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Role of Prior Constraints in Human Learning
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Computer Science Department
University of Southern California
mharm@gizmo.usc.edu

Abstract

This research investigated the effects of prior knowledge on
learning in psychologically-plausible connectionist networks.
This issue was examined with respect to the benchmark
orthography-to-phonology mapping task (Sejnowski &
Rosenberg, 1986; Seidenberg & McClelland, 1989).
Leamning about the correspondences between orthography and
phonology is a critical step in learning to read. Children
(unlike the networks mentioned above) bring to this task
extensive knowledge about the sound-structure of their
language. We first describe a simple neural network that
acquired some of this phonological knowledge. We then
summarize simulations showing that having this knowledge
in place facilitates the acquisition of orthographic-
phonological correspondences, producing a higher level of
asymptotic performance with fewer implausible errors and
better nonword generalization.  The results suggest that
connectionist networks may provide closer approximations to
human performance if they incorporate more realistic
assumptions about relevant sorts of background knowledge.

Introduction

Although cognitive scientists have emphasized how
children's acquisition of knowledge is constrained by prior
knowledge (either innate or the result of prior learning),
such constraints are rarely incorporated in connectionist
networks. Consider, for example, the well-studied task of
learning the correspondences between orthography
(spelling) and phonology (sound). This knowledge plays an
important role in learning to read (Adams, 1989); moreover,
the inconsistencies in these correspondences in English
(FIVE-GIVE, HERE-WERE, etc.) present an interesting
learning problem. Sejnowski and Rosenberg's NETtalk
(1987) was the first connectionist model applied to this task;
Seidenberg and McClelland (1989) developed a related
model that simulated detailed aspects of human performance
in reading words aloud. The SM89 model was limited in
two important respects, however. First, it performed more
poorly than people on generalization trials (reading
nonwords such as JINJE or KEDE) (Besner et al, 1990).
Second, many of the pronunciations that it produced as
errors contained phoneme sequences that are not permitted
in English (e.g., SPIN --> SIPN). The defects in this model
have been taken as reflecting important limitations on the
capacities of neural networks to capture detailed aspects of
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human behavior (e.g., Coltheart et al., 1993; McCloskey,
1991; Prasada & Pinker, 1993).

In this paper we examine an important difference between
these connectionist networks and children who are learning
to read that may account for some of these discrepancies.
Beginning readers already possess extensive knowledge of
the structure of spoken language. They have learned which
phonemic segments occur in their language and about the
constraints that govern phoneme sequencing (the
phonotactics of the language). Their task is then to learn
how orthographic symbols relate to this phonological
structure. The Seidenberg and McClelland model, in
contrast, possessed no prior knowledge of phonology and
was initialized with random weights. This created a more
difficult learning task than the one confronting the
beginning reader: the network had to learn about
phonological structure at the same time it was learning to
map orthography onto it.

We examined the role of prior knowledge in such
networks in two steps. We first developed a connectionist
network that learned about the phonological structure of
English monosyllables. We then examined how including
or excluding this phonological knowledge affected the task
of learning orthographic-phonological correspondences. We
compared two networks that were identical except that one
was configured with the phonological structure that was
learned in the first simulation, and the other was configured
with the usual random weights. Results suggest that
providing prior knowledge of phonological structure results
in more rapid learning, a greatly reduced tendency to
produce implausible utterances, and better nonword
generalization.

Simulation 1: Induction Of Phonological
Constraints

The network consisted of 29 units that were fully connected
to each other, plus the bias associated with each unit. The 29
units were used to encode words consisting of CVC
sequences of phonemes. Phonemes were represented in
terms of standard phonetic features (e.g., voiced, labial);
each unit corresponded to one of these features; 12 feature
bits were used for each consonant and 5 for the vowel.
Weights on connections between units were initially
randomized and each unit's connection to itself was frozen
at 0.5. The effect of this is that a unit’s activation,



independent of all other inputs, slowly drops off from its
initial value over time.

The training set consisted of a set of 564 CVC words
taken from an online dictionary. The training procedure was
as follows. The probability that a word would be selected
for training was a function of its Kucera and Francis (1967)
frequency. A word was selected and at timestep 0, all 29
units were clamped with its correct phonological
representation. At timesteps | to 4, they were unclamped
and allowed to mutually activate and de-activate each other.
A unit’s aggregate input is first computed as the weighted
sum of the current output of all other units connected to it.
This aggregate input is applied to a sigmoidal squashing
function. Formally, the output o of unit j at time ¢ is

I . :
uj-fﬂ=f(z wi.j-o,-n—n) where / is the set of units connected to
i

unit j, Wj j is the weight from unit i to unit j, and f is the
sigmoid function.

The output at each time step from 1 to 4 was compared
with the input phonemes. Where the output disagreed with
the phonemic representation, a sum of squared error signal
was computed. Thus, the network was being asked to
recreate and hold the pattern that had been present at step 0
over steps 1-4. The weights connecting the units to each
other were modified according to the standard backprop
through time algorithm for training recurrent connectionist
nets (Williams & Zipser, 1989, 1990). Because each unit’s
auto-connection was frozen, each unit needed input from its
neighbors to hold its former value. A unit received a high
error signal when it failed to receive sufficient activation or
inhibition from its neighbors; thus, the learning algorithm
causes agonistic or antagonistic tendencies among the units
1o be represented in the weight space. Specifically, the
model encoded both the intra-segmental regularities (i.e., the
fact that only some combinations of features produce actual
phonemes) and intersegmental regularities (i.e., the fact that
only some sequences of phonemes are legal). The resulting
weight space represents a set of stable attractor states (Plaut
& McClelland, 1993). These states represent phonemically
and phonotactically legal sound patterns in the target
language represented by the CVCs.

We evaluated the effectiveness of the representations
formed in this stage by determining the extent to which the
network was able to perform pattern completion. Given a
partially-specified input, could the network use knowledge
of phonological structure to generate legal patterns? A
sample of items from the training corpus of all CVC words
was prepared. Each form was presented into a matrix of
weights taken from the prewiring network. For each output
unit in the form, we determined whether the unit was getting
the correct level of activation from its neighbors. The unit
being evaluated was unclamped, and the summed input to
that unit from its neighbors (i.e. the dot product of the
feature values and the weight vector) was compared with the
unit’s real value for that form. Thus the phonological output
space was disturbed by the deletion of one unit, and the test
determined to what extent that one unit could be pulled into
its correct value by the activations of its neighbors.

If the summed input to a unit from its neighbors was
negative, and the unit was supposed to be off, or if the
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summed input was positive and the unit was supposed to be
on, the unit was scored as receiving correct activation from
its neighbors. If not, it was incorrect. The average squared
value of the units’ correct activation from its neighbors
minus the squared value of incorrect activations is
multiplied by the frequency of the word form. This gave a
scalar measure of the accuracy to which the weights
encoded regularities in the representation for that unit for
that word form. This test was done over all units in the
phonological representation, and the resulting score for each
unit was then multiplied by the frequency of the word form
being tested. This way, an error made within the word form
CZAR did not penalize the network as much as an error in
the word form CAR would. This test was repeated for each
word form in the training corpus, and the recorded results
for each unit were averaged. This gave a measure of the
probability that the network’s weight space could coerce
unspecified values into a legal pattern.

Quality of Pattern Completion
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Figure 1

This measure was evaluated during the training of the net,
and its value is shown in figure 1. Initially, with the weights
randomly assigned, the value was zero; a unit is no more
likely to receive correct activation from its neighbors than it
is to get incorrect activation. By the end of 2000 training
epochs, a weighted average of 83% of the output units
across all CVC words receive correct activation from their
neighbors. Thus, the model had encoded sufficient
information about phonological structure to tolerate
degradation of the input pattern. This knowledge is not
perfect, but neither is the child’s at the onset of reading
education.

Simulations 2-3: The Reading Task

The network used in these simulations was constructed as
follows. The output layer consisted of the same 29 units
representing phonological output as in Simulation 1; there
also were 80 hidden units and 27 orthographic input units.
Input units were connected to all hidden and output units.
The hidden units were fully connected to each other, and to
the output units. Similarly, the output units were fully




connected to each other and to all hidden units. Biases were
connected to all non-input units.

Training Regime

A set of input-output pairs was prepared. The input forms
consisted of orthographic strings corresponding to the
spelling of the words from Simulation 1. The output forms
were the feature values for the phonological representations
of the words. The network was recurrent, and had to hold
the output value over time in a stable state.

Letters were presented serially over the 27 input units,
which provided a localist encoding of the alphabet, with an
additional unit indicating whether the input is a null
character or not. A null character was represented by
turning units 1-26 off and unit 27 on. Thus for the word
CAT, the network would activate the unit corresponding to
C attime 0, A at time 1, and T at time 2. All other units are
turned off (output a value of -1). Each unit in the network
computes its next value as the weighted sum of the current
outputs of all units that are connected to it.

Upon presentation of the final character, an error signal is
computed, which is the squared difference between the
target value for that unit and the unit’s actual output value at
that time step. This error is used to accumulate changes to
the weight matrix W again using backprop through time.

For two time steps following the presentation of the last
character, a null character is presented to the input units
the network, and input is propagated through the net as
before. Error signals are computed for these last two time
steps in the same way; the squared difference between the
target output and the actual output at those time steps is
calculated, and again this error signal is used to update the
weight matrix. Thus for a word of k letters, we clamped the
input units with the representation of character 7 during time
steps 1=[0,k-1], and a null character for time steps r=[kk+1].
Error was injected and propagated through the network to
update the weight matrix during time steps r=[k-1,k+1].

Presenting the letters serially allowed the network to
capture phonological regularities (e.g., that T can be
followed by H but not the reverse). Ideally, the network
input pattern of TH should develop a state transition within
the hidden units that has common components across words
like THIS, OTHER, etc (Plaut & McClelland, 1993). Such
commonalties are difficult to represent in the slot-based
orthographic representations used in many other models
(e.g., Daugherty & Seidenberg, 1992).

Testing Procedure

Three networks with identical architectures, training sets,
and training regimens but different initial weights were
evaluated. All weights in the three networks were first
randomized to values distributed normally between -1 and 1.
For the structured network (SN), the weights between all of
the phonological output units (and their respective biases)
were initialized to the values that were the outcome of
Simulation 1. These weights were scaled down by a
constant factor, due to the greater fan-in of the orthographic
task network. For the unstructured network (UN), the
randomly generated set of weights were retained. The
standard deviation of these two sets of weights differed,

owing to the tendency of the Simulation 1 net to push
weights to extreme positive or negative values. In order to
ensure that this difference between the networks was not the
cause of any observed differences in performance, a third,
control network (CN) was set up, using weights that were a
random permutation of those found in the structured
network.

Results

Figure 2 compares the three reading task networks in terms
of their ability to learn the training set. The structured
network learned the target pronunciations faster than the
other two, and reached a higher asymptotic level of
performance as well. Figure 3 shows the number of
utterances produced by the three networks containing
nonexistent phonemes (i.e., illegal combinations of
features). The structured network was much better at
producing well-formed (though sometimes incorrect) output
patterns.

Correct Utterances Produced
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Figure 4 shows a histogram of errors for the structured
and randomized networks, broken down by which segment
caused the error. 74% of the errors made by the structured
net occur in the vowel, with only 14% occurring within the
first consonant and the remainder in the final consonant.
Further, the majority of the errors within the vowel segment
were caused by a single feature. In contrast, the unstructured
network made 46% of its errors in the initial consonant,
42% in the vowel, and 12% in the trailing consonant. The
unstructured network has a much wider distribution of error
types, while the structured network exhibits more systematic
errors.

A set of 53 nonwords was used to assess the
generalization performance of the structured and
unstructured networks. Nonword pronunciation is difficult
to assess because human subjects often generate multiple
pronunciations, whereas the model only produces one




Non-Existent Phonemes Produced
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(Seidenberg et al, 1994). Overall, the structured and
unstructured networks generated approximately the same
number of incorrect utterances. However, the unstructured
network produced far more words containing illegal
phonological segments (9/53) than the structured network
(2/53). Further, in the nonword test, both networks followed
a pattern very similar to that seen in the training set: the
structured network’s errors were focused on the vowels,
while the unstructured network exhibited a wider
distribution of error types, being divided almost equally
between errors in the first consonant and errors in the vowel.

Distribution of Errors by Segment

" Wr Structured
E O Unstructured
: 60 [ =,
b1
* gk -
2
g 20 /
L
WA | VA | A |
Consonant Vowel Consonant
Figure 4
Conclusions

In summary, a simple recurrent backpropagation network
performed better on the task of mastering the
correspondences between spelling and pronunciation when
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it was provided with prior information about pnonoiogica
structure than when it was not. Prestructuring the network
did not provide direct information about orthographic-
phonological correspondences; rather, it provided
constraints on the structure of target phonological patterns.
This allowed the limited resources that were available to be
focused on the main problem of learning orthographic-
phonological correspondences. The child who is learning to
read is comparable to a prestructured network in the sense
that he/she already possesses extensive knowledge of the
sound structure of language. In fact, there is good evidence
that success in learning to read is related to preliterate
phonological knowledge (Gough et al., 1992). Children
who perform well on so-called "phonological awareness”
tasks, such as deciding if two words rhyme or deleting a
sound from a word ("say SPLIT without the P"), acquire
early word decoding skills more rapidly. The simulations
provide a simple explanation for why this would occur.
More generally, the simulations suggest that connectionist
networks can provide better simulations of human behavior
by being more realistic about the state of people's
knowledge at the onset of learning. Connectionist models
tend to rely on the brute force power of the learning
algorithm to encode generalizations in a problem domain.
By ignoring relevant pre-existing knowledge, these
networks create learning problems that are more difficult
than necessary. This may account in part for the relatively
poor performance of some connectionist networks compared
to people. This also contributes to the impression that the
connectionist approach is incompatible with the existence of
a priori constraints. The present research suggests instead
that the approach provides a way to explore the role of
biological and other types of constraints (Seidenberg, 1992).
The simulations we have described are limited in several
respects that should be acknowledged. The purpose of the
simulations was to examine the role of constraints on a
simple kind of learning. The networks that were used do not
represent general solutions to the spelling-sound mapping
problem, which entails other issues not addressed here.
Th for example even the prestructured model's nonword
ps T ince was not as good as that reported by Plaut et al.
{19945 This is due to factors such as the limited size of the
training corpus that were not immediately relevant to the
constraint issue. Much better performance could be
achieved using extensions of the networks we have
described here, however. In addition, the simulations
examined the effects of constraints that were derived from
the pretraining experience, which represents a simplification
of the situation confronting the beginning reader in an
important sense. The child's knowledge of phonology is
based in part on experience, i.e. exposure to a spoken
language. The child must learn about the inventory of
phonemes that the language happens to use and constraints
on the order of phonemes. However, this learning is further
constrained by human perceptual and motor capacities.
Because of these biological constraints, only some
phonemes and phoneme sequences are possible. We have
not attempted to separate the effects of these innate
constraints from the effects of prior experience with the
language, but this is an obvious step for future research. In




this way connectionist models might contribute to
understanding how different types of constraints influence
human learning.
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