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A B S T R A C T

Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of
novel therapeutic approaches. To target the four subgroups of breast cancer ‘‘hormone receptor-positive and
HER2-negative, hormone receptor-positive and HER2-positive, hormone receptor-negative and HER2-positive,
and hormone receptor-negative and HER2-negative’’ it is crucial to inhibit specific targets such as EGFR, HER2,
ER, NF-𝜅B, and PR.

In this study, we evaluated various methods for binary and multiclass classification. Among them, the
GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-score of 0.73, and an AUC of
0.92 for virtual screening of ligands from the BindingDB database. This model successfully identified 4454, 803,
438, and 378 ligands with over 90% precision in both active/inactive and target prediction for the classes of
EGFR+HER2, ER, NF-𝜅B, and PR, respectively, from the BindingDB database. Based on to the selected ligands,
we created a dendrogram that categorizes different ligands based on their targets. This dendrogram aims to
facilitate the exploration of chemical space for various therapeutic targets.

Ligands that surpassed a 90% threshold in the product of activity probability and correct target selection
probability were chosen for further investigation using molecular docking. The binding energy range for these
ligands against their respective targets was calculated to be between −15 and −5 kcal∕mol. Finally, based on
general and common rules in medicinal chemistry, we selected 2, 3, 3, and 8 new ligands with high priority
for further studies in the EGFR+HER2, ER, NF-𝜅B, and PR classes, respectively.
1. Introduction

Breast cancer, characterized by the highest mortality rate among
various cancer types, is a widespread condition [1]. Despite remarkable
advancements in the fields of basic life sciences and biotechnology, the
process of drug discovery and development (DDD) for breast cancer
medicine remains slow and costly. On average, it takes around 15 years
and approximately $2 billion to develop a small-molecule drug [2].
While clinical studies are widely acknowledged as the most expensive
phase in drug development, the greatest potential for time and cost
savings lies in the earlier stages of discovery and preclinical research.
Preclinical efforts alone account for over 43% of pharmaceutical ex-
penses, in addition to significant public funding [2–4]. This high cost is
primarily due to the high attrition rate observed at every step, ranging
from target selection and hit identification to lead optimization and the

∗ Corresponding author.
E-mail address: ssarab@health.ucsd.edu (S.S. Arab).

selection of clinical candidates. Furthermore, the substantial failure rate
in clinical trials, currently at 90% [5], can largely be attributed to issues
originating in the early stages of discovery, such as inadequate target
validation or suboptimal properties of ligands. Identifying faster and
more accessible methods to discover a broader range of high-quality
chemical probes, hits, and leads with optimal absorption, distribution,
metabolism, excretion, and toxicology (ADMET) as well as pharmacoki-
netics (PK) profiles during the early phases of DDD would significantly
enhance outcomes in preclinical and clinical studies. Consequently,
this would enable the development of more effective, accessible, and
safer breast cancer drugs [5,6]. Understanding the specific receptors
involved in breast cancer and the interactions of ligands that inhibit
them is crucial for developing effective treatments.
https://doi.org/10.1016/j.compbiomed.2024.109279
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data mining, AI training, and similar technologies. 
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Breast cancer is driven by the interaction of estrogen and proges-
erone receptors with breast cells [7]. These hormones, estrogen and
rogesterone, bind to their respective receptors, leading to dimerization

and subsequent entry into the nucleus. Additionally, they bind to estro-
en and progesterone response elements located near the promoters of
arget genes. Studies have shown that estradiol promotes the growth
f breast cancer cells, while tamoxifen, an estrogen blocker, inhibits it.
argeting these hormone receptors can help identify potent inhibitors
or hormone-mediated (ER+/PR+) breast cancer [8,9].

EGFR, a transmembrane glycoprotein, plays a crucial role in cell
signaling and is a significant target in breast cancer treatment. EGFR
ctivation leads to cell proliferation and differentiation [10], and anti-
GFR agents have shown efficacy in patients with specific mutations.
yrosine kinase inhibitors (TKIs) such as gefitinib, erlotinib, and lapa-
inib are used to inhibit EGFR overexpression, providing therapeutic
enefits in breast cancer [11,12]. Similarly, HER2, a protein with
yrosine kinase activity, is amplified in about 30% of human breast
arcinomas and is linked to increased invasiveness and angiogenesis in

breast cancer cells [13]. HER2 overexpression is linked to increased in-
vasiveness and angiogenesis in breast cancer cells [14]. Targeting HER2
as led to the development of inhibitors like neratinib and afatinib,
hough further trials are necessary to confirm their efficacy. HER2’s

interaction with other receptors and its role in signaling pathways un-
erscore its importance in breast cancer progression and treatment [15,

16].
Nuclear factor-kappa B (NF-𝜅B) is a transcription factor involved in

ell proliferation, immune responses, and inflammation, contributing
o the development of breast tumors [17]. In breast cancer, NF-𝜅B
ctivation occurs downstream of EGFR signaling, particularly in the ER-
egative subtype. HER2 overexpression activates the PI3K/Akt path-
ay, leading to NF-𝜅B induction and promoting angiogenesis through
EGF and IL-8 expression. It can activate two signaling pathways:

he classical (canonical) pathway and the alternative (noncanonical)
athway [16,18]. Drugs like lapatinib and microtubule disruptors acti-

vate NF-𝜅B, while studies have shown that ginseng inhibits COX-2 and
NF-𝜅B activation in breast cancer cell lines [19,20].

In the realm of computer-aided drug discovery, machine learning
lays a pivotal role in elucidating the intricate relationships between

chemical structures and biological activities, offering insights into op-
timizing compounds for enhanced binding affinity and biological re-
sponses [21,22]. This process involves utilizing chemical descriptors,
which are numerical representations extracted from structures, and
chemical fingerprints, high-dimensional vectors commonly employed
in analysis and virtual screening applications. The construction of
Quantitative Structure-Activity Relationship (QSAR) models follows a
systematic protocol, encompassing steps such as molecular encoding,
feature selection through unsupervised learning techniques, and the ap-
lication of supervised machine learning models to establish mappings
etween input features and biological responses [23]. Evaluating the

efficacy of QSAR models entails considerations like dataset selection,
performance metrics assessment, and the incorporation of big data
and machine learning to predict diverse biological phenomena. The
evolution in this field underscores the necessity to move beyond tra-
ditional ligand-protein interaction-based drug design methods to meet
contemporary clinical safety standards [24–26].

Molecular docking stands out as a prevalent and effective structure-
based computational method used to forecast interactions between
molecules and biological targets. This technique involves predicting the
alignment of a ligand within a receptor and assessing their compati-
ility using a scoring mechanism [27]. Since its inception in the mid-
970s, docking has become indispensable for understanding molecular
nteractions, aiding in drug discovery, and facilitating development
rocesses. Over time, there has been a notable surge in studies utilizing
olecular docking to uncover essential structural elements for effi-

ient ligand–receptor binding and to enhance the accuracy of docking

ethods. Noteworthy among these endeavors is a seminal study by f

2 
Kuntz et al. in the early 1980s, reflecting the enduring significance
nd evolving sophistication of docking applications in drug discovery
nd biology [28]. The binding free energy is described as a sum of

the intermolecular interactions between the ligand and the protein and
the internal steric energy of the ligand. It can be represented by the
equation:

𝛥𝐺𝑏𝑖𝑛𝑑 𝑖𝑛𝑔 = 𝛥𝐺𝑣𝑑 𝑤 + 𝛥𝐺𝐻−𝑏𝑜𝑛𝑑 + 𝛥𝐺𝑒𝑙 𝑒𝑐 𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝛥𝐺𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

In this equation, 𝛥𝐺𝑏𝑖𝑛𝑑 𝑖𝑛𝑔 represents the total binding free energy,
𝛥𝐺𝑣𝑑 𝑤 denotes the van der Waals interaction energy, 𝛥𝐺𝐻−𝑏𝑜𝑛𝑑 refers to
the energy associated with hydrogen bonds, 𝛥𝐺𝑒𝑙 𝑒𝑐 𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 accounts for
the electrostatic interactions, and 𝛥𝐺𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 indicates the internal steric
energy of the ligand. The van der Waals interaction is calculated using a
LJ 6–12 potential between the protein and the ligand atoms. The steric
part of the H-bond term is calculated using a LJ 10–12 potential. The
intermolecular electrostatic interaction is calculated using Coulomb’s
law. The internal energy of the ligand is a sum of steric and electrostatic
interactions calculated for non-bonded ligand atoms [29–32].

Recent advances in virtual screening for breast cancer drug dis-
covery have highlighted several promising approaches. Awasthi et al.
(2014) utilized a 3D-QSAR CoMFA model on flavonoids to target
aromatase, a key enzyme in estrogen-dependent breast cancer, iden-
tifying 7- hydroxyflavanone beta-D-glucopyranoside as a potent in-
hibitor [33]. Yousuf et al. (2017) screened 3 million compounds against
GFR, HER2, and HSP90, discovering five compounds with strong
inding energies and favorable ADMET properties [34]. Anbuselvam

et al. (2020) focused on EGFR inhibitors, conducting virtual screening,
ADME predictions, and molecular dynamics simulations to identify four
promising compounds [35]. Tsou et al. (2020) demonstrated the supe-
riority of deep neural networks (DNN) in identifying TNBC inhibitors,
using DNN to find potent hits from a 165 000-compound database
and expanding the method to GPCR agonists [36]. He et al. (2021)
eveloped machine learning and deep learning models for breast cancer
ell lines, achieving high predictive accuracy across various models and
olecular representations [37]. Aziz et al. (2022) screened benzene

sulphonamide derivatives, identifying compound 762 with superior
binding affinity compared to Dabrafenib, supported by deep learning
predictions [38]. Finally, Nada et al. (2023) developed a machine learn-
ing application to predict the bioactivity of EGFR inhibitors, leading
o the synthesis of 18 novel compounds, with compound 9 showing
ignificant antiproliferative and EGFR inhibitory activity, making it a

promising candidate for breast cancer therapy [39].
In this study,we initiated by downloading all 3D structures from

he BindingDB database, followed by optimizing these structures and
enerating 5668 descriptors for each molecule. Subsequently, we ex-
racted ligands previously studied for their inhibitory effects on breast
ancer targets (EGFR, ER, HER2, NF-𝜅B, and PR) from this dataset.

Through a series of data preprocessing procedures and the allocation of
activity labels to each molecule, we developed two models to categorize
molecules as active or inactive and to identify the target of each ligand.
To construct these models, we utilized various feature selection algo-
ithms to choose descriptors and employed diverse machine learning
odels, tuning their hyperparameters to identify the most effective
odels for virtual screening. After assessing and selecting the most ef-

fective models for these classifications, we established a pipeline using
these models. This pipeline was then employed to screen the BindingDB
ligands, utilizing different precision thresholds for the classifiers. The
identified ligands underwent molecular docking to evaluate their bind-
ing energy with the respective targets. Additionally, we applied several
established principles in medicinal chemistry to prioritize further in-
vestigation of these selected molecules, such as molecular dynamics, in
vitro and in vivo studies. Furthermore, we examined the significance
of the features employed in creating the target predictor model, aiming
o identify a simple rule for acceptable accurate target recognition as a
ommon rule. This study not only presented a robust model for identi-
ying potential inhibitors for breast cancer targets but also introduced a
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Fig. 1. Workflow diagram illustrating the sequential steps followed in the study. The process begins with the acquisition of 3D structures from the BindingDB database, followed
by structure optimization and the generation of 5668 descriptors for each molecule. Subsequently, ligands with known inhibitory effects on EGFR, ER, HER2, NF-𝜅B, and PR
receptors, are extracted from this dataset. Through a series of data preprocessing steps and the assignment of activity labels, two models are developed to classify molecules as
active/inactive and to determine the target of each ligand. Various feature selection algorithms are utilized to select descriptors, and diverse machine learning models are employed
with hyperparameter tuning to identify the most effective models for virtual screening. Following the evaluation and selection of optimal models, a pipeline is constructed for
screening the BindingDB ligands with different precision thresholds for the classifiers. Identified ligands then undergo molecular docking to assess their binding energy with
respective targets. Additionally, established principles of medicinal chemistry are applied to prioritize further investigation of selected molecules.
dendrogram to assist researchers in navigating the chemical space. This
dendrogram allows for the efficient identification of potential inhibitors
by examining key molecular features, reducing the need to rerun the
model while maintaining high accuracy. Furthermore, we proposed a
list of ligands with potential repositioning properties to inhibit breast
cancer targets, demonstrating their interactions with their respective
targets. These ligands hold promise for further investigation, including
in vitro and in vivo studies, to explore their potential in treating breast
cancer.

2. Materials and methods

As the procedure’s workflow of this study is illustrated in Fig. 1, to
obtain a dataset consisted of inhibitors targeting various breast cancer
targets, we downloaded five sets specific sdf files (EGFR, HER2, ER,
NF-𝜅B, and PR inhibitors) from the Binding database website [40]
(version 2022m8). The number of sdf files for each targets are: 7341
for EGFR, 2182 for HER2, 1859 for ER, 1273 for NF-𝜅B, and 1439 for
PR. Since near 70% of inhibitors in BindingDB database for EGFR and
HER2 targets, were identical, we merged these two classes and named
them EGFR + HER2 class. These sdf files were then converted to gjf
files using the OpenBabel [41] software. The 3D structures of all the
molecules were optimized using the Austin model 1 Hamiltonian imple-
mented in Gaussian software [42], a program for electronic structure
calculations. The optimized molecules were used to calculate molecular
descriptors with the help of Alvadesc [43] software, which efficiently
computes descriptors essential for QSAR/QSPR modeling and other
cheminformatics applications. A total of 5668 descriptors (in type of
float), including 0-, 1-, 2-, and 3D descriptors, were generated. To
streamline the dataset in preprocessing step, descriptors with constant
values in 90% of the compounds were removed. Additionally, among
descriptors with a correlation above 0.9, the one exhibiting higher pair
correlation with all other descriptors was kept and the others were
automatically excluded. Following these processes, 1461 descriptors
remained for further analysis.

Each sdf file contains activity information pertaining to a specific
molecule, indicating the affinity of that molecule towards different
therapeutic targets. We extracted the activity information from the
downloaded sdf files for each class of molecules, and saved it in
separate vectors. The enumeration of the collected data can be found
in Table 1. Molecules with 𝐼 𝐶50, 𝐾𝑖, and 𝐸 𝐶50 values below 2000 nM
were categorized as active inhibitors, while those with values exceeding
2000 nM were considered inactive. Also we removed molecules with
3 
Table 1
Number of active and inactive molecules for each class.

Target Active Inactive Total

EGFR 4922 2419 7341
ER 1223 636 1859
HER2 1393 789 2182
NF-𝜅B 447 826 1273
PR 1055 384 1439
Total 9040 5054 14094

activity more than 10 000 nM as outlier data from the inactive dataset.
The prepared dataset was used to construct active/inactive and target
classifier. Both active and inactive molecules were utilized to develop
and evaluate the active/inactive classifiers. These models serve the
purpose of screening extensive databases and identifying new potent
molecules for the treatment of breast cancer.

We employed various methods, including k-best, K-Nearest Neigh-
bors (KNN), Gaussian Naive Bayes (GNB), Quadratic Discriminant Anal-
ysis (QDA), Random Forest (RF), and Support Vector Machine (SVM),
to independently select suitable descriptors for the active/inactive and
target classifiers. To optimize the selection of features across all data,
we utilized a Genetic Algorithm (GA) in an optimal manner. The GA
started with a population size of 200 and evolved through a maximum
of 1000 generations, employing a crossover rate of 0.5 and a mutation
rate of 0.2. The estimator was configured with the aforementioned
methods, utilizing 5-fold cross-validation and an accuracy scoring func-
tion. The only difference between the feature selection processes of
the active/inactive and target classifiers was the maximum number
of features. The active/inactive classifier allowed a maximum of 128
features, while the target classifier allowed a maximum of 64 features.

We utilized the chosen features to create an optimized binary clas-
sifier for predicting active/inactive molecules. Various methods, KNN,
SVM, decision tree (DT), RF, naive bayes (NB), linear discriminant
analysis (LDA), and QDA, were employed for this purpose. There are
several hyperparameters for each methods which should optimize to
make ideal models. To maximize the performance of each method, we
conducted a grid search to identify the best parameters for construct-
ing the model. Table S1 demonstrated the different range of values
of hyperparameters for each methods that are used in grid search
algorithm. Given the balanced nature of our dataset and the limited
availability of active molecule data, we selected 384 active and 384
inactive molecules randomly from each of the EGFR + HER2, ER, NF-
𝜅B, and PR classes without replacement. This resulted in a balanced
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dataset consisting of 1536 active and 1536 inactive ligands, which
was used to construct the binary classifier. Of this dataset, 70% was
llocated for training the model, with the remaining 30% reserved for
esting.

For the target classifier, we employed methods such as KNN, SVM,
T, logistic regression (LR), RF, NB, GNB, LDA, and QDA. Similar to

the binary classifier, we utilized grid search to identify the optimal
parameters for constructing the model (see Table S2 to find the range of
alues which are used to tune the model using grid search algorithm).

To maintain a balanced dataset, we selected randomly 440 active
molecules from each class (EGFR + HER2, ER, NF-𝜅B, and PR) without
eplacement for use in the multi-class classifier. We then allocated
0% of this dataset for model training, with the remaining 30% des-

ignated for testing. In constructing multi-class classification models for
ligand-based virtual screening, employing a variety of algorithms and
tuning their hyperparameters using grid search allows for a thorough
evaluation of model performance across different classification tasks.

Based on the results from each model, we selected the top two
models for both active/inactive and target classification to create com-
bined active/inactive:target models. These combined models were then
evaluated using various combinations of the top two selected models
for both classifications. Our objective was to identify the best model
for virtual screening by assessing their performance across several key

etrics: precision, recall, sensitivity, specificity, accuracy, F1-score,
Matthews correlation coefficient (MCC), and area under the curve
(AUC). Each combination was thoroughly tested to ensure it could
effectively differentiate between active and inactive molecules and
ccurately classify the target receptors, providing a robust evaluation
f their predictive capabilities for virtual screening.

A dataset of 1 039 519 molecules was gathered from the BindingDB
database. The same preparation process used for the breast cancer
inhibitors described earlier was applied to these downloaded molecules.
Additionally, the descriptors selected for the breast cancer inhibitors
were also chosen for these molecules. This resulted in a data matrix of
ize 1 039 519 × 1461, which was used for virtual screening. During
irtual screening, first the active/inactive predictor assigned the active
olecules in the class of ‘‘active’’ and the inactive ones placed in

he class of ‘‘N/A’’. Then the target classifier assign the class of each
molecules to EGFR + HER2, ER, NF-𝜅B, or PR from the ‘‘active’’ class.
The decision-making process for the model’s predictions of activity and
arget was constrained by a certainty threshold of 0.0, 0.8, 0.85, and
.9 for the active/inactive classifier, and 0.0, and 0.9 for the target
lassifier.

To evaluate the binding energy of selected molecules which are
btained from virtual screening, we employed molecular docking. This
alculation helped us to verify that selected new ligands can bind to
heir therapeutic targets. Autodock Vina [44] was utilized for molec-

ular docking to calculate the binding affinities between ligands and
heir respective targets. First, we converted the format of optimized

structure of selected molecules to pdbqt using openbabel software to
prepare ligands for molecular docking. Then we started the protein
preparation stage by changing the format of proteins to pdbqt, too.
The docking runs were conducted with an exhaustiveness parameter
set to 32, ensuring thorough exploration of the conformational space,
and 100 predicted poses were generated for each ligand-protein inter-
action. The grid box resolution was set with specific coordinates for
each target: (EGFR)(PDB ID: 1M17) had coordinates of 23.424, 1.310,
51.002 along the x, y, and z axes, respectively, with a grid spacing
f 0.2 Å; (HER2)(PDB ID: 3PP0) had coordinates of 17.563, 16.689,
6.321; (PR)(PDB ID: 1A28) had coordinates of 17.038, 0.145, 74.798;
ER)(PDB ID: 2IOK) had coordinates of 19.050, 35.696, 52.244; and
NF-𝜅B)(PDB ID: 4KIK) had coordinates of 48.268, 31.589, −57.885.
hese coordinates were used to define the binding sites for the dock-

ng process. The grid dimensions were set at 25.2 × 25.2 × 25.2 Å.
o efficiently manage the computational workload, each docking job
as assigned to a single CPU core. The control ligands were initially
4 
Table 2
The evaluation of GA-RF-RF and GA-SVM-SVM for binary and GA-QDA-SVM and GA-
SVM-SVM models for therapeutic classification.

Method GA-RF-RF

Best Param bootstrap = True, criterion = ‘gini’, max_features = 32,
n_estimators = 400, random_state = 42

Precision Recall f1-score Support

Active 0.76 0.72 0.74 461
Inactive 0.74 0.77 0.75 461

Accuracy 0.75 922

Macro avg 0.75 0.75 0.75 922
Weighted avg 0.75 0.75 0.75 922

Sensitivity Specificity MCC AUC

0.7744 0.7310 0.5059 0.8356

Method GA-SVM-SVM

Best Param C = 10, gamma = 0.01, kernel = ‘rbf’, probability = True,
random_state = 42

Precision Recall f1-score Support

Active 0.74 0.76 0.75 461
Inactive 0.75 0.74 0.74 461

Accuracy 0.75 922

Macro avg 0.75 0.75 0.75 922
Weighted avg 0.75 0.75 0.75 922

Sensitivity Specificity MCC AUC

0.7983 0.7007 0.5013 0.8214

Method GA-QDA-SVM

Best Param C = 10, decision_function_shape = ‘ovo’, gamma = 0.01,
kernel = ‘rbf’, probability = True, random_state = 42,
max_iter = −1

Precision Recall f1-score Support

EGFR+HER2 0.96 0.92 0.94 132
ER 0.93 0.95 0.94 132
NF-𝜅B 0.93 0.95 0.94 132
PR 0.97 0.97 0.97 132
Accuracy 0.95 528
Macro avg 0.95 0.95 0.95 528
Weighted avg 0.95 0.95 0.95 528

Sensitivity Specificity MCC AUC

0.9451 0.9451 0.9268 0.9835

Method GA-SVM-SVM

Best Param C = 10, gamma = 0.01, kernel = ‘rbf’,
decision_function_shape = ‘ovo’, probability = True,
random_state = 42, max_iter = −1

Precision Recall f1-score Support

EGFR+HER2 0.96 0.91 0.93 132
ER 0.92 0.95 0.93 132
NF-𝜅B 0.94 0.97 0.96 132
PR 0.96 0.95 0.96 132

Accuracy 0.95 528

Macro avg 0.95 0.95 0.95 528
Weighted avg 0.95 0.95 0.95 528

Sensitivity Specificity MCC AUC

0.9394 0.9401 0.9194 0.9830

docked with the binding sites of the five receptors, and the resulting
interactions were compared with standard reference ligands.

Because undesirable pharmacokinetics and toxicity of candidate
compounds are the main reasons for the failure of drug development,
it has been widely recognized that ADMET should be evaluated as
early as possible. To prioritize new ligands for further studies, such
as molecular dynamics and others, we utilized various rules such as
Lipinski, Pfizer, GSK, and golden triangle rules. Additionally, important
parameters for drug production, including QED, SAscore, and MCE-18,
were calculated using ADMETlab 2.0 [45]. Ligands that met all these
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criteria were selected as high-priority candidates for further investiga-
tion. The interactions of these selected ligands with their target proteins

ere analyzed using Discovery Studio 2024.
The computational infrastructure employed in this study encom-

assed 10 virtual machines (VM) each equipped with a 24-core Xeon
2690 processor and 32 GB of RAM for the optimization of 3D structures.
A laptop featuring an AMD Ryzen 7 4800H processor and 16 GB of RAM
facilitated the computation of molecular descriptors, the development
f machine learning models, and the implementation of virtual screen-
ng procedures. Furthermore, a server powered by a Ryzen 9 7950X

processor and possessing 128 GB of RAM was utilized specifically for
conducting molecular docking analyses.

3. Results and discussion

EGFR and HER2 receptors, shows 83.71% similarity in their residues
using sequence alignment with BLOSUM weight matrix and have a
large similarity in their 3D structure using Needleman-Wunsch align-
ment algorithm with BLOSUM-62 similarity matrix (Figure S1 and S2).

oreover, near 70% of ligands in BindingDB database with EGFR and
ER2 targets, were identical. According to these reasons, we merged

wo classes of EGFR and HER2 to just one EGFR + HER2 class.
To select the best features for active/inactive and target classifiers,

we hired k-best, GA-KNN, GA-GNB, GA-QDA, GA-RF, and GA-SVM
methods. The active/inactive and target classifiers utilized 128 and
4 selected features, respectively (see Tables S3 and S4). Each feature
election method offers unique advantages and disadvantages. K-best is

computationally efficient but may overlook feature interdependencies.
KNN is versatile but computationally expensive and sensitive to scaling.
GNB is fast and handles high-dimensional data but assumes feature
ndependence. QDA offers flexible decision boundaries but can overfit
nd is sensitive to normality assumptions. RF is robust to overfitting
ut computationally intensive. SVM is effective in high-dimensional
paces but requires careful parameter tuning. Integrating GA with these
ethods optimizes feature subsets by considering feature interactions,

hough it is computationally demanding.
According to each set of 128 selected features, KNN, SVM, DT,

RF, NB, LDA, and QDA methods, created binary classifiers to recog-
ize active and inactive molecules. The average values for sensitivity,
pecificity, accuracy, F1-score, MCC, and AUC across all 42 models
ere 0.68, 0.66, 0.67, 0.67, 0.34, and 0.73, respectively. Also, each

et of 64 selected features are used to create different target classifiers
sing KNN, SVM, DT, LR, RF, NB, GNB, LDA, and QDA methods.
he average values for these target classifiers across 60 models were
.86, 0.87, 0.86, 0.86, 0.81, and 0.96, respectively. The result of
ptimized models (using grid search) with each set of selected features
re comprehensively demonstrated in Table S5–S16. KNN is simple and
nterpretable but computationally intensive and sensitive to scaling.
VM (either binary or multi-class strategies) handles high-dimensional
ata well but is computationally expensive and requires careful tuning.
Ts are intuitive but prone to overfitting. RF improves generaliza-

ion but is computationally heavy. NB and GNB are fast but can
erform suboptimally with correlated features. LR handles multi-class
lassification well via methods like softmax but is limited by linear
ecision boundaries. LDA works well with linearly separable data but
truggles with complex relationships. QDA provides flexible decision
oundaries but can overfit and requires more data. Grid search ensures
ptimized model performance but is computationally demanding and
ime-consuming. After thorough comparison across various metrics,
ensitivity, specificity, accuracy, F1-score, MCC, and AUC, the top two
odels identified for the active/inactive classification were GA-SVM-

VM and GA-RF-RF, and for the target classification, GA-SVM-SVM and
A-QDA-SVM, as detailed in Tables S17–S18.

The GA-SVM-SVM binary classifier was constructed using the radial
basis function (RBF) kernel with a gamma value of 0.1 and a regular-
ization term of 1. This configuration ensures a balance between the
 e

5 
Table 3
The evaluation of GA-SVM-SVM:GA-SVM-SVM, GA-RF-RF:GA-QDA-SVM, GA-SVM-
SVM:GA-QDA-SVM, and GA-RF-RF:GA-SVM-SVM models in the pipeline.

GA-SVM-SVM:GA-SVM-SVM Precision Recall f1-score Support

N/A 0.75 0.74 0.74 461
EGFR+HER2 0.68 0.74 0.71 99
ER 0.83 0.83 0.83 115
NF-𝜅B 0.61 0.61 0.61 123
PR 0.78 0.79 0.78 124

Accuracy 0.74 922

Macro avg 0.73 0.74 0.73 922
Weighted avg 0.74 0.74 0.74 922

MCC 0.62
AUC 0.92

GA-RF-RF:GA-QDA-SVM Precision Recall f1-score Support

N/A 0.73 0.76 0.74 461
EGFR+HER2 0.68 0.70 0.69 99
ER 0.82 0.83 0.83 115
NF-𝜅B 0.56 0.50 0.53 123
PR 0.80 0.76 0.78 124

Accuracy 0.73 922

Macro avg 0.72 0.71 0.71 922
Weighted avg 0.72 0.73 0.73 922

MCC 0.61
AUC 0.93

GA-SVM-SVM:GA-QDA-SVM Precision Recall f1-score Support

N/A 0.75 0.74 0.74 461
EGFR+HER2 0.68 0.73 0.70 99
ER 0.82 0.84 0.83 115
NF-𝜅B 0.60 0.59 0.60 123
PR 0.78 0.78 0.78 124

Accuracy 0.74 922

Macro avg 0.73 0.74 0.73 922
Weighted avg 0.74 0.74 0.74 922

MCC 0.62
AUC 0.92

GA-RF-RF:GA-SVM-SVM Precision Recall f1-score Support

N/A 0.73 0.76 0.74 461
EGFR+HER2 0.69 0.71 0.70 99
ER 0.82 0.82 0.82 115
NF-𝜅B 0.57 0.51 0.54 123
PR 0.80 0.77 0.78 124

Accuracy 0.73 922

Macro avg 0.72 0.71 0.72 922
Weighted avg 0.73 0.73 0.73 922

MCC 0.61
AUC 0.93

smoothness of the decision boundary and the correct classification of
training examples. Similarly, the GA-RF-RF binary classifier was built
using the Gini impurity function with 400 trees and a maximum depth
until all leaves were pure. Although 128 features were initially selected
for the random forest model, it ultimately utilized only 32 features. The
construction of this random forest involved bootstrap sampling, which
helps in reducing variance and improving model robustness (see Table
S5–S10 to see the evaluation of optimal models with each selected
features for binary classification).

For the target classifier, GA-SVM-SVM and GA-QDA-SVM multi-class
classifiers were employed. Both classifiers utilized the RBF kernel, a
gamma value of 0.01, and a regularization term of 10. The classification
was performed using the one-vs-one strategy, which compares each pair
f classes separately. This strategy is known to provide higher predic-

tion accuracy compared to the one-vs-rest approach, as it considers
he decision boundaries between each pair of classes individually [46,

47](see Table S11–S16 to see the evaluation of optimal models with
ach selected features for multi-class classification).
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Table 4
The reported classification models for breast cancer targets.

Year Targets Data set Method Descriptors Model
validation

Statistical
results

Refs.

Train Test

2024 EGFR, HER2,
ER, NF-𝜅B,
and PR

2150 922 GA-SVM-SVM:
GA-SVM-SVM

Alvadesc 5-fold
CV

Acc = 0.74,
MCC = 0.62,
AUC = 0.92

This work

2024 VEGFR-2 518 143 Adaboost Discovery
Studio
2020

10-fold
CV

Acc = 0.83 [48]

2024 TBK1 959 303 Extra Tree
Classifier

Mordred 12-fold
CV

Acc = 0.88,
AUC = 0.89

[49]

2024 ErbB1 5215 1738 XGBoost Dragon
descriptors

NA Acc = 0.85,
AUC = 0.92

[50]

2019 BCRP 2240 559 SVM MOE
descriptors
and Pubchem
fingerprints

5-fold
CV

Acc = 0.96,
MCC = 0.81,
AUC = 0.96

[51]

2016 Estrogen
receptor
beta

474 237 MACCSFP-RF PaDEL
Descriptor

5-fold
CV

Acc = 0.88,
MCC = 0.75,
AUC = 0.95

[52]

2015 BCRP 197 99 ANN Dragon
descriptors

NA Acc = 0.74,
MCC = 0.46

[53]
Fig. 2. The ROC plots for different classes with one-vs-rest strategy.

As shown in Table 2, the active/inactive classifiers GA-SVM-SVM
and GA-RF-RF achieved precision, recall, and F1-scores all above 0.7,
indicating a reliable performance in distinguishing between active and
inactive molecules. Moreover, the high values in sensitivity, specificity,
MCC and AUC validate the performance of classifiers. Similarly, the
target classifiers GA-SVM-SVM and GA-QDA-SVM achieved precision,
recall, and F1-scores all above 0.9, demonstrating high accuracy in
classifying the ligands according to their target receptors. This high
level of performance underscores the effectiveness of these optimized
classifiers in ligand-based virtual screening. Moreover, the values upper
than 0.9 for all sensitivity, specificity, MCC and AUC metrics validate
the effectiveness of classifiers.

Subsequently, we generated a pipeline by combining different per-
mutations of the selected model. The precision, recall, f1-score, and
support of these models are presented in Table 3. Among the options,
the GA-SVM-SVM:GA-SVM-SVM model emerged as the most suitable
pipeline, displaying superior performance compared to others. This
model could recognize the inactive molecules with the precision, recall,
and f1-score more than 0.74. Moreover, this model could categorize
the active ones with high f1-score 0.83 and 0.78 for the classes of ER
and PR, respectively. Also, f1-score for two classes of EGFR + HER2
and NF-𝜅B are quite good enough for accurate virtual screening. In
overall, this approach achieved an accuracy of 0.74 and an AUC of
6 
Table 5
Number of selected BindingDB molecules for each targets according to the threshold of
0, 80, 85, and 90% decision certainty for active/inactive prediction and the threshold
of 0 and 90% decision certainty for target prediction.

Classes Threshold

0:0 0:90 80:90 85:90 90:90

EGFR+HER2 172 498 95 123 19 796 11 068 4454
ER 54 101 22 876 3613 2029 803
NF-𝜅B 45 452 16 400 2499 1257 438
PR 67 323 14 109 2300 1116 378

0.92, indicating its robust predictive capabilities. Moreover, this model
achieved an MCC of 0.62, reflecting a robust performance that balances
sensitivity and specificity. Fig. 2 showcases the receiver operating
characteristic (ROC) plots for each class using the one-vs-rest strategy,
further validating the effectiveness of the GA-SVM-SVM:GA-SVM-SVM
model for virtual screening. It should be mentioned that the training
an SVM with the RBF kernel is 𝑂(𝑛2 × 𝑚), where n is the number of
training samples and m is the number of features. The SVM method
with an RBF kernel offers several advantages over other methods. It
provides high accuracy on challenging datasets with non-linear decision
boundaries, exhibits good generalization performance, and effectively
classifies unseen data better than classifiers like neural networks (NN)
and DTs, due to its flexibility, robustness, and scalability. Additionally,
SVMs can handle high-dimensional spaces well. However, SVMs also
have some disadvantages. Unlike simpler models like NB or LR, SVMs
require careful tuning of parameter values for optimal performance and
are computationally expensive compared to similar models.

In recent years, numerous studies have leveraged machine learning
methods to identify potential therapeutic compounds targeting various
proteins implicated in breast cancer (see Table 4). For instance, Ding
et al. [48] (2024) utilized an Adaboost model to screen ligands against
VEGFR-2, achieving an accuracy of 0.83. Similarly, Siddiqui et al. [49]
(2024) implemented an Extra Tree Classifier for TBK1, reporting an
accuracy of 0.88 and an AUC of 0.89. Bouchama et al. [50] (2024)
employed XGBoost to target ErbB1, with results showing an accuracy of
0.85 and an AUC of 0.92. Earlier studies also demonstrated success with
different targets and methods; for example, Jiang et al. [51] (2019)
used an SVM model for BCRP, achieving a high accuracy of 0.96 and
an MCC of 0.81, while Niu et al. [52] (2016) applied MACCSFP-RF
to predict ligands for Estrogen Receptor beta, obtaining an accuracy
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Fig. 3. The left plot shows the importance of features using permutation importance method using GA-SVM-SVM model for target prediction and the right one demonstrates
hierarchical clustering dendrogram using pearson method to find the correlation distance of each features.
of 0.88 and an AUC of 0.95. These studies collectively underscore the
potential of machine learning-based virtual screening in accelerating
drug discovery for breast cancer, highlighting the effectiveness of vari-
ous algorithms and descriptors across different contexts. However, it is
important to note that these prior works focused on single-target mod-
els. In contrast, this study not only provides a model with exceptional
performance but also offers the capability to classify inhibitors across
multiple targets.

After the development of classifiers and selecting GA-SVM-SVM:GA-
SVM-SVM for the pipeline in order to find the active molecules at the
first stage and after that categorized them to four classes of EGFR +
HER2, ER, NF-𝜅B, and PR classes, we ran the virtual screening for
BindingDB dataset including 039 519 ligands with certainty threshold
of 0.0, 0.8, 0.85, and 0.9 for the active/inactive classifier, and 0.0,
and 0.9 for the target classifier. Table 5 provides insights into the
number of selected molecules from the BindingDB database for each
target, based on different predetermined thresholds. As it can be seen
in this table, 339 374 molecules are categorized in these four classes
in the absence of any thresholds for certainty of decision making. This
pipeline can work with more accuracy employing higher thresholds for
certainty of decision making. Notably, this table reveals the presence
of 4454, 803, 438, and 378 new inhibitor molecules for EGFR +
HER2, ER, NF-𝜅B, and PR, respectively. These novel inhibitors were
selected with 90% precision in both the active/inactive and therapeutic
classification decision-making processes. These amount of ligands are
7 
just 0.58% of whole molecules in BindingDB database. This high level
of precision ensures that the selected molecules are highly likely to be
true inhibitors, making them valuable candidates for further validation
and drug development efforts. The ability of the GA-SVM-SVM:GA-
SVM-SVM model to accurately classify and select potential inhibitors
highlights its efficacy in ligand-based virtual screening and its poten-
tial impact on accelerating the drug discovery process. It should be
mentioned that the virtual screening with this model is 𝑂(1039519 ×
𝑚), where 1039519 is number of molecules and m is the number of
features.

In order to easily identify the target for each molecule, our objective
was to extract a straightforward rule from the model. To achieve this,
we employed permutation importance to determine the significance
of each feature in the model. Additionally, we utilized the Pearson
method to create a hierarchical clustering dendrogram, which helped
us identify the correlation distance (Euclidean distance) between fea-
tures. Fig. 3 displays the feature importance and hierarchical clustering
dendrogram. Based on these findings, we constructed a simple ques-
tionnaire dendrogram for determining the target of each molecule
which are selected with 90% precision in both the active/inactive and
target classification decision-making, as illustrated in Fig. 4. The data
presented in Fig. 4 provide concise and effective structure–activity
relationship (SAR) information regarding the inhibitors. For instance,
NF-𝜅B inhibitors exhibit significantly lower values for molecular walk
count of order 10 (MWC10) and signal 10/weighted by polarizabil-
ity (Mor10p) compared to other inhibitors. Additionally, EGFR and
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Fig. 4. A simple questionnaire dendrogram to separate ligands with a number of features and determine the targets of them.
HER2 inhibitors demonstrate higher values of frequency of C–N at
topological distance 3 (F03[C-N]) and SHED Donor-Donor (SHED_DD)
in comparison to ER and PR inhibitors. The ratio of eigenvalue n.1
from augmented edge adjacency mat. weighted by dipole moment
(Eig01_AEA(dm)), radial distribution function–105/weighted by polar-
izability (RDF105p), and radial distribution function–105/weighted by
I-state (RDF105s) differentiates PR and ER inhibitors. These SAR infor-
mation types effectively filter a significant portion of large databases,
thus accelerating early-stage drug discovery projects that begin with
extensive databases like GDB-13 [54]. The classification of molecules
based on their therapeutic targets has garnered considerable attention
in the field of chemoinformatics [55]. These types of classifiers expand
on the concept of ‘‘Chemography’’[55,56], which refers to the art of
navigating through chemical space. As evident from these figures, the
inhibitors cluster within specific regions of the selected chemical space,
aligning with the core objective of chemography.

In order to assess the binding energy of the molecules selected using
the GA-SVM-SVM:GA-SVM-SVM model, we employed molecular dock-
ing for both the chosen molecules (with a multiplication of precision
product exceeding 0.9 for both active/inactive and target classification)
and the molecule sets within each class. The distribution of binding en-
ergy for these molecules, based on their molecular weights, is depicted
in Fig. 5. In these plots, the pale dots represent the active inhibitors
labeled by the bindingDB database, while the filled dots represent the
active molecules utilized in constructing the GA-SVM-SVM:GA-SVM-
SVM model. The red dots correspond to new inhibitors, which exhibit
binding energy within the range of −15 to −5 k cal∕mol. This range of
binding energy proves to be sufficiently suitable for forming protein-
ligand complexes. The average value of binding energy for each target
of EGFR, HER2, ER, NF-𝜅B, and PR for new ligands which are founded
by the method are −9.48, −9.37, −8.97, −8.01, and −7.63 k cal∕mol,
respectively.

In order to prioritize further study on the new molecules, we applied
several medicinal criteria. The Lipinski rule suggests that ligands with
a molecular weight of less than or equal to 500 (𝑀𝑊 ≤ 500), a
logarithm of the n-octanol/water distribution coefficient of less than
or equal to 5 (𝑙 𝑜𝑔 𝑃 ≤ 5), a number of hydrogen bond acceptors of
less than or equal to 10 (𝐻𝑎𝑐 𝑐 ≤ 10), and a number of hydrogen
bond donors of less than or equal to 5 (𝐻𝑑 𝑜𝑛 ≤ 5) exhibit good
absorption or permeability. Accordingly, 376, 59, 91, and 35 ligands
were accepted based on the Lipinski rule for EGFR + HER2, ER, NF-
𝜅B, and PR targets, respectively. The Pfizer rule states that ligands
with a 𝑙 𝑜𝑔 𝑃 ≥ 3 and a topological polar surface area of less than
or equal to 75 (𝑇 𝑃 𝑆 𝐴 ≤ 75) are likely to be toxic. Consequently,
577, 30, 38, and 15 ligands passed the Pfizer rule for EGFR + HER2,
ER, NF-𝜅B, and PR targets, respectively. The GSK rule suggests that
8 
ligands with a 𝑀 𝑊 ≤ 400 and 𝑙 𝑜𝑔 𝑃 ≤ 4 may have a more favorable
ADMET (absorption, distribution, metabolism, excretion, and toxicity)
profile. Thus, 6, 11, 65, and 12 ligands were accepted based on the
GSK rule for EGFR + HER2, ER, NF-𝜅B, and PR targets, respectively.
Additionally, the golden triangle hypothesis proposes that ligands with
a 200 ≤ 𝑀 𝑊 ≤ 500 and a logD (logarithm of the n-octanol/water
distribution coefficient at pH = 7.4) ranging from −2 to 5 (−2 ≤ 𝑙 𝑜𝑔 𝐷 ≤
5) may have a more favorable ADMET profile. Consequently, 166,
53, 91, and 34 ligands fulfilled the golden triangle criteria for EGFR
+ HER2, ER, NF-𝜅B, and PR targets, respectively. Moreover, several
parameters such as QED (desirability functions based on eight drug-
likeness related properties including 𝑀 𝑊 , 𝑙 𝑜𝑔 𝑃 , 𝑁𝐻 𝐵 𝐴, 𝑁𝐻 𝐵 𝐷, 𝑃 𝑆 𝐴,
𝑁𝑟𝑜𝑡𝑏, 𝑁𝐴𝑟), SAscore (synthetic accessibility score based on a combina-
tion of fragment contributions and a complexity penalty), and MCE-18
(medicinal chemistry evolution in 2018 score molecules by novelty in
terms of their cumulative sp3 complexity) were considered favorable
in the medical industry. Ligands with QED greater than 0.67, SAscore
less than 6, and MCE-18 larger than 45 were deemed desirable. Accord-
ingly, 6, 14, 4, and 14 ligands met these criteria for EGFR + HER2,
ER, NF-𝜅B, and PR targets, respectively. The distributions of selected
molecules according to these rules are illustrated in Figures S3–S7. The
molecules depicted in Fig. 6 satisfy all these criteria. Specifically, 2
(BDBM188812 and BDBM216448), 3 (BDBM149740, BDBM50189075,
and BDBM50487909), 3 (BDBM483950, BDBM50221641, and BDBM
50460119), and 8 (BDBM400173, BDBM400179, BDBM400207, BDB
M400217, BDBM481622, BDBM513587, BDBM513605, and BDBM
513606) ligands met all the parameters for EGFR + HER2, ER, NF-𝜅B,
and PR targets, respectively. As observed in this figure, each ligand
within each class exhibits unique structural properties.

The top hits exhibited high binding energies with their targets,
as shown in Table 6. Post-docking analysis revealed that all com-
pounds effectively bound within the target domains, surrounded by key
interacting residues and demonstrating notably high binding energy
values (Figure S8). Figure S8 illustrates the molecular surface of the
target binding pockets with their respective ligands in stick format.
Additionally, 2D interaction plots in Figure S9 highlight significant
binding-site interactions between the ligands and the targets’ binding-
site residues. These interactions are also listed in Table 6. As shown
in the table, most interactions fall into categories such as hydrogen
bonds, electrostatic, hydrophobic, halogen, and miscellaneous, all of
which are favorable for enhancing the binding energy of the protein-
ligand complexes. However, BDBM50460119 has an acceptor/donor
clash with CYS99 in NF-𝜅B, which is unfavorable for binding energy.
Additionally, BDBM400217, BDBM513605, and BDBM513606 exhibit
charge repulsion with ARG766 in the PR receptor.
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Fig. 5. Docking results of new ligands obtained from virtual screening. The pale dots in the following plots represent the active molecules in the BindingDB database for each
class, the filled dots represent the molecules that participated in the construction of the model, and the red dots are the new molecules proposed by the model obtained from the
screening.
4. Conclusion

In this study, we curated five sets of specific SDF files from the
BindingDB database, targeting inhibitors of EGFR, HER2, ER, NF-𝜅B,
and PR. The datasets were randomly undersampled based on their
activity and target classes. After filtering out constant and correlated
descriptors, we selected 128 descriptors for active/inactive classifica-
tion and 64 descriptors for target classification using k-best, GA-KNN,
GA-GNB, GA-QDA, GA-RF, and GA-SVM methods. We then constructed
binary classifiers, KNN, SVM, DT, RF, NB, LDA, and QDA, using the
selected features to distinguish active from inactive molecules. Simi-
larly, target classifiers were developed using KNN, SVM, DT, LR, RF,
NB, GNB, LDA, and QDA methods, with all models optimized via grid
search. The GA-SVM-SVM and GA-RF-RF models were identified as
the top performers for active/inactive classification, while GA-SVM-
SVM and GA-QDA-SVM excelled in target classification. These models
achieved precision, recall, F1-scores, and AUC values above 0.7 and
0.9, respectively, underscoring their efficacy in ligand-based virtual
screening.
9 
A pipeline was then constructed by combining different permuta-
tions of the selected models. The GA-SVM-SVM:GA-SVM-SVM pipeline
emerged as the most effective, achieving precision, recall, and F1-
scores above 0.74 for inactive molecules. Furthermore, this model
accurately categorized active molecules, with F1-scores of 0.83 and
0.78 for ER and PR classes, respectively. F1-scores for EGFR + HER2
and NF-𝜅B were also sufficiently high for reliable virtual screening.
The accuracy of this approach was 0.74, with an AUC of 0.92, demon-
strating robust predictive capabilities. Using this model, we screened
the BindingDB database and identified 4454, 803, 438, and 378 new
inhibitor molecules for EGFR + HER2, ER, NF-𝜅B, and PR targets,
respectively, achieving 90% precision in both active/inactive and target
classifications. The computational complexity of this algorithm was
determined to be 𝑂(𝑛2 ×𝑚+ 1039519 ×𝑚). Additionally, we provided a
simple dendrogram to aid in determining the target of new ligands, of-
fering valuable insights into the distribution of these molecules within
chemical space.

Molecules with precision scores exceeding 0.9 for both classifica-
tions were subjected to molecular docking analysis, revealing binding
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Fig. 6. List of the molecules which are met all criteria.
energies ranging from −15 to −5 k cal∕mol, indicative of strong in-
hibitory potential. Further prioritization using Lipinski’s rule, Pfizer,
GSK, and golden triangle rules, along with QED, SAscore, and MCE-18
parameters, identified 2 (BDBM188812 and BDBM216448), 3 (BDBM1
49740, BDBM50189075, and BDBM50487909), 3 (BDBM483950, BDB
M50221641, and BDBM50460119), and 8 (BDBM400173, BDBM40
0179, BDBM400207, BDB M400217, BDBM481622, BDBM513587,
BDBM513605, and BDBM513606) ligands that met all criteria for
EGFR+ HER2, ER, NF-𝜅B, and PR targets, respectively. This research
10 
not only provides a comprehensive benchmark of machine learning
methods for computational drug discovery but also introduces a set of
novel ligands with promising inhibitory effects on breast cancer targets.
Finally, the interactions of top hits with their respective targets were
analyzed in detail.

Future work will aim to reproduce these results using more ad-
vanced machine learning techniques, such as deep learning and transfer
learning, to further enhance the accuracy of our virtual screening
pipeline. Validation of the binding energies and interactions of the
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Table 6
Binding energy and molecular interaction of selected molecules with their targets.

Target Inhibitor Binding energy
(k cal∕mol)

Favorable Unfavorable

Hydrogen bonds Electrostatic Hydrophobic Halogen Miscellaneous Charge
repulsion

Acceptor/
donor clash

EGFR BDBM188812 −9.6 MET769, ASP831,
GLU738, ASN818

ASP831 VAL702, PHE699,
LEU820, LYS721,
LEU694, ALA719,
ARG817

EGFR BDBM216448 −9.6 LEU694, THR766 LYS721, ASP831 LEU694, VAL702,
LEU764

HER2 BDBM188812 −8.1 SER728, MET801,
ARG849

LEU726, VAL734,
ALA751, LEU852,
LYS753, CYS805

HER2 BDBM216448 −8.2 LEU726, ASP808,
THR862, ASP863

VAL734, ALA751,
LYS753, LEU796,
CYS805

ER BDBM149740 −8.2 LEU349, ALA350,
LEU384, LEU387,
MET388, LEU391,
PHE404, ILE424

LEU387

ER BDBM50189075 −9.2 LEU346, ALA350,
MET421, ILE424

MET343

ER BDBM50487909 −7.6 GLY521 LEU346, LEU525

NF-𝜅B BDBM483950 −8.4 CYS99 ASP166 LEU21, VAL29,
ALA42, LYS44,
CYS99, VAL152,
ILE165

NF-𝜅B BDBM50221641 −8.4 LEU21, VAL29,
ALA42, TYR98,
CYS99, VAL152,
ILE165

NF-𝜅B BDBM50460119 −7.5 THR23, GLU97 LEU21, ALA42,
VAL74, CYS99,
VAL152, ILE165

CYS99

PR BDBM400173 −7.9 ARG766 PRO696, TRP765,
ARG766, PHE818

LEU758

PR BDBM400179 −8 GLU695, LEU758,
LYS769

LYS822 PRO696, VAL729,
TRP732, LEU758,
TRP765, ARG766

PR BDBM400207 −7.3 PRO696, ASP697 GLU695, ARG766 MET692, PRO696

PR BDBM400217 −8.5 PRO696 GLU695, LYS822 VAL729, TRP732,
LEU758, TRP765,
ARG766, LYS769

ARG766

PR BDBM481622 −9.3 VAL698, GLY762 GLU695, ARG766,
LYS822

PRO696, VAL698,
VAL729, TRP732,
LEU758, ARG766

PRO696

PR BDBM513587 −8.1 GLY762 GLU695, ARG766 ARG766 TRP765

PR BDBM513605 −8.6 PRO696, ARG766 GLU695, ARG766,
LYS822

PRO696, VAL729,
TRP732, LEU758

ARG766

PR BDBM513606 −8.5 PRO696, ARG766,
GLN815

GLU695, ARG766,
LYS822

PRO696, VAL729,
TRP732, LEU758

ARG766
identified ligands through molecular dynamics simulations, as well
as experimental analyses like in vitro and in vivo studies, will be
crucial. We encourage other researchers to experimentally validate our
models, as this study offers significant insights for the discovery of new
inhibitors for breast cancer.
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Appendix A. Supplementary data

The supporting information provides a detailed explanation of the
methods used in this study. Moreover, it includes figures of sequence
and structural alignment for EGFR and HER2 receptors, as well as
the distribution of ligands according to the Lipinski, Pfizer, GSK, and
golden triangle rules, along with medical synthesis parameters. Docked
poses and 2D interaction views highlighting the surrounding amino
acids of target proteins are also included. It also contains a table
of genetic algorithm parameter values and the ranges considered for
hyperparameter tuning using grid search for both active/inactive and
target classifiers. Additionally, the selected features for active/inactive
and target classification, as well as the evaluation results for KNN, SVM,
DT, RF, NB, LDA, and QDA models for active/inactive classification
and for KNN, SVM, DT, LR, RF, NB, GNB, LDA, and QDA models for
arget classification, are provided. These evaluations were performed
sing optimal parameters determined through grid search and features
elected by k-best, GA-KNN, GA-GNB, GA-QDA, GA-RF, and GA-SVM
ethods.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compbiomed.2024.109279.
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