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The complexity of the earthquake rupture process makes earthquakes in-

herently unpredictable. Seismic hazard forecasts often presume that the rate of

earthquake occurrence can be adequately modeled as a space-time homogenenous

or stationary Poisson process and that the relation between the dynamical source

properties of small and large earthquakes obey self-similar scaling relations. While

these simplified models provide useful approximations and encapsulate the first-

order statistical features of the historical seismic record, they are inconsistent with
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the complexity underlying earthquake occurrence and can lead to misleading as-

sessments of seismic hazard when applied in practice. The six principle chapters

of this thesis explore the extent to which the behavior of real earthquakes deviates

from these simplified models, and the implications that the observed deviations

have for our understanding of earthquake rupture processes and seismic hazard.

Chapter 1 provides a brief thematic overview and introduction to the scope

of this thesis. Chapter 2 examines the complexity of the 2010 M7.2 El Mayor-

Cucapah earthquake, focusing on the relation between its unexpected and un-

precedented occurrence and anthropogenic stresses from the nearby Cerro Prieto

Geothermal Field. Chapter 3 compares long-term changes in seismicity within

California’s three largest geothermal fields in an effort to characterize the relative

influence of natural and anthropogenic stress transients on local seismic hazard.

Chapter 4 describes a hybrid, hierarchical clustering algorithm that can be used

to relocate earthquakes using waveform cross-correlation, and applies the new al-

gorithm to study the spatiotemporal evolution of two recent seismic swarms in

western Nevada. Chapter 5 describes a new spectral decomposition technique that

can be used to analyze the dynamic source properties of large datasets of earth-

quakes, and applies this approach to revisit the question of self-similar scaling of

southern California seismicity. Chapter 6 builds upon these results and applies

the same spectral decomposition technique to examine the source properties of

several thousand recent earthquakes in southern Kansas that are likely human-

induced by massive oil and gas operations in the region. Chapter 7 studies the

xxiii



connection between source spectral properties and earthquake hazard, focusing on

spatial variations in dynamic stress drop and its influence on ground motion ampli-

tudes. Finally, Chapter 8 provides a summary of the key findings of and relations

between these studies, and outlines potential avenues of future research.
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Chapter 1

Introduction

1.1 Motivation

When is the Big One coming? It is a question I have been asked hundreds

of times over my years studying as a seismologist. It is a pertinent question here

in Earthquake Country, where the San Andreas Fault knifes with a northwesterly

strike through the center of southern California, poised like the sword of Damocles

over major population centers in Los Angeles and San Diego. It is a relevant

question, given that the average recurrence period between major earthquakes on

the southern San Andreas Fault is of order 100 years and the last such event

occurred in 1857 (Fialko and Simons , 2000; Field et al., 2014; Smith-Konter and

Sandwell , 2009; Hauksson et al., 2017), with only a handful of people around to

record it. It is a question that I, like so many of my peers, can only wish to know

the answer.

1
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The ability to accurately predict earthquakes is the ultimate goal for many

seismologists, myself included. Yet realizing this goal has proven difficult despite

many decades of scientific effort, and is likely to remain elusive for many years

hence (Geller et al., 1997). On a fundamental level, earthquakes occurrence is

driven by stress accumulation within Earth’s crust (Reid , 1911; Scholz , 2002).

The concentration of major earthquakes near the boundaries of tectonic plates is

therefore no accident, and in general it is more straightforward to reliably predict

where earthquakes are likely to occur than when. The reason is that the nucleation

process that precedes an earthquake is highly complex and chaotic, sensitive to

minute details in the stress field at seismogenic depth for which we have poor

observational constraints (Rice and Ruina, 1983; Rice, 2006; Ruina, 1983; Brodsky

and Kanamori , 2001; Noda and Lapusta, 2013).

While the possibility of accurately predicting earthquakes is remote, improv-

ing our ability to reliably forecast earthquakes is more tractable. The distinction

between a deterministic prediction and a forecast, which is inherently probabilistic,

is subtle but essential (Vere-Jones , 2003; Jordan and Jones , 2010; Jordan et al.,

2011). A prediction would imply that the physics of earthquake rupture and the

relevant physical conditions of each fault zone are both perfectly known, while a

probabilistic forecast allows for a degree of scientific uncertainty. The forecast-

ing of earthquake hazard is a model-driven task, relying on physical or statistical

constraints from studies of previous earthquakes. As our understanding of the rel-

evant physics of earthquake nucleation, rupture, and triggering improves, so will
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our ability to accurately characterize seismic hazard.

Most seismic hazard forecasts used in recent years are based on simple

statistical models of earthquake occurrence that incorporate only the most well-

established features of the earthquake record to date (Baker , 2013; Mulargia et al.,

2017). Often, earthquake occurrence is treated as a stochastic point process (Da-

ley and Vere-Jones , 2003), where each event is characterized only in terms of its

location and magnitude. In this framework, the rate of earthquake occurrence is

often modeled statistically as a homogeneous Poisson process that is stationary

in both space and time (Snyder and Miller , 1991). Meanwhile the distribution

of earthquake magnitudes is canonically assumed to follow a Gutenberg-Richter

power law (Gutenberg and Richter , 1944) with a slope of order 1 that is again con-

stant in space and time. This modeling paradigm can be useful in the sense that

it provides a computationally feasible means for probabilistic hazard assessment

that not only accounts for the inherent randomness in earthquake occurrence, but

imposes it.

Unfortunately, the real world is rarely so simple. Earthquakes cluster in

space and time, often in an unpredictable but decidedly nonstationary manner

(van der Elst and Brodsky , 2010; Hainzl et al., 2013; Kumazawa and Ogata, 2013).

The physical processes associated with earthquake triggering and stress transfer

can cause large changes in the rate of earthquake occurrence (Stein, 1999; Lin

and Stein, 2004; Mallman and Parsons , 2008; Parsons and Velasco, 2009; Page

et al., 2016). In recent years, more sophisticated hazard forecasts have begun to
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encapsulate the first-order influence of earthquake clustering and stress-transfer

within fault systems (Field et al., 2014; Gerstenberger et al., 2016). The improve-

ment in the resulting hazard forecasts demonstrate the potential for advances in

scientific understanding to have a quantifiable effect on matters of general public

interest. However there remains a great deal of epistemic uncertainty in these

forecasts (Budnitz et al., 1997; Anderson and Brune, 1999; Mulargia et al., 2017),

particularly with respect to how point process models, which may be statistically

viable for smaller earthquakes, can be applied to larger earthquakes in which the

finite size of the earthquake source can no longer be ignored (Field et al., 2017).

Moreover, earthquakes are complex phenomena with real variations in source

properties related to dynamic rupture processes that are difficult to encapsulate

within simple statistical models (Meier et al., 2017). Classically, dynamic source

properties have been viewed as self-similar with respect to earthquake size, with

large earthquakes simply scaled-up versions of small earthquakes (Aki , 1967). Even

the most sophisticated modern hazard forecasts presume self-similarity, as observa-

tional constraints on the behavior of large earthquakes within a given fault system

are thankfully rare. In recent years, however, detailed analyses of earthquake

source properties have challenged the assumption of self-similarity (Mayeda and

Walter , 1996; Izutani and Kanamori , 2001; Mori et al., 2003; Mayeda et al., 2005;

Takahashi et al., 2005; Mayeda et al., 2007; Calderoni et al., 2013; Pacor et al.,

2016; Lin et al., 2016; Poli and Prieto, 2016), though much controversy still re-

mains (Choy and Boatwright , 1995; Ide and Beroza, 2001; Ide, 2003; Prieto, 2004;
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Allmann and Shearer , 2009; Baltay et al., 2010, 2011; Abercrombie et al., 2017). It

seems plausible that the inherent complexity of earthquake nucleation and rupture

may cause a breakdown in self-similar scaling between small and large earthquakes

(Kanamori and Rivera, 2004; Abercrombie and Rice, 2005; Noda and Lapusta,

2010), but more research is needed to test the extent to which this hypothesis is

true. Likewise, the connection between ground motion amplitudes and dynamic

source properties (Boore, 1983; Baltay et al., 2013; Lior and Ziv , 2017) motivates

further research into characterizing variations in earthquake source dynamics across

different fault systems and tectonic settings.

The various chapters of this thesis explore the true variability in earth-

quake source properties and spatiotemporal patterns of occurrence. By providing

robust data-driven constraints, my objective is to better understand the degree to

which real earthquakes deviate from simplified, stationary and self-similar statis-

tical models. The influence of human activity will play a prominent role in this

thesis, as the proliferation of earthquakes triggered by anthropogenic stresses from

geothermal energy and oil production have caused rapid and widespread changes

in seismicity from previous historical norms (Convertito et al., 2012; Ellsworth,

2013; Ellsworth et al., 2015; McNamara et al., 2015; Petersen et al., 2016, 2017).

But just as importantly, transient or nonstationary variations in earthquake oc-

currence and source properties can occur for entirely natural reasons (Allmann

and Shearer , 2009; Oth and Kaiser , 2014; Abercrombie et al., 2017; Meier et al.,

2017). Real earthquakes are not simply points in magnitude-space-time, but real
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and complex phenomena with distinct spectral signatures. The outliers matter,

as the rogue, deviant earthquakes that occur unexpectedly or with unusual source

properties often prove to be the most hazardous, and can provide new insights into

the physical processes underlying earthquake occurrence.

1.2 Thesis Structure

This thesis is structured as follows. The six principal Chapters (2 through

7) were originally written for individual publication and hence can be read in

isolation. They are, however, listed in a logical order such that the ideas intro-

duced in preceding chapters are built upon in the subsequent chapters. Chapter

2 (Trugman et al., 2014) and Chapter 3 (Trugman et al., 2016) examine the in-

fluence of anthropogenic stresses from geothermal energy production on seismicity

within Baja and southern California. Chapter 4 (Trugman and Shearer , 2017a)

describes a method for providing high-resolution earthquake relocations that is

then applied to examine the spatiotemporal evolution of earthquake sequences in

Nevada. The final three chapters focus on dynamic source properties derived from

P -wave spectral estimates. In Chapter 5 (Trugman and Shearer , 2017b), I develop

an improved spectral inversion technique to estimate dynamic source parameters

for large waveform datasets, and I apply this technique to study deviations from

self-similar scaling in southern California. Building on these results, in Chapter

6 (Trugman et al., 2017) I study the source properties of human-induced earth-
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quakes in southern Kansas, comparing the spectral characteristics of these events

to those of naturally occurring earthquakes in southern California. In Chapter 7

(Trugman and Shearer , 2017c), I explore the relationship between dynamic stress

drop and measured ground motion amplitudes, focusing on the implications that

spatial variations in source properties have for seismic hazard. A brief overview of

each of these individual chapters is provided below for the reader’s convenience.

Chapter 2, in full, is a reformatted version of material as it appears in Geo-

physical Research Letters: Trugman, D. T., A. A. Borsa, and D. T. Sandwell

(2014), Did stresses from the Cerro Prieto Geothermal Field influence the El

Mayor-Cucapah rupture sequence?, Geophysical Research Letters, 41(24), 8767–

8774, doi: 10.1002/2014GL061959. I was the primary investigator and author of

this paper. Here we investigate the relation between geothermal energy produc-

tion at the Cerro Prieto Geothermal field in northern Baja California, Mexico

and the nearby 2010 M7.2 El Mayor-Cucapah earthquake. We use interferometric

radar (InSAR) data from the ALOS satellite to measure surface subsidence in the

vicinity of the geothermal field. We then use the measured surface displacement

to invert for a model of volumetric contraction at depth within the geothermal

reservoir. We find that Coulomb stresses generated from net fluid extraction at

the geothermal field pushed the major fault planes that comprise the El Mayor-

Cucapah earthquake rupture sequence toward failure. Anthropogenic activity may

therefore have contributed to the nucleation of the El Mayor-Cucapah earthquake,

whose occurrence was unexpected given that the rupture plane is poorly oriented
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for failure within the regional tectonic stress field.

Chapter 3, in full, is a reformatted version of material as it appears in Jour-

nal of Geophysical – Solid Earth: Trugman, D. T., P. M. Shearer, A. A. Borsa and

Y. Fialko (2016), A comparison of long-term changes in seismicity at The Geysers,

Salton Sea, and Coso geothermal fields, Journal of Geophysical Research – Solid

Earth, 121(1), 225–247, doi:10.1002/2015JB012510. I was the primary investiga-

tor and author of this paper. Here we analyze changes in the occurrence patterns

of seismicity over decadal timescales within California’s three largest geothermal

fields: (1) The Geysers, located to the northeast of San Francisco, (2) Salton

Sea Geothermal Field, located near California’s southern border with Mexico and

adjacent to the southern tip of the San Andreas fault, and (3) Coso Geothermal

Field, located within the structurally complex Eastern California Shear Zone. Each

geothermal field exists within a distinct tectonic setting and has experienced a dif-

ferent history of energy production. Although we observe measurable increases in

background seismicity rate and changes to the earthquake magnitude and depth

distributions within each field, both the detailed features of these changes and the

relative influence of anthropogenic stresses vary substantially between the three

fields. The differing responses suggest that changes in seismicity in California’s

geothermal fields are controlled by a complex interplay of stresses from regional

tectonic and local anthropogenic sources.

Chapter 4, in full, is a reformatted version of material as it appears in

Seismological Research Letters: Trugman, D. T. and P. M. Shearer (2017), Grow-
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Clust: A hierarchical clustering algorithm for relative earthquake relocation, with

application to the Spanish Springs and Sheldon, Nevada, earthquake sequences,

Seismological Research Letters, 88(2A), doi:10.1785/0220160188. I was the pri-

mary investigator and author of this paper. Here we develop a new algorithm

called GrowClust that can be used for the relocation of earthquake hypocenters

based on differential travel time data obtained through waveform cross-correlation.

The algorithm, which we present as a publicly available integrated software pack-

age, is robust to data outliers and is both computationally efficient and numerically

stable when applied to large-scale datasets. We apply GrowClust to examine the

spatiotemporal evolution of two recent earthquake swarms that occurred in west-

ern Nevada: the 2012–2015 Spanish Springs and the 2014–2016 Sheldon sequences.

The results demonstrate the potential for high-precision relocations to uncover the

detailed spatial and temporal features of unusual earthquakes sequences that give

insight into physical mechanisms that drive them.

Chapter 5, in full, is a reformatted version of material as it appears in

Journal of Geophysical – Solid Earth: Trugman, D. T. and P. M. Shearer (2017),

Application of an improved spectral decomposition method to examine earth-

quake source scaling in southern California, Journal of Geophysical Research –

Solid Earth, 122(4), doi:10.1002/2017JB013971. I was the primary investigator

and author of this paper. Here we describe an improved P -wave spectral decom-

position technique that can be used to analyze the dynamic source properties of

large datasets of earthquakes. We apply this technique to revisit the question of
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the self-similar scaling of earthquakes within five regions of dense, recent (2002–

2016) seismicity in southern California: the Yuha Desert, the Trifurcation Zone

of the San Jacinto Fault, and the Big Bear, Landers, and Hector Mine regions of

the Mojave Desert. We observe an increase in median stress drop with seismic

moment within each of the five analyzed regions, in direct contradiction to the

classical self-similar, constant stress drop scaling that forms the basis of routine

seismic hazard assessment. Moreover, we find evidence for nonstationary spatial

variations in source properties on both regional and local length scales that pro-

vide important observational constraints for the distribution of crustal stresses and

earthquake hazard in southern California.

Chapter 6, in full, is a reformatted version of material as it appears in Jour-

nal of Geophysical – Solid Earth: Trugman, D. T. and P. M. Shearer (2017), Source

spectral properties of small-to-moderate earthquakes in southern Kansas, Journal

of Geophysical Research – Solid Earth, 122(10), doi:10.1002/2017JB014649. I was

the primary investigator and author of this paper. Here we apply the improved

spectral decomposition approach described in Chapter 5 to analyze the source prop-

erties of earthquakes within southern Kansas from 2014–2016. This new dataset

comprises more than 4000 events within a region of heavy oil and gas production,

and most of these events are thought to be induced by stresses associated with

industrial wastewater disposal. We find that earthquakes in southern Kansas ex-

hibit lower median stress drop values compared to naturally occurring earthquakes

in southern California. We also observe coherent spatial and temporal changes in
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median stress drop within southern Kansas that are not easily explained by local-

ized fluid injection but may be related to more widespread, regional wastewater

disposal. These results have significant implications for our understanding of the

rupture processes and the seismic hazard associated with human-induced seismicity

in the central United States.

Chapter 7, in full, is a reformatted version of material as it appears in Bul-

letin of the Seismological Society of America: Trugman, D. T. and P. M. Shearer

(2017), Strong correlation between stress drop and peak ground acceleration for

recent seismicity in the San Francisco Bay Area, Bulletin of the Seismological So-

ciety of America, submitted. I was the primary investigator and author of this

paper. Here we investigate the relation between the source spectral properties and

the measured ground motion amplitudes of earthquakes occurring in the vicinity

of the San Francisco Bay Area, CA. We apply the P -wave spectral decomposition

method described in Chapter 5 to estimate dynamic stress drop for the more than

5000 events occurring in the Bay Area from 2002–2016. We then measure horizon-

tal peak ground acceleration (PGA) for these same events recorded at the same

set of stations. We develop a novel, data-driven approach based on a machine

learning algorithm known as a Random Forest to model PGA as a function of

magnitude, hypocentral distance, and site, and use this model to isolate the resid-

ual PGA associated with each event. We observe a strong correlation between

dynamic stress drop and the residual PGA of each event, with the events with

higher-than-expected PGA associated with higher values of stress drop. We find
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that mainshock events have systematically higher median stress drop and residual

PGA values than aftershocks of equivalent magnitude. We further observe coher-

ent spatial variations in the distribution of dynamic stress drop that can be used

as the basis for improved future seismic hazard assessments specific to the Bay

Area.

Lastly, Chapter 8 provides a synthesis of the major finding presented in

Chapters 2–7. The limitations and the broader implications of each study are

discussed. The principal results presented in this thesis bring into focus several

important unanswered questions concerning earthquake rupture, and I conclude by

outlining potential future research directions that could be used to address these

questions.
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Chapter 2

Did stresses from the Cerro

Prieto Geothermal Field influence

the El Mayor-Cucapah rupture

sequence?

Abstract

TheMW7.2 El Mayor-Cucapah (EMC) earthquake ruptured a complex fault

system in northern Baja California that was previously considered inactive. The

Cerro Prieto Geothermal Field (CPGF), site of the world’s second-largest geother-

mal power plant, is located approximately 15 km to the northeast of the EMC

hypocenter. We investigate whether anthropogenic fluid extraction at the CPGF

20
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caused a significant perturbation to the stress field in the EMC rupture zone.

We use ALOS-satellite InSAR data to develop a laterally heterogeneous model of

fluid extraction at the CPGF and estimate that this extraction generates positive

Coulomb stressing rates of order 15 kPa/year near the EMC hypocenter, a value

which exceeds the local tectonic stressing rate. Although we cannot definitively

conclude that production at the CPGF triggered the EMC earthquake, its influ-

ence on the local stress field is substantial, and should not be neglected in local

seismic hazard assessments.

2.1 Introduction

The southern edge of the Pacific-North America plate boundary cuts di-

rectly through the Valle de Mexicali in northwestern Baja California. This region

is part of a broad zone of tectonic deformation characterized by subparallel dextral

faults that connect the spreading centers of the Gulf of California to the south with

the San Andreas and San Jacinto Faults to the north. Much of the right-lateral

plate motion in the region is accommodated on the nearby Cerro Prieto and Im-

perial faults, each slipping at an estimated rate of 40 mm/year (Bennett et al.,

1996; Atwater and Stock , 1998). The 2010 El Mayor-Cucapah (EMC) earthquake

itself occurred to the west of these main plate-boundary faults (Figure 2.1), but

to the east of the Laguna Salada Fault, which hosted an MW7.1 earthquake in

1892 (Fletcher and Spelz , 2009). Instead, the EMC event ruptured the Borrego
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and Pescadores Faults in the Sierra Cucapah to the north of its hypocenter, and

the Indiviso fault to its south (Wei et al., 2011). The northern faults had been

mapped prior to EMC event (Barnard , 1968; Fletcher and Spelz , 2009) but were

presumed to slip at much lower rates than the adjacent plate boundary faults, and

show little evidence of Holocene faulting (Fletcher et al., 2014). The Indiviso Fault

was previously unmapped, as it is buried beneath Colorado River Delta sediments.

The EMC earthquake was the largest in the region since the 1992 Landers

earthquake (Sieh et al., 1993). It resulted in the deaths of four people, injured

hundreds of others, and triggered widespread landslides and liquefaction. Yet, the

faults responsible for this damage were previously thought to contribute negligibly

to the regional seismic hazard (Bennett et al., 1996; Fletcher et al., 2014). In

this study, we consider whether the extraction of fluids and heat related to energy

production at the nearby Cerro Prieto Geothermal Field (CPGF) could have played

a role in stressing these faults and initiating the EMC event, or sustaining its

prolonged rupture.

The CPGF is the second-largest geothermal power plant in the world (Ocampo-

Dı́az et al., 2005; CFE., 2006; Sarychikhina et al., 2011), and is located approxi-

mately 15 km to the northeast of the EMC hypocenter, in the extensional stepover

between the Cerro Prieto and Imperial Faults (Figure 2.1). Geothermal energy

production, and the associated fluid extraction, has caused surface subsidence in

the vicinity of the CPGF at previously reported rates of 10-15 cm/year (Glowacka

et al., 2005, 2010; Sarychikhina et al., 2011).
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The extraction process, in turn, perturbs the regional crustal stress field,

and has been investigated for its possible role in triggering large, nearby earth-

quakes in the recent past (Glowacka and Nava, 1996). The central aim of this

study is to estimate the stressing rate on the faults that ruptured in the EMC

earthquake due to extraction at the CPGF. We begin by using InSAR data from

ALOS satellite tracks recorded from 2006-2009 to constrain the magnitude and

spatial extent of anthropogenic subsidence at the CPGF. We then model the com-

plex pattern of fluid extraction and recharge at the CPGF as a distribution of

Mogi-source spherical pressure cavities, using the observed InSAR surface defor-

mation data in a regularized inversion scheme to estimate the source intensities.

With this extraction model in hand, we compute the Coulomb stressing rate on the

sequence of faults that ruptured during the EMC event, and compare this stress-

ing rate to the stressing rate caused by deep, interseismic fault slip on the major

regional faults. We find that extraction at the CPGF imparts positive Coulomb

stresses of order +15 kPa/year on the faults involved in the EMC rupture sequence.

Conversely, tectonic loading from other regional faults imparts a negative Coulomb

stress of around -8 kPa/year in this same location.
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2.2 Subsidence Measurements at the Cerro Pri-

eto Geothermal Field

The Cerro Prieto Geothermal Field (CPGF) is located in the Mexicali Val-

ley of northern Baja California. It is one of four major geothermal fields in the

Salton Trough tectonic province (the others being the Salton Sea, East Mesa, and

Heber geothermal fields, all in the United States). The CPGF has been in con-

tinuous operation by the Comisión Federal de Electricidad since 1973, and with

a current installed capacity of 820 MW, is the worlds second largest geothermal

energy source (Ocampo-Dı́az et al., 2005; Sarychikhina et al., 2011).

Energy production at the CPGF requires extraction of hot water and steam

from production wells with a mean depth of 2.7 km (Gutiérrez-Negŕın et al., 2010).

In 2008, a total fluid volume of 6.3x107 m3 was extracted at the CPGF, a value typ-

ical of the published extraction rates since 1994 (Glowacka et al., 2005; Gutiérrez-

Negŕın et al., 2010). While approximately 30% of the extracted fluid is reinjected

on site (Gutiérrez-Negŕın et al., 2010), and nearly twice this amount is naturally

recharged from the surrounding aquifers (Glowacka et al., 2005), there is a net

loss of fluids in the production zone that causes the earthś surface to subside.

Surface subsidence at the CPGF is well-established: first with leveling surveys

dating back to 1977, and more recently using Interferometric Synthetic Aperture

Radar (InSAR) techniques (Carnec and Fabriol , 1999; Hanssen, 2001; Glowacka

et al., 2005). These studies estimated a vertical subsidence rate at Cerro Prieto of
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12 cm/year, 90-95% of which is directly caused by fluid extraction at the CPGF

(Sarychikhina et al., 2011) .

We augment these previous observations with Advanced Land Observing

Satellite (ALOS) InSAR data acquired from 2006.8-2009.1 to study in detail the

surface subsidence immediately preceding the EMC event. After initial processing

of 23 InSAR images of the study region (see Supplementary Text for details),

we stacked the two highest quality, phase-unwrapped (Chen and Zebker , 2001)

interferograms to estimate the line-of-site (LOS) surface velocity field near the

Cerro Prieto Geothermal Field (Figure 2.2a).

We estimate a maximum vertical subsidence rate of 14 cm/year in the

CPGF production zone, comparable to the findings of previous studies (Sarychikhina

et al., 2011). This subsidence is almost entirely anthropogenic in origin, as local

tectonics (i.e., deformation due to the position of the CPGF in an extensional

stepover) can account for at most 5% of the observed subsidence rate (Supple-

mentary Figure 2.S1, see Glowacka et al., 2005 for a similar assessment). The

spatial distribution of subsidence is characterized by two prominent lobes of de-

formation: one primary lobe situated directly above the energy production site,

and a secondary lobe offset to the northeast that has been attributed to recharge

of the main production area from a deep aquifer adjacent to the Imperial Fault

(Glowacka et al., 2005). While this secondary lobe is still prominent in our ALOS

InSAR data, it is somewhat diminished in magnitude relative to observations in

earlier studies, perhaps indicating a decrease in recharge rate with time.
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2.3 Fluid Extraction Model

The pronounced surface subsidence at the Cerro Prieto Geothermal Field is

a product of a volume change at depth that is primarily caused by a net extraction

of fluids, as thermoelastic effects are thought to contribute negligibly (Mossop and

Segall , 1997). In early studies linking surface deformation to geothermal fluid ex-

traction (Mossop and Segall , 1997; Carnec and Fabriol , 1999; Mossop and Segall ,

1999), volumetric contraction was typically modeled as one or more point pressure

cavity, or “Mogi” sources (Mogi , 1958). More recent studies (Sarychikhina, 2003;

Glowacka et al., 2005; Sarychikhina et al., 2011) have used site-specific geologic

constraints like fault boundaries to construct deformation models based on the

superposition of large, rectangular, tensile (closing) cracks, while others (Vasco

et al., 2002) subdivide the model domain into volume elements extending laterally

and vertically to allow the model to assume any arbitrary shape. We apply a

hybrid approach in which we model the surface subsidence at the CPGF as the

superposition of finely-spaced Mogi pressure sources embedded in an elastic half-

space, applying constraints from independent information about the location and

extent of the source region. For this study, we position the center of the source

distribution in the production zone of the CPGF (-115.20◦ E, 32.1◦ N) and at the

mean extraction depth of 2.7 km (Lippmann et al., 1991; Gutiérrez-Negŕın et al.,

2010). We discretize the source distribution using a single horizontal layer with a

grid-spacing of 0.5 km in both lateral directions for a total of 436 evenly-spaced
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sources. Although our approach does not allow us to distinguish between volumet-

ric changes at different depths, it does allow the model to represent the horizontal

variations in source intensity required to capture the complex spatial patterns of

extraction, injection, and recharge beneath the CPGF. For a single Mogi source

at position (x0, y0, z0 < 0) within an elastic halfspace (Poissons ratio ν), the dis-

placement vector (ux, uy , uz) at surface position (x, y, z = 0), can be written

as

(ux, uy, uz) =
(1− ν)∆V

πR3
(x− x0, y − y0,−z0) (2.1)

where R =
√

(x− x0)2 + (y − y0)2 + (−z0)2 is the distance from the source to

the surface observation point and ∆V is the associated volume change (i.e., the

source intensity) (Segall , 2010). Subsidence requires ∆V < 0. The observed surface

deformation is the superposition of the deformation caused by each individual Mogi

source in the distribution. We use the InSAR-derived LOS surface velocity field

to perform a regularized, least-squares inversion for the source volumes (Figure

2.2b, see Supplementary Text for details). Our preferred model’s displacement

field (Figure 2.2c) provides a 69% variance reduction (Figure 2.2d) on the observed

InSAR data. We estimate a net rate of volumetric contraction of -9.0x106 m3/year.

This estimated rate is insensitive to the details of the modeling assumptions (e.g.,

grid spacing and assumed depth) and inversion approach (e.g., choice of smoothing

parameter), and is consistent both with the independent estimates of previous

studies (Sarychikhina et al., 2011) and with available production data (Gutiérrez-
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Negŕın et al., 2010).

2.4 Anthropogenic Stressing Rates Near the EMC

Hypocenter

The EMC rupture sequence was complex (Wei et al., 2011), with slip likely

initiating in a normal faulting subevent on a shallowly dipping fault plane (labeled

F1 in Figures 2.1 and 2.3) striking almost due N. After a brief pause in moment

release, the rupture jumped from the F1 fault plane onto NW-striking right-lateral

faults (see Figures 2.1 and 2.3), and ruptured bilaterally northward to the Cal-

ifornia border (fault plane F2) and southward to Gulf of California (fault plane

F3). The MW7.2 EMC event was preceded by a vigorous foreshock sequence near

the F1 hypocenter, culminating in a left-lateral, MW4.3 event less than 24 hours

prior to the mainshock (Hauksson et al., 2011). We use our model of CPGF fluid

extraction to compute the anthropogenic stressing rate in the El Mayor-Cucapah

rupture zone. Given a fault orientation and location, one can resolve the local

stress tensor on that fault plane to compute the change in Coulomb stress:

∆σC = ∆τ + µ′∆σN (2.2)

where ∆τ is the change in shear stress in the direction of slip, ∆σN is the change

in normal stress (assumed positive in extension), and µ′ is the effective coefficient

of friction. Positive Coulomb stress changes on a given fault are presumed to
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push that fault toward failure (King et al., 1994; Stein, 1999). To compute the

Coulomb stresses associated with our fluid extraction model, we first generalize

the Fourier-domain approach of (Steketee, 1958) (see Supplementary Text for de-

tails) to obtain the 3D stress tensor due to an arbitrary distribution of radial point

sources embedded in an elastic halfspace. We then decompose the local stress ten-

sor into shear and normal components for the fault geometries and slip directions

of the subevents that comprise the EMC rupture sequence, and compute the local

Coulomb stressing rate. We assume typical values for the shear modulus (32 GPa)

and effective coefficient of friction of (0.4) (Lin and Stein, 2004). From our model,

we estimate that energy production at the CPGF generates a Coulomb stressing

rate of ∼ +11 kPa/year at the MW4.3 foreshock hypocenter (Figure 2.3a). This

stressing rate is considerable, since Coulomb stress changes as low as 10 kPa have

been known to trigger earthquake activity (Stein, 1999). While the foreshock was

itself a relatively small event, it occurred in close proximity in both space and time

to the hypocenter of the initial F1 mainshock subevent, so its role in initiating the

mainshock event sequence cannot be discounted. Extraction at the CPGF also

caused positive Coulomb stress changes on the faults that ruptured in the EMC

mainshock. We estimate stressing rates of +12 kPa/year at the hypocenter of the

initial F1 plane (Figure 2.3b). In contrast to the right-lateral subevents on F2 and

F3, the F1 subevent (MW6.3) was characterized by mostly normal slip, with the

majority of the moment release occurring in the first 10 seconds of rupture (Wei

et al., 2011), the rupture jumped from the F1 fault plane to the steeply-dipping
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F2 and F3 faults striking to the NW. Though the F2 and F3 fault planes extend

more than 50 km to the north and south, respectively, their hypocenters were close

enough to the CPGF to be influenced by its stress field (Figures 2.3c and 2.3d).

In fact, the estimated stressing rate of ∼ +15 kPa/year at the F2 hypocenter

slightly exceeds the estimate for the stressing rate on F1. We further note that

the modeled Coulomb stressing rates on the EMC subevents are caused primarily

by increases in extensional stress (Supplementary Figure 2.S2), which unclamp the

fault plane and allow for failure at lower levels of shear stress. Extraction at the

CPGF therefore created a favorable environment for the EMC rupture to jump

from F1 to F2 and F3, and continue to propagate bilaterally, rather than simply

terminate as a smaller event with the cessation of slip on F1.

2.5 Tectonic Stressing Rates Near the EMC

Our results indicate that stresses from the CPGF may have played a role

in stressing the previously latent faults that ruptured in the EMC earthquake.

These faults, however, are also subjected to the tectonic stress field generated by

interseismic slip on the deep extents of the nearby regional faults. To assess the

effect of the magnitude of the tectonic stress field on the EMC rupture zone, we

apply a regional stress-accumulation model (Smith-Konter and Sandwell , 2009) in

which the southern San Andreas Fault system is subdivided into 18 different fault

strands, each with its own slip rate and locking depth that are constrained by
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geologic and geodetic observations. The tectonic stress field in the EMC rupture

zone is dominated by the effects of the Imperial (40 mm/year slip rate and 5.9

km locking depth) and Cerro Prieto (40 mm/year slip rate and 10 km locking

depth) faults and secondarily by the Laguna Salada (5 mm/year slip rate and 10

km locking depth) fault. We note that this model only provides an estimate of

the tectonic stress during the interseismic period, so the long-term loading (i.e.,

including coseismic effects) of the EMC fault zone by these faults will be somewhat

different. Using this model, we compute the tectonic Coulomb stressing rate on

faults striking N48W, parallel to the EMC rupture trace (Figure 2.4). The tectonic

stressing rate of ∼ -8 kPa/year at the EMC hypocenter is negative, primarily

due to fault-normal compression (Supplementary Figure 2.S5), and is smaller in

magnitude than the anthropogenic stressing rate from the CPGF. Thus, while

regional right-lateral motion must have stressed the EMC faults to near failure

over thousands of years prior to the EMC rupture, current interseismic tectonic

stressing inhibits the initiation of rupture at the EMC hypocenter. Without the

loading from the CPGF over the past 40 years, tectonic forces would have been

changing the stress environment on the EMC faults over this time period to be

less conducive to rupture.
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2.6 Discussion

Our estimates of positive Coulomb stressing rates in the EMC rupture zone

are driven primarily by the increased extensional stresses caused by volumetric

contraction in the CPGF production zone. We note, however, that the a priori

depth constraint on our model and the inherent uncertainties in the hypocentral

depths of the EMC subevents (which are deeper than the production zone) are

important sources of uncertainty in our estimates, as is our choice for the effective

coefficient of friction on the fault interface, which maps extensional stress changes

to Coulomb stress changes (Supplementary Figures 2.S3 and 2.S4). Furthermore,

the Coulomb failure hypothesis is itself an oversimplification of the complex pro-

cess of earthquake rupture initiation, a fact which precludes the establishment of

a causal link between positive Coulomb stressing and the occurrence of any indi-

vidual earthquake. For these reasons, our estimates of Coulomb stressing rates on

the EMC rupture zone should only be interpreted as first-order approximations,

and we hesitate to draw definitive conclusions about the role that the CPGF may

have played in the EMC rupture sequence. Our results do, however, demonstrate

that fluid extraction at the CPGF causes a substantial perturbation to the re-

gional stress field. The magnitude of the Coulomb stressing rate within the EMC

rupture zone depends mainly upon its proximity to the CPGF and the total rate

of volume loss within the production zone, and is relatively insensitive to the fine

spatial details of the fluid extraction model. It is notable that the magnitude of
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the estimated anthropogenic stressing in the EMC rupture zone actually exceeds

that of the background tectonic stressing rate (and is in fact of opposite sign), in

contrast to stressing from ground water pumping in the San Joaquin Valley of Cal-

ifornia, which is 15 to 150 times smaller in magnitude, yet has been implicated in

changes in seismicity on the San Andreas Fault (Amos et al., 2014). Anthropogenic

stresses from human activities, including those from reservoir impoundment (Ge

et al., 2009), wastewater injection at conventional oilfields (Keranen et al., 2013),

and geothermal energy production (Deichmann and Giardini , 2009) have all been

directly linked to increased seismicity. Recent studies have found a direct correla-

tion between net fluid extraction and local seismicity at the Salton Sea Geothermal

Field (Brodsky and Lajoie, 2013), where the rate of net fluid extraction is almost an

order of magnitude smaller than that of the CPGF. The National Resource Coun-

cil 2013 concluded that maintaining a balance of extracted and injected fluids is

essential to limiting the potential for energy production-related induced seismicity.

Only 30% of the extracted fluid is reinjected at the CPGF (Gutiérrez-Negŕın et al.,

2010), which stands in contrast to the more balanced reinjection practices at the

other geothermal fields in the region (Conservation, 2014). The CPGF is a vital

economic resource, but the influence of its anthropogenic stress field should not

be ignored in future seismic hazard assessments of the Valle de Mexicali, home to

more than a million people.
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Figure 2.1: Map of the El Mayor-Cucapah (EMC) study region. The major
regional faults (Laguna Salada, Cerro Prieto, and Imperial) are outlined in white,
with the EMC earthquake rupture trace (Wei et al., 2011) outlined in red. Pink
circles show epicenters of the events in the foreshock sequence preceding the EMC
rupture, with moment tensors for the MW4.3 foreshock, and F1, F2 and F3 EMC
subevents, shown for reference. Black dots indicate aftershock seismicity in the 30
days following the EMC event. All seismic events in the figure are derived from
the Hauksson-Shearer waveform relocated earthquake catalog (Hauksson et al.,
2012). Inset: location of the study region (white box) within northern Mexico and
southern California. The San Andreas Fault (SAF) boundary between the Pacific
and North American Plates is marked in red.
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Figure 2.2: Subsidence at the Cerro Prieto Geothermal Field (CPGF). (a) In-
SAR image of the line-of-site (LOS) surface velocity field, made from stacking
unwrapped ALOS interferograms from 2006-2009. Pixels with correlation < 0.1
are masked in the image. Negative velocities (blue) imply subsidence. The maxi-
mum vertical subsidence rate in the CPGF energy production site is ∼ 14 cm/year.
(b) Preferred Mogi source distribution fluid extraction model derived from a regu-
larized, least-squares inversion of the InSAR LOS velocity field. Each Mogi source
is color-coded by its rate of volume change (m3/year). The integrated volume
change over the source distribution is -9.0 x 106 m3/year. (c) LOS surface velocity
field from our preferred Mogi source distribution fluid extraction model. Source
locations are marked as open circles. The colorscale and region is identical to panel
a). (d) Residual velocity field (InSAR model). Our preferred model provides a
variance reduction of 69% on the observed InSAR data.
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Figure 2.3: Coulomb stressing rates in the El Mayor-Cucapah (EMC) rupture
zone due to fluid extraction at the Cerro Prieto Geothermal Field (CPGF). The
F1, F2 and F3 subevent fault planes (Wei et al., 2011) are shown for reference,
with the assumed hypocentral depth of 5 km marked with a red dashed line. The
color scale ranges from -30 to 30 kPa/year, with contours displayed in increments
of 10 kPa/year. Coulomb stressing rate at 5 km depth are plotted for the fault
geometries of: (a) the MW4.3 foreshock (strike = 187◦ , dip = 79◦ , rake = 5◦ ),
(b) the F1 EMC subevent (strike = 355◦ , dip = 45◦ , rake = -80◦ ), (c) the F2
EMC subevent (strike = 312◦ , dip = 75◦ , rake = -180◦ ), and (d) the F3 EMC
subevent (strike = 131◦ , dip = 60◦ , rake = -180◦ ).
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Figure 2.4: Coulomb stressing rate in the El Mayor-Cucapah (EMC) rupture
zone due to tectonic stresses from regional faults (Smith-Konter and Sandwell ,
2009). The stress field shown is for right-lateral slip at 5 km depth on vertical
faults oriented parallel to the F2 and F3 EMC subevent fault planes (N48W). The
color scale is identical to that of Figure 2.3.



39

2.7 Supplementary Materials

Introduction

This Supplementary Material includes contains two primary components:

Supplementary Text (with associated references) and Supplementary Figures 2.S1

through 2.S5 (with associated captions). The Supplementary Text details the

methodology in this study related to: (1) InSAR observations, (2) our fluid ex-

traction model, and (3) Coulomb stress computations. Figures 2.S1 through 2.S5

detail the vertical subsidence rate near the Cerro Prieto Geothermal Field (2.S1),

decompose the Coulomb stress into shear and normal stress components (2.S2 for

the fluid extraction model and 2.S5 for the regional tectonic model), and display

the results of our sensitivity analyses for hypocentral depth (2.S3) and effective

coefficient of friction (2.S4).

Supplementary Text

InSAR Observations

We use Advanced Land Observing Satellite (ALOS) InSAR data acquired

from 2006-2009 to study in detail the surface subsidence at the Cerro Prieto

Geothermal Field (CPGF) immediately preceding the El Mayor-Cucapah (EMC)

event. The ALOS L-band radar achieves better temporal coherence in vegetated

areas than does the C-band radar on satellites such as Envisat (Sandwell et al.,
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2008), allowing for improved phase estimates in the vegetated regions near the

CPGF (Glowacka et al., 2005). All InSAR data were processed using the GMT-

SAR software package (Sandwell et al., 2011), using the digital elevation model

from the Shuttle Radar Topography Mission (SRTM) to remove the topographic

phase (Farr et al., 2007). We use the SNAPHU algorithm (Chen and Zebker ,

2001) to unwrap the phase of individual interferograms. The InSAR image of the

line-of-sight (LOS) surface velocity (Figure 2.2) was generated by stacking two

unwrapped ALOS interferograms. We initially processed 16 images along descend-

ing Track 211 and 7 images along ascending Track 532, but only used 4 of the

T532 images where the phase unwrapping over the geothermal area was complete.

These were 2-year interferograms (year 2006, day 309 to year 2008, day 315; year

2007, day 036 to year 2009, day 041). Because the subsidence rate in the area

is very large, our selection process was based on phase continuity. The ascending

and descending interferograms showed similar patterns, suggesting mainly vertical

deformation in the region, in agreement with previous studies (Sarychikhina, 2003;

Glowacka et al., 2005; Sarychikhina et al., 2011).

Fluid Extraction Model

We model fluid extraction at the CPGF as a lateral distribution of finely-

spaced Mogi pressure sources at constant depth. This approach allows us to vary

the source intensity on a fine spatial scale to better capture the complex spatial

patterns of extraction, injection, and recharge beneath the CPGF. We position
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the center of the source distribution in the production zone of the CPGF (-115.20◦

E, 32.1◦ N) and at the mean production depth of 2.7 km (Lippmann et al., 1991;

Gutiérrez-Negŕın et al., 2010). We discretize the source distribution using a single

horizontal layer with a grid-spacing of 0.5 km in both lateral directions for a total

of 436 evenly-spaced sources.

We invert for the source intensities using the InSAR observations of LOS

surface velocities. For a single Mogi source at position (x0, y0, z0 < 0) within an

elastic halfspace (Poissons ratio ν), the displacement vector (ux, uy , uz) at surface

position (x, y, z = 0), can be written as

(ux, uy, uz) =
(1− ν)∆V

πR3
(x− x0, y − y0,−z0) (2.3)

where R =
√

(x− x0)2 + (y − y0)2 + (−z0)2 is the distance from the source to the

surface observation point and ∆V is the associated volume change (i.e., the source

intensity) (Segall , 2010). Subsidence requires ∆V < 0.

The observed surface deformation is the superposition of the deformation

caused by each individual Mogi source in the distribution. If the source positions

are known, then the forward computation of the LOS velocity field can be written

in the form:

d = Gm (2.4)

where d is the data vector of observed LOS velocities (the dot product of the

displacement velocity vector and satellite look vector), m is the model vector of

source volumes, andG is the matrix of LOS displacement Green’s functions derived
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from equation (2.3). We invert for the source volumes by performing a regularized

least-squares inversion (e.g., Parker , 1994):

m0 = argminm

{
||d−Gm||2 + λ2||Dm||2

}
(2.5)

to obtain the model m0 that minimizes a linear combination of: (i) the residual

norm between the observed (InSAR-derived) and model-predicted LOS velocity,

and (ii) a model norm parameterized by a first-order Tikhonov smoothing operator

D. We also performed analogous inversions with 3 and 5 horizontal layers, and

with grid spacings ranging from 0.25 km to 2.5 km, and observed no appreciable

change to the data misfit or modeled integrated volume loss. The addition of

multiple layers tends to destabilize the inversion process, so our preferred model

contains a single horizontal layer.

Coulomb Stress Computations

Given a fault plane orientation (parameterized in terms of a normal and

slip vector), we define the Coulomb stress change as

∆σC = ∆τ + µ′∆σN (2.6)

where ∆τ is the change in shear stress in the direction of slip, ∆σN is the change

in normal stress (assumed positive in extension), and µ′ is the effective coefficient

of friction. Positive Coulomb stress changes on a given fault are presumed to

push that fault toward failure (King et al., 1994; Stein, 1999), and are caused by

increases in shear stress or extensional normal stress (i.e., unclamping of the fault
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plane). For the stress computations in this study, we assume a homogenous elastic

medium with a shear modulus of 32 GPa, Poissons ratio of 0.25, and an effective

coefficient of friction of 0.4 (Lin and Stein, 2004).

To compute the Coulomb stresses associated with our fluid extraction model,

we first generalize the Fourier-domain approach of Steketee (1958) to obtain the

Greens function for a radial point source in an elastic half-space. In this formula-

tion, the half-space Green’s function is a semi-analytic function of the horizontal

wavenumbers (kx and ky) and vertical position (z). This half-space Green’s func-

tion is composed of the superposition of three terms: (i) the full-space Green’s

function for a source at depth z = −a, (ii) an image full-space Green’s function a

z = +a, and (iii) a Boussinesq correction to ensure zero traction at the free surface

(z = 0).

With the half-space Green’s function in hand, the full 3D strain tensor for an

arbitrary distribution of radial point sources is easily obtained through convolution

(multiplication in the wavenumber domain) of the Green’s function and source

distribution. To compute Coulomb stresses, we apply assume isotropic, linear

elasticity to convert strains into stresses, and then resolve the local stress tensor on

the fault plane geometries (and slip directions) of each of the individual subevents

that comprise the EMC rupture sequence. For EMC subevents F1 through F3, we

use the fault plane parameterization (strike, dip, and rake) presented in Wei et al.

(2011) to obtain the slip and normal vectors. For the MW4.3 foreshock, we use the

fault plane and slip orientation described by Hauksson et al. (2011).
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To assess the effect of the magnitude of the tectonic stress field on the EMC

rupture zone, we apply the regional stress-accumulation model (Smith-Konter and

Sandwell , 2009) described in the main text. We then compute the normal, shear

and Coulomb tectonic stressing rates at 5 km depth on faults striking N48W,

parallel to the EMC rupture trace (Figures 2.4 and 2.S5).
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Figure 2.S1: Modeled and tectonic subsidence near the Cerro Prieto Geothermal
Field (CPGF). (a) Rate of vertical surface subsidence near the CPGF predicted
by our preferred Mogi source distribution fluid extraction model. The maximum
rate of vertical surface subsidence is ∼ 14 cm/year. (b) Estimated rate of vertical
surface subsidence in the El Mayor-Cucapah (EMC) rupture zone due to natu-
ral, interseismic deformation from regional faults. The tectonic subsidence rate
was computed using the stress accumulation model of Smith-Konter and Sandwell
(2009). The estimated tectonic subsidence rate of 0.4 cm/year within the CPGF
is ∼ 3% of the observed rate, which is dominantly anthropogenic in origin.
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Figure 2.S2: Comparison of (a) normal, (b) shear, and (c) Coulomb stressing
rates on El Mayor-Cucapah (EMC) fault plane F2, due to fluid extraction at the
Cerro Prieto Geothermal Field. The stressing rates are computed at 5 km depth
for the fault geometry of the EMC F2 subevent (strike = 312◦ , dip = 75◦ , rake
= -180◦ ). An effective coefficient of friction of 0.4 is assumed for panel c). The
stress decomposition for fault plane F3 is nearly identical (as the fault geometry is
close to the same). The stress decomposition for F1 is also quite similar, but the
extensional stress is slightly reduced (but still positive) at the F1 hypocenter, and
the shear stress is also positive at the hypocenter. This difference is due to the
difference in fault geometry and slip orientation, as F1 is a normal faulting event
with slightly different strike and dip than F2 (a strike-slip event).



47

Figure 2.S3: Sensitivity analysis of hypocentral depth for Coulomb stressing rate
on El Mayor-Cucapah (EMC) fault plane F2 due to fluid extraction at the Cerro
Prieto Geothermal Field. An effective coefficient of friction of 0.4 is used for all
panels. Modeled Coulomb stressing rate for the fault geometry of the EMC F2
subevent (strike = 312◦ , dip = 75◦ , rake = -180◦ ) at: (a) 3 km depth, (b) 5 km
depth, and (c) 7 km depth. The results of this study assume hypocentral depths
of 5 km (Wei et al., 2011), and are similar for fault planes F1 and F3 (not shown
here).
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Figure 2.S4: Sensitivity analysis of the effective coefficient of friction for the
Coulomb stressing rate on El Mayor-Cucapah (EMC) fault plane F2 due to fluid
extraction at the Cerro Prieto Geothermal Field. Modeled Coulomb stressing rate
at 5 km depth for the fault geometry of the EMC F2 subevent (strike = 312◦ , dip
= 75◦ , rake = -180◦ ) assuming: (a) an effective coefficient of friction of 0.2, (b)
an effective coefficient of friction of 0.4, and (c) an effective coefficient of friction
of 0.6. The results of this study assume an effective coefficient of friction of 0.4,
and are similar for fault planes F1 and F3 (not shown here).
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Figure 2.S5: Comparison of (a) normal, (b) shear, and (c) Coulomb stressing
rates in the El Mayor-Cucapah (EMC) rupture zone due to tectonic stresses from
regional faults (Smith-Konter and Sandwell , 2009). The stress fields shown are for
right-lateral slip at 5 km depth on vertical faults oriented parallel to the F2 and
F3 EMC subevent fault planes (N48W). An effective coefficient of friction of 0.4
is assumed for panel c).
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Glowacka, E., O. Sarychikhina, F. Suárez, F. A. Nava, and R. Mellors (2010),
Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and
slip on the Saltillo fault, Environmental Earth Sciences, 59 (7), 1515–1524.
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Chapter 3

A comparison of long-term

changes in seismicity at the

Geysers, Salton Sea, and Coso

geothermal fields

Abstract

Geothermal energy is an important source of renewable energy, yet its pro-

duction is known to induce seismicity. Here we analyze seismicity at the three

largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We

focus on resolving the temporal evolution of seismicity rates, which provides im-

portant observational constraints on how geothermal fields respond to natural and

54
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anthropogenic loading. We develop an iterative, regularized inversion procedure

to partition the observed seismicity rate into two components: (1) the interaction

rate due to earthquake-earthquake triggering, and (2) the smoothly-varying back-

ground rate controlled by other time-dependent stresses, including anthropogenic

forcing. We apply our methodology to compare long-term changes in seismicity to

monthly records of fluid injection and withdrawal. At The Geysers, we find that

the background seismicity rate is highly correlated with fluid injection, with the

mean rate increasing by approximately 50 percent and exhibiting strong seasonal

fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast,

at both Salton Sea and Coso, the background seismicity rate has remained rela-

tively stable since 1990, though both experience short-term rate fluctuations that

are not obviously modulated by geothermal plant operation. We also observe sig-

nificant temporal variations in Gutenberg-Richter b-value, earthquake magnitude

distribution, and earthquake depth distribution, providing further evidence for the

dynamic evolution of stresses within these fields. The differing field-wide responses

to fluid injection and withdrawal may reflect differences in in-situ reservoir con-

ditions and local tectonics, suggesting that a complex interplay of natural and

anthropogenic stressing controls seismicity within California’s geothermal fields.
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3.1 Introduction

Recent technological developments have vastly expanded our capacity to

exploit new sources of energy from beneath Earth’s surface. At the same time,

there is a rising level of public and scientific concern over seismicity induced by the

anthropogenic stresses from energy production (National Resource Council , 2013;

Ellsworth, 2013; Weingarten et al., 2015). In recent years, fluid injection and with-

drawal at oil and gas production facilities are thought to have triggered earthquakes

in a number of states within the central and eastern United States, including Okla-

homa (Keranen et al., 2013, 2014), Texas (Frohlich et al., 2011; Frohlich and Brunt ,

2013), Ohio (Kim, 2013), Colorado (Ake et al., 2005), Arkansas (Horton, 2012),

and New Mexico (Rubinstein et al., 2014). Two primary physical mechanisms

related to fluid injection and withdrawal can account for this induced seismicity.

Fluid fluxes from injection and withdrawal can directly increase the local pore pres-

sure, which reduces the effective normal stress on nearby faults and hence pushes

them closer to failure (Hubbert and Rubey , 1959; Healy et al., 1968; Raleigh et al.,

1976). Fluid injection and withdrawal can also modify the local stress state in the

solid host rock through poroelastic coupling (Biot , 1941), which under certain con-

ditions can trigger earthquakes (Segall , 1989; Suckale, 2009; Segall and Lu, 2015),

and more generally can create poroelastic stresses at considerable distances from

production and injection wells (Segall et al., 1994). Through these mechanisms —

direct pore pressure increase and poroelastic stressing — both fluid injection and
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withdrawal can lead to induced seismicity in regions subject to intense oil and gas

production, such as the central and eastern United States.

California has a high ambient rate of natural (tectonic) earthquakes, which

makes distinguishing between natural and induced seismicity a less straightforward

task than in the central and eastern United States, where the natural seismicity

rate is low (Goebel , 2015). In addition to hosting the extensive conventional oil and

gas production fields of California’s Kern County, San Joaquin Valley, and Los An-

geles Basin, the state also accounts for more than eighty percent of geothermal en-

ergy production within the United States (Geothermal Energy Association, 2013).

Geothermal fields like The Geysers, Salton Sea, and Coso are among the world’s

largest (Matek and Gawell , 2014). As in conventional oil and gas production,

geothermal energy production requires the extraction of fluids from the subsur-

face, and the resulting local changes in pore pressure and poroelastic stresses can

trigger earthquakes (Deichmann and Giardini , 2009; Brodsky and Lajoie, 2013). In

geothermal fields, however, a third mechanism — thermoelastic stresses from fluid

fluxes within hot geothermal reservoirs (Segall and Fitzgerald , 1998; Majer and

Peterson, 2007) — can also induce seismicity. And while it is common practice

to replenish over-exploited geothermal reservoirs through fluid injection, failure

to maintain a net fluid balance between injection and withdrawal can result in

volumetric contraction within the reservoir, causing the surface to subside locally

(Mossop and Segall , 1997; Fialko and Simons , 2000) and generating substantial

poroelastic stresses at remote distances (Trugman et al., 2014). These differences
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make it uncertain whether insights gained from studies of induced seismicity within

the central and eastern United States will generalize to the geothermal fields of

California.

This study focuses on long-term changes in seismicity within the three

largest geothermal fields in California: (1) The Geysers, located in Sonoma and

Lake Counties to the north of San Francisco, (2) Salton Sea Geothermal Field,

located in Imperial county in southeastern California, and (3) Coso Geothermal

Field, located in Inyo county in eastern California. Induced seismicity has been

previously studied at The Geysers (Mossop and Segall , 1997; Majer and Peter-

son, 2007; Martinez-Garzon et al., 2014), Salton Sea (Brodsky and Lajoie, 2013)

and Coso (Feng and Lees , 1998; Fialko and Simons , 2000; Schoenball et al., 2015)

geothermal fields, each in isolation. Our aim in this study is to provide a quantita-

tive comparison of the temporal evolution of seismicity within these three promi-

nent California geothermal fields, each with distinct local tectonics, reservoir condi-

tions, and histories of energy production. In so doing, we hope to better understand

the extent to which the production of geothermal energy, a nominally renewable

energy source with tremendous potential for expansion in California (Monastero,

2002; Adams , 2011; Matek and Gawell , 2014), influences local seismicity, and by

extension, local seismic hazard.

This manuscript is organized as follows. We begin by describing our method-

ology for estimating the time-varying background seismicity rate in each geother-

mal field. This is an essential step in our analyses, as the total observed seismicity
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rate is highly sensitive to coseismic stress changes from earthquake-earthquake in-

teractions (most notably, aftershock sequences) that are unrelated to energy pro-

duction. In brief, we use an Epidemic Type Aftershock Sequence (ETAS) frame-

work (Ogata, 1988) to separate the total seismicity rate into two components: (1)

the expected seismicity rate due to earthquake interaction and coseismic stresses

(parameterized using the ETAS model), and (2) the time-varying background seis-

micity rate driven by fluctuations in anthropogenic and tectonic stresses. The

generality of the method allows for its application to study seismicity rate changes

in a variety of contexts, and hence is described in some detail. We next ap-

ply our methodology to each of the three geothermal fields in turn, comparing

the temporal evolution of seismicity rates, as well as earthquake magnitude and

depth distributions, to monthly records of fluid injection and withdrawal. At The

Geysers, we find that the background seismicity rate is strongly correlated with

the monthly rate of fluid injection, and we observe significant temporal changes

in Gutenberg-Richter b-value, magnitude distribution, and depth distribution of

earthquakes within the field. At both the Salton Sea and Coso geothermal fields,

however, we find that the background seismicity rate is strongly correlated with

fluid injection and withdrawal only during the early years of field operation (before

1990). We further observe temporal variations in b-value and in the magnitude and

depth distributions of earthquakes at the Salton Sea and Coso that may in part

be the consequence of geothermal field operation, but are also likely controlled by

natural tectonic processes. We conclude our study with a comparison of the tem-
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poral evolution of seismicity in each field, and discuss how our results contribute

to the current understanding of induced seismicity in a broader context.

3.2 Methods and Description of Seismicity Rate

Model

3.2.1 Background on ETAS Modeling

Our methodology for computing time variations in seismicity rate is based

upon the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988). In

the ETAS model, earthquake occurrence within a region is modeled as a non-

homogeneous Poisson process with a total seismicity rate function, λ(t), that is the

sum of two terms: the background seismicity rate µ, assumed constant in time,

and an interaction term ν(t) that represents the expected seismicity rate increase

and subsequent decay characteristic of aftershock sequences (Omori , 1894; Utsu,

1961). The latter term is typically defined using a point process model (Daley and

Vere-Jones , 2003) in which each observed earthquake generates a step increase in

seismicity rate that decays with time following a modified Omori law (Utsu et al.,

1995). With this parameterization, the ETAS model for seismicity rate then takes

the form:

λ(t) = µ+ ν(t) = µ+
∑
i; t>ti

K 10α(Mi−Mc)

(t− ti + c)p
, (3.1)
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where ti and Mi are the occurrence time and magnitude of the i-th earthquake,

K and α are aftershock productivity parameters, p and c are Omori decay param-

eters, and Mc is the magnitude of completion (above which the seismicity rate is

computed). Thus, for an observed catalog of earthquakes (ti,Mi) and assumed

magnitude of completion Mc, the standard ETAS model of seismicity rate is fully

parameterized by five constants: µ, K, α, p, and c. Alternative forms of the

ETAS model include additional free parameters related to the expected spatial

dependence of aftershock earthquake clustering (Ogata, 2004). We use the space-

independent formulation presented above because it is more appropriate for study-

ing field-wide changes in seismicity, especially in the absence of reliable estimates

for the spatial anisotropy in the coseismic stresses that trigger aftershock activity

based on earthquake catalog information alone (Marsan and Lengliné, 2010).

The optimal set of ETAS parameters θ = {µ,K, α, p, c} is region-specific,

and the parameter values are typically estimated by maximizing the likelihood of

the observed earthquake data (Ogata, 1983, 1992). This is equivalent to minimizing

the negative log-likelihood (Daley and Vere-Jones , 2003), which for the ETAS

model can be written as:

NLL(θ) = −

[ ∑
i;T0<ti<T1

log λ(ti | θ)

]
+

∫ T1

T0

λ(t | θ)dt, (3.2)

where T0 and T1 denote the temporal limits of the observation interval for the

earthquake catalog. In practice, the minimization of (3.2) can be implemented

by any of a number of numerical optimization routines (Press , 2007). However,
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since the rate function λ(t) at time t is conditionally dependent on the history of

earthquake occurrence (all events with ti < t), the starting time of the observation

interval T0 should be chosen to be some time well after the first observed events

in order to obtain unbiased parameter estimates (Ogata, 1992).

3.2.2 Temporal Variations in the Background Seismicity

Rate

In the standard form of the ETAS model (described in the preceding sub-

section), the background seismicity rate µ is a constant that is independent of time.

Thus, in this model the entire time-dependence in the seismicity rate function λ(t)

(Equation 3.1) is due to earthquake-earthquake triggering, or equivalently, coseis-

mic stress changes. However, transient stresses from processes unrelated to earth-

quake interaction, including anthropogenic forcing (Nicholson and Wesson, 1992;

Keranen et al., 2014; Weingarten et al., 2015) and aseismic fault slip (Toda et al.,

2002; Lohman and McGuire, 2007; Llenos et al., 2009), can cause time-dependent

changes in seismicity rate. These changes in seismicity can be encompassed in a

generalized ETAS framework by allowing the background rate to vary with time:

µ = µ(t) (Marsan et al., 2013; Kumazawa and Ogata, 2013).

One problem with this more generalized formulation of ETAS is that there

is no straightforward way to estimate µ(t) without making additional assumptions.

Recall that for µ constant, the best-fitting ETAS parameters can be estimated by



63

minimizing the negative log-likelihood of the observed data (ti,Mi), as in Equation

3.2. While the negative log-likelihood (3.2) is a highly nonlinear function of (ti,Mi),

given enough data (N � 5), the five ETAS parameters can be stably estimated.

However, if µ is allowed to vary with time, the estimation procedure becomes highly

unstable, as a truly continuous µ(t) has an infinite number of free parameters

(Snyder and Miller , 1991). In essence, the data can be overfit by allowing µ(t) to

become an arbitrarily rough function of time.

Our algorithm for computing the time-varying background seismicity rate

µ(t) makes the physically plausible assumption that rate changes due to aseismic

stresses and field-wide, anthropogenic forcing occur smoothly with time compared

to the intense, step-like changes in seismicity rate characteristic of aftershock se-

quences. We thus impose a smoothness criterion, or regularization, on the back-

ground rate term µ(t), and seek to obtain the smoothest estimate of the time-

varying background rate µ(t) that fits the data acceptably well. In doing so, we

may lose resolution on very rough (short-term) fluctuations in background rate,

but we ensure that any fluctuations that do appear in our inferred background rate

are truly required by the observed data.

3.2.3 Regularized Inversion Algorithm

The seismicity rate model we employ is parameterized in terms of a back-

ground rate function µ(t) (nominally a continuous function of time) and a set

θETAS of ETAS parameters [K,α, p, c]. To estimate the model parameters for a



64

given catalog of events (ti,Mi), we proceed as follows. We discretize µ(t) into Nµ

entries, uniformly spaced in time with spacing ∆t. Denoting this discretized rate

function µ, we now wish to infer parameter values for the Nµ + 4 entries in the

parameter vector θ = [µ, K, α, p, c ]. To do so, rather than minimize the negative

log-likelihood function as in (3.2), we minimize a penalized negative log-likelihood

function (Good and Gaskins , 1971; Kumazawa and Ogata, 2013) of the form:

Ψ(θ) = NLL(θ) + γ · Φ(µ), (3.3)

where NLL(θ) refers to the negative log-likelihood defined in (3.2), Φ(µ) is a

roughness penalty function, and γ is a regularization parameter that weights the

relative importance between minimizing data misfit (NLL) and model roughness

(Φ). The regularization stabilizes the parameter estimation procedure, and pre-

vents the inferred background rate µ from becoming overly rough. For the purposes

of this study, we use a first-derivative roughness norm as our penalty function:

Φ(µ) =

Nµ−1∑
j=1

(
µj+1 − µj

∆t

)2

∆t. (3.4)

We choose the regularization parameter γ by finding the value of γ that

minimizes the effective Akaike Information Criteria (AIC) (Akaike, 1974) of the

model:

AIC(θ) = 2κ(θ) + 2NLL(θ), (3.5)

where the effective model degrees of freedom κ is estimated from the model rough-

ness Φ (Equation 3.4). Conceptually, the AIC criterion provides a quantitative
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assessment of model fit, with the minimum value corresponding to a theoretically

optimal balance between effective model degrees of freedom (κ) and data misfit

(NLL) (Akaike, 1974). However, the results presented here are not highly sensi-

tive to the exact choice of γ, which can be chosen by a number of other standard

approaches in inverse theory, including L-curve optimization or application of the

discrepancy principle (Snyder and Miller , 1991; Parker , 1994; Aster and Thurber ,

2013). Alternatively, the penalized negative log-likelihood can be interpreted in

a fully Bayesian framework (Akaike, 1980) with a smooth prior distribution for

µ, and γ can be chosen by maximizing the posterior probability of the model

parameters θ, given the observed data (ti,Mi) (Tarantola, 2005).

In our implementation of the regularized inversion algorithm, we minimize

(3.3) using an iterative procedure. For a given data set, we first minimize the

unpenalized negative log-likelihood function (3.2) to obtain an initial guess at

the mean background rate (µ), and the four other ETAS parameters (θETAS =

[K,α, p, c ]). We then form an initial estimate for the time-varying background

rate µ by minimizing (3.3) with the four ETAS parameters held fixed. We then

re-estimate the θETAS by minimizing (3.3), now with µ held fixed. We repeat this

procedure — alternately re-estimating and fixing µ and θETAS, respectively — until

convergence (i.e., negligible change in estimated parameter values by additional

iteration). We adopt this iterative approach rather than minimize (3.3) directly

in order to mitigate the effect of strong parameter tradeoffs between µ and θETAS

(Hainzl et al., 2013), which can bias numerical optimization algorithms. For the
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data sets used in this study, we find that the iterative algorithm converges rapidly

(∼ 3 iterations).

3.2.4 Uncertainty Estimates For Model Parameters

The nonlinearity in the inversion process precludes a straightforward map-

ping between data and model uncertainties. We therefore use a form of Monte

Carlo error propagation (Ogilvie, 1984) to compute uncertainty estimates in the

model parameters. For a given set of earthquake catalog data, we first apply the

methods described above to obtain a seismicity rate model for that data set. We

then create an ensemble of 50 synthetic earthquake catalogs through stochastic

simulation of an ETAS-like Poisson process (Daley and Vere-Jones , 2003) with

the time-varying background rate function and ETAS parameters derived from

the seismicity rate model. Finally, by treating each synthetic earthquake catalog

as “data” and applying the seismicity rate inversion scheme described in the pre-

vious subsections, we obtain a distribution of seismicity rate models (i.e., one for

each synthetic catalog) that approximate the uncertainty and covariance structure

of the seismicity rate model of the true (i.e., observed) earthquake catalog data.
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3.2.5 Testing for Changes in b-value and Magnitude Dis-

tribution

We use two distinct methods to examine temporal changes in the magnitude

distributions of earthquakes within each geothermal field. For the first method,

we assume that the cumulative magnitude distribution of earthquakes in each field

can be approximated by a Gutenberg-Richter distribution (Gutenberg and Richter ,

1944) of the form N ≥ M = 10a−bM . We then compute the maximum likelihood

estimate for the b-value, bml (Bender , 1983; Marzocchi and Sandri , 2009):

bml(ti) =
1

log(10) [< M >i −(Mc −∆M/2)]
, (3.6)

at each earthquake occurrence time ti by selecting all events with M ≥Mc within

a moving window of 401 total events, centered on event i. Here <M>i denotes the

mean magnitude of all events within the window centered on event i, while ∆M de-

notes the magnitude increment within the earthquake catalog. This first approach

has the advantage of being able to resolve the timing of significant changes in the

first-order features of the magnitude distribution, but its efficacy depends strongly

on the validity of the underlying assumption that the magnitude distribution does

in fact follow a Gutenberg-Richter power law.

To mitigate this concern, our second method examines the full frequency-

magnitude distributions of earthquakes within each field, and allows for deviations

from the standard power law at high magnitudes. For this method, we first di-

vide the earthquake catalogs in each field into four 7-year, non-overlapping time
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intervals. We then use a maximum likelihood technique to fit the magnitude dis-

tributions in each time interval with both standard Gutenberg-Richter (GR) and

tapered Gutenberg-Richter model distributions (Utsu, 1999; Kagan, 2002). The

standard GR model is characterized by a single scalar parameter (the b-value),

while the tapered GR model is characterized both by a b-value and upper corner

magnitude Mx above which the magnitude distribution tapers to zero. We com-

pare the fit of the two models to the observed earthquake data using an AIC test

(Equation 3.5) that accounts both for the relative likelihood of the models and the

difference in the number of free parameters (one for the standard GR model, and

two for the tapered GR model). This second method is more powerful in resolv-

ing changes in the magnitude distribution at high magnitudes, but lacks the finer

temporal resolution of the first method (which uses a moving-window approach).

3.3 Data and Resources

3.3.1 Earthquake Catalog Data

In this study, we use earthquake catalog data from two sources. For The

Geysers, we use the waveform-relocated catalog of Waldhauser and Schaff (2008),

which contains events in northern California from 1984 through 2011. For the

Salton Sea and Coso geothermal fields, we use the waveform-relocated catalog of

Hauksson et al. (2012), which contains events in southern California from 1981

through 2013. We first select all events within a rectangular box surrounding each
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geothermal field (Figure 3.1). We then estimate the minimum magnitude of com-

pletion Mc within each field for the years 1981–2013 (for Salton Sea and Coso)

and 1984–2011 (for The Geysers) by applying the method of maximum curvature

(Woessner and Wiemer , 2005) to five-year, non-overlapping windows of catalog

data. Using this approach, we conservatively estimate that the catalog data for

the Geysers, Salton Sea, and Coso are complete above magnitude 2.0, 2.0, and 1.5,

respectively (Table 3.1) over their entire duration. As an additional test, we used

a moving window approach to search for short-term transients in Mc. We found

that Mc increases during swarms and other active earthquake sequences, but does

not exceed our cutoff values. While Mc for each field is typically lower than these

thresholds in more recent years, we use the more conservative Mc values listed

above to avoid introducing temporal biases into our seismicity analyses. Thus,

we can interpret the seismicity rates we estimate as the rate of earthquakes of

magnitude M ≥Mc within the geothermal field boundary. We note here that the

magnitudes from the Waldhouser-Schaff catalog for The Geysers are local magni-

tudes (ML) as listed by the Northern California Seismic Network (NCSN) catalog,

while the magnitudes from the Haukkson-Shearer relocated catalog for the Salton

Sea and Coso are the Southern California Seismic Network (SCSN) preferred mag-

nitudes. These are typically moment magnitude Mw when available, and local or

helicorder magnitude otherwise.

In choosing to model seismicity only within the rectangular boundaries sur-

rounding each geothermal field, we make the implicit assumption that aftershock
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triggering from earthquakes located outside each boundary has a relatively small

impact on seismicity rates within the boundary itself. In cases where this as-

sumption is violated, the inferred background seismicity rate will increase within

the field (Sornette, 2005), so it is important to consider the influence of tectonic

stresses from regional seismicity when interpreting transient increases in field-wide

seismicity rates. As we will show below, regional seismicity near The Geysers is

predominantly comprised of events within the geothermal field boundary, while

there is evidence at both Salton Sea and Coso that regional seismicity influences

local seismicity within the fields themselves.

3.3.2 Geothermal Operational Data

California state law requires geothermal fields within the state to release

field-wide production (i.e., extracted fluid) volume and injection volume data to

the California Department of Conservation’s Department of Oil, Gas and Geother-

mal Resources (DOGGR) on a monthly basis. We use the monthly produc-

tion and injection data from the DOGGR online database (available at http:

//www.conservation.ca.gov/dog/geothermal) for comparison with our seismicity

rate models. For The Geysers, production and injection data extend back to year

1969, well before the start of the northern California relocated earthquake catalog

(1984). For the Salton Sea and Coso geothermal fields, production and injection

data extend back to years 1982 and 1986, respectively, both of which are after the

start of the southern California relocated earthquake catalog (1981). Production

http://www.conservation.ca.gov/dog/geothermal
http://www.conservation.ca.gov/dog/geothermal
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and injection data are available for each field through 2015, after the cessation of

both relocated earthquake catalogs.

3.4 Results

3.4.1 The Geysers

Background

The Geysers, located approximately 120 km north of San Francisco (Fig-

ure 3.1), is California’s largest geothermal field (Geothermal Energy Association,

2013; Matek and Gawell , 2014). Producing an average of 666 MW of electric power

in 2014 (Calpine, 2014; Boyd et al., 2015), The Geysers generates enough energy

to supply nearly one million residents in northern California. Energy production

at The Geysers began in 1960s and peaked in 1987 (Adams , 2011), after which

production declined during the 1990s due to fluid depletion within the geothermal

reservoir. Initially, the only form of fluid injection to take place was the disposal

of wastewater from steam production at the field itself (Adams , 2011). In 1997,

however, a pipeline was constructed to transport treated water from the Lake

County Sanitation Plant for the purpose of fluid injection in the southeast sector

of The Geysers (Adams , 2011; Calpine, 2014). This new pipeline both removed

excess wastewater from the Lake County sewage system (which was over capacity

in the wet winter months) while simultaneously helping to replenish reservoir vol-
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umes at The Geysers through increased fluid injection. In 2003, a second pipeline

to the northwest sector of The Geysers was created as part of the Santa Rosa

Recharge Project (Majer and Peterson, 2007; Vasco et al., 2013; Martinez-Garzon

et al., 2014), and the Santa Rosa pipeline now accounts for most of the injected

wastewater volume at The Geysers (Calpine, 2014).

The geothermal reservoir at The Geysers is vapor-dominated (i.e., gas is

the dominant phase within the reservoir), rather than liquid-dominated (as at

Salton Sea and Coso), making The Geysers unique among California geothermal

fields (Matek and Gawell , 2014). Electric power is produced from hot steam that

is extracted from wells within the reservoir at depths of 1–3 km (Calpine, 2014).

The 14 producing plants at The Geysers are concentrated within its northwest and

southeast sectors. While the Northwest Geysers in particular has seen increased

development in the years since the completion of the Santa Rosa pipeline (Majer

and Peterson, 2007), total power production at The Geysers as a whole has declined

since its peak in the late 1980s due to more concerted efforts to achieve a net fluid

balance within the reservoir (Boyd et al., 2015).

Changes in Background Seismicity Rate

It is well-established that seismicity within The Geysers is modulated by

geothermal plant operation (Majer , 1978; Stark , 1992; Gomberg and Davis , 1996;

Mossop and Segall , 1999), and there was little historical seismicity in the region

prior to the start of energy production in 1960 (Oppenheimer , 1986). Previous
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studies have suggested that the total seismicity rate within the field has remained

nearly constant since the 1980s, despite declining production volumes and changes

to injection patterns (Majer and Peterson, 2007). More recently, changes in in-

jection patterns after the completion of the Santa Rosa pipeline have motivated a

number of studies to investigate the effects of isolated injection events using mi-

croseismic (Martinez-Garzon et al., 2014) and surface deformation (Vasco et al.,

2013) data. Here we apply the methodology developed in Section 3.2 to analyze

field-wide changes in seismicity from 1984–2011. Our seismicity rate model parti-

tions the total seismicity rate λ(t) into a time-varying background seismicity rate

µ(t), and an interaction seismicity rate ν(t) that captures expected seismicity due

to aftershock activity. The latter is parameterized in terms of a set of ETAS pa-

rameters θETAS = [K,α, p, c] that describe the intensity and temporal decay of

typical aftershock sequences within the field.

The results of our seismicity rate inversion for The Geysers are summarized

in Figure 3.2 and Table 3.2. The inferred background seismicity rate µ(t) in par-

ticular exhibits a number of interesting features. When averaged over timescales

greater than a year or so, the background rate stays approximately constant at

∼ 0.7 earthquakes/day from 1984 to 2003, which is consistent with the widely

held notion of a steady seismicity rate at The Geysers since the 1980s (Majer and

Peterson, 2007). However, using our methodology we find that the background

seismicity rate increases notably to an average of ∼ 1.0 earthquakes/day after

2003, when injection volumes increased due to the installation of the Santa Rosa
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pipeline. Furthermore, we find that the background rate exhibits seasonal oscil-

lations, with peaks in seismicity that are aligned with peaks in the monthly fluid

injection volumes of the field (Figure 3.2d). Fluid injection at The Geysers is itself

highly seasonal (Majer et al., 2007; Adams , 2011), with higher injection volumes

during the winter months when more wastewater is available. Seismicity follows

this same seasonal pattern, with higher background seismicity rates during the

winter than during the summer. These seasonal peaks in seismicity are particu-

larly pronounced in 1997–98 (after the Lake County pipeline installation), and in

the years since 2003 (after the Santa Rosa pipeline installation).

We quantify these observations more formally using step-wise linear regres-

sion analysis (Mendenhall and Sincich, 2007). Applying this technique to The

Geysers over the full catalog duration (1984–2011), we find that the correlation

coefficient between monthly injection and background seismicity rate is 0.61, with

a vanishingly small p-value for the regression model (1.5 ×10−34, a value which

represents the inferred probability that the correlation could be zero, given the

data). These statistical tests strongly corroborate the visual correlation apparent

in Figure 3.2. Notice that while production rates at The Geysers followed the same

seasonal pattern as injection during the 1980s and 1990s, in more recent years pro-

duction has been nearly constant, with only injection following a seasonal pattern

(Figure 3.2d). Seasonality in background seismicity rate becomes even more pro-

nounced in these more recent years, indicating that stresses from injection, and

not production, drive the observed seasonal patterns in seismicity at The Geysers.
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Changes in b-value, Magnitude Distribution, and Depth Distribution

Temporal changes in the magnitude and depth distributions of earthquakes

can provide additional information about the evolution of stresses within The

Geysers beyond that provided by analysis of seismicity rate changes alone. As

a preliminary test for changes in magnitude distribution at The Geysers, we apply

the first method detailed in Section 3.2.5 to compute maximum-likelihood b-value

estimates over 401-event moving windows. We observe an increase in b-value be-

ginning in late 2003 (Figure 3.3a), coinciding with the construction of the Santa

Rosa pipeline. It is important to note, however, that this approach maps any po-

tential change in the overall magnitude distribution into a change in a single scalar

parameter, b. As such, if one looks only for changes in b-value, one may miss more

subtle changes in the magnitude distribution as a whole. Indeed, when we divide

the 28-year catalog for The Geysers into four 7-year intervals and directly compare

the magnitude distributions of each interval, the most obvious visual change is not

a change in b-value, but rather a noticeable increase in large (M ≥ 3.5) events in

recent years (Figure 3.3b).

To quantify the significance of this observation, we use the second method

described in Section 3.2.5 to fit the full magnitude distributions in each time inter-

val with both standard Gutenberg-Richter (GR) and tapered Gutenberg-Richter

model distributions (Utsu, 1999; Kagan, 2002). The standard GR model is charac-

terized by one parameter: the b-value, while the tapered GR model is characterized
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by two: the b-value and a upper corner magnitude Mx above which the magnitude

distribution tapers to zero. At The Geysers, we find that the b-value is relatively

constant during the first three time intervals, but increases from 1.13 (2σ confi-

dence interval of 1.08–1.18) during the third (1998–2004) to 1.26 (1.21–1.31) during

the fourth (2005–2011). We also find that the corner magnitude of the tapered

GR model increases with time, from 3.64 (3.50–3.78) during 1984–1991 to 4.63

(4.00–5.26) during 2005–2011. This latter estimate should be interpreted with

some caution, however, as the tapered GR distribution provides a better model fit

(lower AIC) only during the first three time intervals. Nevertheless, it appears that

while the aforementioned increase in b-value is significant, but is an incomplete de-

scription of the change in the magnitude distribution within The Geysers. Indeed,

from a seismic hazard perspective, the increased frequency of large earthquakes

in The Geysers is the more important temporal change to consider. We explore

possible mechanisms responsible for these changes in Section 3.5.

Like the magnitude distribution, the depth distribution of earthquakes at

The Geysers also changes significantly with time. To show this, we divide the

catalog into the same four equal time intervals as before, and compare the proba-

bility density and cumulative density functions of earthquake depths during each

interval (Figure 3.4). Since the error distribution for absolute hypocentral depth

is not well-constrained in the relocated earthquake catalogs, and may evolve with

time, we use a bootstrap technique (Efron and Tibshirani , 1994) to compute 95-

percent confidence intervals for each depth distribution and analyze only the most
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robust features of the depth distributions. During all time intervals, the earth-

quake depth distribution at The Geysers is bimodal, with seismicity clustered

around both shallower (1–3 km) and deeper (3–5 km) peaks in the depth dis-

tribution. The shallower peak corresponds to seismicity within and around the

geothermal reservoir itself. The deeper cluster in seismicity consists almost ex-

clusively of events within the Northwest Geysers. Previous studies (Stark , 2003)

have suggested that these deeper events may correspond to earthquakes induced

by thermoelastic stresses from injected fluid that has diffused from the geothermal

reservoir (which is composed predominantly of greywacke rocks) into the meta-

morphosed, hornfelsic metagreywacke rocks in the high-temperature zone (HTZ)

beneath the reservoir (Jeanne et al., 2014; Boyle and Zoback , 2014).

While earthquakes at The Geysers exhibit this characteristic bimodal depth

distribution during all time periods, the overall shape of the distribution (i.e., the

location, width, and intensity of the peaks in the distribution) has evolved over

time. Most notably, the shallow peak in seismicity has become both sharper and

deeper with time (Figure 3.4), with the shallow peak shifting from its initial posi-

tion of 1.45± 0.3 km depth (1984–1990) to 2.45± 0.1 km depth in the most recent

years (2005–2011). This transformation may be caused by changes in geothermal

plant operation at The Geysers. In particular, the increase in injection volumes

in the Northwest Geysers from the Santa Rosa pipeline likely caused the shallower

seismicity to cluster around the mean injection well depth of 2.5 km in that sector.

Moreover, while the deeper cluster in seismicity (3–5 km) does not exhibit a shift
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in peak location with time, it is most prominent in these later years, when injection

at the Northwest Geysers was at its most prevalent.

3.4.2 Salton Sea Geothermal Field

Background

The Salton Sea Geothermal Field (SSGF) is located in southeastern Cali-

fornia, on the southern shore of the Salton Sea. The surrounding region, known as

the Salton Trough, is tectonically active and encompasses the Pacific-North Amer-

ica plate boundary as it transitions from an extensional spreading center in the

Gulf of California to a predominantly strike-slip boundary in central and northern

California. The SSGF itself lies within the extensional stepover between the Im-

perial and Southern San Andreas Faults (Muffler and White, 1969; Younker et al.,

1982; Crowell et al., 2013), with the San Jacinto and Superstition Hills Fault Zones

located to the west of the SSGF (Figure 3.1). Earthquake swarms — spatially and

temporally clustered earthquake sequences with no clear mainshock — are rel-

atively common occurrences in the region, with the 1981 Westmorland Swarm,

2005 Obsidian Buttes Swarm, and 2012 Brawley Swarm (each with multiple M5+

events) being the most notable examples (Vidale and Shearer , 2006; Lohman and

McGuire, 2007; Hauksson et al., 2013). Regional fault systems also produce large

earthquakes that follow more typical mainshock-aftershock sequences, such as the

1987 M6.6 Superstition Hills (Hudnut et al., 1989) and the 2010 M7.2 El Mayor-
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Cucapah (Wei et al., 2011) earthquakes. The El Mayor-Cucapah event ruptured

a set of faults within the Cucapah Mountains in Baja California (Fletcher et al.,

2014; Gonzalez-Ortega et al., 2014), but its extensive aftershock sequence extended

northward into the Salton Trough (Hauksson et al., 2011).

The SSGF reservoir is liquid-dominated, and the hot brine that exists in-

situ in the reservoir must therefore be flashed to steam to produce electricity.

Energy production at the SSGF did not begin until the 1980s (more than twenty

years after the initial development of The Geysers), in part due to the highly saline

nature of the geothermal brine in the SSGF reservoir (Adams , 2011), which rapidly

corroded much of the initial production well and pipeline infrastructure. Techno-

logical advances helped mitigate these early problems, making energy production

more cost-efficient and allowing for further development of the field. Construction

of the geothermal plant was mostly complete by the early 1990s, though additional

wells have been regularly constructed in the years since. The current energy pro-

duction capacity of the SSGF is 437 MW (Matek and Gawell , 2014), but there

is still significant potential for future growth (Adams , 2011), as the SSGF’s vast

geothermal reservoir is estimated to be capable of producing up to 1800 MW of

power (Matek and Gawell , 2014). However, the high up-front costs associated

with energy production in the Salton Trough, along with the inherent difficulties

of energy transport to more populous regions of California, may prevent further

expansion of the SSGF.
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Changes in Background Seismicity Rate

In Figure 3.5, we show the results of applying our method to compute

seismicity rate changes (Section 3.2) within the SSGF. We use the relocated earth-

quake catalog of Hauksson et al. (2012), which runs from 1981 through 2013 and

thus contains events that occurred both before and during geothermal plant oper-

ation. We find that the background seismicity rate increases from a mean value

of 0.01 earthquakes/day in 1981–1985, prior to geothermal plant operation, to

a mean value of ∼ 0.04 earthquakes/day in 1987, roughly a year after produc-

tion began (Figure 3.5c). From year 1990 onward, the background seismicity rate

remains relatively steady about this mean value, with occasional, but transient,

increases or decreases in seismicity rate. These short term fluctuations do not ap-

pear to be correlated with changes in operation at the SSGF field (Figure 3.5d).

Instead, these fluctuations (such as the short-term rate increase observed in 2000–

2001), seem more consistent with swarm-like earthquake sequences (Lohman and

McGuire, 2007) driven by transient, but natural, tectonic stresses (Llenos et al.,

2009). We discuss this hypothesis further in Section 3.5.

We confirmed the apparent lack of correlation in the later years more for-

mally by performing step-wise linear regression analysis (Mendenhall and Sincich,

2007). In so doing, we found no evidence for any systematic relationship between

background seismicity rate and any linear combination of monthly production or

injection volumes at the SSGF in the years since 1990. Applying this same tech-
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nique to the years preceding 1990, however, we find that the background seismicity

rate is correlated with a linear model comprised of both injection and net produc-

tion (production minus injection) volumes, with a model correlation coefficient of

0.74 (and p-value for the regression model of 1.27 × 10−18). This correlation in

these early years of plant operation is consistent with our previous observation of

a coincident rise in background rate and energy production during the late 1980s,

but it is important to note that the relationship between the two may well be

nonlinear.

Brodsky and Lajoie (2013) used a similar approach based on the ETAS

model to compare temporal changes in seismicity rate to geothermal production

and injection data from the SSGF. Although their methodology differs somewhat

from ours, their background seismicity rate model also exhibits a robust rate in-

crease that begins shortly after initial energy production at the Salton Sea. More-

over, Brodsky and Lajoie (2013) show that both net production and injection data,

rather injection data alone, are necessary to explain changes in seismicity rate dur-

ing this time. Brodsky and Lajoie (2013) also find that the relationship between

seismicity rate and geothermal production and injection is less straightforward

after 1990, although they proceed to construct a linear model of injection, net

production, and seismicity rates by allowing for time-variations in the regression

coefficients. We do not attempt to recreate a complex model of this type here

because of the inherent instabilities in fitting a large number of free parameters.



82

Changes in b-value, Magnitude Distribution, and Depth Distribution

We also find evidence for significant time-variations in the magnitude and

depth distributions of earthquakes within the SSGF. Using the approach detailed

in Section 3.2.5, we first test for temporal changes in b-value by computing max-

imum likelihood estimates over 401-event moving windows. The b-value appears

to slowly increase after production ramps up in the late 1980s, before experienc-

ing a sharp decline in 2000–2001 (Figure 3.6a). This decline in b-value coincides

with the earthquakes swarms that occur within the field during 2000 and 2001,

with another sharp drop in b-value occurring during the prominent 2005 Obsidian

Buttes Swarm. The slow increase and subsequent sharp decrease in b-value are

also apparent when one examines the overall magnitude distributions for differ-

ent time intervals (Figure 3.6b). In fitting both standard and tapered GR model

distributions to each of the four intervals (Section 3.4.1), we observe a decline in

b-value from 1.06 (2σ confidence interval of 0.97–1.14) during the third interval

(2000–2006) to 0.91 (0.79–1.03) during the fourth (2007–2013). Interestingly, the

standard GR model outperforms the tapered GR model (as measured by model

AIC values) in all but the latest interval, which has an apparent corner magnitude

Mx of 3.67 (3.42–3.92) that is significantly lower than any previous interval.

Changes in the depth distribution of earthquakes likewise suggest that both

tectonic and anthropogenic stresses cause time-dependent changes in seismicity

within the SSGF. In Figure 3.7, we compare earthquake depths in the SSGF over
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the same four time intervals. The depth distribution transitions from unimodal

with a median value of 5.38 ± 0.13 km during the first interval (1986–1992), to

bimodal, centered around that same depth, during the second interval (1993–1999).

It is notable that the dominant fraction of these events occurs at depths greater

than 4 km, which is far beneath typical reservoir depths of 1.0–2.5 km (Younker

et al., 1982). During the third interval (2000–2006), the depth distribution includes

a greater proportion of deep events (6–8km) than in prior years, possibly a result

of tectonic stresses associated with the 2000–2001 and 2005 swarms. During the

final interval (2007–2013), however, the depth distribution both becomes notably

shallower (median depth of 3.52± 0.15 km) and is strongly bimodal. These most

recent years correspond to the highest levels of production and injection at the

SSGF, and much of the seismicity is concentrated just beneath the reservoir.

3.4.3 Coso Geothermal Field

Background

Coso Geothermal Field (CGF) is located in eastern California, between the

Southern Sierra Nevada and the Argus Range (Figure 3.1). This region is part of a

broad transition zone between the strike-slip tectonics of the San Andreas Fault and

the extensional tectonics of the Basin and Range province (Duffield et al., 1980).

The CGF itself lies within an extensional stepover between the Little Lake Fault to

the southwest and a set of unnamed faults to the northeast, with the Airport Lake
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Fault striking northward through the field (Monastero et al., 2005). These faults,

while active, accommodate only 6.5 mm/year of dextral offset between the Argus

Range and the Sierra Nevada (McClusky et al., 2001). Despite this relatively low

tectonic deformation rate, the CGF and surrounding region is seismically active,

and like the Salton Trough, prone to earthquake swarms (Bhattacharyya and Lees ,

2002). The most notable swarm in recent times occurred during the summer of

2001, culminating in a magnitude 5.2 earthquake just west of the geothermal field.

Coso Geothermal Field is California’s third largest, with an installed ca-

pacity of 302 MW in 2014 and potential for more than 200 MW of expansion

(Matek and Gawell , 2014). A shallow magmatic chamber (5–8 km depth) acts as

a heat source for the CGF’s fluid-dominated geothermal reservoir, which ranges

in depth from 0.5 to 3.5 km (Duffield et al., 1980; Manley , 2000). While privately

owned, the CGF is located on the premises of the Naval Air Weapons Station at

China Lake, and is collaboratively managed by the Navy’s Geothermal Program

Office. Energy production at the CGF began in 1987 after a thorough review of

the Coso area’s potential as a geothermal resource (Combs , 1980), with further

plant construction taking place until 1990 (Monastero, 2002). Fluid production

and injection volumes peaked in 1990 and have slowly declined in the years since,

although technological improvements have allowed for consistent levels of energy

production (Matek and Gawell , 2014). Net fluid extraction at the CGF causes the

surface to subside locally, creating poroelastic stresses within and near the reser-

voir (Fialko and Simons , 2000), and depleting the total fluid volume available for
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future energy production.

Changes in Background Seismicity Rate

Both tectonic and anthropogenic stresses are thought to contribute to ob-

served seismicity at the CGF in the years since the plant’s initial construction in

1987 (Feng and Lees , 1998; Monastero et al., 2005; Schoenball et al., 2015). We

use the relocated earthquake catalog of Hauksson et al. (2012) from 1981–2013

and the methods described in Section 3.2 to construct a seismicity rate model for

the CGF (Figure 3.8). As was observed at the Salton Sea Geothermal Field, the

background seismicity rate within the CGF increases during the initial phase of

energy production, with the background rate rising from a mean value of 0.02

earthquakes/day prior to 1987 to 0.05 earthquakes/day by 1990. After this time,

the background seismicity rate fluctuates about this mean value, with short-term

rate transients that do not appear to be modulated by geothermal injection or

production (Figure 3.8d).

Application of a step-wise linear regression procedure (Mendenhall and Sin-

cich, 2007) supports these observations. For 1987–1989, the optimal linear regres-

sion model obtained from this technique suggests that the background seismicity

rate depends strongly on injection and production volumes during these years

(correlation coefficient: 0.64, regression model p-value: 2.9 ×10−6). This result is

consistent with our observation of a persistent increase in background rate starting

during this time period. From 1990 on, however, the correlation is much weaker
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(correlation coefficient: 0.18), though not entirely insignificant, at least from a

statistical perspective (regression model p-value = 1.7 ×10−3). Note that because

injection and production volumes track each other so closely at the CGF (Figure

3.8d), it is impossible to statistically distinguish whether one variable contributes

more significantly than the other to potentially induced seismicity at the CGF.

While energy production does appear to have elevated the mean background

seismicity rate at the CGF, the most prominent transient peaks in seismicity (e.g.,

during late 1994, 1999, and 2001) correspond to earthquake swarms and contain

events both inside and far outside the field boundaries. The most prominent of

these swarms took place during the summer of 2001, with a extended sequence of

M ≥ 3 earthquakes that occurred within and to the west of the CGF (Hauksson

and Unruh, 2007). The largest event in this swarm was a M5.2 earthquake that

took place on July 17th, 2001, and was located to the west of the field. The presence

of these and other similar, far-reaching earthquake sequences are a reminder that

the Coso area was seismically active long before the construction of the CGF

(Walter and Weaver , 1980).

Changes in b-value, Magnitude Distribution, and Depth Distribution

The 2001 swarm also coincides with a fundamental change in the magni-

tude distribution of earthquakes within the CGF. Applying the moving-window

approach detailed in Section 3.2.5, we find that the b-value for earthquakes at the

CGF has declined significantly since 2001 (Figure 3.9a). This change is also ap-
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parent in comparing the overall magnitude distributions of 7-year, non-overlapping

time intervals (Figure 3.9b). If we proceed as before and fit both standard and ta-

pered GR model magnitude distributions to each of the four time intervals (Section

3.4.1), the inferred b-value of 0.79 (and 2σ confidence interval of 0.69–0.89) during

2007–2013 is much less than any of the previous intervals, which have b-values

in the range of 1.2–1.3. Further, during the most recent interval (2007–2013),

larger earthquakes (M ≥ 3) become more frequent both in relative and absolute

terms, despite no appreciable change in seismicity rate since 1990. Both of the two

recorded M ≥ 4 earthquakes to occur within the field also took place during this

time interval (a M4.1 event in 2007, and a M4.4 event in 2010), and are the only

two M ≥ 4 events to occur within the field boundary in the past 30 years (Kaven

et al., 2013). These observations can also be quantified in terms of an increase in

apparent upper corner magnitude Mx, which rises from 2.71 (2.41–3.00) during the

first interval to 4.37 (3.71–5.04) during the final interval. We emphasize, however,

that these corner magnitude estimates do not necessarily indicate a true deviation

of the magnitude distribution from a standard Gutenberg-Richter power law, as

AIC tests suggest that the data are actually better explained by the standard GR

model (which has no corner magnitude) than the tapered GR model (which does).

The depth distribution of earthquakes within CGF also changes systemat-

ically with time. The median earthquake depth increases during each successive

time interval (Figure 3.10), from a low of 1.09 ± 0.10 km during the early years

of energy production (1986–1992) to a high of 2.31 ± 0.08 km during the final
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interval (2007–2013). This progressive shift in earthquake depth is puzzling, and

may in part be related to changes in production and injection volumes, both of

which have been steadily declining since 1990 (Figure 3.8d). However, the deeper

seismicity in recent years is comprised predominantly of the earthquake sequences

that are spatially clustered around the locations of the 2007 M4.1 and 2010 M4.4

events. Changes to the depth distribution may therefore reflect an altered stress

state within the field in the aftermath of the 2001 swarm and the subsequent M4

events, though anthropogenic forcing may play a secondary role.

3.5 Discussion and Comparison of Geothermal

Fields

3.5.1 Changes in Seismicity Rate

In the preceding section, we presented the results of our analysis of changes

in background seismicity rates at The Geysers, Salton Sea, and Coso geothermal

fields. The background seismicity rate at The Geysers is strongly correlated with

fluid injection volume, and we observe significant rate increases associated with the

installation of the Lake County and Santa Rosa pipelines. On shorter timescales,

the seismicity rate exhibits a seasonal pattern that tracks the seasonality in avail-

able injection volumes. At the Salton Sea and Coso geothermal fields, the start

of the earthquake catalog we use for our analyses predates initial plant operation,
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and we observe a significant increase in the background seismicity rate as operation

commences. In later years, both the Salton Sea and Coso fields exhibit short-term

fluctuations in background rate, as at The Geysers. However, in contrast to The

Geysers, these fluctuations at Salton Sea and Coso are not strongly correlated

with any discernible feature in monthly fluid injection or production volumes. We

explore possible explanations for these differences below.

Analyses of focal mechanisms (Oppenheimer , 1986; Boyle and Zoback , 2014)

indicate that earthquakes within The Geysers occur on preexisting structures that

are well-aligned with the regional stress field. This suggests that regional tectonic

stresses help supply much of the necessary background stress (as well as the in-

situ fault structures) for earthquakes to occur within The Geysers. However, as

noted by Oppenheimer (1986) and others, there was little seismicity in and around

The Geysers prior to the operation of the geothermal field. The intense cyclical

pattern of fluid injection at The Geysers (which can exceed production during the

winter months) may therefore provide the necessary stress perturbation to directly

induce shear slip on faults that are near-critically stressed by regional tectonics.

Further, the extensive and transient fluid injection volumes, when combined with

high in-situ reservoir temperatures (Stark , 2003; Jeanne et al., 2014) create local-

ized thermoelastic stresses that greatly exceed tectonic stresses (Altmann et al.,

2013). Indeed, Martinez-Garzon et al. (2013) observed a local temporal correla-

tion between stress tensor orientation and injection rate for clusters of seismicity

around selected injection wells in the Northwest sector of The Geysers. Our results
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further demonstrate that at The Geysers, these transient anthropogenic stresses

can plausibly modulate seismicity, even on a field-wide basis.

Nearly all of the seismicity in the region surrounding The Geysers is con-

centrated within the field itself (Figure 3.1). There is little observational evidence

therefore that tectonic stress transients could account for the observed temporal

changes in seismicity at The Geysers, though regional tectonic stresses undoubted

contribute to slow, steady-state loading of the in-situ fault structures. In contrast,

both Salton Sea and Coso are located in dynamic tectonic regions with active

fault systems that surround the geothermal fields (Younker et al., 1982; Walter

and Weaver , 1980). As a result, seismicity within the two geothermal fields is

strongly influenced by natural processes of time-dependent tectonic stress transfer

from regional earthquake activity, including the aseismic stress transients associ-

ated with the earthquake swarms characteristic of the Salton Trough and Coso

Range. The elevated background seismicity rates observed at the Salton Sea (e.g.,

during 2000–2001) and Coso (e.g., during 1999 and 2001) correspond to earth-

quake swarms that are regional in scale and extend well beyond the boundaries

of the geothermal field. These fluctuations in seismicity rate due to natural (tec-

tonic) stress transients tend to mask subtle changes in seismicity rate caused by

anthropogenic stresses, especially since fluid injection and production volumes have

remained relatively stable at both fields since their initial construction (unlike at

The Geysers).

While our study has focused primarily on the background seismicity rate,
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it is also instructive to compare the set of inferred ETAS parameters (Table 3.2)

that describe typical aftershock activity within each field. The Geysers in par-

ticular is notable for its anomalously low aftershock productivity parameter K,

indicating that most earthquakes within The Geysers do not appear to trigger

extensive aftershock sequences. We can formalize this observation by computing

the branching ratio Rb, defined as the ratio of the expected number of triggered

events (aftershocks) to total events, for each field. The inferred branching ratio of

0.09—0.11 at the Geysers is well below the 95% confidence interval for typical Cal-

ifornia seismicity (Hardebeck , 2014). The low aftershock productivity may indicate

that most earthquakes at The Geysers are directly triggered by highly localized,

anthropogenic stresses, rather than the more broadly distributed coseismic stresses

from other earthquakes within the field. It has also been noted previously that

earthquakes in northern California tend to have have lower aftershock productiv-

ity than earthquakes in southern California (Llenos , 2014; Brocher et al., 2015),

so the very low aftershock productivity at The Geysers may be the consequence

of both regional and local (i.e., energy production-related) factors. The inferred

aftershock productivity (and hence, branching ratio) is higher at both the Salton

Sea (Rb = 0.69–0.79) and Coso (Rb = 0.42–0.52) and is more typical of California

seismicity. Both the Salton Sea and Coso, have low inferred ETAS α parameters,

as is common in regions prone to earthquake swarms (Hainzl , 2002; Kumazawa

et al., 2010; Hainzl et al., 2013).
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3.5.2 Changes in b-value, Magnitude Distribution, and Depth

Distribution

At The Geysers, we observed a fundamental change in the earthquake mag-

nitude distribution that coincided with the installation of the Santa Rosa pipeline

in 2003. The significant increase in b-value at this time is consistent with obser-

vational (Shapiro et al., 2011; Bachmann et al., 2011) and theoretical (Bachmann

et al., 2012; Segall and Lu, 2015) studies that suggest that induced earthquakes

tend to have higher b-values than natural earthquakes. However, the change in

the magnitude distribution is more subtle than a simple change in b-value, as the

rate of large (M ≥ 4) earthquakes also increases during this time. This latter phe-

nomenon may be explained in part by the increased concentration of events in the

deeper northwest sector of The Geysers after 2003, which appears to be character-

ized by a different magnitude distribution than the southeast sector (Convertito

et al., 2012). Kwiatek et al. (2015) observed no significant variation in b-value from

2007–2014 within certain clusters of seismicity within the Northwest sector of the

Geysers, which suggests that any field-wide changes in b-value that may occur dur-

ing these years are primarily due to an increased frequency of events occurring in

the Northwest sector, relative to the Southeast sector, rather than changes within

the Northwest sector itself. We note, however, that most of the observed field-

wide increase in b-value occurs from 2003–2006 (Figure 3.3a), prior to the study

of (Kwiatek et al., 2015). In addition to these longer-term trends, there is some
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evidence (Figure 3.3a) that the b-value of earthquakes at The Geysers evolves on

shorter timescales (perhaps even seasonally), a topic examined in more detail by

Convertito et al. (2012) and Martinez-Garzon et al. (2014).

Earthquakes at the Salton Sea Geothermal Field, in contrast, appear to

exhibit a slow increase in b-value before year 2000, followed by steep declines in

b-value following earthquake swarms in 2000–2001 and 2005. Although the initial

increase in b-value following the beginning of energy production is consistent with

previous studies of induced seismicity within geothermal fields (Bachmann et al.,

2011), the subsequent decline coincident with earthquake swarm activity suggests

that natural tectonic processes (like those underlying swarm activity) strongly

influence seismicity at the SSGF. Indeed, one would expect just such a decrease in

b-value during the earthquake swarms that characterize the Salton Trough, which

tend to consist of multiple large earthquakes (with no clear mainshock) and a

relative deficiency of smaller earthquakes (Lohman and McGuire, 2007; Chen and

Shearer , 2011).

Similarly, at Coso Geothermal Field, the b-value remained relatively steady

until 2001, when a prominent earthquake swarm occurred within and surrounding

the field. The 2001 swarm included a M5.2 earthquake located to the west of the

field, as well as a number of other M ≥ 3 events both within and around the

field. The apparent change in the magnitude distribution following this sequence

is striking (Figures 3.9), and suggests that the swarm fundamentally altered the

local stress state. It is notable that the largest earthquakes to occur within the
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field (including the only two M ≥ 4 events) occurred either during or after the

2001 sequence.

Temporal changes to the depth distribution of earthquakes must be treated

with some caution, as absolute errors in the hypocentral depths of the smaller

earthquakes can be substantial. Nevertheless, while the overall depth distributions

of each field are likely controlled by local geology and tectonics, the more robust

features of the temporal changes in the depth distribution may reflect many of

the same physical processes that control temporal changes in seismicity rates or

magnitude distributions. For example, the deepening of the shallow peak of the

bimodal distribution that characterizes The Geysers (Figure 3.4) is likely related

to the increased concentration of events in the deeper northwest sector of The

Geysers following the construction of Santa Rosa pipeline. The changes to the

depth distributions at Salton Sea and Coso geothermal fields are more complex,

and undoubtedly modulated by both tectonic and anthropogenic stresses.

3.6 Concluding Remarks

The results we have presented here for The Geysers, Salton Sea, and Coso

geothermal fields are concerned with long-term and field-wide changes in seismicity.

It is well-established that individual episodes of fluid injection or production can

trigger microseismicity over short spatial and temporal scales (Ellsworth, 2013).

Here our central focus is not microseismicity, but rather the changing patterns of
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seismicity that can be observed over larger spatial scales (tens of kilometers) and

longer time periods (months to decades). In seeking the smoothest model of back-

ground seismicity rate that adequately explains the observed earthquake catalog,

our method is tailored to study robust changes in seismicity that occur over these

same spatial and temporal scales. While we lack the resolution to explore highly

transient or spatially isolated changes in seismicity, a uniform application of our

methodology allows us to quantitatively compare temporal changes in seismicity

at each geothermal field. In so doing, we can better assess the range of plausible

mechanisms that may account for the differing responses of each field to tectonic

and anthropogenic stressing.

At The Geysers, field-wide seismicity appears to be strongly controlled by

anthropogenic stressing due to fluid injection and production. The mean back-

ground seismicity rate at The Geysers increased by 50 percent following the con-

struction of the Santa Rosa pipeline in 2003 (and the associated increase in injec-

tion volume). Likewise, background seismicity rate increased after the installation

of the Lake County pipeline in 1997, though this rate increase decayed with time

as injection volumes returned to pre-1997 levels. Seasonal injection patterns at

The Geysers — a consequence of more available fluid volume during the winter

months — result in seasonal fluctuations in seismicity rate, which have become

more intense in the years since the installation of the Santa Rosa pipeline. Fluid

injection patterns also seem to influence the b-value, magnitude distribution, and

depth distribution of earthquakes within The Geysers, all of which show significant
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temporal changes that coincide with installation of the Santa Rosa pipeline.

The relationship between observed seismicity and geothermal energy pro-

duction is less straightforward at the Salton Sea and Coso geothermal fields. At

both the Salton Sea and Coso, the mean background seismicity rate increases dur-

ing the initial phase of geothermal energy production, indicating anthropogenic

stresses have an observable influence on field-wide seismicity. However, the most

notable rate increases at both the Salton Sea and Coso are related to earthquake

swarms that are regional in scale and extend far beyond the boundaries of the

geothermal fields themselves. Earthquake swarms were prevalent in the Salton Sea

and Coso regions before energy production began (Lohman and McGuire, 2007;

Bhattacharyya and Lees , 2002), which suggests that the current swarms, which are

not temporally correlated with changes to fluid injection or production, are caused

by natural, rather than anthropogenic, stress transients. In any case, the pres-

ence of these swarms influences not only the seismicity rate, but also the inferred

b-values, magnitude distributions, and depth distributions of earthquakes at both

the Salton Sea and Coso geothermal fields.

Viewed holistically, our observations indicate that anthropogenic stresses

are the primary control on transient changes in seismicity at The Geysers, while

they play a less prominent role in modulating seismicity at Salton Sea and Coso.

This is not to suggest that induced seismicity is of negligible concern at Salton Sea

and Coso. Indeed, the proximity of the Salton Sea and Coso geothermal fields to

active faults that are capable of producing large, damaging earthquakes amplifies
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the importance of even small changes in seismicity due to anthropogenic stresses

(Convertito et al., 2012; Brodsky and Lajoie, 2013). Rather, these observations

highlight the complicated process of differentiating induced from natural seismic-

ity in California’s geothermal fields, and demonstrate that differences in tectonic

setting, reservoir conditions, and history of energy production all likely contribute

to the differing patterns of seismicity observed within each geothermal field.
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Figure 3.1: Map view of seismicity at the Geysers, Coso and Salton Sea geother-
mal fields. Earthquake locations are from the catalogs of Waldhauser and Schaff
(2008) and Hauksson et al. (2012), with each event color-coded by its occurrence
time (years). The study area boundaries for the Geysers (GGF), Coso (CGF), and
Salton Sea (SSGF) geothermal fields are outlined in white, with well locations from
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qfaults) are outlined in black. Focal mechanisms for M ≥ 4 within GGF are
color-coded by year.
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Figure 3.2: Seismicity rate model for The Geysers. a) Magnitude versus time
for earthquakes within the field. b) Total seismicity rate, λ(t) = µ(t) + ν(t).
c) Background seismicity rate µ(t), with two-sigma errorbars (shaded) and mean
rate (dotted line) plotted for reference. d) Monthly rate of fluid production (blue),
injection (red) and net production (production minus injection, yellow) at The
Geysers (data available at http://www.conservation.ca.gov/dog/geothermal).
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Figure 3.3: Magnitude distribution of earthquakes at The Geysers. a) Top:
Maximum-likelihood estimates for the Gutenberg-Richter b-value (Equation 3.6)
plotted as a function of time using a 401-event moving window. Two-sigma error-
bars are shaded. Bottom: Magnitude versus time for earthquakes within the field,
plotted for reference. b) Magnitude distributions for earthquakes at The Gey-
sers during four, non-overlapping time intervals (1984-1990, 1991-1997, 1998-2004,
2005-2011).
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Figure 3.4: Depth distribution of earthquakes at The Geysers. Probability den-
sity functions (a) and cumulative density functions (b) for the depth distributions
of earthquakes at The Geysers during the same four time intervals shown in Figure
3.3. 95-percent confidence intervals for the depth distributions are shaded.
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Figure 3.5: Seismicity rate model for Salton Sea. a) Magnitude versus time
for earthquakes within the field. b) Total seismicity rate, λ(t) = µ(t) + ν(t).
c) Background seismicity rate µ(t), with two-sigma errorbars (shaded) and mean
rate (dotted line) plotted for reference. d) Monthly rate of fluid production (blue),
injection (red) and net production (production minus injection, yellow) at Salton
Sea (data available at http://www.conservation.ca.gov/dog/geothermal).
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Figure 3.6: Magnitude distribution of earthquakes at Salton Sea. a) Top:
Maximum-likelihood estimates for the Gutenberg-Richter b-value (Equation 3.6)
plotted as a function of time using a 401-event moving window. Two-sigma er-
rorbars are shaded. Bottom: Magnitude versus time for earthquakes within the
field, plotted for reference. b) Magnitude distributions for earthquakes at Salton
Sea during four, non-overlapping time intervals (1986-1992, 1993-1999, 2000-2006,
2007-2013).
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Figure 3.7: Depth distribution of earthquakes at Salton Sea. Probability density
functions (a) and cumulative density functions (b) for the depth distributions of
earthquakes at Salton Sea during the same four time intervals shown in Figure 3.6.
95-percent confidence intervals for the depth distributions are shaded.
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Figure 3.8: Seismicity rate model for Coso. a) Magnitude versus time for earth-
quakes within the field. b) Total seismicity rate, λ(t) = µ(t)+ν(t). c) Background
seismicity rate µ(t), with two-sigma errorbars (shaded) and mean rate (dotted line)
plotted for reference. d) Monthly rate of fluid production (blue), injection (red)
and net production (production minus injection, yellow) at Coso (data available
at http://www.conservation.ca.gov/dog/geothermal).
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Figure 3.9: Magnitude distribution of earthquakes at Coso. a) Top: Maximum-
likelihood estimates for the Gutenberg-Richter b-value (Equation 3.6) plotted as
a function of time using a 401-event moving window. Two-sigma errorbars are
shaded. Bottom: Magnitude versus time for earthquakes within the field, plotted
for reference. b) Magnitude distributions for earthquakes at Coso during four,
non-overlapping time intervals (1986-1992, 1993-1999, 2000-2006, 2007-2013).
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Figure 3.10: Depth distribution of earthquakes at Coso. Probability density
functions (a) and cumulative density functions (b) for the depth distributions of
earthquakes at Coso during the same four time intervals shown in Figure 3.9.
95-percent confidence intervals for the depth distributions are shaded.
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Table 3.1: Earthquake Catalog Data for The Geysers, Salton Sea, and Coso.

Field Catalog duration Lon. bounds Lat. bounds Mc NQ

(years) (degrees E) (degrees N)

TG 1984–2011 [-122.85, -122.68] [38.73, 38.87] 2.0 8857

SSGF 1981–2013 [-115.70, -115.50] [32.12, 33.25] 2.0 1992

CGF 1981–2013 [-117.85, -117.75] [35.99, 36.05] 1.5 1201

Table 3.2: ETAS Parameter Estimates (and 95% Confidence Intervals).

Field K α p c (days) Rb

(95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.)

TG 0.0005 0.77 1.56 0.0010 0.10
(0.0002,0.0011) (0.71,0.84) (1.41,1.77) (0.0007,0.0015) (0.09,0.11)

SSGF 0.026 0.41 1.21 0.0018 0.74
(0.021,0.028) (0.37,0.47) (1.19,1.27) (0.0016,0.0026) (0.69,0.79)

CGF 0.016 0.50 1.12 0.0008 0.48
(0.011,0.017) (0.41,0.56) (1.10,1.23) (0.0005,0.0017) (0.42,0.53)
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Chapter 4

GrowClust: A hierarchical

clustering algorithm for relative

earthquake relocation, with

application to Nevada earthquake

sequences

Abstract

Accurate earthquake locations are essential for providing reliable hazard

assessments, understanding the physical mechanisms driving extended earthquake
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sequences, and interpreting fault structure. Techniques based on waveform cross-

correlation can significantly improve the precision of the relative locations of event

pairs observed at a set of common stations. Here we describe GrowClust, an open-

source, relative relocation algorithm that can provide robust relocation results for

earthquake sequences over a wide range of spatial and temporal scales. The method

uses input differential travel times, cross-correlation values, and reference starting

locations, and applies a hybrid, hierarchical clustering algorithm to simultaneously

group and relocate events within similar event clusters. The method is computa-

tionally efficient and numerically stable in its capacity to process large data sets,

and naturally applies greater weight to more similar event pairs. Additionally, it

outputs location error estimates that can be used to help interpret the reliabil-

ity and resolution of relocation results. As an example, we apply the GrowClust

method to the recent Spanish Springs and Sheldon, Nevada, earthquake swarms.

These sequences highlight the future potential for applying the GrowClust reloca-

tion method on a much larger scale within the region, where existing relocation

results are sparse but vital for understanding the seismotectonics and seismic haz-

ard of Nevada and eastern California.

4.1 Introduction

The location of earthquake hypocenters using observations of seismic phase

arrival times is a classic inverse problem in geophysics, with a rich history of
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conceptual and methodological advancements dating back more than a century.

During this time, catalogs of earthquake locations have become one of the most

important and widely-used forms of seismological data. They provide fundamental

constraints on a number of important seismotectonic problems, from the resolution

and imaging of fault zone structure, to the understanding of the physical mech-

anisms underlying earthquake triggering and interaction, to the improvement of

seismic hazard assessments. In turn, the degree to which these and other outstand-

ing problems can be resolved depends intrinsically on the quality and reliability of

earthquake location methodology.

The travel time of a seismic phase observed at a given station depends

nonlinearly on both the earthquake hypocentral coordinates and the subsurface

velocity structure (Geiger , 1910; Buland , 1976; Thurber , 1985). Because of this,

improvements in absolute earthquake location accuracy will always be limited by

imperfect knowledge of 3D variations in Earth structure (Thurber , 1983, 1992;

Thurber and Eberhart-Phillips , 1999). However, in recent years, numerous meth-

ods have been developed that yield significant improvements to relative earth-

quake location accuracy through the joint relocation of pairs or clusters of linked

events (Douglas , 1967; Frohlich, 1979; Jordan and Sverdrup, 1981; Got et al., 1994;

Shearer , 1998; Waldhauser and Ellsworth, 2000; Richards-Dinger and Shearer ,

2000; Lin et al., 2007). While initial catalog locations are routinely determined

from the noisy, often emergent phase picks and associated travel times of each

event in isolation, relative relocation techniques are based primarily on differen-
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tial travel times of pairs of events observed at common stations. This formulation

helps mitigate common-mode errors introduced by the biasing effects of unmod-

eled velocity structure. Furthermore, waveform cross-correlation techniques (e.g.,

Poupinet et al., 1984; Ito, 1985; Fremont and Malone, 1987; Nadeau et al., 1995;

Phillips et al., 1997; Rowe et al., 2002) can be used to extract differential travel

times with considerably greater precision than is possible from the absolute travel

times alone. Application of these relative relocation techniques can therefore result

in a dramatic sharpening in seismicity and resolution of fine-scale fault structure

(e.g., Rubin et al., 1999; Waldhauser et al., 1999; Astiz and Shearer , 2000; Shearer ,

2002) compared to standard catalog locations.

Implementation of these methods is straightforward in the case of single,

compact clusters of events, for which the common mode errors can be approximated

as identical, but becomes more complicated for distributed seismicity where the

errors associated with unmodeled 3D velocity structure vary considerably with

event location. The most widely used approach to relocate distributed seismicity is

the double-difference (DD) method (Waldhauser and Ellsworth, 2000), which sets

up a linear system of equations for the differences in event locations as a function

of the input 1D velocity model and differences in differential times (as well as

absolute times, if desired) and then applies matrix inversion. The DD technique

has been applied to problems across a wide range of scales, including relocating

over 500,000 events in the Northern California earthquake catalog (Waldhauser

and Schaff , 2008).
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Here we describe an alternative to DD for relocating seismicity using differ-

ential times, which we term the GrowClust algorithm, and are making available to

the community as an integrated software package (see Data and Resources). Given

the success of the DD algorithm and its growing user base, why did we develop

a different method? One motivation was to permit applying a more robust misfit

criteria than the L2-norm (least squares) than is used in standard matrix inver-

sion. GrowClust uses the L1-norm, which is less sensitive to outliers (bad data

points) in the input times and has been shown in some cases (e.g., Shearer , 1997)

to yield improved results compared to L2-norm solutions. Another concern is that

for many problems the matrix representing the complete solution in DD is so ill-

conditioned that inversions become unstable. For example, this can occur when

event clusters are linked by differential times from a single cross-correlation pair,

or a chain of event pairs, and hence the stability issue becomes more pronounced

for large-scale relocation problems containing multiple discrete clusters of seismic-

ity. The DD algorithm does provide various algorithm control parameters to help

stabilize the inversion by, for example, downweighting data from more distant or

more poorly correlated event pairs. However, the optimal parameter choices and

iteration-by-iteration sequential weights required to obtain the best locations are

not always obvious to the user, and even these optimal parameter choices may not

guarantee stability for certain problems. Our approach is to apply cluster analysis

ideas to decide which groups of events are linked and relocated, and which cluster

pairs retain independent locations. While our method has its own set of parameter
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choices, we have designed them to be as few and as straightforward as possible.

Finally, we wanted to implement a method that runs fast enough that bootstrap

resampling to estimate location errors is practical on small computer systems.

The GrowClust algorithm unifies a series of programs that were devel-

oped to relocate seismicity in southern California using waveform cross-correlation

(Shearer , 2005; Lin et al., 2007; Hauksson et al., 2012). GrowClust combines

cluster analysis and relocation of events within each cluster, which were previously

performed as two separate steps. This provides a significant boost in computational

efficiency and convergence stability for large data sets, which typically contain mul-

tiple large clusters. GrowClust uses differential travel times and cross-correlation

results in a hybrid, hierarchical clustering algorithm that both groups events into

clusters based on waveform similarity, and relocates each event with respect to the

linked events within its unique cluster. The method is computationally efficient

and multiscale in its applicability to both small and large sequences. Unlike many

other related relocation techniques, the GrowClust algorithm intrinsically gives

greater weight to more highly correlated event pairs and does not require explicit

matrix inversion.

A preliminary version of the GrowClust algorithm was first applied to per-

form high-precision relocation of a large data set of more than 100,000 events

recorded on Hawaii Island from 1992–2009 (Matoza et al., 2013). We present

here a more complete description of the improved, newly open-source algorithm,

which now implements a nonparametric statistical resampling technique to esti-
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mate errors in the relocated event positions, which prove useful in assessing and

interpreting the relocation results. As a demonstration of the new method, we

use GrowClust to relocate two prominent, recent earthquake sequences in western

Nevada: (1) the 2012–2015 Spanish Springs swarm (mainshock MW4.2), which

caused non-structural damage and significant shaking in Reno, and (2) the on-

going, 2014–present Sheldon swarm, an extensive sequence (dozens of M4 and

hundreds of M3 events have occurred to date) occurring in the northwest corner

of the state, where station coverage is sparse and catalog locations are particularly

scattered. Large-scale, systematic event relocations in northern (Waldhauser and

Schaff , 2008) and southern (Hauksson et al., 2012) California have significantly ad-

vanced our understanding of seismicity, seismic hazard, and fault structure within

that state. Our initial results suggest that, with methodological improvements

and the recent modernization of the Nevada Seismic Network (Kent et al., 2015),

the same potential for scientific advancement exists within Nevada and eastern

California.

4.2 Methods and Algorithm Description

In this section, we detail the methodology and computational details un-

derlying the current implementation of GrowClust. As we intend this code to be

open-source (see Data and Resources), future releases of the code may include mi-

nor modifications to the algorithm presented here. We begin this section with a



128

brief outline of the data pre-processing steps required to obtain the necessary inputs

for GrowClust. Next, we describe the basic algorithm used by GrowClust, which

simultaneously groups individual earthquakes into similar event clusters based on

the input cross-correlation data, and relocates each earthquake with respect to its

cluster neighbors. Finally, we describe the resampling approach that GrowClust

(optionally) performs to assess uncertainties of the relocated event positions. The

basic GrowClust workflow is summarized in Figure 4.1.

4.2.1 Data pre-processing

The fundamental input data for the GrowClust algorithm are differen-

tial travel times and cross-correlation values, obtained through waveform cross-

correlation of sets of earthquake event pairs observed at common stations. Both

are needed, as the differential times are used to relocate the events, while the

cross-correlation values are used to weight the data by quality and group events by

waveform similarity. However, the algorithm is sensitive only to the relative values

of cross-correlation coefficients, as the absolute values depend on both the data

quality and auxiliary factors such as the length of the cross-correlation window

and filter type, if any is used.

GrowClust is flexible in its accommodation of cross-correlation results ob-

tained using any method, whether time-domain or frequency-domain, and can

use any combination of P and/or S phase cross-correlation results. For the re-

sults presented in this paper, we use a time-domain cross-correlation approach
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that uses spline interpolation to achieve millisecond precision in differential times.

Frequency-domain techniques that achieve similar precision (e.g. Poupinet et al.,

1984) should work equally well. For our approach, we find that applying a zero-

phase bandpass filter from 1-10 Hz to the raw waveform data is useful in isolating

the relevant phase arrivals and mitigating noise that may cause spurious cross-

correlation results.

In addition to cross-correlation times, GrowClust requires a velocity model

to compute predicted differential travel times. Though not requisite for the Grow-

Clust method, we use travel-time tables derived from the velocity model to select

cross-correlation windows around predicted P and S phase arrival times, a practice

which can vastly expand the cross-correlation data set to include waveform pairs

devoid of operator P and S phase picks. Finally, GrowClust requires input event

and station lists that uniquely identify each earthquake (e.g., with an EVID) and

each station (e.g., with a station name). The various inputs to GrowClust, along

with algorithm control parameters described in the following section, are combined

in an input file read by GrowClust upon initial computation (Figure 4.1).

4.2.2 The GrowClust algorithm

In this section, we provide a conceptual outline of the hybrid clustering

algorithm used by GrowClust to perform relative event relocation. Upon program

initiation, GrowClust reads the cross-correlation data, parameters from the algo-

rithm control file, and input station and event lists into memory (Figure 4.1). The
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latter contains the initial (catalog or other reference) hypocentral positions from

which events are relocated. The program also constructs travel time tables for both

P and S body wave phases based on the input velocity model, which are later used

to compute the predicted differential times necessary for event relocation.

Following this initial input and data organization stage, GrowClust begins

its hybrid clustering and relocation algorithm, which works as follows (see Figure

4.2 for a simplified conceptual example):

1. Assign each of the N events to a distinct starting cluster number. Though

many of these clusters will later be merged as part of the relocation process,

the N initial clusters each begin as a single event.

2. For each event pair (i, j), compute a similarity coefficient Zij, that serves as

a metric to measure the data quality and waveform similarity of each distinct

event pair. Here, we take Zij for an event pair to be a sum over the cross-

correlation values rij;k observed at the k common stations within a maximum

station distance ∆max and that exceed a minimum value, rmin:

Zij =
∑
k

rij;k ∀ rij;k ≥ rmin and ∆k ≤ ∆max. (4.1)

The control parameters ∆max and rmin are chosen by the user in the input

control file based on the data set at hand, and cross-correlation data for P

and S phases are treated equally unless otherwise specified.

3. Sort the event pairs (i, j) by similarity coefficient Zij, and process each event

pair in turn, starting with the most similar. As the algorithm proceeds,
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there are three situations it may encounter when considering a new event

pair (Figure 4.2):

(A) Both event i and j are members of single-event clusters. In this situation,

the events are merged into a new cluster (now with two events), and both

are relocated with respect to the new cluster centroid. The relative

relocation algorithm uses a grid-search approach to find the relative

locations that minimize the L1-norm of the residual between observed

and predicted differential travel times (Shearer , 2005):

minimize ||dR||L1 =
∑
k

|dttij,k − dt̂tij,k|, (4.2)

Here dttij,k and dt̂tij,k denote the observed and predicted differential

travel times for the event pair (i, j) at station k, where the predicted

times depend on the relative event locations and the velocity model.

Note that the grid search is performed over the relative event locations,

and the L1 norm of the residuals is computed over the set of common

stations with waveform observations of the event pair.

(B) Either of events i or j are members of multi-event clusters. In this situa-

tion, the algorithm performs a series of tests to decide whether to merge

the clusters and relocate all events within both clusters with respect to

one another. First, the algorithm searches for all other event pairs that

link the two clusters. If the ratio of observed links to total possible links

fails to exceed a specified threshold (e.g., 0.01), the cluster merger is
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rejected, and the event pair is skipped. Otherwise, the algorithm per-

forms a test relocation of the two clusters with respect to one another

using only the ten strongest links (i.e., linking event pairs with the ten

highest Zij values) for robustness. The cluster relocation uses a multi-

event generalization of the L1-norm approach applied to single-event

clusters in situation (A). The relative positions of the events within

each of the two distinct clusters are held fixed, while the two cluster

centroids are adjusted about the centroid of the combined cluster. Once

this trial relocation is performed, the algorithm checks to see whether

the differential travel-time residuals of the newly merged cluster or the

centroid shifts of the initial clusters exceed tolerance values specified

by the user. These tolerance criteria help to ensure the stability of the

algorithm by preventing mergers that are not required by the data or

that involve unreasonably large location adjustments that would violate

the assumption of small location shifts implicit in relative relocation

methods (Geiger , 1912). If neither criterion is violated, the two clusters

are merged into a single, combined cluster that contains all of events at

their new, relocated positions.

(C) Both event i and j belong to the same cluster. In this case, the algorithm

simply skips the relocation of event pair, as both events have already

been relocated further up the algorithm.
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4. The algorithm continues processing clusters in this way until no more of them

can be merged and relocated, given the algorithm control parameters. At this

stage, GrowClust then computes the final run statistics for user assessment,

and saves these along with the relocation and clustering results for later

output (Figure 4.1). It is important to note that GrowClust is a purely

relative relocation algorithm: events within each cluster are relocated with

respect to one another, with the cluster centroids held fixed at its initial

reference position to ensure stability. As such, the events that comprise

single-event clusters due to lack of waveform similarity are not relocated by

the algorithm, and hence remain at their initial reference positions.

The overall strategy of GrowClust is to begin by relocating the highest

quality event pairs and most similar event clusters, and then hold the relative

locations of these events fixed when computing additional relative locations. An

advantage of this approach is that it permits a grid search relocation method to

be applied to cluster pairs in which there are only four free parameters at each

relocation step: the dx, dy and dz offsets of one of the clusters from a reference

position, plus any origin time shift (dt). The algorithm is computationally efficient

because clusters are treated as coherent event sets, which vastly reduces the effec-

tive degrees of freedom during each relocation step, as linking event pairs are not

relocated independently. A further advantage of this approach is that it can be

easily modified to optimize against any desired misfit norm, allowing for improved
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robustness through the use of the L1 norm rather than conventional least-squares

(L2).

It is worth noting that the internal architecture of GrowClust is well-suited

to some additional applications. Because the method naturally builds its results

by performing new locations relative to a set of previously determined locations,

it should be possible to adapt the method to compute near-real-time locations, in

which new events are relocated with respect to previous events, rather than having

to relocate the entire data set when new data become available. In addition, the

grid search location algorithm reads from a set of travel-time tables, which are

currently computed for a 1D velocity model, but, with only a slight increase in

complexity, could be altered to work with travel-time tables based on a 3D velocity

model. Finally, the procedure described below that is used to assess location

uncertainties is fully parallelizable, and future implementations could be adapted

to take advantage of this fact and further improve computational efficiency for

large-scale problems.

4.2.3 Relative location uncertainties

The complexity of the GrowClust algorithm precludes simple, parametric

techniques for assessing formal uncertainties in the relocated hypocentral posi-

tions. However, since a measure of location uncertainty is often fundamental in

the interpretation of relocation results, we have developed and incorporated a non-

parametric procedure within the GrowClust program that users can use to estimate
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location uncertainties for all relocated events. The method implements a modified

bootstrap approach based on statistical resampling theory (Efron and Tibshirani ,

1994).

Upon initial input to GrowClust, cross-correlation data (differential times,

cross-correlation values, and associated station metadata) are organized into ar-

rays of length Nph, where Nph denotes the total number of combined P and S

phase observations. For each bootstrap iteration, the algorithm procedure gener-

ates resampling vectors (Efron and Tibshirani , 1994) to perform efficient, random

resampling of these input arrays. The bootstrap-resampled cross-correlation data

are then input to the main GrowClust algorithm, resulting in a perturbed set

of event locations specific to that bootstrap iteration. Repeating the resampling

procedure B times, a bootstrap distribution of hypocentral positions (longitude,

latitude, depth, and origin time) is constructed for each relocated event.

Though a complete analysis of the full sampling distribution using this

method may require the number of boostrap resamples, B, to be of order 1000

or greater, estimates of standard errors in hypocentral parameters typically stabi-

lize much faster (B ∼ 50 to 100). The nonparametric error estimates output by

GrowClust are obtained from the median absolute deviations (Leys et al., 2013),

MAD(X) = median (|Xi −median(X)|) (4.3)

of the bootstrap distribution of hypocentral coordinates. This provides a more

robust characterization of location uncertainty than the raw bootstrap standard
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errors, which may be biased if the underlying bootstrap distribution is skewed

(Hesterberg et al., 2008; Mammen, 2012).

4.3 Results: Relocation of Nevada Seismicity

Moderate-to-large, damaging earthquakes (M ≥ 5) occur more frequently

in Nevada than in any state within the continental US except California. Three M

≥ 7 events shook the western half of state during the 20th century, and from the

historical record M6 events have occurred on average every six years (VanWormer

and Ryall , 1980; Smith et al., 2008) in the Nevada-California border region. The

strike-slip faults of the Walker Lane Belt in western Nevada and eastern California

are capable of hosting M ≥ 7 earthquakes (e.g., the 1932 M7.1 Cedar Mountain

earthquake), and the range-bounding normal faults of the eastern Sierra frontal

fault system have a history of large, mid-M7, events (Ramelli et al., 1999; Dingler

et al., 2009; Wesnousky et al., 2012). Though these fault systems pose a significant

hazard to the population centers of Reno and Carson City, as well as rural com-

munities throughout the region, a comprehensive study of earthquake occurrence

within the Walker Lane and the state as a whole has yet to be undertaken.

To demonstrate the use and efficacy of the GrowClust method, we apply

it to two recent earthquake sequences in western Nevada: the 2012–2015 Span-

ish Springs and 2014–present Sheldon swarms (for a regional map and station

locations, see Figure 4.S1 in the Supplementary Material). Both sequences are
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prominent within Nevada’s contemporary seismic record, and are worthy of sci-

entific investigation in their own right. The Spanish Springs sequence is spatially

compact, with more than 1600 events occurring over a length scale of several kilo-

meters. The sequence was well-recorded by near-source stations operated by the

Nevada Seismological Laboratory, and its MW4.2 mainshock was widely felt in the

Reno area. In contrast, the Sheldon sequence occurred within the remote north-

western corner of the state, where station coverage is sparse and hence the initial

catalog locations are poorly constrained. The Sheldon sequence was larger in scale

than Spanish Springs and is of particular scientific interest due to its persistent,

swarm-like seismicity, replete with several discrete clusters containing multiple M

≥ 4 events. In the following, we focus primarily on the interpretation of the

GrowClust-relocated event positions, while deferring a more complete assessment

of the tectonics and source mechanisms of the two sequences to future studies.

4.3.1 Waveform data and cross-correlation

For our analysis of the Spanish Springs and Sheldon sequences, we use wave-

form data archived by the Nevada Seismic Laboratory (NSL). The NSL database is

organized using an Antelope/DataScope software system (see Data and Resources),

and earthquakes are routinely located by the NSL using the Antelope dblocsat2

and USGS HYPOINVERSE algorithms (Klein, 2002), assuming a reference veloc-

ity model listed in Table 4.S1 (available in the Supplementary Material). These

event locations are then forwarded to the USGS/ANSS Comprehensive Earthquake
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Catalog (ComCat; see Data and Resources Section), and we take these locations

to be the initial event positions prior to performing the GrowClust relocations.

We use the Antelope relational database to extract the waveforms from the events

associated with each sequence.

Prior to performing waveform cross-correlation, we proceed as described in

Methods, filtering all traces from 1-10 Hz using a bandpass filter with a gentle roll-

off that retains some energy up to 15 Hz. For event pairs in the two sequences, we

compute cross-correlation functions separately for P and S phases on all available

channels of all common stations. We use cross-correlation windows of -1.0s to 1.5s

and -1.0s to 2.5s for P and S phases, relative to the predicted arrival times of the

respective phases. The use of predicted arrival times in lieu of operator picks can

significantly expand the cross-correlation data set. Differential travel times and

cross-correlation coefficients are derived from the raw cross-correlation functions

using a spline interpolation technique that provides millisecond sampling precision.

We use the vertical-component channel for P -phases (if available), and we select

the horizontal channel with the highest cross-correlation coefficient for S-phases

(and P -phases with no available vertical channel). We ensure the data quality of

our cross-correlation database by further considering only those event pairs with

an average cross-correlation coefficient of 0.45 across all phases, and a minimum

of 8 phases with cross-correlation coefficients greater than 0.6.
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4.3.2 The 2012–2015 Spanish Springs sequence

The 2012–2015 Spanish Springs sequence was quite active but spatially com-

pact, with thousands of events occurring over a length scale of several kilometers.

The sequence is named for its close spatial proximity to the North Reno suburb

of Spanish Springs, and its largest event (MW4.2) was widely felt through the city

and resulted in non-structural damage to select local buildings. The sequence was

well-recorded by the dense distribution of Nevada Seismic Network (NSN) stations

in the Reno area, where the local magnitude of completion is ∼ 0.0 (Kent et al.,

2015), with many recorded events of even smaller magnitude.

We use the NSL/ANSS event locations as the initial catalog positions for

our GrowClust relocation analysis of this sequence. We take advantage of the dense

station coverage and only consider stations within 80 km, resulting in 51 unique

short-period, broadband, and strong motion stations. We do not implement a

magnitude cutoff for this sequence, and hence do not expect to provide relocated

positions for all events (the majority of which are M0.5 or less and were initially

located by the NSL using as few as three stations). Even so, we are able to extract

adequate waveform similarity to relocate 793 of the 1616 recorded events in the

sequence, including all events M1.0 and greater.

GrowClust relocation results for these 793 events are presented in Figure

4.3, with the initial catalog positions shown for reference. Despite the dense sta-

tion coverage, the initial catalog positions are highly scattered both in map view
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and in cross section (panels a/c), with little hint of local faulting structure. In

contrast, the relocated seismicity is noticeably sharper, and the relocated event

positions clearly outline several distinct faulting structures (panels b/d). The pri-

mary fault structure strikes to the northeast and is nearly vertical (cross-section

A→ A′), while a secondary strand with a more northerly strike branches off of the

primary structure’s northeast end. Fault-perpendicular cross-sections (B → B′)

provide evidence that seismicity within a secondary cluster to the northwest of the

primary structure occurs on a distinct, subparallel fault strand. The GrowClust

relocations likewise aid in the interpretation of the spatiotemporal migration of

seismicity during the Spanish Springs sequence (Figure 4.4). The sequence began

as a short burst of M1.0 and lower seismicity in late 2012, with all events occuring

on the southeasterly branch of the main fault structure. The MW4.2 mainshock

occurred on August 27, 2013, and was preceded by a vigorous foreshock sequence

that migrated linearly from the southwest toward the mainshock hypocenter along

the main fault strand. The subsequent aftershock sequence was extended in du-

ration, with several distinct swarms occurring on spatially isolated sections of the

different structures. Intriguingly, the relocation results reveal a hole (i.e., area free

of seimisicity) on the mainshock fault plane, adjacent to its hypocenter. This hole

may outline the region of largest slip or near complete stress release within the

mainshock rupture zone, with aftershocks localized at the stress concentrations

around its perimeter.

We further use GrowClust’s nonparametric error estimation procedure to
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examine the lateral and vertical location uncertainties of relocated events within

the sequence. Overall, the structural features of the sequence are quite well-

resolved, with median lateral and vertical location errors of 11 and 62 m, re-

spectively (Figure 4.4c and Figure 4.S2 in the Supplementary Material). These

low nominal uncertainties, a consequence of the dense seismicity, completeness of

the catalog, and good azimuthal coverage of near-source stations, lend confidence

to the interpretation of the salient structural and spatiotemporal features of the

Spanish Springs sequence.

4.3.3 The 2014–present Sheldon sequence

The Sheldon earthquake sequence began in July of 2014, with swarms of

seismicity occurring within and near the Sheldon Wildlife Refuge in the northwest-

ern corner of Nevada. In contrast to the well-recorded Spanish Springs sequence,

station coverage in this region is quite sparse, particularly before November 2014,

when the near-field station COLR was installed at ∼ 15 km distance. The sequence

is of considerable scientific interest due to the large moment release (28 M ≥ 4.0

and 263 M ≥ 3.0 events to date, with the largest being MW4.8) and its persis-

tent, swarm-like seismicity that defies conventional earthquake triggering models.

Though distant from major population centers, the larger events have been felt

strongly by local residents and farming communities near Vya, Nevada.

As with Spanish Springs, we use the NSL/ANSS event locations as the

initial catalog positions for our GrowClust relocation analysis. Because of the
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inherent limitation in near-field station coverage, we include in our analysis all

nine recording stations within 250 km. To ensure adequate signal-to-noise, we

implement the previously described quality-control criteria for our cross-correlation

data (see Methods), and restrict our analysis to events of local magnitude 1.8 or

greater occurring on or after November 18, 2014, when the COLR station was

installed. This cutoff is slightly more conservative than the local magnitude of

completion, which is approximately M1.5. Using these criteria, our input event

list consists of 1369 total events (through August 28, 2016), 1232 of which we are

able to relocate.

The sparseness of station coverage in the Sheldon region is reflected in the

highly scattered initial catalog positions (Figure 4.5). Despite these limitations, the

GrowClust relocations provide a noticeable improvement, resolving distinct fault

structures from the cloud of initial positions. Seismicity is concentrated within two

subparallel clusters that strike north-northeast. The western cluster is more active,

containing the dominant portion of events within the sequence, and is comprised of

two distinct fault strands (striking north-northeast and north-northwest). Though

the location uncertainties are larger for the Sheldon sequence (median horizontal

and vertical errors of 117 and 91 m, Figure 4.6c), they are not so large as to inhibit

the resolution of in-situ structure. This is particularly true for the western cluster,

which with its denser seismicity and hence more available similar-event pairs is

better resolved than the eastern cluster (Figure 4.S3 in the Supplementary Mate-

rial). Analyses of fault-parallel and fault-perpendicular cross-sections reveal that
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both clusters dip steeply to the east, with deeper seismicity in the western cluster

(10–13 km) than the eastern cluster (9–11 km). This structural interpretation is

consistent with moment tensor analyses of the larger events, which predominantly

show normal faulting on steeply dipping normal faults striking north-northeast

(Ruhl et al., 2016).

The improved resolution provided by the GrowClust relocations allows us to

examine the spatiotemporal evolution of the Sheldon sequence in more detail. The

sequence is overall characterized by relatively continuous seismicity, but exhibits

distinctive patterns of spatial migration. Early in 2015, seismicity migrates from

north to south within the northwesterly branch of the major (western) cluster

(Figure 4.6). After a brief quiescent period, the sequence is reactivated during

the second half of the year, marked by the occurrence of three events in excess

of magnitude 4.5, and dozens more in excess of magnitude 3.5. The seismicity is

swarm-like, with no clear mainshock, and exhibits a tendency to migrate from the

southwest to the northeast, again predominantly within the western cluster. It is

not until late 2015 and early 2016 that the minor (eastern) cluster becomes active,

though seismicity continues unabated within the northern portion of the major

(western) cluster during this time.
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4.4 Discussion

4.4.1 Comparison of GrowClust and HypoDD relocation

results

It is instructive to compare the relocation results obtaining using Grow-

Clust for the Spanish Springs and Sheldon sequences to those obtained using the

HypoDD double-difference technique (Waldhauser and Ellsworth 2000, see Data

and Resources). Doing so not only provides a benchmark of sorts for GrowClust

(as HypoDD is well-established and justifiably popular), but also helps elucidate

the more relevant differences in methodology. For the comparison, we used identi-

cal data inputs (initial hypocentral locations, velocity model, and cross-correlation

data) as were used for the GrowClust results presented above. We performed sen-

sitivity analysis on the iterative weighting scheme, algorithm damping, and other

control parameters found in the HypoDD input file to obtain the best relocation

results possible, given our limited experience in the technique’s use. We note that

both sequences are too large in scale and too poorly-conditioned to obtain singular

value decomposition (SVD) solutions to the double difference equations, so the

HypoDD results presented here are those obtained using the damped least-squares

conjugate gradient (LSQR) solution (Waldhauser and Ellsworth, 2000), and we

have taken care to ensure reasonable condition numbers for each algorithm itera-

tion. As discussed in Waldhauser and Ellsworth (2000), the LSQR solution does
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not produce accurate location uncertainty estimates, precluding a formal compar-

ison with those obtained using GrowClust. Both the GrowClust and HypoDD

methods relocate a comparable fraction of the total number of events in each se-

quence (793 versus 764 of the 1616 total Spanish Springs events, 1232 versus 1282

of the 1369 total Sheldon events, for GrowClust and HypoDD respectively). The

runtime on a standard laptop computer is slightly faster for GrowClust (14.9 and

34.2 seconds for the two sequences) than for HypoDD (65.0 and 95.3 seconds).

Overall, the GrowClust and HypoDD results are in good visual agreement.

This is particularly true for the well-recorded Spanish Springs sequence (Figure

4.7), with both methods providing good resolution of vertically-dipping fault struc-

tures and partitioning events into a single dominant cluster. The similarity in re-

sults for Spanish Springs is not surprising, given that the dense set of differential

times ensures strong linkages between events (and hence, a well-conditioned sys-

tem for the double-difference algorithm). For this reason, it is also unsurprising

that there is greater disparity in the results for the Sheldon sequence (Figure 4.8),

in which event pairs are not as robustly linked due to the sparse station coverage.

In this case, the differences in the underlying computational framework — hierar-

chical clustering versus matrix inversion — become more apparent. Of particular

interest is the location of the smaller, eastern cluster of seismicity, which differs by

more than a kilometer from method to method. For the GrowClust relocations,

the centroid of this smaller cluster is fixed to its initial reference position, while no

such constraint is imposed in HypoDD, permitting a centroid shift of greater than
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1 km. The centroid of larger, western cluster also undergoes a shift of 133 m to

the northeast in the HypoDD relocations, while remaining fixed in the GrowClust

relocations. Note that GrowClust’s clustering algorithm considers the western and

eastern clusters as independent units (i.e., it does not find a sufficient number of

linking event pairs to join the clusters), while HypoDD relocates both clusters as

one coherent unit, finding one or more linking chains of event pairs between the

two clusters.

4.4.2 Implications of relocation results for the understand-

ing of seismotectonics in the Nevada-California bor-

der region

Both conventional mainshock-aftershock sequences and extended swarm-

like sequences are common within the state of Nevada (Ichinose et al., 1998; Smith

et al., 2008; Ruhl , 2015), and relocation results such as those presented here help

to study and differentiate the active physical mechanisms driving these sequences.

The Spanish Springs and Sheldon sequences provide important test cases in this

regard, and demonstrate the subtlety of the task at hand. Spanish Springs may

well fall into the former classification, as its moment release is dominated by the

MW4.2 mainshock. However, complexity is pervasive even within such a com-

pact sequence, and standard triggering models cannot adequately account for the

extended duration or the spatial progression of the foreshock and aftershock se-
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quences. The foreshock sequence is of particular interest, as its systematic linear

migration toward the mainshock hypocenter lends insight into the nucleation pro-

cess. Likewise, Sheldon’s distinctive spatial migration pattern, combined with its

unusually persistent and swarm-like seismicity, suggest that aseismic or fluid-driven

processes may be the dominant physical mechanisms driving the sequence, rather

than the coseismic stress changes from isolated, individual mainshocks (Hainzl ,

2002; Lohman and McGuire, 2007; Shearer , 2012; Shelly et al., 2016).

The GrowClust results presented here for Spanish Springs and Sheldon

establish the potential for large-scale relocation efforts, analogous to those un-

dertaken in recent years in California (Waldhauser and Schaff , 2008; Hauksson

et al., 2012), to elucidate subtle features of Nevada seismicity. Such efforts may

prove to be particularly valuable in Nevada, where the western half of the state

comprises a transition zone that accommodates approximately 20% of the Pacific-

North America plate boundary deformation, and is characterized by a spatially

complex distribution of intersecting normal, sinistral, and dextral faults (Ichinose

et al., 2003; Faulds et al., 2005; Wesnousky et al., 2012). The relocated seismicity

provides a means to image these structures in high resolution, supplying important

observational constraints on the seismotectonic evolution of the Walker Lane and

Central Nevada Seismic Belts. The extensive historical record of large, damaging

earthquakes in Nevada (VanWormer and Ryall , 1980) makes apparent the impor-

tance of an improved and more rigorously quantitative understanding of seismic

hazard. We plan in future studies to expand our use of GrowClust beyond in-
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dividual sequences, and apply it on a much wider scale within the state and the

Nevada-California border region.

4.5 Summary

GrowClust is a new and open-source earthquake relocation algorithm. It

uses waveform cross-correlation input data – differential times and cross-correlation

values – in a hybrid, hierarchical clustering algorithm that simultaneously groups

and relocates earthquakes in similar event clusters. The method is fast, flexi-

ble, and robust with respect data outliers. GrowClust also includes a built-in

mechanism for performing uncertainty analysis that gives users a more complete

assessment of the resolving power of the relocation results. We apply the Grow-

Clust method to two prominent Nevada earthquake sequences: the 2012–2015

Spanish Springs and the 2014–present Sheldon swarms. The encouraging results

for these examples demonstrate the scientific potential for large-scale relocation

efforts within the region using the GrowClust algorithm.

Data and Resources

The waveform data used in this study are archived locally by the Nevada

Seismological Laboratory and is publicly available from the IRIS Data Center

(http://ds.iris.edu/ds/nodes/dmc/, last accessed 9/29/2016). Initial catalog po-

sitions are consistent with the ANSS Comprehensive Earthquake Catalog ( http:

http://ds.iris.edu/ds/nodes/dmc/
http://earthquake.usgs.gov/data/comcat/
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//earthquake.usgs.gov/data/comcat/, last accessed 10/04/2016). We use Ante-

lope/Datascope software (http://www.brtt.com/, last accessed 09/01/2016) to ex-

tract waveforms for each event. We provide catalogs that list both initial and

relocated positions for the Spanish Springs and Sheldon sequences analyzed in this

paper in the electronic supplement to the article.

The GrowClust relocation codes described in this paper comprise an open-

source software package under the GNU General Public License v.3. The Grow-

Clust source distribution, which includes source codes, a user guide, and an exam-

ple data set, is publicly available for download at https://github.com/dttrugman/

GrowClust. We use in this paper the HypoDD implementation of the double-

difference technique (available at http://www.ldeo.columbia.edu/∼felixw/hypoDD.

html, last accessed 10/06/2016) for comparison to GrowClust relocations.
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Figure 4.1: Schematic chart illustrating the basic GrowClust workflow. Users
input cross-correlation data, station and event lists, a velocity model, and an
algorithm control file into the GrowClust source code. GrowClust then organizes
the input data and creates travel-time tables for P and S body wave phases. After
computing event-pair similarity coefficients, GrowClust initiates its simultaneous
clustering and relocation algorithm. Finally, after obtaining the final, relocated
event positions, the program (optionally) resamples the input data for bootstrap
uncertainty analysis, or proceeds directly to output of catalog, cluster, and log
files.
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Figure 4.2: Simplified example of GrowClust’s hybrid clustering and relocation
algorithm. In this example, there are 6 events (labeled with capital letters) and
6 linked event pairs with quality cross-correlation data (labeled with numbers,
in sequential order of waveform similarity). Event B has no links, and hence its
location is held fixed throughout the algorithm. a) Initial catalog location of events
A through F, with event pairs linked and numbered in order of decreasing waveform
similarity. Note that all events begin as single-event clusters. b) The most-similar
event pair, C-E, and its centroid MCE. c) The relocation algorithm begins by
relocating the most-similar event pair about its centroid. The relocated pair now
belong to a single cluster, CE. d) The second event pair, D-F , and its centroid
MDF . e) Relocation of D-F about its centroid. The relocated events are merged
into a single cluster, DF . f) The third link connects event A to cluster CE. g)
Event A and cluster CE are now relocated about the total centroid MACE, and
merged into a single cluster, ACE. Note that the relative positions of events C and
E are held fixed. h) The fourth link connects clusters DF and ACE. i) Clusters
DF and ACE are relocated about their total centroid MACDEF , and merged into
a single cluster. All events are now in their final, relocated positions. Note that
links 5 and 6 are used in support of the final proposed cluster merger.
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Figure 4.3: Comparison of initial ANSS catalog locations and GrowClust relo-
cations for the 2012–2015 Spanish Springs sequence. Panels (a, catalog) and (b,
GrowClust) provide a map view comparison of the initial and relocated event posi-
tions. Panels (c, catalog) and (d, GrowClust) provide a comparison of fault-parallel
(A → A′, red) and fault-perpendicular cross-sections (B → B′, blue).
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Figure 4.4: Space-time evolution of the 2012–2015 Spanish springs sequence. a)
Map view of the Spanish Springs sequence, with events color-coded by occurrence
time (colors are discretized in time bins of 0.5 years from 2012.5 through 2016). b)
Magnitude as a function of time for these events (colors consistent with panel a).
c) Histograms of horizontal (top, blue) and vertical (bottom, light red) location
uncertainties for these events (obtained via 100 bootstrap resamplings of the input
cross-correlation data, see text).
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Figure 4.5: Comparison of initial ANSS catalog locations and GrowClust relo-
cations for the 2014–present Sheldon sequence. Panels (a, catalog) and (b, Grow-
Clust) provide a map view comparison of the initial and relocated event positions.
Panels (c, catalog) and (d, GrowClust) provide a comparison of fault-parallel (A
→ A′, red) and fault-perpendicular cross-sections (B → B′, blue).
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Figure 4.6: Space-time evolution of the 2014–present Sheldon sequence. a) Map
view of the Sheldon sequence, with events color-coded by occurrence time (colors
scale varies continuously from 2014.75 to 2016.75). b) Magnitude as a function of
time for these events (colors consistent with panel a). c) Histograms of horizontal
(top, blue) and vertical (bottom, light red) location uncertainties for these events
(obtained via 100 bootstrap resamplings of the input cross-correlation data, see
text).
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Figure 4.7: Comparison of relocation results for the Spanish Springs sequence
using the GrowClust and HypoDD methods. Panels b) and c) show the map
view improvement of GrowClust and HypoDD relocations over the initial cata-
log locations (panel a), while panels d) and e) compare GrowClust and HypoDD
relocations in cross-section. Only those events that are successfully relocated by
both methods are shown, and events are color-coded by the cluster ID number of
each method. For the Spanish Springs sequence, both GrowClust and HypoDD
partition events into one dominant cluster.
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Figure 4.8: Comparison of relocation results for the Sheldon sequence using the
GrowClust and HypoDD methods. Panels b) and c) show the map view im-
provement of GrowClust and HypoDD relocations over the initial catalog locations
(panel a), while panels d) and e) compare GrowClust and HypoDD relocations in
cross-section. Only those events that are successfully relocated by both methods
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4.6 Supplementary Materials

Overview

Figure 4.S1 provides an overview map of the western Nevada study region,

including the locations of the seismic stations used in this analysis. Figures 4.S2

and 4.S3 show the spatial distribution of relative location uncertainties for the

Spanish Springs and Sheldon sequences, obtained through GrowClust’s nonpara-

metric error analysis subroutines described in the main text. Table 4.S1 lists the

velocity model assumed in the relocation results presented in this study.
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Figure 4.S2: Map view of the Spanish Springs sequence, with events color-coded
by a) horizontal and b) vertical location error. Uncertainty estimates are obtained
via 100 bootstrap resamplings of the input cross-correlation data, see main text
for details.
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horizontal and b) vertical location error. Uncertainty estimates are obtained via
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Table 4.S1: Velocity Model Used for GrowClust Relocations of the Spanish
Springs and Sheldon earthquake sequences. Column 1 lists the depth to the top
of each constant velocity layer (km), and column 2 lists the corresponding P wave
velocity for that layer (km/s). The velocity model assumes a layered structure
with constant P/S velocity ratio Vp/Vs =

√
3.

depth (km) VP (km/s)
0.0 3.0
1.0 4.5
2.0 5.5
4.0 6.0
7.0 6.1
12.0 6.2
18.0 6.4
28.0 6.8
38.0 7.8
50.0 8.0
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Chapter 5

Application of an improved

spectral decomposition method to

examine earthquake source

scaling in southern California

Abstract

Earthquake source spectra contain fundamental information about the dy-

namics of earthquake rupture. However, the inherent tradeoffs in separating source

and path effects, when combined with limitations in recorded signal bandwidth,

make it challenging to obtain reliable source spectral estimates for large earthquake

data sets. We present here a stable and statistically robust spectral decomposi-

169
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tion method that iteratively partitions the observed waveform spectra into source,

receiver, and path terms. Unlike previous methods of its kind, our new approach

provides formal uncertainty estimates and does not assume self-similar scaling in

earthquake source properties. Its computational efficiency allows us to examine

large data sets (tens of thousands of earthquakes) that would be impractical to

analyze using standard empirical Green’s function-based approaches. We apply

the spectral decomposition technique to P -wave spectra from five areas of active

contemporary seismicity in southern California: the Yuha Desert, the San Jacinto

Fault, and the Big Bear, Landers, and Hector Mine regions of the Mojave Desert.

We show that the source spectra are generally consistent with an increase in me-

dian Brune-type stress drop with seismic moment, but that this observed deviation

from self-similar scaling is both model-dependent and varies in strength from re-

gion to region. We also present evidence for significant variations in median stress

drop and stress drop variability on regional and local length scales. These results

both contribute to our current understanding of earthquake source physics and

have practical implications for the next generation of ground-motion prediction

assessments.

5.1 Introduction

Analyses of waveforms recorded by arrays of seismic stations provide the

most fundamental observational constraints on earthquake occurrence. While the
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arrival times of different phases of seismic energy are routinely used to determine

the hypocentral location, the detailed features of the spectra of recorded waveforms

give a snapshot of the earthquake source, and can yield insight into the complex

physical processes underlying earthquake nucleation, rupture, and arrest. Of par-

ticular interest is the earthquake source spectrum, the frequency-domain analog of

the moment-rate (or source-time) function that describes the temporal evolution of

slip on the fault interface. The amplitude and shape of source spectra can be used

to infer key earthquake source parameters like seismic moment, radiated energy,

and stress drop that are essential for seismic hazard assessment.

The waveform spectrum recorded by a seismometer is a convolution of

source, path, and receiver terms. To isolate source spectra, one must somehow

correct for these effects. There exist a number of established approaches for at-

tempting to do so, including empirical Green’s function methods tailored for de-

tailed study of individual earthquakes (e.g., Mori and Frankel 1990; Hough 1997;

Prieto et al. 2006; Abercrombie 2013; Huang et al. 2016), and larger-scale stacking

and generalized inversion approaches (e.g., Castro et al. 1990; Shearer et al. 2006;

Oth et al. 2011) that are more readily applicable to larger data sets of earthquakes.

While each technique has its own strengths, none can perfectly resolve the contri-

bution of the earthquake source to the observed waveform spectra, even in idealized

scenarios. This tradeoff between source and path effects, when combined with noise

and the limited signal bandwidth of raw waveform data, implies that earthquake

source parameter estimates, while critical to our understanding of earthquake haz-
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ard, are subject to considerable uncertainty (e.g., Hough 1996; Kane et al. 2011;

Cotton et al. 2013). Thus, any technique designed to study earthquake source

spectra and source parameters should include realistic uncertainty estimates.

Here we describe a spectral decomposition technique that is capable of

providing reliable source spectral estimates for large ensembles of earthquakes.

The method builds upon the basic approach used by Shearer et al. (2006) to

analyze P -wave spectra of more than 60,000 ML 1.5–3.1 earthquakes occurring

in southern California from 1989 to 2001. The technique uses an iterative, robust-

least-squares algorithm to partition the observed spectra into source, station, and

travel time (path) terms, with L1-norm weights applied to large misfit residuals

to mitigate the influence of the outliers pervasive in seismic data sets. We develop

a nonparametric resampling approach to estimate source parameter uncertainties,

and apply an automated algorithm to detect and discard clipped waveforms that

are common for larger events.

A crucial improvement of our new technique over that of Shearer et al.

(2006) is that our approach does not presume the self-similar scaling of earthquake

source properties first proposed by Aki (1967), in which stress drop is constant

with moment. While self-similarity is intuitively appealing and has been supported

in many studies (e.g., Choy and Boatwright 1995; Ide and Beroza 2001; Ide 2003;

Prieto 2004; Allmann and Shearer 2009; Baltay et al. 2010, 2011; Abercrombie et al.

2017), other studies have found evidence for a slight increase in stress drop or scaled

energy with moment (e.g., Mayeda and Walter 1996; Izutani and Kanamori 2001;
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Mori et al. 2003; Mayeda et al. 2005; Takahashi et al. 2005; Mayeda et al. 2007;

Calderoni et al. 2013; Pacor et al. 2016a; Lin et al. 2016; Poli and Prieto 2016).

This controversy over self-similarity has important theoretical implications for our

understanding of the scale dependence of earthquake rupture processes (Kanamori

and Rivera, 2004; Abercrombie and Rice, 2005; Walter et al., 2006; Cocco et al.,

2016), as well as practical ramifications for hazard analyses (e.g., Field et al. 2014;

Yenier and Atkinson 2015; Petersen et al. 2016) that implicitly assume self-similar

scaling.

We apply the improved spectral decomposition technique to revisit the ques-

tion of earthquake scaling in southern California. We analyze source parameters

and their scaling with moment for more than ten thousand M1 to M5 earthquakes

in five regions of recent seismic activity (Figure 5.1) recorded by the modern (2002–

2016) Southern California Seismic Network (SCSN) (Hutton et al., 2010): (1) the

Yuha Desert, including thousands of aftershocks of the 2010 MW 7.2 El Mayor-

Cucapah earthquake, (2) the trifurcation zone of the San Jacinto Fault, in which

the recent 2016 MW 5.2 Borrego Springs earthquake was located, (3) the Big Bear

region on the western boundary of the Mojave Desert, and the rupture zones of

the prominent (4) 1992 MW 7.3 Landers and (5) 1999 MW 7.1 Hector Mine earth-

quakes. We present evidence for an increase in median stress drop with moment

for these regions, but also demonstrate that the observed deviation from self-

similarity is sensitive to modeling assumptions and in particular on the assumed

high-frequency falloff rate. We further show that there are significant regional and
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local variations in median stress drop, stress drop variability, and source param-

eter scaling. This study outlines the computational framework for future studies

to extend these preliminary findings to larger regions to obtain a updated catalog

of source parameter estimates (Shearer et al., 2006) that would provide key con-

straints on earthquake source physics and inform the next generation of ground

motion prediction equations in southern California and worldwide.

5.2 Data and Methods

Our spectral decomposition technique to analyze earthquake source spec-

tra has four main steps: (1) computation of P -wave spectra from the vertical-

component waveform time series records of each earthquake, (2) application of

an iterative, robust-least-squares inversion procedure to decompose the observed

(data) spectra into event, station, and travel time terms, (3) stacking of relative

event spectra in bins of spectral moment to estimate an empirical correction (or

EGF) for average near-source attenuation and other path effects common to all

events, and (4) estimation of corner frequency, seismic moment, and stress drop

for individual events, with estimates of parameter uncertainties obtained using a

nonparametric resampling method. Steps (1) and (2) are largely the same as the

method described by (Shearer et al., 2006), with minor modifications designed to

improve the algorithm’s robustness and capability of processing datasets over a

wider magnitude range than the ML 1.5–3.1 considered for their study. Steps (3)
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and (4), while conceptually similar, contain major modifications and improvements

that allow for a more rigorous examination of self-similarity.

5.2.1 Waveform data and spectral computation

We use the Seismic Transfer Protocol (STP) tool of the Southern Cali-

fornia Earthquake Data Center (SCEDC, http://scedc.caltech.edu/, last accessed

12/4/2016) to obtain raw waveform data and phase pick information from ML 1.1

and greater events occurring during the time period from January 2002 through

September 2016 within the five regions listed in Figure 5.1. For each event, we con-

sider waveforms from vertical-component, short-period and high-broadband chan-

nels (EHZ or HHZ) on stations within 80km. Most such records have 100Hz

sampling frequencies, and we exclude all records with a lower sampling rate, while

subsampling any 200Hz records to 100Hz to maximize data availability.

For each event, we select a magnitude-dependent window length for spectral

computations ranging from 1.5 to 4.5 seconds, with longer windows used for events

of higher magnitude to ensure adequate resolution of the spectral corner frequency

(Ross and Ben-Zion, 2016; Abercrombie et al., 2017). We define the signal window

to begin 0.05s before the cataloged P arrival to account for potential errors in

the pick time, and define a noise window of equal length (used for signal-to-noise

computations) immediately preceding the signal window. Clipped waveforms are

common for near-source stations recording M ≥ 3 events (Shearer et al., 2006;

Yang and Ben-Zion, 2010), and we detect and exclude all waveforms flagged as

http://scedc.caltech.edu/
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clipped using a classification algorithm that compares the probability distribution

of observed waveform amplitudes to that of known, clipped waveforms. For the

non-clipped waveforms, we then compute velocity amplitude spectra for the signal

and noise windows using a multitaper algorithm (Park et al., 1987; Prieto et al.,

2009). We convert these velocity spectra to displacement, resample all spectra to

the frequency points corresponding to the shortest time windows (1.5s, which have

the coarsest frequency sampling), and only further consider spectra with average

signal-to-noise amplitude greater than 5 in each of five frequency bands (2.5–6,

6–10, 10–15, 15–20, and 20–25Hz). Note that these are somewhat more stringent

quality control criteria than those used by Shearer et al. (2006), who used a fixed

spectral window length, tested signal-to-noise from 5–20Hz, and did not explicitly

check for clipped waveforms. We implemented the above pre-processing steps and

selection criteria to ensure that we could reliably assess source scaling over a wide

range of event magnitudes (both smaller and larger). The P -wave spectra meeting

these quality control criteria comprise the input data to the spectral decomposition

inversion technique described below.

5.2.2 Spectral decomposition and relative source spectra

The observed displacement spectra are a convolution of source, path, and

station effects, the latter of which includes both site effects and the instrument

response. In the frequency domain, the recorded spectra d(f) can thus be written
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as a product of event (source), path, and station spectra:

d(f) = e(f) p(f) st(f), (5.1)

which can be linearized by working in the log-f domain,

log d(f) = log e(f) + log p(f) + log st(f). (5.2)

The basic idea behind the spectral decomposition technique is that because each

earthquake will be recorded by many stations, each station will record many earth-

quakes, and each approximate source-receiver path will be traversed many times,

it should be possible to solve for each contribution as part of an overdetermined

system of equations defined by the input data spectra.

More precisely, consider the observed displacement spectra dij correspond-

ing to event i, recorded by station j. Approximating the path term pij as a

travel-time dependent term ttk(i,j) that depends primarily on the distance from

the source to the station, we can write a linear equation of the form

dij = ei + ttk(i,j) + stj + rij, (5.3)

for each observed spectra, where rij is a residual error term. Equation (5.3) defines

an over-determined inverse problem in which the number of observations (recorded

spectra, d) outnumber the desired model parameters e, tt, st. We discretize the

travel-time terms (indexed by k) in bins of 1s of observed source-receiver travel

time, and only further consider spectra from events that are observed by at least

five stations, and stations that observe at least 20 events.
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For stability and to mitigate the influence of data outliers, we use an iter-

ative, robust-least-squares method to solve sequentially for model parameters ttk,

stj, and ei, where L1-norm weights are applied to large misfit residuals at each

iteration. The inversion is performed independently for each frequency point. The

focus of this study is on the source terms ei, so the travel-time and station terms

ttk and stj are essentially nuisance parameters, but do contain useful information

about midcrustal attenuation and site effects (e.g. Castro et al. 1990; Shearer et al.

2006; Oth et al. 2011) that may be of interest for ground motion and seismic haz-

ard analyses. Note that strong near-surface attenuation and its lateral variability

will largely be absorbed into the station (site) terms and the empirical Green’s

function correction described below.

5.2.3 Spectral stacking and EGF-corrected source spectra

One limitation of the above spectral decomposition is that it can only re-

solve relative differences between the source spectra of each event. Thus, it is

necessary to further correct for propagation effects that are common to all paths

(e.g., near-source attenuation and common site or instrument effects) in order to

interpret the source spectra within the framework of theoretical earthquake source

models. Shearer et al. (2006) resolved this ambiguity by first computing averaged,

stacked spectra in bins corresponding to a range of spectral moments (i.e., long-

period spectral amplitudes). They then solved for the correction term (i.e., the

empirical Green’s function or EGF) that minimized the root-mean-square (RMS)
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misfit between the EGF-corrected stacked spectra, and a Brune-type (Brune, 1970)

circular crack source model of the form

u(f) =
Ω0

1 + (f/fc)n
, (5.4)

where Ω0, fc, n are the spectral moment (proportional to seismic moment, M0), cor-

ner frequency, and high-frequency falloff rate, respectively. For simplicity, Shearer

et al. (2006) fixed n = 2 (as in the canonical ω−2 model), and assumed that the

stacked spectra were well described by a self-similar, constant stress drop model

in which stress drop ∆σ is related to corner frequency and seismic moment by:

∆σ =
7

16
M0

(
fc
kβ

)3

(5.5)

for shear wave speed β and a constant k (here 0.32 following Madariaga 1976,

derived for a circular crack with constant stress drop, elliptical slip, and a constant

rupture velocity vr = 0.9β). Shearer et al. (2006) performed a grid search over trial

values of stress drop ∆σ, and determined the EGF correction from the average

residual (across all stacks) between the observed and theoretical Brune-type spectra

(equation 5.4), given ∆σ and the relative moment of each stack. They showed that

the resulting EGF and self-similar Brune model produced a reasonable overall

fit to the moment-binned spectral stacks averaged over their entire data set of

∼60,000 earthquakes, and proceeded to show that median stress drops estimated

for individual events using this EGF were nearly constant with moment. However,

this approach may have biased the results toward self-similarity because it did not
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test whether non-self-similar models could produce equal or even better fits to the

data.

Here, we generalize the stacking approach Shearer et al. (2006) used to

obtain the EGF, while relaxing the assumption of self-similar scaling between the

stacked spectra. Following Shearer et al. (2006), we stack source spectra in bins

of spectral moment, Ω0. Each of the stacked spectra thus represents the average

relative source spectra of events with comparable seismic moment M0 (which is

proportional to Ω0). Note that we define Ω0 using the mean amplitude over the

2.5–4 Hz band, as the signal-to-noise worsens at lower frequencies.

Rather than assume a constant stress drop ∆σ for each stack, we allow for

the possibility of a variation in mean stress drop with moment by comparing gener-

alized linear models of the form log10 ∆σ (Ω0|ε) = ε0 + ε1 Ω0 + ε2 Ω2
0 + ... + εm Ωm

0 ,

where ε = [ε0, ε1, ε2, ..., εm] is a model vector whose parameters specify a degree-m

polynomial-type scaling of stress drop and moment (both measured in logarithmic

units). The degree-0 model corresponds to a constant stress drop model that is

functionally equivalent to the approach used by Shearer et al. (2006). The results

presented in this study compare the self-similar (degree-0) parameterization to

models with linear (degree-one) scaling (e.g., Kanamori and Rivera 2004; Mayeda

et al. 2007; Oth 2013):

log10 ∆σ (Ω0|ε) = ε0 + ε1 Ω0. (5.6)

We also tested higher-order models, as well as those with unconstrained variation
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of stress drop with moment, but found the marginal improvement in data misfit

provided by such models to be insufficient to warrant the increase in model com-

plexity (Akaike, 1974) and tendency for instability (symptomatic of overfitting

noise in the stacked spectra). The basic steps in our new, iterative algorithm can

be summarized as follows (see Figure 5.2 for a representative example using data

from the Yuha Desert region):

1. Bin events by spectral moment Ω0 and compute stacked source spectra for

each bin, requiring at least 20 events per bin to ensure the stacked spectra

are well-resolved.

2. Initialize the parameter vector εi = [0, 0] to a starting value implying con-

stant stress drop for each bin (here the subscript i denotes the current iter-

ation of the optimization algorithm).

3. Compute theoretical source spectra for each stack, given its stress drop value

defined by the current parameter vector εi and mean spectral moment Ω0

(proportional to M0).

4. Estimate the EGF correction from the residual between the observed and

theoretical stacked spectra, at all frequency points, averaged across all stacks.

Note that while each stack has its own unique stress drop value, the EGF

correction is common to all of the stacked spectra.

5. Compute the weighted RMS misfit between the EGF-corrected, observed
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spectra and the theoretical spectra in the frequency band from 2.5–25Hz.

Here we apply weights inversely proportional to log-f to prevent random

fluctuations in the high-frequency portion of the spectra from dominating

the fit.

6. Update εi → εi+1 using a conjugate gradient algorithm, and repeat steps (3)–

(6) until convergence to the minimum of the misfit function. Note that while

1st-order models can be solved in analogous ways using a grid search over

the model parameters, the iterative conjugate gradient approach provides

a unified computational framework for efficiently comparing higher-order or

otherwise more complex models.

The final EGF obtained at the convergence point is used to correct the

shape of the relative source spectra of each individual event for propagation effects

that are common to all paths, making them directly comparable to the theoretical

source model of interest (Figures 5.2 and 5.3). For the main results presented

in this paper, we assume the widely-used Brune (1970) source model with ω−2

spectral falloff (equation 5.4 with n = 2), but discuss in detail the influence of this

choice in Section 5.4.

The use of stacked spectra in the EGF estimation procedure has certain ad-

vantages, most notably that it relies solely on the relative shape of well-constrained,

averaged spectra within the high signal-to-noise band, and not on resolving the

corner frequencies of smaller individual events, some of which may be beyond the
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usable signal bandwidth. However, it does neglect the lateral and depth-dependent

variations in average attenuation properties that are not accounted for in the sta-

tion terms, which may be important for studies over larger length scales than

within the five regions we consider here. In these cases, nearest-neighbor or spatial

interpolation techniques could be incorporated into the stacking procedure in order

to include lateral and depth-dependent attenuation corrections into the spectral

decomposition algorithm (e.g., Shearer et al. 2006).

5.2.4 Source parameter estimates: corner frequency, mo-

ment, and stress drop

With the EGF-corrected source spectra in hand, we are now able to estimate

source parameters for each event. To compute stress drop ∆σ as defined by (5.5),

we need estimates of corner frequency fc, seismic moment M0, and shear wave

velocity β. We first estimate the corner frequency fc using a bounded optimization

algorithm that minimizes the weighted RMS residual between the observed, EGF-

corrected source spectra si(f) and theoretical spectra ŝi(f |fc) in the 2.5–25Hz

band (where again, inverse log-f weights are applied to prevent the high-frequency

portion of the spectra from dominating the fit).

Although some of the larger events (ML ≥ 3.5) have independent estimates

of M0 from regional analyses of long-period waveforms, the vast majority of the

events we consider are listed by local magnitude ML rather than moment magni-
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tude MW . We therefore need a self-consistent way of computing M0 for all events,

large and small, as numerous studies (e.g., Hutton et al. 2010; Ross et al. 2016;

Munafo et al. 2016) have demonstrated that MW 6= ML for smaller events. We

follow the same basic approach used by Shearer et al. (2006) and assume the M0

is proportional to the spectral moment Ω0, but apply a correction term to the Ω0

estimates obtained from the 2.5–4Hz band (Section 5.2.3) to zero frequency using

the observed corner frequency fc (this correction is more important for the larger

events with fc < 4Hz, where the spectral decay significantly reduces the observed

2.5–4Hz amplitude). We derive the proportionality constant between M0 and Ω0 in

two steps (Shearer et al., 2006). We first perform regression analysis to calibrate a

linear relationship between ML and Ω0: M̂L = a0 +a1 Ω0. The amplitude-adjusted

local magnitudes M̂L are then converted to moment magnitudes Mw and absolute

moment M0 by assuming that MW ≈ M̂L at M = 3.50 for earthquakes within

southern California (Hutton et al., 2010; Ross et al., 2016). This regression anal-

ysis is performed separately for each region, as the regression coefficients depend

slightly on local attenuation.

Finally, we use a smoothed version of the 1D velocity model of Hadley and

Kanamori (1977) and the waveform-relocated event depths from the catalog of

Hauksson et al. (2012) to compute depth-dependent shear wave velocities β for

all events, and use our estimates of fc, M0, and β to compute stress drop ∆σ for

each event (equation 5.5). We use the revised P -wave value of the constant k =

0.38 from the numerical study of Kaneko and Shearer (2014), though encourage
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caution in interpreting the absolute values of the stress drop estimates, which

can be highly model-dependent. More robust are the relative variations in stress

drop estimated using a uniform and consistent set of modeling assumptions and

processing procedures.

5.2.5 Source parameter uncertainties: corner frequency,

moment, and stress drop

Each source spectra estimate is in some sense an average over all stations

recording the event, and we utilize this fact in order to characterize the parameter

uncertainties associated with our fc estimates. To do so, we first define the appar-

ent source spectra s̃ij (e.g., Pacor et al. 2016b) for each station j recording event

i:

s̃ij = dij − ttk(i,j) − stj − r̄ij − EGFcorr, (5.7)

where d, tt, st, EGFcorr, and r̄ are the data spectra, travel time spectra, and station

spectra, EGF correction, and mean residual spectra, respectively. Note that r̄

represents an average residual across all stations recording the event and is usually

quite small, but may be nonzero because of the robust L1-norm weighting scheme

in the inversion algorithm. The apparent spectra defined by equation (5.7) have

the useful property that their mean value is equal to the inferred EGF-corrected

source spectra: 1
N

∑N
j=1 s̃ij = si. This fact allows us to use a bootstrap resampling

approach to assess the uncertainties with each corner frequency estimate as follows.
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For each event, we first obtain a corner frequency estimate f̂c using the EGF-

corrected source spectra si(f) as described in Section 5.2.4. We next synthesize a

set of B = 100 bootstrap-resampled source spectra by resampling with replacement

from the N apparent spectra associated with the event and taking the mean. We

then estimate the corner frequency of each of the B resampled source spectra to

obtain a bootstrap distribution of f̂c estimates for each event, and use the bias-

corrected, accelerated percentile technique (Efron and Tibshirani , 1994; Carpenter

and Bithell , 2000) to derive confidence intervals for f̂c at the 50% (i.e., the inter-

quartile range) and 90% levels from the raw bootstrap distribution.

We use a similar approach to obtain uncertainties in M0 by examining the

variability in spectral moment Ω̃0(ij) across all stations recording an event. In this

case, the bootstrapping procedure is unnecessary, as the Ω0 estimate is a linear

function of the apparent spectra (a mean over the 2.4–4Hz frequency band). We

use the median absolute deviation in the apparent spectral moments of each event

(i.e., the Ω̃0(ij) of each event i) to quantify uncertainties in moment, which are

typically of order 0.1 (in log10 units). Error estimates for f̂c and M̂0 can then be

used to derive confidence intervals for ∆σ̂ through propagation of errors (using

equation 5.5), though we caution that these measures of uncertainty are likely

lower bounds, as they do not account for uncertainty in rupture velocity, and also

do not address any of the epistemic or modeling uncertainties associated with the

assumed source model.
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5.3 Results

We apply the spectral decomposition technique (Section 5.2) to each of the

five regions shown in Figure 5.1, performing a separate inversion for each region.

Below, we present the salient features of the source parameter estimates for each

region individually, and compare the similarities and differences in the results

across all regions. We focus in particular on the question of self-similarity (the

scaling of ∆σ with M0) and the observed spatiotemporal variations in stress drop

on both regional and local scales.

5.3.1 Yuha Desert

The 2010 MW 7.2 El Mayor-Cucapah earthquake is the largest event within

the footprint of the SCSN during our study period (January 2002 through Septem-

ber 2016). The complex, bilateral faulting of the El Mayor-Cucapah earthquake

(Wei et al., 2011; Fletcher et al., 2014) triggered a dense cloud of aftershocks

north of the USA-Mexico border in the Yuha Desert (Kroll et al., 2013; Hauksson

et al., 2011). Our Yuha Desert study region is comprised primarily of these more

northerly aftershocks, as the SCSN does not have an adequate azimuthal distribu-

tion of station coverage to make reliable spectral estimates for earthquakes to the

south of the USA-Mexico border (Figure 5.1). The detailed relocation analysis of

the first two months of aftershocks performed by Kroll et al. (2013) imaged the

structural complexity of this region before the June 2010 MW 5.7 Ocotillo earth-
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quake, which triggered a second wave of seismicity in mid-to-late 2010 (Hauksson

et al., 2011).

In applying the improved spectral decomposition technique (Section 5.2) to

the Yuha Desert region, we obtain source parameter estimates for 3706 events that

meet our minimum quality control criteria. Normalized uncertainties in corner

frequency (∆fc/fc) tend to be higher for the lowest and highest magnitude events,

which have corner frequencies at the limits of the signal bandwidth, but overall the

source spectra are well-resolved. Corner frequency and stress drop show a moderate

but consistent deviation from self-similarity, with median stress drop tending to

increase as a function of seismic moment (Figure 5.4a). To quantify this more

precisely, we define bins of width 0.4 in log10M0 and compute the median stress

drop for events in each bin. We then perform a weighted least-squares regression

analysis on the binned data to determine the best-fitting scaling parameter ε1 in

a linear relation of the form

log10 ∆σ = ε0 + ε1 log10M0. (5.8)

Here the weights account for both the number of events in each bin and the median

uncertainty in stress drop, where the latter depends primarily upon the uncertainty

in corner frequency and secondarily on the uncertainty in moment (equation 5.5).

The scaling parameter ε1 = 0.18 (± 0.039) inferred in this manner for the Yuha

Desert is statistically positive, which is true for all five regions considered in this

study (Figure 5.4). Median stress drop for this region is comparable to other
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regions (2.29 MPa), but of lower variability (Figure 5.5a, left), with nearly all

events having stress drops in the range 0.5 to 20 MPa. Seismicity rates in the Yuha

Desert region during our study period are greatest in 2010, following the April 2010

MW 7.2 El Mayor-Cucapah and June 2010 MW 5.7 Ocotillo events, and the M ≥ 3

events of this time period tend to exhibit high stress drops (Figure 5.5a, right).

However, we do not observe any systematic time-evolution in the stress drop, as

events of comparable magnitude occurring at different times exhibit comparable

stress drop. In other words, the conditional probability distribution of stress drop,

given seismic moment, is stationary with time, but 2010 has an unusually large

number of M ≥ 3 events due to its high seismicity rate.

We do observe significant spatial variations in median stress drop, with a

tendency for events within the eastern portion of the Yuha Desert study region to

have higher median stress drop than those in the the west (Figure 5.6a). To check

whether this observation is truly due to differences in source properties, and not a

result of spatial variation in attenuation, we implemented a spatial interpolation-

based EGF technique analogous to the (nearest-neighbor) spatial EGF correction

used by Shearer et al. (2006), finding the inferred spatial patterns in source pa-

rameters largely unchanged by the laterally-varying EGF. This is not surprising,

given the relatively small length-scales (tens of kilometers) over which the region

is defined. We further observe an increase in median corner frequency as a func-

tion of depth, larger than can be explained by the assumed increase in mid-crustal

shear velocity (Figure 5.7a).
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5.3.2 San Jacinto Fault: Trifurcation Zone

The San Jacinto Fault (SJF) is the most seismically actively fault system in

California (Sanders et al., 1986; Kagan et al., 2006; Wdowinski , 2009), and, along

with the southern portion of the San Andreas Fault located to its east, accommo-

dates the dominant portion of the plate boundary motion in southern California

(Rockwell et al., 1990; Fialko, 2006; Lindsey et al., 2014). While the Anza section

of the central SJF is notable for its lack of microseismicity and major earthquake

sequences during historical times (Sanders and Kanamori , 1984; Zöller and Ben-

Zion, 2014; Rockwell et al., 2015; Jiang and Fialko, 2016), the intersection of the

Coyote Creek, Clark, and Buck Ridge faults to the southeast of the Anza gap is

responsible for approximately ten percent of all earthquake production in south-

ern California during our study period (2002–2016). This region of particularly

dense seismicity has produced multiple distinct sequences of M ≥ 4 earthquakes

distributed across the three subparallel faults that comprise the trifurcation zone

(Allam et al., 2014), including the recent (June 2016) MW 5.2 Borrego Springs

event. Though the mainshocks within these sequences show predominantly strike-

slip mechanisms, the individual faulting structures within the trifurcation zone are

particularly complex, with high resolution tomography (Allam et al., 2014; Lin

et al., 2016) and studies of fault zone trapped waves (Li and Vernon, 2001; Lewis

et al., 2005; Ross and Ben-Zion, 2015) indicating the prevalence of damage zones.

We use the spectral decomposition technique (Section 5.2) to obtain source
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parameter estimates for 4564 earthquakes in the SJF trifurcation zone region.

The median stress drop (2.27 MPa) is comparable to that of the Yuha region.

However, the inferred stress drops for events within the SJF trifurcation zone

exhibit greater heterogeneity, as evidenced by the significantly larger standard

deviation in the stress drop distribution than is observed for Yuha (Figure 5.5b,

left). This heterogeneity may reflect the tectonic complexity of this region, which

is characterized by a hierarchical network of structures that accommodate a diverse

set of faulting mechanisms and varying levels of recent seismic activity (Sanders

and Kanamori , 1984; Li and Vernon, 2001; Lewis et al., 2005).

Seismicity within the SJF trifurcation zone is also notable for its strong

deviation from classical self-similarity, with median stress drop increasing by nearly

a factor of ten across the magnitude range considered in our data set (Figure

5.4b). The scaling parameter ε1 = 0.35 (± 0.064) inferred using the weighted

regression procedure described in Section 5.3.1 is the highest of any of the five

regions in our study, and would be on the higher end of previously reported values,

which typically are in the range of 0.1–0.4 (Mayeda and Walter , 1996; Izutani

and Kanamori , 2001; Kanamori and Rivera, 2004; Takahashi et al., 2005; Mayeda

et al., 2005; Venkataraman et al., 2006; Pacor et al., 2016a). This trend in scaling

is persistent over the duration of our study period (Figure 5.5b, right), and may in

part be related to fact that the larger (M≥ 3.5) events in the trifurcation zone tend

to occur along the three major fault strands, while microseismicity preferentially

occurs in the off-fault and intra-fault regions. A full exploration into the causative
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mechanisms of this strong regional trend in scaling is however beyond the scope of

this study.

Despite the lack of clear time dependence in scaling, there does appear to

be some variability in the distribution of stress drops within individual earthquake

sequences. Of particular interest is the June 2016 MW 5.2 Borrego Springs event,

which is the most recent prominent mainshock in our data set. Both the Borrego

Spring event and its aftershocks exhibit unusually high stress drop values compared

to other events with equivalent moment (Figure 5.5b, right). The Borrego Springs

event occurred on the Clark Fault, near the site of two MW ≥ 4 events that

occurred in 2008 but were of much lower stress drop. Most of the Borrego Springs

aftershocks occurred between the Clark and Buck Ridge faults, at depths of ∼

12 km and on previously inactive structures that are almost orthogonal to the

primary strands. These events are visually prominent in the map view shown in

Figure 5.6b due to their high median stress drop.

5.3.3 Mojave Desert Regions: Big Bear, Landers and Hec-

tor Mine

In contrast to the Yuha Desert and San Jacinto Fault regions examined

above, seismicity within the Big Bear, Landers, and Hector Mine regions of the

Mojave Desert occurs to the east of the main Pacific-North American plate bound-

ary. These regions comprise the southern portion of the Eastern California Shear
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Zone (ECSZ), a diffuse deformational belt characterized by a complex distribution

of incipient faulting structures (VanWormer and Ryall , 1980; Faulds and Henry ,

2008; Wesnousky et al., 2012). Studies of earthquake hazard in the ECSZ be-

came more exigent with the occurrence of the 1992 Landers (MW 7.3), 1992 Big

Bear (MW 6.5), and 1999 Hector Mine (MW 7.1) earthquakes, three of the largest

events in southern California in the past century (Hauksson et al., 1993; Cohee and

Beroza, 1994; Wald and Heaton, 1994; Fialko, 2004). Stress changes from these

events had a significant influence on the local stress field and seismicity during

their immediate aftermath (e.g., Hauksson 1994; King et al. 1994; Hardebeck et al.

1998; Lin and Stein 2004). Our study period begins in 2002 and thus considers

only the longer-term aftershocks of these events and present-day background seis-

micity within each region. In our study, we perform the spectral decomposition

for each region independently in order to mitigate the effects of differences in lo-

cal attenuation on source spectral estimates, but present the results for all three

regions here, as they form a coherent tectonic zone within the southern ECSZ.

We obtain source parameter estimates for 1723, 1215, and 810 events in the

Big Bear, Landers, and Hector Mine regions, respectively. Despite their proximity,

we observe quantifiable differences in the source properties of earthquakes in each

region. Earthquakes in the Landers rupture zone are characterized by significantly

higher median stress drop (4.36 MPa) than those in the Hector Mine rupture

zone (1.02 MPa), with Big Bear (2.68 MPa) falling in between (Figure 5.5cde).

The distribution of stress drop is also more variable in the Landers and Big Bear
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regions than in Hector Mine. Applying the binning procedure and the weighted

regression analysis described in Section 5.3.1, we also observe a moderate increase

in median stress drop with moment in each of the Big Bear (ε1 = 0.17 ± 0.027),

Landers (ε1 = 0.28 ± 0.064) and Hector Mine (ε1 = 0.13 ± 0.066) regions. We

note however that the inferred scaling parameters (ε1) are more poorly constrained

for these three regions due to the relative scarcity of M ≥ 3 events, as compared

to the dense seismicity of the Yuha or SJF regions.

Although localized clusters of higher and lower median stress drops can

be discerned in each of the three regions (Figure 5.8), the spatial variations are

most apparent within the Landers rupture zone. Specifically, we observe significant

along-strike variations in median stress drop, with higher values in the northern-

most and southernmost segments, and lower values in the central portion of the

Landers rupture (Figure 5.8b), a pattern similar to that found in the stress drop

study of Shearer et al. (2006) for Landers aftershocks from 1992 through 2001.

Overall, there appears to be a rough anticorrelation between the stress drops of

Landers aftershocks (both early and late) and the magnitude of fault slip during

the 1992 rupture, during which peak values of fault slip were observed along the

central portion of the rupture and lower slip at the northern and southern tips

and auxiliary fault segments (Fialko, 2004). The lack of significant pre-mainshock

seismicity in this region makes it hard to assess whether this stress drop pattern is

a long-standing feature (perhaps caused by local variations in fault strength, with

the stronger zones both inhibiting slip during the Landers rupture and producing
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ambient seismicity with higher stress drops), or whether it is reflects stress changes

caused by the mainshock rupture, with lowered stress in the high-slip regions and

increased stress near the fault tips. Unfortunately, the large uncertainties in finite

slip models for the Landers mainshock (as evidenced by the substantial differences

among the published models, e.g. Mai and Thingbaijam 2014), complicate more

detailed comparisons between aftershock stress drops and mainshock slip at finer

spatial scales.

Some evidence for long-lived spatial variations of small earthquake stress

drops was provided by a stress drop study at Parkfield (Allmann and Shearer ,

2007), in which the overall pattern of high and low stress drop regions was unaf-

fected by the 2004 M6.0 Parkfield earthquake. Although the Parkfield section of

the San Andreas Fault is distinctly different from our study regions (having a sin-

gle well-defined fault, and many areas of fault creep), it is nonetheless interesting

that the spatial patterns we observe in stress drop appear to persist over long time

periods. For example, the spatial heterogeneity in source parameters observed

within the Mojave Desert regions remains largely unchanged from the study of

Shearer et al. (2006), who considered a completely independent source parameter

data set ending in year 2001. The long-term persistence of these trends — lower

stress drop in the Hector Mine rupture zone, higher stress drop in the Landers rup-

ture zone, with significant along-strike variations — supports the notion that there

exist real spatial variations in median stress drop that are both quantifiable and

somewhat predictable due to their stationarity in time. If so, this has important
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implications for hazard assessments that use seismically-determined stress drop or

a related proxy stress parameter as input for ground motion prediction equations

(Yenier and Atkinson, 2014; Atkinson et al., 2015). Also of interest from a hazard

perspective is that the shallowest seismicity (observed primarily in the Big Bear

region) is characterized by particularly low stress drops (Figure 5.7c). At more

intermediate depths, corner frequency increases with depth at roughly the same

rate as the shear wave speed (and hence, mean rupture velocity), such that the

inferred stress drop estimates remain approximately depth-invariant.

5.4 Discussion

The observed trends in earthquake source properties within the five regions

have important implications for our understanding of earthquake rupture and seis-

mic hazard. As such, it is worth examining in closer detail the limitations of the

methods applied to obtain these source parameter estimates, and their potential

influence on the results presented here. These limitations fall into two main classes:

(1) limitations in the ability of the spectral decomposition method to isolate the

source spectrum from the raw waveform data, and (2) limitations in the source

spectral model to adequately characterize the salient properties of earthquake rup-

ture.

Addressing (1) first, a key advantage of the spectral decomposition method

is that it provides an empirical and completely nonparametric framework for par-
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titioning the observed spectra into source, path, and station terms, with no need

to explicitly evaluate the instrument response or model attenuation along the ray-

path. This framework, while designed to minimize the tradeoffs between source

and path effects, may still fail to adequately resolve the source term, especially

in circumstances where the ratio of the number of input, observed spectra to de-

sired, output source spectra is small. The EGF correction that is inferred from the

shape of stacked source spectra (Section 5.2.3) is an essential step in the spectral

decomposition algorithm, as it removes non-source effects that are common to all

travel paths. This includes both near-source and near-receiver attenuation, which

if left uncorrected, can introduce an artificial fmax into the spectra that may bias

source parameter estimates (Hanks , 1982; Anderson and Hough, 1984; Anderson,

1986). We do not believe that uncorrected high-frequency attenuation is causing

problems in our analysis for several reasons: (1) we explicitly require that all of

the individual spectra we analyze have signal-to-noise of five or greater out to

the 25 Hz upper bandwidth, and (2) we see no evidence for any sharp change in

our travel-time terms or in our EGFs as frequency approaches 25 Hz. Certainly

attenuation will limit the ability to resolve corner frequencies above 25 Hz, but

accurately determining these corner frequencies is not crucial for our analysis.

However, the spectral stacking procedure requires a reasonable distribution

of events at different magnitudes over a relatively small length scale (tens of kilo-

meters). This does not present a significant obstacle for the five regions considered

here, which have relatively dense seismicity sampling a wide range of magnitudes
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(M 1 to 5) and are well-recorded by modern broadband and short-period SCSN

stations. It is important, however, to keep these considerations in mind in fu-

ture applications of the spectral decomposition technique to scenarios with sparse

seismicity or station coverage.

The second limitation — the possible inadequacy of the commonly-applied

Brune-type, omega-squared (ω−2) source model to describe the earthquake rupture

process — presents a more serious problem for the events considered here. The

observed deviation from self-similarity, in which stress drop appears to increase as

a function of seismic moment (ε1 > 0), is based on the assumption that the high-

frequency spectral falloff rate (n in equation 5.4) is 2, as in the classical ω−2 model

(Aki , 1967). There is however a fundamental tradeoff between ε1 and n, as shown

schematically in Figure 5.9 for the Yuha Desert region (the other four regions

considered in this study exhibit a similar effect). If we instead allow for n < 2

(gentler spectral falloff), the data once again become consistent with self-similarity;

the difference in misfit between the ε1 > 0, n = 2 and ε1 = 0, n < 2 models is only

1.2%. This makes intuitive sense if we consider that our fundamental observation

is that the source spectra of larger events contain more high-frequency content

than would be predicted by a self-similar Brune model. The tradeoff between ε1

and n occurs because the high-frequency falloff rate substantially affects the results

only well above the corner frequency, a portion of the spectra that is observable

only for the larger events in our data set. There are two different end-member

ways of explaining the high frequencies we observe for the larger events: we can
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fix the spectral falloff and relax the assumption of self-similarity (Figure 5.9a), or

we can assume that earthquakes are (on average) self-similar, and allow for gentler

spectral falloff (Figure 5.9b).

We focus on the former approach for the purposes of this study because it

makes our source parameter estimates (corner frequency fc and stress drop ∆σ)

more directly comparable to those of other studies, which are typically derived un-

der the assumption of an ω−2 model. The discussion above, however, demonstrates

that the absolute values of these source parameter estimates depend strongly on

modeling assumptions. This makes it difficult to interpret fc and ∆σ directly in

terms of actual physical properties of the earthquake source, such as the source

dimension or average static stress drop. Moreover, the tradeoff complicates studies

of earthquake source scaling, as the inferred scaling parameter will in turn depend

on the assumed falloff rate (again, typically fixed to 2 in such studies). Though

the high-frequency falloff n must be greater than 1.5 to bound the radiated energy

(Walter and Brune, 1993), this limitation only applies in the high-frequency limit,

i.e., not to intermediate fall-off rates that may occur in double-corner-frequency

models. For single corner frequency models, if the true falloff rate falls anywhere

in the range 1.5 < n < 2, the scaling will be less intense than that inferred with

n = 2, as is typically assumed for such studies (Kanamori and Rivera, 2004).

Finally, we note that the observed scaling relationships are pertinent only to the

magnitude range that comprises the bulk of our data set (1 ≤M ≤ 4), and should

not be extrapolated without further study. Independent of these issues, we can
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still pose the following questions: what are the underlying causes of the observed

deviations from classical source models, and what are the broader implications for

our understanding of earthquake rupture processes?

Brune (1970) developed an instantaneous rupture model for a circular

crack that related the source radius of an earthquake to the inverse of the cor-

ner frequency of the calculated source spectra. This model was later extended by

Madariaga (1976) and others who considered more realistic circular crack models

in which the rupture propagates at a constant fraction of the shear wave velocity.

However, real source spectra, especially those of pulse-like ruptures, can be much

more complex, and may be characterized by several timescales (and hence corner

frequencies), notably those related to the total rupture duration and to the dura-

tion of slip at a given point on the fault (e.g., Haskell 1969; Luco 1985; Lin et al.

2016). Resolution of these features in real source spectra is challenging due to the

inherent noise and bandwidth limitations of the data, but a number of studies of

larger earthquakes (e.g., Papageorgiou and Aki 1983; Joyner 1984; Atkinson 1990;

Denolle and Shearer 2016) have provided evidence for source spectra with multiple

corners and intermediate spectral falloffs (n < 2), the details of which can likewise

be scale-dependent (Walter et al., 2006).

We do not attempt to resolve multiple corners within the source spectra in

our study, as lower magnitude events have poor signal-to-noise within the higher-

frequency bands in which the secondary corner would be expected to occur. How-

ever, the presence of multiple corners, even if they cannot be independently resolved
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in the spectra, could account for the observed tradeoff between high-frequency

falloff rate n and self-similarity ε1. Further complexity in the rupture process,

including directivity effects (e.g., Boatwright 1980; Pacor et al. 2016b; Ross et al.

2016), fault-roughness (e.g., Madariaga et al. 2006; Dunham et al. 2011; Trugman

and Dunham 2014), and scale-dependent frictional properties or dynamic weaken-

ing mechanisms (Brodsky and Kanamori , 2001; Abercrombie and Rice, 2005; Cocco

et al., 2016) may also produce the same effect. Though it is difficult to discrim-

inate among these plausible causal mechanisms, their unifying feature — source

complexity beyond that of a circular crack — makes it worth exploring alterna-

tive or nonparametric means for directly comparing source spectra, rather than

comparing source parameters derivative of an assumed model (e.g., Uchide and

Imanishi , 2016).

The results presented here also bear significance for seismic hazard assess-

ment. Ground motion prediction equations (GMPEs) are fundamental to hazard

assessments, and source spectral studies that characterize regional variations in

stress drop provide valuable constraints for the source terms of modern GMPEs,

which are becoming increasingly regionalized (Bozorgnia et al., 2014; Yenier and

Atkinson, 2015; Douglas and Edwards , 2016). Previous work (e.g., Allmann and

Shearer 2009; Oth 2013; Uchide et al. 2014) has provided compelling evidence for

regional variations in median stress drop. Here we find in addition that both me-

dian stress drop and the intensity of the apparent deviation from self-similarity

may vary regionally, with the San Jacinto Fault trifurcation zone being of par-
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ticular note in this regard (Figure 5.4). Accurately characterizing such variations

may help reconcile the well-known difference in scatter between the ∆σ of GMPEs

(stress parameter) and the ∆σ of source spectral estimates (stress drop) (Atkinson

and Beresnev , 1997; Cotton et al., 2013; Atkinson et al., 2015), although it is worth

again cautioning that the scaling relationships inferred here likely do not extrapo-

late to the higher magnitude (M > 4) events that cause the most damaging ground

motions. Future studies should examine the robustness of these preliminary obser-

vations over wider magnitude ranges and larger spatial scales, and explore how the

modeling limitations of source parameter estimates may influence the relationship

between seismically-inferred stress drop and observed ground motion.

5.5 Conclusions

We describe an improved spectral decomposition approach to compute

earthquake source parameters that is suitable for analyzing large data sets con-

taining thousands or more events. The technique uses an iterative, robust least-

squares algorithm to partition the observed waveform spectra into source, site,

and travel-time dependent path terms. Unlike previous methods of its kind, this

technique requires no assumption about self-similarity in earthquake source param-

eters. We leverage this improvement to explore variations in source parameters and

source scaling within five regions of active, contemporary (2002–2016) seismicity

in southern California. In each region, we find that if one assumes the classical,
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ω−2 high-frequency falloff rate, the data are most consistent with an increase of

stress drop with moment, in direct contrast to the self-similar paradigm. We show,

however, that this conclusion is model-dependent, with the inferred deviation from

self-similarity trading off with the assumed high-frequency falloff rate. Indepen-

dent of these parametric limitations, the source spectra of the larger magnitude

earthquakes in this study contain greater high-frequency content than would be

predicted by a self-similar model with ω−2 falloff. This observation, along with the

evidence we present for regional, local, and depth-dependent variations in earth-

quake source parameters, may provide important constraints for seismic hazard

assessments and for our understanding of earthquake rupture processes.
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Figure 5.1: Map view of southern California seismicity, showing geographic
bounds for the five study regions — Yuha Desert (Yuha), San Jacinto Fault Tri-
furcation Zone (SJF), Big Bear, Landers, and Hector Mine — considered in this
study. Seismicity (black dots) is derived from the relocated catalog of (Hauksson
et al., 2012), with only ML ≥ 1.1 events occurring from January 2002 through
September 2016 shown (consistent with the magnitude range and time period of
this study). Vertical-component stations from the Southern California Seismic
Network are marked (red triangles) for reference.
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Figure 5.2: Example of stacked source spectra from the Yuha Desert region,
before and after the EGF correction for common path effects (see text for details).
(a) Stacked source spectra (binned by spectral moment Ω0), prior to the EGF
correction. (b) EGF-corrected source spectra (solid black lines), assuming a self-
similar, constant stress drop source model with f−2 falloff at high frequencies.
Theoretical source spectra corresponding to each stack are shown with dashed
black lines, with the implied corner frequency of the fit marked for reference. The
self-similar model fits poorly for both lower and higher values of Ω0. (c) EGF-
corrected source spectra (solid black lines), assuming a source model in which
stress drop increases linearly with moment (both measured in logarithmic units).
Theoretical source spectra corresponding to each stack are shown with dashed
black lines, with the implied corner frequency of the fit marked for reference. This
model provides a significantly better fit than the self-similar model.
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Figure 5.3: EGF-corrected, stacked source spectra from the (a) San Jacinto Fault
Trifurcation Zone, (b) Big Bear, (c) Landers, and (d) Hector Mine regions. Each
EGF-corrected source spectra (solid black lines, binned by spectral moment Ω0)
assumes a source model in which stress drop increases with moment (as in Figure
5.2c for the Yuha region). Theoretical source spectra corresponding to each stack
are shown with dashed black lines, with the implied corner frequency of the fit
marked for reference.
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Figure 5.4: Scaling of corner frequency (fc, left) and stress drop (∆σ, right) with
seismic moment M0. Each panel corresponds to one of the five study regions: (a)
Yuha Desert, (b) San Jacinto Fault Trifurcation Zone, (c) Big Bear, (d) Landers,
and (e) Hector Mine. In each panel, the black dots correspond to measurements
of source properties for individual events, and the median fc and ∆σ in M0 bins
of 0.4 (log10 N-m units) are marked with square symbols. The best-fitting scal-
ing parameter ε1 and two-sigma uncertainty for the binned data (obtained from
weighted regression analysis, see text for details) is denoted in each right inset and
plotted with a solid line. Events with poorly resolved corner frequencies due to
bandwidth limitations are marked with open circles.
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Figure 5.5: Histograms of stress drop (left) and magnitude-time plots (right) for
each of the five study regions: (a) Yuha Desert, (b) San Jacinto Fault Trifurca-
tion Zone, (c) Big Bear, (d) Landers, and (e) Hector Mine. Median and standard
deviation values (log10 MPa) of the stress drop distributions are marked in the his-
togram insets (left). Events are color-coded by stress drop in each magnitude-time
plot (right), with bluer colors indicating higher stress drop (more high-frequency
energy).
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Figure 5.6: Map view of source parameter estimates for (a) Yuha Desert and (b)
San Jacinto Fault Trifurcation Zone regions. Events are color-coded by stress drop
in each map, with bluer colors indicating higher stress drop (more high-frequency
energy).
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Figure 5.7: Depth-dependence of corner frequency (fc, top) and stress drop (∆σ,
bottom) for each of the five study regions: (a) Yuha Desert, (b) San Jacinto Fault
Trifurcation Zone, (c) Big Bear, (d) Landers, and (e) Hector Mine. In each plot, the
black dots correspond to measurements of source properties for individual events,
and the median fc and ∆σ in depth bins of 1 km are marked with solid lines.
Events with poorly resolved corner frequencies due to bandwidth limitations are
marked with open circles.



212

Figure 5.8: Map view of source parameter estimates for the (a) Big Bear, (b)
Landers, and (c) Hector Mine regions. Events are color-coded by stress drop in
each map, with bluer colors indicating higher stress drop (more high-frequency
energy).
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Figure 5.9: Example showing the tradeoff between scaling parameter ε1 and
spectral falloff rate n. (a) EGF-corrected stacked source spectra (solid black lines)
assuming a source model with ω−2 spectral falloff rate (n = 2) and scaling pa-
rameter ε1 > 0. log10 ∆σ is thus permitted to vary linearly with log10M0. (b)
EGF-corrected source spectra (solid black lines), now assuming a lower spectral
falloff rate (n < 2) and fixed scaling parameter ε1 = 0. ∆σ is thus constrained to
be invariant with M0. (c) Contour plot of the relative misfit between the EGF-
corrected observed and theoretical spectra, plotted as a function of ε1 (x-axis) and
n (y-axis). Source models that assume n = 2 (an ω−2 model) require ε1 > 0, while
source models that assume ε1 = 0 (a self-similar model) require n < 2.
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Chapter 6

Source spectral properties of

small-to-moderate earthquakes in

southern Kansas

Abstract

The source spectral properties of injection-induced earthquakes give insight

into their nucleation, rupture processes, and influence on ground motion. Here we

apply a spectral decomposition approach to analyze P -wave spectra and estimate

Brune-type stress drop for more than 2000 ML1.5–5.2 earthquakes occurring in

southern Kansas from 2014 to 2016. We find that these earthquakes are character-

ized by low stress drop values (median ∼0.4MPa) compared to natural seismicity

in California. We observe a significant increase in stress drop as a function of
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depth, but the shallow depth distribution of these events is not by itself sufficient

to explain their lower stress drop. Stress drop increases with magnitude from

M1.5–M3.5, but this scaling trend may weaken above M4 and also depends on the

assumed source model. Although we observe a nonstationary, sequence-specific

temporal evolution in stress drop, we find no clear systematic relation with the

activity of nearby injection wells.

6.1 Introduction

Over the past ten years, seismicity rates have risen to historically unprece-

dented levels within the oil-producing regions of Oklahoma and southern Kansas.

Scientific consensus has attributed much of the elevated seismicity rate to an-

thropogenic activity, and in particular to the injection of wastewater from the oil

production process into the Arbuckle Group that is stratigraphically above the

granitic basement (e.g., Ellsworth 2013; Buchanan 2015; Ellsworth et al. 2015;

Rubinstein and Mahani 2015; Walsh and Zoback 2015; Yeck et al. 2017). The

abrupt increase in seismic hazard within this region (Petersen et al., 2016, 2017)

has spurred numerous observational studies focused on connections between fluid

injection and seismicity rates (Keranen et al., 2013, 2014; Weingarten et al., 2015;

Goebel , 2015; Choy et al., 2016; Barbour et al., 2017), the source properties of a sub-

set of the larger events (Choy et al., 2016; Boyd et al., 2017; Cramer , 2017; Walter

et al., 2017; Sumy et al., 2017), and observed ground motion amplitudes (Hough,
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2014; Atkinson et al., 2016; Atkinson and Assatourians , 2017; Yenier et al., 2017).

Although these studies have rapidly advanced scientific understanding of these

earthquakes, there is still much that remains unanswered, and the nonstationary

nature of the seismicity warrants continued monitoring.

One of the key unresolved questions is whether the dynamic source proper-

ties of these likely-induced events, such as corner frequency and stress drop, differ

from events within active tectonic regions like California (Huang et al., 2016).

This question is of particular importance for ground motion estimation due to

the positive correlation of ground motion amplitude and stress drop (e.g. Boore,

2003; Atkinson and Morrison, 2009; Baltay et al., 2017). Several recent studies

have used various parametric spectral fitting methods (Cramer , 2017; Sumy et al.,

2017) or empirical Green’s function spectral ratio approaches (Boyd et al., 2017;

Walter et al., 2017; Huang et al., 2017) to analyze source parameters of a sub-

set of the largest of these events, including the 2011 Prague, Oklahoma sequence

and the 2014 Milan, Kansas earthquakes. In this study, we apply a spectral de-

composition technique (Trugman and Shearer , 2017a) to perform a comprehensive

analysis of the source spectra and source parameters of seismicity occurring in

southern Kansas from 2014 through 2016. We use P -wave spectra to derive source

parameter estimates – seismic moment, corner frequency, and stress drop – for

more than 2000 events with local magnitudes ranging from 1.5 to 5.2 that we

have relocated using waveform cross-correlation based techniques. These source

parameter estimates present an opportunity for a quantitative comparison to the
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source properties of naturally occurring events in California that were analyzed

using identical methodology.

We focus our analysis on the distribution and variability in source param-

eter estimates of the southern Kansas dataset as whole, rather than on individual

target events or earthquake sequences. We begin by providing an overview of the

southern Kansas study region and the associated waveform data. We then briefly

describe the methodology we use to derive relocated event positions, source pa-

rameter estimates, and parameter uncertainties for each event in our data set. We

next examine the most robust statistical features of our source parameter esti-

mates, including the depth-dependence of corner frequency and stress drop, the

scaling of stress drop and seismic moment, and the nonstationary temporal evolu-

tion of stress drop during our study period (2014–2016). We compare our source

parameter observations to those of natural (tectonic) earthquakes in southern Cal-

ifornia, and discuss the physical and practical implications of our results for the

scientific understanding of earthquake rupture processes and occurrence in south-

ern Kansas, and for the probabilistic assessment of ground motion amplitudes and

seismic hazard in oil-producing regions of the central United States.

6.2 Data and Study Region

Seismicity rates in southern Kansas began to sharply increase in 2013 com-

pared to historical norms (Hildebrand et al., 1988; Buchanan, 2015; Choy et al.,
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2016), with this increase attributed in part to the proliferation of wastewater injec-

tion related to oil and gas production within the Mississippian limestone play that

underlies southern Kansas and northern Oklahoma (Ellsworth, 2013; Ellsworth

et al., 2015; Buchanan et al., 2014; Weingarten et al., 2015). The Precambrian

basement formation begins at a depth of 1.7 to 2.0 km and is cross-cut by numerous

in-situ fault systems, the most notable of which is the northeast striking Nemaha

fault (Steeples et al., 1979; Baars and Watney , 1991; McBee, 2003; Niemi , 2004).

Oil production wells tap into the shallower sedimentary strata, with wastewater

disposal typically occurring in the permeable Arbuckle Group that directly overlies

the granitic basement (Buchanan et al., 2014; Kroll et al., 2017). We use in this

study the wastewater injection and enhanced oil recovery well locations publicly

archived by the Kansas Corporation Commission (http://kcc.ks.gov, last accessed

April 2017).

Here we analyze seismicity occurring within southern Kansas from March

21, 2014 through December 31, 2016 (Figure 6.1). The start date for our study

period was chosen based on the installation date (March 19–21, 2014) of the U.

S. Geological Survey (USGS) Induced Seismicity Menlo Park Project (ISMP) net-

work that was established to monitor seismicity within this region (Rubinstein

et al., 2014). Azimuthal station coverage in this area is generally good once the

ISMP network was fully installed (late summer 2014), and as such we have few

source parameter estimates prior to September 2014. We take initial locations

and magnitudes for earthquakes in our dataset from the ISMP catalog, which is

http://kcc.ks.gov
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a subsidiary of the Advanced National Seismic Systems (ANSS) Comprehensive

Earthquake Catalog (ComCat, https://earthquake.usgs.gov/earthquakes/search/,

last accessed May 2017) that lists events by local magnitude. For our study, we

convert waveform data with sampling rates of 100Hz and 200Hz from the USGS,

Central and Eastern US, NetQuakes, Oklahoma Seismic, and US National Seis-

mic networks (network codes GS, N4, NQ, OK, US) into multiplexed event-based

files for later analysis and processing. In total, we consider 5269 events occurring

within our study region during this time period, though only a well-recorded subset

of 2069 of these events met the quality control criteria for our source parameter

estimates (Section 6.3).

6.3 Methods: Relocations and Source Parame-

ter Estimates

The primary focus of this article is the analysis and interpretation of earth-

quake source spectra and source parameters. Although highly accurate earthquake

locations are not essential for the spectral analysis, they are useful in the inter-

pretation of spatial variations in source parameters such as systematic trends with

depth or with distance from injection wells. Because of this, as a preliminary step

in our analysis of source properties, we apply the GrowClust algorithm (Trugman

and Shearer , 2017b) to obtain relocated event positions and location uncertain-

ties for the southern Kansas earthquakes in our dataset. For these relocations,

https://earthquake.usgs.gov/earthquakes/search/
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we perform time-domain waveform cross-correlation of pairs of events within 4km

catalog distance of each other, saving cross-correlation results for all event pairs

with a minimum of 8 differential times with cross-correlation values greater than

0.7. We input the resulting approximately one million differential times and cross-

correlation values into the GrowClust program, which uses a hybrid hierarchical

clustering and relocation algorithm that provides stable relocation results for large-

scale catalogs with multiple discrete clusters. The relocated seismicity has median

horizontal and vertical location errors of 131m and 281m, respectively.

We next obtain source parameter estimates for a subset of the relocated

seismicity using the spectral decomposition method. We follow closely the algo-

rithm described in detail by Trugman and Shearer (2017a), and summarize only

the main points here. The central idea underlying this approach is that for large

and well-recorded seismicity datasets, each earthquake is recorded by many sta-

tions, each station records many earthquakes, and each approximate source-station

travel path is traversed many times. If this assumption is valid, then it is possible

to decompose the waveform data spectra from event i recorded at station j into

relative source, station, and path-dependent terms, plus a residual error term (rij)

for each trace. Working in the log-frequency domain, the relative contributions

add linearly, and the spectral decomposition at each frequency can be written in

the form

dij = ei + stj + ttk(i,j) + rij, (6.1)
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where dij is the recorded waveform data spectra, ei is the relative source term,

stj is the relative station term, and ttk(i,j) is a relative path-dependent term that

is typically assumed to be isotropic and discretized by source-receiver travel time

such that there is a single relative path term for all traces in the kth travel time

bin.

The spectral decomposition method consists of four basic steps:

1. Compute the amplitude spectra dij(f) from the waveform data of each trace.

2. Decompose the amplitude data spectrum of all traces into relative source,

station, path, and residual terms by solving Equation (6.1) at each frequency

point using an iterative, robust least-squares inversion algorithm with outlier

suppression.

3. Infer the empirical Green’s function correction spectrum (EGF) that best

captures path effects common to all sources, such as average near-source and

near-receiver attenuation.

4. Subtract the EGF from each source spectra: si(f) = ei(f) − EGF (f), and

use the corrected source spectra si to obtain source parameter estimates and

uncertainties for seismic moment M0, corner frequency fc, stress drop ∆σ.

For steps (1) and (2), we consider P -wave spectra of earthquakes with local

magnitude ML1.5 and greater, recorded on vertical-component, high-broadband

and short-period channels (HHZ, HNZ, EHZ), at stations within 150km distance.
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For the spectral estimates, we use a magnitude-dependent window length ranging

from a minimum length of 1.5s to a maximum length of 4.5s, where longer windows

correspond to larger events in order to permit adequate corner frequency resolu-

tion (Ross and Ben-Zion, 2016; Abercrombie et al., 2017; Trugman and Shearer ,

2017a). We define the signal window to begin 0.05s before the catalog-listed P -

phase arrival time, truncate each window before the catalog-listed S-phase arrival

when necessary, and define a noise window that immediately precedes the signal

window and is of equal length. We discard clipped waveforms using an automated

detection algorithm (Trugman and Shearer , 2017a) and resample the spectra ob-

tained from longer window lengths to the frequency points corresponding to the

minimum window length (1.5s). We compute the average signal-to-noise ampli-

tude in each of five frequency bands (2.5–6, 6–10, 10–15, 15–20, and 20–25Hz),

and only further consider events that are recorded at a minimum of six stations

with a signal-to-noise ratio greater than 3 in each frequency band.

To estimate the EGF correction term (step 3), we use the technique de-

scribed by Trugman and Shearer (2017a) that fits stacked relative source spectra,

averaged in bins of spectral moment Ω0 to a Brune-type theoretical spectrum of

the form:

ŝ( f | Ω0, fc, n) =
Ω0

1 + (f/fc)n
, (6.2)

where fc and Ω0 are the corner frequency and spectral moment of each stacked

spectra, and the high-frequency falloff rate n is fixed to 2 per the widely-used ω−2
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model (Aki , 1967; Brune, 1970). In contrast to previous implementations of the

spectral decomposition method (e.g., Shearer et al. 2006), our technique does not

require an assumption of self-similar, or constant stress drop scaling, and instead

infers the optimal scaling directly from the shape of the stacked spectra. Here we

find that the optimal fit requires an EGF with non-self-similar scaling such that

stress drop increases with spectral moment (Figure 6.2), a result in agreement

with a recent analysis of earthquakes in California (Trugman and Shearer , 2017a).

Inference of the EGF is an essential part of the spectral decomposition technique

because the source terms ei produced by the solution to Equation (6.1) are rela-

tive (median amplitude zero), and thus must be corrected for propagation effects

that are common to all sources. This includes the spatially averaged near-source

attenuation that is not removed by the nearest travel time terms ttk=1, as well as

average near-station attenuation, since the station terms stj isolate only relative

differences in near-station and instrument effects on the observed spectra.

We account for the possibility of lateral variations in attenuation by ap-

plying a modified spectral stacking technique that uses a distance weighting to

allow for spatial variations in the EGF. This technique is similar to the nearest-

neighbors EGF approach first used by Shearer et al. (2006), but in practice tends

to be more stable. In brief, the modified technique uses cluster analysis to define

a non-uniform set of grid points that conform to the contours of the observed seis-

micity. For each grid point (we use six in this study), an EGF is inferred from

stacks of relative source spectra that are weighted by inverse distance to the event
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locations in the study region, such that events that are closer to the grid point

assume more weight. The EGF correction to the source spectrum of each event

is then computed as a linear combination of the set of EGFs, again weighted by

inverse distance. We note that applying this distance-weighted stacking algorithm

to account for lateral variations in attenuation does not significantly influence the

results presented in this study, but may be an important consideration for study

regions that extend over larger length scales.

It is also important to recognize that the increase in median stress drop with

moment for individual events that we present in Section 6.4 is a direct consequence

of applying an EGF based on non-self-similar scaling. The evidence for such scaling

is the markedly superior fit that we obtain to the stacked spectra (Figure 6.2c)

compared to the fit for a self-similar model (Figure 6.2b: requiring self-similarity

increases the overall misfit by more than a factor of 3). Note that this result is

based only on observations within the 2.5 to 25 Hz band where we have good

signal-to-noise, and does not require resolving corner frequencies outside of this

band. However, as discussed in Trugman and Shearer (2017a), the case for an

increase in average stress drop with moment does depend upon the assumption

of the Brune spectral model and its f−2 high-frequency falloff rate, as reasonable

fits to the stacked spectra are possible for self-similar models with high-frequency

falloff rates less than 2.

Lastly (step 4), we use the EGF-corrected spectra si(f) to estimate source

parameters and associated uncertainties. To estimate seismic moment M0, we
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assume that on average the observed spectral moment Ω0 is proportional to the

seismic moment M0, and perform a regression analysis between Ω0 and ML to

calibrate the appropriate scale factor (Shearer et al., 2006). This analysis can

be used to obtain a linear relationship between MW and ML that is valid for

the smaller earthquakes for which MW is not routinely estimated. The smallest

events in our dataset (ML1.5) correspond to MW1.9, and the inferred MW -ML

slope of 0.72 (Figure 6.3) is comparable to the slope of 0.75 obtained for southern

California by Ross et al. (2016). Although the relationship between MW and

ML may be slightly nonlinear for larger events (Ben-Zion and Zhu, 2002; Goertz-

Allmann et al., 2011; Edwards and Douglas , 2014; Munafo et al., 2016), we do not

observe a significant bias between our MW estimates and those obtained through

moment tensor analysis and listed by ANSS ComCat (https://earthquake.usgs.

gov/earthquakes/search/, last accessed May 2017).

We then estimate the corner frequency fc using a bounded optimization

algorithm that minimizes the root-mean-square residual between the observed,

EGF-corrected source spectrum si(f) and the Brune theoretical spectrum ŝi(f |fc)

in the 2.5–25Hz band in which we have measured adequate signal-to-noise, and

that is insensitive to site resonances and spectral contamination from leaky-mode

surface waves that are prevalent for earthquakes in this region (Cramer , 2017).

Given fc and M0, we compute the Brune-type stress drop

∆σ =
7

16
M0

(
fc
kβ

)3

, (6.3)

https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
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appropriate for a simplified circular crack model of the earthquake source with

constant stress drop and elliptical distribution of slip (Brune, 1970; Madariaga,

1976). We obtain a depth-dependent estimate of the shear wave speed β from the

velocity model used by the ISMP network to locate the events (Rubinstein et al.,

2015), and set the numerical constant k = 0.38 following the recent numerical

analysis of Kaneko and Shearer (2014). We derive uncertainty estimates for M0,

fc, and ∆σ using the statistical resampling techniques detailed in Trugman and

Shearer (2017a) that are based upon the variability in the apparent source spectra

recorded at each station. Normalized uncertainties in corner frequency (∆fc/fc)

tend to be higher for the lowest and highest magnitude events, which have fc that

approach the 2.5–25Hz limits of the spectral bandwidth. However, the spectral

decomposition results for the dataset in aggregate are insensitive to resolution

of source parameters of these individual events (which are few in number), but

are instead controlled primarily by the relative shape of the stacked spectra (see

Trugman and Shearer , 2017a for a complete discussion).

6.4 Results

We apply the spectral decomposition method (Section 6.3) to analyze the

earthquake source parameters of 2069 well-recorded earthquakes in our study re-

gion. The southern Kansas earthquakes in our dataset have relatively low stress

drop values, with an overall distribution that is approximately log-normal with a
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median stress drop of 0.41MPa and log10 standard deviation of 0.35 (Figure 6.4a).

The relative simplicity of this total marginal histogram of ∆σ does however ob-

scure several notable trends. As a concrete example, in Figure 6.4 we also show

conditional histograms of ∆σ for four distinct magnitude ranges (1.5–2.0, 2.0–2.5,

2.5–3.0, and 3.0–3.5), and plot the distribution of corner frequency fc and stress

drop ∆σ as a function of seismic moment M0. From this perspective it is apparent

that median stress drop tends to increase as function of moment, a result that is

consistent with the inferred scaling of the stacked spectra (Figure 6.2), but is in

direct violation of the classical self-similar model first proposed by Aki (1967).

We can quantify this scaling trend by performing a weighted regression

analysis of stress drop and moment, fitting a linear model of the form:

log10 ∆σ = ε0 + ε1 log10M0, (6.4)

where the parameter ε1 measures the slope of the increase of log10 ∆σ with log10M0.

For the results presented here, we compute median stress drop in bins of width 0.4

in log10M0, and apply weights based on the median uncertainty in ∆σ and number

of observations in each bin, but obtain comparable results for both unbinned and

unweighted regression. The scaling parameter ε1 = 0.25 (2-σ uncertainty±0.035) is

clearly positive and therefore inconsistent with the null hypothesis of self-similar,

constant-∆σ data, which would have ε1 = 0 to within the uncertainties. These

results for the southern Kansas events are within the ε1 ∼ 0.1–0.4 range of scaling

results obtained for California earthquakes by Trugman and Shearer (2017a) and
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by other studies that have quantified an increase in stress drop or scaled energy with

moment (e.g., Mayeda and Walter 1996; Izutani and Kanamori 2001; Mori et al.

2003; Mayeda et al. 2005; Takahashi et al. 2005; Mayeda et al. 2007; Calderoni

et al. 2013; Pacor et al. 2016; Agurto-Detzel et al. 2017). However, our Kansas

dataset contains few higher-magnitude events (20 ML > 3.5 events, which is less

than 1% of the total count), and as such we have poor resolution of the distribution

and scaling of ∆σ above M ∼ 3.5. Based on the data we do have, it would be

reasonable to expect earthquakes with ∆σ in the 1–10MPa range for the M ≥ 4

that are of fundamental interest to hazard calculations.

Another point of interest from a hazard perspective is the systematic in-

crease in median fc and ∆σ with hypocentral depth (Figure 6.5ab). In contrast,

we do not observe a comparable depth-dependent trend in M0 that could poten-

tially account for the scaling results presented above (Figure 6.5c). The depth-

dependence in both fc and ∆σ (but not M0) implies an increase in rupture ve-

locity vr that outpaces the expected increase in shear wave speed β with depth

(i.e., an increase in the ratio vr/β with depth). Because earthquakes in southern

Kansas are characterized by a shallower depth-distribution (2–8km) compared to

seismicity in the western and eastern United States (which typically extends to a

significantly greater maximum depth), it is plausible that the lower median ∆σ

values we observe are due in part to the shallowness of the seismicity (Hardebeck

and Aron, 2009; Pacor et al., 2016; Agurto-Detzel et al., 2017; Boyd et al., 2017;

Sumy et al., 2017). However, the shallower depth distribution of the events in our
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dataset does not fully explain their anomalously low ∆σ, as can be seen quanti-

tatively by comparing median ∆σ for Kansas and California seismicity within a

fixed depth range. For example, in Kansas we observe a median ∆σ of 0.4MPa at

5km depth (Figure 6.5), compared to the 1–4MPa range observed at this depth in

five different regions of California (Trugman and Shearer , 2017a).

We next turn our attention to the temporal variability of ∆σ for earthquakes

in our study region. It is useful at this stage to introduce a normalized, magnitude-

adjusted ∆σ:

Z∆σ =
log10 ∆σ − E[log10 ∆σ |M0]

STD {log10 ∆σ − E[log10 ∆σ |M0]}
, (6.5)

where E[log10 ∆σ|M0] is expected ∆σ, givenM0 (Equation 6.4), and STD {·} refers

to the standard deviation. Thus the metric Z∆σ is a normalized measure of the

deviation from the expected ∆σ value of each event, conditioned on the observed

M0. This framework allows us to better isolate significant temporal variations

in ∆σ by accounting for the magnitude-scaling trend observed in Figure 6.4. In

Figure 6.6, we plot local magnitude as a function of time, with events color-coded

by Z∆σ such that bluer colors correspond to events with higher than expected ∆σ

(i.e., events enriched in high-frequency energy). Prior to September 2014, we have

few well-resolved source parameter estimates due to the sparsity in local station

coverage before the ISMP network was fully installed. Following this, in the weeks

preceding the 12 November 2014 Milan earthquake (ML5.2, MW4.9) (Choy et al.,

2016), we observe elevated levels of ∆σ. The Milan event itself has a slightly lower
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estimated ∆σ (3.6 MPa) than would be expected by extrapolating the scaling

trend of Equation (6.4), though still nearly an order of magnitude greater than

the median value of the dataset as a whole. The early aftershocks of Milan have

lower than expected ∆σ values that appear to increase with time, consistent with

observations of the Prague, OK sequence (Sumy et al., 2017; Yenier et al., 2017).

In early 2015, we observe another temporal cluster of high ∆σ events, with several

other sequences later in 2015 and 2016 exhibiting analogous behavior.

To examine the variability in ∆σ within and between prominent earth-

quake sequences, we use the method described by Zaliapin and Ben-Zion (2013)

that partitions events into individual sequences based upon nearest-neighbor space-

time distances. The nearest-neighbors method has been shown to be effective in

characterizing the space-time clustering statistics of both tectonic and induced

earthquake sequences (Schoenball et al., 2015; Zaliapin and Ben-Zion, 2016). It

defines the distance ηij between an event pair (parent i, daughter j) to be the prod-

uct of a rescaled time Tij = dtij10−Mi/2. and rescaled distance Rij = drij
d10−Mi/2.,

where dtij is the difference in time in years, drij is the spatial distance in km, Mi

is the magnitude of the parent event, and d = 1.6 is the assumed fractal dimen-

sion. Events are then linked to their nearest neighbors, and individual sequences

are defined by selecting a threshold distance ηij such that the sequences are suf-

ficiently clustered in space and time (Figure 6.7a). With sequences thus defined,

we then compare the variability in ∆σ both within and between the most promi-

nent sequences in our dataset, each of which contains at least one ML > 3.0 event



242

(the largest of which we classify as the mainshock of the sequence). Although ∆σ

typically varies by slightly more than an order of magnitude within each sequence,

median values can vary by as much as a factor of three between sequences (Figure

6.7b). Mainshock values of ∆σ tend to be higher than the median value of their

respective sequences, as expected given the observed magnitude scaling. However,

we do not observe comparable systematic differences for the magnitude-corrected

values of Z∆σ (Figure 6.7c).

These temporal and sequence-specific variations in ∆σ could be caused

by a number of factors, including local variations in geologic properties, crustal

stress heterogeneity and its redistribution during and between individual earth-

quake sequences, and time-dependent changes in anthropogenic stressing from oil

production and fluid injection. To gain insight into the latter, in Figure 6.8, we

plot Z∆σ in map view for earthquakes within our study region and compare to the

locations of active wastewater injection and enhanced oil recovery wells (Section

6.2), both of which are thought to influence seismicity rates (e.g. Rubinstein and

Mahani 2015). We do not observe a significant correlation between Z∆σ and radial

distance to the nearest active well (Figure 6.9), although it is interesting that clus-

ters of events with the highest Z∆σ values tend to be near active wells. This weak

or nonexistent dependence suggests that the presence of temporally and spatially

coherent clusters of events with similar stress drop are caused primarily by fac-

tors unrelated to a localized influence injection activity of the nearest wells, such

as local differences in fault strength, the distribution of geological or geometric
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asperities, or lithology. However, we note that because we do not have access to

daily injection records for each well, it is difficult to perform a truly quantitative

analysis in this regard.

6.5 Discussion

In this study, we use P -wave spectra from earthquakes in southern Kansas

to provide source parameter and uncertainty estimates for seismic moment (M0),

corner frequency (fc), and Brune-type stress drop (∆σ). However, we empha-

size that the absolute values of the source parameters are valid only under the

assumption of the assumed source model, which in this case is a Brune-type spec-

trum (Brune, 1970) with ω−2 high-frequency falloff (Equation 6.2 with n = 2).

Our uncertainty estimates are therefore lower bounds because they neglect the

epistemic uncertainties associated with this parameterization of the source spec-

tral model and with the assumption that a circular crack rupture (Equation 6.3)

adequately describes the relevant source physics. As discussed in Trugman and

Shearer (2017a), the strength of the inferred scaling (ε1) of ∆σ with M0 is cor-

related with the assumed high-frequency falloff rate n. If for example, the true

average n for these earthquakes is less than the canonical ω−2 value of 2 (Brune,

1970), then the scaling parameter ε1 will be lower, and more generally if n varies

on an event-to-event basis, this will bias estimates of fc and ∆σ for events in which

n differs markedly from 2. The spectra do not contain adequate signal bandwidth
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or precision to provide independent estimates of fc and n, only their joint influence

on the spectral shape.

Despite these concerns, we can still draw useful conclusions by (i) focusing

on relative variations in the source parameters, which tend to be robust with re-

spect to the model parameterization, and (ii) by comparing to other datasets of

earthquakes analyzed using the same methodological assumptions. Even from this

more cautionary perspective, we can conclude that the southern Kansas earth-

quakes are characterized by relatively low ∆σ values compared to naturally oc-

curring seismicity within tectonically active regions of California. The observed

increase in ∆σ with hypocentral depth cannot fully account for this discrepancy,

which suggests that the nucleation or rupture processes of these events may differ

in some more fundamental way. While these results are consistent with several re-

cent studies of likely-induced earthquakes (Agurto-Detzel et al., 2017; Boyd et al.,

2017; Sumy et al., 2017), others (Zhang et al., 2016; Huang et al., 2016, 2017)

have suggested that tectonic and induced events have comparable source param-

eters. These disparate conclusions may indicate that differences in local faulting

conditions, tectonic stress regime, or history of anthropogenic activity may all

play an important role. For example, the 25 earthquakes in the Guy-Greenbrier,

Arkansas earthquakes analyzed by Huang et al. (2016) differ substantially in both

their tectonic setting and exposure to widespread regional injection compared to

the southern Kansas earthquakes. Boyd et al. (2017) and Huang et al. (2017) both

suggest that variations in ∆σ within the US can be understood in the context of
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Mohr-Coulomb theory, in which the failure stress depends on hypocentral depth,

fault style, and coefficient of friction (a proxy for fault strength). The results we

present here are broadly consistent with this framework, as the shallower hypocen-

tral depths and transtensional tectonic regime of southern Kansas would portend

lower median ∆σ than in the deeper, transpressional regime of southern California.

Local variations in fault strength and its dependence on fluid injection may have

an additional modulating effect that could be explored further in future studies.

We also observe an increase in ∆σ with magnitude for the smaller events

that comprise the majority of our dataset (M < 3.5). Although the inferred scaling

is comparable to that observed in California (Trugman and Shearer , 2017a), it is

sensitive to the modeling assumptions as discussed above. Bandwidth limitations

can in some circumstances hinder the resolution of fc for smaller magnitude events

(Ide, 2003; Abercrombie, 2015; Huang et al., 2016), but we believe this effect does

not significantly influence the results presented in this study. The low median stress

drop of the southern Kansas earthquakes, when combined with the low regional at-

tenuation and wide available signal bandwidth, provides a near-optimal setting for

source spectral analyses, and indeed only a small fraction of our dataset is poorly

resolved (Figure 6.4). Further, the observed scaling is controlled fundamentally by

the shape of the stacked relative source spectra (Trugman and Shearer , 2017a) not

the inferred source parameter values of individual events. It is however possible

that this scaling trend may not extrapolate linearly to the larger magnitudes (M4

and M5) that are poorly sampled by our dataset. Still, the larger events in our
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dataset, including the ML5.2 Milan earthquake, typically have ∆σ in the 1–10

MPa range, which is 2.5–25x greater than the median value of the dataset as a

whole.

We observe coherent spatial and temporal variations and clustering of stress

drop within our study region, but these variations do not appear to have a clear

relation with distance to nearby injection and enhanced oil recovery wells. This

is perhaps not surprising, as we lack adequate spatial and temporal resolution

within the publicly available data to disentangle its effect from the other fea-

tures controlling source properties. Further, while the first-order influence of in-

jection on seismicity rate is apparent based on comparison to the historical record

(Buchanan, 2015; Buchanan et al., 2014; Weingarten et al., 2015; Choy et al.,

2016), its immediate influence on source properties is more nebulous both from

an observational perspective due to the lack of historical precedent, and from a

geophysical perspective due to the complex, nonlinear interactions between an-

thropogenic stressing and the rupture dynamics of triggered events. Sumy et al.

(2017) likewise observe both significant temporal changes in ∆σ and a lack of cor-

relation with injection well distance for aftershocks of the 2011 Prague, Oklahoma

sequence, and attribute the low observed ∆σ values to the more widespread effects

of regional injection patterns that weakened basement fault structures on regional

rather than local length scales. Fluid injection on the spatial scale of that ob-

served in southern Kansas during this time period may generate significant stress

perturbations at distances of tens of kilometers or more through a combination
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of pore pressure increase and poroelastic stressing (Segall and Lu, 2015; Goebel

et al., 2017). It is also notable that Boyd et al. (2017) observe both a mild increase

of ∆σ with M0 for their data set comprised entirely of M > 3 events, as well as

anomalously low ∆σ for select aftershock sequences in the central United States

like that of the 2014 Milan event. In addition to their utility in understanding

source dynamics, source parameter estimates may also provide observational con-

straints for seismic hazard assessment. Because ground motion intensities at high

frequencies are controlled primarily by stress drop (Boore, 2003; Baltay et al., 2013;

Yenier and Atkinson, 2014; Douglas and Edwards , 2016; Baltay et al., 2017), its

characterization is of fundamental interest to studies that aim to develop ground

motion prediction equations (GMPEs) for induced events (Atkinson et al., 2016;

Atkinson and Assatourians , 2017; Yenier et al., 2017). In this study, we observe

quantifiable time-dependent and depth-dependent variations in stress drop, both

of which are in accord with the conclusions of Yenier et al. (2017) and Atkinson

and Assatourians (2017) for ground motions of recent seismicity in Oklahoma.

This consistency suggests that the results we present could potentially serve as a

basis for future studies focused on quantifying the influence that spatiotemporal

and depth-dependent variations in earthquake source properties may have on the

observed ground motion amplitudes of induced earthquakes in the central United

States.
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6.6 Summary

We estimate seismic moment, corner frequency, and Brune-type stress drop

for 2069 ML1.5–5.2 earthquakes occurring from 2014–2016 in an active area of

wastewater injection and oil and gas production in southern Kansas. We find

that these earthquakes have relatively low stress drop values that increase with

hypocentral depth. We observe an increase in median stress drop as a function of

magnitude for the M1.5–3.5 earthquakes that comprise the majority of our dataset.

However, this scaling trend may partially slow or saturate at higher magnitudes,

and its strength is sensitive to the parameterization of the assumed source model.

We find coherent temporal and spatial variations in the source parameters of earth-

quakes in southern Kansas, but these variations are not systematically related to

the activity of nearby wastewater injection and enhanced oil recovery wells.
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Figure 6.1: Map view of 2014–2016 southern Kansas seismicity, with the relo-
cated epicenters of events considered in this study shown in gray, and the sub-
set of these events for which we obtain source parameter estimates shown in
black. Local station coverage (red triangles) and locations of active wastewa-
ter disposal and enhanced oil recovery wells (green inverted triangles) obtained
from the Kansas Corporation Commission (http://kcc.ks.gov, last accessed April
2017), and ANSS ComCat focal mechanism estimates (https://earthquake.usgs.
gov/earthquakes/search/, last accessed May 2017) for M3 and greater events are
shown for reference. Thin and thick brown lines correspond to county and State
boundaries, respectively.

http://kcc.ks.gov
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
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Figure 6.2: Example of stacked source spectra from earthquakes in southern
Kansas, before and after the EGF correction for common path effects (see text
for details). Panel (a) shows stack-averaged relative source spectra, binned by
spectral moment Ω0 (logarithmic scale), prior to the EGF correction. Panels (b)
and (c) both show EGF-corrected stacked source spectra (solid black lines) and
a comparison to theoretical source spectra (dashed blue lines), with the implied
corner frequency of each stack (blue dots) and the EGF spectrum (red line) marked
for reference. In panel (b), the EGF is estimated with a self-similarity (constant
stress drop) constraint, and provides a significantly worse fit than the EGF in panel
(c) with no such constraint.
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a) b)

Figure 6.3: Scatterplots showing the relation between (a) ML and log10 Ω0 and
(b) MW and ML for the southern Kansas earthquakes. The best-fitting regression
line in each panel is marked with a solid red line and labeled in the upper left
inset.
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Figure 6.4: The distribution and magnitude-scaling of corner frequency (fc) and
stress drop (∆σ) for southern Kansas earthquakes. The top panels show histograms
of (a) the total ∆σ distribution, marginalized over all magnitudes and (b) distri-
butions corresponding to different magnitude ranges. The gray bars in panel (b)
correspond to the total histogram (for all magnitudes) shown in panel (a). The
bottom panels show the scaling of (c) fc and (d) ∆σ with seismic moment M0.
Black dots correspond to measurements of source properties for individual events,
and the median fc and ∆σ in M0 bins of width 0.4 (log10 N-m units) are marked
with orange squares. The best-fitting scaling parameter ε1 for the binned data
(obtained from weighted regression analysis, see text for details) is plotted with
a solid orange line, and its numerical value and two-sigma uncertainty is listed in
the panel (d) inset. The dashed black lines in panel (c) correspond to constant-
∆σ contours of 0.1, 1, 10, and 100 MPa. Open circles denote events with poorly
resolved fc due to bandwidth limitations (fc > 25Hz or bootstrap inter-quartile
uncertainty > 5 Hz).
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Figure 6.5: Depth-dependence of (a) corner frequency fc, (b) stress drop ∆σ,
and (c) seismic moment M0. Black dots correspond to measurements of source
properties for individual events, and the median fc, ∆σ, M0 values in depth bins
of 1 km are marked with orange squares. Open circles denote events with poorly
resolved corner frequencies due to bandwidth limitations (fc > 25Hz or bootstrap
inter-quartile uncertainty > 5 Hz).
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Figure 6.6: Temporal evolution of source parameters in southern Kansas. Mag-
nitude (ML) versus time, with events color-coded by magnitude-adjusted, normal-
ized stress drop Z∆σ (Equation 6.5), with bluer colors indicating higher normalized
stress drop. Local station coverage is sparse before September 2014, resulting in
fewer events with resolvable source parameter estimates during this time.
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Figure 6.7: Variability of source parameters within and between different earth-
quake sequences in southern Kansas. (a) Joint probability density of rescaled time
Tij and rescaled distance Rij (log-log scale) for the nearest-neighbor cluster identi-
fication method (Zaliapin and Ben-Zion, 2013). The black dashed line corresponds
to the threshold distance ηij used to partition events into individual sequences. (b)
Boxplot distribution of ∆σ (MPa) for prominent earthquake sequences in south-
ern Kansas. Sequences medians are denoted with a solid horizontal line, while
the box and whiskers denote the inter-quartile range (50% confidence interval)
and 90% confidence interval, respectively. ∆σ values for the largest event in each
sequence (mainshocks) are marked with stars, and the corresponding magnitudes
are listed along the x-axis. (c) Similar to panel (b), but for the distribution of
magnitude-adjusted, normalized stress drop Z∆σ (Equation 6.5).
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Figure 6.8: Map view of southern Kansas source parameter estimates, with events
color-coded by magnitude-adjusted, normalized stress drop Z∆σ (Equation 6.5),
with bluer colors indicating higher stress drop. Locations of active wastewater
disposal and enhanced oil recovery wells are shown for reference (green triangles).
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Figure 6.9: Stress drop ∆σ (top, MPa) and magnitude-adjusted, normalized
stress drop Z∆σ (Equation 6.5, bottom) plotted as a function of distance to the
nearest active injection well. Median values in 0.75km bins marked with orange
squares.
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Chapter 7

Strong correlation between stress

drop and peak ground

acceleration for recent seismicity

in the San Francisco Bay Area

Abstract

Theoretical and observational studies have suggested that between-event

variability in the median ground motions of larger (M ≥ 5) earthquakes is con-

trolled primarily by the dynamic properties of the earthquake source, such as

Brune-type stress drop. Analogous results remain equivocal for smaller events due

to the lack of comprehensive and overlapping ground motion and source parameter
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datasets in this regime. Here we investigate the relationship between peak ground

acceleration (PGA) and dynamic stress drop for a new dataset of 5297 M ≥ 1.5

events occurring in the San Francisco Bay Area from 2002 through 2016. For each

event, we measure peak ground acceleration on horizontal-component channels

of stations within 100km distance and estimate stress drop from P -wave spectra

recorded on vertical-component channels from the same stations. We then develop

a nonparametric ground motion prediction equation using a mixed-effects general-

ization of the Random Forest algorithm that we use to model the joint influence

of magnitude, distance, and near-site effects on observed PGA. We find a strong

correlation between dynamic stress drop and the residual PGA of each event, with

the events with higher-than-expected PGA associated with higher values of stress

drop. The strength of this correlation increases as a function of magnitude but

remains significant even for smaller magnitude events with corner frequencies that

approach the observable bandwidth of the acceleration records. Mainshock events

are characterized by systematically higher stress drop and PGA than aftershocks

of equivalent magnitude. Coherent local variations in the distribution of dynamic

stress drop provide observational constraints to support the future development

of nonergodic ground motion prediction equations that account for variations in

median stress drop at different source locations.
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7.1 Introduction

The intensity of earthquake-generated ground motion depends on a complex

interaction of source, path, and site effects. Ground motion prediction equations

(GMPEs), in which observed ground motion amplitudes are statistically modeled

as a function of magnitude, source-site distance, and other auxiliary factors, have

long served as an empirical basis for understanding the various features that most

strongly influence ground motion intensity. Although modern GMPEs have been

quite successful in modeling the first-order influence of magnitude scaling and

distance-dependent geometrical spreading and attenuation (Douglas , 2003), the

modulating influence of source complexity on earthquake ground motion remains

an area of active research that is of fundamental importance to the scientific under-

standing of earthquake rupture and the practical implementation of probabilistic

seismic hazard assessment (Bozorgnia et al., 2014; Douglas and Edwards , 2016;

Baltay et al., 2017). Probabilistic hazard forecasts are particularly sensitive to the

between-event variability in the predicted ground motion, as the hazard curve for

the time horizons of interest to the development of building codes is dominated

by the occurrence of rare events with ground motions in the tails of the inferred

probability distribution (Anderson and Brune, 1999; Bommer and Abrahamson,

2006; Cotton et al., 2013; D’Amico et al., 2017).

From a theoretical perspective, one of the most important features driving

between-event variability in ground motion is variability in the dynamic stress drop
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(or stress parameter) of the events in question (e.g., Atkinson, 1990; Atkinson and

Morrison, 2009; Baltay et al., 2013; Baltay and Hanks , 2014; Yenier and Atkinson,

2014). The dynamic stress drop as formulated by Brune (1970, 1971) can be

estimated entirely from the seismically-observed spectra of waveforms recording

an earthquake, and is typically used as proxy for the relative proportion of high-

frequency energy radiated by the earthquake source during rupture (Atkinson and

Beresnev , 1997). For larger (M ≥ 5) earthquakes, finite fault effects cause ground

motion amplitudes to saturate with increasing magnitude, and thus the near-source

ground motion amplitude is controlled primarily by stress drop (Baltay and Hanks ,

2014).

Numerous observational and theoretical studies have validated this basic

correlation between stress drop and ground motion (e.g., Hanks 1979; Hanks and

McGuire 1981; Boatwright 1982; Boore 1983, 2003; Baltay et al. 2013; Yenier and

Atkinson 2015; Lior and Ziv 2017; Oth et al. 2017). However, the precise func-

tional form of this relation remains poorly understood, and in particular the ways

in which the relative influence of stress drop varies in response to other interacting

factors such as magnitude, distance, depth, and source region. Progress towards

resolving these questions may provide a considerable step forward in reducing the

epistemic uncertainties associated with ground motion prediction (Anderson and

Brune, 1999). However, exploring the influence of stress drop requires careful anal-

yses of extensive joint datasets of ground motion recordings and source parameter

estimates, which historically have been produced independently and for sparsely
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overlapping earthquake sequences with few events in common.

In this study, we focus on the relationship between peak ground acceleration

(PGA) and dynamic stress drop for a new dataset of more the 5000 earthquakes oc-

curring in the vicinity of the San Francisco Bay Area, CA, from 2002 through 2016

(Figure 7.1). We use the spectral decomposition technique of Trugman and Shearer

(2017) to derive dynamic stress drop estimates from P -wave spectra recorded on

vertical component channels of broadband and short-period stations. We then mea-

sure PGA using the full waveform, horizontal component records of these events

at the same set of stations. Analysis of between-event variability in ground motion

requires a reference GMPE that models the scaling of ground motion intensity as

a function of magnitude and external features unrelated to the source, such as dis-

tance and local site effects. The set of existing GMPEs designed for earthquakes

in California were derived from records of earthquakes that sample different source

regions and magnitude ranges than those that comprise our dataset, and hence

would be inappropriate to extrapolate for this purpose.

We instead apply a novel, data-driven approach based on the Random For-

est algorithm (Breiman, 2001) to derive a nonparametric GMPE that can be used

to correct the observed ground motion amplitudes for the interacting effects of

geometrical spreading, attenuation, magnitude scaling, and near-site effects. This

approach has the advantage over techniques based on linear regression in that it

can account for complex interactions between these features without risk of over-

fitting observational noise within the data or introducing systematic trends with
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magnitude or distance into the residuals from the model prediction (e.g. Bindi

2017). We use this framework to define a between-event residual term that quan-

tifies the empirical contribution of each event to the observed ground motion. The

unbiased precision of the Random Forest GMPE is particularly useful in this con-

text as it permits a detailed examination of the physical correspondence between

PGA and the dynamic properties of the earthquake source.

7.2 Study Region and Waveform Data

We examine earthquakes occurring from 2002 through 2016 within a re-

gion encompassing the San Francisco Bay Area, California (latitude and longitude

bounds of [37.0, 38.5] and [-123.0, -121.5], respectively). This region is of partic-

ular interest for earthquake hazard analysis due to its active seismicity and high

population density. Major fault systems within this region include the San An-

dreas Fault near the San Jose and San Francisco metro areas and the Hayward and

Calaveras faults in the Oakland/East Bay metro area (Waldhauser and Ellsworth,

2002; Hardebeck et al., 2007; Hardebeck and Aron, 2009). Numerous other subpar-

allel faults of varying seismicity rate also strike through this region (Field et al.,

2014). The 24 August 2014 MW6.0 South Napa earthquake is the largest earth-

quake occurring near the Bay Area during our study period (Brocher et al., 2015;

Dreger et al., 2015; Ji et al., 2015; Wei et al., 2015), and it triggered hundreds of

aftershocks throughout the West Napa fault system and surrounding region over
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the subsequent months (Hardebeck and Shelly , 2016; Llenos and Michael , 2017).

Earthquakes occurring in the San Francisco Bay Area during our study pe-

riod are well-recorded by the Northern California Seismic Network (NCSN). We

obtain NCSN waveforms archived by the Northern California Earthquake Data

Center (NCEDC) using the eventdata query system (see Data and Resources Sec-

tion). We restrict our analysis to the subset of earthquakes with catalog magnitude

(typically MD) of 1.5 and greater that have been relocated using waveform cross

correlation based techniques (Waldhauser and Schaff , 2008). P -wave spectral es-

timates are derived from the vertical component HN, EH, and HH channels at

stations with an epicentral distance from the source of less than 100km. PGA

estimates are derived from the geometric mean of the horizontal components of

the same set of stations. The eventdata query system provides waveform data in

miniSEED format, which we then convert to SAC format in order to use the SAC

waveform processing subroutines (see Data and Resources Section).

7.3 Methods

7.3.1 Source spectral analysis and dynamic stress drop

Measurements of the dynamic properties of the earthquake source, including

the dynamic stress drop, ∆σ, are derived from spectra of earthquake waveforms.

We obtain estimates of ∆σ for the earthquakes in our study region using the spec-

tral decomposition approach described in detail by Trugman and Shearer (2017),

eventdata
eventdata
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and summarize only the essential points of the algorithm here. As discussed by

Atkinson and Beresnev (1997) and others, it is important to understand that the

dynamically-measured ∆σ based on the Brune (1970) model of earthquake source

spectra may differ from the true, static stress release on the fault plane, and hence

the dynamic ∆σ is better conceptualized as a measure of the frequency content

of the earthquake source. For this reason, ∆σ is often referred to as the stress

parameter, rather than stress drop, in the ground motion and earthquake hazard

literature, but we continue to use the term stress drop for consistency with previous

earthquake source studies.

The conceptual framework underlying the spectral decomposition method

can be understood by noting that for sufficiently large and well-recorded waveform

datasets such as that of our Bay Area study region, each earthquake is recorded

by many stations, each station records many earthquakes, and each source-receiver

raypath is sampled (to good approximation) many times. Thus, each of the three

main contributions to the observed waveform spectra – the source, the path, and

the site – have sufficient observational constraints to be resolved as part of an

overdetermined inverse problem. Consider the waveform spectra dij(f) of event

i recorded at station j, which in general is a convolutional product of source,

site, and path effects. In the log frequency domain, these three contributions are

additive, and thus the dij at a given frequency f can be decomposed into a linear

equation of the form

dij = ei + stj + ttk(i,j) + rij, (7.1)
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where ei and stj denote the relative contribution of the source and station, ttk(i,j)

is a travel-time dependent path term that we approximate as isotropic and pa-

rameterize into k discrete travel time bins of 0.5s width, and rij is a residual error

term.

We apply spectral decomposition to the earthquakes in our Bay Area dataset

as follows. For each event, we compute P -wave spectra from the vertical component

of high broadband and short period channels (HN, HH, and EH, with a preference

for HN when available) of all NCSN stations within 100km distance. These spec-

tral estimates are obtained using a multitaper algorithm (Park et al., 1987; Prieto

et al., 2009) and a temporal window that begins 0.05s before the catalog-listed

P -phase arrival time. Each temporal window bracketing the P -phase arrival has

a window length that ranges from a minimum of 1.5s to a maximum of 4.5s, with

longer windows applied to larger magnitude events (Ross et al., 2016; Abercrombie

et al., 2017). We discard clipped waveforms and those with obvious noise spikes

using an automatic detection algorithm based on the observed amplitude distribu-

tion (Trugman and Shearer , 2017). We ensure adequate data quality and station

coverage by only considering events recorded by at least six stations in which the

average signal-to-noise amplitude is greater than 3 in each of five frequency bands:

2.5–6, 6–10, 10–15, 15–20, and 20–25Hz. We also limit our analyses to NCSN

stations that have recorded at least 50 different events.

We convert the remaining, quality-controlled spectra to units of displace-

ment and resample to a uniform frequency grid between 2.5 and 25Hz. We then
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solve equation (7.1) using an iterative, robust least-squares inversion algorithm

with outlier suppression. This spectral decomposition is effective in isolating the

relative contributions of source, path, and site at each frequency point, not their

absolute values. In order to yield source parameter estimates compatible with the

Brune [1970] model, it is therefore necessary to apply an empirical correction term

that represents path and site effects that are common to all sources, including the

average near-source and near-receiver attenuation (relative differences in average

site attenuation are incorporated into the station terms, stj, themselves). To do

so, we use the approach described by Trugman and Shearer (2017) that infers

the optimal empirical correction by fitting stacked relative source spectra (Figure

7.2a), averaged in bins of spectral moment, to a Brune-type theoretical spectrum

of the form:

ŝ( f | Ω0, fc, n) =
Ω0

1 + (f/fc)n
, (7.2)

where Ω0 is the long-period spectral moment of each stack (and is proportional to

seismic moment), fc is the best-fitting corner frequency, and n is the high-frequency

falloff rate that is fixed to 2 per the canonical ω−2 spectral model (Aki , 1967;

Brune, 1970). This technique differs from the stacking approach of Shearer et al.

(2006) in that it does not presume self-similar scaling of the stacked spectra (Figure

7.2b). A notable advantage of this technique is that the inference of the empirical

correction term is based entirely upon the shape of the stacked spectra within the

2.5–25 Hz frequency band in which we have ensured adequate signal-to-noise, and
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does not require resolving corner frequencies of individual events. We assume a

spatially uniform correction term for the results presented in this study, which

is justified based on sensitivity tests in which we found that permitting smooth

lateral variations in the inferred correction term produces statistically insignificant

differences in the final results.

The corrected source spectra are used to estimate two source parameters –

seismic moment M0 and Brune corner frequency fc – which are required to compute

the dynamic stress drop (Brune, 1970; Madariaga, 1976),

∆σ =
7

16
M0

(
fc
kβ

)3

, (7.3)

where β is the shear wave speed and k is a numerical factor that we set to 0.38

following Kaneko and Shearer (2014). M0 cannot in general be obtained directly

from the NCSN catalog, as listed magnitudes M are of mixed type but are typi-

cally duration magnitude MD for the smaller (M < 3.5) events for which moment

tensors are not routinely estimated. To obtain a uniform set of M0 (and hence

MW ) estimates for our dataset, we follow the approach of Shearer et al. (2006),

which uses a regression analysis between the observed spectral moment Ω0 and the

catalog-listed M under the assumption that on average M0 should be proportional

to Ω0. Our estimates of M0 and MW are thus constrained primarily by the spectral

amplitude at long periods, rather than the catalog-listed M values. We do how-

ever note that this approach can be used to obtain an average linear relationship

between MW and MD with a slope that is identical to within uncertainties to that
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inferred by Hawthorne et al. (2016), though with significant differences from the

best-fit line for individual events (Figure 7.S1 in the supplement to this article).

We obtain fc estimates for each event using a bounded optimization algo-

rithm that minimizes the root-mean-square residual between the corrected relative

source spectrum si(f) and the Brune theoretical spectrum ŝi(f |fc) in the 2.5–25Hz

band in which we have measured adequate signal-to-noise. To compute ∆σ given

M0 and fc, we use a fixed shear wave speed β in equation (7.3) for consistency with

previous studies of the influence of ∆σ on ground motion (Atkinson and Morrison,

2009; Bozorgnia et al., 2014; Baltay et al., 2015), and as such ∆σ should be inter-

preted as a measure of relative frequency content rather than an approximation

of static stress release. Lastly, we derive uncertainty estimates for M0, fc, and

∆σ using a bootstrap resampling procedure (Trugman and Shearer , 2017) that

assesses the variability in the measured source spectra at each station.

7.3.2 Peak ground acceleration and the Random Forest

GMPE

As our objective is to analyze the extent to which ∆σ influences ground

motion intensity (PGA), we require: (i) measurements of PGA at the stations

recording the events comprising our dataset, and (ii) a model of how median PGA

values should be expected to vary as a function of distance, magnitude, site, and

other effects unrelated to the dynamic properties of the earthquake source. In
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this section, we describe both our procedure to obtain PGA measurements for this

dataset, and our approach to model PGA using a data-driven GMPE based on a

Random Forest regression algorithm.

Although the Next Generation Attenuation West 2 (NGA-W2) database

(Bozorgnia et al., 2014) includes high-quality ground motion records of a small

subset of the events in our dataset, most of the events we consider are unlisted. To

compile a complete and self-consistent PGA database, we compute PGA as follows.

For each event, we consider horizontal-component records of stations within 100km

source-station distance (consistent with the data selection for the ∆σ computations

described in the previous subsection). Using the SAC waveform analysis software,

we then demean and detrend each record, remove the instrument response, and

convert to units of acceleration where necessary. This requires application of a

bandpass filter, which we choose to implement as a relatively gentle filter with

a lowpass transition band between 0.5 and 1.5 Hz, and highpass transition band

between 30 and 40 Hz. The latter corresponds to a significantly higher upper

corner than is used for the NGA-W2 database (Bozorgnia et al., 2014), but this

modification is necessary to analyze the lower magnitude events that comprise the

majority of our dataset. We then use an automated procedure to discard records

that have high-amplitude noise spikes or have low signal-to-noise RMS amplitudes

relative to a pre-event time window. We also exclude a small subset of events

with origin times that are nearly-overlapping (within 45s spacing of each other),

as in these cases the attribution of peak ground motions to one event or another
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becomes ambiguous. For the remaining quality-controlled records, we compute

PGA from the geometric mean of both horizontal components. For most events,

the peak amplitude is from the S-wave or surface wave, whereas our dynamic ∆σ

estimates are derived from P -waves recorded on the vertical component. Our PGA

estimates are in good agreement with respect to records that are cross-listed in the

NGA-W2 database (Figure 7.S2 in the supplement to this article).

Ground motion intensity measures such as PGA are typically modeled using

GMPEs based on linear regression. Such GMPEs predict the expected level of

ground motion log ŷ as a linear combination (w) of input features (X) that are

thought to influence ground motion amplitudes:

log ŷ = Xw (7.4)

The feature matrix X typically includes (but is not limited to) the magnitude

(usually MW ) of the earthquake and a measure of the distance R from the station

to the source (usually epicentral distance, hypocentral distance, or finite fault

generalizations such as the Joyner-Boore distance). In recent years, GMPEs based

on linear regression have tended to become more complex in order to accommodate

a larger selection of potential input features, higher-order (e.g., quadratic) terms,

and the possibility of interactions as function of magnitude and distance (e.g.

Campbell and Bozorgnia 2008; Boore et al. 2013; Yenier and Atkinson 2015).

Typically, the performance of the GMPE is measured in terms of its uncer-

tainty, often denoted σ and defined as the standard deviation of the distribution
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of residuals between the observed and GMPE-predicted ground motion intensity

(both measured in logarithmic units). Reduction in the uncertainty of the GMPE

is appealing because it leads to improved accuracy in seismic hazard forecasts, es-

pecially over long time horizons. However, because σ is measured with respect to

the dataset used to fit the model, it is not a measure of the uncertainty with respect

to future predictions (e.g., Hastie et al. 2009; Murphy 2012). Thus, a reduction in

the total σ through increased model complexity is only beneficial in cases in which

the performance of a model that is developed on the input (or training) data set is

validated by a corresponding decrease in σ with respect to an independent testing

data set (Bindi , 2017; Mak et al., 2017). Further, GMPEs based on standard linear

regression techniques may produce systematic residuals as a function of M and R

if the true interaction between features deviates from the assumed linear model

(Bishop, 2006), or if the number of observations varies significantly with M or R,

as is often the case in circumstances with limited data availability.

To study the relative influence of ∆σ on PGA for our study, we require a

GMPE with the following properties:

(i) Is applicable to the ground motions of M ≥ 1.5 earthquakes within the Bay

Area and is valid to (at least) 100km hypocentral distance.

(ii) Can be used to correct the observed PGA for the potentially nonlinear influ-

ence of and interactions between magnitude, distance, and site, which we pos-

tulate are the primary features controlling ground motion within this regime
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that are unrelated to dynamic earthquake source properties.

(iii) Does not produce systematic misfits as a function of magnitude or distance

that may bias our interpretation of residual PGA in relation to ∆σ.

(iv) Provides a comparable or better GMPE uncertainty σ as compared to estab-

lished linear regression techniques, as well as a means to assess whether this

improved performance is generalizable to an independent dataset.

(v) Is robust with respect to outlier data points, which are more common for the

recordings of the lower magnitude events that are an important part of our

dataset.

With these requirements in mind, we develop a data-driven GMPE based

on a statistical modeling technique known as a Random Forest (Breiman, 2001).

While application of Random Forests to regression problems is well-established

within the pattern recognition and machine learning community (Bishop, 2006;

Geurts et al., 2006; Hastie et al., 2009), to our knowledge this is the first application

to the modeling of earthquake ground motions. Random Forest regression models

are particularly suitable for our purposes because of their capability to handle

nonlinear feature influence and interaction, their robustness with respect to data

outliers and codependent features, and their ability to automatically assess the

predictive performance of the model through out-of-bag sampling (which we will

describe in detail below) (Louppe, 2014; Fernandez-Delgado et al., 2014).
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Random Forests use an ensemble learning approach in which a set of ran-

domized and decorrelated decision tree regressors are trained independently to

predict ground motion amplitudes, with the final prediction of the Random For-

est based on an ensemble average of the individual trees. The randomization and

decorrelation of individual tree-based regressors helps reduce the variance in the

ensemble prediction through averaging, and mitigates the tendency of individual

trees to overfit their training dataset and hence provide poor generalization to in-

dependent testing data (Breiman, 2001; Murphy , 2012). In a Random Forest, each

tree takes as input a bootstrap-resampling of the original training data set, and

at each node in the decision tree, a random subset of the features is considered

for partitioning. This multiscale randomization decorrelates the individual trees

and contributes to their robustness, both of which are advantageous to the final

ensemble model prediction.

Our implementation of the Random Forest GMPE makes use of the publicly

available scikit-learn Python programming package (Pedregosa et al. 2011, see Data

and Resources Section) with some GMPE-specific algorithm modifications that we

describe below. Specifically, our input dataset consists of the measured PGA for

the subset of well-recorded events for which we obtained estimates of MW and

∆σ (see Methods Section). We use a Random Forest to model the measured PGA

values as a nonparametric function Grf of moment magnitude MW and hypocentral

distance logRhyp, and treat the contribution of each event ∆PGAi and station ∆Sj

scikit-learn
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as random effect terms (e.g., Abrahamson and Youngs 1992; Stafford 2014):

log ŷ =
1

B

B∑
b=1

Grf
b (MW , logRhyp) + ∆PGAi + ∆Sj. (7.5)

The summation in equation (7.5) is an ensemble average of B randomized re-

gression trees that are fit to bootstrap-resampled datasets. We apply an iterative

procedure to estimate the event and station terms ∆PGAi and ∆Sj from the mean

model residuals, and in practice the algorithm converges after only 2–3 iterations.

Defined in this way, the ∆PGAi values measure the empirical contribution of each

event i to the observed ground motion amplitude (after controlling for magnitude,

source-receiver distance, and site), and the distribution of ∆PGA is a measure

of between-event variability. It is important to note that to apply the Random

Forest GMPE to predict ground motions for a new set of earthquakes, the station

terms ∆Sj will be known but in general the event terms ∆PGAi will be unknown

a priori. In this case, the expected total variability in the ground motion from the

model prediction,

σ2 = E
[
(log y − log ŷ)2

]
= τ 2 + φ2 (7.6)

can be partitioned into between-event variability (variance τ 2), defined by the

distribution of ∆PGA, and within-event variability (variance φ2), defined by the

distribution of GMPE model residuals (e.g., Atik et al. 2010; Baltay et al. 2017).

The fitting procedure of each tree involves repeatedly partitioning the in-

put data in feature space. We use scikit-learn’s ExtraTreesRegressor algorithm

(Geurts et al., 2006) for this purpose to provide an additional layer of randomiza-

scikit-learn
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tion in the partitioning level that helps decorrelate the individual trees. At each

node in a given tree, the algorithm randomly selects one of the two features (MW

or logRhyp) for partitioning. Rather than optimize performance or misfit to the

training data itself, we can use the Random Forest to synthesize an independent

testing dataset without explicitly withholding a subset of input data. To do this,

we take advantage of the fact that for each tree in the Random Forest, bootstrap

resampling leaves out approximately one third of the input data. These excluded

data points are known as out-of-bag samples, and each tree has a different subset

of in-bag and out-of-bag samples. For a sufficiently large number of trees (we use

B = 200 in this study), each data point will be left out-of-bag by multiple trees,

where it can then be leveraged as part of an independent validation dataset with

minimal computational effort. We can use this property to optimize predictive per-

formance by constraining the maximum depth of the individual trees that comprise

the Random Forest. Minimization of the misfit with respect to the set out-of-bag

samples yields an optimal tree depth of 18 (Figure 7.S3 in the supplement to this

article), which is itself a conservative choice that errs on the side of underfitting

rather than overfitting due to the slight pessimistic bias in the out-of-bag misfit

error compared to the true prediction error (Breiman, 2001; Louppe, 2014).
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7.4 Results

In total, 5297 events within our study region are sufficiently well-recorded

to meet our quality control criteria for measurements of ∆σ and PGA. Overall, we

find the ∆σ estimates of these events closely follow a lognormal distribution with

median value of 2.95 MPa and log10 standard deviation of 0.40. We observe a mild

increase of ∆σ with M0 (Figure 7.3), which we can quantify in terms of a scaling

parameter ε1 that measures the slope of the increase in log10 ∆σ with log10M0:

log10 ∆σ = ε0 + ε1 log10M0. (7.7)

A weighted regression analysis based on median values in bins of width 0.4 in

log10M0 yields a scaling parameter ε1 = 0.06, which is consistent with the scaling

inferred from the shape of the stacked spectra (Figure 7.2), but shallower in slope

and hence closer to the self-similar value of ε1 = 0 than any of the five southern

California study regions analyzed by Trugman and Shearer (2017).

Both fc and ∆σ increase slightly as a function of depth within the up-

per 8km of the crust (Figure 7.3cd), but we do not observe an analogous depth-

dependence in M0 (Figure 7.3e). These trends would be consistent with an increase

in average rupture velocity with depth, although other systematic variations in

rupture characteristics or fault geometry may also contribute. If we examine the

spatial patterns of ∆σ in map view (Figure 7.4), we observe variations in median

∆σ on regional length scales, but significant coherence in ∆σ within more localized

and spatially compact clusters of events. For example, ∆σ values are relatively high
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along the peninsular San Andreas Fault and the southern portion of the Calaveras

Fault to the south of its junction with the Hayward Fault. Median ∆σ values are

markedly lower along the northern segment of the Calaveras Fault near the Mt.

Diablo Thrust and the stepover with the Concord-Green Valley Fault. Seismicity

along the Hayward and Rodgers Creek faults tends to exhibit intermediate ∆σ

values, though with some systematic along-strike variations.

The GMPE modeling procedure described in Section 7.3.2 provides esti-

mates of between-event residual ground motions (∆PGA) that measure the devi-

ation between the observed and model-predicted ground motion amplitude. We

observe a strong correlation between ∆σ and ∆PGA (Figure 7.5), which suggests

that variations in dynamic source properties have a significant influence on the

between-event variability in ground motion. The strength of this correlation in-

creases as a function of magnitude, with a correlation coefficient of 0.46 for MW

< 2.25, compared to 0.62 for 2.25 < MW < 2.50 and 0.74 for MW > 2.50. The

magnitude-dependence of this correlation is expected, as the measured ground mo-

tion amplitude is influenced by attenuation along the raypath from source to site,

which tends to mask or dampen the high-frequency energy typical of smaller earth-

quake sources (e.g, Baltay and Hanks , 2014). It is also notable that the variability

in ∆PGA increases significantly with magnitude, with a log10 standard deviation

in ∆PGA of 0.11 for MW < 2.25 and 0.13 for 2.25 < MW < 2.50, compared to 0.18

for 2.50 < MW < 3.00 and 0.26 for 3.00 < MW < 4.00. Meanwhile, the variability

in ∆σ is nearly constant with magnitude. We discuss this effect further in the
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following section.

In map view, the spatial patterns of ∆PGA mirror those of ∆σ (Figure 7.4),

with spatial coherence on local length scales, but significant variations in median

values across the study region. The strength of the correlation remains unchanged

whether one considers the absolute value of ∆σ, or a magnitude-adjusted, relative

stress drop (Trugman and Shearer , 2017) that corrects for the mild increase in ∆σ

with M0 (Figure 7.S4b in the supplement to this article). In contrast, the event

term ∆PGA exhibits a rather weak relationship with source depth (Figure 7.S4c in

the supplement to this article), except perhaps for the shallowest of source depths

(0–3km) where rupture of weaker lithology may tend to reduce ground motion

amplitudes. Likewise, the strong observed correlation between ∆σ and ∆PGA is

not simply a result of the observed depth-dependence of ∆σ, as the correlation

remains nearly as strong (Figure 7.S4d in the supplement to this article) if we

compute a depth-adjustment to our ∆σ estimates based on the median trend with

depth shown in Figure 7.3d.

The Random Forest GMPE provides a consistently good fit to the observed

distribution of PGA, and does not exhibit any significant biases with magnitude,

distance, or site (Figure 7.6a). To get a sense for the performance of this model

relative to linear GMPEs, we compare the Random Forest GMPE to two analogous,

mixed-effects linear regression models (e.g., Campbell and Bozorgnia 2008; Bindi
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et al. 2011; Kurzon et al. 2014) of the form:

log ŷ = a0 + a1M + a2 logR + ∆PGAi + ∆Sj (7.8)

log ŷ = b0 + (b1 + b2M) logR + b3R + b4M + b5M
2 + ∆PGAi + ∆Sj (7.9)

where {ak} and {bk} are linear regression model coefficients, and ∆PGAi and ∆Sj

are event and station random effect terms analogous to those in the Random For-

est GMPE. Equation (7.8) is a relatively simple 1st-order linear regression model

(Figure 7.6b) that accounts for the first-order influence of magnitude, geometrical

spreading, and site, while the model described by equation (7.9) allows for more

complexity (Figure 7.6c) through higher-order features, interaction terms, and a

linear term in R to account for attenuation. In both cases, the Random Forest

GMPE provides a better fit to the data, both in terms of the total misfit σ (0.634

for the Random Forest compared to 0.698 and 0.679 for the regression models), and

its lack of systematic trends in misfit as a function of M and R (Figure 7.6). For

this comparison, it is important to note that we have guarded against the potential

for the Random Forest GMPE to overfit the data using the out-of-bag sampling

procedure described in the Methods Section. While it may be possible to devise

a more complex linear regression model to match its performance, this simple ex-

periment is sufficient to motivate the use of the Random Forest GMPE for our

purposes, and we discuss its potential application to future GMPE development

in the following section.

From a practical perspective, one question of interest is whether on not
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there are systematic differences in the distributions of ∆σ or ∆PGA between

mainshock and aftershock events. Many established GMPE models either exclude

aftershock events entirely from the model fit or explicitly include an adjustment

factor that quantifies the difference in expected ground motion intensity of the two

classes of events (Douglas and Edwards , 2016). However, distinguishing between

mainshock events and their associated aftershocks is often difficult in practice,

as exemplified by the wide range of plausible declustering algorithms designed to

accomplish this task (van Stiphout et al., 2012). The classical space-time win-

dowing method of Gardner and Knopoff (1974) is widely used for this purpose

in studies of large-magnitude mainshock-aftershock sequences, in part due to its

simplicity and insensitivity to the absence of smaller events in a given ground

motion database (Wooddell and Abrahamson, 2014). However, the Gardner and

Knopoff (1974) declustering algorithm is not optimal for use in this study for two

reasons. First, the formulas for the space-time windows are designed for larger

magnitudes than those that comprise much of our dataset, and an extrapolation

leads to poorly defined mainshock-aftershock classifications. Second, the Gard-

ner and Knopoff (1974) cannot be used directly to group events into individual

mainshock-aftershock sequences due to the nonuniqueness that occurs in cases of

overlapping space-time windows.

We instead apply the magnitude-space-time nearest-neighbors method of

(Zaliapin and Ben-Zion, 2013), which has been used effectively to characterize

clustered seismicity in numerous previous studies. The nearest-neighbor algorithm
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is more complicated and has more free parameters to consider than Gardner and

Knopoff (1974) declustering, but is appropriate for the magnitude of our dataset

and has the additional advantage that it can be used to define individual se-

quences of events in which the nearest neighbors are closely linked in distance-time-

magnitude space. For the purposes of this study, we denote the largest event in

each sequence as a mainshock (including those events within singleton sequences),

and denote the remaining events as aftershocks. In applying the Zaliapin and Ben-

Zion (2013) algorithm, we use the full set of M ≥ 1.1 events within the relocated

catalog of Waldhauser and Schaff (2008), rather than just the 5297 that comprise

our database. Doing so helps mitigate potential clustering artifacts related to the

edge effects of events outside but adjacent to our study region in space and time,

as well as those within our study region but beneath the nominal completeness of

our database.

If one compares the distribution of ∆σ for events classified as mainshocks

and aftershocks (Figure 7.7a), it is apparent that the mainshocks exhibit systemati-

cally higher values of ∆σ than do aftershocks of equivalent moment. The difference

between the median ∆σ values of mainshocks and aftershocks is slightly larger for

high M0 events than for low M0 events, and indeed the two classes are virtually

indistinguishable for the smallest events in our dataset. An analogous trend is

observed for the between-event residual ∆PGA, which is to be expected given the

strong correspondence between ∆σ and ∆PGA (Figure 7.7b). These results are

broadly consistent with previous studies examining the short-period ground motion
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amplitudes of larger magnitude mainshocks and aftershocks (Campbell and Bozorg-

nia, 2008; Boore et al., 2013; Wooddell and Abrahamson, 2014; Yenier et al., 2017).

The existing literature on possible mainshock versus aftershock differences in ∆σ

is more equivocal, with various studies finding similar results to those presented

here (e.g., Izutani , 2005; Mayeda et al., 2007; Sumy et al., 2017; Cramer , 2017;

Boyd et al., 2017), while others observe no such trend (e.g. Allmann and Shearer ,

2009; Viegas et al., 2010; Baltay et al., 2013; Abercrombie et al., 2017).

As noted above, the nearest-neighbors method of Zaliapin and Ben-Zion

(2013) can be used to group events into individual earthquake sequences that

are clustered in space and time. We use this framework to examine ∆σ and

∆PGA for the most prominent sequences in our dataset. We limit our analysis

to sequences in which the largest event (the mainshock) has MW ≥ 3.0 and that

contain at least ten other (aftershock) events with measured values of ∆σ and

∆PGA. Mainshock ∆σ estimates are higher than the median value for all ten

sequences (Figure 7.7c) that meet this criteria, while the same is true for ∆PGA

for nine of the ten sequences (Figure 7.7d). Median sequence values of ∆σ and

∆PGA are strongly correlated, while the correlation for within-sequence variability

is somewhat weaker but still significant. These observations suggest that analysis

of the relation between source parameters and sequence-specific ground-motion

data may warrant further consideration for Operational Earthquake Forecasting

and real-time hazard assessment (e.g., Jordan et al. 2011; Page et al. 2016).
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7.5 Discussion

In this study, we present evidence for a strong correlation between dynamic

stress drop (∆σ) and residual ground motion (∆PGA). Although this correspon-

dence has been previously documented for large earthquakes, our study brings

to light several new aspects of this relation that have important implications for

our understanding of how variability in earthquake source properties can influence

earthquake hazard. First, we augment the existing literature with a new, jointly

derived dataset of source parameter and ground motion estimates for contemporary

seismicity in the San Francisco Bay Area (Table S1 in the electronic supplement

to this article). The events included within this dataset sample a wide magnitude

range and include smaller-magnitude events than is typical for ground motion stud-

ies, allowing us to examine how the relationship between ∆σ and between-event

variability in PGA varies as a function of magnitude. In so doing, we find that the

observed correlation between ∆σ and PGA weakens with decreasing magnitude,

but is still apparent for the smallest events in our dataset.

The relation between ∆σ and PGA has been studied extensively using the-

oretical point source models and random vibration theory (Boore, 1983, 2003;

Baltay and Hanks , 2014; Yenier and Atkinson, 2014) in which the acceleration

spectra are typically assumed to be Brune-type and thus flat within the frequency

band fc < f < fmax. In this model, the parameter fmax is used as a proxy for the

effects of attenuation, especially in the shallow subsurface near the site (Hanks ,
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1982; Anderson and Hough, 1984). The observed increase in the strength of the

correlation between ∆σ and ∆PGA with increasing M is consistent with the pre-

dictions of this model, as smaller M events have higher fc on average and thus

less bandwidth between fc and fmax. However, the fact that we still observe a

significant correlation between ∆σ and ∆PGA even for the smallest events in our

dataset is somewhat unexpected, and is perhaps suggestive of the limitations in

validity of these theoretical models of acceleration spectra within this regime.

Studies of smaller magnitude events are also useful in the sense that they

can provide a sufficient density of events to examine spatial variations in source

properties or ground motion amplitudes. Earthquakes in our study region exhibit

both local coherence in median ∆σ and ∆PGA as well as systematic variations in

these median values over larger, regional length scales throughout the Bay Area.

If this finding that the distribution of ∆σ and hence ∆PGA varies as a function

of source region is robust, it would provide an important observational constraint

for the reduction of epistemic uncertainty in ground motion models through the

removal of the ergodic assumption (Anderson and Brune, 1999; Atik et al., 2010;

Lin et al., 2011; Stafford , 2014; Baltay et al., 2017). One relatively simple imple-

mentation of nonergodicity would be to allow predicted ground motions to vary as

a function of source region, guided by the spatial statistics and correlation length

scales of the ∆σ estimates. This model would effectively assume time stationarity

in average source properties — that the distribution of ∆σ recorded to date is

representative of the expected values of ∆σ of future events — which is a topic
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that warrants further study.

The between-event variability in ∆PGA for events in our dataset is sig-

nificantly less (log10 standard deviation of 0.16) than would be implied by the

between-event variability in ∆σ (log10 standard deviation of 0.40). This paradox

has been discussed in many previous studies (e.g., Cotton et al., 2013; Baltay et al.,

2013; Oth et al., 2017), and we do not presume to offer a satisfactory resolution,

only additional observational constraints. Measurements of ground motion ampli-

tudes are relatively simple and require fewer modeling assumptions than analogous

source spectral estimates. It is therefore possible that the combined effects of mea-

surement uncertainties (e.g., precision in the resolution of the corner frequency)

and uncertainties associated with the model parameterization (e.g., the deviation

of the spectra of real earthquakes from the idealized Brune model) may account

for a significant fraction of this disparity. The fact that the nominal measure-

ment uncertainties in ∆σ as computed from a bootstrap analysis of the apparent

source spectra (Trugman and Shearer , 2017) are comparable to the within-event

variability in PGA (median log10 values of 0.219 and 0.214, respectively), suggest

that the latter may be an important consideration. Another key difference is that

measurements of ∆σ that are derived from source spectra must explicitly account

for raypath and near-site attenuation, while measurements of ground motion in-

tensities are effectively dampened because they apply no such correction for atten-

uation, and are further band-limited through the application of bandpass filtering.

The damping of PGA variability from attenuation effects should be stronger for
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smaller earthquakes because of their higher frequency content. Our results support

the importance of this damping effect, as the variability in ∆PGA is observed to

increase significantly with magnitude (Figure 7.5), while the variability in ∆σ does

not. For MW 3 to 4 earthquakes, the ratio of log ∆PGA to ∆σ variability is 0.58,

only 30% less than the theoretically expected value of 5/6 (Cotton et al., 2013) in

the absence of attenuation.

One further issue we can address using the Random Forest GMPE is the

possibility that the measured between-event variability in PGA is biased low rela-

tive to the true value. This situation could potentially arise if true dynamic source

effects are absorbed into the modeled ground motion through correlations of source

properties with explicitly modeled features or data selection artifacts. To test for

this possibility, we generate a synthetic PGA dataset δyij in which we replace the

measured between-event residual ∆PGAi with a synthetic residual δPGAi equal

to the deviation in PGA predicted by the deviation δσi in stress drop from the

average value (Cotton et al., 2013):

δPGAi =
5

6
δσi, (7.10)

(where δPGA and δσ are both measured in consistent logarithmic units). We then

apply the algorithm described in the Methods Section to fit the synthetic dataset

with a Random Forest GMPE and hence derive model estimates of the between-

event residuals of the synthetic dataset. The estimated synthetic residuals closely

match the input synthetic distribution and are thus consistent with the observed
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∆σ variability (Figure 7.8), which suggests that we can rule out GMPE modeling

artifacts as the cause of the disparity between the variability in ground motion and

stress drop.

A final point worthy of discussion is our new approach to GMPE modeling

based upon a mixed-effects generalization of the Random Forest algorithm. There

are advantages and disadvantages inherent to using this technique, but we argue

that the former outweigh the latter for the purposes of this study, and perhaps for

several other potential applications of ground-motion modeling and estimation.

The most appealing aspect of Random Forest in the context of GMPEs is its abil-

ity use an arbitrarily complex set of features to make robust predictions without

the need to specify a parametric form for the relationship between these predictive

features and the target response: a ground motion intensity measure like PGA.

The Random Forest GMPE described in this study is simplistic in that it only

uses two such features – magnitude and source-site distance – to predict PGA, but

the same basic framework could easily be extended to include a much wider range

of potential features and to make predictions for other intensity measures such

as peak ground velocity or spectral acceleration at different periods. This would

be particularly useful for GMPEs designed to predict ground motion intensity of

large-magnitude events, in which predictive features related to finite fault rupture

such as hanging wall effects and directivity, or those related to nonlinear site re-

sponse, could be included in the model without defining a functional form for their

influence on ground motion intensity. One could then examine the various metrics
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of feature importance derived from the Random Forest model fit (Breiman, 2001)

to evaluate which of these input features provide the most fundamental constraints

on predicted ground motions.

The primary disadvantage to the Random Forest approach is that its lack

of a parametric form makes it more difficult to export for application by external

users. However, this drawback is easily overcome with only modest knowledge

of computer programming and statistical theory, as we demonstrate in the form

of a Python script available in the electronic supplement to this article. The

nonparametric form of the Random Forest is in fact critical to its performance, as

it mitigates the tendency for parametric models to introduce biased predictions or

model residuals that vary systematically as a function of magnitude and distance.

Instead, the algorithm used to train each tree in the Random Forest involves

iteratively searching for and refining an optimal partitioning in feature space that

minimizes the predictive misfit. This procedure, when combined with ensemble

averaging of randomized and hence decorrelated individual trees, helps ensure that

the Random Forest predictions are both robust to data outliers and are valid locally

within feature space. Lastly, Random Forest regressors automatically provide a

means of predictive validation through the evaluation of the the out-of-bag σ, and

in this way allows the user to assess its expected performance and uncertainty with

respect to future predictions.
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7.6 Summary

We examine the relation between Brune-type stress drop (∆σ) and ground

motion amplitudes (PGA) for M ≥ 1.5 earthquakes occurring near the San Fran-

cisco Bay Area, California from 2002 through 2016. We estimate ∆σ for each

event using a spectral decomposition method applied to vertical component P -

wave spectra recorded by NCSN stations within 100km. We then measure PGA

from horizontal component channels of the same set of stations, and develop a

nonparametric GMPE using a mixed-effects implementation of the Random For-

est algorithm. We use this GMPE to examine between-event variability in ground

motion by defining event terms, ∆PGA, as the average residual between the ob-

served and model-predicted ground motion, given MW , Rhyp, and station. The

between-event residual ∆PGA exhibits a strong correlation with ∆σ, especially

for earthquakes with MW ≥ 2.5. Estimated values of ∆σ and ∆PGA are slightly

higher for mainshocks than for aftershocks for the dataset as whole and for indi-

vidual earthquake sequences in particular. Local coherence in the spatial patterns

of ∆σ and ∆PGA supports future research into nonergodic GMPEs in which the

distribution of expected ground motion depends on the location of the source re-

gion.
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Data and Resources

Waveform data, earthquake catalogs, and station metadata for this study

were accessed through the Northern California Earthquake Data Center (NCEDC)

and are publicly available from http://service.ncedc.org/ (last accessed August

2017). We use waveform analysis software for data in miniSEED and SAC format

that is publicly available as part of the Incorporated Research Institutions for

Seismology (IRIS) consortium (http://ds.iris.edu/ds/nodes/dmc/software/, last

accessed July 2017). The mapped faulting structures shown in Figure 7.1 were

obtained from the United States Geological Survey Quaternary Fault and Fold

Database for the United States (http//earthquakes.usgs.gov/hazards/qfaults/, last

accessed June 2017). The ground motion data associated with this study is avail-

able as Table S1 in the electronic supplement to this article. We use functions

from the scikit-learn Python programming package (Pedregosa et al., 2011) for our

analyses in this study, and we provide an example script of our implementation of

the Random Forest GMPE in the electronic supplement to this article.
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Figure 7.1: Map view of the San Francisco Bay Area study region. M ≥ 1.0
seismicity from the relocated catalog of Waldhauser and Schaff (2008). Focal
mechanisms for M ≥ 3.5 events, NCSN station coverage, and mapped fault struc-
tures (see Data and Resources) are shown for reference.
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Figure 7.2: Stacked relative and corrected source spectra from earthquakes in the
San Francisco Bay Area. (a) Stacked relative source spectra, binned by spectral
moment Ω0 (logarithmic scale), prior to the application of the empirical correction
term that accounts for common path effects. (b) Corrected source spectra (solid
black lines), and comparison to Brune-type theoretical spectra (dashed blue lines).
The implied corner frequency of each stack (blue dots) and the correction spectrum
(red line) are marked for reference.
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Figure 7.3: Distribution, scaling, and depth-dependence of M0, fc, and ∆σ. In
panels (a) and (b), corner frequency fc and stress drop ∆σ are plotted versus
seismic moment M0. Black dots in panels correspond to measurements of source
properties for individual events, and the median fc and ∆σ in M0 bins of width 0.4
(log10 N-m units) are marked with red squares. The best-fitting scaling parameter
ε1 for the binned data is plotted with a red line, with its numerical value and two-
sigma uncertainty listed in the panel (d) inset. The dashed black lines in panel
(b) correspond to constant-∆σ contours of 0.1, 1, 10, and 100 MPa. Events with
poorly resolved corner frequencies due to bandwidth limitations are marked with
open circles. Panels (c), (d), and (e) show the depth-dependence of fc, ∆σ, M0,
with the trend of median values in bins of 2km width marked with solid red lines.
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Figure 7.4: Spatial variations in stress drop and between-event ground motion
residual for events within the San Francisco Bay Area study region.
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Figure 7.5: Correlation between stress drop, ∆σ, and between-event residual,
∆PGA, for events within the San Francisco Bay Area study region. Each panel
corresponds to events within four distinct magnitude ranges: (a) 2.00 ≤ MW ≤
2.25, (b) 2.25 ≤ MW ≤ 2.50, (c) 2.50 ≤ MW ≤ 3.00, (d) 3.00 ≤ MW ≤ 4.00.
The number of events N , the log10 standard deviations s∆σ and s∆PGA, and the
correlation coefficient rcorr are labeled in the inset of each panel.
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Figure 7.6: Random Forest GMPE model fit and comparison to mixed-effects
linear regression. (a) Random Forest model prediction for PGA as a function of
hypocentral distance (Rhyp, x-axis) and moment magnitude (MW , colored lines).
Median values of observed PGA, binned by Rhyp and color-coded by magnitude
range, are shown with diamond markers. Both the observations and model predic-
tions have been corrected for station effects based upon the station terms inferred
using the iterative procedure described in the text. Panels (b) and (c) show model
fits for the first-order and second-order linear regression models defined by equa-
tions 7.8 and 7.9.



307

Figure 7.7: Differences in the distributions of stress drop and ground motion am-
plitudes of mainshock and aftershock events. (a) Stress drop ∆σ and (b) between-
event residual ∆PGA vs seismic moment M0. As detailed in the text, the neighbors
clustering algorithm of Zaliapin and Ben-Zion (2013) is used to classify events as
mainshocks (events that are the largest within their respective cluster, plotted in
blue), and aftershocks (non-mainshock events, plotted in black). Median values of
∆σ, binned by M0, for mainshock and aftershock events are plotted as solid blue
and black lines, respectively. Variability in (c) ∆σ and (d) ∆PGA for sequences
with mainshock magnitude MW > 3.0 with at least ten events. Sequence medians
are denoted with a solid horizontal line, while the box and whiskers denote the
inter-quartile range (50% confidence interval) and 90% confidence interval, respec-
tively. Mainshock values of (c) ∆σ and (d) ∆PGA are marked with stars, and
their corresponding magnitudes are listed along the x-axis.
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Figure 7.8: Variability in the distributions of stress drop ∆σ and between-event
ground motion residual ∆PGA. (a) Histogram of ∆PGA derived from the Bay
Area region ground motion dataset (this study). Median and standard devia-
tion values (log10 g) are labeled in the inset. (b) Histogram of Random Forest
GMPE model-estimated ∆PGA values recovered from the synthetic ground mo-
tion dataset generated from the measured ∆σ values as described in the Discussion
Section. (c) Histogram of ∆σ estimates from this study, with median and stan-
dard deviation values (log10 MPA) labeled in the inset. (d) Random Forest GMPE
model-estimated ∆PGA values derived from the synthetic ground motion data
plotted as a function of ∆σ. The model-estimated ∆PGA values for the synthetic
dataset closely match the input theoretical prediction of δPGA = 5

6
δσ (Cotton

et al., 2013).
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7.7 Supplementary Materials

Overview

Figure 7.S1 shows the relation between MW and ML derived from analy-

sis of long-period spectral amplitudes. Figure 7.S2 compares the ground motion

measurements from this study with the cross-listed records in the Next Generation

Attenuation ground motion database. Figure 7.S3 shows the validation curve used

to select the optimal tree depth for the Random Forest GMPE used in this study.

Figure 7.S4 plots the between-event ground motion residual versus: stress drop,

magnitude-adjusted stress drop, depth, and depth-adjusted stress drop.
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Figure 7.S1: Moment magnitude MW estimated from P -wave spectral decompo-
sition versus catalog-listed magnitude ML for the San Francisco Bay Area earth-
quakes considered in study. The best-fit line inferred from linear regression is
MW = 1.167 + 0.667ML.
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Figure 7.S2: Comparison of the peak ground acceleration (PGA) measurements
from this study versus the corresponding PGA measurements listed in the Next
Generation Attenuation Relationships for the Western US (NGA-W2). In total,
there are 854 records analyzed in this study that are listed in the NGA-W2 database
(see Data and Resources).
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Figure 7.S3: Validation curve for the Random Forest GMPE developed in this
study. Model misfit (defined as standard deviation of the residual distribution) is
plotted as a function of the maximum tree depth of the individual decision trees
in the Random Forest. The blue curve corresponds to the misfit measured with
respect to the full input dataset. The red curve corresponds to the misfit mea-
sured with respect to the data points left out-of bag as part of the Random Forests
bootstrapping of each tree. In contrast to the blue curve, which decreases mono-
tonically with increasing tree depth, the red curve achieves its minimal value at
a tree depth of 18 before gradually increasing due to model overfit. This valida-
tion curve is used to select the optimal tree depth for the Random Forest GMPE
applied in this study.
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Figure 7.S4: Correlation between the between-event peak ground acceleration
residual, ∆PGA and (a) log10 stress drop, ∆σ (MPa), (b) normalized, magnitude-
adjusted ∆σ, Z∆σ, (c) hypocentral depth (km), and (d) log10 depth-adjusted
∆σ. The correlation coefficient between ∆PGA and the associated feature (∆σ,
magnitude-adjusted ∆σ, depth, depth-adjusted ∆σ) for the 5297 events analyzed
in this study is listed in the inset of each panel.
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Chapter 8

Conclusions

8.1 Summary

The six studies that comprise this thesis consider different ways in which

real earthquakes deviate from the canonical behavior implied by simple statistical

models. Earthquake nucleation and rupture processes are complex physical phe-

nomena, and as such it should be unsurprising that the observed variability in

earthquake occurrence patterns and source properties exceeds that which would

be predicted by these models. But in providing new observational constraints and

in developing new techniques to quantitatively characterize this variability, we can

augment our current scientific understanding of earthquake source processes. In

turn, we can apply this new scientific knowledge to generalize our physical and sta-

tistical models of earthquake occurrence and improve the seismic hazard forecasts

that rely upon them. The prominent statistician George Box is noted for saying

322
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“All models are wrong but some are useful.” By understanding how and why even

our most useful models are wrong, we can make them more useful while learning

something fundamental about the Earth.

In Chapter 2, we examined the complexity of the 2010 M7.2 El Mayor-

Cucapah earthquake and its relation to energy production at the nearby Cerro

Prieto Geothermal Field. The El Mayor-Cucapah earthquake was the largest event

in the region of northern Mexico and southern California in decades, yet its oc-

currence was unexpected in that the primary faults that ruptured were previously

thought to be inactive and of low hazard. We demonstrated that crustal stresses

from net fluid extraction at the Cerro Prieto Geothermal Field may have primed

these faults for failure, and thus provide a plausible explanation for the El Mayor-

Cucapah earthquake’s unexpected occurrence. However, the anthropogenic stress

perturbation is only one of several possible mechanisms in this regard, and should

be viewed with some skepticism because of the large epistemic uncertainties as-

sociated with Coulomb stress calculations (Woessner et al., 2012; Cattania et al.,

2014; Mildon et al., 2016). The Cerro Prieto Geothermal Field is a vital resource

for northern Baja California that provides power for hundreds of thousands of lo-

cal inhabitants. It would be unwise to restrict Cerro Prieto’s energy production

without further study, but the results presented in this study make clear that its

potential influence on local hazard should not be neglected.

In Chapter 3, we turned our attention to seismicity within California’s three

largest geothermal fields: The Geysers, located to the north of the San Francisco,
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the Salton Sea Geothermal Field, in southern California’s Imperial Valley, and the

Coso Geothermal field, east of the Sierra Nevada in central California. Collectively,

these fields provide a important source of renewable energy for California’s energy

budget. However, the location of these fields in regions of historical earthquake

activity makes it important to understand the extent to which stresses from energy

production influence local seismicity and earthquake hazard. To this end, we

studied temporal changes in earthquake occurrence patterns within each field over

the preceding 25 years. At The Geysers, we observed clear temporal changes

in background seismicity rates that are driven by seasonal and secular changes in

fluid injection within the geothermal reservoir. At Salton Sea and Coso, we likewise

observed a permanent elevation in mean background rates following initial energy

production, but later transient changes in seismicity are less clearly associated with

localized anthropogenic stresses and may instead be driven by regional earthquake

swarm activity. These results suggest that temporal changes in earthquake hazard

associated with geothermal activity are region-specific and jointly controlled by

tectonic and anthropogenic stress transients, rather than just the latter in isolation.

In Chapter 4, we developed a new algorithm to obtain high-resolution earth-

quake locations using differential travel time data. The GrowClust method uses

a hybrid, hierarchical clustering algorithm to simultaneously group events into

clusters based on waveform similarity and relocate each event with respect to its

cluster neighbors based on the observed distribution of differential travel times.

GrowClust is fast, stable, and robust to the data outliers that are commonly found
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in seismic waveform datasets. We applied the GrowClust algorithm to examine

two recent earthquake sequences in Nevada: the 2012-2015 Spanish Springs swarm

near the population center of Reno, and the 2014–2016 Sheldon sequence in the

remote northwest corner of the state. The GrowClust relocations of each sequence

allow us to image the spatiotemporal evolution of each sequence along distinct fault

structures that were previously obscured by the location uncertainty of the initial

catalog. The results demonstrate the utility of high-precision relocations in uncov-

ering the underlying physical mechanisms driving complex earthquake sequences.

The GrowClust algorithm is publicly available as a open source software package

to help facilitate future work in this regard (e.g., Ross and Hauksson 2017).

In Chapter 5, we shifted our attention to earthquake source properties,

focusing in particular on dynamic (or Brune-type) stress drop, a source parameter

which provides a scalar metric of the relative frequency content of each event.

We developed an improved spectral decomposition algorithm that can be used

to analyze the earthquake source spectra of large waveform datasets and provide

robust estimates of the associated dynamic source parameters. We then applied

this algorithm to characterize the scaling of stress drop with seismic moment for

2002–2016 seismicity in the Yuha Desert, San Jacinto Fault, Big Bear, Landers,

and Hector Mine regions of southern California. In each region, we observed a

tendency for stress drop to increase with moment within the magnitude range

spanned by the data, in contrast to the classical model of self-similar, constant

stress drop scaling first proposed by Aki (1967). The variability in the scaling
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and stress drop distributions between and within each region give insight into the

heterogeneity of crustal stresses within California’s active fault systems and may

provide useful observational constraints for future earthquake hazard assessments.

In Chapter 6, we built on these results by applying the spectral decomposi-

tion method to study the source properties of earthquakes in Harper and Sumner

counties in southern Kansas. Seismicity rates in southern Kansas increased sharply

over historical norms beginning in mid-2013. This change in seismicity is largely

attributed to the proliferation of oil and gas production activity, and in particu-

lar the injection of industrial wastewater into the Arbuckle layer overlying in-situ

faulting structures in the granitic basement formation. We observed that the

recent (2014–2016) likely-induced earthquakes occurring in Harper and Sumner

counties are characterized by low stress drop values compared to the naturally-

occurring earthquakes in southern California. Though stress drop was observed to

increase with hypocentral depth, this trend alone is insufficient to explain the dis-

crepancy with California seismicity. Earthquakes in southern Kansas do however

exhibit a scaling of stress drop with seismic moment that deviates from classi-

cal self-similarity and is comparable in intensity to the scaling trends observed

in southern California. Characterization of the earthquake source properties of

these and other likely-induced events in the oil-producing regions of the central

United States will provide important observational constraints for hazard assess-

ments in regions where rapid, nonstationary changes in seismicity are driven by

human activity (Ellsworth et al., 2015; Petersen et al., 2016).
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In Chapter 7, we examined in detail the relation between dynamic source

properties and measured ground motion amplitudes. Regional hazard forecasts for

long time horizons depend strongly on the assumed between-event variability in

earthquake ground motions (Bommer and Abrahamson, 2006). Previous observa-

tional and theoretical studies have attributed much of the variability in ground

motion for large events to differences in stress drop (Hanks and McGuire, 1981;

Boore, 2003), but analogous results for smaller earthquakes remain more uncertain.

In this study, we used the spectral decomposition algorithm described in Chapter

5 to compute estimates of dynamic stress drop for a new dataset of more than

5000 M1.5 and greater earthquakes occurring in the San Francisco Bay Area from

2002–2016. We then measured the peak ground acceleration from the full waveform

records of the same set of earthquakes, and used a mixed-effects generalization of

the Random Forest machine learning algorithm to correct the observed ground

motion amplitudes for the joint influences of magnitude, source-station distance,

and near-site effects. We observed a significant correlation between dynamic stress

drop and the between-event residual in peak ground acceleration, confirming that

the variability in dynamic source properties strongly controls the between-event

variability in ground motion amplitudes. Spatial variations in earthquake stress

drop are likewise correlated with residual ground motions, and thus could form the

basis of future hazard forecasts that relax the ergodic assumption through source-

specific ground motions (Baltay et al., 2017). The observed elevation in the stress

drop and residual ground motions of mainshock events compared to aftershock
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events within individual earthquake sequences is intriguing and may prove useful

in developing sequence-specific short-term operational hazard forecasts (Jordan

and Jones , 2010; Page et al., 2016).

8.2 Unresolved Questions and Future Directions

The results presented within this thesis bring to light several fundamental

but as-of-yet unresolved questions that deserve further attention in future research

studies. Principal among these are the physical mechanisms that generate the

marked variability in earthquake clustering patterns documented both here and

elsewhere. In some instances, the time-evolution of earthquake sequences is well-

described by an Omori (1894) temporal decay in aftershock activity following the

mainshock event that releases the dominant portion of seismic energy. Other se-

quences are more swarm-like: extended in duration and lacking a dominant main-

shock (Hainzl , 2002; Vidale and Shearer , 2006). There is a general consensus

that both of these end-member clustering styles commonly occur in nature, but

the physical conditions that distinguish them are less well understood. Individual

earthquake swarms have been attributed to fluid transfer processes (Chen et al.,

2012; Shelly et al., 2016) or aseismic fault slip (Lohman and McGuire, 2007; Llenos

et al., 2009). However, it is unclear whether either or both of these mechanisms

provide necessary or sufficient conditions to produce earthquake swarm activity.

Likewise, the role of anthropogenic stresses from geothermal energy (Chen and
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Shearer , 2011) or oil and gas production (Goebel , 2015; Goebel et al., 2016) re-

mains a open but increasingly exigent question. The application of methods such

as GrowClust (Trugman and Shearer , 2017a) may prove useful in better charac-

terizing the spatial and temporal progression of these sequences to provide insight

into the underlying triggering mechanisms.

The evidence presented in this thesis for nonstationary variability of earth-

quake source properties and deviations from self similar scaling may also serve as

a starting point for other promising avenues of research. Spatial variation in me-

dian stress drop on regional and local length scales appears pervasive (e.g. Shearer

et al. 2006; Allmann and Shearer 2009; Oth 2013; Poli and Prieto 2016; Trugman

and Shearer 2017b; Abercrombie et al. 2017). Whether these spatial patterns are

persistent over time is less well constrained but equally important to resolve. Fur-

ther, the inferred scaling relations and spatial variability in source properties are

controlled primarily by the statistical characteristics of the small and moderate

(M ≤ 4) earthquakes that comprise the bulk of the datasets studied here. Larger

earthquakes are thankfully rare, but their infrequency makes it difficult to assess

how well the inferences from the behavior of smaller earthquakes generalize to the

largest and most damaging of earthquakes. Observations of ground motion am-

plitudes suggest that large earthquakes have smaller variability in ground motions

than smaller events (Youngs et al., 1995; Bozorgnia et al., 2014; Douglas and Ed-

wards , 2016). If the same heteroskedasticity applies to dynamic source parameters

like earthquake stress drop, it would help elucidate the scale-dependence of earth-
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quake rupture and put physical bounds on the distribution of stress heterogeneity

in Earth’s crust.

Ultimately, the major findings from these and other studies of dynamic

source parameters can and should be incorporated to improve the accuracy and

reliability of the next generation of seismic hazard forecasts (Jordan and Jones ,

2010; Field et al., 2017; Mulargia et al., 2017). The connection between stress drop

and between-event variability in ground motion motivates the development of non-

ergodic ground motion prediction equations (Anderson and Brune, 1999; Landwehr

et al., 2016; Baltay et al., 2017). Earthquake sources located within regions of rel-

atively high median stress drop would be expected to produce stronger shaking,

but this is likely a frequency-dependent and possibly a magnitude-dependent effect

that warrants more comprehensive study and rigorous testing. Earthquakes are

complex phenomena that are inherently difficult to characterize and understand.

We as seismologists must always stay humble and be willing to challenge our own

models and assumptions in light of new data.
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