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Abstract 

Mechanical and Opto-mechanical Properties of Branched  

Semiconductor Nanocrystal Stress Sensors 

by 

Shilpa Naresh Raja 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Berkeley 

Professor A. Paul Alivisatos, Chair 

 

This dissertation highlights advances in using semiconductor tetrapod quantum dots 
(tQDs) as stress sensors in structural polymer nanocomposites. Semiconductor nanocrystals have 
undergone many developments in terms of synthetic control of shape and size since their 
inception, and one example is the ability to create branched nanocrystals such as tQDs. tQDs are 
core/shell tetrahedrally symmetric, branched nanocrystals.  In this thesis, studies will utilize 
tQDs consisting of a ~4 nm cadmium selenide (CdSe) core and ~25 nm long cadmium sulfide 
(CdS) arms. Their type I band alignment and the modulus difference between their core and 
shell, along with their branching, makes them sensitive to applied mechanical environmental 
stresses. The CdS arms receive stress from a host matrix in which the tQDs are embedded and 
transmit it to the CdSe core. The tQD’s photoluminescence emission spectral maximum 
undergoes a monotonic red-shift, or decrease in energy, with increasing tensile stress, due to 
widening bond distances in the core. The tQD’s property of nanoscale stress-sensing is of 
relevance to fields such as polymer dynamics, sensing of premature fracture in service, and 
biomechanical stress sensing.  

We have fabricated and characterized the structure and opto-mechanical sensing ability 
of a wide variety of tQD-polymer nanocomposites. We demonstrate tQD sensing of tension and 
compression as well as more complex stress responses, such as stress relaxation and hysteresis. 
We perform optical and mechanical tests simultaneously, discovering a new sensing modality, 
and orders of magnitude of stress amplification in the tQD core. We also discover tQD sensing 
of dispersion including a switch in optomechanical response characteristic when tQDs are in 
direct contact.  

 In addition to demonstrating and analyzing these new phenomena, we theoretically 
explore, with micromechanical finite element simulations and atomistic density functional 
theory, the origins of the tQD stress response. We further examine, experimentally and 
theoretically, the ability of tQDs to serve as mechanical fillers, finding that they have greater 
potential to improve the Young’s modulus of structural polymers than linear nanorods and nano-
spheres due to their branched shape. The results in this dissertation contribute to the 
understanding of the structural, mechanical, and optical sensing properties of nanocomposites of 
polymers and semiconductor tQD nanocrystals. 
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Chapter 1 : Introduction 

1.1: Motivation 

Polymer-nanoparticle composites can exhibit enhanced mechanical properties and unique 
functionalities1-7, enabling new functional materials such as antimicrobial polymers8 and 
biocompatible implants9. However, rational design of these materials has remained elusive, due 
to a lack of detailed understanding of stress profiles at the microscale and nanoscale. 
Specifically, an understanding of the interface between the filler and polymer and how stresses 
are transferred across that barrier are critical in reproducibly synthesizing composites10-13.   

Furthermore, as premature failure of structural components invariably results from the 
initiation and incipient growth of small cracks,14-16 there is a vital need for auto-responsive 
structural materials that potentially self-detect and self-respond to environmentally-induced 
mechanical damage17. Such materials have a built-in potential to prevent catastrophic failure in 
service applications18. However, current technologies that can provide for the early self-detection 
of local stresses associated with stresses at the polymer-nanoparticle interface or incipient cracks 
are extremely limited19,20. 

Established techniques for these studies—including micro-Raman spectroscopy21, 
synchrotron radiation22, and electron backscattering23 as well as contact techniques such as 
atomic force microscopy24,25, nanoindentation26, and others27—are difficult to adapt to in vivo 
stress detection and premature failure detection in service due to their stringent requirements in 
sample size and shape or need for controlled laboratory environments20. Recent advances in 
smart materials have used self-reporting fillers such as near-infrared molecular probes28, micron-
sized ZnO tetrapods29, metal nanoparticles30,31 and bio-inspired concentric optical fibers with 
varying refractive index19. However, these fillers have drawbacks, including altering the 
molecular-level composition and structure of the polymer and weakening multiple mechanical 
properties such as toughness29. Mechanophoric dyes and piezoresistive materials, for example, 
are only effective at the millimeter length-scale with relatively low sensitivity;30,32-34 
furthermore, such techniques are also very challenging to implement “in the field”.14,19,20,29,30,32-

37It is therefore of considerable interest to develop an optical luminescent stress sensing 
nanoparticle, and to establish ways of embedding these inside polymers without perturbing the 
mechanical properties that are being sensed. Such a visible-light, nanoscale sensor with the 
ability to be embedded into a variety of “smart” structural materials without causing such 
degradation would be particularly appealing for the potential sensing of impending fractures in 
service.18 Furthermore, mechanical stresses exerted by biological tissues can be signatures of 
disease38. Thus, such a sensor, if embedded into soft polymers39,40, could also potentially be of 
significant use in biological applications such as sensing of stresses in cancer cell 
proliferation20,41. 

Colloidal semiconductor quantum dots display a multitude of size and shape-dependent 
properties, enabling their use in a variety of electronic and optical applications42. The ability to 
tune their size and shape, and in particular the ability to create branched nano-heterostructures, 
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provide further opportunities to take advantage of their special behaviors43. One such opportunity 
is the creation of functional nanocomposites with specific “smart” characteristics, such as shape-
dependent mechanical properties or self-healing properties upon exposure to radiation11,44,45. The 
cadmium selenide-cadmium sulfide (CdSe-CdS) core/shell tetrapod quantum dot (tQD) is a 
particularly interesting system. The tQD is a branched, tetrahedrally symmetric colloidal 
semiconductor nanocrystal consisting of a zinc-blende CdSe core and four epitaxially grown 
wurtzite CdS arms46. To improve synthetic yield47, tQD cores are synthesized separately in the 
presence of oleic acid and oleylamine, followed by shell growth in the presence of 
octadecylphosphonic acid, resulting in native hydrophobic alkyl chain ligand coverage46,48,49. 
These quasi-type I heterostructures are highly emissive with large extinction coefficients and 
high quantum yields in the visible range49,50. Due to the tQD’s branched morphology, in which 
the four long CdS arms confer a net stress on the CdSe core upon deformation, the tQD exhibits 
a photoluminescence stress response51. In response to nano-Newton forces, they were predicted 
to have a monotonically decreasing band-gap51,52. The potential for tQDs to be useful as a stress 
sensor49,50,53 was recognized early on with studies that showed the tQD’s monotonic 
photoluminescence emission maximum redshift in response to tensile stress in diamond anvil 
cells54 (Fig. 1.1), under atomic force microscope (AFM) tips52 and in semi-crystalline 
polymers18,20. These studies opened the way for further investigations as shown in this thesis, 
which extended the early work20 by utilizing simultaneous or side-by-side mechanical testing, 
processing methods such as electrospinning or film casting which allowed for tunable tQD 
dispersion and concentrations in the composite18,20,55, and by studying sensing in structural films 
rather than fibers18,20,55. Owing to its nanoscale size and branched shape54, the tQD provides a far 
higher spatial resolution of stresses than existing technologies20,56.  

 
Figure 1.1: Previous studies on tQD stress response 
(A) tQDs exhibited a linear response to increasing pressure when embedded into a 
diamond anvil cell. (B) A stress map of the fluorescence redshift of tQDs with increasing 
strain along the fiber axis in tQD-fiber nanocomposites prepared via diffusion. Figure 
adapted from references 20 and 49.  

Herein, we demonstrate that it is possible to use luminescent semiconductor nanocrystal 
tQDs as stress sensors in multiple formats that build on previous works, deepening the 
understanding of tQD stress-sensing mechanisms and using a variety of different processing 
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techniques to demonstrate their potential for stress-sensing in service. We incorporate tQDs into 
polymer fibers via electrospinning, allowing for much larger, variable concentrations than 
previous works, and perform side-by-side mechanical tests to compare tQD optical and 
mechanical responses. We find that tQDs can be incorporated into electrospun fibers at high 
concentrations without changing the inherent mechanical behavior of the fibers. We also 
incorporate tQDs into films of hydrophobic polymers with which they interface relatively well, 
and conduct simultaneous optical and mechanical tests which reveal an excellent level of opto-
mechanical agreement in films as compared to fibers. We show the ability of tQDs to sense when 
they are in direct contact, and discover a new sensing modality, the sensing of stress in terms of 
the full-width half maximum; previous tQD stress sensing was limited to red-shifts of the 
photoluminescence emission maximum. tQDs uniquely report the stress state of the nanofiller 
phase; we show, via density functional theory calculations and finite element calculations, that at 
high packing densities tQDs detect stress via photoluminescence blue-shifts rather than red-shifts 
because of net compression in the nanofiller phase. We further show that in softer polymers, 
tQDs can exhibit a pressure coefficient orders of magnitude higher due to the unique stress 
amplification effects of the tQD.  

 In addition, we explore the ability of the tQD to tune the elastic modulus of structural 
rubbers and compare their performance as a mechanical filler to nanorods and spherical quantum 
dots. Studies in this regard were conducted over a variety of concentrations in electrospun fibers 
and films, and lattice spring model simulations of the nanocomposites were employed to explain 
the results. We find that due to their branched shape, which optimizes both the orientation of 
strong X-type interfacial bonds and filler bonds with the tensile axis, tQDs provide the best 
enhancements of nanocomposite Young’s modulus44.  

1.2: Dissertation Organization and Flow 

The general structure of this dissertation involves building upon previous work by first 
engaging in studies of tQDs as sensors in electrospun fiber nanocomposites (Chapter 2) and then 
progressing to studies in structural films (Chapter 3) followed by a study of the effect of 
nanocrystal branching on the nanocomposite Young’s modulus (Chapter 4).  

We start in Chapter 2 with electrospun fiber composites in order to potentially achieve 
better dispersion using high electric fields, and because electrospun fibers provide a simple 
model system with facile, efficient fabrication in which many samples can be quickly and 
reproducibly prepared for side-by-side optical and mechanical tests. With electrospinning, 
dozens of samples can be prepared from one drop of precursor solution. It was important to have 
Chapter 2 demonstrates, using side-by-side optical and mechanical tests, the capacity of tQDs to 
serve as a non-perturbing probe in hydrophilic polyesters, i.e., a self-embedded nanocrystal filler 
that senses the stresses in the nanocomposite without degrading its mechanical properties. 
Because films have more structural applications than fibers, e.g. as stress-reporting adhesives or 
coatings, we next in Chapter 3 expand on fiber studies by studying tQD stress-sensing in thick 
films of structural rubbers, uncovering more complex stress responses and orders of magnitude 
higher stress sensitivity in structural films. In contrast to the results in Chapter 2, Chapter 3 



4 
 

shows that in hydrophobic structural rubber films, tQDs can enhance the elastic modulus of the 
composite under certain processing conditions. This may be useful for specific applications that 
require a range of tunable nanocomposite Young’s moduli in addition to a built-in stress-sensing 
ability. We therefore end in Chapter 4 with a study of the effect of nanocrystal branching and 
tQD concentration on nanocomposite Young’s modulus in structural hydrophobic fibers and 
films.  

Brief summaries of each chapter follow. 

Chapter 2 will describe the use of tQDs as stress sensors in electrospun fibers, revealing 
sensing of new more complex behaviors such as stress relaxation and hysteresis, as well as 
demonstrating the tQD as a non-perturbing probe.  

Chapter 3 will describe the use of tQDs as stress sensors in nanocomposite films, 
revealing a packing density-dependent sensing of both tension and compression in the filler 
phase, a new sensing modality, and stress amplification in soft hydrophobic polymers. 

Chapter 4 will describe the use of tQDs as optimal nanoscale fillers (as compared to 
spherical quantum dots and linear nanorods) to enhance the elastic modulus of nanocomposites. 

Chapter 5 provides a brief outlook on future research directions.  
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Figure 1.2: Overview of advances in this dissertation 
(A-B) tQDs exhibited a response to applied stress in electrospun fibers that matched 
features of traditional uniaxial tensile curves, such as slack, an initial linear elastic 
regime, and a regime of plastic deformation. (C-D) Results of opto-mechanical stress 
testing on tQD-polymer nanocomposite films, indicating close agreement of the tQD-
sensed fluorescence tensile curve with the one measured by a traditional bulk load cell, 
including sensing of stress relaxation. (E-F) Results of mechanical tests and simulations 
on tQD and nanorod-polymer composites, indicating the superior performance of the 
tQD as a mechanical filler.  

 

St
ra

in
 

Wavelength (nm) 

  

Strain 

C
ha

ng
e 

in
 E

m
is

si
on

 
M

ax
(m

eV
) 

A B 

  

C D 

  

Strain Strain 

 

Concentration (Vol%)  Concentration (Vol%) E F 

  
St

re
ss

(M
Pa

) 

C
ha

ng
e 

in
 F

W
H

M
(m

eV
) 

C
ha

ng
e 

in
 E

m
is

si
on

 
M

ax
(m

eV
) 

 

St
re

ss
(M

Pa
) 

E/
E 0

 

E/
E 0

 

Concentration (Wt%) Concentration (Wt%) 



6 
 

Chapter 2 : tQDs as Fluorescent Stress Probes of Electrospun 
Nanocomposites  

2.1: Introduction 

Rational design of composites with optimized mechanical properties requires 
understanding of how stresses are transferred across the interface between the filler and polymer. 
However, there is a lack of detailed quantification of stress profiles at both the microscale and 
nanoscale to correlate the local stress with polymer-filler interaction, polymer chain 
conformation and dynamics. 10,57 Established techniques such as micro-Raman spectroscopy21, 
synchrotron radiation22,37, electron backscattering20, AFM10 and nanoindentation58, etc.59 are 
difficult to adapt to in situ and premature failure detection in service due to sample requirements 
or need for controlled laboratory environments.  Recent advances in smart materials have used 
self-reporting fillers such as near-IR molecular probes28, micron-sized ZnO tetrapods29, metal 
nanoparticles30,31 and bio-inspired concentric optical fibers with varying refractive index19. 
However, these fillers are in general microscopic in size, making them unsuitable for 
nanocomposites, or degrade the mechanical properties of the host material. tQDs have significant 
potential as stress sensors54. With a zinc-blende CdSe core and four tetrahedrally branched 
wurtzite CdS arms, these nanoheterostructures are highly emissive in the visible range49. In 
response to nano-Newton forces, they were predicted to have a monotonically decreasing band-
gap51,52 and were shown to have a fluorescence red shift in response to non-hydrostatic 
gigapascal stresses54.  

The surface chemistry of tQDs can be easily modified following established nanoparticle 
ligand exchange60, which can allow them to be easily incorporated into a wide number of 
synthetic and biological polymers with variable concentration and dispersion. Despite this, 
previous studies featured only very dilute (~0.002% by weight) incorporation of these 
nanocrystals into polymers via diffusion20.  

In this chapter, we substantially extend the range of loading by employing 
electrospinning as a means of introducing the tQDs into the polymer. Electrospinning involves 
the application of a high electric field to a droplet of viscous polymer solution, resulting in the 
formation of a taylor cone59 that splays into a network of fibers at the metallic collector61,62. We 
chose electrospinning for two main reasons. The first is that we hoped that the high electric fields 
used, >=15 kV/cm18, would result in good dispersion of the tQDs in the fiber. The second was 
that it is allows for the creation of dozens of fiber samples of uniform thickness and length from 
simply a few microliters of precursor solution18. This was an attractive prospect because tQDs 
can be challenging to prepare in high yield. A facile, quick means to prepare many samples from 
a small quantity of tQDs, to get significant statistical data on the tQD opto-mechanical response, 
was appealing for an initial work aimed at improving understanding of tQD stress-sensing 
mechanisms. We incorporated, via electrospinning, several concentrations of tQDs (from 3.6-
40% by weight) into poly-l-lactic acid (PLLA), forming a nanocomposite material with PLLA as 
the polymer matrix host material, and the tQD as the nanoscale composite filler material. PLLA 
was chosen for our initial study because its electrospinning fabrication process is especially 
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robust and well-developed63,64. Optical and mechanical experiments on this nanocomposite show 
that the tetrapod nanocrystal sensor matches the bulk mechanical sensor with a reasonable degree 
of agreement in the basic tensile mechanical properties as well as under cyclic loading and stress 
relaxation.  Several differences between the sensing behavior of the universal testing machine 
(UTM) macroscale load cell and the tQD nanoscale load cell are observed, which we attribute to 
an imperfect polymer-nanocrystal interface and consequent incomplete stress transfer to the tQD 
filler10. As discussed below, particle aggregation during composite formation limits stress 
transfer to the tetrapods, which ensures elasticity and recyclability of the probe by preventing 
plastic deformation of the non-perturbing (i.e., causes no change to the mechanical properties) 
nanoscale sensor.  We further show that increasing the tetrapod concentration, while affording 
little to no change in the polymer mechanical and structural properties, effectively improves the 
tQD sensor response and sensitivity.  Finally, we examine the stress relaxation and cyclic 
deformation/hysteresis of the polymer composites using the tQD deformation sensor. The most 
important results of this chapter are the presentation of optical and mechanical tests conducted 
side-by-side for the first time, which helps to advance the understanding the performance of 
tQDs as stress sensors and reveal new sensing responses.  

2.2: Nanocomposite Electrospinning 

In order to incorporate tQDs into poly-l-lactide (PLLA) polymer at a large range of 
concentrations to investigate the impact on mechanical properties as well as the opto-mechanical 
self-sensing ability of the polymer nanocomposite, we used electrospinning, a versatile technique 
for micro- and nanofiber formation, which involves applying a large electric field (approximately 
one kilovolt/centimeter or higher) to a droplet of polymer solution on the end of a syringe 
needle65. Upon sufficiently high electric field application, the droplet loses its spherical shape 
and begins to elongate, forming a shape termed the Taylor cone59. Subsequently, a jet stream 
erupts from the unstable Taylor cone, forming fibers at the grounded electrode (Fig. 2.1)66. The 
large electric field may cause nanocrystals and particle aggregates to be more uniformly 
dispersed throughout the polymer matrix than other nanocomposite fabrication methods67,68. This 
may minimize the formation of stress concentrations within the nano/microstructure, which 
would act to degrade the mechanical properties of composite materials69,70.   

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: tQD-PLLA composite electrospun fibers  
(A) Schematic of electrospinning process. (B) Fluorescence image of tQD-PLLA 
electrospun fiber. (C) TEM image of tQD-PLLA electrospun fiber cross-section (scale 
bar 0.5 um). (D) Higher magnification view of tQD-PLLA composite shown in 1C (scale 
bar 200 nm).  

Briefly, tQDs and a solution of poly-l-lactic acid (PLLA) in chloroform were mixed and 
loaded into a 1-mL syringe with an attached #21 gauge needle. A droplet of the solution was 
manually ejected from the syringe immediately prior to applying a one kilovolt/centimeter 
electric field. This caused individual fibers to be formed on the dual rod electrodes62 (Fig. 2.1). 
The fibers dried within seconds71 and were collected for optical and mechanical tests. Fig. 2.1 
shows a bright-field fluorescence image of a resulting electrospun fiber, showing red 650 nm 
fluorescence from the tQDs dispersed throughout the fiber. No diffusion of the fluorescence 
intensity along the length of the fiber during tests was observed, leading us to conclude that the 
tQDs are effectively incorporated into the polymer composite structure. The tQDs are not 
covalently bound to the matrix, nor have they undergone ligand exchange. They are simply 
incorporated into the polymer via electrospinning with their native hydrophobic ligands. tQDs 
were incorporated at concentrations of 0, 3.6, 10, 20, and 40% by weight of the PLLA polymer. 
Fig. 2.1 also shows PLLA-tQD fiber TEM images where the tQDs are forming aggregates in the 
fiber. tQD aggregates show no preference for the PLLA-solvent interface or interior of the fiber.  
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Figure 2.2: Comparison of tQD stress gauge with tensile tester  
(A) Selection of raw spectra illustration redshift as a function of strain. (B) Fluorescence 
tensile curve obtained by fitting and plotting data in A. (C) Illustration of typical 
fluorescence tensile curves at three tQD loadings. (D) Comparative typical macroscopic 
uniaxial tensile curve on the same batch of fibers.  

2.3: Fluorescence Monitoring of Tensile Deformation 

 After collection, fibers were mounted onto the piezodrive in situ stretcher for 
fluorescence tests or onto cardboard tabs for mechanical tests. Figure 2.2 shows the raw spectra 
from a typical fluorescence test, indicating both a redshift as well as an increase in the full-width 
half maximum (FWHM) of the fluorescence spectrum as a function of stretching. The increase in 
FWHM (10-20% increase) may be due to a combination of innate spectral line broadening 
during tetrapod nanocrystal deformation and the natural heterogeneity of strain states within the 
PLLA polymer fiber. The deformation of the tQD leads to bending of the CdS arms which 
stretches some bonds more than others; for example, the bonds at the interface between the arm 
and the CdSe core are more stretched than bonds within the CdSe core. Additionally, the 
tetrapods at an aggregate edge may be experiencing a different stress than the ones in the middle 
of a clump or smaller groups of particles in different mechanical contact with the polymer.  In 
the absence of single nanocrystal photoluminescence studies in the fibers, it is not yet known to 
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what degree deformation of an individual nanocrystal broadens its emission, so the relative 
contribution of these mechanisms to the FWHM broadening is unclear. 

 However, the redshift in peak emission clearly tracks fiber deformation. Fig. 2.2 also 
shows the result of fitting raw spectra to single Gaussians and then plotting these as a function of 
strain. It indicates an initial slack region followed by a linear elastic region, which then yields 
and flattens out into a plastic regime. This result matches textbook polymer tensile test graphs72, 
as well as our own mechanical tests conducted on the same batch of fibers.  

2.4: Concentration Dependence on Sensing Ability  

Fig. 2.2 indicates that as the concentration of tQDs in the polymer increases, tQD 
sensitivity to strain in the fiber increases as evidenced by the average slopes of the linear region. 
Between concentrations of 3.6 to 20% by weight of the tQDs in the polymer, the average 
fluorescence slope (∆meV/strain) increases 60% from 0.39 to 0.62, though the general shape of 
the tensile curves is constant. The observed clear distinction between elastic and plastic regimes 
and consistent curve shape across all particle concentrations in fluorescence tests has not been 
reported previously20,29. Although optical and mechanical tests were conducted on different 
fibers, all nanocomposite fibers used in comparative tests came from the same batch of 
electrospun fibers prepared using the same tQDs and polymer precursor solutions.  

Fiber-polymer composite studies73,74 help explain the concentration-dependence 
illustrated in Fig. 2.2. It is commonly observed in fiber-polymer composites that, provided the 
fiber/matrix interface is sufficiently strong, the larger the fiber aspect ratio the better the stress 
transfer and the better the overall composite properties up to a critical length73,74. Our 
observation of a fluorescence slope increase with increased tQD concentration is similar. As the 
filler concentration increases, the average aggregate size increases and the spacing between 
aggregates decreases, analogous to a larger aspect ratio in ceramic fiber-polymer composites. 
This augmented interaction between aggregates leads to a greater stress transfer to the tetrapod 
phase of the composite. A similar result was recently reported with micron-sized ZnO tetrapods, 
though in that case a clear distinction between elastic and plastic regimes and good resemblance 
between tensile and fluorescence curve shapes was only seen at high (50% by weight) ZnO 
tetrapod concentrations29. By contrast, we see clear a distinction between elasticity and plasticity 
and an optical response approaching that in the mechanical tests at tQD concentrations as low as 
3.6% by weight of the polymer.  Additionally, in the work with ZnO tetrapods, oscillations were 
seen in the fluorescence tests at low tetrapod concentrations; this was attributed to non-
interlocked tetrapod domains in the polymer matrix29. In our case, we find oscillation-free 
behavior at even the lowest tQD concentrations in the polymer, meaning that interlocking is not 
necessary to achieve curves with relatively low noise and reasonable accuracy. 

A complementary explanation for the particle concentration dependence shown in Fig. 
2.2.C is that aggregates near the fiber surface experience increased local strain due to the Poisson 
effect. PLLA has a Poisson’s ratio of ~0.475, indicating that it contracts roughly one unit radially 
for every two units extended axially. Studies indicate that the Poisson’s ratio is larger near the 
surface of a fiber76; thus, this contracting force will be greatest at the surface. As the aggregate 
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concentration increases, the number of aggregates proximal to the outer surface of the fiber does 
as well. Consequently, more aggregates are present in the region of maximum contracting force 
near the surface, leading to larger stress transfer and thus better response of the tQD probe.  This 
explanation is consistent with the fact that the average maximum fluorescence peak shift also 
was seen to increase with concentration from -9.5 meV to -11.3 meV for 3.6% to 20% tQD 
concentrations by weight in the polymer, respectively, indicating that the sensor becomes more 
sensitive with increasing concentration. 

2.5: Unchanged Mechanical and Structural Properties: A Non-Perturbing Probe 

Somewhat surprisingly, the ceramic tQDs do not significantly affect the mechanical 
properties of the nanocomposite, even at high tQD concentrations. Figure 2.2.C-D shows 
comparative uniaxial tensile stress-strain curves of electrospun PLLA with and without tQDs and 
qualitative agreement with optical curves. The inset of Figure 2.2.D shows the full mechanical 
curves to failure for the same fibers, indicating close agreement between different 
concentrations, even for 20% by weight tetrapod-fiber nanocomposites.  We discuss a possible 
explanation for the unique non-perturbing behavior of the tQD probe below. The oscillation 
inherent to the flat region of the polymer curves at high strain is due to plastic deformation; local 
molecular variations in polymer stress as strands unravel and molecular-scale rearrangements 
during neck extension. These variations are captured in both the optical and mechanical data.  

From the mechanical tests performed on the tensile testing machine on a total of over 70 
fibers, there is no significant trend in modulus (measured by taking the slope of the initial linear 
elastic region of the engineering stress-strain curve), toughness (measured by taking the area 
under the curve of the entire engineering stress-strain curve), or stress and strain at failure with 
concentration increased from 0% to 20% by weight of tetrapods in the PLLA polymer. Even at 
40%, there is no significant change in elastic modulus although there is a decrease in toughness 
and other mechanical properties. This is unusual as many composite systems of semiconductor 
quantum dots77, micron-scale tetrapods29, and other polymer-ceramic systems78 show modulus 
increases with such weight percent additions, sometimes accompanied by decreases in failure 
strains and toughness. Although opposite effects have also been observed, it is perhaps surprising 
that all the tensile mechanical properties remain relatively unchanged with such high 
concentration of tQDs. However, we believe that this is due to the combination of the weak tQD-
polymer interface and PLLA structural variations caused by electrospinning. The poor stress 
transfer due to the weak interface explains why the measured Young’s moduli do not follow a 
straightforward “rule of mixtures” analysis79. Regarding structural variations, PLLA is a semi-
crystalline polymer with multiple phases determining its mechanical properties. These phases 
can clearly be observed as darker and lighter (crystalline and amorphous) regions in our 
transmission electron microscopy (TEM) images. Small changes in the processing of the 
electrospinning precursor solutions, such as those introduced by large particle loading, may 
impact the crystallinity of the resultant fibers. Collection conditions as well as inherent electric 
field variations across the dual-rod electrodes may also result in structural variations. 
Accordingly, dynamic scanning calorimetry (DSC) analysis showed significant variation in 
crystallinity and grain size across samples, but no net effects on the crystallinity and polymer 
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structural and thermal properties as a function of tQD concentration in the nanocomposite. The 
result is a material that shows little change in a wide range of mechanical properties even at large 
particle volume fractions. 

2.6: Incomplete Stress Transfer to Nanofiller Sensor 

It is apparent from Figs. 2.2.B and 2.2.D that the linear elastic region as measured by the 
tQD sensor is much broader and covers more strain (6-30% extension) than the linear elastic 
region as measured by the UTM (which covers between 1-3%). We speculate that this is due to 
poor stress transfer to the tQD filler. In the case of strong stress transfer, we would expect 
fluorescence shifts to occur over the same range of strain as seen in the mechanical data as well 
as significant mechanical property changes in the nanocomposite80,81. The poor stress transfer is 
due to a weak interface between the nanocrystal and the polymer. The PLLA polymer is a 
hydrophilic aliphatic polyester with hydrogen bonding between the chains. The tQDs, with their 
native hydrophobic ligands, cannot participate in the hydrogen bonding. This unfavorable ligand-
polymer interaction leads to the observed tQD clusters in the polymer matrix. Prior 
demonstrations of the tQD support the idea of partial stress transfer to the particle. Previously, 
tQDs were added to hydrophilic polymers, such as Nomex, through diffusion after application of 
a droplet of particle solution20. Diffusion likely creates a weaker particle-polymer interface than 
electrospinning and explains why a smaller maximum particle shift was seen in previous work20.  
This suggests the tQD could also be used to optically probe the particle-polymer interface 
strength in composite materials. 

Despite the incomplete stress transfer to the particle phase, the tetrapod fluorescence still 
clearly responds to fiber deformation.  This demonstrates the tQD’s usefulness in reporting 
phase-specific mechanical information in composite materials. The UTM load cell senses the 
macroscopic strain, while the tQD is only sensitive to nanoscale deformations that introduce a 
strain in the CdSe/CdS nanocrystal lattice. These latter deformations may arise from nanoscale 
particle-particle interactions (inter- and intra-aggregate interactions) or direct nanoscale particle-
polymer interaction, but not from purely polymer molecular modes of deformation such as 
amorphous twist-tie chain unraveling, backbone covalent bond stretching, and others72. The 
phase-specific probing behavior of the tQD helps explain the differences between optical and 
mechanical testing.  
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2.7: Stress Relaxation and Cyclic Deformation 

 
Figure 2.3: Measuring stress relaxation using tQDs 
(A) Macroscopic uniaxial tensile mechanical test illustrating stress relaxation. (B) 
Fluorescence test data obtained under same mechanical test conditions. * indicates 
where strain was held at 77%.   

In service, parts often undergo more complex stress-states than pure tensile elongation, 
such as stress relaxation and hysteresis. These more complex behaviors are of key importance to 
understanding polymer dynamics. Therefore, with an eye towards applications and advanced 
fundamental studies, we also examined stress relaxation and hysteresis in the nanocomposite, 
both optically as well as mechanically. To the best of our knowledge, this has never been 
mapped using self-sensing nanoscale sensors embedded into a material. Fig. 2.3.A depicts the 
results of a mechanical tensile test in which a fiber containing 10% tetrapods by weight was 
stretched to 77% strain and held there for approximately 53 seconds. Stress is plotted as a 
function of time and shows an exponential fall-off associated with stress relaxation in the 
polymer82. Figure 2.3.B illustrates a fluorescence test performed under identical strain rate and 
holding conditions as the mechanical test. The same distinct exponential fall-off in stress 
relaxation is seen. The stress relaxation tests in the UTM were performed on 5 fibers of each tQD 
concentration (15 fibers total) and no difference in load relaxation properties was observed as a 
function of concentration. The mechanical stress relaxation behavior showed a 28.8±0.8% 
30.2±0.7%, and 29.9±1.38% relaxation for fibers containing 3.6%, 10%, and 20% tetrapods by 
weight, respectively. The average over all 15 samples was 29.6±1.13% relaxation. By contrast, 
the average over 45 fiber samples of stress relaxation measured optically was 20.9±6.24% 
relaxation. Given that the mechanical test measures macroscale stress relaxation while the 
tetrapod sensing of stress relaxation originates from local nanoscale polymer deformations, the 
degree of agreement between the two measurements is striking and demonstrates that the 
tetrapod can be an effective nanoscale sensor for stress relaxation, in addition to tensile 
properties. This may be useful for a variety of applications as it demonstrates an optical means of 
determining stress relaxation prior to failure in structural materials. We observed a faster 
mechanical stress relaxation rate, consistent with the incomplete stress transfer to the tetrapod 
filler phase. In the case of the tQD-PLLA polymer nanocomposite, the load sensor is the filler 



14 
 

phase and therefore only measures a fraction of the load felt by the polymer matrix.  The smaller 
exponential stress falloff measured optically is thus in accord with the broadness of the linear 
response of the tQD as compared to that measured by the tensile testing machine, and further 
supports our proposed stress transfer explanation of differences between the two tests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Measuring cyclic deformation using tQDs 
(A) Mechanical hysteresis loop illustrating plastic deformation and accompanying 
energy loss. (B) Fluorescence ‘hysteresis’ curve obtained under the same mechanical 
testing conditions. (C) Hysteresis loops from trials shown in part A plotted versus time. 
(D) Fluorescence ‘hysteresis’ loops of data from trials in plot B plotted versus time. 
Dashed regions indicate periods where fiber was not in focus due to slack from plastic 
deformation.  

We also used the tQD as a probe for sensing the response of the single PLLA fibers to 
cyclic loading, again as compared to mechanical tests, and found telling differences between the 
hysteresis curves obtained via the two methods. Fig. 2.4.A shows a hysteresis loop done on a 
10%-tetrapod-PLLA composite fiber measured mechanically. The fiber was stretched to 
approximately 10% strain and returned to zero strain at the same strain rate; as before the same 
strain rates and test conditions were used with both sets of tests.  The fiber shows clear hysteresis 
in the first cycle of the mechanical test (Fig. 2.4.A), but does not show hysteresis in the first 
optical test cycle (Fig. 2.4.B). If taken as a sensor of the polymer matrix, the tetrapod is reporting 
that some of the polymer plastic deformation is elastic. We believe that this again indicates that 
the tQD sensor is, in the PLLA nanocomposite system, reporting the stress that is transferred to 
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the particle phase rather than the stress felt by the matrix. Furthermore, the fluorescence shift is 
based on an elastic deformation of the tQD crystal lattice52,83 and is not expected to show 
hysteresis54.The complete recovery of the initial width and position of the fluorescence signal 
also indicates the lack of residual stress in the tetrapod. Possibly, the poor particle-polymer 
interface, and the accompanying aggregation, may limit stress transfer to the tetrapods and 
prevent permanent deformation of the tetrapod probe.  

Figures 2.4.C and 2.4.D represent the trials shown in Figures 2.4.A and 2.4.B 
respectively, only now as a function of time. In these plots, the clear resemblance between the 
latter cycles is shown, whereas the first cycle again displays plastic deformation. Figure 2.4.D 
also illustrates a level of baseline optical noise present in between optical test cycles. The noise 
is due to the fiber coming out of focus between cycles. Upon plastic deformation, the fiber length 
increases, and so upon returning to zero strain between cycles, it goes out of focus.  

As the cyclic deformation has nearly no hysteresis in the tetrapod fluorescence shift, no 
energy is dissipated in the tetrapods even when a great deal is lost in the polymer; this is evident 
through the degree of plastic deformation present in the mechanical hysteresis curves. These 
observations of hysteresis imply that in composites characterized by weak nanofiller-polymer 
interfaces, such as the nanocomposite material presented here, failure occurs due to cracking in 
the polymer matrix or particle-polymer interface rather than within the tetrapod nanoparticle 
phase. Through hysteresis data, the tQD therefore provides a simple imaging technique for 
determining the source of failure in a nanocomposite. 

2.8: Conclusion  

In summary, we have demonstrated that electrospun tQD-polymer composites provide a 
fluorescence-based measurement of tensile stress or strain in good agreement with results from 
traditional uniaxial tensile testing.  We have shown that tQds are capable of fluorescently 
reporting the stress on a nanoscale volume element of a nanocomposite material.  Based on this 
work, several key conclusions can be made. The elastic and plastic regions of deformation during 
extension are easily observed as a shift in the fluorescence of the tQD even at low particle 
concentrations, although a greater fluorescence shift per unit strain is observed with increasing 
concentration. Despite aggregation and poor stress transfer, the tQD shows close agreement with 
traditional tensile measurements. Far from problematic, this aggregation and accompanying 
weak interface may present an advantage; by limiting stress transfer to the tQD, it ensures 
accuracy and elasticity (recoverability and recyclability) by preventing plastic deformation of the 
tetrapod sensor. The tQD acts as a non-perturbing probe since electrospinning provides a 
straightforward means to form polymer-nanocrystal nanocomposites across a wide range of 
particle concentrations without adversely affecting the mechanical properties of the PLLA matrix 
used in this study. We further show the capability of the tQD to monitor not only simple uniaxial 
stress, but stress relaxation and behavior under cyclic varying loads.  
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2.9: Materials and Methods 

Synthesis of CdSe-CdS tQDs: CdSe-CdS core/shell tQDs were prepared in-house via established 
methods49. The tQDs had average arm length 22 ± 4.5 nm and average diameter 4.0 ± 0.75 nm.  

Preparation of tQD-PLLA Polymer Solutions for Electrospinning: PLLA (100,000 g/mol 
molecular weight) was purchased from ShenZhen ESUN Industrial Co. Ltd., and dissolved in 
chloroform (Sigma Aldrich) to create solutions of 20% PLLA by weight in chloroform. tQDs 
coated with native hydrophobic ligands (no post-synthetic modification) were dissolved in 
chloroform and added to the 20% PLLA solution to create solutions of 12% PLLA by weight in 
chloroform with 3.6%, 10%, 20%, and 40% tQDs by weight of PLLA.  

Electrospinning of tQD-PLLA Composite Fibers: Electrospinning was performed using a bias 
of 15 kV between the collector and syringe needle and collector-syringe needle distance of 15 
cm. Needles purchased from Nordson corporation (part number 7018225, 38.1 mm gauge length) 
were used. 0.1-0.2 mL of solution was loaded into the syringe, and a large droplet of solution 
was manually ejected immediately prior to turning on the power supplies. Single fibers of 
diameter 2.5-10 microns were fabricated using the collector design of Li et al62 while dynamic 
scanning calorimetry samples were fabricated using a random fiber network deposited onto a 
single metal rod under the same electric field conditions. For transmission electron microscopy 
(TEM) studies, single aligned fiber arrays were wound around a microtomable epoxy substrate 
and supper-coated with 15 nm of gold84,85. Single fibers were removed from the double-rod 
collector using twisted pipe cleaners coated with double-sided tape, and subsequently taped and 
glued directly onto the Piezodrive stretcher for fluorescence monitoring or onto small cardboard 
tabs (10 mm x 5 mm) for mechanical tests.  

Tensile Testing and Optical Diameter Measurements: Single fibers were removed from the 
double-rod collector using twisted pipe cleaners coated with double-sided tape, and subsequently 
taped and glued with epoxy directly onto small cardboard tabs (10mm x 5mm) for mechanical 
tests. The diameters of the fibers were imaged and photographed using a 63x objective lens on a 
standard optical microscope (QCapture camera and QImaging software) which was calibrated 
using a TEM grid (11.85 pixels/micron). The fiber diameters were analyzed using ImageJ. 
Tensile testing was performed using an Agilent T150 nanomechanical tensile tester. The strain 
rate was set to 4e-3 for all runs, and mounted in the tensile tester using standard pivot grips. The 
average fiber diameter measured over 20-25 samples was 6.6 ± 2.2, 5.1 ± 0.7, 4.7 ± 2.2 um, and 
4.7 ± 1.6 um for 0, 3.6, 10, and 20% tQDs respectively and the gauge lengths, measured with 
digital calipers, fell between 6-10 mm. For standard tensile mechanical tests, we conducted a 
total of 20-25 tests per sample of 0%, 3.6%, 10%, and 20% loading by weight of tetrapods, rods, 
or dots in the PLLA polymer. For load relaxation tests, performed on five samples for each 
concentration, the sample was held at a maximum strain of 77% for 53.25 seconds. For 
hysteresis, performed on five 10% tQD-PLLA samples, 5 cycles to a maximum strain of 13% 
were run continuously and the samples had an average diameter of 3.9 um. For modulus 
calibration, a total of 22 fibers for the 3.6%, 25 samples for the 10%, and 20 samples for the 20% 
fibers were used. 

Piezodrive in Situ Fiber Stretcher: In order to monitor the fluorescence while stretching the 
single fibers continuously, a piezo-stretcher mounted via screws on a metal platform was used; 
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the platform had a hole to allow the laser to reach the sample. A piezodrive (part number O-103-
01) and D-drive controller were purchased from Piezosystems Jena. The piezodrive was 
controlled using a function generator (Agilent/HP 3314A, 0.001 – 20 MHz) and the triangle 
wave signal was monitored using a 500 MHz oscilloscope. The gauge length for all optical tests 
was 1.8 mm. The piezodrive was calibrated to move at a strain rate of approximately 4e-3 for all 
tests. Strain was calculated by dividing the total range of motion of the drive by the fiber gauge 
length. The piezodrive was screw-mounted on a 0.5” steel platform (6x8”) with a hole for laser 
passage for stability during stretching. For hysteresis, a maximum strain of 13% was used, and a 
total of four cycles were run per sample, while for load relaxation, a maximum strain of 77% was 
used and one cycle was run per sample, and the sample was held at the maximum strain for 53.25 
seconds. The nanocrystal fluorescence was excited with a 488-nm Ar+ laser (Lexel Laser, Inc., 
95) with 1-W power and 250-µm spot size at the sample. Brightfield and fluorescence images 
were taken with a digital microscope camera (Paxcam 2+). The fluorescence spectra were 
monitored using a home-built inverted fluorescence microscope with a spectrometer (Acton 
Research Corporation, SpectraPro-3001) and CCD detector (Princeton Instruments, Model 7509-
0001). Exposure times of 1 s were used to collect spectra with a 0.6 s lag time between frames. 
Approximately 190 spectra were collected for each load relaxation curve and 220 for each series 
of 4 loading cycles. Fluorescence spectra were collected over the area of the laser spot and fit to 
single Gaussians. Change in emission was defined as the difference between the peak position at 
time t and the peak position at zero strain. Stress relaxation rates were determined by fitting the 
emission shift versus time to a single exponential decay: ∆Emission(t) = Ae-λt . For mechanical 
tests, stress was substituted for emission shift. Optical decays were fit to a series of 35 spectra 
over 53 sec. Mechanical decays were fit to approximately 530 load measurements over 53 sec. 
Optical stress relaxation data was collected on 13, 14 and 12 fibers of 3.6%, 10%, and 20% 
tetrapod load by weight, respectively. 

Transmission Electron Microscopy Imaging and Sample Preparation: Epoxy (Araldite 502, 
Electron Microscopy Sciences) was formed into a thin plate by curing overnight at 60C in a 
shallow dish. The electrospun fibers sample were then wrapped around these substrates and 
sputter -coated with around 15-20 nm of gold using a Desktop II Denton sputter coater. They 
were then embedded in more epoxy stained with rhodamine 6G (Sigma Aldrich) and cured 
overnight at 60C. Thin sections approximately 60 nm in thickness were cut using an RMC MT-X 
Ultramicrotome (Boeckler Instruments) and picked up from water onto copper TEM grids. The 
thin sections were imaged using an FEI Tecnai 12 at an accelerating voltage of 120keV or an FEI 
Tecnai G2 at an accelerating voltage of 200 keV. 

Dynamic Scanning Calorimetry Experimental Parameters and Data Analysis: Samples were 
heated to 200C at a rate of 20C/min on a TA Q200 DSC with an RCS 40 Refrigeration unit. 
Analysis was subsequently carried out using the TA Universal Analysis software package. 
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Chapter 3 : Mechanisms of Local Stress Sensing in Polymer Films Using tQDs 

3.1: Introduction 

Prior studies on the tQD as a polymer stress sensor, including those in the previous 
chapter, have been limited by low sensitivity and the detection of only tensile stresses, and no 
self-reporting of local composite morphology.18,20 Furthermore, sensing was also only 
demonstrated in polymer fibers, rather than films,18,20 and was restricted by an inability to 
correlate optical and mechanical data as these measurements could not be performed 
simultaneously18.  

Here, we present the tQD as a detector of nanoscale compressive and tensile stress when 
embedded into widely-used, low-cost smart structural block copolymer films. We perform 
optical sensing during mechanical testing in real time and show quantitatively the reasonable 
degree of matching between optical and mechanical curves. For the first time, we illustrate 
sensing in terms of both photoluminescence emission-maximum and full-width half maximum 
(FWHM). The tQD responds to stress via changes of its energy band gap54, with the response 
coming mostly from its CdSe core due to type I band alignment between the core and the CdS 
arms.86 Tensile stress decreases the band gap by pulling apart the bonds in the tQD core, while 
uniform compression increases the band gap by moving the ions in the CdSe core closer 
together54. The photoluminescence emission spectra measured from tQDs embedded in the 
polymer matrix is then shifted to higher or lower frequency (blue- or red-shift respectively) 
allowing for a direct measure of local stress. We show that tensile stress applied to densely-
packed tQDs in polymers results in a blue-shift of the tQD photoluminescence emission 
maximum due to uniform compression of tQD cores, while tensile stress applied to loosely-
packed tQDs in polymers results in a red-shift of the tQD photoluminescence emission 
maximum due to a net core tension. This phenomenon arises from the unique ability of tQDs to 
self-report subtle changes in nanoscale dispersion and related changes in macroscopic composite 
mechanical properties, with a switch in optomechanical response from red-shifting to blue-
shifting when tQDs are in direct contact. A polymer-embedded sensor that can self-report its 
own dispersion would be of broad utility for nanocomposite design, and to the best of our 
knowledge, has never been reported.57,87. Due to the unique stress amplification effects of the 
tQD, the film sensors have two orders of magnitude higher stress response than bulk 
CdSe29,32,34,88,89. Using density functional theory, finite-element modeling, and experimental 
techniques such as transmission electron microscopy (TEM), electron tomography, 
characterization of fluorescence as a function of tensile stress, time-resolved photoluminescence 
spectroscopy, atomic force microscopy (AFM), and soft-x-ray scattering, we reveal the 
nanoscopic origins of the tQD photoluminescence shifts. Furthermore, we show that tQDs do not 
degrade the mechanical properties of the polymer films and have unchanged photoluminescence 
properties even after a year of storage in air; moreover, the film preparation method is scalable to 
industrial processing. The tQD sensor can be customized to sensing local tension or compression 
by changes in room-temperature processing. tQDs provide a highly sensitive material to 
potentially monitor stress distributions around cracks in structural nanocomposites for in service 
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applications, and can potentially be implemented in the field using low-cost, portable equipment. 
As previous work has shown the ability of spherical nanoparticles to diffuse to growing cracks in 
materials and diminish their ability to propagate17, the findings of this work could possibly allow 
for diverse ‘smart’, dispersion-reporting, self-healing structural tQD-spherical nanoparticle-
polymer nanocomposites that can sense local and overall composite mechanics as well as 
potentially detecting and preventing their own fracture20,45,57. 

3.2: Mechano-Optical Sensing Behavior of tQD Nanocomposite Films 

The fluorescence properties of both films were studied under tensile deformation using an 
inverted fluorescence microscope (Fig. 3.1). Understanding of the tQD stress response requires 
knowledge of agreement between optical and mechanical tests. Here we examine the concept of 
tQD mechano-optical sensing by coordinating mechanical and optical data acquired 
simultaneously. Our composites were deformed uniaxially to a maximum strain of 60% and held 
to evaluate stress-relaxation behavior.  

The mechano-optical sensing behavior, depicted in Fig. 3.1, shows a fluorescence shift of 
the tQD-SEBS composites in the compression-sensing and tension-sensing films as a function of 
applied strain, along with the corresponding mechanical loading curves (black lines). The results 
of peak position and FWHM for compression-sensing nanocomposites (Fig 3.1.C-D) indicate 
excellent agreement between the mechanical loading curve and the optical sensing curve. Most 
of the emission maximum shift occurs in the elastic region, in which a slope of 8.6 ± 0.9 
meV/MPa is measured as well as a maximum optical shift of 4.5 ± 0.4 meV. The fluorescence 
curve additionally shows variation in the nonlinear region, and matches the exponential behavior 
of the mechanical stress relaxation well.  

We also see fairly good opto-mechanical agreement in the tension-sensing composites 
(Fig. 3.1.G), although not as good as in the compression-sensing composites (Fig. 3.1.C). The 
maximum fluorescence red-shift occurred mainly in the elastic region, which had a slope of -2.4 
± 0.3 meV/mPa and a maximum optical shift of 1.3 ± 0.14 meV.  

 We find that for compression-sensing films, the FWHM of the spectra follows the stress-
strain curve of the composite (Fig. 3.1.D). Additionally, the FWHM sensitivity in stress and 
strain, -39 ± 5 meV/MPa and -300 ± 30 meV/strain, respectively, is significantly higher than 
previously reported tQD emission maximum response sensitivity20,44. This additional sensing 
mode is not observed in any of the tension-sensing films (Fig. 3.1.H) or in any previous studies 
in tQD fiber composites20,44. Unlike in the compression-sensing films, and as in previous work, 
the photoluminescence FWHMs in tension-sensing films exhibit a slight increase (Fig. 3.1.H) but 
do not track the stress-strain curve20,44.  

  All sensitivities, or pressure coefficients, reported in units of shift/stress (meV/MPa) 
show significant improvements over the values reported for bulk CdSe88,89. This is perhaps due 
to the unique geometry of the tQDs, in which the CdS arms act as antennas that amplify and 
transfer stress from the environment to the CdSe core. Indeed, this was also seen in our finite-
element simulations, as discussed below. Our tQD films sense stress with an optical deformation 
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response three orders of magnitude more sensitive than previous tQD sensors18, making them 
equal or better in sensitivity than several other key local stress-sensing technologies. 

The sensitivity of a probe can be defined by S = (R/Ro)P, a common index of 
quantification for most sensing technologies, where R is the change in sensor response, Ro is the 
baseline response, and P is the phenomenon under study, in this case, stress. In this work, we 
now see much improved sensitivity, making the tQD comparable or superior in sensitivity to 
other key local stress-sensing technologies reported to date. The compression-sensing tQD-film 
nanocomposites have a stress sensitivity of 4.5e-6 kPa-1, which is three orders of magnitude 
higher than previous tQD sensors18,20 and similar to or higher than common mechanochromic 
dyes90,91, gold nanoparticle chain plasmonic sensors34, and stress-sensitive metal nanoparticles30, 
which have sensitivities of 1.9e-5, 4.1e-10, and 2.2e-6 kPa-1, respectively. The tQD is thus a 
complementary method to these existing techniques, with the added advantage of full cyclability, 
adaptability to almost any polymeric matrix because of its colloidally stable, readily tunable 
ligand coating, and lack of degradation to the mechanical properties of the host material.  

The films exhibited nearly identical optical and mechanical properties even after a year of 
storage in air. The sensing is very repeatable; 20+ cycles of stretching to ~60% strain performed 
on the same sample led to nearly identical sensor responses with a return to the same baseline 
fluorescence FWHM and emission maximum in-between tests. This likely indicates that the 
tQDs are experiencing fully elastic deformation during the stress-sensing in the polymer52. 
Compared to control samples, the ductility and toughness of the compression-sensing and 
tension-sensing films were unchanged.  

We investigated the possibility that the blue-shift under tension could be due to better 
Forster resonance energy transfer (FRET) efficiencies in close-packed aggregates. However, this 
is unlikely as we found no difference in photoluminescence rise time or initial lifetime 
decays92,93 between compression- and tension-sensing films. 
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Figure 3.1: Schematic microstructures and mechano-optical stress-strain curves of 
tQD-nanocomposite films  
a,b. Schematics of the microstructures of compression-sensing film (a) before and (b) 
after application of stress. Yellow regions represent PE-B, black regions represent PS, 
and orange regions represent tQDs. c,d. Result of simultaneous fluorescence (blue line) 
and mechanical test (black line) for c. emission maximum and d. FWHM. e,f. Schematics 
of tQD-SEBS tension-sensing film (a) before and (b) after application of tensile stress. 
g,h. Result of simultaneous fluorescence (red line) and mechanical test (black line) for g. 
emission maximum shift and h. FWHM shift for tension-sensing film. Black double 
arrow indicates direction of applied tensile stress. 

3.3: Structural Characterization of tQD Nanocomposite Films 

The different, opposite, photoluminescence shifts in tension-sensing and compression-
sensing composites are rather striking since the films only differ in their drying time. To 
investigate whether the microscopic structural differences between these two films were 
responsible for their disparate sensing behavior, transmission electron microscopy was used to 
determine their microstructures. The images shown in Fig. 3.2 show that the two films exhibit 
very different morphologies. Qualitatively, the compression-sensing tQD contains densely-
packed aggregates which appear darker than the tension-sensing aggregates in the TEM images. 
The tension-sensing aggregates are less dense and have a large number of 10 - 500 nm diameter 
inter-tQD regions, as seen in Figs. 3.2.B and 3.2.D. Due to the fast diffusion constant of the 
polymer chains in solution during drying (>1017 cm2/sec94) and the rate of the drying processes 
employed, these regions are likely filled with polymer. This was confirmed by electron 
tomography (Fig. 3.3) which shows that the inter-tQD regions are filled with matter consistent in 
contrast with the polymer material outside the aggregates. Figure 3.2.G shows histograms of 
aggregate diameters for compression-sensing and tension-sensing aggregates, respectively, from 
several TEM images. In general, tension-sensing aggregates have a diameter some two times 
greater than compression-sensing aggregates. Figure 3.2.G also shows that the quickly-dried 
tension-sensing material contains some large aggregates as indicated by the asymmetric 
histogram with a large tail, while the slowly-dried compression-sensing aggregates have a more 
symmetric size distribution. The change in packing density that results in a switch from red- to 
blue-shifting, or tension- to compression-sensing, is accompanied by a Young’s modulus 
increase of a factor of two. Thus, tQDs do not only report subtle changes in the nanoscale 
dispersion of the composite filler phase, but also can serve as a visible-light indicator of 
associated changes in mechanical properties. 

Small angle x-ray scattering (SAXS) experiments were carried out to provide statistical 
information as support to TEM and AFM results. Conventional SAXS relies on the electron 
density contrast between materials. Since the tQD has much higher electron density compared to 
the polymers, the SAXS signal was dominated by the tQD aggregates and it was not possible to 
observe the polymer phase separation. Therefore, resonant soft x-ray scattering (RSoXS) was 
used to characterize block copolymer morphology in compression-sensing and tension-sensing 
films. The RSoXS experiment was carried out at BL11.0.1.2 at the Advanced Light Source, 
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Lawrence Berkeley National Lab. Using x-rays with photon energies close to the absorption 
edges of the constituent atoms in the material, RSoXS combines conventional x-ray scattering 
with the chemical sensitivity provided by soft x-ray spectroscopy. By turning the x-ray energy, 
the contrast between materials as well as sensitivity to a specific phase in the complex system 
can be adjusted.  Thin film samples were obtained by cryo-microtomy, and cryo-microtomed 
films were supported by silicon nitride membranes (Norcada). The sizes of the samples were ~ 
100 µm by 300 µm with thickness ~70-90 nm. RSoXS was measured in transmission geometry 
and the data was collected with an in vacuo CCD camera (Princeton Instruments) at a series of 
photon energies near the carbon edge. Strong scattering peaks was observed at ~ 285 eV, which 
is the resonant energy for the polymers where the contrast between two polymer blocks was 
enhanced. For the control samples (polymers dried at the two drying speeds described in the 
main text without tQDs), the scattering features corresponding to the block copolymer phase 
separation were observed at all energies. However, for the samples containing tQDs, the block 
copolymer peaks were only observed at the resonant energies.  

For the tension-sensing sample, the primary scattering peak is observed at 0.023 Å-1, 
which corresponds to a real space size of ~ 27 nm. This size is corresponding to the block 
copolymer phase separation. For the tension-sensing sample, the primary peak is observed at ~ 
0.025 Å-1, which corresponding to a 25 nm spacing. For the control samples with both fast- and 
slow-drying condition, the primary scattering peaks were at ~0.027 Å-1, corresponding to a 23 
nm spacing, which agrees well with SAXS and TEM results.  The peak positions were 
determined by fitting the primary peaks with a Gaussian profile. The full-width half maximum 
(FWHM) for the tension-sensing, compression-sensing, and control films were 0.0071483, 
0.006766, 0.011644, 0.0082148, respectively. The FWHM of the primary scattering peak in the 
scattering profile is a good indication of the ordering of the block copolymer. A smaller full-
width half maximum is indicative of better ordering. A slower drying condition results in slightly 
better ordering for both the tQD sample and the control samples. While these differences are 
apparent, it is not clear how they could be responsible for the disparity in sensing behavior (i.e., 
compression-sensing or tension-sensing) observed in the two films.  

Traditional TEM projection images are sufficient to determine the large-scale (>100 nm) 
porosity inside the aggregates, but the overlap of many tQDs in projection obscures their 3D 
distribution and the small-scale (<10 nm) inter-tQD regions. We utilized STEM electron 
tomography to determine the internal distribution of the tQDs and polymer inside of the 
aggregates. Fig. 3.3 shows images of isosurface renderings of 3D electron tomography 
reconstructions for both the compression-sensing and tension-sensing composites. The 
tomography was performed using cryo-microtomed cross-sections with a thickness (~70-90 nm) 
smaller than the diameter of the aggregates (~150 nm). The tomographic images revealed small 
regions of polymer ~10 nm in diameter which were inside the aggregates and not visible in the 
TEM projection images (Fig. 3.2). The analysis of small-scale porosity from each individual 
slice of the tomography reconstructions showed that the volume ratios of tQD/polymer (which 
we term tQD aggregate fill fraction, or packing density) in the aggregates were 50% ± 5% and 
25% ± 2% for compression-sensing and tension-sensing aggregates, respectively. This small-
scale porosity can be viewed as an approximation of the distance between adjacent tQDs, as 
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tQDs have arm lengths of 26 ± 3 nm. These results illustrate that individual tQDs are about a 
factor of two farther apart in the tension-sensing aggregates than in compression-sensing 
aggregates, and that the tension-sensing aggregates have a factor of two times more polymer 
inside of them in terms of small-scale inter-tQD regions. They also indicate that, in the 
aggregates, the tQDs are in direct contact, separated only by their thin outer ligand coating95-97. 
Only red-shifts were seen at a variety of tQD packing densities below 50%, including 
homopolymers and cases in which tQDs are singly dispersed. Due to the colloidal nature of 
tQDs, and their smart ability to self-report whether they are in direct contact, they potentially 
could enable auto-responsive, multifunctional structural nanocomposites that would self-predict 
local and bulk mechanical properties as well as impending fracture. 
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Figure 3.2: TEM and AFM of tQD-nanocomposite films 
a-b. Low magnification TEM micrographs of a. compression-sensing and b. tension-
sensing films. Inset to (a) indicates tQDs before polymer encapsulation. Inset scale bar is 
40 nm. c. Higher resolution TEM images of compression-sensing and d. tension-sensing 
films showing that they are composed of tQDs. e-f. AFM micrographs of e. compression-
sensing and f. tension-sensing films. g. Size distributions of diameters of tQD aggregates 
in compression-sensing and tension-sensing films. Blue and red histograms represent size 
distributions for compression-sensing and tension-sensing films respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Electron tomography of tQD-nanocomposite films 
a, b. Perspective image of isosurface reconstruction of tension-sensing and compression-
sensing aggregates produced by electron tomography. White scale cube has 25 nm sides. 
c, d. Thresholded 1.13-nm slices of the tomogram representative of the internal structure 
of the compression-sensing and tension-sensing aggregates, respectively.  
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3.4: Simulations of tQD Stress Response 

 Simulations done over multiple length scales (atomistic density functional theory and 
micromechanical finite element simulations) are explored to divulge the mechanistic origins of 
the tQD stress response.  

3.4.1: Atomistic Electronic Structure Calculations 
Having shown how the aggregates differ structurally, we now use electronic structure 

calculations to illustrate the underlying mechanism of photoluminescence shifts due to an applied 
mechanical stress. We performed atomistic density functional theory simulations on tQDs with 
zinc-blende CdSe cores of 2.8 nm, wurtzite CdS arms of 4.2 nm in length and 1.9 nm in 
diameter; containing 4245 atoms with chemical formula Cd272Se297/Cd1132S1116, with pseudo-
hydrogen passivation. We found that both the conduction band minimum state and valence band 
maximum state are located in the CdSe core, in agreement with experiments86. To simulate 
stressed tQDs, an atomistic valence force field model98 was used to calculate the atomic 
positions under different stresses. The different stress states include uniform bond distance 
scaling (isotropic compression and tension) and uniaxial pushing or pulling at the tips of the four 
arms (uniaxial compression and tension) (Fig. 3.4).  

 Only the uniform, volumetric compression case results in a blue-shift. Among the red-
shift cases, the situation most relevant to the experiment is uniaxial tension. The local strain of 
the tQD under uniaxial tension is shown in Fig. 3.4.D. Near the CdSe core, there are both 
positively and negatively dilated regions. This makes the red-shift relatively small. Considering 
that 2.5% strain was applied, which is likely much higher than the experimental tQD strains due 
to imperfect stress transfer to the tQD57, the theoretically obtained band gap changes were much 
higher than the experimentally observed shifts. In summary, the theoretical results revealed that 
only deformations that caused a net decrease in volume of the CdSe core produced a blue-shift of 
the energy levels.  
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Figure 3.4: Valence force field and density functional calculations of tQD stress 
response 
a. Atomic structure of and schematic of stress application to modeled CdSe/CdS core-
arm tQD: zinc-blende CdSe core. b. Energy level changes of stressed tQDs. HC 
represents energy level changes for a tQD under hydrostatic compression, Eq. represents 
the energy levels for a tQD at equilibrium (no stress), and UT represents the energy 
levels for a tQD under uniaxial tension. c-d. Distribution of stresses in tQDs that are c. 
compressed isotropically and d. stretched uniaxially. Colorbar shows percent change in 
volume. e-f. Equilibrium (unstressed) wave function charge densities of the valence band 
maximum and conduction band maximum, respectively.   

3.4.2: Micromechanical Finite Element Simulations 

To investigate how tQD core compression may arise under overall uniaxial tension of the 
polymer nanocomposite, we conducted voxel-based micromechanical finite-element analysis 
simulations of tQDs in a polymer matrix using the Finite Element Analysis Program (FEAP).99 
The simulations used periodic boundary conditions and net average uniaxial loads for a range of 
packing densities utilizing multiple random configurations to generate valid statistics. As the 
focus of the analysis was an elucidation of the mechanism leading to net compression of the 
core, two-dimensional simulations were performed to ease the cost and complexity. Previous 
comprehensive work considering comparing some nine 2D and 3D unit cells showed only a 5-
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10% difference in the results for elastic modulus; since the majority of the blue-shifts and red-
shifts that are observed occur in the elastic region, this is further justification for use of a 2D 
finite element model100. 

Two example configurations are illustrated for low (Fig. 3.5.A) and high (Fig. 3.5.B) tQD 
aggregate volume fractions, or packing densities. Figure 3.5.C shows the typical pressure 
response of a CdSe core in the low packing regime; the integral of the pressure field is positive, 
indicating the overall response is tensile. In contrast, Figure 3.5.D shows a typical pressure 
response in a CdSe core in the high packing regime; the integral of the pressure field is negative 
indicating the overall response is compressive. Though it varied significantly depending on the 
tQD location in the aggregate, the average core stress across all cores and configurations was of 
similar magnitude for net compressive and net tensile cases. The mechanism leading to the 
compressive case is one in which the CdS arms strongly interact due to close proximity and have 
a large span in the direction orthogonal to the loading, i.e., tQDs serve as sensors of nanoscale 
dispersion, with a dichotomy in response characteristic (e.g., red-shift or blue-shift, or 
compressive or tensile) depending on whether or not adjacent tQDs are interacting.  

 By simulating a large ensemble of configurations (~200) we gain a statistical estimate of 
the probability that a given packing density will lead to a situation in which uniaxial tension 
gives rise to a net volumetric compression of the CdSe cores in an aggregate. As shown in Fig. 
3.5.E, high packing densities lead in a near linear fashion to higher probabilities of net 
compressive cores over the range of packing densities from ~10 to ~30% (the upper limit of what 
can be sensibly simulated in two dimensions).  

 The finite-element analysis reveals a substantial core stress amplification of up to a few 
orders of magnitude in the tQD for both volumetric compression and tensile stress cases, 
qualitatively consistent with experimental observations. 

 



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Figure 3.5: Finite element analysis of tQD-nanocomposite films 
a, b. Finite element analysis images of low density (tension-sensing) and high density 
(compression-sensing) tQD aggregate unit cells. In the configurations shown, 
compression-sensing aggregates have 28% tQDs by area and an applied uniaxial stress 
of 0.53e+4 Pa, while simulated tension-sensing aggregates have 9.6% tQDs by area and 
an applied uniaxial stress of 0.14e+4 Pa. c. Pressure map of a tension-sensing tQD core 
from (a). d. Pressure map of a compression-sensing tQD core from (b). e.  Probability 
that a given tQD configuration at a given tQD volume fraction, or packing density, in an 
aggregate will result in a net average volumetric compression in the tQD cores. Black, 
red, blue, and magenta respectively represent ensembles with one, two, three, and four 
tQDs.  

3.5: Conclusion 

In summary, we have presented here a tQD/polymer nanocomposite system produced by 
low-cost, scalable colloidal processing which can act as a local sensor of tensile or compressive 
stresses. The stress is measured as shifts in the emission maximum and the full-width half 
maximum of the photoluminesence spectra, and is readily measurable in structural parts in 
service using commonly available portable spectrometers and light sources. We show the unique 
capacity of tQDs to respond to subtle changes in their own nanoscale dispersion and mechanical 
properties, with a switch in optomechanical response when tQDs are in direct contact. The 
sensitivity of the responses to deformation is three orders of magnitude greater than for current 
state-of-the-art tQD sensors and approaches or exceeds existing technologies. Moreover, the 
inclusion of tQDs in the polymer does not degrade the mechanical properties of the polymer 
matrix, and there is no reduction in response over >20 cycles of deformation. Simulations show 
that blue-shifts and red-shifts are due to compression and tension of the tQD core, respectively, 
during tensile deformation of the entire nanocomposite. The solution-processed tQD merges 
colloidal synthesis, interfacial tunability, and high sensitivity due to its geometry-borne stress-
amplification. The tQD enables facile, scalable introduction into composite materials combined 
with effective local and bulk sensing capabilities. The tQD’s ability to self-detect its own 
nanoscale dispersion in a composite results in a unique optical nanosensor that can self-report 
local as well as macroscopic composite properties, a potentially important characteristic for the 
design of “smart” polymer nanocomposites. Based on the previously established ability of 
spherical nanoparticles to diffuse to cracks in polymers and diminish their ability to propagate17, 
the results in this work could also engender tQD-spherical nanoparticle nanocomposites that 
could serve as multifunctional, auto-responsive, self-healing, structural parts potentially capable 
of predicting their own failure in service17,45. 

3.6: Materials and Methods 

Methods Summary: CdSe-CdS tQDs were prepared as before49. The tQDs had arm length 26 ± 3 
nm and diameter 6 ± 0.8 nm. SEBS was provided by Kraton (MD 1537) and dissolved in 
chloroform (Sigma Aldrich) to create solutions of 150 mg SEBS/~10 mL chloroform for 
compression-sensing films and 25 mg SEBS/~2 mL chloroform for tension-sensing films. tQDs 
coated with native hydrophobic ligands were dissolved in chloroform and added to the polymer 
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solutions at concentrations of 20% by weight/5% by volume of polymer. These precursor 
solutions were cast into glass petri dishes for compression-sensing films, and allowed to dry 
under ambient conditions followed by placing under vacuum. The drying process took 5-8 hours. 
For tension-sensing films, precursor solution was added to a glass vial and subjected to a highly 
vigorous flow of nitrogen gas resulting in film drying occurring within 1-2 minutes.   

 The ~75-100 µm thick films were cut into strips 3-20 mm long x 1-3 mm wide for tensile 
tests, and were clamped using flat grips into a tensile rig employing a Mark-10 0.5 N load-cell. A 
screw-driven stage connected to a controller (OptoMike OMEC–2BF) was used at a strain rate of 
5 x 10-03 sec-1. 19 trials were performed for compression-sensing films, and 13 trials for tension-
sensing films. Tests were performed by stretching the sample to a strain of ~0.6 and holding for 
28.5 seconds for stress relaxation. To assess repeatability, the same film was cycled >20 times. 

To monitor fluorescence while stretching, the rig had a hole for laser passage, and was 
mounted onto a metal plate for stability. We used an inverted fluorescence microscope with a 
spectrometer (Acton, SpectraPro-3001) and CCD (Princeton, 7509-0001). Exposure times of 1s 
were used to collect spectra with 0.6 sec between frames. We used 488-nm Ar+ laser excitation 
(Lexel Laser, Inc., 95) with 1-W power and 150-µm spot size. We excited/measured 
photoluminescence from the core due to the type I band alignment, which localizes the electron 
and hole to the core, and to our 488 nm excitation49. Spectra were collected over the laser spot 
and fit to single Gaussians. Change in emission was defined as the difference between the peak 
position at time t and at zero strain.  

For TEM, sections ~70-90 nm were cut from ~100 um thick films using an RMC MT-X 
Ultramicrotome (Boeckler) at cryogenic temperature and picked up from water onto copper 
grids. Staining was performed using RuO4 to darken PS regions. Stained sections were imaged 
using a 200 kV Tecnai G220 S-TWIN. Unstained sections were imaged using a 200 kV Tecnai 
G2. AFM samples were prepared similarly, and were not stained. AFM images were obtained 
with a scanning probe microscope “NEXT” (NT-MDT) in amplitude modulation mode with a Si 
probe (spring constant 3.5 N/m). Height and phase images were recorded at the low force level 
(Asp = 10 nm, A0 = 12 nm) and high force (Asp = 10 nm, A0 = 24 nm) level. Asp is set-point 
amplitude, while A0 is free oscillation of the probe prior to sample interaction. Contrast in the 
phase images at low force varies from ~0–10 degrees and in phase images recorded at high force, 
~0-80 degrees. We performed quantitative mapping of elastic modulus in Hybrid mode (a non-
resonant oscillation mode in which the sample is modulated at 1.5 kHz). This allowed assigning 
of light-colored phase blocks to PS and darker blocks to softer PEB.  

Tomography was performed using an FEI Titan 80-300 TEM operated in high-angle 
annular dark field STEM mode at 200 kV with a 10-mrad convergence angle. A tilt-series was 
acquired with 1.5° steps from ±70°, reconstructed using the IMOD software package. To 
calculate tQD/polymer packing density, the 3D density was filtered with a 3x3x3 3D median 
filter and thresholded to distinguish tQD from polymer. The polymer/tQD volume ratio was 
calculated using all voxels within a boundary defined by a convex hull calculation.  For average 
aggregate size and size distribution, a custom image segmentation Matlab algorithm was 
developed to outline aggregates. >200 aggregates were used to for histograms. The diameter was 
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computed from a circle with the same area as the aggregate. Compression-sensing aggregates 
had a diameter of 134±5 nm, while tension-sensing aggregates had a diameter of 292±9 nm. For 
finding tQD/polymer packing density from TEM images, we estimated the aggregate volume 
fraction of the polymer from the 2D aggregate fill factor and divided the nanoparticle volume fill 
fraction by this quantity.  

Time-resolved photoluminescence lifetime measurements on compression-sensing and 
tension-sensing films were performed with a Picoquant FluoTime 300 employing a PMA 175 
detector. An LDH-P-C-405 diode laser (excitation wavelength 407.1 nm) was used with a 
repetition rate of 1 MHz.  

Reported errors are standard error of the mean, except for nanoparticle sizes, which are 
mean and standard deviation. 

Detailed Methods for Electronic Structure Calculations: The atomic structure of CdSe/CdS 
core-shell tQDs was generated using a “nanostructure generator” software package that can 
generate nanocrystals of arbitrary shape and size. The CdSe core of 2.8 nm has zinc-blende 
crystal structure; the four CdS arms are of wurtzite crystal structure with dimensions of 4.2 nm in 
length and 2 nm in diameter. The lattice constants and the internal lattice parameter are taken 
from bulk experimental measurements101. Dangling bonds of the surface atoms are passivated by 
pseudo-hydrogen atoms, with fractional nucleic and electronic charges, to model an ideal 
passivation98. Overall the system contains 4,245 atoms, which is significantly larger than what 
direct DFT calculations can perform. Therefore, we employ multilevel divide-and-conquer 
computations. First, the atomistic valence force field (VFF) method98 is used to relax the atomic 
positions. Second, the total charge density of the tQD is generated by assembling of atomic 
charge motifs using the charge patching method (CPM)102. It has been shown that the CPM can 
yield essentially the same QD charge density as a self-consistent DFT calculation. Third, the 
total electron potential is generated from the charge density using the PEtot computational 
package103. Fourth, the band-edge eigenstates are solved using the folded spectrum method104, 
which allows calculations of the band edge eigenstates with a computational effort that scales 
linearly with the size of the nanoparticle. The resulting single particle eigenenergies have a 
typical error of 20 meV compared to direct LDA calculations, and the eigenenergy splittings 
within valence band and conduction band have typical errors of just 5 meV. Thus the current 
calculations have almost the same accuracy as direct local density approximation (LDA) 
calculations. We have used plane-wave basis sets and norm-conserving pseudopotentials with a 
plane-wave cutoff of 35 Ryd. Spin–orbit interaction is included in the single particle Schrodinger 
equation. In order to check the applicability of our multilevel computational strategy for 
deformations, we performed a test using bulk CdSe. The optimized lattice constant for the CdSe 
zincblende structure using our VFF method is 6.081 Å. Our calculated Poisson’s ratio of 0.37 is 
in agreement with the experimental value101 of 0.4 and our calculated deformation potential of -
3.21 eV is in agreement with the experimental value of -3 eV104.  
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The constructed CdSe/CdS core-shell tetrapod has a band gap of 1.698 eV, close to the 
experimental band gap of 1.9 eV. Valence band maximum (VBM) and conduction band 
minimum (CBM) are localized in the CdSe core. This core-localization indicates type-I band 
alignment in the modelled tQD, which is in agreement with previous experimental results86.  
Lower valence band levels (VBM-1, VBM-2, etc) are also localized in the CdSe core, because 
the 4p(Se)-orbitals have major contribution to CdSe valence band and selenium is less 
electronegative then sulfur (the sulfur levels are much lower).  

Cd-orbitals have a major contribution to the conduction band in both CdSe and CdS bulk 
structures57. Therefore, the conduction band levels in CdSe core and CdS arms are energetically 
close: core-localized CBM and arm-localized CBM+1 are separated by only 0.185 eV. 
Moreover, the CdSe core and CdS arms energy levels eventually mix at higher conduction band 
levels (CBM+4 and CBM+5). The shapes of the conduction band charge densities are similar to 
previous calculations for CdSe tQDs. Additionally, the CBM partially penetrates in the arms near 
the core–arm interface. 

Since we are applying tensile strain to the polymer, we expect that the tQDs will also 
experience tensile strain. Therefore, we applied 2.5% tensile strain to the tQD; two of the tQD 
arms are pulled in one direction while other two arms in the opposite direction. The arm ends are 
fixed along the deformation axis, while all the other coordinates are relaxed using VFF. The 
distribution of the local deformation at each atom site (the volume change around each atom) has 
complex behavior: the deformed tQD shows regions of both tension and compression. Two CdS 
arms pulled in opposite directions will stretch the region of the CdSe core between them. On the 
other hand, under tensile strain, the tQD has two pairs of arms that are pulled in the same 
direction that compress the region of the CdSe core between them like scissors. In case of 
compressive strain, the situation is the opposite; two arms compress the CdSe core if we push 
arms in opposite directions and arms pushed in the same strain the joint between them. As a 
result, a tQD with fixed ends always has regions of both compression and tension 
simultaneously.  

Since the two above described tQD deformations create regions of local tension, the tQD 
shows a red-shift for both deformations for full VFF relaxation. This is because the region of 
local tension has the lowest band-gap. At the atomic level, if the distance between two 
interacting atoms decreases then the gap between their occupied and unoccupied electronic levels 
increases, if the distance increases the energy gap reduces. The same is applicable to local 
volumetric deformation around each atom site; local compression increases the energy gap 
between occupied and unoccupied levels of the atom, while local tension decreases the atomic 
energy gap. Therefore, when the tetrapod has significant regions of local tension, its band gap 
decreases (i.e., red-shifts). The calculated band gaps show a small red-shift for the tetrapod under 
both tension and compression regimes for the case of full VFF relaxation. In addition to the 2.5% 
uniaxial and hydrostatic distortions, we also examined the effect of tQD structural twisting, 
which may appear in a polymer matrix under tensile deformation. In cylindrical coordinates, the 
twisting deformation implies rotation of each atom around the center axis r by an angle 𝟇 
varying linearly between -2.5% and 2.5% of a full rotation with respect to the tQD center, such 
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that 𝟇(i)=(r(i)-r(0))*a, where 𝟇(i) and r(i) are rotation and r coordinate of i-th atom, r(0) radial 
coordinate of the tQD centre and a=2.352 deg/nm. As with the linear distortions, the ends of the 
arms are fixed during the VFF relaxation. While the twisting induces regions of compression at 
the base of the tQD arms in the direction of rotation, it also produces regions under tension 
between the opposing pairs of arms. The final tQD structure has a small bandgap red-shift of 17 
meV.  
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Chapter 4 : Influence of nanoparticle branching on the Young’s modulus of 
nanocomposites 

In previous chapters, we examined key advances in the opto-mechanical sensing ability 
of tQD-polymer composites. In this chapter, we investigate the improvements in elastic 
mechanical tunability of these composites as compared to polymer composites of non-branched 
nanoparticle shapes.  

With the availability of nanoparticles with controlled size and shape, there has been 
renewed interest in the mechanical properties of polymer/nanoparticle blends as nanocomposites. 
Despite the large number of theoretical studies, the effect of branching for nanofillers tens of 
nanometer in size on the elastic stiffness of these composite materials has received limited 
attention. Here, we examine the Young’s modulus of nanocomposites based on a common 
structural block copolymer (BCP) blended with linear nanorods and branched tetrapods, 
specifically nanoscale tetrapod Quantum Dots (tQDs), in both electrospun fibers and solvent-cast 
films. We use a phenomenological lattice spring model (LSM) as a guide in understanding the 
changes in the Young's modulus of such composites as a function of filler shape. Reasonable 
qualitative agreement is achieved between the LSM and the experimental results for both 
nanoparticle shapes—with only a few key physical assumptions in both films and fibers—
providing insight into the design of new nanocomposites and assisting in the development of a 
qualitative mechanistic understanding of their properties. The tQDs impart the greatest 
improvements, enhancing the Young’s modulus of SEBS by a factor of 2.5 at 20% loading of 
tQDs by weight. This is 1.5 times higher than identical composites containing nanorods. An 
unexpected finding from the simulations is that both the orientation of the nanoscale filler (with 
respect to the tensile axis) and the orientation of X-type covalent bonds at the nanoparticle-ligand 
interface are important for optimizing the mechanical properties of the nanocomposites. The 
branched tQD provides an orientational optimization of the interfacial and filler bonds by a new 
mechanism not previously recognized as being important for inorganic nanofillers. 

4.1: Introduction 

Polymer-nanoparticle composites have become a highly active topic of research with 
rapidly expanding applications87, in part because of their high polymer-particle interfacial area 
and the unique shape-and-size dependent, tunable properties of nanoparticle reinforcements. For 
example, new polymer nanocomposites have been developed which can optically sense stress 
concentration18, are responsive to magnetic, electrical, and thermal actuation105,106, and which 
exhibit large changes in elastic modulus and glass-transition temperature at low nanoparticle 
concentrations107.  

While theoretical studies show that the Young’s modulus of such polymer 
nanocomposites depends on nanoparticle shape108, experimental studies are limited. 
Experimental studies on polymers109 include the synergistic reinforcement effects of multiple 
nanocarbons110 and the shape-dependent reinforcement effects of micrometer-sized tetrapods56, 
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microscale ceramic needles,64 carbon nanotubes111, clay-based nanocomposites112,113, and 
others114,115. Computational studies include the effects of nanoparticle packing and size on the 
nanocomposite Young’s modulus116,117. However, the effects of increasing nanoparticle 
branching on the mechanical behavior of nanocomposites have not been demonstrated57. It is 
possible to make nanocrystals with controlled shapes and degree of branching53; as such, they 
pose an ideal system to study the effect of reinforcement branching.  

Here, using nanorods (NRs) and tetrapod quantum dots (tQDs) in both electrospun fibers 
and solvent-cast films, we studied the effect of increasing nanoparticle branching on the Young’s 
modulus of a common structural elastomer, poly(styrene-block-ethylene-butylene-block-styrene) 
(SEBS)118. We chose SEBS since it is a widely used structural copolymer, has a 40% phase 
(ethylene-butylene) of similar chemical make-up as our nanoparticle surface ligands (although it 
is incompatible with 60% of the polymer, the polystyrene phase), and is amorphous, allowing for 
improved intercalation with the nanoparticles. In choosing polymer-filler nanocomposites, there 
is a critical choice to be made between the case where the polymer-filler interaction is very 
strong, in which case the intrinsic polymer structure is disrupted to a high degree, and the case 
where it is weak, leaving the native polymer structure largely unperturbed.  Both limits are of 
significant interest, but in this first study we focus on the latter weak interface case as it is by far 
the most common case in practical composites and it is the case which is most amenable to 
modeling through summation of mechanically independent components. In such a case, the 
nanoparticles form nanoscopic aggregates distributed throughout the SEBS matrix, due to the 
van der Waals interactions between the native alkyl ligands on the nanoparticles and the SEBS 
polymer11. No macrophase separation was observed, and no surface modification was performed 
to achieve single nanofiller dispersion. Future studies will be directed at the single filler 
dispersed case, where the filler-polymer interaction is much stronger. In the stronger interface 
case, the nanoparticles may be selectively incorporated within one BCP microdomain and due to 
their size, the intrinsic local polymer chain conformation may be more affected by the presence 
of the filler. 

In both electrospun fibers and films, we observed nanoscopic aggregates of nanofillers, 
(~150 nm in diameter), and we found that the multiple-branched tQDs improved the Young’s 
modulus the most compared to linear shapes, i.e., nanoscale branching may optimize the 
Young’s modulus. Our simulated results using a 2D lattice spring model (LSM) suggest that this 
shape effect on the Young’s modulus is primarily due to the orientation of the strong X-type 
bonds119 at the nanoparticle-ligand interface. This illustrates the importance of the orientation of 
both types (filler and interfacial) bonds in increasing the stiffness of structural composites. To 
the best of our knowledge, our study is the first to examine this effect on the mechanical 
properties of composites for nanofillers in this size range, thereby providing some new and 
unique mechanistic insights. We expect that this insight can be exploited to design polymer 
nanocomposites with optimized mechanical properties for a variety of applications.  
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4.2: Nanocomposite Preparation and Uniaxial Tensile Testing 

The triblock copolymer SEBS (117,000 g/mol molecular weight, 60% polystyrene) with 
a lamellar microstructure120 was used as the polymer matrix. CdSe/CdS nanorods (NRs), and 
CdSe/CdS tQDs were prepared using established methods, and incorporated into the polymer 
matrix with their native alkyl chain ligands49. Polymer nanocomposites were prepared via 
electrospinning18 of nanoparticle-polymer solutions in chloroform, while the films were 
processed by casting of the nanoparticle-polymer solutions into petri dishes. Samples were tested 
using quasi-static, uniaxial tensile tests to determine the Young’s modulus in the small 
displacement (<0.02 strain) limit. Tests were performed to failure; the average failure strain for 
fibers was ~100%. 

After electrospinning and fiber collection, the mechanical properties of each of the 
polymer nanocomposites were evaluated using uniaxial tensile tests. Fig. 4.1.A-B show, 
respectively, the tensile stress-strain curves for electrospun fibers of 20 wt.%/5 vol.% tQD-SEBS 
nanocomposites, and 20 wt.%/5 vol.% NR nanocomposites. The curves exhibit a high strain and 
low stress to failure, characteristic of many elastomers. Higher magnification versions of these 
curves, illustrating the linear elastic regime, are shown in Figs. 4.1.C-D for tQD and NR 
nanocomposites, respectively. 

As can be seen from Fig. 4.1, samples exhibited a processing-inherent variation in moduli 
and strains at failure of around ~40% covariance for ductility and ~30% covariance for Young’s 
modulus. For tQD and NR-based nanocomposites, the ductility varied minimally with 
concentration; for the 20 wt.% concentration, the NR composite ductility was 102.8 ± 45.9% and 
the tQD composite ductility was 102.4 ± 45.5%, similar to the control ductility of 96.0 ± 56.0%. 
Branched tQDs provide the best performance of any of the fillers, improving the Young’s 
modulus by 2.5 times at 20 wt.% tQD, i.e., a factor of 1.5 times more than linear NRs at the same 
concentration. The Young’s modulus of the unreinforced matrix was 39.7 ±11.8 MPa; for 20 
wt.% reinforcement, the modulus of the composites was ~2.5 times higher with tQDs (100.2 
± 28.4 MPa) and ~1.5 times with NRs (66.4 ± 32.1 MPa) for both fibers and films.  

4.3: Nanoparticle Dispersion 

When the nanoparticles are embedded into the polymer, they partially phase separate, 
forming aggregates distributed throughout the polymer, as seen in previous studies18. This 
aggregation occurs due to the weak interface between the native alkyl chain ligands on the 
nanoparticles and the polystyrene (PS) phase of SEBS, which constitutes 60% of the polymer. 
Though the nanoparticles experience a favorable interaction with the PEB phase of SEBS since 
they are, as mentioned above, coated with similar alkyl chain ligands, PEB makes up only 40% 
of the SEBS polymer in this work. The aggregation occurs not due to the favorable interactions 
with PEB, but to the unfavorable interactions with PS. Fig. 4.2 shows transmission electron 
microscopy (TEM) images of the NRs and tQDs before (Fig. 4.2.A-B) and after (Fig. 4.2.C-D) 
integration into polymers. TEM image analysis of over 150 aggregates per sample showed that 
aggregates formed in the tQD and NR nanocomposites had approximately the same size, 
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indicating that the nanoparticle aggregate size differences are not responsible for the observed 
disparities in mechanical properties. As seen in Fig. 4.2.D, tQD aggregates were more porous 
than the NR aggregates, due to their branched geometry inhibiting close packing, 121,122 
evidenced by regions of lighter contrast in tQD aggregates. TEM images show very similar 
aggregate size and shape between tQDs and NRs. Thus, we attribute our findings on the superior 
Young’s modulus of tQD nanocomposites to nanoparticle shape as opposed to differences in 
aggregate size on the nanocomposite Young’s modulus).  

Multiple physical factors including nanoparticle-nanoparticle interactions, polymer-
nanoparticle interactions, and variations in electric field in the electrospinning process play 
critical roles in determining the dispersion of nanoparticles in polymer nanocomposites57.  

In spite of the aggregation observed, there is no degradation in any of the mechanical 
properties and a shape-dependent enhancement of the Young’s modulus for both tQD and NR 
nanocomposites. 

 
Figure 4.1: Uniaxial tensile stress-strain curves of tQD and NR-nanocomposites 
(A) Stress−strain curves of four different 20 wt.% tQD nanocomposite samples. (B) 
Stress−strain curve of four different 20 wt.% NR nanocomposites. (C) Stress−strain 
curves of four different 20 wt.% tQD nanocomposites, shown over the first 9% strain to 
highlight the elastic region occurring from 0 to 2% strain. (D) Stress−strain curves of 
four different 20 wt.% NR nanocomposites, shown over the first 9% strain to highlight the 
elastic region.  
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Figure 4.2: Transmission electron micrographs of tQDs, NRs, and their polymer 
nanocomposites 
(A) TEM micrograph of NRs before polymer incorporation. (B) TEM micrograph of tQDs 
before polymer incorporation. (C) TEM micrograph of NRs after polymer incorporation. 
(D) TEM micrograph of tQDs after polymer incorporation.   

 

4.4: Simulation of the Young’s modulus of tQD- and NR-Nanocomposites 

In order to explain these results, we modeled the nanocomposites using elastic LSMs. 
Elastic LSMs are an alternative to finite element models123 that model a material as an elastic 
spring network to estimate the Young’s modulus. Elastic LSMs have been shown to reproduce 
the equations of state for an isotropic elastic medium subjected to small deformations123. The 
LSM used in this work was a two-dimensional model identical in form to the LSM utilized in 
previous theoretical work on polymer composites124,125. Although LSMs which model plastic 
deformation also exist124, the LSM used here accounted only for fully elastic deformations125.  
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Figure 4.3: Simulations of elastic strain fields in tQD and NR-nanocomposites using a 
lattice spring model 
LSM spring distribution images for (A) vertically aligned NRs, (B) horizontally aligned 
NRs, and (C) tQDs. (D−F) Corresponding elastic strain fields after stretching. Black 
double arrows indicate the stretching direction. Scale bars are 25 nm (14 nodes) 

Because tQDs form loosely packed assemblies122 while NRs form closely packed 
assemblies121, polymer was included into tQD aggregates in the simulations but not into the NR 
aggregates.  The bond between surface ligands and CdSe/CdS semiconductor nanocrystals is 
known to be a strong (relative to polymer-polymer interaction) X-type bond119. A spring of force 
constant one thousand times greater than the polymer (and half that of the nanoparticle) was thus 
situated at the inorganic-organic interface between ligand and polymer.   

Using the literature value for the Young’s modulus of CdS (E = 90 GPa)126, and our 
experimentally measured Young’s modulus of SEBS (E = 45 MPa), nanoparticle spring 
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constants were set to be two thousand times greater than the polymer spring constant. Because 
the like-like interaction between the nanoparticle ligands and the poly(ethylene-butylene) (PEB) 
domains is likely weaker than the interactions between the polymer chains, we used 
ligand/interfacial spring constants that were roughly half the polymer spring constant (this 
assumption gave the best agreement between theory and experiment)57. Once nanoparticles were 
assigned spring constants and placed in the matrix, the LSM calculated the minimum elastic 
energy of the spring network under a tensile force, reporting the Young’s modulus and Poisson’s 
ratio equilibrium spring configuration under stress. 

Fig. 4.3 shows the mask files (before strain application) (Fig. 4.3.A-C) and strain fields 
(Fig. 4.3.D-F) under uniaxial tension in the simulated micromechanical lattice for the 10 wt.% 
(2.5 vol.%) NR- and tQD-polymer nanocomposites. Tension was applied to the left and right of 
the image with equal force. Yellow regions correspond to highest strain, while black regions 
correspond to regions of zero strain.  

As expected, the strain in the nanoparticles is approximately zero due to its 2000 times 
higher spring constant relative to the polymer matrix. NR or tQD arms aligned with the tensile 
axis had localized regions of high strain at their apexes (yellow ‘hot spots’ in Fig. 4.3.E-F). This 
is likely because regions of low strain are created due to the relative restriction of the polymer 
matrix along the long axis of an NR or tQD arm. Because of the Poisson effect, regions of high 
strain are created adjacent to those where the polymer is less restricted, such as at the ends of 
tQD arms. These yellow ‘hot spots’ may be good locations for covalent anchoring of the 
nanoparticles to the polymer to optimize strain transfer and nanocomposite properties87. When 
NRs are orthogonal to the tensile axis, stress transfer is much reduced, resulting in no hot spots 
of localized strain.  

Figure 4.4 shows both the disparity in Young’s modulus between tQD-nanocomposites 
(Fig. 4.4.A) and NR-nanocomposites (Fig. 4.4.B) as well as the reasonable agreement between 
experimentally obtained and the simulated values for the Young’s modulus at different 
nanoparticle concentrations. For normalization purposes, the Young’s modulus of the 
nanocomposites (E) was divided by the Young’s modulus of the pristine polymer (E0) for all 
comparison plots. The lines of best fit for experimental and theoretical data match closely (Fig. 
4.4.A-B, see Table 1 for details of fit) for all nanoparticle-polymer composites studied. The 
goodness of fit for the linear fit is slightly better for the NR than the tQD nanocomposites, 
indicating that tQDs follow a slightly non-linear filler behavior. This is likely due to their 
branched shape, as explained below. The experimentally observed enhanced filler performance 
of tQDs, as compared to NRs, is recovered even in a simple two-dimensional LSM, the simplest 
model we could deploy that shows this effect. We see very good agreement between simulation 
and experiment for all filler systems studied. Importantly, this good agreement was achieved 
through a non-arbitrary accounting of only a few key parameters, especially the nanoparticle fill 
factor and the ratio of polymer to particle stiffness which are known.  While the particle-polymer 
interface spring constant is not independently known, the results of the simulation are only 
weakly dependent on this quantity as long as it is within a factor of two of the polymer stiffness.  
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The polymer-nanoparticle interface plays a critical role in the mechanical behavior of the 
polymer nanocomposites87. In fiber composites, little to no mechanical property changes are seen 
until high volume fractions, partly due to the increased polymer-nanoparticle interface127. For all 
nanocomposites studied here, the greatest difference in the Young’s modulus of nanocomposites 
containing different shapes of nanofiller was seen at the highest concentration, 20 wt.% (5 
vol.%). Though the trend is clear, at lower concentrations the experimental scatter is large 
enough to partially obscure the smaller differences in Young’s moduli. Variability in mechanical 
properties of fibers within a single synthetic batch may be due to inherent sample heterogeneity 
introduced by the stochastic electrospinning process128. Studies have shown that electrospun 
fibers dry very rapidly as they are drawn through a spatially varying electric field71, causing them 
to experience heterogeneous tensile forces and develop highly varying structures129. The error 
bar in the Young’s modulus also increased with concentration, likely due to nanoparticle 
aggregates increasing the heterogeneity of the nanocomposite morphology and acting as 
nucleation sites for defects.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Comparison of experimental results with simulated data 
Top x axis is volume percent concentration, while bottom x axis is weight percent. (A) 
Plot of Young’s modulus, E, normalized to control modulus, E0, versus nanoparticle 
concentration for tQD nanocomposites. (B) Plot of Young’s modulus, E, normalized to 
control modulus, E0, versus nanoparticle concentration for NR nanocomposites. Red 
lines/points represent results from the lattice spring model, while black lines/points 
represent experimental results. Each black “x” is the result of a single experimental test. 
Fits are clamped to the (0,1) point, which corresponds to the normalized control 
modulus.  

4.5: Origin of the Disparity between tQDs and NRs: X-Type Interface Orientation 

The major finding of this work is that the presence of the tQDs enhanced the Young’s 
modulus of the SEBS polymer to the largest extent, by 2.5 times at 20% loading, more than 1.5 
times that of NRs at the same concentration. We discuss four possible explanations for this 
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phenomenon: i) interface orientation of X-type ligand-nanoparticle bonds, ii) restriction of 
polymer chains inside porous tQD aggregates, iii) the larger extent of interface in tQDs 
compared to NR clusters, and iv) additional stress-dissipating bending modes for tQDs due to 
their branched shape. We conclude, based on our LSM simulations, that optimization of X-type 
bond interface orientation is a key explanation for the relative enhancement of the Young’s 
modulus of tQD nanocomposites. 

One reason for the modulus enhancement can be understood by considering the influence 
of the filler orientation with respect to the tensile axis. Traditional isostrain and isostress 
predictions suggest that polymer composites with high aspect ratio ceramic fillers oriented 
parallel to the tensile axis should be much stiffer than those with fillers orthogonal to the tensile 
axis130. Due to their linear shape131, the NR aggregates consist of closely packed arrays in which 
every NR takes the same orientation. Hence, NR nanocomposites consist of NRs that are both 
parallel and orthogonal to the tensile axis. Due to the more branched, isotropic shape of the tQD, 
at least one arm is likely to have a component lying along the tensile axis, resulting in a higher 
Young’s modulus on average.  

However, the above explanation cannot account for all the effects observed in this study, 
since the simulated tQD nanocomposites still exhibited a higher elastic modulus than the 
simulated horizontally oriented NR nanocomposites. A second explanation likely lies in the 
orientation of the nanoparticle-ligand interface. In the polymer nanocomposites under study here, 
while the ligand is entangled with the PEB domains of the polymer via relatively weak Van Der 
Waals forces, as mentioned above there is a much stronger X-type bond between the 
nanoparticle and its surface ligands119. This X-type bond is represented in the LSM by a stiff 
spring (1000x stiffer than the polymer, and half the stiffness of the nanoparticle spring constant) 
at the nanoparticle-ligand interface. 

We suggest that the orientation of these strong interfacial X-type bonds plays a crucial 
role in the polymer nanocomposite mechanical behavior (Figure 4.5). NRs perpendicular to the 
stretching axis have the least filler springs aligned with this axis, and hence have the lowest 
modulus, in spite of having the most interfacial springs aligned (Figure 4.5.A). While NRs 
parallel to the tensile axis have the highest number of filler springs (or bonds) aligned with the 
axis, they also have the least number of interfacial X-type bonds parallel to the axis (Figure 
4.5.B) (roughly one aligned interfacial bond for every four un-aligned interfacial bonds, since 
NRs have a width of 3 nodes and a length of 14 nodes).  

Due to their relative isotropy, tQDs have the greatest number of interfacial X-type and 
filler bonds oriented with the axis (Figure 4.5.C) (roughly one aligned bond for every un-aligned 
bond). The random orientation of both filler and interfacial X-type bonds in tQD composites thus 
may represent an orientational optimization, enhancing the Young’s modulus in tQD 
nanocomposites.  It thus appears that in order to engineer a composite that maximally capitalizes 
on the strength of both inorganic Cd-S bonds as well as interfacial X-type ligand bonds, it may 
be highly advantageous to use a multiply branched, isotropic nanofiller such as tQDs.   
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These results suggest that due to the importance of these bonds for stress transfer to the 
filler phase, the nanoscale orientation of strong interface bonds with respect to the tensile axis 
can be an equally important factor in improving the small-displacement elastic mechanical 
properties of polymer composites as filler bond orientation. The results also suggest that certain 
branched nanofiller shapes are capable of optimizing the orientations of both key types of bonds 
to achieve overall optimal stress transfer to the filler phase. This information may be of key 
importance for engineering nanocomposites with tunable and maximized elastic strength for 
structural applications.  

Another component of this phenomenon is related to the different bending modes 
accessible to tQDs as opposed to NRs. The branched structure of the tQD may allow it to act as a 
‘nano-shock absorber’ since its arms bend more in response to stress, unlike the rigid, linear 
NRs. These bending modes conferred by the tQD arms may allow the tQD to dissipate additional 
stress, possibly contributing to the observed increase in Young’s modulus over NR 
nanocomposites. 

In spite of the fact that the polymer-nanoparticle interactions are mainly van de Waals 
interactions in this study, there are still key differences in mechanical properties of 
nanocomposites with fillers of different shape. It is our belief that using a weak filler-matrix 
interfacial interaction is further beneficial so that the variation in the interfacial area among 
different fillers does not play a critical role.  

 
Figure 4.5: Schematic of alignment of nanoparticle springs and X-type interfacial 
springs in NRs and tQDs with tensile axis 
(A) Vertical NRs have some aligned X-type bonds but unaligned filler bonds. (B) 
Tetrapods have an optimization of aligned filler and interfacial bonds. (C) Horizontal 
NRs have no aligned interfacial bonds but aligned filler bonds.  

4.6: Results on Film Composites  

After initial experiments with electrospun fiber matrices, all the experimental results on 
mechanical testing of composites in this work were reproduced on solvent-cast bulk films of 
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~100 µm thickness. In the bulk format, the SEBS polymer used in this work is widely employed 
in everything from sports equipment to electronics. We have found that the nanoparticle 
dispersion and shape dependence of the Young’s modulus for NR- and tQD-based composites  
roughly matches that of the electrospun fibers within ~10%, with slightly less scatter in the 
Young’s modulus (a factor of ~1.5 less scatter in the raw data) (Figure 4.6). The phase-separated 
nanoparticle dispersion in these bulk films is roughly similar to that of the electrospun fibers, as 
shown in Figure 4.7. Since the scatter is only slightly less across 8-9 samples, this suggests that 
part of the scatter that we see may be due to nanoparticle aggregation, while part may be due to 
electrospinning structural variations.  
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Figure 4.6: Comparison of experimental results on bulk SEBS films with simulated 
data using lattice-spring model 
(A) Example mechanical curves to failure of 20% tQD-SEBS nanocomposite films. (B) 
Example mechanical curves to failure of 20% NR-SEBS nanocomposite films. (C) 
Example mechanical curves of 20% tQD-SEBS nanocomposite films, shown over the first 
0.2 strain to highlight the elastic region. (D) Example mechanical curves of 20% NR-
SEBS nanocomposite films, shown over the first 0.2 strain to highlight the elastic region.  
Top x-axis is volume percent concentration, while bottom x-axis is weight percent. (E) 
Plot of Young’s modulus (E), normalized to control modulus (E0) versus nanoparticle 
concentration for tQD-SEBS film nanocomposites. (F) Plot of Young’s modulus (E), 
normalized to control modulus (E0) versus nanoparticle concentration for NR-SEBS film 
nanocomposites. Red lines/points represent results from the lattice-spring model, while 
black lines/points represent experimental results. Each black “x” is the result of a single 
experimental test. Linear fits are clamped to the (0,1) point which corresponds to the 
normalized control modulus. 

 



46 
 

Figure 4.7: Comparison of experimental results on bulk SEBS films with simulated 
data using lattice-spring model 
(A) Wide-area micrograph of 20% NR-SEBS nanocomposites. (B) Close-area 
micrograph of 20% NR-SEBS nanocomposites. (C) Wide-area micrograph of 20% tQD-
SEBS nanocomposites. (D) Close-area micrograph of 20% tQD-SEBS nanocomposites. 
Scale bars are 500 um (A, C) and 200 um (B, D).  

4.7: Simulations of Stiffness as a Function of Aggregate Area Fraction 

tQDs and NRs both form similar-sized aggregates with diameters ranging from 2,000-
10,000 nm2, indicating that any difference in Young’s modulus between tQDs and NRs is likely 
due to nanoparticle shape. Simulations of stiffness as a function of aggregate volume fraction 
(area fraction in 2D) on dipods, rods, and tripods with packing or area fractions ranging from 
~20-90% indicate that the stiffness differences are not due to shape effects on aggregate packing. 
These aggregate area fraction changes result in only 2-6% stiffness changes as compared to ~30-
150% across nanoparticle shapes of a given concentration (Figs 4.8-4.9, Table 2).  A result of the 
branched tQD shape is the relative porosity of tQD aggregates seen in the TEM images (Fig. 
4.2), leading one to conclude that there is polymer inside of tQD but not NR aggregates96,122. 
Furthermore, the chemical compatibility of the PEB phase of the block copolymer with the 
nanoparticle surface ligands increases the likelihood that polymer is inside the tQD aggregates. 
In one hypothesis, the enhanced Young’s modulus in tQD composites could be caused by 
restriction of polymer chains inside these relatively porous tQD aggregates, decreasing local 
chain mobility. However, again, our simulations indicate that the stiffness of tQD 
nanocomposites is not dependent on aggregate area fraction or packing density (Figs. 4.8-4.9, 
Table 2). Experimentally, however, changing nanoparticle packing involves relatively large 
changes in interface strength57, so this observation alone is not conclusive. However, restriction 
of chain mobility in the aggregates in the LSM simulations (by increasing stiffness of the springs 
inside of the tQD clusters) resulted in arbitrary Young’s modulus variations (0-90%) depending 
on the spring constant of the restricted polymer. Therefore, explanations based on the restriction 
of polymer chains are not credible as an explanation based on our simulations. The good 
experimental-theoretical agreement achieved in this work was based on non-arbitrary physical 
assumptions that did not result in large or random variations with small percent changes.   

Thus, although it is likely that polymer is present inside the clusters for enthalpic reasons, 
we conclude that the restriction of the chains in the cluster may not be a main cause of the 
relative Young’s modulus improvements for our tQD-composites. For entropic reasons, polymer 
chains tend to favor less ordering, even if enthalpic considerations cause some degree of ordering 
and restriction. Therefore, it is likely that the polymer chains form a relatively loosely-wrapped 
interpenetrating network around and inside of the tQD aggregates. A similar analogy is a number 
of electrical wires which are loosely entangled; while pulling on the wires is easy at first as they 
slide past one another, it becomes increasingly difficult once a knot is encountered. In the small-
displacement elastic limit under study, it is likely that the loosely-wrapped polymer in the tQD 
aggregate is still in the sliding phase and not yet restricted enough to cause much chain mobility 
decrease. 
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Another possible explanation consists of the fact that as tQD clusters have arms 
protruding out of the cluster and a relatively higher porosity, they have more interface for stress 
transfer. Furthermore, since the tQD clusters are not densely packed, they should be much softer 
than those of NRs, with reasonable elasticity to further release the stresses. Indeed, packing rods 
less densely leads to a slight stiffness increase, leading horizontally aligned NRs to match the 
stiffness of the relatively isotropic tQDs at loosest packings (Fig. 4.8). However, even very 
loosely packed rods oriented parallel to the stretching direction do not exceed tQDs in the 
nanocomposite modulus, implying that based on our simulations this explanation alone cannot 
explain the discrepancy between tQDs and NRs (Fig. 4.8).  

We have conducted simulations, fraction (area fraction in 2D) on the Young’s modulus 
for tQDs, NRs, and dipods, varying the volume fraction (area fraction in 2D) of the aggregate 
from ~<20-90% at constant nanoparticle fill factor and constant interface width and stiffness. 
Like tetrapods in 3D, dipods in 2D can approach arbitrarily close, as can interdigitated rods. We 
found that across the three 2D shapes studied that there was no significant change in the stiffness 
(only a 2-6% change, (Table 2 and Figs. 4.8-4.9) as compared to 30-150% across shapes at the 
different concentrations studied). The effect of aggregate area fraction in our 2D lattice spring 
model is minimal compared to the shape-dependent effects on stiffness. We believe that this is 
because at the very small displacements below the elastic limit, the polymer trapped in between 
the tQD aggregates does not get displaced enough for its restricted area to affect the overall 
stiffness (analogous to electrical cables entangled in a knot, which simply slide before the knot 
tightens). Table 3 provides a summary of the effect of changing each parameter in the 
simulations on the resulting normalized stiffness. 
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Figure 4.8: Polymer nanocomposite modulus as a function of packing.  
(A) Images of tQD aggregates studied with decreasing packing (left to right). The white 
box indicates the area used in computing the aggregate fill factor. (B) Corresponding 
image for horizontal NRs. Five total packings were studied. Scale bars are 25 nm for all 
images, and all images are to the same scale. (C) Plot of Young’s modulus (E/E0) vs. 
packing for NR and tQD nanocomposites. Blue line represents averages of over 12 trials 
of randomly placed tQDs while the red line represents the average of vertical (green) and 
horizontal (magenta) NR. All simulations shown in Fig. 4.8 used a nanoparticle area fill 
factor of 10%, held constant across all stiffness vs. packing simulations. The aggregate 
fill factor, defined as the area taken up by the entire aggregate, was varied in Fig. 4.8 
from 18.5% to 80.5% for NRs and 48.3% to 83.0% for tQDs (closest and loosest packed, 
respectively; the middle packing was at 51.3% for NRs and 73.2% for tQDs). 
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Figure 4.9: Studies of aggregate area fraction occupied by two geometries of dipods on 
the Young’s modulus 
A. Mask (input, or spring distribution) files for 2 dipods flipped 180 degrees with respect 
to each other. B. Mask files for 4 dipods arranged orthogonally. C. Strain distribution 
images for input files in A. D. Strain distribution images for input files in B. For stiffness 
changes, see Table 2.  
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Table 1: Trendline fits 
Slopes (A) and intercepts (B) for the linear fits (fits are clamped to the 0,1 data point) 
shown in Figs. 4.4 and 4.6. Goodness of fit (R2) varied between ~0.95 to ~0.99 for NRs 
and tQDs respectively in both fibers and films.  

Table 2: Stiffness as a function of packing for dipod nanocomposites 
The last column of percent changes in stiffness are defined relative to the closest packed 
composite. The structure ‘90 dipods’ refers to 4 dipods arranged orthogonally, while 
‘180 dipods’ refers to 2 dipods as shown in Fig. 4.9. 

 

 Parameter NR fibers tQD fibers NR films tQD 
films 

Experimental 
Fits 

A 0.0330 0.0680 0.0322 0.0617 
B 1.0 1.0 1.0 1.0 

Theoretical 
Fits 

A 0.0272 0.0655 0.0272 0.0655 
B 1.0 1.0 1.0 1.0 

Packing                    % Change in 
Stiffness 

Closest Aggregate 
Packing  

90 Dipods 24.0% 10% 0% 

Intermediate Packing 90 Dipods 52.6% 10% 6.0% 

Loosest Packing 90 Dipods 92.3% 10% 6.0% 

Closest Packing 180 Dipods 32.8% 10% 0% 

Intermediate Packing 180 Dipods 35.6% 10% 4.1% 

Loosest Packing 180 Dipods 43.8% 10% 2.7% 

Importance of Variable 
for Nanoparticle Type 
(Y = Important, N = 

Unimportant/Minimal 
Effect) 

            tQDs 

 

                 

Placement Angle (in 
Close-Packed 

Aggregate) 

No Yes No 

Interfacial Bond 
Strength 

Yes Yes Yes 

Cavity 
Shape/Size/Position 

N/A N/A Yes 

Aggregate Packing 
Density 

No No No 

Aggregate Area 
Fill Factor 

Structure  (see Fig. 4.9) Nanoparticle Fill 
Factor 

NRs 

NRs QDs 
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Table 3: Summary of Effects of Specific Parameters on the Results of the Simulations 

4.8: Conclusion 

We have studied the effect of branching of nanoparticle fillers on the Young’s modulus 
of polymer nanocomposites. Films and fibers of a common structural block copolymer, SEBS, 
modified with tQDs of an inorganic filler, increase the Young’s modulus significantly more than 
in composites of linear NRs. Simple 2D lattice-spring model simulations can readily recover this 
result, and show that the difference in the results mainly from the orientation of the strong X-
type bonds at the nanoparticle-ligand interface. Our results suggest that the orientation of strong 
filler bonds at the inorganic-organic interface between the nanoparticle and polymer is as 
important of a factor in tuning the Young’s modulus as the orientation of nanofiller bonds. The 
branched tQD, with its relatively isotropic orientation as compared to NRs, optimizes both these 
orientations to achieve the largest enhancement of the composite Young’s modulus. This result 
may enable design of new nanofillers and nanocomposites of a variety of polymers with 
optimized mechanical properties. Multiple additional bending modes of the tQD may also 
contribute to the observed effect by increasing the tQD’s ability to dissipate stress over NRs and 
increasing overall stress transfer to the filler phase.  

4.9: Materials and Methods 

LSM Simulations of the Polymer Nanocomposites: An alternative to finite element models123, 
elastic lattice spring models (LSMs) model a material as an elastic spring network to estimate the 
Young’s modulus. Elastic LSMs have been shown to reproduce the equations of state for an 
isotropic elastic medium in the case of small deformations123. The LSM used in this work was a 
two-dimensional model identical in form to the LSM in a previous study124. Although LSMs 
which model plastic deformation also exist124, the LSM used in the present study accounted only 
for small-displacement (less than ~1%) fully elastic deformations125.  

The data structure for the lattice spring model used in the simulations consists of a simple 
square lattice (we refer to each lattice point here as a “node”) of a network of one-dimensional, 
Hookean springs connecting nearest and next-nearest neighbors (chosen to be homogeneous to 
represent the amorphous SEBS matrix in our experimental study132). Nano-reinforcements tQDs 
and NRs had a width of 3 nodes. Each arm of the tQD was 14 nodes long, as was each NR. The 
nanometer-node equivalency (the number of nodes in the LSM corresponding to nanometers in 
the nanocomposites) for width was 1.67 nm/node for rods and tetrapods and 0.4 nm/node for 
dots. For lengths, the ratio was 1.78 nm/node for rods and tetrapods. Changes in nanometer-node 
equivalencies for lengths between 0.4 to 3 were found to have no impact on results as long as fill 
factor was kept the same. Furthermore, each particle was surrounded by a one-node wide 
interface region represented by nodes with a spring constant of 0.5. Tests for NRs and tQDs were 
all conducted with a constant matrix size of 156x156 nodes, while dipod matrix sizes varied from 
48x48 to 52x52 nodes. The matrix size was not found to affect the calculations, though smaller 
matrices were used to decrease computational times. 
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In order to properly represent physical conditions, a number of guiding assumptions were 
made regarding the placement and spring constants of nanoparticles in the lattice spring model. 
Consistent with previous work122 as well as transmission electron microscopy (TEM) images of 
samples in this study (Fig. 4.2), the tetrapod quantum dots (tQDs) were dispersed in porous and 
loosely packed aggregates.  This was anticipated based on previous theoretical studies of 
nanoparticle superstructure, which indicated that tQDs are likely to remain kinetically arrested in 
a glassy superstructure due to their multiple arms. Nanorod (NR) aggregates, on the other hand, 
were closely packed, as demonstrated previously123. Each NR was “interdigitated”, separated 
solely by two ligand nodes rather than polymer nodes. Much like tQD nanocomposites, however, 
simulations revealed that the modulus of NR nanocomposites had little to no dependence on the 
packing density of the NRs (Fig. 4.8).  

Due to the two-dimensional nature of the LSM, area-fill factors obtained from TEM 
image analysis of our nanocomposites were used for comparison to experimental results rather 
than using experimental volume fill factors. This was required to achieve good agreement 
between experiment and theory and is justified by a geometric analysis, which reveals that the 
2D and 3D area and volume fill factors differ in two vs. three dimensions, with the difference 
being equal to the ratio of the heights of the polymer and aggregate cylinder. Since these values 
are unknown, the percentage of nodes assigned as nanoparticle nodes was chosen to identically 
match the cross-sectional area fill factors (i.e., how much of the TEM image was taken up by 
nanoparticle aggregates) from a TEM image analysis of our nanocomposites (these matched the 
weight percents (Fig. 4.2)). This is justified by two observations. First, a vast majority of our 
aggregates (Fig. 4.2) were much larger in size than the microtomed TEM cross-sections (~60 
nm), meaning that the images are an accurate 2D representation of our aggregates. Second, due 
to elongation in the tensile direction during electrospinning, the fibers are approximately 
cylindrical, meaning that the cross-sectional area fill factor is approximately uniform throughout 
the fiber length. 

After the NPs were placed in the polymer matrix, a tensile stress was applied and the 
purely elastic strain field corresponding to the lowest energy configuration of the lattice springs 
was calculated, as well as the Young’s modulus and Poisson's ratio. Since the model is 
deterministic, only one trial was used for each simulation of tetrapods and quantum dots. For 
rods, two deterministic simulations were performed at each opposing orientation (oriented fully 
with and against the tensile axis) and the average of these was taken to determine the Young’s 
modulus. Force was applied at the boundary nodes. Spring constants between nodes of different 
(polymer, nanoparticle, or interface) regions were defined as the average of the different nodes.  

The good agreement between experimental results and theoretical LSM predictions was 
based on non-arbitrary physical assumptions, such as the experimentally-obtained fill factor 
(from TEM image analysis) and experimentally derived ratios for the nanoparticle and polymer 
spring constants. The only other variables, the interface spring constant and width, were selected 
based on experimental ratios for ligand length and nanoparticle size, and the similarity of the 
ligand shell with poly(ethylene-butylene) (PEB). Changing the value for interface strength did 
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not lead to significant deviations from experimental values when the interface value was within a 
factor of two of the polymer spring constant. 

Finally we note that purely elastic LSMs, as utilized here and in previous NP-polymer 
studies,124 are not perfect models. Since the springs in the LSM are elastic, they are limited in 
their scope to modeling situations where the displacements are small. Simulation of the 
nanoparticle-polymer interface comprises an active area of research; the structure of the interface 
is contested, resulting in uncertainty when simulating the interface. Finally, the conformational 
entropy of individual polymer chains, which forms the basis for many theories of chain 
deformation133, is not accounted for in deriving the elastic energy. 

Experimental Materials and Methods: The experimental methods for electrospinning, quantum 
dot synthesis, electrospinning precursor preparation, tensile testing, and diameter measurements 
on fibers are the same as in chapter 2 of this thesis. The main difference is that SEBS was 
employed instead of PLLA as the polymer host matrix, and other key differences are provided 
herein. Chloroform solutions containing appropriate concentrations of native tQDs or NRs were 
mixed with premade polymer-chloroform solutions to create solutions of 12% SEBS by weight 
in chloroform with 5%, 10%, and 20% nanoparticle incorporation by weight of polymer. 
Solutions were typically made with 25 mg SEBS polymer and about 0.5 mL of chloroform in 
order to achieve the high viscosity needed for electrospinning. Due to the excellent solubility of 
the polymer in chloroform, dissolution was observed to occur within minutes. Regardless, 
solutions were vortexed for several hours to ensure uniformity. Thin film composites of SEBS 
were prepared by casting mixed solutions of nanoparticles and SEBS in chloroform (~140 mg 
SEBS in ~8 mL of chloroform) into glass petri dishes and allowing the films to dry in a fume 
hood before further drying overnight under vacuum. The thickness and width of bulk films (~100 
um in thickness, ~1-2 mm in width) were assessed using digital calipers. Uniaxial tensile testing 
was performed using an Agilent T150 nanomechanical tensile tester. The strain rate was set to 
6.9x 10-3 for all fiber runs and 10 x 10-3 for all film runs, and film strips and fibers glued to tabs 
were mounted in the tensile tester using standard pivot grips. The average fiber diameter 
measured over 20-25 samples was around 4 mm ± 1 mm for all nanoparticle shapes tested. The 
gauge lengths, measured with digital calipers, fell between 6-10 mm for fibers and 1-3 mm for 
films. No dependence of the Young’s modulus on the gauge length was found for either set of 
samples. For standard tensile mechanical tests, we conducted a total of 14-25 tests per fiber 
sample of 0%, 5%, 10%, and 20% loading by weight of tetrapods and rods, and 8-9 tests for each 
film data point. In order to obtain the Young’s moduli, linear trendlines were fit to the curve 
points in the linear elastic region. Data were carefully evaluated to rule out a diameter 
dependence on mechanical testing. In order to compare mechanical properties between shapes, 
all aspects of the nanocomposites except nanoparticle shape were kept constant – volume 
fractions, sample preparation, electrospinning parameters, and mechanical testing parameters 
such as strain rate.  
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Chapter 5 : Outlook for the Future 

The results of this dissertation highlight the potential of tQDs to serve as stress sensors in 
structural nanocomposites. However, there are some remaining obstacles to their widespread use 
in applications in situ, e.g., airframes that have a built-in capability to self-report the 
development of nanoscale fatigue cracks. These include the inherent toxicity of cadmium and 
selenium134,135 and the relatively low deformation potentials of tQDs89, and the need for detailed, 
high-resolution three-dimensional mapping around defects to validate tQDs against finite 
element predictions136.  

Regarding the issue of toxicity, various means to address this problem have been 
developed137, include making the tQD out of biologically non-toxic materials, such as zinc 
oxide138, coating the tQD with a shell of a less toxic material such as zinc sulfide139, and 
wrapping the tQD in biological polymers140. While the latter two options are easier places to 
start, and reduce toxicity for in vitro and in vivo studies of tQDs, they don’t solve the problem 
because cadmium and selenium are still in the nanostructures. Regarding making the tQD out of 
non-toxic materials like zinc oxide, zinc oxide tetrapod nanocrystals have recently been 
developed138. However, these materials have the issues of being near-UV emitters which require 
UV rather than visible light sources for excitation, and further tend to have very broad 
photoluminescence full-width half maxima, which limits their detection resolution and 
sensitivity. 

Further, the tQD stress-sensing pressure coefficient in high-modulus structural polymers 
is low due to the relatively low pressure coefficients of CdS and CdSe89. Future work could 
consider synthesizing tQDs out of ceramic semiconductor materials with much larger pressure 
coefficients in order to improve the response sensitivity141. 

Furthermore, a study still remains to be performed in which the optical redshifts during 
deformation throughout a structural polymer film in which tQDs are well dispersed is mapped in 
three dimensions. Ideally, this study would be performed using a confocal or near-field 
microscope in order to achieve diffraction-limited or better resolution. A tQD arm length is 
typically 30 nm49, and with a near-field technique such high resolution could be achieved. The 
results of such high-resolution opto-mechanical mapping, especially around engineered defect 
shapes representative of classical mechanics solutions, could be compared with the results of 
finite-element simulations of the same to validate tQDs as an experimental highly local stress-
mapping technique136. 
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