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Abstract 
We investigated the application of non-linear analysis 
techniques for capturing stability of neural oscillatory activity 
within and across brains. Recurrence Quantification Analysis 
(RQA), a technique that has been applied to detect stability 
and flexibility of motor performance, was extended to observe 
and quantify changes in patterns of non-linear neural activity. 
Participants synchronized their finger-tapping with a 
confederate partner who tapped at two different rhythms 
while neural activity was recorded from both partners using 
electroencephalography (EEG). Auto-recurrence (intra-brain) 
and cross-recurrence (inter-brain) of EEG activity were able 
to distinguish differences across tapping rhythms in stability 
of neural oscillatory activity. We also demonstrated the 
efficacy of RQA to capture how both period and phase 
changes in neural dynamics evolve over time. 

Keywords: joint action; neural dynamics; 
electroencephalography; recurrence quantification analysis 

Introduction 
Researchers have become increasingly interested in 
capturing complex oscillatory signals common to human 
behaviors, and which often show non-linearities that evolve 
over time. This can be seen in individual motor behaviors 
like postural sway and finger-tapping (Schmit, Regis & 
Riley, 2005; Schmit, Riley, Dalvi, Sahay, Shear, Shockley, 
& Pun, 2006; Scheurich, Zamm, & Palmer, 2018), and in 
joint motor behaviors like conversational speech and music 
performance (Dale & Spivey, 2006; Demos, Chaffin, & 
Kant, 2014). One way in which these complex signals can 
be represented is through Recurrence Plots (RPs), which 
display the points in time at which an individual returns to 
previous behavioral states (i.e., self-similarity), or the points 
in time at which two individuals visit the same behavioral 
state (i.e., similarity between individuals; Eckmann, 
Kamphorst, & Ruelle, 1987). RPs are useful tools for 
observing transitions between states in a system and can be 

further quantified using Recurrence Quantification Analysis 
(RQA). These quantifications give insights into the 
behavioral dynamics of one or more systems over time 
through measures such as recurrence rate: how often a 
system returns to previous states or two systems visit the 
same state; and mean diagonal line length: the time over 
which one or more systems are stable (Marwan, Romano, 
Thiel, & Kurths, 2007; Marwan & Webber, 2015). One 
advantage of RQA is that it can be applied both within 
individuals during solo tasks (i.e., auto-recurrence) and 
between individuals during joint tasks (i.e., cross-
recurrence; Marwan, Romano, Thiel, & Kurths, 2007; 
Marwan & Webber, 2015). Thus, these tools have been 
useful for characterizing dynamics of motor behaviors over 
time both within and across individuals during a variety of 
solo and joint behaviors (e.g., Schmit, Regis, & Riley, 2005; 
Schmit, Riley, Dalvi, Sahay, Shear, Shockley, & Pun, 2006; 
Romero, Fitzpatrick, Schmidt, & Richardson, 2016; Demos 
& Chaffin, 2017; Scheurich, Zamm, & Palmer, 2018).  

 Complex oscillatory signals are not unique to behavior, 
but are also observed in human brain activity. This can be 
seen, for example, in the oscillatory neural activity that 
underlies rhythmic auditory-motor behaviors (e.g., 
Nozaradan, Zerouali, Peretz, & Mouraux, 2013; Nozaradan, 
2014; Morillon & Baillet, 2017; Zamm, Debener, Bauer, 
Bleichner, Demos, & Palmer, 2018). However, common 
methods for examining oscillatory neural activity supporting 
these kinds of behaviors often do not measure dynamics 
over time, but instead assume stationarity of the signal. 
RQA has been applied to oscillatory neural activity, as 
measured through electroencephalography (EEG), in a 
limited scope. This has been primarily in clinical settings, in 
which outcomes such as recurrence rate and mean diagonal 
line length, which provide information about the stability of 
neural activity, have been used successfully to classify 
periods of epileptics’ EEG activity as normal, pre-ictal, and 
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ictal activity (Acharya, Sree, Chattopadhyay, Yu, & Ang, 
2011). Furthermore, RQA outcomes have been applied for 
monitoring consciousness of patients undergoing anesthesia 
(Becker, Schneider, Eder, Ranft, Kochs, Zieglgänsberger, & 
Dodt, 2010). In addition to its clinical applications, 
researchers have proposed RQA as a method for studying 
event-related potentials (ERPs). Although traditional 
methods of studying ERPs require averaging over many 
trials to obtain a clear waveform, RQA allows for the use of 
single trials to identify changes in ERP components, as 
demonstrated in an auditory perception experiment using the 
auditory oddball paradigm (Marwan & Meinke, 2004). No 
research, to our knowledge, has yet applied RQA to capture 
oscillatory neural activity that distinguishes different 
rhythmic auditory-motor behaviors. 

The current study applies RQA to capture the dynamics of 
oscillatory neural activity during a 2-person rhythmic 
tapping task. Participants tapped at two different rhythms 
with a confederate partner while EEG was recorded from 
each partner. In one rhythm condition, the confederate 
tapped at twice the frequency of the participant. In the 
second rhythm condition, the confederate tapped at half the 
frequency of the participant. The neural activity at the 
participant’s (constant) tapping frequency was compared 
across rhythm conditions. Only activity at the constant 
frequency was examined to identify changes in oscillatory 
neural activity related to changes in tapping ratios between 
partners as opposed to changes in absolute frequency. Auto- 
(intra-brain) and cross-recurrence (inter-brain) analyses of 
EEG activity were expected to reveal greater stability of 
oscillatory neural activity when the participants’ tapping 
frequency was the dominant frequency (i.e., more auditory 
feedback at that frequency).  

Methods 

Participants 
Data from eight adult musicians aged 18-30 years old with 
at least 6 years of private music instruction on an instrument 
other than percussion were taken from a larger study. Their 
duet tapping trials met a performance cut-off of at least 75% 
error-free trials (i.e., no missed taps) for each condition in 
which partners performed live together. Other conditions 
included in the larger study in which participants performed 
with pre-recordings of their partner were not examined in 
the current paper. A single confederate experimenter (more 
than 6 years of piano instruction) tapped with each 
participant to maintain consistent timing properties of live 
and pre-recorded conditions as well as social presence 
across participants. All participants and the confederate 
were right-handed and had normal hearing (< 30 dB HL 
threshold, 125 – 750 Hz) as determined by an audiometry 
screening. Participants and the confederate reported no 
current psychiatric or neurological conditions and were not 
taking medication affecting the central nervous system at 
the time of testing. 
 

Equipment and Materials 
Participants’ hearing was assessed with a Maico MA40 
audiometer. Participants tapped on a Roland A500s MIDI 
keyboard and the confederate tapped on a Yamaha PSR 
500m MIDI keyboard. Auditory feedback was delivered in a 
sine tone timbre generated by a Roland Sound Canvas, 
amplified to a comfortable listening level using a Behringer 
Headphone Amplifier, through EEG-compatible earphones 
(Etymotic ER-1, Etymotic Research Inc.). Participants’ 
auditory feedback was presented at pitch G4 (392.00 Hz), 
and the confederate’s auditory feedback at pitch E5 (659.25 
Hz). MIDI data were collected using FTAP software 
(Finney, 2001). FTAP was modified to integrate Lab 
Streaming Layer (LSL; Kothe, 2014) similar to Zamm, 
Palmer, Bauer, Bleichner, Demos, & Debener, 2017. This 
modification allowed for keystroke, metronome, and time 
triggers from FTAP on a Dell computer running Linux to be 
sent over the local area network and received by a second 
Dell computer running Windows 7, where LSL 
synchronized the keystroke and EEG data collection from 
both partners (Zamm et al., 2017). 
 
EEG Data Recording 
EEG data were recorded from each partner at a 512 Hz 
sampling rate via two separate but synchronized 64-channel 
BioSemi Active-Two systems (BioSemi, Inc.). Electrodes 
were positioned according to the 10-20 system. Data were 
recorded using a common mode sense (CMS) active 
electrode and driven right leg (DRL) passive electrode 
which formed the reference 
(http://www.biosemi.com/faq/cms&drl.htm). External 
electrodes were placed above and below the right eye to 
detect eyeblinks, on the outer corner of each eye to detect 
lateral eye movements, and on the mastoids to detect muscle 
artefacts. 
 
Stimulus Materials and Design 
Each stimulus was constructed of an approximately 40-
second series of taps generated by the Participant and 
Confederate. Each pair (Participant and Confederate) 
completed the joint tapping tasks in a within-subjects design 
with 2 rhythm conditions: 1-2 (Confederate-Participant) and 
4-2 (Confederate-Participant). In the 1-2 condition, the 
confederate tapped at half the rate (~0.95 Hz) of the 
Participant (~1.89 Hz). In the 4-2 condition, the Confederate 
tapped at twice the rate (~3.78 Hz) of the Participant (~1.89 
Hz). Thus, the Participants’ tapping frequency was constant 
across conditions. Each pair completed one practice trial and 
12 experimental trials in each rhythm condition. Rhythm 
was blocked within pair, and blocks were counterbalanced 
across pairs. The dependent variables were auto- (intra-
brain) and cross-recurrence (inter-brain) outcomes of 
Recurrence Rate, describing how much of the RP is 
occupied by recurrent points (how often a single system 
returns to previous states in auto-recurrence, or two systems 
visit similar states in cross-recurrence), and Meanline, 
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describing the average diagonal line length (the 
mathematical stability of the system(s); see RQA 
Application to EEG). 
 
Procedure 
After giving informed consent upon arrival to the lab, 
participants completed an audiometry screening. Then both 
the participant and the confederate were outfitted with EEG 
caps and electrodes. The participant and confederate were 
taken to the testing room where the confederate was 
introduced to participants as an experimenter who served as 
the partner in each pair to maintain consistency of 
interactions across pairs. The participant and the confederate 
were seated at two separate keyboards across from one 
another with a barrier placed between the keyboards such 
that the partners could only see one another above the 
shoulder.  

The participant and confederate then completed the two 
tapping tasks together at the two different rhythmic ratios. 
They were instructed to tap with the index finger of their 
right hands on a single key of the keyboard while 
minimizing eyeblinks and eye movements. The participant 
and confederate were first presented with separate recorded 
examples of each tapping part in isolation, and then they 
were presented with a recorded example of how the two 
parts sounded together. After listening to the examples, the 
participant and confederate were instructed that they would 
hear a four-beat metronome cue sounded at the participant’s 
prescribed rate at the beginning of each trial, and they were 
presented with a recorded example of how their parts 
sounded together with the metronome cue. The participants 
were instructed that they should synchronize with the 
confederate’s tapping while maintaining the rate cued by the 
metronome, and the confederate was instructed to maintain 
a steady pulse. After completing a practice trial, pairs 
completed 12 experimental trials. This procedure was 
repeated for each rhythm condition. After completion of the 
tasks, participants were debriefed and received a small 
compensation.  The whole experiment lasted approximately 
three hours. 
 
EEG Preprocessing 
EEG data were preprocessed in EEGLAB (Delorme & 
Makeig, 2004). Data were first prepared for artefact 
correction with Independent Component Analysis (ICA), 
using a procedure adapted from Zamm et al. (2017). Data 
were concatenated across all trials in all experimental 
tapping tasks, and re-referenced to the common average 
across electrodes. Electrodes reflecting poor signal quality 
were identified by visually inspecting electrode distributions 
of deviations from mean activity for each subject. 
Electrodes with very large deviations from mean activity 
were identified as noisy, and electrodes with no deviation 
from mean activity were identified as flat. These electrodes 
were removed, and data were subsequently filtered between 
1 Hz and 40 Hz using a Hanning windowed sinc FIR filter 
(high and low pass filter order = 1000). Filtered data were 

then segmented into 1-second epochs, pruned for non-
stereotypical artefacts, and submitted to extended infomax 
ICA. ICA components representing eyeblinks and lateral 
eye movements were visually identified and removed from 
the unfiltered data. After removing bad components, 
previously rejected electrodes with poor signal quality were 
spherically interpolated. 
 
RQA Application to EEG 
Power Spectral Density (PSD) estimates of ICA-corrected 
EEG activity were then computed similar to Zamm et al. 
(2017). PSD gives the amount of power present in the EEG 
signal at component frequencies. Preprocessed EEG data 
were high then low pass filtered using a Hanning windowed 
sinc FIR filter (high pass filter order = 1000, cutoff = 0.1 
Hz; low pass filter order = 1000, cutoff = 20 Hz) and 
segmented into 3 10.56-second epochs (to control for 
tapping frequency drift). PSD was estimated for each 
electrode and epoch, and then was log-transformed before 
averaging across epochs and then trials. The electrode with 
maximal power on average across conditions, tapping 
frequencies, and participants was identified as electrode C1 
(central and left-lateralized). This electrode is commonly 
identified as showing maximal activity in auditory-motor 
behaviors (e.g., Nozaradan, Zerouali, Peretz, & Mouraux, 
2013; Nozaradan, 2014). Data from this electrode were used 
as input to auto- and cross-recurrence analyses. 

ICA-corrected data from electrode C1 for participants and 
the confederate were then prepared for auto- and cross-
recurrence analyses. First, the data were filtered at the 
participants’ observed tapping frequencies. The filter 
frequency cutoffs were tailored per participant and 
confederate pair and rhythm condition to account for any 
deviations in expected tapping frequency. The data were 
high then low pass filtered using a Hanning windowed sinc 
FIR filter (high and low pass filter orders = 1000) with 
cutoff frequencies ± 2 standard deviations around the 
observed participant tapping frequency. Data were then 
segmented into 3 10.56-second epochs (for computational 
tractability) and z-scored per epoch.  

Auto- and cross-recurrence analyses were run using the 
Cross Recurrence Plot Toolbox (Marwan, Romano, Thiel, & 
Kurths, 2007). Optimal auto- and cross-recurrence 
parameters were determined per epoch; final selected 
parameters were determined by examining the distribution 
of parameters across epochs. The optimal delay parameter 
was determined by computing Average Mutual Information 
(AMI). AMI gives the amount of information a time series 
shares with itself at different time delays, with the delays at 
which it shares least information with itself being optimal 
for RQA. The first delay at which shared information of the 
C1 time series with itself reached a minima was selected 
(selected delay = 68 samples, corresponding to 1/4 cycle of 
the participant tapping frequency). The optimal number of 
embedding dimensions was determined by computing False 
Nearest Neighbors (FNN). FNN gives the amount of false 
neighbors in phase space as a function of the number of 
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embedding dimensions (copies of the time series at the 
specified delay). The number of embedding dimensions at 
which number of false nearest neighbors was minimized and 
adding more dimensions no longer reduced number of false 
nearest neighbors was selected (selected embedding 
dimensions = 4). Finally, the maximum phase space 
diameter, corresponding to the standard deviation of the 
time series, was computed using the selected delay and 
embedding dimensions. The optimal threshold for which 
points in phase space are considered recurrent was 
determined by computing 10% of this value (selected 
threshold = 0.49; Schinkel, Dimigen, & Marwan, 2008). For 
auto-recurrence, the Thieler window, minimum diagonal 
line length, and minimum vertical line length were set to 34 
samples (corresponding to 1/8 cycle of the participant 
tapping frequency). For cross-recurrence, the Thieler 
window was set to 0 samples and the minimum diagonal 
and vertical line lengths were set to 34 samples. 

Results 

Auto-recurrence Outcomes 
We first investigated how auto-recurrence (intra-brain) 
outcomes changed with Rhythm, and whether these patterns 
held or changed across Partners within each pair. Separate 
two-way ANOVAs were run on Recurrence Rate and 
Meanline with Rhythm (1-2 and 4-2) and Partner 
(Participant and Confederate) as factors and pair as random 
variable. Results are summarized in Table 1 and sample RPs 
are shown in Figure 1. There was a significant main effect 
of Rhythm on Recurrence Rate:  Recurrence Rate was 
higher for the 1-2 Rhythm (in which the participant tapped 
at twice the rate of the confederate) than for the 4-2 
Rhythm. There was no significant main effect of Partner, 
F(1, 7) = 0.012, p = 0.92, or significant interaction between 
Rhythm and Partner, F(1,7) = 0.415, p = 0.54, on 
Recurrence Rate. There was also a significant main effect of 
Rhythm on Meanline: Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. Again, there was no 
significant main effect of Partner, F(1,7) = 0.017, p = 0.90, 
or  significant interaction between Rhythm and Partner, F(1, 
7) = 0.582, p = 0.47, on Meanline. These effects were 
replicated with mixed models in which random effects of 
Partner and Rhythm were allowed to vary as a function of 
the pair. 

To ensure that the main effect of Rhythm on Meanline 
was not a function of differences in Recurrence Rate across 
Rhythms, we also examined the outcome of Meanline when 
Recurrence Rate was fixed to 10% across Rhythms during 
the process of computing the RQA. A two-way ANOVA 
was run on Meanline with Rhythm and Partner as factors 
and pair as random variable. The main effect of Meanline 
held when Recurrence Rate was fixed across Rhythms, F(1, 
7) = 17.577, p = 0.004. Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. There was no significant 
main effect of Partner, F(1, 7) = 0.001, p = 0.97, or 

significant interaction between Rhythm and Partner, F(1, 7) 
= 0.579, p = 0.47. 
 

Table 1: Auto-recurrence main effects of Rhythm. 
 

Outcome 1-2 4-2 F η2 p 
Recurrence 

Rate 
3.06% 2.59% 23.03 0.79 0.002 

Meanline 136.26 126.44 20.32 0.77 0.003 
 

Figure 1 shows RPs for an example epoch from one 
participant for each Rhythm. As can be seen in these 
examples, there are more recurrent points and longer 
diagonal lines in the 1-2 RP (when the participant’s tapping 
frequency is the dominant performance frequency) than the 
4-2 RP. The white space between the diagonal lines on each 
plot corresponds approximately to the participant tapping 
frequency (1.89 Hz or approximately 271 samples). 
 
Cross-recurrence Outcomes 
Separate one-way ANOVAs were conducted on the same 
outcome measures (Recurrence Rate and Meanline) from 
cross-recurrence quantification analysis with Rhythm as 
factor and pair as random variable. Results are summarized 
in Table 2 and sample RPs are shown in Figure 2. There 
was a significant main effect of Rhythm on Recurrence 
Rate: Recurrence Rate was higher for the 1-2 Rhythm than 
for the 4-2 Rhythm. There was also a significant main effect 
of Rhythm on Meanline: Meanline was higher for the 1-2 
Rhythm than for the 4-2 Rhythm. These effects were 
replicated with mixed models in which random effects of 
Rhythm were allowed to vary as a function of the pair. 

To again ensure that the main effect of Rhythm on 
Meanline was not a function of differences in Recurrence 
Rate across Rhythms, we also examined the outcome of 
Meanline when Recurrence Rate was fixed to 10% across 
Rhythms during the process of computing the RQA. A one-
way ANOVA was run on Meanline with Rhythm as factor 
and pair as random variable. The main effect of Meanline 
held when Recurrence Rate was fixed across Rhythms, F(1, 
7) = 14.264, p = 0.007. Again, Meanline was higher for the 
1-2 Rhythm than for the 4-2 Rhythm. 
 

Table 2: Cross-recurrence main effects of Rhythm. 
 

Outcome 1-2 4-2 F η2 p 
Recurrence 

Rate 
2.93% 2.53% 16.84 0.74 0.005 

Meanline 131.22 122.78 16.81 0.74 0.005 
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Figure 1: Time series and RPs with samples as a unit of time for one epoch from one participant for Rhythms 1-2 and 4-2. 
The time series shows the z-scored preprocessed signal from electrode C1.
 

Figure 2 shows example cross-recurrence plots (CRPs) 
for a single epoch from one pair for Rhythms 1-2 and 4-2 
for the same trials shown in Figure 1. As can be seen in 
these examples, the 1-2 CRP is more densely occupied by 
recurrent points than the 4-2 CRP; these points also form 
longer diagonal lines than those in the 4-2 CRP. This 
indicates that the two signals overlap more often and for 
longer periods in phase space during the 1-2 Rhythm than 
the 4-2 Rhythm, indicating greater inter-brain stability. 
Furthermore, the white space between diagonal lines 
indicates the period at which the two neural signals recur 
with one another, and this period corresponds approximately 
to the participant tapping frequency (1.89 Hz or 
approximately 271 samples). Phase shifts between the two 
signals over time can also be observed by the degree of 
curvature in the diagonal lines in each CRP. 

Discussion 
The current experiment examined the application of RQA to 
neurophysiological data collected during a rhythmic tapping 
task between partners. Both auto- and cross-recurrence 
measures were sensitive to changes in stability of neural 
oscillations across tasks. Stability of neural oscillations at 
the participant tapping frequency was greater both within 
and across brains, as shown by larger recurrence rate and 
meanline outcomes from auto- and cross-recurrence,  

 
respectively, when there was more auditory feedback for 
both partners at the participants’ tapping frequency. 

We showed intra- and inter-brain recurrence that 
corresponded approximately to the participant tapping 
frequency. We also showed phase shifts in time as observed 
by the degree of curvature of the diagonal lines. Future work 
can further examine the time delay in recurrent points 
between two signals using quantifications such as the 
diagonal recurrence profile (e.g., Richardson & Dale, 2005; 
Dale, Kirkham, & Richardson, 2011), and subsequently 
relate this to behavioral performance. In contrast to other 
inter-brain metrics such as phase coherence, one advantage 
of cross-recurrence is the ability to show and subsequently 
quantify inter-brain dynamics when neural signals occupy 
the same phase space. 

One limitation of the current experiment is that we only 
examined neural activity filtered at the participant tapping 
frequency. Future work can extend this technique to look at 
other stimulus frequencies to further examine the time 
evolution of neural dynamics in a joint motor task. We were 
also limited in our analyses by a small sample size. With 
more pairs, it could be possible to apply more sophisticated 
analysis methods to RQA outcomes such as an Actor-
Partner Interdependence Model to examine how partners 
influence one another (Kenny, Kashy, & Cook, 2006). We 
also used PSD estimates for selecting a single electrode 
whose data were used for auto- and cross-recurrence  
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Figure 2: Time series and CRPs with samples as a unit of time for one epoch from one pair for Rhythms 1-2 and 4-2. Time 
series show the z-scored preprocessed signal from electrode C1 for the participant (in black) and the confederate (in red).
 
analyses. Future work can also extend this technique to 
identify regions of interest (i.e., multiple EEG electrodes) on 
which Multidimensional Recurrence Quantification 
Analysis (MdRQA) could potentially be applied (Wallot, 
Roepstorff, & Mønster, 2016). 

In sum, recurrence quantification techniques were 
sensitive to changes in the dynamics of oscillatory neural 
activity that occurred during a joint rhythmic task. This is 
the first demonstration, to our knowledge, of RQA 
techniques to show consistent intra- and inter-brain 
differences in a joint auditory-motor task. These findings 
suggest that the sensitivity of RQA to stability of oscillatory 
neural activity might lend the technique to more fine-
grained characterization of non-linearities in neural 
dynamics in a variety of behaviors and participant 
populations. 
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