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RESEARCH ARTICLE

Control of yeast retrotransposons mediated

through nucleoporin evolution
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1 BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado

Boulder, Boulder, CO, United States of America, 2 Department of Biological Sciences, University of Idaho,

Moscow, ID, United States of America, 3 Department of Biological Chemistry, School of Medicine, University

of California, Irvine, Irvine, CA, United States of America

* ssawyer@colorado.edu

Abstract

Yeasts serve as hosts to several types of genetic parasites. Few studies have addressed

the evolutionary trajectory of yeast genes that control the stable co-existence of these para-

sites with their host cell. In Saccharomyces yeasts, the retrovirus-like Ty retrotransposons

must access the nucleus. We show that several genes encoding components of the yeast

nuclear pore complex have experienced natural selection for substitutions that change the

encoded protein sequence. By replacing these S. cerevisiae genes with orthologs from

other Saccharomyces species, we discovered that natural sequence changes have affected

the mobility of Ty retrotransposons. Specifically, changing the genetic sequence of NUP84

or NUP82 to match that of other Saccharomyces species alters the mobility of S. cerevisiae

Ty1 and Ty3. Importantly, all tested housekeeping functions of NUP84 and NUP82

remained equivalent across species. Signatures of natural selection, resulting in altered

interactions with viruses and parasitic genetic elements, are common in host defense pro-

teins. Yet, few instances have been documented in essential housekeeping proteins. The

nuclear pore complex is the gatekeeper of the nucleus. This study shows how the evolution

of this large, ubiquitous eukaryotic complex can alter the replication of a molecular parasite,

but concurrently maintain essential host functionalities regarding nucleocytoplasmic

trafficking.

Author summary

Genomes are the blueprint of life, but they are also plagued by parasites. Genomic para-

sites are elements like transposons, which are strings of genetic sequence with the capabil-

ity of propagating through genomes. It is interesting to consider how organisms evolve to

protect their genomes from the unchecked propagation of transposons. Here, we show

that the genes encoding certain nuclear pore components in yeast have evolved to alter

the mobility of Ty retrotransposons. We investigate the evolutionary and functional out-

comes of this relationship, and speculate on how such a conserved structure as the nuclear

pore could afford to change protein sequence while still performing its conserved

functions.
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Introduction

The presence of Ty retrotransposons (Tys) in all species of Saccharomyces yeasts suggest that

they have likely been coevolving together for about 20 million years [1,2]. Because Tys are

strictly intracellular parasites, both the host (yeast) and Tys are aligned in benefitting from a

controlled, sustained relationship that does not place the host at an evolutionary disadvantage

[3]. This might even be thought of as a symbiotic relationship because, unlike most pathogenic

viruses of higher eukaryotes, Tys are a force for genetic plasticity, driving adaptive changes

within the yeast genome in response to changes in environmental conditions [4]. For this rea-

son, it is thought that both Tys and the host genome have evolved mechanisms to attenuate

unchecked Ty replication that would place an excessive burden on the host cell [3,5–10]. Thus,

yeasts have likely experienced selection to control genetic parasites [11,12]. In turn, Tys may

counter-adapt to evade host control strategies, or may adapt to modulate their own pathoge-

nicity. Regardless of whether a Ty is thought of as a symbiont, or a “tamed” parasite, one can

imagine that the host-parasite relationship must be finely tuned within each yeast species, with

different evolutionary strategies emerging over evolutionary time (in both yeast and Ty) to

control Ty replication.

There are many examples of genetic parasites, including viruses and transposable elements,

that must access the nucleus of a host cell in order to replicate. Thus, the nuclear envelope rep-

resents a major barrier to these parasites in their eukaryotic hosts [13–15]. The movement of

large macromolecules between the cytoplasm and the nucleus occurs though the nuclear pore

complex. The nuclear pore complex is composed of multiple copies of approximately 30 differ-

ent proteins, referred to as nucleoporins, and is conserved between yeast and higher eukaryotic

species, including humans [16–22]. Transport receptors, called karyopherins, facilitate the

transport of cellular cargo through the nuclear pore [20,23]. Genetic parasites interact with a

wide variety of nucleoporins and karyopherins to facilitate the nucleocytoplasmic transport of

their proteins and complexes, or to re-localize useful or antagonistic host proteins [24–33].

Saccharomyces yeasts are eukaryotes that play host to a variety of DNA plasmids, single-

stranded RNA viruses (from the family Narnaviridae), double stranded RNA viruses (from the

family Totiviridae), and Ty retrotransposons [34–36]. Of these viruses and virus-like elements,

only Tys transit through the nuclear pore complex. There are five families of Tys in S. cerevi-
siae, Ty1 to Ty5, and all have an analogous lifecycle to retroviruses [37–39]. Tys have intracel-

lular lifecycles (Fig 1), but can be transmitted to new hosts via yeast mating [40]. The Ty

lifecycle involves the movement of Ty components between the cytoplasm and the nucleus

every replication cycle via the nuclear pore complex. Ty3 virus-like particles and proteins have

been observed to cluster at the nuclear envelope and the cytoplasmic face of the nuclear pore

complex [25]. Multiple Ty3 proteins (Gag3, p27 and CA) interact directly with nucleoporins,

and the Ty1 and Ty3 integrase (IN) proteins contain nuclear localization signals [25,41–44].

Together, these factors presumably direct the nuclear ingress of Ty cDNA and associated pro-

teins. After nuclear entry, integrase catalyzes the insertion of Ty cDNA into the host genome

[45,46]. Tys must also exit the nucleus. Ty1 RNAs, after transcription in the nucleus, are

thought to be stabilized and chaperoned from the nucleus by the Gag protein [47].

Because the lifecycle of Tys involves trafficking in and out of the nucleus, we investigated

the hypothesis that nucleoporins might experience evolutionary pressure to control Ty nucleo-

cytoplasmic transport. While evolution of host immune strategies is common [48–50], evolved

resistances have not been extensively documented in large, essential cellular assemblages, such

as the nuclear pore complex. Seven published high-throughput screens have been conducted

in order to identify genes important for the replication of Ty1 (five studies [51–55]) or Ty3

(two studies [56,57]). Among these studies, ten nucleoporins (Fig 2A) and four karyopherins
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(S1 Fig) were identified as important for Ty replication. Several genes were identified in multi-

ple screens, as represented in Figs 2A and S1. Interestingly, the knockout of some nuclear

pore-related genes has been noted to reduce Ty mobility, while the knockout of others

increases it [58]. One possible interpretation of this intriguing pattern is that there is a highly

evolved relationship between yeasts and Tys. In some cases, Tys are successfully exploiting a

nuclear pore protein for import/export. Knockout of such genes would reduce Ty mobility. In

other cases the host may have evolved to reduce Ty transport, for instance by evolving a

nuclear pore protein that binds but does not transit Ty componentry, or that binds Ty compo-

nentry and mis-localizes it. Deleting these genes would increase Ty mobility. There are likely

to be additional nuclear pore complex-related genes, beyond those shown in Figs 2A and S1,

that are involved in Ty replication. This is because genes essential to yeast viability are usually

underrepresented in such screens, given that gene knockouts of these genes are inviable.

To further explore the idea of evolved control of Tys, we looked at the evolutionary his-

tory of all known Saccharomyces nucleoporin genes, and found that 26 of 30 nucleoporins

have changed very little during Saccharomyces speciation and are evolving under purifying

selection. However, four nucleoporins are evolving rapidly in a manner consistent with pos-

itive selection (NUP1, NUP82, NUP84, and NUP116). We wished to explore how the high

level of sequence divergence in these proteins between species affects Ty control. For

NUP82 and NUP84, we engineered S. cerevisiae strains to express orthologs from other yeast

species and then assayed the replicative success of different families of Tys within these oth-

erwise isogenic yeast strains. We found that species-specific evolutionary differences in

these nucleoporins affected the replication of either Ty1, Ty3, or both Ty families. NUP84
appears to have experienced selection primarily to control Ty1, while NUP82 has experi-

enced selection primarily to control Ty3. Moreover, Nup82p and Nup84p are integral to the

nuclear pore complex structure and are required for its functionality [59,60]. We find that

adaptive changes in NUP82 and NUP84 affect Ty replication, yet have accumulated under

the constraints of strict conservation of nucleoporin host functions during Saccharomyces
speciation.

Fig 1. The nuclear pore complex is important for Ty retrotransposition. Left. A generic schematic of the lifecycle of

a Ty. Chromosomal copies of Ty, found in the yeast genome, produce full-length RNA transcripts that are exported

from the nucleus. These transcripts are translated and also packaged within virus-like particles within the cytoplasm.

Packaged RNAs are reverse transcribed into cDNA that is transported into the nucleus via the nuclear pore complex.

The Ty integrase mediates insertion of the cDNA into the host genome at a new location (red stripes on the

chromosome). Right. Simplified representation of the nuclear pore complex embedded in the nuclear envelope and

sliced along its vertical axis. Filaments rich in phenylalanine and glycine (FG) radiate into the nucleoplasm, cytoplasm,

and within the nuclear pore itself.

https://doi.org/10.1371/journal.pgen.1007325.g001

Control of yeast retrotransposons mediated through nucleoporin evolution

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007325 April 25, 2018 3 / 24

https://doi.org/10.1371/journal.pgen.1007325.g001
https://doi.org/10.1371/journal.pgen.1007325


Results

NUP82 and NUP84 have accumulated elevated levels of non-synonymous

substitutions

We first set out to determine which nuclear pore complex-related genes might be important in

the evolved control of Tys. Obviously, genes that have remained unchanged over the speciation

of Saccharomyces yeast would be unlikely to fall into this class. Instead, as a screening tool we

sought genes that have diverged significantly in sequence from one yeast species to the next.

We are particularly interested in genes with evidence for natural selection underlying these

sequence changes, rather than genes that have diverged in sequence simply by the forces of

random genetic drift. Natural selection can be detected in genes as follows. Typically, selection

operates on non-synonymous substitutions (changing the encoded amino acid) more signifi-

cantly than on non-synonymous mutations (silent, not changing the encoded amino acids).

Gene regions that have experienced repeated rounds of natural selection in favor of protein-

altering mutation therefore exhibit a characteristic inflation of the rate of non-synonymous

(dN) DNA substitutions compared to synonymous (dS) substitutions (denoted by dN/dS > 1)

Fig 2. Nucleoporins are evolving rapidly in Saccharomyces yeasts. (A) Results of published high-throughput genetic

screens for host factors affecting Ty mobility [51,52,55–57]. Only nucleoporin genes found in these screens are

summarized, where disruption of the indicated gene altered Ty3 or Ty1 mobility. Bold text indicates genes found in

more than one screen. (B) Results from PAML analysis surveying nucleoporin genes for codons with elevated

evolutionary rate (dN/dS�1). Here, alignments were fit to a codon model of conservative evolution (M7) and a codon

model allowing for codons with an elevated evolutionary rate (M8). M7 was rejected in favor of M8 for four

nucleoporins (p<0.05): NUP84,NUP1, NUP116 and NUP82. Along the bottom is summarized whether yeast with a

deletion of each of these genes is viable, taken from the Saccharomyces genome database. (C) Extended evolutionary

analysis of selected nucleoporins using two additional tests for positive selection (FEL and REL) [68]. “Yes” indicates

that codons with dN/dS>1 were detected in this gene by the indicated test, with a p-value (p)< 0.05, or Bayes factor

(BF)> 50.

https://doi.org/10.1371/journal.pgen.1007325.g002
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[61]. Because non-synonymous mutations occur more often than synonymous mutations by

random chance, computational models have been developed that use statistical frameworks to

account for these unequal substitution rates [62–64]. The mode of evolution that we are seek-

ing (dN/dS> 1) is considered to be somewhat rare in eukaryotic genes. Instead, most genes

experience purifying selection (dN/dS < 1), where protein sequence is conserved over evolu-

tionary time due to the important and complex roles that most proteins play in cellular

homeostasis.

We examined the evolution of 29 yeast genes encoding nucleoporins and 22 genes encoding

karyopherins for evidence of codons with dN/dS > 1. For each gene, we gathered nucleotide

sequences from six divergent Saccharomyces species (S. cerevisiae, S. paradoxus, S. mikatae, S.

kudriavzevii, S. arboricolus and S. bayanus) [65–67]. Next, we constructed DNA alignments of

the various genes and fit these to two different models of codon evolution using the Phyloge-

netic Analysis by Maximum Likelihood (PAML) package [64]. Evolutionary model M7 was

used as our null model and assumes that all codons within a gene are evolving conservatively

(dN/dS > 1 not allowed), whereas model M8 allows for some codons to exhibit an elevated

evolutionary rate (dN/dS� 1). Model M7 was rejected in favor of M8 (p<0.05) for four

nucleoporin genes: NUP84, NUP1, NUP116 and NUP82 (Fig 2B). The null model was not

rejected for any karyopherins (S1 Fig). Interestingly, one of these nucleoporin genes, NUP84,

is also the only nuclear pore-related gene found in three different knockout screens as impor-

tant for Ty mobility (Fig 2A). NUP133, NUP120, and NUP170, which were found in two inde-

pendent genetic screens (Fig 2A) did not pass the threshold of significance (p>0.05; Fig 2B),

and so were not investigated further. The remaining three nucleoporin genes under positive

selection (NUP1, NUP116 and NUP82) are essential genes within S. cerevisiae (Fig 2B, bottom),

and of these, only NUP116 has been directly tested and demonstrated to be involved with Ty

replication [25].

Various statistical tests have been designed to detect positive selection, all of which take dif-

ferent approaches to modeling the rates of nonsynonymous and synonymous changes that

have occurred in a given gene alignment [69]. We next evaluated NUP84, NUP1, NUP116, and

NUP82 with additional tests for positive selection, FEL and REL [68]. We found that all four

nucleoporin genes showed evidence of positive selection using at least one of these additional

tests (Fig 2C). Furthermore, three of these genes (NUP1, NUP82, and NUP116)were previously

identified as evolving rapidly in a whole genome evolutionary study of five Saccharomyces
yeast species performed by Scannell et al. [67]. In contrast, NUP133 and four other nucleopor-

ins with the least support for rejection of the M7 null model (NDC1,NSP1, NUP57 and SEH1;

Fig 2B), passed zero or only one of these tests (Fig 2C). We next turned to functionally testing

the biological relevance of the observed evolutionary signatures identified within nuclear pore

complex-related genes.

A novel GFP reporter of Ty mobility

We first built a quantitative, GFP-based assay system for Ty mobility, which is a variation of a

previous assay used in this field [70]. In this system, a plasmid-mounted Ty1 genome from Sac-
charomyces cerevisiae was encoded on the Watson (sense) strand, and was engineered to con-

tain an internal GFP gene on the Crick (anti-sense relative to the transcript) strand of the

DNA (Fig 3A). To prevent its expression directly from the plasmid vector, the GFP gene was

engineered to contain an antisense intron (on the Watson strand). Thus, only after the full-

length Ty1-GFP transcript has been spliced, reverse transcribed, and integrated into the S. cere-
visiae genome can the GFP gene be expressed. GFP expression is regulated by the inducible

copper-sensitive CUP1 promoter (Fig 3A). Experiments were performed with two different
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introns within the GFP gene in order to determine which was more efficiently spliced from the

transcript produced. The more efficient splicing occurred using the S. cerevisiae ACT1 intron

(ACT1i) (Fig 3B). GFP-positive cells were only detected by flow cytometry after galactose was

added to the growth medium to initiate Ty1 transcription, and subsequent addition of CuSO4

to induce expression of the GFP reporter (Fig 3C). We tested our Ty1 mobility reporter in iso-

genic strains deleted for five genes known to be important for efficient Ty1 mobility: BY4741

xrn1Δ, nup84Δ, nup133Δ, bud22Δ, and xrs2Δ [51,52,55]. Indeed, we see a significant decrease

in Ty1 mobility in each deletion strain compared to the wild-type BY4741 background (Fig

3D). As a control, we show that a strain deleted for NUP100, which is important for Ty3 mobil-

ity [56], but not known to be important for Ty1, supports a level of mobility that is not signifi-

cantly different from that of a wild-type strain (Fig 3D).

Fig 3. A novel GFP-based reporter of Ty1 mobility. (A) An overview of the GFP-tagged Ty1 plasmid. Ty1

transcription is induced by activation of the GAL1 promoter that produces a long Ty1 transcript including an internal

GFP gene and an ACT1 intron (ACT1i). The spliced transcript has the ACT1i removed, which then provides a

template for Ty1 protein production and reverse transcription. Ty1 cDNA is imported into the nucleus and integrated

into the S. cerevisiae genome. The GFP gene is then induced from the CUP1 promoter by CuSO4 to report successful

integration events. (B) RT-PCR was used to assess splicing of RNA with ACT1i versus an artificial intron (AI) within

the GFP gene (primer positions marked by red arrows). Spliced RNA transcripts (Sp) were mainly detected upon

induction of the transcription by the GAL1 promoter using galactose (Gal). Growth on dextrose (Dex) inhibits the

GAL1 promoter and the production of RNA transcripts. Plasmid DNA was used as a positive control to allow the PCR

amplification across intron-containing GFP. “Un Sp” indicated the detection of unspliced RNAs. (C) Flow cytometry

analysis shows that GFP is only expressed under conditions of galactose induction of Ty1 expression followed by

CuSO4 induction of GFP. (D) The effect of six different gene deletions on Ty1 mobility, relative to wild-type S.

cerevisiae. The relative mobility was measured as a percent of GFP positive cells after induction of the Ty1-GFP

reporter, and was repeated independently, three times (error bars: standard error, n>3; ��Tukey–Kramer method,

p<0.05). All values are normalized to wildtype.

https://doi.org/10.1371/journal.pgen.1007325.g003
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NUP84 evolution modulates Ty1 mobility within S. cerevisiae
NUP84 is under positive selection and disruption of the gene affects both Ty1 and Ty3 replica-

tion (Fig 2). We wished to test whether the evolution of NUP84 over yeast speciation has

altered interactions with Tys. To test this, we replaced NUP84 within the S. cerevisiae genome

(NUP84S.cer) with NUP84 from diverse Saccharomyces species (S. mikatae, S. kudriavzevii and

S. bayanus) as outlined in Fig 4A. These sequences encode Nup84p that are between 88% (S.

mikatae) and 85% (S. bayanus) identical to the S. cerevisiae protein. As an isogenic control, we

re-complemented the nup84Δ strain with S. cerevisiae NUP84. Chromosomal complementa-

tion of S. cerevisiae nup84Δ with each heterospecific (other species) NUP84 allele resulted in

the restoration of normal growth and cellular morphology (Fig 4B and 4D), normal nuclear

import (Fig 4C and 4D), and normal gene expression from the promoters used in our Ty1

GFP-based reporter (Fig 4E).

The null strain, and each of the four strains expressing wildtype or heterospecific NUP84,

were transformed with the Ty1 GFP reporter described above. Relative to nup84Δ, cells com-

plemented with NUP84S.cer increased Ty1 mobility approximately 5-fold (Fig 5A). There were

highly significant differences in the levels of Ty mobility among strains encoding heterospeci-

fic NUP84 (one-way ANOVA, p = 8.2 x 10−8), and levels of Ty1 mobility were significantly

different in strains containing NUP84S.mik, NUP84S.kud, and NUP84S.bay when compared

to NUP84S.cer (Tukey–Kramer method, p<0.05) (Fig 5A). We found that replacement of

NUP84S.cer with NUP84S.kud increased Ty1 mobility by 32%, whereas NUP84S.mik and NUP84S.bay

both significantly decreased mobility by 21% and 35%, respectively. To verify the observed

differences in control of Ty1 mobility, we used Southern blotting to detect Ty1 integrations in

the 5’ UTR of the SUF16 locus, as previously described [73]. We used our GFP reporter assay to

initiate Ty1 mobility, with Ty1 genomic integrations only detected after induction by galactose

(Fig 5B). Similar to our GFP reporter assay, fewer integrations were detected within strains

encoding NUP84S.mik and NUP84S.bay compared to NUP84S.cer. NUP84S.cer and NUP84S.kud had

comparable levels of genomic integrations (Fig 5B). To further ensure the generality of our

findings, we also measured Ty1 mobility on a single-copy plasmid under both high and low

expression conditions. We used the integration of a HIS3 gene as a marker of successful Ty1

mobilization by assaying the appearance of colonies able to grow on a histidine deficient

medium [70]. Again, we were able to observe that heterospecific substitutions were able to alter

Ty mobility, even with a 6–9 fold decrease in overall mobility from a single copy plasmid (S2

Fig). Results were broadly consistent between the three assays, with the exception of the hetero-

specific swap of S. kudriavzevii NUP84, which reduced Ty1 mobility in the low copy assay

(S2 Fig).

These data show that evolutionary differences between NUP84 of different Saccharomyces
species modulate the efficiency of Ty1 mobility in a species-specific manner, even though all

host functions are conserved. Pairing Ty1 from S. cerevisiae with NUP84 of other species

apparently decouples a finely co-evolved relationship, altering levels of Ty1 mobility. To sup-

port this model, we also assayed the impact of NUP84 evolution on Ty3 replication. We used a

galactose inducible Ty3 with a HIS3 reporter gene and assayed the appearance of colonies able

to grow on a histidine deficient medium [70,74–76]. In contrast to Ty1, we found that nup84Δ
resulted in increased Ty3 mobility, as was previously reported [56]. However, each of the het-

erospecific NUP84 genes returned transposition to the lower level with no significant differ-

ence in mobility among strains encoding heterospecific NUP84 (one way ANOVA, p = 0.90)

(Fig 5A). Collectively, these data suggest that the co-evolutionary dynamics are specific to

NUP84 and Ty1.
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Fig 4. The housekeeping functions of NUP84 are conserved across divergent Saccharomyces species. (A) Top. A schematic

representation of the NUP84 locus within S. cerevisiae engineered to either lack NUP84 (nup84Δ) or to express heterospecific NUP84
from S. cerevisiae (S. cer), S. mikatae (S. mik), S. kudriavzevii (S. kud) or S. bayanus (S. bay) along with the LEU2 selectable marker.

Bottom. Successful genome engineering was confirmed by PCR amplification across the NUP84 locus to detect the replacement of

KANMX4with NUP84-LEU2 (primers marked as arrows). (B) The doubling time of NUP84-complemented strains in a liquid YPD

medium compared to nup84Δ, and colony growth and morphology after 72 h of growth on a solid YPD medium. (C) General nuclear

import function was assessed in the presence of heterospecific Nup84p or absence of Nup84p using a LexA-Gal4(AD) reporter protein

with a SV40 nuclear localization signal (NLS) [71]. The LexA DNA binding domain and Gal4 activation domain (AD) initiate

transcription of the β-galactosidase gene upon successful nuclear import. (D) Nuclear transport was also assessed by the steady-state

Control of yeast retrotransposons mediated through nucleoporin evolution
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NUP82 evolution alters both Ty1 and Ty3 mobility

Our evolutionary analysis also identified the gene NUP82 as being the highest scoring nucleo-

porin in our evolutionary screen (Figs 2B and S1), however no role for NUP82 has been

reported in Ty biology. This could be because NUP82 is an essential gene and would have

eluded detection in genome-wide knockout screens. To investigate whether NUP82 is involved

in Ty replication, a dominant negative approach was adopted. Full- or partial-length portions

of NUP82 were expressed in cells that are otherwise wild type at the NUP82 locus. These

Nup82p constructs included the mutations D204A, F290A, Y295A, L393A, I397A, L402A,

L405A and F410A (Nup82pDFY-LILLF) that inactivate interaction with other nucleoporins and

decouple it from the nuclear pore complex [77] (Fig 6A). Nup82pDFY-LILLF is non-functional

as a nucleoporin, therefore we reasoned that it would compete with wild-type Nup82p and

have an inhibitory effect on mobility if Ty interacts with Nup82p to transit the nuclear pore.

Indeed, the expression of the C-terminal helical domain of Nup82p (residues 433–713) signifi-

cantly reduced Ty1 mobility, with the N-terminal β-propeller domain (residues 1–458) being

dispensable for this effect (Fig 6B). Expression of any of the dominant negative NUP82 genes

did not noticeably affect the growth of S. cerevisiae (Fig 6C) or general nuclear import (Fig 6D)

compared to expression of the control gene MET17, which suggests that these proteins are not

toxic to S. cerevisiae and do not disrupt the nuclear pore complex. In summary, this serves as

preliminary evidence of a previously uncharacterized role for NUP82 in Ty1 replication.

Next, in a similar approach to that taken with NUP84, S. cerevisiae was engineered to

express NUP82 from different Saccharomyces species to ascertain the impact of NUP82 evolu-

tion on Ty mobility. Due to the essential nature of NUP82, we used a NUP82/nup82Δ heterozy-

gous diploid strain from the “synthetic genetic array” collection [78] as our starting strain for

localization of a GFP reporter protein containing a NLS from PHO4 [72] and its cellular accumulation relative to a DAPI-stained

nucleus within NUP84 complemented S. cerevisiae. (E) The effect of NUP84 complementation or deletion on the ability of S. cerevisiae to

express GFP from each of the promoters used in the Ty1 GFP-based reporter (GAL1 (top) or CUP1 (bottom) promoters), using mean

fluorescent intensity (MFI) detected by flow cytometry (error bars: standard error, n>3).

https://doi.org/10.1371/journal.pgen.1007325.g004

Fig 5. Evolutionary differences between NUP84 of different Saccharomyces species alter levels of Ty1 mobility. (A) Relative mobility of Ty1 and Ty3 within nup84Δ
or nup84Δ complemented with heterospecific NUP84 from different Saccharomyces species. Asterisks designate complemented strains that have significantly different

levels of mobility compared to the strain encoding NUP84 from S. cerevisiae (Tukey–Kramer method, p<0.05) (error bars: standard error, n>3). (B) Southern blot

analysis of Ty1 integration in two independent clones upstream of the SUF16 locus, which contains Ty1 integration hotspots in its promoter [73]. PCR products across

the SUF16 locus were run on a gel and then probed with a radiolabeled DNA probe specific to GFP in order to detect integration events.

https://doi.org/10.1371/journal.pgen.1007325.g005
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the genomic replacement of NUP82S.cer. A customized SceI restriction endonuclease method

was used to improve the efficiency of homologous recombination-based gene replacement

(see methods) (Figs 7A and S3). S. cerevisiae encoding heterospecific NUP82 have a normal

colony morphology, growth rate (Fig 7B), and no difference in GAL1 and CUP1 promoter

expression (S4 Fig), suggesting that the cells are the same in measurable host functions. We

tested the effect of NUP82 evolution on Ty1 mobility using the GFP fluorescence assay and, in

contrast to our studies of NUP84, found that Ty mobility levels were similar in strains express-

ing NUP82S.mik and NUP82S.bay and NUP82S.cer, but were significantly higher for strains com-

plemented with NUP82S.kud (Fig 7C). Thus, although NUP82 may be important for Ty1

mobility (Fig 6), we find that Ty1 seems mostly insensitive to the evolutionary differences

between NUP82 of different species. We next assayed the replication of a Ty3 retrotransposon

in the engineered NUP82 heterospecific strains. S. cerevisiae expressing NUP82S.mik resulted in

a significant >3-fold increase in Ty3 mobility, relative to NUP82S.cer (Tukey–Kramer method,

p<0.05) (Fig 7C). These data show that the evolutionary differences within Saccharomyces
NUP82 can impact both Ty1 and Ty3 mobility, but predominantly Ty3. Together, we show

Fig 6. The expression of dominant negative NUP82 and its impact on Ty1 mobility. (A) Left. A linear domain diagram of Nup82pDFY-LILLF

and derived deletion mutants [Nup82p(433–713) and Nup82pDFY-LILLF(1–458)]. Asterisks mark the mutations that decouple Nup82p from the

nuclear pore complex. Right. Western blot analysis to detect the expression of FLAG-tagged Nup82pDFY-LILLF and its derivatives, compared to

the expression of a control protein (Met17p) in the wild-type background (�Met17p degradation products). The effect of Nup82pDFY-LILLF

expression on (B) Ty1 mobility, (C) doubling time in a liquid medium and (D) the nuclear import of the reporter protein LexA-MBP-Gal4

(AD), relative to the expression of MET17 (error bars: standard error, n>3; ��Tukey–Kramer method, p<0.05).

https://doi.org/10.1371/journal.pgen.1007325.g006
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that NUP82 appears to play a previously uncharacterized role in Ty mobility, and that Ty1 and

Ty3 are differentially susceptible to evolutionary changes within NUP82.

Discussion

There are many selective pressures driving the evolution of Saccharomyces yeasts, including

resource competition, sexual selection, and pressure to co-exist with viruses and other genetic

parasites [11,12,79–83]. We find signatures of natural selection acting on several nucleoporins,

coinciding with previous observations that deletion or disruption of several of these genes can

alter Ty mobility. Here, we use a unique approach to demonstrate that the evolutionary

changes that have naturally accumulated in yeast nucleoporins can also alter Ty mobility levels,

just like laboratory perturbations of these genes are known to do. We successfully replaced

NUP82 and NUP84, within the context of the S. cerevisiae genome, with orthologs from related

Saccharomyces yeasts, and then demonstrated altered Ty mobility in these isogenic yeast

strains. While it is never possible to know for sure what has driven selection within these

genes, nucleoporins from different Saccharomyces species support variable levels of Ty1 or Ty3

mobility, providing a phenotypic trait on which selection may have been acting. This is similar

to our recent observations that the antiviral XRN1 gene from Saccharomyces yeasts has likely

co-evolved with totiviruses to control excessive viral replication [11].

It is important to note that, while we have explored nucleoporin evolution, the genetic para-

sites used in this study have been held constant, with both Ty1 and Ty3 deriving from the S.

cerevisiae lineage. In some cases, orthologs of NUP82 and NUP84 resulted in higher levels of S.

cerevisiae Ty mobility, and in other cases, they resulted in lower levels. These patterns are con-

sistent with a model where nucleoporins and Tys are co-evolved in each species. When a

Fig 7. The evolution of NUP82 and its effect on Ty1 and Ty3 mobility within S. cerevisiae. (A) A schematic representation of S. cerevisiae engineered to express

NUP82 from different Saccharomyces species. Genome engineering was confirmed by PCR amplification across the NUP82 locus. (B) The doubling time of NUP82-

complemented strains in a liquid medium. Colony growth and morphology of the engineered strains was monitored for 72 h on a solid YPD medium (error bars:

standard error, n>3). (C) Relative mobility of Ty1 and Ty3 within strains complemented with NUP82 from different Saccharomyces species. Asterisks mark significant

differences in Ty mobility compared to the strain encoding NUP82 from S. cerevisiae (error bars: standard error, n>3; ��Tukey–Kramer method, p<0.05).

https://doi.org/10.1371/journal.pgen.1007325.g007
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Nup82p or Nup84p ortholog is substituted within the S. cerevisiae nuclear pore, sometimes S.

cerevisiae Tys can exploit it better than it can the S. cerevisiae version of that protein (possibly

by having an increased affinity for the foreign ortholog, which is not evolved to evade S. cerevi-
siae Tys). Other times, the S. cerevisiae Ty is less compatible with this orthologous protein.

Ultimately, our data show that the replacement of S. cerevisiae nucleoporins with heterospeci-

fic nucleoporins “decouples” this interaction and leads to either an increase or decrease in Ty

mobility, without impacting cellular homeostasis (e.g. nuclear import). It is tempting to try to

extrapolate from this study predictions that certain yeast species are better at controlling Ty

retrotransposons than others, but this study alone cannot support such conclusions. In this

study, we assayed only S. cerevisiae Tys, but if we assayed Tys from other species, we might

expect them to have evolved an optimal interaction with their cognate nuclear pore machinery.

Thus is the nature of evolutionary arms race dynamics [48–50].

The exact functions of NUP82 and NUP84 during Ty replication remain unclear. Ty nuclear

ingress likely involves docking of the virus-like particle to the nuclear periphery by interaction

with nucleoporins [25]. The known positioning of Nup82p and Nup84p at the cytoplasmic

face of the nuclear pore complex could possibly facilitate virus-like particle docking, in a simi-

lar manner to their recruitment and binding of host karyopherins prior to nuclear import [84–

87]. Multiple Ty3 proteins (Gag3, p27 and CA) interact directly with nucleoporins, and the

integrase of Ty1 and Ty3 contain nuclear localization signals [25,41–44]. Therefore, it seems

likely that Ty proteins interact directly with nucleoporins, making it plausible that evolution-

ary selection could be acting to alter these physical interactions.

The evolutionary relationship between yeast and Tys is complex. The intracellular lifecycle

and ubiquity of Tys would suggest that Tys have been co-evolving with the Saccharomyces
genus for many millions of years [1,2]. Ty copy number varies greatly between different strains

and species of Saccharomyces yeasts and there is likely a dynamic cycle of Ty gain and loss.

Indeed, certain families of Ty are completely absent from certain strains and species of Saccha-
romyces yeasts [1,65,88–90]. One example relevant to our findings is the apparent lack of Ty1

from S. bayanus [1], which is a complex hybrid species with genetic contributions from S. cere-
visiae, S. eubayanus, and S. uvarum [91]. Our results show that NUP84 from S. bayanus inhibits

Ty1 mobility, this might have been protective against colonization by S. cerevisiae Ty1 during

hybridization. The general persistence of Ty in Saccharomyces yeasts suggests that complete

loss of Tys from a species is relatively rare, perhaps due to continued Ty introgression or trans-

mission by sexual reproduction, which are potential mechanisms by which Tys can invade Ty-

free or naive populations [1,90]. The error prone nature of the Ty reverse transcriptase and

reverse transcription-mediated recombination can also generate Ty variants that could over-

come host-encoded resistance mechanisms [92]. In contrast to the idea that Tys are completely

parasitic, Ty mobility can drive the evolution of the yeast genome by changing gene regulation

and expression by integrating in or near host genes. Tys can also facilitate gross chromosomal

rearrangements of the host genome, including translocations and deletions, by way of homolo-

gous recombination between Ty integrated at different locations within host chromosomes

[93–96]. Experimental systems have shown that Ty-mediated genome evolution can be

observed in the laboratory [4], and would likely allow populations of Saccharomyces yeasts to

rapidly respond to selective pressures found within the natural environment. Thus, in the con-

text of the nuclear pore complex, there may be evolutionary selection to prevent Ty nuclear

transit and excessive replication, but also selection against mutations that completely abrogate

Ty mobility. The long-term association between S. cerevisiae and its cognate Tys would imply

that this interaction has been optimized by evolutionary selection, perhaps to balance the dam-

aging effects of excessive Ty mobility with the benefits of genome plasticity.
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The nuclear pore is the gatekeeper of the nucleus, and it is antagonized by many pathogens

and genetic parasites throughout eukaryotes. Recently, we have demonstrated that naturally

occurring evolutionary differences between primate species in a nuclear pore component

called RanBP2/Nup358 alter infection by simian immunodeficiency viruses (SIVs) [120]. We

showed that differential interaction with RanBP2 in each host species drove SIV evolution as it

transmitted between ape species, ultimately setting the stage for the zoonoses that yielded

HIV-1. Remarkably, the very same nucleoporins that are under positive selection in yeast have

also been shown to be essential to the replication of other retrotransposons and viruses. The

fission yeast Schizosaccharomyces pombe ortholog of NUP1 (NUP124) is required for mobility

of the Ty3/gypsy-like element Tf1 and directly interacts with the Tf1-encoded Gag protein

[97,98]. The human homologs of NUP1 and NUP116 (NUP153 and NUP98, respectively) are

important for viral replication in humans, including for HIV, HBV, HCV, and influenza virus

[24,29,33,99–104]. Specifically, NUP153 is an important determinant of HIV and HBV nuclear

import, and its FG (phenylalanine-glycine)-repeat domain directly interacts with HIV capsid,

via specific FG-repeats [24,33,105,106]. In S. cerevisiae, the FG-repeat region of Nup116p

directly interacts in vitro with the Ty3-encoded protein Gag3, and truncation of NUP116
decreases Ty3 mobility [25]. Collectively, this paints a picture of complex evolutionary pres-

sures on nuclear pore genes across eukaryotes.

It appears that viral infections have broadly shaped the evolution of host genomes, affecting

genes well beyond immunity loci [107]. The most classic example involves cellular entry recep-

tors used by viruses to enter cells. These receptors are often under positive selection, resulting

in highly species-specific interactions with viruses [108–112]. The nuclear pore complex is the

gatekeeper of the nucleus just like cell surface receptors are gatekeepers of the cytoplasm. Our

work in Saccharomyces yeasts provides a framework to further investigate the importance of

the nuclear pore complex in modulating Ty mobility, and for a parallel investigation into the

evolution of the orthologous nuclear pore complex of higher eukaryotes. It remains unknown

how broadly viruses and genetic parasites are driving the evolution of important housekeeping

proteins, but intriguing recent reports involving genes such as XRN1 (involved in degradation

of uncapped mRNAs; [11]), and DNA repair genes [113], suggest that this might be more com-

mon than previously appreciated.

Materials and methods

Plasmid construction

The ACT1 intron (ACT1i) and an artificial intron (AI) [114] were amplified by PCR with

included primer-encoded flanking homology to GFP. This PCR product was inserted directly

after the ATG start codon at the 5’ end of GFP by the “yeast plasmid construction by homolo-

gous recombination” method (recombineering) [115]. GFP(AI) and GFP(ACT1i) were ampli-

fied by PCR and introduced into pAG423-GAL-ccdB using TOPO-TA and Gateway cloning

strategies (Thermo Fisher) to create pPAR061 and pPAR063, respectively. GFP(ACT1i) was

also placed under the control of the CUP1 inducible promoter (456 bp upstream of CUP1 were

cloned directly from the genome of S. cerevisiae) using recombineering. pCUP1-GFP(ACT1i)

was used to replace HIS3(AI) within pGTy1-HIS3(AI) to create pPAR078. pPAR101,

pPAR104, pPAR145 and pPAR181 were constructed by using PCR to create DNA encoding

FLAG-tagged Nup82pDFY-LILLF(1–458), Nup82pDFY-LILLF and Nup82p (433–713) from

pNOP-GFP-Nup82pDFY-LILLF [77]. MET17 was amplified directly from the genome of S. cere-
visiae. All PCR fragments were subsequently cloned into pAG414-GPD-ccdB via pCR8 using

TOPO-TA and Gateway cloning strategies (Thermo Fisher). To assay nuclear import using the

strategy outlined by Marshall et al. we first subcloned the LexA-MBP-GAL4(AD) cassette from
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pJMB1076n [71] into the pAG413 plasmid backbone using recombineering, essentially chang-

ing the selective marker on the plasmid from LEU2 to HIS3. For gene knockout, all plasmids

were constructed by recombineering using NUP82 and NUP84 amplified from various Saccha-
romyces species. These nucleoporin genes were placed upstream of a selectable marker (LEU2
or KANMX6) and the entire cassette flanked by 1000 bp of sequence encompassing the 5’ and

3’ untranslated regions of NUP82 or NUP84 from S. cerevisiae. pPAR240 was constructed by

first amplifying a LexA operator sequence upstream of the β-galactosidase gene from S. cerevi-
siae L40. PCR products were designed to contain flanking homology to ADE2 from S. cerevi-
siae and these PCR products were used to disrupt the ADE2 gene within pRS422 to create

pPAR240. The DNA sequences from all constructed plasmids can be found in S2 File. A list of

all relevant plasmids can be found in S1 Table. A list of all relevant yeast strains can be found

in S2 Table.

Evolutionary analyses

Gene sequences from six species of Saccharomyces yeasts were obtained from publically avail-

able online resources. Maximum likelihood analysis of dN/dS was performed using the codeml

program in PAML 4.1. Multiple protein sequence alignments were created and were manually

curated to remove ambiguities before processing with PAL2NAL to produce accurate DNA

alignments [116]. DNA alignments were fit to two models: M7 (codons fit to a beta distribu-

tion of dN/dS values, with dN/dS > 1 disallowed) and M8 (similar to model 7, but with dN/

dS> 1 allowed). One model of codon frequency (f61) and a seed value of 0.4 for dN/dS (ω)

was used (S1 File). Likelihood ratio tests were performed to evaluate which model of evolution

the data fit significantly better with positive selection and inferred if we can reject M7 in favor

of M8 with a p<0.05. REL and FEL codon based models were also used to detect sites under

positive selection as implemented by the HyPhy package using the best substitution models

chosen by Akaike information criterion (AIC) using the phylogenetic tree (Newick format):

((((S. paradoxus, S. cerevisiae), S. mikatae), S. kudriavzevii), S. arboricolus, S. bayanus) (S1

File).

Strain construction

Standard methodologies for PCR-based gene knockout and replacement were used to create

all NUP84 strains in BY4741 (YPAR0130-0133) [117]. Strains YPAR0135-0138 were engi-

neered to encode a LexA operator sequence upstream of the β-galactosidase gene, and were

constructed by the disruption of the genomic copy of ADE2 using a PCR cassette amplified

from pPAR240. Clones selected for their ability to grow on a medium lacking uracil and inabil-

ity to grown on a medium lacking adenine. NUP82 gene replacement utilized a SceI-based

method to increase the efficiency of the integration of NUP82 and KANMX6 by generating

DNA double-stranded breaks at the NUP82 locus in S. cerevisiae (personal communication,

Dr. C.M. Yellman). Using a diploid heterozygous knockout strain of NUP82 [78], KANMX6 at

the NUP82 locus was replaced with the URA3 gene from K. lactis flanked by SceI sites ampli-

fied by PCR from pCMY-IT3. Gene replacement was carried out by the concomitant expres-

sion of SceI from pGAL1-SCEH and the LiAc transformation of a PCR-derived cassette

encoding NUP82-KANMX6.NUP82/nup82Δ::NUP82-KANMX6 clones were selected by their

ability to grow in the presence of 400 μg mL-1 G418 and their resistance to 5-FOA (0.1% w/v).

Haploid clones were isolated from the engineered diploid strains using the SGA selection pro-

tocol as described previously [78]. The correct insertions were confirmed by PCR of genomic

DNA of the NUP82 locus to create strains YPAR0139, YPAR0143, YPAR0141 and YPAR0142.

A PCR cassette was used to disrupt HIS3 in YPAR0139, YPAR0143, YPAR0141 and
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YPAR0142, clones were selected for their ability to grow on a medium containing hygromycin

and inability to grown on a medium lacking histidine to produce strains YPAR0143,

YPAR0145, YPAR0147 and YPAR0149.

Splicing of the ACT1 intron and insertion of an artificial intron within the

GFP gene

Plasmids pPAR063 and pPAR061 were used to produce GFP transcripts containing either the

ACT1 intron (ACT1i) or an artificial intron (AI) [114], respectively, by induction from a galac-

tose inducible promoter. Cultures were grown to mid-log phase in liquid culture with raffinose

as the sole carbon source. At OD600 of ~1, galactose or dextrose was added to a final concentra-

tion of 2% and the cultures grown at 30˚C for 2 h. Total RNA was extracted from these cultures

(~2 x 107 cells) using the RNeasy RNA extraction kit (Qiagen). 5 μg of RNA was treated with 1

U of DNase I at 37˚C for 10 min before heat inactivation at 75˚C for 10 min. RNA samples

were then subject to two-step RT-PCR using Superscript III with the GFP-specific primers:

5’-AAGCTGACCCTGAAGTTCATCTGC-3’ and

5’-CGTTGTGGCTGTTGTAGTTGTACTCC-3’.

Ty1 mobility assays

Yeast strains to be assayed for their ability to support Ty1 mobility were transformed with

either pPAR078 (GFP flow cytometry method), pGTy1(HIS3(AI)) [73] or pBDG606 [51]. To

detect Ty1 mobility, single colonies from S. cerevisiae transformed with each plasmid were iso-

lated for each experiment. Each experiment was performed at least three times. Colonies were

first grown for 24 h in 2 mL raffinose -uracil complete medium at 30˚C with agitation. 1 x 105

cells from the saturated cultures were used to inoculate 15 mL of -uracil complete medium

with either 2% galactose or 2% raffinose with 0.02% galactose, followed by growth for 5 days at

room temperature with agitation. For pGTy1(HIS3(AI)) or pBDG606: Cultures were serially

diluted and plated onto a -uracil complete medium and a -uracil -histidine complete medium,

both with dextrose as a carbon source. Colonies were counted after 2 days growth at 30˚C and

the percentage mobility was calculated. For pPAR078: Cultures were diluted and allowed to

reach early log phase growth (OD600 ~0.05) before the addition of CuSO4 to a final concentra-

tion of 0.5 mM. Cultures were grown for 9 h at 30˚C before assaying for the presence of live,

GFP positive cells using a BD LSRII Fortessa flow cytometer (San Jose, CA) running FACS-

Diva software (v6.1.3). GFP excitation was observed with a blue, 488 nm laser, while GFP

emission was collected using 530/30 nm band pass filter and 502 nm long pass filter. Propi-

dium iodide (PI) excitation was observed with a yellow-green, 561 nm laser, while PI emission

was collected using 660/20 nm band pass filter and a 635 nm long pass filter. 100,000 gated

events were collected using a forward scatter vs side scatter dot plot, with forward scatter

showing relative particle size and side scatter showing internal complexity. All subsequent

plots were generated from this gated population. Live cells were gated by staining cell popula-

tions with PI (final concentration 0.1 μg mL-1) and GFP positive populations were gated by

comparison with GFP negative populations of cells. Analysis of flow cytometry data was per-

formed using FlowJo version 9.7.6.

Ty3 mobility assay

For quantification of Ty3 mobility, yeast cells were transformed with pPS3858, a URA3marked

galactose inducible Ty3-HIS3 [70,74–76]. The HIS3 gene is located at the end of POL and is

anti-sense to Ty3, except for an artificial intron which is sense. The sense intron prevents pro-

duction of His3p until after the full-length Ty3 RNA is transcribed, spliced, reverse transcribed
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and integrated into the genome. Colony transformants were selected on a synthetic medium

with 2% glucose (SD) complete with amino acids but lacking uracil. Single colonies were inoc-

ulated into 2 mL of synthetic raffinose (–uracil) and grown for 24 h. Cultures were then

brought to 5 mL and grown for ~8 h, after which OD600 was measured and cultures were

diluted back to an OD600 of ~0.02 in 4.5 mL and grown overnight. The following morning,

500 μL of 20% galactose (2% final) was added to induce Ty3 expression; after 8 h of induction

cultures were pelleted, washed in SD medium, serially diluted, and plated on both SD plates

lacking histidine for growth of transposed cells and also YPD plates to determine total live cell

counts.

Nup82pDFY-LILLF expression assays

Plasmids constitutively expressing either Nup82pDFY-LILLF, Nup82p truncation mutants or

Met17p were introduced into a strain containing a Ty1 mobility reporter plasmid. Mobility

assays were carried out as previously described above, but with the use of a double-dropout

complete medium to maintain both episomal vectors.

Western blotting of Nup82pDFY-LILLF and truncation mutants

Yeast lysates were prepared from 5 mL of stationary phase culture grown for 16 h in a yeast

complete medium -leucine -tryptophan. Cell pellets were washed with 1 mL of chilled 25 mM

Tris-HCl (pH 7.0), 10 mM sodium azide before incubation at 100˚C for 3 min. 50 μL of SDS

sample loading buffer (100 mM Tris-HCl, 5% SDS, 10% glycerol, 0.1% bromophenol blue, 2%

β-mercaptoethanol, pH 6.8) was added to the boiled pellet with 200 μL of acid-washed glass

beads (0.5 mm). Samples were vortexed for 10 min to disrupt yeast cells before the addition of

another 80 μL of SDS sample loading buffer. Glass beads were pelleted by centrifugation

(1500 × g, 2 min). 30 μL of each sample was loaded directly onto a precast Tris-glycine 10%

SDS-PAGE gel (Biorad). Flag-tagged NUP82 mutants were detected via Western blot using a

1:4000 dilution of a primary mouse monoclonal anti-flag (Syd Labs #M20008). Secondary

detection was carried out using a 1:2000 dilution of a goat anti-mouse horseradish peroxidase

conjugated antibody (Thermo #32430).

Nuclear import assays

A LexA-MBP-GAL4(AD) fusion protein with or without an SV40 nuclear localization signal

[71] was used to measure the efficiency of nuclear import within S. cerevisiae L40 or BY4741. 5

mL of a glucose-supplemented synthetic complete medium lacking the appropriate amino

acid and grown overnight at 30˚C with agitation. Cells were collected by centrifugation at

4000 × g for 30 seconds and the cell pellets suspended in 750 μL of ice-cold ddH2O. Washed

cells were again collected by centrifugation (13,000 x g for 30 seconds), and soluble proteins

extracted by Y-PER buffer as per manufacturer’s instructions (Thermo). The lysate was

assayed for β-galactosidase activity as described previously [118].

Fluorescence microscopy

The steady-state import of GFP-NLS was monitored within BY4741 transformed with

pEB0836 as described previously [72].

Detection of Ty1 genomic integrations by Southern blotting

The detection of the integration of Ty1 containing GFP by Southern blotting was performed as

previously described [73], in the various NUP84-complemented or deletion strains of S.
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cerevisiae. Total DNA was extracted from cell cultures using phenol:chloroform and ethanol

precipitation, after 5 days of induction, as described in the Ty1 mobility assay protocol above.

Southern blotting was carried out after agarose gel electrophoresis, as described previously

[119], using Hybond-XL membranes (GE healthcare).

Promoter activity assay

To assay the activity of the GAL1 promoter we expressed GFP under the control of the GAL1
promoter and monitored the increase in the mean fluorescent intensity (MFI) compared to

uninduced control cells. Cells were grown overnight to saturation at 30˚C (CM -uracil, 2% raf-

finose) before being used to seed a 10 mL culture that was grown to log phase (OD600 0.1–0.5).

Each 10 mL log phase culture was divided into two 5 mL cultures, supplemented with either

2% galactose or dextrose (final concentration) and grown for 6 h. Cultures were assayed for

GFP fluorescence by flow cytometry using the same instrumentation as described above. The

activity of the CUP1 promoter was assayed by analyzing MFI data derived from Ty1-GFP

mobility assays.

Supporting information

S1 Fig. Nucleoporins and karyopherins are important for Ty mobility, but karyopherins

are not evolving rapidly. (A) A summary of whole genome studies that have identified

nucleoporins and karyopherins important for Ty1 and Ty3 mobility [51–57]. (B) Results from

PAML analysis surveying karyopherins for signatures of positive selection, comparing a codon

model of purifying selection (M7) to a codon model of positive selection (M8). No karyopher-

ins had a p<0.05.

(TIF)

S2 Fig. Ty1 mobility is generally reduced when assayed from a single copy reporter plasmid

in S. cerevisiae expressing orthologous NUP84. (A) Relative mobility of Ty1 was assayed with

a single copy plasmid within strains complemented with NUP84 from different Saccharomyces
species using the auxotrophic marker HIS3. Ty1 transcription was initiated by high (2%) or

low (0.02%) concentrations of galactose (B) Averaged percentage of cells that scored positive

for Ty1 mobility (Y axis) comparing low- (centromeric; CEN) and high- (2-micron plasmid;

2μm) copy number plasmids with the expression of Ty1 driven by high or low levels of expres-

sion via the GAL1 promoter (error bars: standard error, n>4). For the GFP assay this was cal-

culated as the overall percentage of GFP +ve cells in the total population. For the CEN

plasmid, this was calculated as the percentage of cells that could grow on a complete medium

lacking histidine.

(TIF)

S3 Fig. The construction of S. cerevisiae strains expressing heterospecific NUP82. The

KANMX6 gene within a diploid strain of S. cerevisiae heterozygous for KANMX6 at one

NUP82 locus (A) was replaced with the URA3 gene from K. lactis flanked by SceI sites (B-C).

SceI restriction endonuclease was used to create double-stranded DNA breaks at the URA3-

containing NUP82 locus, which was simultaneously repaired by a PCR-derived cassette encod-

ing heterospecific NUP82 and KANMX6 (D-E). Haploid clones were isolated using the SGA

selection protocol [78] (F-G).

(TIF)

S4 Fig. The evolution of NUP82 does not impact GFP production from different promot-

ers. The effect of NUP84 complementation on the ability of S. cerevisiae to express GFP from
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the promoters used in our Ty1 GFP-based reporter (GAL1 or CUP1 promoters).

(TIF)

S1 File. Evolutionary analysis of genes involved nucleocytoplasmic transport. This spread-

sheet summarizes the results from all of the evolutionary analyses that were performed.

(XLSX)

S2 File. Plasmid sequences. This file contains sequences of plasmids constructed as part of

this study.

(TXT)

S1 Table. Plasmid sequences. A table containing the names and descriptions of all plasmids

used in this study and their origins.

(DOCX)

S2 Table. Yeast strains. A table containing the names and descriptions of all yeast strains used

in this study and their origins.

(DOCX)
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75. Sadeghi N, Rütz ML, Menees TM. Thermal blockage of viruslike particle formation for the yeast retro-

transposon Ty3 reveals differences in the cellular stress response. Arch Virol. 2001; 146: 1919–1934.

PMID: 11722014

76. Bilanchone VW, Claypool JA, Kinsey PT, Sandmeyer SB. Positive and negative regulatory elements

control expression of the yeast retrotransposon Ty3. Genetics. Genetics; 1993; 134: 685–700. PMID:

8394262

77. Yoshida K, Seo H-S, Debler EW, Blobel G, Hoelz A. Structural and functional analysis of an essential

nucleoporin heterotrimer on the cytoplasmic face of the nuclear pore complex. Proc Natl Acad Sci U S

A. 2011; 108: 16571–16576. https://doi.org/10.1073/pnas.1112846108 PMID: 21930948

78. Tong AHY. Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science.

2001; 294: 2364–2368. https://doi.org/10.1126/science.1065810 PMID: 11743205

79. Xie X, Qiu W-G, Lipke PN. Accelerated and adaptive evolution of yeast sexual adhesins. Mol Biol Evol.

2011; 28: 3127–3137. https://doi.org/10.1093/molbev/msr145 PMID: 21633112

80. Greig D, Travisano M. The Prisoner’s Dilemma and polymorphism in yeast SUC genes. Proc Biol Sci.

2004; 271: S25–6. https://doi.org/10.1098/rsbl.2003.0083 PMID: 15101409

81. Smith C, Greig D. The cost of sexual signaling in yeast. Evolution. 2010; 64: 3114–3122. https://doi.

org/10.1111/j.1558-5646.2010.01069.x PMID: 20584074

82. Bensasson D, Zarowiecki M, Burt A, Koufopanou V. Rapid evolution of yeast centromeres in the

absence of drive. Genetics. 2008; 178: 2161–2167. https://doi.org/10.1534/genetics.107.083980

PMID: 18430941

83. Pieczynska MD, Wloch-Salamon D, Korona R, de Visser JAGM. Rapid multiple-level coevolution in

experimental populations of yeast killer and nonkiller strains. Evolution. 2016; 70: 1342–1353. https://

doi.org/10.1111/evo.12945 PMID: 27168531

84. Damelin M, Silver PA. Mapping interactions between nuclear transport factors in living cells reveals

pathways through the nuclear pore complex. Mol Cell. 2000; 5: 133–140. PMID: 10678175
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