all ligands annotated to at least one of these targets. The query 

dataset consisted of 32639 unique ligands from ChEMBL20 annotated to bind to one of the 

PDB targets, after removing all compounds found in the PDB dataset. For ChEMBL20 

ligands, we generated ECFP4 fingerprints and E3FP fingerprints using the conformer 

generation protocol described above (E3FP-RDKit). For PDB compounds, we generated the 

same fingerprints, as well as an additional set of E3FP fingerprints using the crystal 

conformer (E3FP-PDB). Using each of the above representations, we queried ChEMBL20 

compounds against PDB targets in a set-by-set validation using SEA and assessed 

performance by ROC, PRC, and EC curves. Additionally, we performed a separate 5-fold 

cross-validation on PDB-only ligands using SEA, where all train and test ligands were 

derived solely from the PDB set.

Comparing E3FP to Other 3D Methods

To compare performance of E3FP with other 3D methods, we computed pairwise ROCS 

shape and combo (shape + color) TCs between all molecule pairs in our ChEMBL20 dataset 

using FastROCS (OpenEye Toolkits v2017.Jan) on GeForce 1080 GTX Founders Edition 
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GPUs. We then performed enrichment analysis as described in “Enriching for Actives using 

PDB Ligands” on ChEMBL20 molecules by 5-fold cross-validation, evaluating comparative 

performance of ECFP4, E3FP, and ROCS by AUEC. To compare pairwise similarity scores 

from each method against RMSD, we computed ECFP4 TC, E3FP Max TC, ROCS-shape 

TC, and ROCS-combo TC for all pairs of 10,000 random molecules. RMSDs were 

computed on the MCS between the two conformers, as determined by RDKit. Likewise, we 

computed each of the above 3D similarities on 10,000 random same-molecule conformer 

pairs, in addition to the TFD pharmacophoric comparison implemented in RDKit.

Predicting Novel Compound-Target Binding Pairs

To identify novel compound-target pairs predicted by E3FP but not by ECFP4, we built a 

subset of 309 proteins/complex mammalian targets (106 human) for which the National 

Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)66 had 

established binding assays. We selected all compounds listed as in-stock in ZINC1532, 

downloaded on 2015-09-24. We fingerprinted all ligands in ChEMBL2025 with affinity < 10 

μM to the PDSP targets using the RDKit Morgan algorithm (an ECFP implementation) as 

well as by a preliminary version of E3FP (Table S5). We likewise fingerprinted the ZINC15 

compounds using both ECFP4 and E3FP. We queried the search compounds using SEA 

against a discrete sets of ligands from < 10 nM affinity (strong binders) to < 10 μM affinity 

(weak binders) to each target, in log-order bins, using both ECFP4 and E3FP independently. 

We filtered the resulting predictions down to those with a strong SEA-E3FP p-value (< 

1×10−25) and ≤ 10 nM affinity to the target, where the SEA-ECFP p-value exceeded 0.1 (i.e., 

there was no significant SEA-ECFP prediction) in the same log-order affinity bin. From this 

set of compound-target pairs, we manually selected eight for experimental testing.

Experimental Assays of Compound-Target Binding Pairs

All active compounds were reported ≥95% pure by their vendor (Table S6). Alphaprodine’s 

purity was verified by NMR (Figure S17) and LC-MS (Figure S18). Anpirtoline was 

confirmed >99% pure by HPLC (Table S6). All tested compounds were checked for 

promiscuous binding by binding assays against a large family of related targets (Table S7).

Radioligand binding and functional assays were performed as previously described74,100,101. 

Detailed experimental protocols and curve fitting procedures are available on the NIMH 

PDSP website at: https://pdspdb.unc.edu/pdspWeb/content/PDSP%20Protocols%20II

%202013-03-28.pdf. Ligand efficiencies were calculated using the expression

LE = − RT lnKi /Nheavy ≈ − 1.373 log10Ki/Nheavy,

where R is the ideal gas constant, T is the experimental temperature in Kelvin, and Nheavy is 

the number of heavy atoms in the molecule102. The ligand efficiency is expressed in units of 

kcal/mol/heavy atom.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ADHD Attention Deficit Hyperactivity Disorder

AUC Area Under the Curve

AUEC Area Under the Enrichment Curve

AUPRC Area Under the Precision-Recall Curve

AUROC Area Under the Receiver Operating Characteristic Curve

CPU central processing unit

DNN Deep Neural Network

E2FP E3FP with 3D features disabled

E3FP Extended Three-Dimensional FingerPrint

EC Enrichment curve

ECFP Extended Connectivity FingerPrint

EVD Extreme Value Distribution

FEPOPS Feature Point Pharmacophores

GPU Graphics Processing Unit

LE Ligand Efficiency

LinSVM Support Vector Machine with a linear kernel

mAchR muscarinic acetylcholine receptor

MCS Maximum Common Substructure

NB Naive Bayes Classifier

nAchR nicotinic acetylcholine receptor

NN Artificial Neural Network

OCEAN Optimized Cross Reactivity Estimation
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PDB Protein DataBank

PRC Precision-Recall Curve

PDSP Psychoactive Drug Screening Program

RF Random Forest

RMSD Root Mean Square Deviation

ROC Receiver Operating Characteristic Curve

ROCS Rapid Overlay of Chemical Structures

SEA Similarity Ensemble Approach

SVM Support Vector Machine

TC Tanimoto coefficient

TFD Torsion Fingerprint Deviation

ZINC ZINC Is Not Commercial
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Figure 1. 
Diagram of information flow in the E3FP algorithm. A) Overview of fingerprinting process 

for cypenamine. At iteration 0, we assign atom identifiers using a list of atomic invariants 

and hash these into integers (shown here also as unique atom colors). At iteration i, shells of 

radius i · r center on each atom (top right). The shell contains bound and unbound neighbor 

atoms. Where possible, we uniquely align neighbor atoms to the xy-plane (top right) and 

assign stereochemical identifiers. Convergence occurs when a shell’s substructure contains 

the entire molecule (third from the right) or at the maximum iteration count. Finally we 
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“fold” each iteration’s substructure identifiers to 1024-bit space. B) Overview of 

fingerprinting for alphaprodine. C) Overview of fingerprinting for a large, flexible molecule 

(CHEMBL210990; expanded in Figure S1). A three-dimensional substructure can consist of 

two disconnected substructures and their relative orientations (right).
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Figure 2. 
Comparative performance of E3FP and ECFP4. For all pairs of 308,315 molecules from 

ChEMBL20, A) log density plot summarizing 48 billion maximum Tanimoto Coefficients 

(TC) calculated between E3FP conformer fingerprint sets versus corresponding TC by 

ECFP4 fingerprints. The dotted red line is a linear least squares fit. Optimal SEA TC cutoffs 

for E3FP (green) and ECFP4 (blue) are dotted lines. Red markers indicate examples in 

Figure 3. B) Histograms of TCs from (A). C) Combined precision-recall (PRC) curves from 

5 independent 5-fold cross-validation runs using 1024-bit E3FP, E3FP without 
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stereochemical identifiers (E3FP-NoStereo), E3FP without stereochemical identifiers or 

nearby unbound atoms (E2FP), E3FP without nearby unbound atoms (E2FP-Stereo), 

ECFP4, and ECFP4 with distinct bond types encoding chirality (ECFP4-Chiral). Only the 

PRC of the highest AUC fold is shown. D) Combined highest-AUC ROC curves for the 

same sets as in (C). E) Results of bootstrapping AUCs as in Table 1. Dots indicate mean 

AUC, and whiskers standard deviations. Insets show absolute scale. F) Target-wise 

comparison of mean AUPRCs using E3FP versus ECFP4.
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Figure 3. 
Examples of molecule pairs with high differences between E3FP and ECFP4 Tanimoto 

coefficients. Molecule pairs were manually selected from regions of interest, displayed as 

red markers in Figure 2a: A) Upper left, B) Upper right, C) Lower right, and D) Far right. 

Pair TCs for ECFP4 and E3FP are shown next to the corresponding 2D and 3D 

representations; the conformer pairs shown are those corresponding to the highest pairwise 

E3FP TC. Where pair TCs for ECFP4 with stereochemical information differ from standard 

ECFP4, they are included in parentheses. Each colored asterisk indicates a target for which 
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existing affinity data for both molecules was found in the literature and is colored according 

to fold-difference in affinity: black for <10-fold, orange for 10-100-fold, red for >100-fold. 

Further references for all compounds shown, including CHEMBL214799625 and 

CHEMBL45445725, may be found in Table S4.
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Figure 4. 
Experimental results of novel compound-target predictions. A) SEA predictions that 

motivated the binding experiments, with 2D versus 3D SEA p-values for each drug-target 

pair. Tanimoto coefficients score the similarity of 2D versus 3D structures for the searched 

drug against its most similar known ligand(s) of the target by ECFP4 (left) and E3FP (right). 

E3FP uses an early parameter set. Supporting Table S5 shows recalculated SEA p-values on 

the final E3FP parameter set used elsewhere. SEA p-value >1 denotes cases lacking TC 

above the SEA threshold (SI, Figure S13D–E), such that no p-value could be calculated. B-
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E) Experimentally measured binding curves for tested drugs and reference binders (black) at 

protein targets B) M5, C) α2β4, D) α3β4, and E) α4β4. See Table S8 for more details. All 

compounds shown, including CHEMBL3087961, CHEMBL3088075, CHEMBL430497, 

CHEMBL220476, and CHEMBL56817, are from ChEMBL2025.
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Table 1

Performance of variations of E3FP and ECFP using SEA.

Name Mean Fold AUPRC Mean Fold AUROC Mean Target AUPRC Mean Target AUROC

ECFP4 0.5799 ± 0.0018 0.9882 ± 0.0001 0.6965 ± 0.2099 0.9772 ± 0.0387

ECFP4-Chiral 0.5977 ± 0.0017 0.9882 ± 0.0002 0.7021 ± 0.2088 0.9769 ± 0.0391

E2FP 0.5781 ± 0.0015 0.9871 ± 0.0002 0.7080 ± 0.2034 0.9768 ± 0.0392

E2FP-Stereo 0.6390 ± 0.0011 0.9883 ± 0.0001 0.7140 ± 0.2016 0.9780 ± 0.0371

E3FP-NoStereo 0.6849 ± 0.0012 0.9894 ± 0.0003 0.7312 ± 0.1989 0.9774 ± 0.0409

E3FP 0.6426 ± 0.0016 0.9886 ± 0.0002 0.7046 ± 0.1991 0.9805 ± 0.0326

E3FP-RDKit 0.6409 ± 0.0014 0.9885 ± 0.0003 0.7086 ± 0.2003 0.9798 ± 0.0348

Mean and standard deviations for combined fold AUPRC and AUROC curves versus target-wise AUPRC and AUROC curves across 5 independent 
repeats of 5-fold cross-validation are shown. A random classifier will produce a mean AUPRC of 0.0051 (fraction of positive target/mol pairs in 
test data), a mean target AUPRC of 0.0053 ± 0.0076, and a mean AUROC and mean target-wise AUROC of 0.5.
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