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Abstract The mitotic spindle uses dynamic microtubules

and mitotic motors to generate the pico-Newton scale

forces that are needed to drive the mitotic movements that

underlie chromosome capture, alignment and segregation.

Here, we consider the biophysical and molecular basis of

force-generation for chromosome movements in the spin-

dle, and, with reference to the Drosophila embryo mitotic

spindle, we briefly discuss how mathematical modeling can

complement experimental analysis to illuminate the

mechanisms of chromosome-to-pole motility during ana-

phase A and spindle elongation during anaphase B.
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Introduction

Mitosis is the process by which identical sets of genetic

instructions are delivered to the product of every cell

division (Fig. 1). This process was first described in detail

and illustrated by Walter Fleming more than a century ago

[1], and it is now understood to be coordinated by the

mitotic spindle (Fig. 1a), a subcellular machine which uses

microtubules (MTs) and multiple mitotic motors to

assemble itself and to accurately segregate the genome into

the daughter nuclei. Errors in this process can have dev-

astating consequences for the cell and the organism since

they can lead to genomic instability, birth defects and

cancer.

Mitosis proceeds in distinct phases. In astral spindles,

which assemble predominantly via a centrosome-controlled

pathway, dynamic MTs of the bipolar spindle capture

chromosomes, each consisting of pairs of sister chromatids,

during prometaphase (Fig. 1b). By metaphase, captured

sister chromatids are aligned at the spindle equator, and a

constant spindle length is maintained for a period that can

last from seconds to years in different types of spindles.

Subsequently, the sister chromatids segregate as a result of

being pulled polewards by disassembling kinetochore

fibers during anaphase A, and also by the elongation of the

spindle itself, which increases pole–pole spacing, during

anaphase B (Fig. 1b). Finally, the daughter nuclei form

around the segregated and decondensing chromatin while

the spindle is disassembled during telophase.

A mitotic spindle displays a reasonably predictable

degree of structural order; spindle MTs are extremely

dynamic and are generally organized with their minus

ends at or near the spindle poles with their plus ends

extending outward to form three sets, the astral (aMT),

interpolar (ipMT) and kinetochore (kMT) microtubules

(MTs) (Fig. 1a). These MTs can potentially serve as

polymer ratchets to exert forces that push and pull the

chromosomes or the spindle poles, and as dynamic,

polarized tracks for the force-generating mitotic motors

that move cargo along them; for example, a chromosome,

a cell cycle (or other) regulatory molecule, or a second

‘‘cargo’’ MT that is crosslinked by the motor to its MT

track (see below). In this review, we focus on force

generation for chromosome movement (see [2] for an

earlier, comprehensive review of this topic). Force gen-

eration for spindle assembly and length control has been

recently reviewed elsewhere [3].
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Force, work and energy underlying chromosome

motility in the mitotic spindle

In the sub-cellular regime, low Reynolds number condi-

tions dominate motility (i.e. Re \ 10-3, where

Re ¼ inertial drag
viscous drag

¼ vLq
g ), so that inertial forces (due to mass)

are negligible in driving movements, and viscous forces

(due to friction) have the major effect [4, 5]. For example,

in Drosophila syncytial embryo spindles, anaphase A lasts

about *50 s during which sister chromatids move from the

equator towards the opposite poles at a rapid rate of

v = 0.1 lm s-1 while the spindle is maintained at a con-

stant length of 12 lm. A fly chromosome of length

L * 3 lm and density q = 103 kg m-3, moving through

cytoplasm of viscosity *0.2 pN s lm-2 (see below), will

have Reynolds number, Re * 10-9 � 10-3. This low

value for the Reynolds number means that the chromo-

somes’ movement is dominated by viscous forces, and

hence the net force driving the movement of the chromo-

some is proportional to its velocity and its viscous drag

coefficient: F = lv (Fig. 1c).

It is possible to estimate the viscous drag coefficient of a

chromosome, based on its size and shape, and the estimated

cytoplasmic viscosity [5]. The viscous drag coefficient

associated with a fly chromosome has been estimated using

in vivo data [6]. In this study, the Young’s modulus of the

chromosome was determined based on the 4D analysis of its

motion (curvature fluctuations), and using this value, the net

poleward force powering its movement during anaphase A

was estimated, and found to be of the order of 0.1–1 pN.

This net force value, combined with the observed anaphase

A rate, yielded an estimate for the drag coefficient of a

chromosome and also for the nucleoplasmic viscosity.

The estimate of the drag force acting during chromo-

some-to-pole movement can be used to calculate the work

done and the energy used in moving a fly chromosome

from the equator to the pole (Work = Force 9

Distance * 10-12N 9 10-5 m = 10-17 J). ATP hydroly-

sis releases about 50 kJ mole-1 free energy under cellular

conditions [5], so a single ATP molecule yields DG &
50 9 103/(6 9 1023) = 10-19 J. Therefore, assuming

(conservatively; see below) that the force generators (MTs

or motors) have only *10% coupling efficiency, as few as

1,000 ATP hydrolyses are sufficient to move a fly chro-

mosome a distance of the order of 10 lm from the equator

to the pole at the observed rapid rate of 0.1 lm s-1 against
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Fig. 1 The mitotic spindle.

a Three different classes of MTs

make up the mitotic spindle,

namely astral aMTs, interpolar

ipMTs and kinetochore kMTs.

b Chromosome motility during

different phases of mitosis;

chromosomes are captured

during prometaphase (upper),

aligned at the spindle equator

during metaphase (center) and

segregated by chromosome-to-

pole motion during anaphase A,

plus spindle elongation during

anaphase B (lower).

c Schematic diagram of the

experimental set-up that uses

calibrated microneedles to

measure the force exerted by the

mitotic spindle on an anaphase

chromosome (upper) compared

with estimated force required to

move a chromosome against

viscous drag (lower)
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viscous drag. Since a typical dividing cell consumes 107

ATP per second [5], this amounts to only a minute fraction

of the cell’s energy.

Forces measured for moving chromosomes

in the mitotic spindle

Chromosome-to-pole motility

How much poleward force can the mitotic force generators,

namely, MT polymer ratchets and kinetochore motors exert

on a chromosome, e.g., during prometaphase and anaphase

(Fig. 1b)? In one important study, Alexander and Rieder [7]

measured the net force powering the rapid poleward

movements of attaching chromosomes during prometaphase

in Newt lung cells, and estimated *1–10 pN force per MT.

In classic, pioneering experiments, Bruce Nicklas measured

the maximal force that can be exerted by the spindle on a

chromosome during anaphase A in grasshopper spermato-

cytes [8]. Using force-calibrated flexible glass needles, he

snagged chromosomes during anaphase A, and measured

forces of the order of 700 pN being required to stall chro-

mosome to pole movement (Fig. 1c). A most intriguing

aspect of Nicklas’ results was that the chromosome did not

slow down until forces of 200–300 pN were applied to it.

This latter result remains somewhat mysterious, in view

of the estimate that only *1 pN scale forces are required

to move the chromosome poleward during anaphase A.

Why does a chromosome use so little of the spindle’s

force-generating capacity, and how does the chromosome’s

velocity remain constant when challenged by an opposing

force corresponding to a 100-fold increase in load? Nicklas

suggested that this was an indication of the presence of a

‘governor’ for motility, such as the kMT. For example, the

kMT could act as a barrier to poleward motion so its loss

by depolymerization rather than the kinetochore motor’s

motility rate limits the chromosome’s velocity. In this

view, assuming that there are *15 kMTs per kinetochore,

as few as *5–10 motors per MT-kinetochore interface

tracking the plus end of the kMT could produce the large

force Nicklas observed, without a significant slowing down

of the snagged chromosome. That is, 15 9 10 = 150

motors would be stalled by a force in the range of

*1000 pN. Since chromatid to pole velocity is limited by

the shortening of the k-fiber, an opposing load would not

slow down the kinetochore motors until a force of

*500 pN is applied. However, in the absence of such an

external load, a single attached motor (e.g., a single dynein)

or a single depolymerizing MT is sufficient to drive the

observed chromosome to pole motility against viscous

drag. The elucidation of the mechanistic basis of the dis-

crepancy between the level of force powering the

chromosomes polewards in the absence and the presence of

an external load will require improved understanding of the

dynamic coupling between the kinetochore and the kMT,

the identity of the force-generator(s), and a careful struc-

tural analysis of the kinetochore-MT interface during

anaphase. Even though progress in these areas has been

achieved, it remains an active topic of research.

Polar ejection forces

In the Drosophila embryo spindle, the magnitude of the

polar ejection forces (PE), i.e. the forces generated by

polymerizing MTs and chromosome arm-associated kine-

sins (below) that push the chromosome arms away from the

poles during prometaphase and metaphase (Fig. 1b), was

estimated to be *1 pN per MT, based on the computational

analysis of 4D chromosome motion and modeling [9]. In

agreement with Nicklas’ measurements, these studies also

suggest that the magnitude of the maximal force exerted on

the chromosomes by spindle MTs and motors lies in the

range of several hundreds to thousands of pN.

Recent studies have examined the spatial distribution of

these polar ejection forces by amputation of the chromo-

some arm in order to reduce PE forces while leaving the

kinetochore motility machinery intact, and then tracking

the oscillations of the remaining kinetochore–arm complex

in the spindle [10]. Arm amputation was observed to

increase the amplitude of the oscillations without altering

the poleward and anti-poleward velocity of the kineto-

chores. The position at which the oscillating chromosomes

(intact or with an amputated arm) reverse direction is

assumed to correspond to the maximal PE force the kine-

tochore machinery can withstand. Based on this, the

experimental observations could be fit to a PE force-posi-

tion function in the spindle, where the exponent of the

position was treated as a free parameter. Contrary to the

current view that MT plus ends are exponentially distrib-

uted so that PE forces decrease strongly away from the pole

(as an inverse square function), the results suggest that the

PE force is relatively high but constant throughout a sur-

prisingly wide region moving from the poles and decreases

only linearly towards the equatorial region of the spindle

[10]. This finding draws attention to the need for further

investigation of the distribution of MT plus ends and

motors in the metaphase spindles that keep the chromo-

somes aligned at the metaphase plate despite their short

poleward and anti-poleward excursions.

Structural organization of spindle MTs

Structural studies have revealed that MTs, the major sites

of force-generation for chromosome movement in the

Mitotic force generators 2233



spindle, are 13 stranded polymers, in which *8-nm-long

ab-tubulin dimers are polymerized end to end with the a
subunits facing the MT’s minus end (Figs. 2a and 3a) [11–

13]. This structural polarity is important since it gives rise

to the different polymerization/depolymerization kinetics

of the MT plus and minus ends, and it controls the direc-

tional motility of motors that move relative to the polymer

lattice. For example, the MT plus ends exhibit more

‘active’ dynamic instability (DI) than the minus ends in

vitro (Fig. 2a), whereas some mitotic motors, like kinesin-

5, move towards the MT plus ends while others such as

kinesin-14 and cytoplasmic dynein move towards their

minus ends (Fig. 3b).

The organization and polarity pattern of MTs in the

spindle was determined using elegant systematic electron

microscopic studies by McIntosh et al. [14–18]. The 3D

reconstruction of MT trajectories from serial EM sections,

combined with polarity assays by hook decoration,

revealed several key features of the spindle MTs’ spatial

and structural organization (Fig. 2b). It was this work

which determined that many spindles contain three classes

of MTs (Fig. 1a): (1) kinetochore MTs (kMTs) that link the

chromosomes to the poles, (2) the interpolar MTs (ipMTs)

that emanate from the poles towards and beyond the

spindle equator, and (3) astral MTs (aMTs) that extend

outward from the centrosomes. In vertebrate tissue culture

cells, for example, it was observed that the kMTs have their

minus ends all facing the spindle poles and run all the way

from the kinetochores to the poles. The latter result is

perhaps surprising, given the subsequent discovery of MT

nucleation along the walls of pre-existing MTs within the

spindle (e.g., by the augmin complex) [19]. In contrast, it

was observed that the trajectories of MTs within ipMT

bundles are less persistent than those of kMTs, often
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Fig. 2 Microtubule structure and dynamics in the spindle. a Left
panel MT dynamic instability (DI) observed in vitro and plots of the

associated MT length changes. Right panel turnover dynamics of MTs

in the spindle assayed by fluorescence recovery after photobleaching

(FRAP) where the rapid recovery is best explained by DI of spindle

MTs. b Schematic representation of the use of serial section EM of a

mitotic spindle at metaphase: 3D organization and position of the

MTs and chromosomes in the spindle is reconstructed based on the

analysis of multiple thin cross-sections of which only two are shown.

Spindle MT structure in three dimensions is reconstructed by tracking

MT trajectories from section to section. c Poleward flux of spindle

MTs as observed by fluorescence speckle microscopy (FSM).

Example taken from Drosophila embryos where small groups of

tubulin dimers in individual ipMT bundles are observed to move

away from the spindle equator from metaphase through anaphase B

(oblique traces of speckles are drawn superimposed on the right hand

kymograph). During metaphase and anaphase A (termed pre-anaphase

B), when pole–pole distance is maintained at a constant spacing,

tubulin speckles are observed to move towards the poles, in the

process termed poleward flux. During anaphase B, speckles move

away from the equator at the same rate as the poles as the spindle

elongates, pulling the chromosomes, together with the poles, away

from the equator. Lower diagram illustrates a model for poleward flux

of ipMTs during pre-anaphase B and the persistent movement of

speckles away from the equator at the same rate as the poles during

anaphase B
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lysis by MTs and MT-based motors is used for polymer dynamics and

to bias thermal fluctuations to generate directional force and motility

by polymer ratchets (left) and mitotic motors (right). Only a single

MT protofilament is shown. b Cartoon showing hypothetical coupling

between the chemical and mechanical changes associated with

directional stepping of a two-headed motor along a polymer. ATP

hydrolysis releases free energy that biases the directionality of

conformational changes to occur in the sequence 1-to-2-to-3-to-1,

since the reverse sequence of conformational changes is coupled to

ATP synthesis and is therefore of low probability. On the reaction

coordinate diagram (below), ATP hydrolysis tilts the energy land-

scape downward to the right so that the forward rate constant (Kf)

exceeds the reverse rate constant (Kr) and consequently the motor

tends to step persistently rightward. An increasing opposing force

(Fload) tends to antagonize the ATP-induced downward tilt, causing

the motor to slow down in accordance with its force–velocity profile

until Kf = Kr at Fstall, whereupon the motor stops. Assuming

thermodynamic equilibrium between the pre-step (n) and post-step

(n?1) states, the motor can do work W = Fd, and from the Boltzman

distribution Feq ¼ kBT
d ln Keq. c Force-generation by the rectification

of thermal energy via the action of MTs working as ‘Brownian

Ratchets’. As shown in the reaction coordinate diagram, the presence

of a load (e.g., a chromosome) ‘tilts’ the energy landscape, so that the

free energy released, i.e. the binding energy, DGB, (due to the

formation of inter-subunit weak bonds as tubulin polymerizes), is

reduced by Fd (=work done to push the chromosome/load a distance d)
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having their minus ends detached from the centrosome at

the pole and sometimes being associated with kMT bundles

instead. The plus ends of some of these ipMTs overlap in

an anti-parallel orientation around the spindle equator

(midzone). Both the kMTs and ipMTs are found in bun-

dles, possibly being crosslinked by motors and non-motor

MT-associated proteins (MAPs) to form a mechanically

inter-connected continuum.

Dynamics of spindle MTs

MTs in living mitotic spindles were initially visualized

using polarized light microscopy [20], which documented

the rapid polymerization/depolymerization dynamics of

spindle MTs. In the early 1980s and 1990s, newly developed

imaging techniques combined with the use of fluorescently-

tagged tubulin further revealed the dynamics of MTs in live

spindles [21–23]. For example, fluorescence recovery after

photobleaching (FRAP) revealed that spindle MTs in cul-

tured mammalian cells turn-over rapidly with a half life of

*20 s, which could be explained by the dynamic instability

of MT plus ends following first order kinetics (Fig. 2a) [22].

In complementary studies, cold treatment of mitotic cells

selectively eliminated the non-kMTs, and it was revealed

that the kMTs turn over less rapidly (half life–several

minutes) than the non-kMTs [24, 25].

Also, in elegant studies, the persistent poleward move-

ment of tubulin dimers within the spindle MTs of tissue

culture cells was observed by the photoactivation of caged-

fluorescent tubulin incorporated into mitotic spindles [23].

This ‘‘poleward flux’’ can be explained both at the

molecular and theoretical level by the poleward sliding of

MTs coupled to the depolymerization of their minus ends

at the spindle poles and incorporation of new tubulin

subunits at kinetochores [26, 27] (e.g., Fig. 2c). However,

based on studies of poleward flux in Xenopus egg extract

spindles, an alternative ‘‘slide-and-cluster’’ model has been

proposed [28]. The development of Fluorescence Speckle

Microscopy (FSM) and its application to studying MT

dynamics in the mitotic spindles allowed the visualization

of the dynamics of groups of tubulin dimers within spindle

MTs in various organisms [29–32]. With the notable

exception of the budding yeast, it was observed that MTs of

all spindles examined undergo poleward flux at rates

ranging from 0.005 to 0.06 lm s-1 and the non-kMTs of

metaphase spindles turnover rapidly, with a half life

ranging from a few seconds to a few minutes. Naturally,

these findings led to the question of how the mitotic spindle

maintains a robust structure capable of segregating the

genome as accurately as it does, despite the constant

turnover and poleward movement of MTs that make up the

spindle and capture and segregate the chromosomes [33].

Molecular mechanisms of force generation

for chromosome movements

The idea that the polymerization and depolymerization of

spindle fibers generate forces in the spindle was a corner-

stone of Shinya Inoue’s ‘Dynamic Equilibrium Model’ for

mitosis, in which he postulated that spindle fibers act like

liquid crystals that grow/polymerize to push the poles apart

and shrink/depolymerize to pull the chromosomes to the

poles [34].

Following the discovery of tubulin and its ability to self-

assemble in vitro [35–37], it became clear that the spindle

fibers are made of MTs, dynamic cytoskeletal polymers

whose role in force-generation is quite well understood

[38]. They can polymerize to exert pushing (compressive)

forces and depolymerize to exert pulling (tensile) forces on

the chromosomes and the spindle poles. It is further

understood that the dynamic instability (DI) of 13-strand

MT plus ends is characterized by stochastic transitions

(catastophes and rescues occurring at frequencies, fcat and

fres) between phases of growth (polymerization rate, Vg)

and shortening (depolymerization rate, Vs) [39] (Figs. 2a

and 3a, c). The free energy released by intersubunit bond

formation during polymerization and GTP hydrolysis dur-

ing depolymerization can be harnessed to push and pull the

chromosomes and the spindle poles, thereby driving

mitotic movements. It is thought that a single polymerizing

or depolymerizing MT can generate 10–100 pN force in

vitro [40, 41], and consequently tens of MTs can cooperate

to generate nN scale forces in the spindle. However, many

problems remain: for example, how does a depolymerizing

MT tip remain attached to its cargo?

A large body of evidence suggests that MT polymer

ratchets cooperate with kinesin and dynein motors

(Fig. 3b, c) to generate the forces that drive motility

during mitosis. There are multiple MT-based motors in

the spindle, including plus and minus end-directed kine-

sins and dynein, each capable of generating *1–10 pN

force per motor in vitro [42, 43]. For example, in bio-

physical studies, the mitotic motor, kinesin-5 (below), was

observed to take 8 nm steps (d), and typically generated

forces of 4 pN (although values as high as 7 pN were

observed) [43]. The maximum force such a motor could

exert by hydrolyzing one ATP per step (step size = d), is

given by Fmax = energy (DGATP)/distance (d), i.e. 80

J/8 nm = 10 pN, which suggests a coupling efficiency of

greater than 40%.

The magnitude of forces observed suggests that, in

principle, multiple motors and MT polymer ratchets could

cooperate or compete in the spindle to generate pN–nN

scale forces, in order to position and segregate the

duplicated chromosomes during mitosis. The basis for

both MT- and motor-based force-generation is the

2236 G. Civelekoglu-Scholey, J. M. Scholey



rectification of thermal energy (Fig. 3a–c). For example,

in the absence of ATP, motors bound to MTs undergo a

one-dimensional (1D) random walk using thermal energy,

but an ordered series of conformational changes coupled

to sequential steps in the ATP hydrolysis reaction renders

this movement unidirectional, since the probability of

moving backward, thereby synthesizing ATP, is very low

(Fig. 3b, upper). On a reaction coordinate diagram

(Fig. 3b, lower), it can be seen that ATP hydrolysis

‘‘tilts’’ the motor’s energy landscape so that the motor

tends to move to the right because forward steps are more

probable than backward steps, i.e. the forward rate con-

stant, kf, from subunit n to (n ? 1) is associated with a

lower activation energy than the reverse rate constant,

from subunit n to (n - 1), but in the absence of ATP

hydrolysis, kf = kr, i.e. the forward and backward steps

are of equal probability. An opposing force (Fload) negates

the tilt created by ATP hydrolysis, slowing down the

motor’s rightward motion in accordance with its force–

velocity curve, until the motor stalls at Fstall.

Similarly, MT growth occurs by the binding of GTP-

bound tubulin subunits to its tip yielding a supply of free

energy due to the formation of noncovalent bonds between

tubulin subunits, termed the binding energy (DGB)

(Fig. 3c). Since the free energy released by this binding

exceeds thermal energy (kBT * 4.1 pN nm), polymeriza-

tion is unlikely to be spontaneously reversed, so it rectifies

thermal movements of both the MT tip itself and of an

object located at the tip. In other words, the binding energy

can be used to exert a pushing force (F) that does work (W)

on a load to move it a distance d, where F = W/d. Con-

versely, since GTP is hydrolyzed as new tubulin subunits

are incorporated into the wall of the MT, part of the free

energy released from this hydrolysis is trapped in the MT

lattice as stored elastic energy which can subsequently be

released during MT depolymerization and used to exert a

pulling force on, e.g., a chromosome. Thus, GTP hydro-

lysis allows a MT polymer ratchet to ‘‘pull’’ as well as to

‘‘push’’.

Mitotic motors

Discovery of mitotic motors

Biochemical approaches

The first identified MT-based motor, the dynein ATPase,

was isolated from cilia in 1965 as a potential MT–MT

sliding motor driving ciliary motility [44]. Seminal work

on fast axonal transport led to the purification of a second

type of motor, kinesin-1, from squid axons [45, 46]. It was

shown that kinesin-1 is a MT-plus end-directed motor,

moving at &1 lm s-1 in the absence of load. Cytoplasmic

dynein was purified a couple of years later [47, 48] and

shown to move at the same rapid rate of &1 lm s-1, but

towards the MT-minus ends [49].

In 1969, McIntosh et al. [50] proposed that such MT–

MT crosslinking motors could drive a ‘‘Sliding Filament

Mechanism for Mitosis’’. Later, in the early to mid-1980s

many laboratories, using MT-affinity, isolated ATPases

that might generate forces for intracellular movements

including MT–MT sliding and chromosome movement in

the spindle. For example, using MT affinity purification,

ATPase and motility assays, and pan-kinesin peptide

antibody screens, several putative mitotic motors were

identified from early echinoderm and Drosophila embryos

[51–54]. One of these turned out to be KLP61F, a member

of the kinesin-5 family, which was purified from Dro-

sophila embryos as a slow MT-based motor, moving

towards the MT plus end at 0.04 lm s-1, with a bipolar

homotetrametic structure consisting of pairs of motor heads

at opposite ends of a four-strand coil–coil rod [55]. Based

on this ultrastructure and the corresponding mutant phe-

notype (below), it was proposed that kinesin-5 motors such

as KLP61F could crosslink and slide anti-parallel over-

lapping MTs, for example, driving anaphase B spindle

elongation to contribute to chromosome segregation

(Fig. 4a) [53, 55, 56].

Genetic approaches

In parallel with these targeted biochemical studies, several

mitotic motors were uncovered via the analysis of mutants

that turned out to encode mitotic kinesins. For example,

genes encoding essential kinesin-5 motors were identified

in organisms including Aspergillus nidulans [57], budding

yeast [58], Xenopus [59] and Drosophila [60]. Loss-of-

function mutants were characterized by collapsed mono-

astral spindles, supporting the hypothesis that kinesin-5

could drive pole–pole separation and spindle elongation.

More recently, system-level, genome-wide analyses led to

the identification of the full inventory of MT-based motors,

including mitotic motors, in several organisms (e.g., [61–

63]). For example, in Drosophila melanogaster, there are

36 MT-based motors, 12 of which belong to the dynein

family and 24 are members of the kinesin family. Of these,

only one dynein (cytoplasmic dynein) and 10–12 kinesins

have mitotic functions.

Mitotic motors function by a variety of mechanisms [64,

65]. Below, we arbitrarily classify them into MT cross-

linking/sliding, kinetochore, MT depolymerizing and

chromosome arm motors, even though mitotic motors often

combine these characteristics (e.g., some kinesin-13 motors

such as KLP59C are both kinetochore and MT depoly-

merizing motors).
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MT-crosslinking and sliding motors

Kinesin-5

The kinesin-5 family of mitotic motors has been the focus

of many studies due to the essential mitotic functions of

kinesin-5 in many systems. Kinesin-5 motors are generally

thought to be ‘‘slow’’ bipolar homotetramers capable of

crosslinking and sliding adjacent spindle MTs (Fig. 4a)

[53, 55, 59, 66]. Kinesin-5 could function by sliding MTs

against a static structure, for example, a spindle matrix

[67], or it could crosslink adjacent MTs and slide anti-

parallel MTs apart to generate outward forces on spindle

poles to drive anaphase B spindle elongation [55]. While in

vivo evidence supports a role for kinesin-5 in anaphase B

in some systems [68–70], there appear to be exceptions,

since in C. elegans embryos, cortical pulling drives ana-

phase B [71, 72], whereas in S. pombe, the sliding apart of

AP ipMTs by kinesin-6 motors is proposed to drive ana-

phase B [73].

Recently, using in vitro motility assays, both Xenopus

Eg5 and Drosophila KLP61F were shown to crosslink and

slide MTs in relation to one another, thus possessing bio-

chemical properties consistent with the latter sliding

filament model [74, 75]. In their pioneering studies,

Kapitein et al. [74] used a ‘‘polymer brush’’ to force

kinesin-5 to bind to immobilized MTs on a glass coverslip

instead of to the coverslip surface itself. When the motor

crosslinked the immobilized MT to a second, cargo MT in

a parallel orientation, the motor apparently moved along
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Fig. 4 Possible modes of action of motors in the mitotic spindle.
a Sliding filament mechanism: motors on anti-parallel overlaps

generate force to pull or push the MTs and thereby exert forces on the

spindle poles. For example, kinesin-5-dependent outward sliding of

ipMTs can push spindle poles apart leading to anaphase B spindle

elongation which contributes to chromosome segregation (see

Figs. 7b and 8). b Cortical pulling: dynein motors anchored at the

actin cortex generate outward forces on the spindle poles, by walking

towards the aMTs minus ends anchored at the poles. In some systems,

e.g., C. elegans embryos, anaphase B depends mainly on such cortical

force generators pulling the poles outward. c Transport motors, e.g.,

kinetochore dynein transporting kinetochore spindle assembly check-

point proteins (e.g., Mad2) away from the kinetochore to mediate the

transition from metaphase to anaphase. Kinetochore dynein-driven

kinetochore motility may also contribute directly to anaphase A in

some systems (see Figs. 6 and 7a). d MT-depolymerases, e.g., a

member of the kinesin-13 family is shown at the spindle pole

depolymerizing the minus ends of MTs as they slide into the poles, to

maintain the metaphase spindle length, and contributing to the

poleward flux of MTs. In some systems, this process can control the

timing and rate of anaphase B (see Figs. 7b and 8). Kinesin-13

depolymerases can also contribute to pacman and poleward flux

mechanisms of anaphase A (see Fig. 6). e Sliding against a stable

structure: sliding motors (kinesin-5) attached to a stable structure, ‘the

spindle matrix’, slide MTs against this fixed structure to generate

outward forces on the spindle poles and chromosomes. f MT-binding

preference of kinesin-5: the kinesin-5, KLP61F, has a threefold higher

binding affinity for anti-parallel MT overlaps compared with parallel

MT overlaps
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both MTs simultaneously without producing any MT–MT

sliding, but if the second MT was bound in an antiparallel

orientation instead, MT–MT sliding occurred at twice the

rate that MTs are moved by kinesin-5 over a glass surface

in conventional MT gliding assays [59, 74], strongly sup-

porting the notion of a bipolar motor-driven sliding

filament mechanism. In [75], using polarity marked MTs, it

was further shown that KLP61F has a distinct MT orien-

tation preference, displaying a threefold preference for

bundling MTs in the anti-parallel versus the parallel ori-

entation (Fig. 4f). These findings suggest that in the mitotic

spindle, kinesin-5 should accumulate on anti-parallel MT

overlaps that are present at the spindle midzone, where

it could crosslink and slide apart anti-parallel MTs to

generate outward forces on the spindle poles during

anaphase B.

To study kinesin-5 dynamics, transgenic flies stably

expressing functional GFP-KLP61F, were generated [76].

FRAP and FSM analysis of these lines revealed that

kinesin-5 motors exhibit the same turnover dynamics as

tubulin in the spindle (with a half-life of *5 s), and that

even though the run-length of the motors on the MTs is

short, most motors are bound (85%) to spindle MTs with

only a small fraction diffusing freely (15%) in the spindle

at any given time. Furthermore, quantitative analysis of the

tracks of small groups of motors on MTs (i.e. speckles of

motors) indicated that, while tracks of motors on the two

half spindles move towards and away from the spindle

equator, a large fraction of the motors’ tracks in the central

spindle remain stationary. Similar observations were made

in Xenopus spindles [77]. This is consistent with the model

that, in the central region of the spindle, motors which are

bound to anti-parallel MT overlaps slide them apart, while

they remain stationary with respect to a fixed laboratory

reference frame. In this way, kinesin-5 motors could

function as ensembles of dynamic MT–MT crosslinkers

that drive anaphase B spindle elongation, thereby contrib-

uting to chromosome segregation.

Kinesin-14

The kinesin-14s are dimeric motors (Ncd in Drosophila,

Kar3 in budding yeast and Pkl1 in fission yeast) possessing

a nucleotide-insensitive MT binding site on their tail

domain, and are unique among the kinesin family in that

they move towards a MT’s minus end [78–80]. TIRF

microscopy motility assays of single GFP-Ncd molecules

in buffers approaching physiological ionic strength

revealed low processivity along single MTs but enhanced

processivity along MT bundles; within the bundles, the

K-rich tail of Ncd is proposed to be able to form ionic

bonds to ‘‘E-hooks’’ on the cargo MT which reduces Ncd’s

dissociation from the MTs, thereby increasing its processivity

[81]. These findings support a role for kinesin-14 in bun-

dling and sliding MTs against one another, and generating

antagonistic forces relative to kinesin-5 (Fig. 4a). More

recently, in careful MT-MT sliding assays, Ncd was shown

to crosslink parallel MTs and to crosslink and slide anti-

parallel MTs in relation to one another [82]. These assays

support a role for kinesin-14 motors both in focusing the

spindle poles [83] and in causing spindle collapse in the

absence of the antagonistic kinesin-5 motors [69, 84]. In

relation to chromosome movements, in Drosophila

embryos, it is thought that the kinesin-14, Ncd, exerts a

‘‘braking’’ effect on spindle pole separation during early

mitosis, and this gets downregulated at the onset of ana-

phase B, allowing kinesin-5 motors to drive spindle

elongation [26] although this idea is still not universally

accepted [85].

Kinetochore motors

A complex set of motors residing at the kinetochore

is responsible for (1) the removal of proteins from the

MT-attached kinetochores to silence the spindle assembly

checkpoint (SAC) and allow the passage from metaphase

to anaphase, and/or (2) in powering the polewards or anti-

polewards motion of the kinetochores (Fig. 4c). Notable

among these proteins is dynein, which moves rapidly (at

*1 lm s-1) towards the MT minus ends. Dynein deple-

tion causes multiple defects during mitosis, including

defects in spindle assembly and chromosome congression,

in mitotic progression, and in chromosome segregation

[86–91]. While a role for dynein in poleward kinetochore

transport during ‘search-and-capture’ is generally accepted

[7, 92], a direct role for dynein in driving poleward kine-

tochore transport during anaphase A has been

controversial. However, in spindles that utilize a ‘‘pacman’’

mechanism in which kinetochores use kinesin-13 MT

depolymerases to ‘‘chew’’ their way to the poles, dynein is

thought to help insert the plus ends of kMTs into the

kinetochore where the depolymerases reside [86, 93].

The kinesin-7, Cenp-E, is a plus end-directed kineto-

chore motor which moves slowly and processively along

MTs (speed &0.01 lm/s, run-length &1–5 lm) and is

essential for mitosis [94, 95]. It is proposed to maintain

kinetochore attachment to depolymerizing/polymerizing

kMT plus ends, and to recruit, activate or inactivate cell

cycle regulatory proteins to the kinetochores [96, 97]. It

can also directly move the kinetochores of unattached or

mono-oriented chromosomes along spindle MTs (kMTs or

ipMTs) towards the spindle equator to mediate their con-

gression at the metaphase plate [98, 99]. Based on its 230-

nm-long, flexible stalk, visible by rotary shadow EM of

purified Cenp-E [95], it has been proposed that Cenp-E

could act as a flexible tether to MT plus ends, thus forming
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the ‘‘kinetochore fibrils’’ that are seen in vivo at the MT-

kinetochore interface in high resolution EM tomography

studies [100], although the Ndc-80 protein complex is an

alternative candidate [101–106]. The linkage of kineto-

chores to depolymerizing MT-plus ends via a highly

flexible, plus end-directed motor with load-bearing capac-

ity, such as Cenp-E, is highly appealing [95, 96, 100, 107].

MT-depolymerizing motors

Kinesin-13 motors

The kinesin-13 family of motors bind to the MT ends,

where they use the free energy released by ATP hydrolysis

to remove tubulin subunits and induce MT depolymeriza-

tion (Fig. 4d) [108, 109]. In vivo, the depletion of the

vertebrate kinesin-13, MCAK, leads to chromosome con-

gression and segregation defects [110, 111], and in elegant

studies, the Sharp laboratory have shown that two Dro-

sophila kinesin-13 motors cooperate to drive rapid

(0.1 lm s-1), poleward chromosome motility by depoly-

merizing opposite ends of the kMTs, producing a combined

‘‘flux-pacman’’ mechanism for anaphase A in the syncytial

embryo [93]. Recent in vitro studies have illuminated the

mechanism of action of kinesin-13 depolymerases. For

example, the vertebrate kinesin-13, MCAK, was shown to

bind to the MT lattice wall and to use thermal energy to

diffuse to the ends of the MTs via a 1D random walk

independent of ATP; only when it reaches a MT’s tip does

it use ATP hydrolysis to catalyze the removal of one or

more tubulin dimers from the tip [112]. These motors

appear to either increase or decrease the frequency of MT

plus end catastrophe or rescue, respectively and the

resulting deploymerase activity is regulated by phosphor-

ylation [113–115]. At least one kinesin-13, KLP10A, forms

rings around the MT lattice that are visible by EM, and a

model based on high resolution structural analysis suggests

that the MT binding loop 2 of the conserved kinesin

superfamily motor domain contains kinesin-13-specific

residues which stabilize MT protofilaments in the ‘‘bent’’

conformation, characteristic of depolymerization [116,

117]. Thus, kinesin-13 motors, like the Dam/Dash com-

plex, are candidates for serving as coupling rings between

depolymerizing MT ends and the kinetochore or the spin-

dle pole [116].

Kinesin-8 motors

Kinesin-8 motors are of great interest since they use energy

from ATP hydrolysis to translocate along the MT polymer

lattice towards the MT plus ends, and also, when they

arrive at the tip, to induce MT-depolymerization. The

depletion of kinesin-8 motors from dividing cells leads to

mitotic defects that include aberrant congression and

directional instability of chromosomes and the formation of

abnormally long spindles [118–124]. Recent in vitro stud-

ies reveal that the yeast kinesin-8, Kip3p, lands on the MT-

lattice wall then translocates to the MT-plus end where it

pauses until another kinesin-8 arrives and bumps it off the

MT tip, allowing it to peel off one or two tubulin dimers as

it dissociates [125]. This sequence of events renders the

kinesin-8 motor a ‘‘length-dependent-depolymerase’’

because relatively few kinein-8 motors will land on short

MTs so that only a few motors will accumulate at their plus

ends to depolymerize them, whereas a larger number of

these motors will land on longer MTs and accumulate at

their plus ends, leading to more frequent depolymerization

events. This mechanism may be crucial in controlling the

distribution of MT lengths in the spindle by modulating the

catastrophe frequency and/or the depolymerization rate of

MT plus ends. Thus, it will be interesting to determine the

influence of kinesin-8 on the MT length distribution and

average MT length hLi, which is given by hLi = (Vs Vg)/

(Vs fcat - Vg fres) when Vs fcat [ Vg fres and for fixed rates

Vs, Vg, fcat and fres [126, 127].

Motors linking the chromosome arms to spindle MTs

A variety of kinesin motors are bound to the arms of

mitotic chromosomes where they translocate chromosomes

along spindle MTs to contribute to spindle assembly and

chromosome positioning [128, 129]. For example, in

Drosophila, the kinesin-10, Nod, uses a DNA-binding

domain in its tail to bind to chromosome arms where its

motor domains enhance spindle MT plus end polymeriza-

tion, allowing the growing MTs to push chromosomes to

the spindle equator by a polymer ratchet mechanism [130].

Indeed, the ATPase cycle of this motor is such that it can

potentially mediate a perfect ‘clamped-filament elongation’

mechanism [131]. Based on elegant structural and bio-

chemical studies, a model has been proposed for the

mechanism by which the ATP hydrolysis cycle of ensem-

bles of chromosome-associated Nod proteins can maintain

the attachment of a chromosome to the growing MT plus

ends, thereby contributing to the ‘‘polar ejection force’’

which pushes chromosomes to the equator during chro-

mosome capture and congression [130].

Cooperation between mitotic force generators

Mitotic motors seldom work in isolation, but instead,

ensembles of multiple mitotic motors and dynamic MT

polymer ratchets cooperate in subtle and sophisticated

ways to generate the balance of forces that coordinate

chromosome movements in the spindle [64, 65].
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Antagonism and cooperation between opposite polarity

MT sliding motors

In one, classic example of motor cooperation, plus end and

minus end-directed MT-based motors crosslink and slide

adjacent ipMTs inward and outward to maintain the posi-

tion of the spindle poles. For example, kinesin-5 and

kinesin-14 motors bound to the anti-parallel overlap region

of MTs antagonize one another to exert outward and

inward forces on spindle poles that can assemble or

maintain the prometaphase spindle in some systems

(Fig. 5a) [58, 66, 69]. In a variant of this mechanism, it has

been proposed that dynein substitutes for kinesin-14 in

some spindles [132]. An alternative mechanism by which

plus and minus end-directed motors (e.g., kinesin-5 and

dynein) can cooperate is the so-called ‘‘slide-and-cluster’’

mechanism in which kinesin-5 motors slide anti-parallel

MTs apart whereas dynein clusters the MTs’ non-dynamic

minus ends—and opposes sliding—once the sliding MTs’

minus ends reach the spindle poles [28] (Fig. 5b). Opposite

polarity MT-based motors (e.g., kinesin-5 and dynein) can

also cooperate or antagonize one another by acting on

distinct sets of spindle MTs. For example, cortical dynein

can pull on astral MTs, thereby pulling apart spindle poles,

and this activity is thought to augment the kinesin-5-driven

sliding apart of ipMTs which pushes apart the poles during

late anaphase B in the Drosophila embryo [69] (Fig. 5d). In

contrast, in the early C. elegans embryo, it is thought that

spindle elongation due to rapid dynein-generated pulling

forces on aMTs (Fig. 4b) is restrained by the braking effect

of kinesin-5 on ipMTs [71, 72] (Fig. 5e).

Functional cooperation between MT-motors and MT

polymer dynamics

The outward sliding apart of ipMTs (e.g., due to kinesin-5)

can be antagonized by kinesin-13 MT-depolymerases

located at the spindle poles where they use ATP hydrolysis

to remove tubulin subunits from the minus ends of the MTs

as they are being slid polewards. This can result in the

production of poleward flux and the maintenance of a

constant or steady state spindle length (Fig. 5c) [26, 68,

93]. In addition, forces due to MT polymerization or

depolymerization, or elastic forces due to the stretching or

buckling of spindle MTs, can pull and push the chromo-

somes and spindle poles. For example, it has been proposed

that the growing plus ends of MTs that extend from one

spindle pole can impinge on the opposite pole where they

produce outward-directed polymerization ratcheting forces,

which cooperate with kinesin-14 and cortical dynein-

dependent forces during early spindle assembly [133]. In

addition, as described above, the chromosomal arm kine-

sin-10, Nod, cooperates with MT polymerization to

generate the polar ejection forces that exert plus end-

directed pushing forces on chromosome arms [130].

Mechanism of metaphase and anaphase A chromosome

dynamics

Where and how the force driving poleward chromosome

motility is generated has been a topic of research and

vigorous debate since Flemming’s early observations of

mitosis [1], and several models have been proposed,

including those discussed below. Several very early models

were discussed by Schrader [134].

1. Forces are generated all along the kinetochore fiber

(Fig. 6a) (a) In the ‘Traction Fiber’ model, the number of

force generators per unit length is constant and conse-

quently the longer the kMT, the higher is the force pulling

a chromosome poleward [135]; and (b) a ‘Sliding Filament

Model’ was proposed in which the sliding of adjacent

spindle MTs mediates anaphase A, although the afore-

mentioned EM analysis of the three-dimensional fine

structure of the spindle by McIntosh et al. [50] explicitly

eliminated this model as applied to chromosome-to-pole

movement.

2. Forces are generated by kMT depolymerization

(Fig. 6b) (i) In the ‘Dynamic Equilibrium Model’, spin-

dle MTs polymerize when the spindle is forming and

elongating but they transition to depolymerization to drive

chromosome-to-pole movement [34]; (ii) in the ‘Tread-

milling Model’ proposed by Margolis and Wilson, the kMT

shortens by slow (or no) addition of tubulin dimers at the

plus ends combined with their removal at the minus ends

[136]; subsequently the ‘Dynamic equilibrium model’ was

revised by Inoué to accommodate the depolymerization of

MT minus ends at the poles [137]; and (iii) in the ‘Hill

sleeve’ model, depolymerizing kMT plus ends maintain

attachment with the kinetochore, consistent with thermo-

dynamics [138]. This model was further explored in the

context of a force–balance mechanism, and was shown to

account strikingly well for the oscillations of bi- and mono-

oriented chromosomes in PtK cells during metaphase and

prometaphase [139].

3. Forces are generated at the spindle poles (Fig. 6c)

Based on observations of kMT poleward flux and tension-

dependent sister kinetochore distance in taxol treated newt

lung cell spindles, Salmon et al. [140] suggested the

presence of kinetochore pulling forces generated at the

spindle poles.

4. The combined ‘‘flux–pacman’’ mechanism (Fig. 6d)

For example, the functional perturbation of two distinct

kinesin-13 MT-depolymerases located at the spindle pole
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Fig. 5 Functional coordination of mitotic motors. a Sliding motors

can antagonize one another to maintain pole–pole spacing (S(t)) when

dS/dt = 0, elongate the spindle (dS/dt [ 0) or shorten the spindle (dS/

dt \ 0). The outcome depends on the relative ratio of active and

bound motors on the anti-parallel overlaps. b Slide and cluster model:

dynein homo-dimers and kinesin-5 cooperate near the chromosomes

where MTs mainly overlap anti-parallel (both motors slide MTs

apart) and antagonize one another near the poles where MTs overlap

mainly parallel (dynein clustering the minus ends opposes sliding by

kinesin-5). This model can explain the control of anastral mitotic

spindle length and poleward flux of MTs in the absence of MT minus

end depolymerization activity. c Depolymerizing (e.g., kinesin-13 on

spindle poles) and sliding motors (e.g., kinesin-5 and kinesin-14 on

AP ipMT overlaps) can cooperate to maintain spindle length during

metaphase, and give rise to poleward flux of MTs (see Figs. 7b and

8). d Kinesin-5 acting on anti-parallel overlaps and cortical dynein

acting on aMTs can cooperate during anaphase B to elongate the

spindle. For example, in early anaphase B in the Drosophila embryo,

the anti-parallel overlaps are abundant and kinesin-5-generated forces

drive spindle elongation. In late anaphase B, the anti-parallel overlap

is diminished as the spindle length increases, and more aMT plus ends

can reach the cortex, whereupon dynein-generated pulling forces

assist the kinesin-5 driven outward forces to complete anaphase B

chromosome segregation. e Kinesin-5 on anti-parallel ipMT overlaps

and cortical dynein on aMTs can compete during anaphase B spindle

elongation in some organisms. For example, in C. elegans embryos,

the cortical dynein-driven rapid pulling apart of spindle poles is

resisted by the slower kinesin-5 motors bound to the ipMT overlaps

which may act as ‘brakes’ to slow down the rate of anaphase B

spindle elongation
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(KLP10A) and at the kinetochore (KLP59C) supported a

combined flux–pacman mechanism of anaphase A [93].

Dynein located at the kinetochore is thought to augment

this mechanism by inserting the plus ends of the kMTs into

the jaws of the kinetochore-bound kinesin-13 (KLP59C) to

facilitate plus end depolymerization. In this mechanism,

the depolymerization of MT minus ends by a kinesin-13,

KLP10A, located at the spindle pole is thought to be

coupled either to a force generator at the poles that reels in

the kMTs or to the kinesin-5-driven poleward sliding of

ipMTs which may be crosslinked to passively sliding kMTs

[68, 141]. Recently, a third kinesin-13 and several MT
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Fig. 6 Models for anaphase A chromosome-to-pole motility. a The

traction fiber model: longer kMTs can generate higher poleward

forces on the chromosome. b Forces due to MT dynamics. Top panel
in the dynamic equilibrium model, during anaphase, kMTs undergo

depolymerization to pull chromosomes to poles (anaphase A) whereas

ipMTs polymerize to push apart the spindle poles (anaphase B).

Lower panel the Hill–Sleeve model: high binding affinity of MTs in

the kinetochore sleeve mediates either pushing or pulling of the

chromosome to attain the minimal energy conformation (i.e. maxi-

mum number of weak bonds) of sleeve-MT interactions during MT

polymerization and depolymerization, respectively. c Pulling forces at

the pole: a force-generator located at the pole is generating force to

reel in the kMT and pull the chromosome polewards. Here, the MT

minus end may be depolymerized at the pole or may slide past the

pole. d The combined flux–pacman mechanism: the kMT depoly-

merizes both at its kinetochore attached plus and pole attached minus

end, while the kMT fluxes polewards. e The slip–clutch mechanism at

the kinetochore. The kMT plus end switches to polymerization when

a threshold (high) tension between the sister kinetochores is reached,

and reverses to depolymerization when the tension is reduced below a

threshold (low). f Uniform tension among MTs and sister kineto-

chores are attained by persistent poleward fluxing of interconnected

spindle MTs. In the absence of poleward flux, the tension variance is

maintained over long time scales
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severing proteins have been proposed to augment this basic

mechanism [142, 143].

5. Tension-based regulation of metaphase chromosome

positioning (Fig. 6e) Salmon et al. have proposed a

molecular mechanism for the regulation of kMT plus end

dynamics by tension forces generated between sister

kinetochores [31, 144]. In this mechanism, high tension

promotes polymerization of the kMT plus end, while low

tension promotes depolymerization. In an elegant compu-

tational approach, a model accounting for this mechanism

successfully explained the congression of the chromosomes

in budding yeast mitosis [145]. Furthermore, this model

made an important prediction, namely the presence of a

spatial gradient of MT plus end catastrophe events, with

high catastrophe rates at the spindle equator. Subsequently,

the authors have proposed that the kinesin-5, Cin8, is

involved in the establishment of this catastrophe gradient,

but how it does so is unknown [146].

6. Synchrony of chromosomes during anaphase A

(Fig. 6f) In a recent experimental and theoretical study,

the synchrony of chromatid-to-pole movement during

anaphase A was proposed to depend upon the poleward

flux of spindle MTs (both ipMT and kMTs), resulting from

their kinesin-5 dependent outward sliding coupled to

kinesin-13 dependent minus end depolymerization with

elastic couplers linking the spindle MTs to one another

[147]. The authors argue that the poleward sliding of

spindle MTs during metaphase leading to an evolving

uniform extension/compression of the linkers along the

spindle axis and transmitted to all kMTs in the spindle

orchestrates a uniform tension at the kinetochores which

underlies the synchronous entry and progress of chromo-

some-to-pole movement during anaphase A.

Based on the molecular models discussed above, several

quantitative models have been proposed that are aimed at

improving our understanding of the mechanisms underly-

ing chromosome dynamics at various stages of mitosis,

from metaphase through anaphase A, and a scholarly

review of these models can be found in [148]. For example,

a quantitative force–balance model based on the above

‘‘flux–pacman’’ mechanism for poleward chromosome

motility was developed for fly embryo mitosis, Fig. 7a

[149], which proposes that: (1) the same kinetochore

machinery and underlying mechanism coordinates the

dynamic behavior of chromosomes during metaphase and

anaphase A, so that the transition from metaphase to ana-

phase A occurs simply through the degradation of the

cohesin bonds between sister kinetochores and the removal

of PE forces; and (2) differences in the dynamics of

chromosomes in different organisms, including the ampli-

tude and frequency of their oscillations and rates of their

movement as well as differences in the relative contribu-

tion of the flux and pacman components of their pole-

directed motility, represent adaptations of the same

underlying mechanism.

Mechanism of anaphase B

Based on experimental evidence from many organisms

ranging from budding yeast to vertebrates, it is now well-

established that a sliding filament mechanism similar to

that proposed by McIntosh in 1969 underlies spindle

elongation during anaphase B [14, 26, 68–70, 150–153].

Recent work has led to a model in which kinesin-5 motors

drive the sliding apart of anti-parallel ipMTs to exert force

on the spindle poles, whereas poleward flux serves as an

on–off switch (Fig. 8).

This model is based on FSM analysis of Drosophila

embryo mitotic spindles which revealed that spindle MTs

persistently slide apart, so that tubulin speckles move away

from the equator, throughout metaphase and anaphase.

However, the pole–pole distance is maintained constant,

giving rise to poleward flux of fluorescent tubulin speckles

prior to anaphase B, but, following the onset of anaphase B,

the poles move away from the equator at the same rate as

the speckles (Fig. 2c and 8a) [30]. This evidence suggested

that: (1) the motor responsible for anaphase B must also be

responsible for the sliding of ipMTs driving polewards

flux; and (2) it is a change in the dynamics of the minus

ends of the MTs which leads to the switch from the steady

positioning of the poles to spindle elongation. In this sys-

tem, the kinesin-5, KLP61F, is thought to crosslink and

slide apart anti-parallel ipMT throughout metaphase, ana-

phase A and anaphase B spindle elongation [68, 69, 154],

while the kinesin-13, KLP10A, is responsible for the

depolymerization of the MT minus ends at the spindle

poles prior to anaphase B [93]. Furthermore, ipMTs in the

equatorial region of the spindle at anaphase B were

extremely dynamic, turning over with a half-life of *5 s,

and the inhibition of the kinesin-4, KLP3A, revealed an

inverse linear correlation between poleward flux and

spindle elongation rates during anaphase B, indicating that

the extent of the decrease in the rate of ipMT depolymer-

ization at the poles can regulate the rate, as well as the

extent, of anaphase B spindle elongation [26, 152].

A mathematical model (Fig. 7b) was developed to

address many intriguing aspects of the anaphase B

molecular mechanism. For example, how could the bipolar

motors working on highly dynamic MTs maintain the

observed linear rate of spindle elongation, and what bio-

physical and kinetic properties of the molecules involved in

this mechanism affect the anaphase B rate [26]? The

quantitative model revealed that: (1) motors working on
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Fig. 7 Quantitative models for anaphase A and B in the Drosophila
Embryo. Both models depend on a balance of forces in which the net

force (Fnet(t)) acting on a chromosome or spindle pole moves it at a

velocity v = v(t) against viscous drag (l or f) under low Reynolds

number conditions, where Fnet = lv or fv. a The movement and

positioning of chromosomes during metaphase and anaphase A is

determined by a balance of forces that is exerted on them by various

motors acting on MTs, kinetochores, chromosome arms, or spindle

poles. MT dynamics, tension due to cohesins linking sister chromatids

and the motors’ force–velocity curves are also accounted for in the

model (see [149] for details). b Spindle pole dynamics during pre-

anaphase B (i.e. the metaphase/anaphase A steady state spindle

length) and anaphase B (when the spindle elongates) is described by a

system of equations based on three core equations. These include two

kinematic equations which describe changes in spindle length (S(t))
and ipMT overlap length (L(t)) over time, and a force–balance

equation which describes the rate of pole movement resulting from

the cumulative effect (assumed to be additive) of many motors that

act on ipMT overlaps, obeying linear force–velocity curves. The

model incorporates realistic spindle dynamics and geometry as well

as a pole-associated MT depolymerase acting as a switch to turn on

spindle elongation (Fig. 8) (see [26] for details). Both models

represent ‘‘working models’’ that we find useful for identifying key

components or parameters to be measured, and for designing better

experiments to test the validity of our current ideas, which at best only

approximate the actual molecular mechanisms underlying this

complex and fascinating process
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highly dynamic anti-parallel MT overlaps can drive a

steady-linear elongation of the spindle; (2) the bipolar

motors are working near their ‘unloaded regime’ during

this process; (3) the rate of the spindle elongation is

determined only by the unloaded sliding rate of the bipolor

motors and the extent of suppression of poleward flux; (4) a

sustained MT plus end polymerization is necessary to

sustain robust elongation of the spindle. Several of these

predictions were subsequently tested experimentally [68,

152]. For example, it was determined that cyclin B deg-

radation leads to the suppression of poleward flux, and also

induces an ipMT ‘‘catastrophe’’ gradient which causes

ipMTs to undergo net polymerization to build a robust

overlap zone to sustain robust linear spindle elongation, as

predicted [152]. Our current ‘‘working model’’ for the

mechanism of anaphase B spindle elongation is shown in

Fig. 8b.

It is clear that the mechanism presented in Fig. 8b is not

used ubiquitously. For example, in the C. elegans embryo,

the kinesin-5, BMK-1, is not essential. Here, cortical

dynein motors pull on astral MTs to pull apart the spindle

poles and drive anaphase B spindle elongation, while

kinesin-5 acts on the AP ipMT overlaps to serve as a brake

that controls the rate of spindle elongation (Figs. 4b and

5e) [72]. Therefore, even though in some organisms a

sliding filament mechanism driven by bipolar kinesin-5

motors underlies anaphase B spindle elongation, natural

selection has produced alternative mechanisms in different

systems, as appears to be the case for many aspects of

mitosis.

Fig. 8 Model for anaphase B. a The transition from poleward flux

during pre-anaphase B (i.e. metaphase/anaphase A) to spindle

elongation at the onset of anaphase B. The cartoon is an unrealistic

simplification in which only a single pair of overlapping AP ipMTs is

shown. b The switch in the dynamics of MT plus and minus ends

mediated by cyclin B degradation is essential for steady, linear and

robust anaphase B chromosome segregation. This involves: (1) the

down-regulation of ipMT minus end depolymerization at spindle

poles which turns off poleward flux, allowing outwardly sliding

ipMTs to exert pushing forces on the poles; and (2) the onset of a

gradient of MT catastrophe frequencies (fcat) which causes ipMT plus

ends (marked by ? tip trackers like EB1) to grow and invade the

spindle equator, thereby building a robust midzone comprising

multiple overlapping AP ipMT plus ends which are slid apart at a

linear rate by kinesin-5 motors to accomplish complete spindle

elongation
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Conclusion

Work done during the many decades that have elapsed

since Flemming’s description of mitosis has led to the

identification of several key force-generating mechanisms

that cooperate to ensure accurate chromosome movement

and segregation during mitosis. Although satisfying pro-

gress has been made, our understanding of the mechanism

of force generation for chromosome movements remains

incomplete and much remains to be learned. Thus, mitosis

enthusiasts can expect to remain active for many decades

into the future.
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