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ABSTRACT
With the increasing availability of large-scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods 
which can extract cross-modal features. A general framework, multidataset independent subspace analysis (MISA), has been de-
veloped to encompass multiple blind source separation approaches and identify linked cross-modal sources in multiple datasets. 
In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful 
linked features across three neuroimaging modalities—structural magnetic resonance imaging (MRI), resting state functional 
MRI and diffusion MRI—in two large independent datasets, one comprising of control subjects and the other including patients 
with schizophrenia. Results show several linked subject profiles (sources) that capture age-associated decline, schizophrenia-
related biomarkers, sex effects, and cognitive performance. For sources associated with age, both shared and modality-specific 
brain-age deltas were evaluated for association with non-imaging variables. In addition, each set of linked sources reveals a 
corresponding set of cross-modal spatial patterns that can be studied jointly. We demonstrate that the MMIVA fusion model can 
identify linked sources across multiple modalities, and that at least one set of linked, age-related sources replicates across two 
independent and separately analyzed datasets. The same set also presented age-adjusted group differences, with schizophrenia 
patients indicating lower multimodal source levels. Linked sets associated with sex and cognition are also reported for the UK 
Biobank dataset.
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1   |   Introduction

Multimodal neuroimaging data can provide rich information 
to better understand brain structures and functions, and boost 
biomarker detection (Uludag and Roebroeck  2014). Although 
analysis of each data modality separately can yield important 
insights into the structural or functional integrity of the brain, 
the relationship between different views from multimodal neu-
roimaging data is often complex and unknown. Data-driven ap-
proaches are ideal for such cases, leveraging naturally occurring 
associations across modalities to discover structure–function 
relationships, which may not occur in the same regions and may 
covary among subjects in complex ways. As more research insti-
tutions participate in open science data sharing practices, large-
scale neuroimaging datasets (> 1000 subjects) with multimodal 
data are becoming widely available, giving researchers opportu-
nities to develop novel approaches to multimodal fusion analysis 
that can offer insights into cross-modal (joint) associations and 
identify important missing links in brain development and men-
tal disorders (Calhoun and Sui 2016).

Blind source separation (BSS) techniques, in particular in-
dependent component analysis (ICA) (Comon  1994; Bell and 
Sejnowski 1995), have gained popularity in neuroimaging anal-
ysis because they make minimal assumptions about the latent 
sources, are readily available, and yield interpretable results. 
However, ICA is only suitable for single modality data. Several 
other methods have been developed to extract multimodal fea-
tures, including canonical correlation analysis (Hotelling 1936), 
extensions of ICA such as joint ICA (Calhoun et al. 2006) and 
parallel ICA (Liu, Demirci, and Calhoun 2008), as well as inde-
pendent vector analysis (IVA) (Adalı, Anderson, and Fu 2014; 
Kim, Eltoft, and Lee 2006), which generalizes ICA to multiple 
datasets. Recently, we proposed a data-driven blind source sep-
aration model called multidataset independent subspace anal-
ysis (MISA) (Silva et al. 2021) that generalizes many basic BSS 

techniques, such as ICA and IVA, to recover subspaces (i.e., a 
collection of linked latent sources) within and across multiple 
datasets simultaneously. MISA utilizes the Kotz distribution 
(Kotz 1974) to model source distributions, thus leveraging all-
order statistics (second- and higher-order) to model the under-
lying latent subspaces. Another advantage of MISA is that it 
allows comparison across many different types of BSS because 
they are special cases of the general model it implements. In this 
work, we use MISA to implement the multimodal IVA (MMIVA) 
model described in Section 2.4 and demonstrate its utility on two 
large neuroimaging datasets: one including typical older adults 
from the UK Biobank enhanced imaging study, and the other in-
cluding pooled data from multiple studies/sites that investigate 
psychosis and age-matched controls.

We evaluated MMIVA on standard derivative data from three 
neuroimaging modalities: (1) gray matter tissue probability seg-
mentation (GM) maps from structural MRI (sMRI) data, which 
markedly convey regional variations in gray matter concentra-
tion with age, sex and other neurobiological factors, (2) ampli-
tude of low frequency fluctuations (ALFF) maps computed from 
resting state functional MRI (rs-fMRI) scans, which inform 
about the strength of local connectivity as well as potential for 
long-range associations, and (3) fractional anisotropy (FA) maps 
obtained from diffusion MRI (dMRI) scans, which characterize 
the degree of directional water diffusion in white matter bun-
dles. In the two independent datasets we considered, the results 
show several cross-modal associations are present. Moreover, 
we observed covariation of these linked sources with factors 
such as age, sex, and cognition, as well as group label (patients 
with psychosis vs. control subjects).

In the following, Section  2 describes the data, preprocessing, 
and methodology utilized in this work. Section 3 presents our 
results, which are further discussed in Section 4 before present-
ing our final conclusions.

2   |   Methods

2.1   |   Imaging Data

We used two large independent multisite datasets to evaluate 
the MMIVA model. For the first dataset, we utilized imaging 
data from a subset of 3497 subjects participating in the UK 
Biobank study (Miller et al. 2016), a prospective epidemiologi-
cal study with a large imaging database. Specifically, we utilized 
multivariate features (Calhoun and Adali 2008) extracted from 
each subject and each data modality. All data included in our 
analysis were collected in two of the participating locations in 
the United Kingdom.1

The second dataset includes pooled data of 999 subjects from 
four studies that collected imaging data from patients with 
schizophrenia, schizo-affective disorder, bipolar disorder and 
age-matched healthy controls. These studies are Center of 
Biomedical Research Excellence in brain function and men-
tal illness (COBRE2) (Aine et al.  2017), function biomedical 
informatics network (fBIRN3) (Keator et al.  2016), Maryland 
Psychiatric Research Center (MPRC4), and Bipolar and 
Schizophrenia Network for Intermediate Phenotypes (BSNIP4) 

Summary

•	 Multimodal data fusion based on independent vector 
analysis (MMIVA) detects linked multimodal subject 
expression levels (here, the sources) which do not have 
to be identical for all modalities, so that even strongly 
linked sources may also capture unique modality-
specific variability.

•	 MMIVA learns separate loading/mixing parameters 
for each modality and for each source, so the detected 
links may better reflect what the data supports.

•	 Multimodal, multi-mode brain-age delta analysis of 
discovered age-associated sets of subject expression 
levels from MMIVA enables investigations about 
aging in terms of both shared and unique (per modal-
ity) contributions in the UK Biobank study.

•	 In a schizophrenia dataset, the multimodal spatial 
maps from one age-related linked set largely replicated 
one of the key age-related sets from the UK Biobank 
dataset. The same set also presented age-adjusted 
group differences, with schizophrenia patients indi-
cating lower multimodal source levels.
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(Tamminga et al. 2014). The demographics information is sum-
marized in Table 1.

All participants provided informed consent from their respec-
tive institutional review boards.

The image acquisition parameters for each study and modality 
are available as Section S1.1.

2.2   |   Subject Measures Data

UK Biobank provides extensive phenotype information for each 
subject, including age, sex, lifestyle measures, cognitive scores, 
and so forth. We used a subset of the subject measures (SM) re-
ported in (Miller et al. 2016) to identify associations between the 
subject demographics and the multivariate source component 
vectors (SCVs) obtained from MMIVA. Following the approach 
in Smith et al. (2015), we dropped subjects with more than 4% 
missing data. This resulted in N = 2907 (out of 3497) subject 
scores for MANCOVA analysis (see Section 2.6). Of 64 SMs, we 
dropped 10 measures which had extreme values. Extreme values 
are identified in two steps. First, the sum of squared absolute 
median deviations (ssqamdn) for each SM is computed. Second, 
if there is any SM with max(ssqamdn) > 100 × mean(ssqamdn), 
then that SM has subjects with extreme outliers which can in-
fluence statistical analysis and, thus, that SM is dropped. This 
resulted in 54 phenotypes including age, sex, fluid intelligence, a 
set of measures covering amount and duration of physical activ-
ity, frequency of alcohol intake, cognitive test scores, time spent 

watching TV, and sleep duration (see Table S2 for details). For the 
measures that were retained, any missing values were imputed 
utilizing the K-Nearest Neighborhood method implemented in 
MATLAB's knnimpute() (Cunningham and Delany 2021).

The SMs in the patient dataset include only age, sex, and diag-
nosis information.

2.3   |   Preprocessing

We processed each of the three imaging data modalities to ob-
tain GM, ALFF, and FA feature maps, which were then used 
for multimodal fusion analysis. Preprocessing details are avail-
able as Section S1.3. In summary, all modalities were Gaussian 
smoothed (with filter FWHM = 10 mm (GM), 6 mm (mALFF), 
6 mm (FA)) and resampled to 3 × 3 × 3 mm3 resolution. The same 
masks defined for UK Biobank were used in the patient datasets.

Prior to running our fusion model, we verified that none of the 
included voxels contained invalid values, such as NaN or + ∕ −

Inf. For each modality, we also performed variance normaliza-
tion of the subject-specific spatial maps (mean removed, then 
divided by standard deviation), followed by mean removal per 
voxel (across subjects). Finally, site effects were regressed out 
voxelwise from the datasets (separately for UK Biobank analy-
sis, and for patient dataset analysis) to account for mean differ-
ences in spatial maps due to scanner effects as follows:

(1)X[m]
← X[m] − X[m]Xs

(
X⊤

s Xs

)−1
X⊤

s

TABLE 1    |    Dataset demographics information.

Dataset Site N NM NF NC NP Mean age (SD) (years) Age range (years)

UK Biobank dataset

UKB 1 2379 1201 1178 2379 N/A 63.1 (7.2) 48–79

UKB 2 528 251 277 528 N/A 61.8 (7.3) 46–79

Patient datasets

COBRE 1 160 123 37 85 75 37.79 (12.8) 18–65

MPRC 1 60 44 16 26 34 38.67 (13.2) 16–62

MPRC 2 106 43 63 62 44 40.28 (13.1) 16–64

MPRC 3 1 1 0 0 1 55.00 (0.0) 55–55

BSNIP 1 237 133 104 137 100 37.62 (14.7) 16–65

BSNIP 2 192 103 89 99 93 40.13 (13.2) 15–65

FBIRN 1 24 19 5 16 8 36.00 (9.9) 22–51

FBIRN 2 17 14 3 8 9 40.88 (9.9) 23–57

FBIRN 3 53 41 12 27 26 42.81 (12.5) 19–60

FBIRN 4 54 44 10 27 27 36.04 (11.4) 20–58

FBIRN 5 16 9 7 7 9 38.62 (9.4) 22–53

FBIRN 6 44 21 23 24 20 34.93 (10.6) 19–58

FBIRN 7 35 30 5 20 15 37.91 (10.2) 18–60

Note: Demographics in the UK Biobank dataset and the patient datasets are shown in the table.
Abbreviations: NC, number of controls; NF, number of female subjects; NM, number of male subjects; NP, number of patients.
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where X[m] is the Vm × N data matrix from each modality, 
Xs =

[
1 �s

]
, with 1 being a N × 1 column vector of ones and �s 

being one-hot encoded vectors containing the site labels. Other 
heterogeneities, such as age and sex, were not accounted for 
until after MMIVA, at which point we assessed their effect by 
means of an age-delta analysis and effect size measures.

2.4   |   Multimodal IVA (MMIVA) Fusion Model

Here we present a general IVA approach for direct analysis of 
heterogeneous multimodal data. We assume that the underlying 
feature expression levels across subjects will contain patterns 
that are, to an extent, similar across modalities. This assump-
tion is not unlike the underlying assumption of shared expres-
sion levels in popular joint ICA methods (Calhoun et al. 2006; 
Groves et al. 2011), but by assuming only similarity, we remove 
a strong limitation, allowing for differences in the subject ex-
pression levels of each modality to occur, which is more real-
istic and flexible. Furthermore, independent vector analysis is 
a natural extension of independent component analysis. While 
ICA operates on a single dataset to obtain statistically inde-
pendent source signals via estimation of one linear unmixing 
matrix, IVA performs joint estimation of many unmixing ma-
trices simultaneously across multiple datasets (Kim, Eltoft, and 
Lee 2006; Anderson et al. 2014).

2.4.1   |   Review of ICA and IVA

Briefly, ICA is a blind source separation model that assumes lin-
ear mixing of C statistically independent sources s, yielding the 
observed data x:

where A is the invertible mixing matrix, and N is the number of 
observations (here, the number of subjects). The ICA algorithm 
seeks to identify the sources ŝ(n) =Wx(n) by estimating an un-
mixing matrix W, according to certain properties of the sources 
such as higher-order statistics and non-Gaussianity. Another 
typical strategy for solving the ICA problem involves minimiz-
ing the mutual information among the sources:

where H
(
ŝi
)
 is the differential entropy of the i-th source, given 

by H
(
�si
)
= − �

{
logp�si

(
w⊤
i
x
)}

.

IVA extends the ICA model to multiple (M) datasets, assuming a 
linear mixture of C independent sources for each dataset:

and, additionally, taking into account the statistical depen-
dence (i.e., linkage) among corresponding sources, that is, 
those with same index i. Each i-th collection of linked sources 
is called a source component vector (SCV) and defined as 

si(n) =
[
s[1]
i
(n), s[2]

i
(n), … , s[M]

i
(n)

]⊤
∈ ℝ

M. Here, M = 3, such 
that each SCV spans across the three modalities.

Solving the IVA problem involves minimizing the following mu-
tual information loss function:

where  =
[
W[1], … ,W[M]

]
, and the terms in the big pa-

rentheses correspond to the joint entropy of the i-th SCV, 
H
�
ŝi
�
= − I

�
ŝi
�
+

∑M
m=1H

�
ŝ
[m]

i

�
. The joint entropy not only 

captures unique information from each modality (in the sum 
portion) but also the shared information across modalities (i.e., 
the mutual information). Thus, minimizing the joint entropy 
entails learning the mutual information linkage as well. This 
shows that IVA will seek independence among SCVs while cap-
turing multimodal dependence within SCVs; the mutual infor-
mation I

(
ŝi
)
 indicates dependence among sources in the i-th 

SCV (Adalı, Anderson, and Fu 2014). In this article, the terms 
SCV and subspace are used interchangeably to describe a collec-
tion of linked (or dependent) multimodal sources.

2.4.2   |   Implementing MMIVA

Since both ICA and IVA are unified under the more general 
MISA, we take advantage our flexible MISA implementation 
(Silva et al. 2021) to estimate the multimodal IVA fusion model 
described above, leveraging both second- and higher-order statis-
tics. This implementation enables direct data fusion even when 
A[m] is a tall matrix and has a different number of rows (the modal-
ity's intrinsic dimensionality) in each modality (Silva et al. 2014a). 
The utility of this “transposed IVA” approach was also demon-
strated in the sample-poor (low N) regime using only second-
order statistics (Adali, Levin-Schwartz, and Calhoun  2015a, 
2015b). A broader discussion with comparisons to other BSS ap-
proaches in data fusion is also available (Silva and Plis 2019).

As depicted in Figure 1, we performed MMIVA fusion of the GM, 
mALFF, and FA features by treating each modality as one of the 
M datasets in the IVA model described above. Following initial-
ization of the unmixing weights, MMIVA was then estimated 
directly from the full data X[m] by configuring and running 
MISA as an IVA model, yielding our final joint decompositions 
ŝ
[m]

(n) =W[m]x[m](n). Spatial maps were then estimated using 

least squares as �A
[m]

= X[m]�S
[m]⊤

(
�S
[m]

�S
[m]⊤

)−1

, where Ŝ
[m]

 is the 
C × N source matrix from each modality.

As discussed earlier, MMIVA accounts for dependence (as 
subject covariation) among corresponding sources across mo-
dalities. For both MISA and MMIVA models, the SCV distri-
butions are assumed to take a multivariate Kotz distribution 
(Nadarajah 2003; Kotz 1974):

(2)x(n) = As(n), 1 ≤ n ≤ N , x(n), s(n) ∈ ℝ
C

(3)I ICA(W) =

C∑

i=1

H
(
ŝi
)
− log ∣ detW ∣

(4)
x[m](n) = A[m]s[m](n), 1 ≤ m ≤M, 1 ≤ n ≤ N , x[m](n), s[m](n) ∈ ℝ

C

(5)

I IVA() =

C∑

i=1

(
M∑

m=1

H
(
ŝ
[m]

i

)
− I

(
ŝi
)
)

−

M∑

m=1

log ∣ det
(
W[m]

)
∣

(6)p
(
si
)
=

𝛽𝜆𝜈Γ
(
di
2

)(
s⊤
i
D−1
i si

)𝜂−1

𝜋
di
2

(
detDi

) 1

2 Γ(𝜈)

e−𝜆(s
⊤
i
D−1
i si)

𝛽



5 of 19

where di =M is the SCV dimensionality, 𝛽 > 0 controls the shape 
of the distribution, 𝜆 > 0 controls the kurtosis, and 𝜂 > 2−di

2
 con-

trols the hole size, while 𝜈 ≜
2𝜂+di − 2

2𝛽
> 0 and � ≜

Γ(� + �−1)
��

−1
diΓ(�)

 are de-
fined for brevity. Γ( ⋅ ) denotes the gamma function. The positive 

definite dispersion matrix Di is related to the SCV covariance 
matrix �s

i  by Di = �−1
�
s
i . The multivariate Kotz distribution has 

been shown to generalize well across multivariate Gaussian, 
multivariate Laplace, and multivariate power exponential 

FIGURE 1    |    Multimodal IVA (MMIVA) fusion. First, we opted for cross-modality co-registration and masking to select the features used in this 
3-way fusion analysis. Second, we pursued a multimodal group PCA (MGPCA) preprocessing strategy that accounts for the total variance of each 
modality, ensuring they contribute equally to the estimation of common directions. Third, the proposed MGPCA+ICA initialization of the unmixing 
weights serves to “pre-align” the latent subspaces. Nevertheless, learning of the final unmixing is still done with the full 30-by-voxels matrices, that 
is, MMIVA leverages the full dimensionality of the spatial features (no data reduction), allowing for full interaction between modalities. Fourth, 
the choice of Kotz parameters (�, �, �) is such that it addresses potential limitations of the zero-mean Laplace distribution typically employed in IVA 
literature, namely that its derivative at 0 is not well-defined (discontinuous), thus eliminating certain risks for numerical instability. Fifth, unlike 
typical IVA methods, the choice of Kotz distribution is sensitive to all-order statistics, not just second-order (also known as linear dependence). Sixth, 
sources are expression levels, meaning that the patterns in the expression levels over subjects (not the spatial maps) are statistically independent of 
one another and linked across modalities. This is a sensible choice because it treats subjects as the observations, which is atypical of blind source 
separation in neuroimaging due to the often low sample sizes (i.e., sample-poor regimes, low N). Finally, MMIVA is the first mature application 
of MISA on real multimodal datasets (although a preliminary version that did not account for site effects and did not include the study on patients 
appeared at the IEEE EMBC 2021 conference (Damaraju et al. 2021)).
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distributions (Anderson et al. 2013). For MMIVA, the Kotz pa-
rameters were set to � = 0.8966, � = 0.5462, � = 1 to produce a 
distribution shape slightly less peaked than a Laplace distribu-
tion and yield � =

√
�2

3
 (the standard deviation of the success-

ful Logistic distribution in Infomax). Note that increasing 𝛽 > 1 
flattens the distribution peak and might be appropriate for sub-
Gaussian source estimation. Also, 𝜂 > 1 makes the distribution 
more peaked, while 𝜂 < 1 induces a “doughnut” shape. Here, we 
opted for a more conservative choice, deferring further experi-
mentation to future work.

A common heuristic was used to select the model order (i.e., 
the number of sources C): identify a range of stable model order 
values and select a number in or slightly above that range. 
This practice tends to enhance the spatial distinctiveness of 
the results, often producing smaller networks/patterns that 
can be combined to approximate lower model order solutions, 
suggesting that not much is lost by choosing a higher model 
order (Rachakonda, Du, and Calhoun  2017). The stable range 
of Akaike's information criterion (AIC) based on the singular 
values of MGPCA was found between 27 and 34 sources, and 
we opted for a round number in that range, specifically C = 30.

2.4.3   |   MGPCA + ICA Initialization

In order to initialize W[m] and “pre-align” the SCVs, the mul-
timodal data matrices X[m] were reduced to 30 principal direc-
tions using multimodal group principal component analysis 
(MGPCA). Unlike standard PCA that finds orthogonal direc-
tions of maximal variation for each modality separately, MGPCA 
finds directions of maximal common variation, that is, eigenvec-
tors are computed based on the average of the scaled covariance 
matrices:

where Σ[m] =
X[m]⊤X[m]

Vm − 1
≈ �

[
X[m]⊤X[m]

]
, �[ ⋅ ] is the expectation 

operator, and ‖⋅‖Fr indicates the Frobenius norm. The scaling 
factor we used is trace(�

[m])
N

, which is the ratio of the variance in 
the modality to the number of observations (subjects), to ensure 
that each modality contributes equally to the common covari-
ance structure. Letting � and H be the top 30 eigenvalues (with 
largest absolute value) and eigenvectors of �avg, respectively, we 
define the reduced joint dataset Xr and corresponding whitening 
matrices B[m] as follows:

where U[m] =
(
kmX

[m]
)
H�

−
1

2, and  km =
�

N

Mtrace(�[m])(Vm − 1)
=
�

N

M‖X[m]‖2
Fr

. 
Following, the MGPCA-reduced data Xr underwent an ICA esti-

mation using the Infomax objective (Bell and Sejnowski 1995) to 
obtain 30 common independent sources ŝI (n) =WIxr (n).

We improved upon the Infomax estimate by configuring and 
running MISA as an ICA model initialized with WI, but now as-
suming source distributions to follow a univariate Kotz distribu-
tion with parameters � = 0.8966, � = 0.5462, � = 1, thus yielding 
ŝK (n) =WKxr(n). The final combined MGPCA + ICA estimate 
W[m]

0
=WKB

[m] was utilized to initialize the MMIVA model and 
make sure the initial estimates align with the common space. 
The MISA methods were implemented using the MISA tool-
box (Silva et al.  2021). Analysis code can be found at https://
github.com/trend​scent​er/MMIVA.git.

2.5   |   Design Considerations

The following summarizes the key design considerations 
of MMIVA:

1.	 We opted for cross-modality co-registration and masking to 
select the features used in this 3-way fusion analysis.

2.	 We pursued a multimodal group PCA (MGPCA) preproc-
essing strategy that accounts for the total variance of each 
modality, ensuring they contribute equally to the estimation 
of common directions.

3.	 The proposed MGPCA+ICA initialization of the unmix-
ing weights serves to “pre-align” the latent subspaces. 
Nevertheless, learning of the final unmixing is still done 
with the full 30-by-voxels matrices, that is, MMIVA lever-
ages the full dimensionality of the spatial features (no data 
reduction), allowing for full interaction between modalities.

4.	 The choice of Kotz parameters (�, �, �) is such that it ad-
dresses potential limitations of the zero-mean Laplace dis-
tribution typically employed in IVA literature, namely that 
its derivative at 0 is not well-defined (discontinuous), thus 
eliminating certain risks for numerical instability.

5.	 Unlike typical IVA methods, the choice of Kotz distribution 
is sensitive to all-order statistics, not just second-order (also 
known as linear dependence).

6.	 Sources are expression levels, meaning that the patterns in 
the expression levels over subjects (not the spatial maps) are 
statistically independent of one another and linked across 
modalities. This is a sensible choice because it treats subjects 
as the observations, which is atypical of blind source separa-
tion in neuroimaging due to the often low sample sizes (i.e., 
sample-poor regimes, low N).

2.6   |   Statistics

2.6.1   |   Multivariate Tests

We used the MANCOVAN toolbox to identify associations 
between the subject measures (SM) and the multivariate 
source component vectors (SCVs) obtained from MMIVA. The 
MANCOVAN Toolbox evaluates multivariate MANCOVA 
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models and implements multivariate stepwise regression (back-
ward selection mode) to identify associations between SM (pre-
dictors) and MMIVA sources (multivariate response) for each 
modality separately (one MANCOVA model per modality, each 
with C = 30 sources/responses). The stepwise regression ap-
proach eliminated insignificant SM terms at the 𝛼 > 0.01 level 
at each step using the multivariate Lawley–Hotelling trace test.

2.6.2   |   Univariate Tests

Subsequently, univariate tests with the surviving SM terms are 
reported for each of the 30 sources within each modality. Initial 
model selection based on multivariate tests significantly reduces 
the total number of tests performed. The univariate tests were 
performed and corrected for multiple comparisons at Bonferroni 
threshold (0.05/30, for 30 sources).

In addition to the SMs, the following nuisance covariates were 
included prior to stepwise regression:

•	 sMRI: correlation of warped subject GM segmentation map 
to mean GM segmentation map,

•	 dMRI: correlation of warped subject FA map to mean FA 
map, and

•	 rs-fMRI: correlation of warped subject mALFF map to 
mean mALFF map, and mean framewise displacement 
(mFD) computed from rigid body movement estimates from 
resting fMRI scan realignment step.

Any variables with fewer than eight levels were modeled as cat-
egorical variables and the rest were modeled as continuous vari-
ables. Only age by sex interaction was considered.

2.6.3   |   Effect Size

Eta-squared (�2) was used to measure the strength of the relation-
ship between the predictors and the SCVs. �2 is defined as the ratio 
of variance explained (the sums-of-squares, or SS) in the depen-
dent variable by a predictor while controlling for other predictors:

In the implementation, we calculated the unbiased estimator of 
the population's �2, epsilon-squared (�2). The reason we chose 
epsilon-squared (�2) is that it has been found to be less biased 
compared to omega-squared (�2) (Carroll and Nordholm 1975). 
Detailed explanation of effect size indices can be found in Albers 
and Lakens  (2018). Both Type II and Type III sum-of-squares 
are used to evaluate effect sizes. In general, we prioritize Type 
II statistics because Type II is more statistically powerful than 
Type III when no interactions are present (Langsrud 2003). For 
those SCVs where an interaction term has significant p value 
(p < 0.05∕number of surviving SM), we replaced Type II by 
Type III effect sizes. We then identified SCVs with effect sizes 
𝜖2 > 0.02 (Cohen 1992) for each predictor in each modality. SCVs 
are selected if the same SM meets this effect size criterion on 
at least two of the three modalities. The univariate tests are 

reported alongside effect sizes for completeness, but do not play 
a role in SCV selection (see Sections S1.8 and S1.9).

2.7   |   Brain-Age Delta Modeling on UK 
Biobank Data

To further evaluate the significant age-related UK Biobank SCVs 
identified with MANCOVA, we evaluated the difference between 
the predicted brain age and the chronological age (the brain-age 
delta) in two steps, similar to that described in Smith et al. (2020). 
In a brain age model, there are two main components: chronolog-
ical age, which carries a normative essence to it, and deviations.5 
Then, building a model that approximates brain age will partially 
(since it is an approximation) capture variability from each of the 
two components. Our interest is then on the physiological effects 
that explain the deviations from the expected (chronological) age. 
In that sense, when predicting brain age from imaging features, 
the interesting portion of the captured variability is associated 
with the deviations because we want to understand what (non-
imaging) factors associate with these deviations.

With that in mind, we estimated source-specific brain-age deltas 
for each SCV as follows. First, we conducted a partialling step in 
order to determine each source's unique contribution. To that end, 
we regressed out all other sources from each source.6,7 Inspection 
of these partialled sources revealed that partialled sMRI and 
dMRI features were highly anti-correlated. Thus, we chose to in-
clude only the partialled sMRI feature in this brain-age analysis 
(an analysis including partialled dMRI instead of sMRI is included 
as Section S1.5). We also noticed that, given the high correlation 
within SCVs, partialling by-and-large removed the shared (and the 
largest) portion of the variability within SCVs. Thus, we evaluated 
the top singular vector of each SCV to capture the shared infor-
mation between modalities, based on the singular value decompo-
sition (SVD) of the 3-column matrix containing all three sources 
from the same SCV, each normalized to have unit standard devia-
tion. These shared-SVD features are naturally independent across 
SCVs because the SCVs from which they were derived are statisti-
cally independent from each other to begin with. Since partialled 
terms have the shared information removed, the shared-SVD 
features are also at most only weakly correlated with partiallized 
terms. We verified that the correlation among the SVD-shared 
features and partialled sMRI, fMRI, and dMRI sources is low. 
Therefore, we selected the SVD-shared features, partialled sMRI, 
and partialled fMRI expression levels for the following brain-age 
analysis. As mentioned previously, we included an analysis with 
SVD-shared features, partialled dMRI, and partialled fMRI ex-
pression levels as Section S1.5. In all analyses, we then evaluated 
the Pearson correlations between subject measures and the final 
source-specific 2-stage brain-age delta �2i, and between the subject 
measures and partialled �2i. A step-by-step description of the brain-
age delta modeling and estimation is available as Section S1.5.1.

3   |   Results

Following SCV estimation by the proposed multimodal IVA 
approach, the MANCOVA procedures revealed significant pre-
dictors for each modality, including age, psychosis, sex, and pro-
spective memory to name a few. Then, for each modality, we fit 

�2 =
SSeffect
SStotal
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a univariate multiple regression model between each individual 
source in that modality and all significant predictors in order to 
measure effect sizes.

For the UK Biobank dataset, after MANCOVA stepwise re-
gression, we fit linear models using the surviving variables as 
follows:

1.	 Nine variables (sex, time spent watching tv, age first had 
sexual intercourse, time to answer, fluid intelligence, age, 
physical exercise principal component 1, spatial normaliza-
tion, interaction between sex and age) to predict each sMRI 
source.

2.	 Eleven variables (alcohol, sex, sleep duration, age first had 
sexual intercourse, time to answer, fluid intelligence, age, 
physical exercise principal component 3, spatial normaliza-
tion, mean framewise displacement, interaction between sex 
and age) to predict each fMRI source.

3.	 Eight variables (sex, time spent watching TV, time to answer, 
fluid intelligence, mean time to correctly identify matches, 
age, spatial normalization, interaction between sex and age) 
to predict each dMRI source.

The instances where Type III effect sizes were reported for the 
UK Biobank dataset are listed in Section S1.8 (see also Figure S8).

For the patient dataset, we fit linear models using the same 
seven predictors (age, sex, diagnosis, the interaction between 
age and sex, the interaction between age and diagnosis, the in-
teraction between sex and diagnosis, the interaction among age, 
sex and diagnosis) to predict unimodal sources for each of the 
three modalities. No interaction terms were significant, so only 
Type II effect sizes are reported (except for dMRI of SCV 5; see 
Figure S9).

The effect size measure indicated five age-related SCVs (3, 5, 
8, 16, 17), five sex-related SCVs (9, 10, 16, 17, 22) and one SCV 
(22) associated with time to answer in the UKB dataset. In the 
patient dataset, two schizophrenia-related SCVs (14, 19) and six 
age-related SCVs (2, 4, 6, 18, 19, 20) were identified.

Next, we report the cross-modal Pearson correlations captured 
within the aforementioned SCVs. These reflect the degree of 
similarity between patterns of expression level across sub-
jects. Table 2 below summarizes the strength of multimodal 
pairwise links recovered by MMIVA, indicating high simi-
larity in expression levels between modalities, particularly 
between fMRI and dMRI. This is indicative of strong multi-
modal linkages (i.e., for the reported SCVs, the corresponding 
spatial maps of each modality are expressed at relatively sim-
ilar levels in each subject). It supports the idea that the same 
underlying brain process may be driving the expression of the 
linked multimodal sources in an SCV. This observation also 
supports the joint interpretation of the corresponding multi-
modal spatial maps of an SCV.

Following, we show Pearson correlations between spatial 
maps of the two datasets for each modality. In Figure 2, the 
SCVs from the patient dataset were sorted from highest to 
lowest spatial correlation in the sMRI modality since that 

modality showed the largest evidence of cross-dataset simi-
larities. Notice how the spatial map of the age-related SCV 8 
in the UK Biobank dataset (Figure 3) is highly correlated with 
the spatial map of the age- and schizophrenia-related SCV 
19 in the patient dataset (Figure 6), in both sMRI and dMRI 
modalities, indicating replication of the multimodal link iden-
tified by MMIVA. Detailed descriptions of UK Biobank SCV 
8 and patient SCV 19 are presented in Sections  3.1 and 3.2, 
respectively.

3.1   |   Associations With Aging in UK Biobank

Five SCVs (3, 5, 8, 16, and 17) showed age effects consistently 
for all three modalities for the UK Biobank data. The sources 
from all SCVs with age effects had their sign oriented in the 
direction of decline with age. The 3D scatter-plot of linked sub-
ject expression profiles (sources) in SCV 8, which is the SCV 
carrying the most significant age association, is presented in 
Figure 3. Consistent with Table 2, a strong linear association 
can be observed between modalities. The corresponding mix-
ing weights (spatial maps) are also presented and depict in 
hot colors the regions expressing larger values at younger age 
(likewise, expressing lower values at older age) for each of the 
three modalities. In sMRI (gray matter), age-associated reduc-
tions were observed in the dorsal and ventral caudate, nucleus 
accumbens, rostral and caudal temporal thalamus, caudal 
hippocampus, ventro- and dorso-medial parieto-occipital 
sulci, several areas of the anterior and posterior cingulate 

TABLE 2    |    Cross-modal Pearson correlations within SCVs.

SCV sMRI-fMRI fMRI-dMRI sMRI-dMRI

SCVs in the UK Biobank dataset

3 0.720 0.840 0.667

5 0.639 0.764 0.613

8 0.643 0.920 0.634

9 0.692 0.873 0.663

10 0.740 0.700 0.703

16 0.773 0.908 0.746

17 0.728 0.785 0.693

22 0.642 0.539 0.692

SCVs in the patient dataset

2 0.705 0.634 0.603

4 0.649 −0.666 −0.637

6 0.758 0.807 0.709

14 0.623 0.699 0.549

18 0.7 0.722 0.595

19 0.742 0.884 0.768

20 0.67 0.788 0.675

Note: SCVs are highly similar between modalities, particularly between fMRI 
and dMRI.
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gyrus, and several areas by the sylvian fissure (mainly in the 
superior temporal and dorsal insular gyri), with age-related 
increases in sensorimotor areas, visuomotor area 7, lateral 
occipital gyrus, as well as the inferior frontal junction and 
parts of the nucleus accumbens and putamen. Similar levels 
of subject-specific age-associated reductions were observed in 
fMRI (ALFF), in areas such as the dorsal prefrontal cortex, 
Broca's area, the caudal angular and supramarginal gyri, the 
extreme part of inferior temporal gyrus adjacent to the fusi-
form gyrus, and portions of the visual cortex including the 
cuneus, the ventro-medial part of the parieto-occipital sulcus, 
and the superior part of the occipital polar cortex, with age-
related increases in sensorimotor, thalamus, and parietal/oc-
cipital areas including the angular gyrus, visuomotor area 7, 
the lateral superior occipital gyrus, the middle occipital gyrus, 
and the inferior part of the occipital polar cortex. In dMRI 

(FA), analogous subject-specific age-related reductions oc-
curred in the anterior portion of the corpus callosum, forceps 
minor, superior longitudinal fasciculus II, the anterior tha-
lamic radiation, and the optic radiation, with age-related in-
creases in the corticospinal tract, superior thalamic radiation, 
caudal parts of the arcuate fasciculus, and the middle longi-
tudinal fasciculus. The remaining age-associated sources are 
shown in Figure S1.

The subject expression level sources from the SVD-shared infor-
mation, sMRI and fMRI modalities in these five SCVs (15 sources 
in total) were subsequently used to predict the brain age (using 
chronological age as a surrogate) and estimate the brain-age delta. 
The mean absolute error of the overall brain-age delta estima-
tion is 2.70 years when using the SVD-shared information from 
each SCV, plus the sMRI and fMRI sources (partialled over all 

FIGURE 2    |    Pearson correlations between the spatial maps of the two datasets for each modality. Absolute values of Pearson correlations between 
spatial maps from the two datasets were evaluated for each modality. Both datasets were processed separately, with no cross-contamination. The 
sMRI correlations showed the largest evidence of cross-dataset similarities. Thus, SCVs were matched across datasets based on sMRI correlations 
using the Jonker–Volgenant algorithm (Jonker and Volgenant 2005) for the linear sum assignment problem. The best-matched sMRI correlations 
were then sorted in descending order. The resulting optimal permutation of patient SCVs was then applied to the other modalities.

FIGURE 3    |    Age-related SCV. Left: The spatial maps corresponding to the mixing weights for each modality. Right: A 3D scatter plot of SCV 8 
illustrates the strong association between multimodal subject expression levels, as well as their relationship to age, for the UK Biobank data. Each 
point represents a subject, color coded by the age (circles indicate males; crosses indicate females). The same data as in the top right panel is depicted 
separately for each modality on the other panels, plotted against subject age.
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15 sources) in one model. The mean absolute errors are 2.58, 0.41 
and 0.61 years for models including only SVD-shared, partialled 
sMRI-only, partialled fMRI-only, respectively. Figure 4 (from top 
to bottom) shows (1) the predicted expression levels of each source 
as a function of a cubic age model (i.e., with linear, quadratic, and 
cubic age terms); (2) the correlation between age and the expres-
sion levels of SVD-shared features, sMRI and fMRI sources (and 
their partialled versions), as well as the regression coefficient and 
regression significance at the first stage; (3) the standard deviation 
of the estimated brain-age delta (and its partialled version) at the 
second stage, its mean absolute error, and the standard deviation 
of predicted age at the first stage. Ten out of the fifteen features 
have a �1 coefficient with significant age dependence (p < 0.05/15, 

Bonferroni correction). The bottom panel indicates that the SVD-
shared features explain the largest amount of the age variance, 
with smaller but significant unique contributions from sMRI 
(SCVs 8, 16, 3, 17) and fMRI (SCV 5). In the same panel, the close 
agreement between standard deviations from predicted age and 
second stage brain-age delta suggests that the patterns extracted 
from the imaging data are largely descriptive of brain age, rather 
than chronological age.

As presented in Figure 5, positive correlations between age delta 
and non-imaging variables indicate accelerated age decline. After 
FDR correction with q value 0.05, a handful of statistically sig-
nificant associations were identified between source-specific 

FIGURE 4    |    Brain-age delta modeling. Top: Predicted source levels as a function of chronological age using a cubic model. Middle: Regression 
statistics at Stage 1 of brain-age delta modeling (see Equation 11 in Supporting Information). Bottom: Standard deviation of predicted age, standard 
deviation of Stage 2 brain-age delta (see Equation 12 in Supporting Information) and its partialled version, and mean absolute error in Stage 2 
brain-age model. SCVs are sorted according to the correlation between their SVD-shared features and age. The close agreement between standard 
deviations from predicted age and second stage brain-age delta suggests that the patterns extracted from the imaging data are largely descriptive of 
brain age, rather than chronological age.
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brain-age deltas and non-imaging phenotypes. Most associations 
were with time to answer in a prospective memory test, namely 
SCVs 5 (shared + sMRI), 17 (shared), and 8 (fMRI). Shared 5 and 
17, as well as fMRI 8, indicate decelerated age decline with higher 
time to answer. sMRI 5 indicates accelerated age decline with 
higher time to answer. Only shared 5 and 17 associations seem to 
replicate significantly within males and females. Also, higher fre-
quency of exercise in last 4 weeks associated with accelerated age 
decline in fMRI 17. See Figure S3 for partialled sMRI correlations.

Analysis results including dMRI instead of sMRI are also 
available as Supporting Information: dMRI age delta modeling 

(Figure S2), dMRI age delta correlations (Figure S4), and par-
tialled dMRI age delta correlations (Figure S5).

3.2   |   Associations With Schizophrenia

Linked subject expression levels were also identified in the patient 
dataset. In particular, SCV 19 (see Figure 6) not only shows asso-
ciation with age, but also provides evidence of age-adjusted group 
differences between controls and patients with schizophrenia. 
Specifically, patients show lower source levels in all three modal-
ities. Moreover, SCV 19 remarkably replicates the spatial patterns 

FIGURE 5    |    Pearson correlations between �2i vectors and subject measures. Pearson correlations are calculated between 15 �2i vectors and 42 
variables for each gender and for all subjects. The underscored correlations are significant.
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of UKB SCV 8 described in Section 3.1, indicating linked sources 
are identified across two independent datasets.

In addition, SCV 14 (see Figure  S7) is also identified as a 
schizophrenia-related source. In SCV 14, patients have higher 
source intensities in all three modalities. In sMRI, positive 
weights, which indicate decline with aging, are shown in the 
temporal lobe, the occipital lobe, the lingual gyrus and the or-
bital part of inferior frontal gyrus, while negative weights can be 
found in the insula and the frontal inferior operculum. In fMRI, 
the superior frontal cortex and the superior parietal cortex have 
positive activation. In dMRI, positive weights can be seen in the 
superior longitudinal fasciculus while negative weights can be 
found in the corpus calossum.

3.3   |   Associations With Sex Effects in UK Biobank

Five SCVs (9, 10, 16, 17, and 22) show significant sex effects in 
UK Biobank data. Females show significantly higher source in-
tensities than males in SCV 9 and 16 (see Figure 7 for SCV 16) 

while males show significantly higher source intensities than 
females in SCVs 10, 17, and 22 (see Figure S6).

For SCV 16, in both sexes, notice the linear covariation with age 
and similar trajectory of decline with age observed in cerebel-
lar regions (sMRI/GM) and superior longitudinal fasciculus I 
plus forceps minor (dMRI/FA), as well as increase with age in 
temporo-parietal cortex (fMRI/ALFF).

In sMRI, SCVs 10 and 17 show negative weights (increase with 
age) in the parietal lobe and the cerebellum, respectively. SCV 9 
shows slight increase with age in the temporal lobe, and slight 
decrease with age in the angular gyrus. SCV 22 shows both pos-
itive and negative weights in the cerebellum. In fMRI, SCVs 10 
and 17 show positive weights in the frontal lobe. SCV 9 shows 
slight increase with age in the cuneus (occipital lobe). SCV 22 
shows positive weights in the olfactory cortex. In dMRI, SCV 10 
has positive weights in forceps minor, while SCV 17 shows neg-
ative weights in the posterior end of the superior longitudinal 
fasciculus II. SCV 9 shows slight decline with age in the vertical 
occipital fasciculus, and SCV 22 shows positive weights in the 

FIGURE 6    |    Schizophrenia-related SCV. Top left: The spatial maps correspond to the mixing weights for each modality. Bottom left: A 3D scatter 
plot of SCV 19 illustrates the association between the identified multimodal subject expression levels and age for patient data color coded by subject 
age (circles indicate females; filled circles indicate males). Right: The SCVs are also plotted by control (HC) and schizophrenia patient group (SZ) as 
violin plots and by age as scatter plots to demonstrate consistent reduction in source intensities in SZ patients across all ages.
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brain stem. Except for SCV 9, as the age increases, regions with 
positive weights experience decline (conversely, increase, in re-
gions with negative weights).

3.4   |   Associations With Cognitive Performance in 
UK Biobank

As shown in Figure 8, the SCV 22 shows significant linear as-
sociation with time to answer (TTA) in a prospective memory 
test across all three modalities. Subjects with faster responses 
have higher source intensities. Males have slightly higher source 
intensities than females in all three modalities. The spatial maps 
highlight the cerebellum in sMRI, the olfactory cortex in fMRI, 
and the brain stem in dMRI.

4   |   Discussion

In this work, we demonstrate that the proposed multimodal 
IVA model, initialized with a multimodal group projection (see 
Section  2.4), can extract independent multimodal subspaces 

that show significant covariation with subject phenotypes. The 
proposed approach directly leverages multimodal associations 
and is applied to two large datasets independently. The results 
highlight several linked multimodal patterns of expression over 
subjects that are significantly associated with aging, sex, cogni-
tion, and psychosis indicators. Five SCVs (SCVs 3, 5, 8, 16, 17) 
were identified that were significantly associated with age based 
on effect size (�2). The aging curves for UK Biobank reported 
in Figure 4 show ample evidence on nonlinear aging effects in 
the recovered SCVs, particularly for SCVs 3 and 5. The strongest 
acceleration in age-related decline was observed in SCV 16, al-
though this may be a result of the strong sex differences present 
in that SCV (see aging plots in Figure 7).

As presented in Figure  3, for the UK Biobank dataset, age-
associated decline in gray matter density (hot spatial areas of 
sMRI SCV 8 weights) was primarily seen in caudate, thala-
mus, insular regions, anterior and posterior cingulate cortex, 
and lingual gyrus, consistent with earlier findings (Brickman 
et al. 2007; Hu et al. 2014). The ALFF maps corresponding to 
SCV 8 suggest reductions in visual, parietal, and dorsal pre-
frontal regions, which covary with the structural changes, 

FIGURE 7    |    Sex-related SCV. Illustration of SCV 16. Top left: The spatial maps correspond to the mixing weights for each modality. Bottom left: 
Multimodal subject expression level sources, depicting all subjects (colored by age; circles indicate females while crosses indicate males). Right: 
Source intensity differences related to sex effects.
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also consistent with prior literature (Hu et al. 2014). In dMRI, 
FA intensity reductions observed in the identified spatial map 
weights of SCV 8 are associated with age and occur in the an-
terior corpus callosum, forceps minor, superior longitudinal 
fasciculus II, the anterior thalamic radiation, and the optic 
radiation.

In UKB SCV 8, the GM nonlinear decline with age in the cau-
date and hippocampus agrees with cross-sectional studies 
from multiple sites on adult development (Walhovd et al. 2011; 
Ziegler et al. 2012; Fjell et al. 2013) though here the nonlin-
ear effect is more prominent at younger age and seems to be-
come more linear at older age. In the thalamus and nucleus 
accumbens, the more linear decline at old age also aligns with 
prior findings (Walhovd et al. 2011; Ziegler et al. 2012; Fjell 
et al. 2013). Accelerated decline has been observed previously 
in temporal and occipital areas (Storsve et al.  2014), while 
we observed such effect more prominently at younger age. 
Slightly deviating from our observation of roughly linear de-
cline at older age, deceleration at older age has been reported 
for anterior cingulate, prefrontal, and temporal areas (Storsve 
et al. 2014; Rast et al. 2018). On the other hand, the observed 
increase in the occipital lobe has been previously associated 
with longitudinally decreased cognition (Leong et al.  2017). 
In general, nonlinear average trajectories of structural 
change are supportive of increased individual variability with 
higher age due to the potential presence of maintenance and 
growth trajectories, assuming plasticity remains into higher 
age (Oschwald et al.  2020). From a multimodal perspective, 
Jirsaraie et al.  (2023) have reported that certain gray and 
white matter areas are of high importance for brain age pre-
diction (many of which are also present in UKB SCV8), espe-
cially for chronic brain disorders such as Alzheimer's disease 
and schizophrenia, which supports our replication result in 
patients' SCV 19 below. Considering that the population in-
cluded in our UKB analysis consists of only unaffected adults 
with ‘healthy’ cognition, some scaffolding theories of aging, 

such as STAC (Spreng and Turner  2019), predict that such 
individuals “should be able to compensate for age-related at-
rophy and, thus, maintain cognitive performance” (Oschwald 
et al. 2020), which may help explain why no significant cogni-
tive effects were found relating to any of the five age-related 
SCVs we identified for this dataset. Brain-age delta was esti-
mated using 5 shared-SVD source features, 5 partialled sMRI 
sources and 5 partialled fMRI sources. Each individual source 
from each of the three modalities within an SCV describes a 
pattern of subject-specific expression levels that is linked (co-
varies) between modalities within that SCV, while being sta-
tistically independent from sources in other SCVs. The mean 
absolute error (MAE) of overall age prediction is 2.70 years, 
and the mean absolute errors are 2.58, 0.41, and 0.61 years 
when using only the five individual sources from each fea-
ture type (shared-SVD, partialled sMRI, and partialled fMRI, 
respectively)—all cases based on the same multimodal IVA 
decomposition. The high MAE of shared-SVD features indi-
cates the largest portion of variability associated with devia-
tions is captured by the shared aspects of the linked sources. 
The association between each individual source and age for 
each subject was also computed. As shown in Figure 4, all five 
SVD-shared features, four sMRI sources (SCVs 3, 8, 16, 17), 
and one fMRI source (SCV 5) show significant age regression 
beta weights. Though the unique variability of the partialled 
sMRI source from SCV 5 does not contribute significantly to 
the age regression model, the corresponding partialled fMRI 
source from SCV 5 does show significant contribution. Thus, 
all five SCVs display significant age regression coefficients 
in at least one modality, and we conclude that each modality 
contributes complementary information not captured in other 
modalities. Moreover, the brain-age delta result using only the 
five sources from shared-SVD features supports that each mo-
dality is valuable and largely predictive of brain age, which is 
largely a consequence of the inherent multimodal link (cor-
relation) among expression levels within SCVs. The advan-
tage of such multimodal analysis is not only that it leverages 

FIGURE 8    |    Time to answer-related SCV. Left: The spatial maps corresponding to the mixing weights for each modality are shown. Right: A 3D 
scatter plot of SCV 22 illustrates the association between the identified multimodal subject expression levels and age for UK Biobank data. 2D scatter 
plots illustrate the relationship between the time to answer and the source intensities for each of the three modalities.
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hidden covariation across modalities to recover linked subject 
expression patterns, but also that it captures unique informa-
tion from each modality by allowing these patterns to differ 
across modalities. Note that in our brain-age delta analysis, 
confound variables head size, scanner table position and scan-
date-related slow drifts described in Smith et al. (2020) were 
not included.

Two SCVs (SCVs 14, 19) in the patient dataset are associated 
with schizophrenia effects. SCV 19 revealed schizophrenia ef-
fects as sMRI gray matter intensity reduction in the temporal 
lobe, consistent with previous findings (Karlsgodt, Sun, and 
Cannon 2010). Schizophrenia-associated reductions can also be 
observed in the medial parietal lobe, including the posterior cin-
gulate cortex in fMRI ALFF maps, also aligned with previous 
literature (Venkataraman et al.  2012). The dMRI spatial map 
shows decreased FA values in the anterior thalamic radiation 
and forceps minor tracts, which is close to the superior longitu-
dinal fasciculus and cingulate bundle reported in Kyriakopoulos 
et al. (2008). As is the nature of the proposed multimodal IVA 
approach, all of these regional changes covary at similar lev-
els over subjects across all three modalities. Interestingly, the 
high spatial correlation between age-related SCV 8 in the UK 
Biobank dataset and schizophrenia-related SCV 19 in the pa-
tient dataset, in both sMRI and dMRI modalities, suggests that 
some source linkages recovered by MMIVA replicate very well 
across two independent datasets analyzed separately. While this 
study was not primarily targeted at schizophrenia and rather 
aimed at demonstrating the richness and relevance of linked la-
tent multimodal patterns, it was highly encouraging to observe 
the replication of (unaffected) UKB SCV 8 as patients' SCV 19 
across modalities, especially considering that both datasets are 
very different from one another. Such evidence supports the 
generalizability of the proposed approach. In addition, it also 
demonstrates its applicability to the study of schizophrenia by 
corroborating known findings from previous schizophrenia 
research (Gupta et al. 2015; Bora et al. 2011), in particular the 
lower gray matter expression patterns in the thalamus, superior 
temporal, anterior cingulate, and dorsal insular gyri (likewise 
for the lower ALFF in the occipital cortex (Turner et al. 2013) 
and FA in the fronto-striatal circuit (Bora et al. 2011)). Besides 
automatically connecting these findings, the results produced 
by MMIVA also suggest a connection with higher ALFF tha-
lamic activity in SZ, which may be compensatory for the afore-
mentioned gray matter reduction. Lastly, some differences in 
the spatial extent and sign of regional patterns can be observed 
between UKB SCV 8 and patients' SCV 19, which could, in part, 
be attributed to differences in data quality, acquisition sequence, 
and population included in each study. Schizophrenia patients 
tend to be less still and scanner distortions from differences in 
TR, susceptibility, and overall SNR may be present. The effects 
of these differences tend to be more pronounced in ALFF than 
in GM or FA features. Sex differences were mainly reflected in 
SCVs 9, 10, 16, 17, and 22 for the UK Biobank dataset. Females 
show significantly higher source intensities than males in SCVs 
9, and 16, while males show higher intensities than females 
in SCVs 10, 17, and 22. Consistent with previous studies (Liu 
et al. 2020; Ritchie et al. 2018), males have significantly higher 
source intensities than females in the parietal lobe (SCV 10) and 
the cerebellum (SCV 17) from sMRI/GM, the frontal lobe in both 
SCV 10 and 17 from fMRI/ALFF, the forceps minor (SCV 10) 

and the superior longitudinal fasciculus II (SCV 17) from dMRI/
FA. As shown in Figure 7 for SCV 16, females have higher in-
tensities than males in the cerebellum from sMRI/GM, the 
temporo-parietal lobe from fMRI/ALFF as well as the superior 
longitudinal fasciculus I and forceps minor from dMRI/FA. In 
SCV 16, decline with aging can be found in the sMRI and dMRI 
modalities while increase with aging can be observed in fMRI/
ALFF maps.

One SCV (SCV 22) has associations with time to answer in a 
prospective memory test. As presented in Figure  8, the cere-
bellum identified by the sMRI source has been found to relate 
to the biological basis of time perception and fast response 
(Grondin 2010), and prospective memory (Cona et al. 2016).

In terms of limitations of the current study, we consider the fol-
lowing aspects: model assumptions, biases, generalizability, and 
miscellaneous, which are addressed separately below.

4.1   |   Assumptions

Statistical dependence within SCVs: A key assumption of the 
MMIVA approach is that there is one (or more) underlying pro-
cess at the subject level that modulates the expression of spa-
tial patterns in a similar way for all modalities. This underlying 
process establishes a link between imaging modalities, which 
implies statistical dependence between them.

Statistical independence between SCVs: Another key assump-
tion of the MMIVA model is that the process(es) underlying the 
joint modulation of expressions (i.e., the SCV) are entirely inde-
pendent and unrelated to each other, inducing statistical inde-
pendence between SCVs. Numerous studies (using mCCA (Qi 
et al. 2018), PLS (Sui et al. 2012), IVA-G (Adali, Levin-Schwartz, 
and Calhoun 2015a)) have explored this concept but have been 
largely limited to simple statistical uncorrelation (i.e., second-
order statistics, SOS), not independence. We believe the latter is 
more meaningful since it accounts for both second- and higher-
order statistics (HOS). As such, it also delivers uncorrelation, 
but with potential for better decoupling of the SCVs and, thus, 
improved interpretability.

Stationarity (or identical distribution): Naturally, the strength 
of the link may be different for each modality pair, but it is as-
sumed that it stays constant/consistent across subjects. This 
implies that each subject must follow the same (i.e., stationary) 
population-level distribution of linked multimodal expression 
levels. For the UK Biobank dataset used here, it is reasonable 
to expect all unaffected subjects were sampled from the same 
distribution. This is less true for the patients dataset, since two 
populations are combined (typical controls and schizophrenia 
patients) and their multimodal expression level distributions are 
expected to differ. That said, evidence from ICA-based fusion 
literature supports that such changes are less detrimental to 
performance if the mixings (here, spatial patterns) are shared 
among both populations. In particular, this is analogous to the 
observation in joint ICA that differences in the shared mixings 
are more detrimental to performance than differences in source 
distribution (Silva et al. 2014b). Since in MMIVA neither sources 
nor mixings are shared across modalities, we expect even less 
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effects from violations of stationarity, especially with only a few 
subject groups included. However, site effects could cause multi-
ple deviations from the population distribution, which we tried 
to mitigate by removing all site-effects before MMIVA in both 
of our experiments. Although we did not investigate it, removal 
of site-effects in this fashion could lead to loss of interesting in-
formation and may not address differences in the latent (SCV) 
space because removal is carried out at the input data level, not 
the output (see Adeli et al. (2021)).

Sample independence: Here, each subject is treated as an inde-
pendent sample drawn from the population. This is fairly true, 
especially for the UK Biobank dataset since it is a very large pro-
spective study (though it is restricted to adults in the UK who 
are more than 40 years old, i.e., a mild conditional sampling). 
For the patient dataset, this assumption is reasonable consider-
ing the data comes from different studies, each with their own 
recruitment policies (also inducing some negligible conditional 
sampling).

Linearity: the MMIVA model assumes that the data of each mo-
dality is a linear mixture of the sources (subject expression lev-
els), where the mixings are the spatial maps. In other words, the 
voxel-wise data values across subjects are a linear combination 
of latent independent sources. It is possible that nonlinear effects 
are present in the data. These could be from the true mixing pro-
cess being nonlinear (Abrol et al. 2021), or because of residual 
artifacts of the data collection and preprocessing. During data 
collection, for example, MR field inhomogeneities may exist. For 
preprocessing, subject- and site-level artifact corrections may in-
duce or leave behind unwanted nonlinearities. Notably, all data-
sets were spatially normalized into the MNI template, which is 
an imperfect nonlinear operation meant to warp brains of differ-
ent shapes into a common grid. Although nonlinear mixings are 
considered out of scope and, thus, a limitation of this work, we 
note the ample evidence for nonlinear aging curves across the 
various SCVs (Figure 4).

4.2   |   Bias

Modality specific noise: The sources of noise can be quite differ-
ent per modality. While we do not conduct noise modeling di-
rectly, we believe that random noise sources from one modality 
are likely statistically independent from noise in a different mo-
dality. Since MMIVA seeks linkage between modalities (SCVs) 
it is unlikely to recover (and therefore averts) noise within SCVs. 
Still, certain physiological and behavioral confounds (such as 
head motion and heart beat) may induce some level of associ-
ation between noise sources across modalities. We leave an as-
sessment of potentially linked multimodal noise in our results as 
future work, although confounding factors were accounted for 
in both MANOVA and age-delta analyses.

Conditional sampling: our results are limited to the subject pop-
ulations studied (typical middle- and old-aged adults in the UK, 
as well as multisite patients screened for schizophrenia). This 
means that data bias may occur and the trained model may 
not produce the same results if used on data from, say, under-
represented populations. In the UK Biobank study, there is a 

concerted effort to ensure the sample is representative of the 
population, which mitigates some of this bias. The patient data-
set has some built-in variability due to the combination of sev-
eral studies, which can mitigate some of the data bias from the 
individual studies, especially those with small N.

Implicit weighting: In every fusion model, there is a risk that 
one modality may eclipse or overwhelm the other. To somewhat 
mitigate this issue, we opted to resample all modalities to the 
same 2 × 2 × 2 mm3 MNI space. Still, the number of GM voxels 
is considerably higher than WM, meaning GM and ALFF mo-
dalities have much more voxels (and weight parameters W) than 
FA. We approached this issue in two different ways, as follows. 
MGPCA: For initialization of the weight parameters W, we put 
forward an approach for modality weighting based on the total 
variance of each modality. This approach is called multimodal 
group PCA (MGPCA) and aims to find a projection for each 
modality that equally accounts for the variance contribution 
of each modality and captures a common subspace among all 
modalities. Scale control: While initialization of the weight 
parameters with MGPCA ensures projection to a balanced com-
mon subspace before MMIVA training starts, it is still possible 
that the weighting will become unbalanced during training and 
cause one or more modalities to overwhelmingly influence the 
results. To counter that, we leverage the scale-controlled loss in 
MISA (Silva et al. 2021), which ensures stability and consistency 
of the source variances across modalities throughout the train-
ing procedure.

4.3   |   Generalization

Our results are limited to the subject populations studied. It is 
possible that the results would change if a more diverse popula-
tion was considered. However, comparing results between the 
two (unrelated) datasets analyzed revealed that at least one SCV 
replicated very well across both datasets (both datasets were an-
alyzed completely separate from each other). Therefore, this pro-
vides some evidence in support of the replicability of our main 
finding for aging, suggesting MMIVA may generalize well. Also, 
this observation is, at least partially, a result of the large number 
of subjects analyzed in each dataset.

4.4   |   Miscellaneous

Data features: this work only leverages GM, FA, and ALFF fea-
tures, but many other types of features are available which bear 
useful information for data fusion. Some noteworthy examples 
include network connectivity matrices (Wu et al.  2015), func-
tional (static or dynamic) and structural (from tractography 
and diffusion weighted imaging), metabolomic uptake imaging 
(such as positron emission tomography (Zaidi and Becker 2016)), 
and vasculature/circulation information (such as cerebral blood 
flow and arterial spin labeling (Baller et al.  2022)). Inclusion/
substitution of these modalities has potential to yield mean-
ingful discoveries about underlying mechanisms in the brain. 
Moreover, the choice to use ALFF features means the current 
work does not leverage dynamic information from the fMRI 
datasets.
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Number of sources: the current work sets the number of sources 
empirically, broadly based on the literature. Current trends sug-
gest high-order models are useful for studying functional dy-
namics, yet typical multimodal analysis is limited to low-order. 
We opted for a C = 30 as a comparatively high number in the 
context of multimodal fusion.

Presence of subspaces and fixed spatial maps: this work limits 
the analysis to linkage of single unimodal components across 
modalities, but it is possible, and quite reasonable, that mul-
tiple components from one modality would be simultaneously 
linked to the same source in another modality. In general, 
groups of sources from each modality could be linked across 
modalities. Estimation of such multidimensional structures is 
very challenging and demands additional research. One lim-
itation of not accounting for multidimensional structures is 
the inability to detect changes in spatial configuration (as in 
“blob shapes”) across groups of subjects from different popu-
lations. This is because each subspace only contains exactly 
one source from each modality. Consequently, the spatial 
configuration of the identified spatial maps is rigid across 
all subjects, modulating only according to a scalar value (the 
subject expression level in the SCVs). As such, any direct as-
sessment of spatial map conformity with current theories of 
compensatory dedifferentiation (Spreng and Turner  2019) 
in older adults (e.g., Hemispheric Reduction Asymmetry in 
Older Adults (HAROLD), Compensation-Related Utilization 
of Neural Circuits Hypothesis (CRUNCH), Scaffolding Theory 
of Aging Cognition (STAC)) is quite limited. However, note 
that this is a limitation shared with other data fusion methods, 
which circumvent this issue post hoc by estimating approx-
imate subgroup spatial maps via back-reconstruction (Silva 
and Plis 2019). While we do not carry out such analysis here, 
work is currently underway to address this limitation and ac-
commodate direct estimation of unimodal groups of sources 
linked across modalities (Li et al. 2024).

5   |   Conclusion

We demonstrated the ability of multimodal independent vec-
tor analysis (MMIVA) to extract linked multimodal modes of 
subject variations that capture different aspects of phenotypi-
cal information including aging effects, schizophrenia-related 
biomarkers, sex effects, and cognitive performance across two 
large independent datasets. With the increasing demand of mul-
timodal neuroimaging data analysis, the MMIVA fusion model 
shows a promising ability to identify linked sources with asso-
ciated phenotypes across multiple neuroimaging modalities and 
multiple datasets.
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Endnotes

	1	Data from UK Biobank is available directly from UK Biobank.

	2	COBRE data is available from COINS, https://coins.trend​scent​
er.org/.

	3	Due to IRB restrictions, the fBIRN phase III data cannot be shared di-
rectly, but individuals interested in requesting access can contact Theo 
Van Erp, tvanerp@hs.uci.edu.

	4	MPRC and BSNIP data are available through the NIMH Data Archive 
(NDA), https://nda.nih.gov/.

	5	Including those due to known and unknown confounds.

	6	Mean removal is performed before and after partialling. Partialled 
variances are adjusted to 1.

	7	Strictly speaking, we could have regressed out only the sources within 
the same SCV since all others are independent by the definition of 
SCVs. Results were nearly identical with such approach.
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