
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Neural Point Process for Learning Spatiotemporal Event Dynamics

Permalink
https://escholarship.org/uc/item/3sn484cn

Author
Zhou, Zihao

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sn484cn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Neural Point Process for Learning Spatiotemporal Event Dynamics

A thesis submitted in partial satisfaction of the requirements
for the degree Master of Science

in

Computer Science

by

Zihao Zhou

Committee in charge:

Professor Rose Yu, Chair
Professor Sicun Gao
Professor Lawrence Saul

2022

Copyright

Zihao Zhou, 2022

All rights reserved.

The thesis of Zihao Zhou is approved, and it is acceptable in

quality and form for publication on microfilm and electroni-

cally.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Introduction . 1

Chapter 1 Background . 5
1.1 Temporal Point Process . 5
1.2 Spatiotemporal Point Process. 6
1.3 Neural Point Process . 8
1.4 Maximum likelihood Estimation . 9
1.5 Predictive distribution . 10

Chapter 2 Deep Spatiotemporal Point Process . 11
2.1 Methodology . 12

2.1.1 Neural latent process. 12
2.1.2 Non-parametric model. 14
2.1.3 Parameter learning. 15

2.2 Experiments . 16
2.2.1 Baselines . 16
2.2.2 Datasets . 17
2.2.3 Synthetic Experiment Results 18
2.2.4 Real-World Experiment Results 21
2.2.5 Ablation study . 21

Chapter 3 Automatic Integration for Point Process . 23
3.1 Methodology . 26

3.1.1 Limitations of Existing NPPs 26
3.1.2 Influence-Driven Point Process 28
3.1.3 Automatic Integration (AutoInt) 30
3.1.4 Imposing the Non-negativity Constraint 32
3.1.5 Loss Function . 32

3.2 Experiments . 33
3.2.1 Experimental Setup . 33
3.2.2 Baselines . 36
3.2.3 Experimental Results . 37

iv

Chapter 4 Related Works . 39
4.1 Spatiotemporal Dynamics Learning. 39
4.2 Continuous Time Sequence Models. 40
4.3 Deep Point Process. 40
4.4 Nonparametric Inference for Point Process. 41
4.5 Integration Methods. 42
4.6 Monotonic Constraints. 43

Chapter 5 Conclusion . 44

Appendix A Model Details . 46
A.1 Spatiotemporal Point Process Derivation 46
A.2 Deep Spatiotemporal Point process (DeepSTPP) Derivation 48
A.3 Spatiotemporal Hawkes Process Derivation 50

Appendix B Simulation Details . 55
B.1 TPP Simulation . 55
B.2 STPP Simulation . 57
B.3 STHP Simulation . 57
B.4 Parameter Settings . 58

Appendix C Experiment Details . 60
C.1 Model Setup Details . 60

Appendix D Numerical Integration for Point Process . 62
D.1 Taylor Integration . 62
D.2 Clenshaw-Curtis Quadrature . 64

References . 71

v

LIST OF FIGURES

Figure 0.1: Illustration of learning spatiotemporal point process. We aim to learn the
space-time intensity function given the historical event sequence and repre-
sentative points as background. 2

Figure 1.1: Visualization of the two example spatiotemporal point processes. 6

Figure 1.2: Intensities learned using different numerical integration methods, compared
to our approach (AIN) with AutoInt. Blue crosses represent event over time.
Numerical integration error can prevent the model from learning the truth in-
tensity. 9

Figure 2.1: Design of our DeepSTPP model. For an event sequence, we encode it with
a transformer network and map to the latent process (z1, · · · , zn). We use a
decoder to generate the parameters (wi, γi, βi) for each event i given the latent
process. The estimate intensity is calculated using the decoded parameters. . . 13

Figure 2.2: Ground-truth and learned intensity on two synthetic data. Top: ground-truth;
Middle: learned intensity by our DeepSTPP model. Bottom: learned condi-
tional intensity by NSTPP. ‘X’s refer to event history, where smaller ‘X’ refers
to larger time difference. 18

Figure 2.3: Log train time comparison on all datasets . 20

Figure 3.1: Illustration of learning point process with automatic integration. W denotes
the linear layer’s weight. σ is the nonlinear activation function. Left shows
the intensity network that approximates λ and right is the integral network that
computes

∫
λ. The two networks share the same weights. 24

Figure 3.2: An example failure to restore the ground truth intensity. It is challenging be-
cause the ground truth and estimated likelihood are the same (the areas under
the curves are the same.) The model needs not oversimplify the intensity to
learn it correctly. 28

Figure 3.3: The architecture for monotonically increasing integral network that computes
the the integral of the intensity. t is the time of the event and h is the encoded
hidden vector. “W+" indicates the neural network layer has non-negative
weights. 31

Figure 3.5: Training speed comparison for different NPPs and numerical integration meth-
ods in seconds. The proposed AIN is fast. RMTPP is the fastest but suffers
from poor prediction performance. 37

vi

LIST OF TABLES

Table 2.1: Test log likelihood (LL) and Hellinger distance of distribution (HD) on syn-
thetic data (LL higher is better, HD lower is better). Comparison between ours
and NSTPP on synthetic datasets from two type of spatiotemporal point processes. 19

Table 2.2: Estimated λ∗(t) MAPE on synthetic data . 20

Table 2.3: Test log likelihood (LL) comparison for space and time on real-world data over
3 runs. 21

Table 2.4: Test LL for alternative model designs over 3 runs 22

Table 3.1: Comparison between our proposed model AIN (with or without RNN) and
the state-of-the-art NPP models on three synthetic datasets and the Earthquake
Japan dataset. Performance w.r.t. Mean Absolute Percentange Error (MAPE)
of the estimated conditional intensity λ∗(t) and Test log likelihood (LL). 35

Table 3.2: Comparison between different integration methods on three synthetic datasets
and the Earthquake Japan dataset. Performance w.r.t. Mean Absolute Per-
centange Error (MAPE) of the estimated conditional intensity λ∗(t) and Test
log likelihood (LL). 38

Table B.1: Parameter settings for the synthetic dataset . 59

Table C.1: Hyperparameter settings for training DeepSTPP on all datasets. 61

vii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Rose Yu for her support as the chair of my committee.

Through multiple drafts and many long nights, her guidance has proved to be invaluable.

I would like to thank Xingyi Yang for contributing to the exploratory experiments. His inspi-

ration and professional attitude are appreciable.

This work was supported by Adobe Research. I would also like to give special thanks to Dr.

Ryan A. Rossi and Dr. Handong Zhao for their advice in improving the thesis.

Last but not least, I would like to thank my parents—Saijun Zhou and Qiuhong Xiong, for

giving birth to me and supporting me throughout my life.

viii

ABSTRACT OF THE THESIS

Neural Point Process for Learning Spatiotemporal Event Dynamics

by

Zihao Zhou

Master of Science in Computer Science

University of California San Diego, 2022

Professor Rose Yu, Chair

Learning the dynamics of spatiotemporal events is a fundamental problem. Neural point pro-

cesses enhance the expressivity of point process models with deep neural networks. However, we

notice two limitations of most existing methods: they only consider temporal dynamics without

spatial modeling, and they apply numerical integration that may suffer additional numerical errors

and high computational costs. This thesis explores new options in modeling neural point processes

and proposes two models. The first model, Deep Spatiotemporal Point Process (DeepSTPP), con-

strains the intensity function to an integrable functional form. We assume the intensity function

to be governed by a latent process to improve the expressivity of the model. We use amortized

variational inference to infer the latent process with deep networks. The second model, Automatic

ix

Integration for Neural point process models (AIN), further improves the expressivity. It relies on a

dual network approach that learns the intensity and its integral together in closed forms. As it does

not pose any assumption over the intensity function form, it can learn irregular time series data

governed by complex intensity functions. Both models are flexible, efficient, and can accurately

learn dynamics behind irregularly sampled events over space and time. Using synthetic datasets,

we validate our models can accurately learn the true intensity function. On real-world benchmark

datasets, our models demonstrate superior performance over state-of-the-art baselines.

x

Introduction

Accurate modeling of spatiotemporal event dynamics is fundamentally important for disaster

response (Veen and Schoenberg, 2008), logistic optimization (Safikhani et al., 2018) and social

media analysis (Liang et al., 2019). Compared to other sequence data such as texts or time series,

spatiotemporal events occur irregularly with uneven time and space intervals.

Discrete-time deep dynamics models such as recurrent neural networks (RNNs) (Hochreiter

and Schmidhuber, 1997; Chung et al., 2014) assume events to be evenly sampled. Interpolating an

irregular sampled sequence into a regular sequence can introduce significant biases (Rehfeld et al.,

2011). Furthermore, event sequences contain strong spatiotemporal dependencies. The rate of an

event depends on the preceding events, as well as the events geographically correlated to it.

Spatiotemporal point processes (STPP) (Daley and Vere-Jones, 2007; Reinhart, 2018) provides

the statistical framework for modeling continuous-time event dynamics. As shown in Figure 0.1,

given the history of events sequence, STPP estimates the intensity function that is evolving in

space and time. However, traditional statistical methods for estimating STPPs often require strong

modeling assumptions, feature engineering, and can be computationally expensive.

Machine learning community is observing a growing interest in continuous-time deep dynam-

ics models that can handle irregular time intervals. For example, Neural ODE (Chen et al., 2018)

1

Historical events 𝐬𝑖−𝑗 , 𝑡𝑖−𝑗 𝑗=1

𝐽
Upcoming event (𝐬𝑖 , 𝑡𝑖)

User’s trajectory Representive points

Figure 0.1: Illustration of learning spatiotemporal point process. We aim to learn the space-time
intensity function given the historical event sequence and representative points as background.

parametrizes the hidden states in an RNN with an ODE. Shukla and Marlin (2018) uses a separate

network to interpolates between reference time points. Neural temporal point process (TPP) (Mei

and Eisner, 2017; Zhang et al., 2020b; Zuo et al., 2020) is an exciting area that combines funda-

mental concepts from temporal point processes with deep learning to model continuous-time event

sequences, see a recent review on neural TPP (Shchur et al., 2021). However, most of the existing

models only focus on temporal dynamics without considering spatial modeling.

In the real world, while time is a unidirectional process (arrow of time), space extends in

multiple directions. This fundamental difference from TPP makes it nontrivial to design a unified

STPP model. The naive approach to approximate the intensity function by a deep neural network

would lead to intractable integral computation for likelihood. Unlike marked TPPs or RNNs with

spatiotemporal output, neural STPP models exploit the continuous nature of the spatiotemporal

domain and provide an interpretable scalar latent dynamic. One can see in neural STPP models

2

how each event affects the arrival rate of future events at different locations, while marked TPPs or

RNNs can only output a spatial location from a black box.

Prior research such as Du et al. (2016) discretizes the space as “markers” and use marked TPP

to classify the events. This approach cannot produce the space-time intensity function. Okawa et al.

(2019) models the spatiotemporal density using a mixture of symmetric kernels, which ignores the

unidirectional property of time. Chen et al. (2020) proposes to model temporal intensity and spatial

density separately with neural ODE, which is computational expensive.

The main challenge in extending a TPP framework to an STPP framework is the multivariate

integration of the intensity function when calculating the likelihood. Suppose we directly use a

neural network with scalar output to model the intensity function. If the intensity is univariate, we

can use the Monte Carlo method to estimate its integral efficiently. But when it comes to the high-

dimensional spatiotemporal domain, the number of data points required for accurate estimation

grows exponentially. Alternatively, if we have a prior assumption about the intensity function like

it follows an exponential decay at a fixed rate, we may severely weaken the expressivity of the

model.

Our contribution is developing efficient neural point processes that effectively capture the latent

continuous-time dynamic behind discrete spatiotemporal events. We tackle the above challenges

with two different models. In Chapter 2, we represent the intensity using integrable kernel function.

Nevertheless, we parametrize the kernel using a latent process to give it better expressive power.

The latent process consists of deep neural networks and is learned using variational inference. In

Chapter 3, we apply the automatic integration technique to represent the intensity as a constrained

integrable neural network. We demonstrate the drawbacks of learning intensity using numerical

integration and the need to assume the same influence function to control the degree of freedom.

3

We verify the effectiveness of both models by experiments on synthetic and real-world datasets.

4

Chapter 1

Background

1.1 Temporal Point Process

A temporal point process (TPP) is a counting process N(t), representing the number of events

that occurs before time t. It is characterized by a scalar non-negative intensity function λ∗(t).

Given the history events before time t, Ht := {t1, ..., tn}tn≤t, the intensity function quantifies the

event arrival rate at t, and is formally defined as

λ∗(t) := lim
∆t→0

E[N(t, t+ dt)|Ht]

dt
.

The notation ∗ is from Daley and Vere-Jones (2007) to indicate the intensity is conditional on

the past but not including the present. One example of TPP is Hawkes process (Hawkes, 1971),

5

Figure 1.1: Visualization of the two example spatiotemporal point processes.

characterized by

λ∗(t) = µ+ α
∑
ti<t

exp(−β(t− ti)), (1.1)

where µ, α, β are scalars. The arrival of a new event results in a sudden increase of intensity, and

the influence of this event will decay exponentially. µ is the base intensity representing the rate of

an event happening on its own.

1.2 Spatiotemporal Point Process.

Spatiotemporal point process (STPP) models the number of events N(S × (a, b)) that occurred

in the Cartesian product of the spatial domain S ⊆ R2 and the time interval (a, b]. It is characterized

by a non-negative space-time intensity function given the historyHt := {(s1, t1), . . . , (sn, tn)}tn≤t:

λ∗(s, t) := lim
∆s→0,∆t→0

E[N(B(s,∆s)× (t, t+∆t))|Ht]

B(s,∆s)∆t
(1.2)

6

which is the probability of finding an event in an infinitesimal time interval (t, t + ∆t] and an

infinitesimal spatial ball S = B(s,∆s) centered at location s.

Example 1: Spatiotemporal Hawkes process (STH). Spatiotemporal Hawkes (or self-exciting)

process assumes every past event has an additive, positive, decaying, and spatially local influence

over future events. Such a pattern resembles neuronal firing and earthquakes. It is characterized

by the following intensity function (Reinhart, 2018):

λ∗(s, t) := µg0(s) +
∑
i:ti<t

g1(t, ti)g2(s, si) : µ > 0 (1.3)

where g0(s) is the probability density of a distribution over S, g1 is the triggering kernel and is

often implemented as the exponential decay function, g1(∆t) := α exp(−β∆t) : α, β > 0, and

g2(s, si) is the density of an unimodal distribution over S centered at si.

Example 2: Spatiotemporal Self-Correcting process (STSC). Self-correcting spatiotemporal

point process (Isham and Westcott, 1979) assumes that the background intensity increases with

a varying speed at different locations, and the arrival of each event reduces the intensity nearby.

STSC can model certain regular event sequences, such as an alternating home-to-work travel se-

quence. It has the following intensity function:

λ∗(s, t) = µ exp
(
g0(s)βt−

∑
i:ti<t

αg2(s, si)
)
: α, β, µ > 0 (1.4)

Here g0(s) is the density of a distribution over S, and g2(s, si) is the density of an unimodal

distribution over S centered at location si.

Figure 1.1 illustrates the intensity functions of the two example STPPs. One can see how new

7

events lift the neighborhood intensity for STH and suppress the neighborhood intensity for STSC.

1.3 Neural Point Process

Neural Point Process (NPP) models (Mei and Eisner, 2016; Du et al., 2016; Zuo et al., 2020)

combine deep neural networks with TPPs. State-of-the-art NPPs first encode the events into hid-

den representations using either Recurrent Neural Network (RNN) or Transformer. Then they use

a non-negative activation function to map the hidden vectors to a scalar, i.e., the intensity immedi-

ately after an event. The change of intensity between events is usually represented using a linear or

exponential decay function. (Mei and Eisner, 2016) allow this decay occur in a high-dimensional

space before mapping to a scalar.

By parametrizing the intensity function as λ∗
θ(t), the log likelihood of an event sequence

{t1, ..., tN} observed in time interval [0, T] is

L(θ|{t1, ..., tN}) =
N∑
i=1

log λ∗
θ(t

−
i)−

∫ T

t=0

λ∗
θ(t).

As the intensity is discontinuous at every event arrival ti, t−i denotes the intensity immediately

before the i-th event. The second term is usually evaluated separately for each inter-event interval

(ti, ti+1). If the inter-event function is as simple as a scalar kernel function (Du et al., 2016), then

the integral is easy, but the model is less expressive. On the other hand, if the inter-event func-

tion is high dimensional (Mei and Eisner, 2016; Zuo et al., 2020), then the model gains stronger

expressive power at the cost of requiring numerical integration. We found in our experiments that

the numerical integration errors may prevent the model from recovering the true underlying inten-

8

15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Ground Truth, (t)
Monte Carlo Integration
Clenshaw Curtis quadrature
Taylor expansion Integration
AIN (ours)
Events

Figure 1.2: Intensities learned using different numerical integration methods, compared to our
approach (AIN) with AutoInt. Blue crosses represent event over time. Numerical integration error
can prevent the model from learning the truth intensity.

sity, see Figure 1.2. Nevertheless, all models assume a continuous transformation of the intensity

function and have limited expressivity.

1.4 Maximum likelihood Estimation

Given a history of n events Ht, the joint log-likelihood function of the observed events for

STPP is as follows:

log p(Ht) =
n∑

i=1

log λ∗(si, ti)−
∫
S

∫ t

0

λ∗(u, τ)dudτ (1.5)

Here, the space-time intensity function λ∗(s, t) plays a central role. Maximum likelihood estima-

tion seeks the optimal λ∗(s, t) from data that optimizes Eqn. (1.5).

9

1.5 Predictive distribution

Denote the probability density function (PDF) for STPP as f(s, t|Ht) which represents the

conditional probability that next event will occur at location s and time t, given the history. The

PDF is closely related to the intensity function:

f(s, t|Ht) =
λ∗(s, t)

1− F ∗(s, t|Ht)
= λ∗(s, t) exp

(
−
∫
S

∫ t

tn
λ∗(u, τ)dτdu

)
(1.6)

where F is the cumulative distribution function (CDF), see derivations in Appendix A.1. This

means the intensity function specifies the expected number of events in a region conditional on the

past.

The predicted time of the next event is the expected value of the predictive distribution for time

f ⋆(t) in the entire spatial domain:

E[tn+1|Ht] =

∫ ∞

tn

t

∫
S
f ∗(s, t)dsdt =

∫ ∞

tn

t exp

(
−
∫ t

tn

λ∗(τ)dτ

)
λ∗(t)dsdt

Similarly, the predicted location of the next event evaluates to:

E[sn+1|Ht] =

∫
S
s

∫ ∞

tn

f ∗(s, t)dtds =

∫ ∞

tn

exp

(
−
∫ t

tn

λ∗(τ)dτ

)∫
S
sλ∗(s, t)dsdt

10

Chapter 2

Deep Spatiotemporal Point Process

Unfortunately, Eqn. (1.5) is generally intractable. It requires either strong modeling assump-

tions or expensive Monte Carlo sampling. We propose a simple yet efficient approach to learn

STPP. Our model, Deep Spatiotemporal Point Process (DeepSTPP) marries the principles of spa-

tiotemporal point processes with deep learning. We take a non-parametric approach and model

the space-time intensity function as mixture of kernels. The parameters of the intensity function

are governed by a latent stochastic process which captures the uncertainty of the event sequence.

The latent process is then inferred via amortized variational inference. That is, we draw a sample

from the variational distribution for every event. We use a Transformer network to parametrize the

variational distribution conditioned on the previous events.

Compared with existing approaches, our model is non-parametric, hence does not make as-

sumptions on the parametric form of the distribution. Our approach learns the space-time intensity

function jointly without requiring separate models for time-intensity function and spatial density as

in Chen et al. (2020). Our model is probabilistic by nature and can describe various uncertainties

11

in the data. More importantly, our model enjoys closed form integration, making it feasible for

processing large-scale event datasets. To summarize, our work makes the following key contribu-

tions:

• Deep Spatiotemporal Point Process. We propose a novel Deep Point Process model for

forecasting unevenly sampled spatiotemporal events. It integrates deep learning with spa-

tiotemporal point processes to learn continuous space-time dynamics.

• Neural Latent Process. We model the space-time intensity function using a nonparametric

approach, governed by a latent stochastic process. We use amortized variational inference to

perform inference on the latent process conditioned on the previous events.

• Effectiveness. We demonstrate our model using many synthetic and real-world spatiotem-

poral event forecasting tasks, where it achieves superior performance in accuracy and effi-

ciency. We also derive and implement efficient algorithms for simulating STPPs.

2.1 Methodology

Our model (1) introduces a latent process to capture the uncertainty (2) parametrizes the la-

tent process with deep neural networks to increase model expressivity and (3) approximates the

intensity function with a set of spatial and temporal kernel functions.

2.1.1 Neural latent process.

Given a sequence of n event, we wish to model the conditional density of observing the next

event given the history f(s, t|Ht). We introduce a latent process to capture the uncertainty of the

12

sam
ple

!"($|ℋ')

ℋ' = *+, -+ , … , */, -/ '01 '

$+ $2 $/…

transformer

3∗ 5, - =6
7
879:(5, 57; <7)9'(-, -7; =7)

>? @?

87 <7 =7

AB(5, -|$)
decoder

Figure 2.1: Design of our DeepSTPP model. For an event sequence, we encode it with a trans-
former network and map to the latent process (z1, · · · , zn). We use a decoder to generate the
parameters (wi, γi, βi) for each event i given the latent process. The estimate intensity is calcu-
lated using the decoded parameters.

event history and infer the latent process with armotized variational inference. The latent process

dictates the parameters in the space-time intensity function. We sample from the latent process

using the re-parameterization trick (Kingma and Welling, 2013).

As shown in Figure 2.1, given the event sequence Ht = {(s1, t1), . . . , (sn, tn)}tn≤t, we en-

code the entire sequence into the high-dimensional embedding. We use positional encoding to

encode the sequence order. To capture the stochasticity in the temporal dynamics, we introduce a

latent process z = (z1, · · · , zn) for the entire sequence. We assume the latent process follows a

multivariate Gaussian at each time step:

zi ∼ qϕ(zi|Ht) = N (µ,Diag(σ)) (2.1)

where the mean µ and covariance Diag(σ) are the outputs of the embedding neural network. In our

implementation, we found using a Transformer (Vaswani et al., 2017) with sinusoidal positional

encoding to be beneficial. The positions to be encoded are the normalized event time instead

13

of the index number, to account for the unequal time interval. Recently, Zuo et al. (2020) also

demonstrated that Transformer enjoys better performance for learning the intensity in temporal

point processes.

2.1.2 Non-parametric model.

We take a non-parameteric approach to model the space-time intensity function λ∗(s, t) as:

λ∗(s, t|z) =
n+J∑
i=1

wiks(s, si; γi)kt(t, ti; βi) (2.2)

Here wi(z), γi(z), βi(z) are the parameters for each event that is conditioned on the latent process.

Specifically, wi represents the non-negative intensity magnitude, implemented with a soft-plus

activation function. ks(·, ·) and kt(·, ·) are the spatial and temporal kernel functions, respectively.

For both kernel functions, we parametrize them as a normalized RBF kernel:

ks(s, si) = α−1 exp
(
− γi∥s− si∥

)
, kt(t, ti) = exp

(
− βi∥t− ti∥

)
(2.3)

where the bandwidth parameter γi controls an event’s influence over the spatial domain. The

parameter βi is the decay rate that represents the event’s influence over time. α =
∫
S exp

(
−

γi∥s− si∥
)
ds is the normalization constant.

We use a decoder network to generate the parameters {wi, γi, βi} given z separately, shown in

Figure 2.1. Each decoder is a 4-layer feed-forward network. We use a softplus activation function

to ensure wi and γi are positive. The decay rate βi can be any number, such that an event could

have constant or increasing triggering intensity over time.

14

In addition to n historical events, we also randomly sample J representative points from the

spatial domain to approximate the background intensity. This is to account for the influence from

unobserved events in the background, with varying rates at different absolution locations. The

inclusion of these representative points can approximate this background distribution.

The model design in (2.2) enjoys a closed form integration, which gives the conditional PDF

as:

f(s, t|Ht, z) = λ∗(s, t|z) exp

(
−

n+J∑
i=1

wi

βi

[kt(tn, ti)− kt(t, ti)]

)
(2.4)

See the derivation details in Appendix A.2. DeepSTPP circumvents the integration of the intensity

function and enjoys fast inference in forecasting future events. In contrast, NSTPP (Chen et al.,

2020) is relatively inefficient as its ODE solver also requires additional numerical integration.

2.1.3 Parameter learning.

Due to the latent process, the posterior becomes intractable. Instead, we use amortized infer-

ence by optimizing the evidence lower bound (ELBO) of the likelihood. In particular, given event

historyHt, the conditional log-likelihood of the next event is:

log p(s, t|Ht) ≥ log pθ(s, t|Ht, z) + KL(qϕ(z|Ht)||p(z)) (2.5)

= log λ∗(s, t|z)−
∫ t

tn

λ∗(τ)dτ + KL(q||p) (2.6)

where ϕ represents the parameters of the encoder network and θ are the parameters of the de-

coder network. p(z) is the prior distribution, which we assume to be Gaussian. KL(·||·) is the

15

Kullback–Leibler divergence between two distributions. We can optimize the objective function in

Eqn. (2.6) w.r.t. the parameters ϕ and θ using back-propagation.

2.2 Experiments

We evaluate DeepSTPP for spatiotemporal prediction using both synthetic and real-world

data.

2.2.1 Baselines

We compare DeepSTPP with the state-of-the-art models, including

• Spatiotemporal Hawkes Process (MLE) (Reinhart, 2018): it learns a spatiotemporal parametric

intensity function using maximum likelihood estimation, see derivation in Appendix A.3.

• Recurrent Marked Temporal Point Process (RMTPP) (Du et al., 2016): it uses GRU to model

the temporal intensity function. We modify this model to take spatial location as marks.

• Neural Spatiotemporal Point Process (NSTPP) (Chen et al., 2020): a neural point process model

that parameterizes the spatial PDF and temporal intensity with continuous-time normalizing

flows. Specifically, we use Jump CNF as it is a better fit for Hawkes processes.

All models are implemented in PyTorch, trained using the Adam optimizer. We set the number

of representative points to be 100. The details of the implementation are deferred to the Appendix

C.1. For the baselines, we use the authors’ original repositories whenever possible.

16

2.2.2 Datasets

We simulated two types of STPPs: spatiotemporal Hawkes process (STH) and spatiotemporal

self-correcting process (STSC) . For both STPPs, we generate three synthetic datasets, each with

a different parameter setting, denoted as DS1, DS2, and DS3 in the tables. We also derive and

implement efficient algorithms for simulating STPPs based on Ogata’s thinning algorithm (Ogata,

1981). We view the simulator construction as an independent contribution from this work. The

details of the simulation can be found in Appendix B. We use two real-world spatiotemporal event

datasets from NSTPP (Chen et al., 2020) to benchmark the performance.

• Earthquakes Japan: catalog earthquakes data including the location and time of all earth-

quakes in Japan from 1990 to 2020 with magnitude of at least 2.5 from the U.S. Geological

Survey. There are in total 1,050 sequences. The number of events per sequences ranges

between 19 to 545 1.

• COVID-19: daily county level COVID-19 cases data in New Jersey state published by The

New York Times. There are 1,650 sequences and the number of events per sequences ranges

between 7 to 305.

For both synthetic data and real-world data, we partition long event sequences into non-overlapping

subsequences according to a fixed time range T . The targets are the last event, and the input is the

rest of the events. The number of input events varies across subsequences. For each dataset, we

split each into train/val/test sets with the ratio of 8:1:1. All results are the average of 3 runs.

1The statistics differ slightly from the original paper due to updates in the data source.

17

Figure 2.2: Ground-truth and learned intensity on two synthetic data. Top: ground-truth; Middle:
learned intensity by our DeepSTPPmodel. Bottom: learned conditional intensity by NSTPP. ‘X’s
refer to event history, where smaller ‘X’ refers to larger time difference.

2.2.3 Synthetic Experiment Results

For synthetic data, we know the ground truth intensity function. We compare our method with

the best possible estimator: maximum likelihood estimator (MLE), as well as the NSTPP model.

The MLE is learned by optimizing the log-likelihood using the BFGS algorithm. RMTPP can only

learn the temporal intensity thus is not included in this comparison.

Predictive log-likelihood.

Table 2.1 shows the comparison of the predictive distribution for space and time. We report Log

Likelihood (LL) of f(s, t|Ht) and the Hellinger Distance (HD) between the predictive distributions

and the ground truth averaged over time.

On both the STH and STSC datasets with different parameter settings, DeepSTPP outperform

the baseline NSTPP in terms of LL and HD. It shows that DeepSTPP can estimate the spatiotem-

poral intensity more accurately for point processes with unknown parameters.

18

Table 2.1: Test log likelihood (LL) and Hellinger distance of distribution (HD) on synthetic data
(LL higher is better, HD lower is better). Comparison between ours and NSTPP on synthetic
datasets from two type of spatiotemporal point processes.

Spatiotemporal Hawkes process

DS1 DS2 DS3

LL HD LL HD LL HD
DeepSTPP (ours) -3.8420 0.0033 -3.1142 0.4920 -3.6327 0.0908

NSTPP -5.3110 0.5341 -4.8564 0.5849 -3.7366 0.1498

Spatiotemporal Self Correcting process

DS1 DS2 DS3

LL HD LL HD LL HD
DeepSTPP (ours) -1.2248 0.2348 -1.4915 0.1813 -1.3927 0.2075

NSTPP -2.0759 0.5426 -2.3612 0.3933 -3.0599 0.3097

Temporal intensity estimate.

Table 2.2 shows the mean absolute percentage error (MAPE) between the models’ estimated

temporal intensity and the ground truth λ⋆(t) over a short sampled range. On the STH datasets,

since MLE has the correct parametric form, it is the theoretical optimum. Compared to base-

lines, DeepSTPP generally obtained the same or lower MAPE. It shows that joint spatiotemporal

modeling also improve the performance of temporal prediction.

Intensity visualization.

Figure 2.2 visualizes the learned space-time intensity and the ground truth for STH and STSC,

providing strong evidence that DeepSTPP can correctly learn the underlying dynamics of the

spatiotemporal events. Especially, NSTPP has difficulty in modeling the complex dynamics of

the multimodal distribution such as the spatiotemporal Hawkes process. NSTPP sometimes pro-

duces overly smooth intensity surfaces, and lost most of the details at the peak. In contrast, our

DeepSTPP can better fit the multimodal distribution through the form of kernel summation and

19

Table 2.2: Estimated λ∗(t) MAPE on synthetic data

STH STSC

DS1 DS2 DS3 DS1 DS2 DS3

DeepSTPP 3.33 369.44 11.30 7.84 3.22 20.98
NSTPP 53.41 17.69 3.85 99.99 39.33 37.39
RMTPP 263.83 729.78 0.62 45.55 21.26 37.46

MLE 2.98 11.30 4.38 27.38 18.20 20.01

obtain more accurate intensity functions.

Computational efficiency.

Figure 2.3 provides the run time comparison for the training between DeepSTPP and NSTPP

for 100 epochs. To ensure a fair comparison, all experiments are conducted on 1 GTX 1080 Ti

with Intel Core i7-4770 and 64 GB RAM. Our method is 100 times faster than NSTPP in training.

It is mainly because our spatiotemporal kernel formulation has a close form of integration, which

bypasses the complex and cumbersome numerical integration.

Figure 2.3: Log train time comparison on all datasets

20

Table 2.3: Test log likelihood (LL) comparison for space and time on real-world data over 3 runs.

LL COVID-19 NY Earthquake JP

Space Time Space Time

DeepSTPP −0.1150±0.0109 2.4583±0.0008 −4.4025±0.0128 0.4173±0.0014

NSTPP −0.0798±0.0433 2.6364±0.0111 −4.8141±0.1165 0.3192±0.0124

RMTPP - 2.4476±0.0039 - 0.3716±0.0077

2.2.4 Real-World Experiment Results

For real-world data evaluation, we report the conditional spatial and temporal log-likelihoods,

i.e., log f ∗(s|t) and log f ∗(t), of the final event given the input events, respectively. The total

log-likelihood, log f ∗(s, t), is the summation of the two values.

Predictive performances.

As our model is probabilistic, we compare against baselines models on the test predictive LL for

space and time separately in Table 2.3. RMTPP can only produce temporal intensity thus we only

include the time likelihood. We observe that DeepSTPP outperforms NSTPP most of the time

in terms of accuracy. It takes only half of the time to train, as shown in Figure 2.3. Furthermore,

we see that STPP models (first three rows) achieve higher LL compared with only modeling the

time (RMTPP). It suggests the additional benefit of joint spatiotemporal modeling to increases the

time prediction ability.

2.2.5 Ablation study

We conduct ablation studies on the model design. Our model assumes a global latent process

z that governs the parameters {wi, βi, γi} with separate decoders. We examine other alternative

21

Table 2.4: Test LL for alternative model designs over 3 runs

(higher the better) COVID-19 NY STH DS2

Space Time Space Time

Shared decoders −0.1152±0.0142 2.4581±0.0030 −2.4397±0.0170 −0.6060±0.0381

Separate processes -0.1057±0.0140 2.4561±0.0048 −2.4291±0.0123 −0.7022±0.0050

LSTM encoder −0.1162±0.0102 2.4554±0.0035 −2.4331±0.0174 −0.6845±0.0252

DeepSTPP −0.1150±0.0109 2.4583±0.0008 −2.4289±0.0102 −0.6853±0.0145

designs experimentally. (1) Shared decoders: We use one shared decoder to generate model pa-

rameters. Shared decoders input the sampled z to one decoder and partition its output to generate

model parameters.(2) Separate process: We assume that each of the {wi, βi, γi} follows a separate

latent process and we sample them separately. Separate processes use three sets of means and vari-

ances to sample {wi, βi, γi} separately. (3) LSTM encoder: We replace the Transformer encoder

with a LSTM module.

As shown in Table 2.4, we see that (1) Shared decoders decreases the number of parameters

but reduces the performance. (2) Separate process largely increases the number of parameters

but has negligible influences in test log-likelihood. (3) LSTM encoder: changing the encoder

from Transformer to LSTM also results in slightly worse performance. Therefore, we validate the

design of DeepNSTPP: we assume all distribution parameters are governed by one single hidden

stochastic process with separate decoders and a Transformer as encoder.

22

Chapter 3

Automatic Integration for Point Process

A central concept in point processes is the intensity function, which indicates the expected rates

of events occurrence. Specifically, given the event sequence Ht = {(s1, t1), . . . , (sn, tn)}tn≤t, the

joint log-likelihood function of the observed events for point process is as follows:

log p(Ht) =
n∑

i=1

log λ∗(ti)−
∫ t

0

λ∗(τ)dτ (3.1)

where λ⋆ is the optimal intensity function.

One fundamental difficulty of maximum likelihood estimation for point processes lies in the

integral term of (3.1). As there is no closed-form solution for the integration computation, existing

approaches often use approximation. For example, Neural Hawkes process (Mei and Eisner, 2016)

relies on Monte Carlo sampling, which can have high variance. Furthermore, existing NPPs often

report log-likelihood as a performance measure but fail to validate the learned intensity function.

We found test log-likelihood may not be a good metric not only because it is not exact, but also

23

Figure 3.1: Illustration of learning point process with automatic integration. W denotes the lin-
ear layer’s weight. σ is the nonlinear activation function. Left shows the intensity network that
approximates λ and right is the integral network that computes

∫
λ. The two networks share the

same weights.

because learning a wrong intensity function can have little to no effect on the test likelihood.

The expressivity of NPP is another limitation. Existing methods assume that the current in-

fluence follows an exponential decay of the intensity function (Du et al., 2016), or of the latent

representation (Mozer et al., 2017a), or even a linear interpolation (Zuo et al., 2020). Such an

assumption is easily violated in real-world scenarios. An example is the delayed effect in social

media posts; the influence of a viral post will not appear until several hours later, which means

there could be a jump in intensity that violates the smoothness assumption. In other cases, the

event influence can be cyclic, e.g., a social media bot posts every day around the same time. Both

scenarios turn out to be very challenging for the existing NPP models.

To reduce the cost of integration computation and improve the expressivity of the intensity

24

function, we ask a natural question:

Can we directly use a deep neural network to approximate the influence function?

If successful, the resulting NPP would significantly relax the assumptions imposed by existing

NPPs and open up new venues for modeling complex real-world event dynamics with “delayed

jump” or “cyclic influence”. Unfortunately, such a strategy has a major bottleneck that has pre-

vented others from pursuing further: it requires integrating a complicated deep neural network over

a large time span, where numerical integration is both inefficient and erroneous.

In this chapter, we solve this problem based on the idea of automatic integration (Lindell et al.,

2021; Li et al., 2019). We recognize that taking the partial derivative of a feed-forward network

results in a new computational graph that shares the same set of parameters, see Figure 3.1. Regular

NPP models use a neural network with a positive activation function to approximate the intensity.

In contrast, we first construct a monotonically increasing integral network whose partial derivative

is the intensity we wish to integrate. Then, we train the integral network to maximize the data

likelihood. Finally, we reassemble the parameters of the integral network to obtain the intensity.

This technique leads to exact solutions of the intensity and its antiderivative without imposing any

constraints on their functional forms. As a result, we can efficiently compute the exact likelihood

of any sophisticated intensity. We validate our approach using synthetic point process data with

complex intensity functions, as well as a real-world earthquake dataset.

To summarize, our contributions are the following:

• We propose the first framework to speedup neural point processes learning with automatic

integration. We use two networks and enforce the positivity of the intensity via a monotone

integral network.

25

• We show that the automatic integration learns intensity functions with higher efficiency and

accuracy than other NPP approaches

• We propose a simple NPP model that can recover complex influence functions, enjoys high

training speed and better interpretability, and performs on par with the state-of-the-art meth-

ods on real-world data.

3.1 Methodology

In this section, we introduce a new design of the Neural Point Process, which is more inter-

pretable and flexible. We explain how automatic integration can be used in conjunction with such

an NPP for fast training and inference.

3.1.1 Limitations of Existing NPPs

Previous NPP models lack easy interpretation of event influence, and are not compatible with

AutoInt. We begin by challenging the assumptions made by previous methods: Neural Hawkes

process (Mei and Eisner, 2016) and RMTPP (Du et al., 2016).

Neural Hawkes process encodes the event history immediately after the n-th event as a hidden

vector h(t+n) ∈ Rk. The model also predicts a scalar decay rate βtn and the hidden state imme-

diately before the next event h(t−n+1). The model interpolates the two hidden state vectors using

a kernel function f and maps the output to the intensity use a linear layer w ∈ R1×k. Thus, the

26

conditional intensity function is formulated as

λ∗(t)|tn≤t≤tn+1 = g+(wTf(h(t+n),h(t
−
n+1), βtn)),

where g+ is a positive activation function.

RMTPP also encodes the event history immediately after the n-th event as a hidden vector

h(t+n), but it directly maps the vector to a scalar. The model also assumes the same intensity decay

rate β applies to all events. It uses a scalar interpolation function f , and the resulting conditional

intensity function is

λ∗(t)|tn≤t≤tn+1 = µ+ g+(wTh(t+n) + f(t− tn, β)),

where µ is the scalar base intensity.

Neural Hawkes and RMTPP assume that each event’s influence over the intensity is limited to

the inter-event interval [t+n , t
−
n+1]. Their intensities are defined separately in each interval. Whereas

for Hawkes process in (1.1), each event has a long-lasting influence; whenever a new event hap-

pens, we can decompose the summation in the intensity to analyze the contribution of any historical

event to the happening of the new event, which is much more interpretable.

Both models also assume a simple change of intensity in each interval with an exponential

function f . In the “cyclic influence” scenario as mentioned in Section , an event may have periodic

reduction in influence. Either model performs poorly in this case. While the Neural Hawkes

process can capture either increasing or decreasing influence, it cannot handle such a multi-modal

intensity, see Figure 3.2. We verified that such failures are common in Section 3.2.

27

Figure 3.2: An example failure to restore the ground truth intensity. It is challenging because the
ground truth and estimated likelihood are the same (the areas under the curves are the same.) The
model needs not oversimplify the intensity to learn it correctly.

Furthermore, the designs of Neural Hawkes and RMTPP are not compatible with AutoInt.

While AutoInt can approximate any function f and its antiderivative in closed forms, finding a

closed-form antiderivative of g+ ◦ f (where g+ is a positive activation function) is still intractable.

3.1.2 Influence-Driven Point Process

We consider the following neural point process model generalizing the Hawkes process in (1.1):

λ∗(t) = µ+
∑
ti<t

f+
θ (t− ti,H(ti)). (3.2)

where µ is the scalar base intensity. f+
θ is a positive scalar function that accepts time and H(ti),

i.e., a representation of the event history up to the i-th event, as inputs. The model is compatible

with AutoInt as the intensity function does not contain function composition. As a result, it can

efficiently evaluate definite integral over a long time span without constraining the influence to be

a kernel function.

28

Our design has two major benefits. First, by constructing f+
θ as a deep neural network, our

model can approximate any complex inter-event change of intensity, including the “cyclic influ-

ence" scenario as shown in Figure 3.2. Second, our model considers the long-lasting influence f

of each individual event and represents the intensity in a more interpretable way. We can analyze

and interpret different past events’ contribution percentages to a new event by decomposing the

intensity function. Whereas the previous NPP models, the past influence is a black box as it is

determined arbitrarily by the hidden representation.

There are many options for representing the inputH(ti) to the neural network. We can directly

use the difference in event times as input:

λ∗(t) = µ+
∑
i

f+
θ (t− ti), fθ : R1 → R1 (3.3)

Alternatively, we may use a sequence model such as an RNN to encode the history into hidden

vectors {hi}Ni=0. The hidden vectors could be then used to scale each event’s influence, such that

the conditional intensity is formulated as

λ∗(t) = µ+
∑
i

gϕ(hi)f
+
θ (t− ti), (3.4)

fθ : R1 → R1, gϕ : Rk → R1, (3.5)

where gϕ is another neural network. We can also concatenate time t and hi and feed them to the

29

neural network, and the conditional intensity becomes

λ∗(t) = µ+
∑
i

f+
θ (t− ti ⊕ hi), (3.6)

fθ : Rk+1 → R1 (3.7)

In practice, incorporating a deep sequence model greatly increases the flexibility of the model but

can easily overfit. It also reduces the interpretability of the model as the influence function is in

the high-dimensional domain.

3.1.3 Automatic Integration (AutoInt)

Suppose we have a scalar function fθ(t,h) representing the intensity, we want to calculate∫ b

t=a
fθ(t,h) := Fθ(b,h) − Fθ(a,h) along one axis. AutoInt constructs the integral network Fθ

first, and then reorganize the computational graph of Fθ to represent the integrant fθ. The two

networks thus share the same set of parameters θ.

Specifically, let x := t ⊕ h, we consider the integral of the intensity as a fully-connected

multi-layer neural network of the form

Fθ(x) = Wn...(W3σ(W2σ(W1x))),

where Wk : RMk 7→ RNk denotes the weight of the k-th linear layer of the neural network and σ

denotes the elementwise nonlinearity. Mk and Nk are the input and output dimension for the k-th

layer. Hence, the set of parameters in this neural network is θ = {Wk ∈ RMk×Nk ,∀k}.

The influence network fθ is a partial derivative of the integral network Fθ. As long as the

30

Figure 3.3: The architecture for monotonically increasing integral network that computes the the
integral of the intensity. t is the time of the event and h is the encoded hidden vector. “W+"
indicates the neural network layer has non-negative weights.

activation function is differentiable everywhere, the intensity can be computed recursively:

fθ(x) :=
∂Fθ

∂t
(x) = Wkσ

′(Wk−1σ(Wk−2 . . . (W1x)))

· · · ◦W2σ
′(W1x) ◦W11

where ◦ indicates the Hadamard product, and W11 is the first column of W1, i.e.,

W1 := [W11 W12 . . . W1,M1]

As noted, computing fθ(x) involves many repeated operations. For example, the result of

W1x is used for compute both σ(W1x) and σ′(W1x), see Figure 3.1. Therefore, we implemented

a program that leverages dynamical programming to efficiently create a derivative model using

automatic differentiation. During training, we use the two networks to calculate the likelihood of

event sequences, as if they are regular neural networks.

31

3.1.4 Imposing the Non-negativity Constraint

We constrain the intensity to be non-negative by forcing its integral network to be monotoni-

cally increasing. As this is a strict constraint, we cannot use regularization by penalizing negative

gradients; otherwise, the negative intensity would lead to erroneous log-likelihood. Also, we can-

not simply constrain all linear weights in the network to be non-negative because we want the

network to be monotonic only for the time input but not others.

We design the following architecture for the integral network, as illustrated in Figure 3.3: we

first pass the hidden vector h and the time t through two linear layers with non-negative weights

W+ separately. Then, we concatenate the outputs to another non-negative weighted network.

Therefore, the resulting integral monotonically increases with respect to time, as the time input t

does not pass through any layer with negative weights. The two unconstrained layers with weights

W also ensure the expressivity of other input dimensions is not impaired.

We experimented with different ways to enforce positive weights. We found that projected

gradient descent (i.e., clamping the weights after each optimizer step) converges to the ground

truth better than the exponential transformation method. To ensure monotonicity, we need to use

monotonic activation function; previous AutoInt works use sine activation (Lindell et al., 2021)

which is non-monotonic. We found that tanh and sine activations yield similar performance, as

also indicated by Parascandolo et al. (2016).

3.1.5 Loss Function

Given the monotonic integral network Fθ(t,h) and the event influence network fθ = ∂Fθ

∂t
ob-

tained from AutoInt, the log-likelihood of an event sequence {t1, ..., tN} observed in time interval

32

[0, T] with respect to the model is

L({t1, ..., tN}, {h0, ...,hN})

=
N∑
i=1

log

(
i−1∑
j=1

fθ(ti − tj,hi)

)
+

N∑
i=1

[Fθ(T − ti,hN)− Fθ(0,hi)],

where {h0, ...,hN} are the latent representations generated by a deep sequence model. This is

straightforward by the Fundamental Theorem of Calculus. In case where the deep sequence model

is not used, the log-likelihood evaluates to

L({t1, ..., tN}) =
N∑
i=1

log

(
i−1∑
j=1

fθ(ti − tj)

)
+

N∑
i=1

[Fθ(T − ti)− Fθ(0)].

We can learn the parameters θ in both networks by maximizing the log-likelihood function.

3.2 Experiments

We evaluate AIN for learning temporal dynamics using both synthetic and real-world data.

3.2.1 Experimental Setup

Synthetic Datasets. Existing temporal point process models fail to capture the dynamics of

the point process governed by multimodal or non-smooth current influence function. Here, we pro-

posed and simulated three challenging synthetic datasets using Ogata’s thinning algorithm (Chen,

33

15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 (t)
CT-GRU
Neural Hawkes
Transformer Hawkes
RMTPP
AIN (ours)
Events

15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Ground Truth, (t)
Monte Carlo Integration
Clenshaw Curtis quadrature
Taylor expansion Integration
AIN (ours)
Events

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2
(t)

CT-GRU
Neural Hawkes
Transformer Hawkes
RMTPP
AIN (ours)
Events

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ground Truth, (t)
Monte Carlo Integration
Clenshaw Curtis quadrature
Taylor expansion Integration
AIN (ours)
Events

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
(t)

CT-GRU
Neural Hawkes
Transformer Hawkes
RMTPP
AIN (ours)
Events

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Ground Truth, (t)
Monte Carlo Integration
Clenshaw Curtis quadrature
Taylor expansion Integration
AIN (ours)
Events

Figure 3.4: Visualizations of the true conditional intensity λ∗(t) and the learned conditional intensity on
the Shift Hawkes (first row), Delayed Peak (second row), Shaky Hawkes (third row) datasets. First column:
comparison of intensities learned with different models. Second column: comparison of intensities learned
with different integration methods.

34

Table 3.1: Comparison between our proposed model AIN (with or without RNN) and the state-
of-the-art NPP models on three synthetic datasets and the Earthquake Japan dataset. Performance
w.r.t. Mean Absolute Percentange Error (MAPE) of the estimated conditional intensity λ∗(t) and
Test log likelihood (LL).

Model shakyHawkes shiftHawkes decayPeak earthquakesJP

MAPE LL MAPE LL MAPE LL LL

CT-GRU (Mozer et al., 2017a) 0.2243 -35.6063 0.1262 -39.7173 0.1103 -42.1959 5.9148
Neural Hawkes (Mei and Eisner, 2016) 0.2168 -35.4043 0.1473 -40.0411 0.1468 -42.5548 7.0620

RMTPP (Du et al., 2016) 0.2562 -35.6549 0.2630 -39.7893 0.2183 -42.7965 7.7663
Transformer Hawkes (Zuo et al., 2020) 0.2812 -36.1831 0.2316 -40.6717 0.2342 -43.3308 6.0588

AIN 0.1843 -35.3762 0.0356 -39.3599 0.0226 -41.9678 8.6187
AIN (w/ RNN) 0.3353 -37.9182 0.4675 -44.0076 0.1107 -42.3124 7.7730

2016).

• Shaky Hawkes process: as illustrated by Figure 3.2, it multiplies the influence function of

the Hawkes process (see Equation 1.1) by a cyclic function, such that the intensity becomes

multimodal in long inter-event intervals. It is characterized by the conditional intensity func-

tion

λ∗(t) = µ+ α
N∑
i=1

cos((t− ti) + 1) exp(−β(t− ti))

In our experiments, we set α = β = µ = 0.2.

• Delayed Peak process: it features a uni-modal but non-smooth influence function. Each

event’s influence is initially 0; then it first increases and then decreases, following a bell-

shaped curve. It is characterized by

λ∗(t) = µ+ α

N∑
i=1

ReLU(−(β(t− ti)− 1)2 + 1)

In our experiments, we set α = 0.2, β = 0.5, µ = 0.3.

• Shift Hawkes process: as mentioned in Section , it describes the scenario in which a post

35

becomes viral several hours after it is visible, such that there is a jump in the intensity

between events. It is characterized by

λ∗(t) = µ+ α
N∑
i=1

1(t− ti > γ) exp(−β(t− ti − γ))

In our experiments, we set α = β = µ = 0.2 and the threshold γ = 2.0.

Each synthetic dataset contains 8192 sequences over a time range of [0, 50). The train-val-test split

is 2 : 1 : 1.

Real-world Datasets. We use a real-world dataset, Earthquake Japan, that includes the times

and locations of all earthquakes in Japan from 1990 to 2020 with magnitudes of at least 2.5. It is

gathered by Chen et al. (2020). The dataset contains 1500 sequences over a time range of [0, 30).

The train-val-test split is 4 : 1 : 1.

Evaluation Metrics. As shown by Figure 3.2, a TPP model may yield a likelihood similar

to the ground truth but fail to capture the correct intensity. Therefore, in addition to the likeli-

hood (LL), we show the Mean Absolute Percentage Error (MAPE) of the estimated conditional

intensity.

3.2.2 Baselines

We have two groups of baselines:

• Integration methods: the baselines learn the point process using the same model as de-

scribed by Equation 3.3 but with four different integration techniques: Taylor integration

((Liu, 2020), see Appendix D.1), the Clenshaw–Curtis quadrature (see Appendix D.2), the

Monte Carlo integration, and AutoInt.

36

Figure 3.5: Training speed comparison for different NPPs and numerical integration methods in
seconds. The proposed AIN is fast. RMTPP is the fastest but suffers from poor prediction perfor-
mance.

• State-of-the-art approaches: they are state-of-the-art NPP models, including RMTPP (Du

et al., 2016), Neural-Hawkes (Mei and Eisner, 2016) and Transformer Hawkes (Zuo et al.,

2020). Additionally, (Mozer et al., 2017a) proposed a continuous-time GRU that interpolates

hidden states between events. It has a similar idea as Neural-Hawkes’s continuous-time

LSTM. We include a CT-GRU variant of Neural-Hawkes to increase the diversity of our

baselines.

3.2.3 Experimental Results

Figure 3.5 visualizes the run-time comparison of different methods. We can see that AutoInt

trains faster than other numerical integration techniques, and AIN is much faster than most state-

of-the-art models.

Table 3.1 compares the prediction Mean Absolute Percentage Error (MAPE) and test log-

37

Table 3.2: Comparison between different integration methods on three synthetic datasets and the
Earthquake Japan dataset. Performance w.r.t. Mean Absolute Percentange Error (MAPE) of the
estimated conditional intensity λ∗(t) and Test log likelihood (LL).

Model shakyHawkes shiftHawkes decayPeak earthquakesJP

MAPE LL MAPE LL MAPE LL LL

Clenshaw-Curtis 0.2197 -35.5183 0.0541 -39.4831 0.0312 -41.9839 8.4299
Monte Carlo 0.1935 -35.6090 0.0462 -39.3527 0.0378 -41.9868 8.1906

Taylor Expansion (Liu, 2020) 0.2004 -35.3771 0.0999 -39.7062 0.0224 -41.9691 7.7142

AIN 0.1843 -35.3762 0.0356 -39.3599 0.0226 -41.9678 8.6187

likelihood (LL) between AIN and the state-of-the-art models on the four datasets. Table 3.2 com-

pares the evaluation metrics between AutoInt and other numerical integration methods using the

same model. We can see that AIN has a decisive advantage on the synthetic dataset with complex

intensity. We can also tell from the bottom-left of subfigure of Figure 3.4 that our method is the

only one that can capture the multimodal intensity function.

38

Chapter 4

Related Works

4.1 Spatiotemporal Dynamics Learning.

Modeling the spatiotemporal dynamics of a system in order to forecast the future is a funda-

mental task in many fields. Most work on spatiotemporal dynamics has been focused on spatiotem-

poral data measured at regular space-time interval, e.g., (Xingjian et al., 2015; Li et al., 2018b; Yao

et al., 2019; Fang et al., 2019; Geng et al., 2019). For discrete spatiotemporal events, statistical

methods include space-time point process, see (Moller and Waagepetersen, 2003; Mohler et al.,

2011). (Zhao et al., 2015) propose multi-task feature learning whereas (Yang et al., 2018) propose

RNN-based model to predict spatiotemporal check-in events. These discrete-time models assume

data are sampled evenly, thus are unsuitable for our task.

39

4.2 Continuous Time Sequence Models.

Continuous time sequence models provide an elegant approach for describing irregular sam-

pled time series. For example, (Chen et al., 2018; Jia and Benson, 2019; Dupont et al., 2019;

Gholami et al., 2019; Finlay et al., 2020; Kidger et al., 2020; Norcliffe et al., 2021) assumes the

latent dynamics are continuous and can be modeled by an ODE. But for high-dimensional spa-

tiotemporal processes, this approach can be computationally expensive. Che et al. (2018); Shukla

and Marlin (2018) modifies the hidden states with exponential decay. GRU-ODE-Bayes proposed

by De Brouwer et al. (2019) introduces a continuous-time version of GRU and a Bayesian up-

date network capable of handling sporadic observations. However, Mozer et al. (2017b) shows

that there is no significant benefit of using continuous-time RNN for discrete event data. Special

treatment is still needed for modeling unevenly sampled events.

4.3 Deep Point Process.

Point process is well-studied in statistics (Moller and Waagepetersen, 2003; Daley and Vere-

Jones, 2007; Reinhart, 2018). Deep point process couples deep learning with point process and

has received considerable attention. For example, neural Hawkes process applies RNNs to ap-

proximate the temporal intensity function (Du et al., 2016; Mei and Eisner, 2017; Xiao et al.,

2017; Zhang et al., 2020b), and (Zuo et al., 2020) employs Transformers. (Shang and Sun, 2019)

integrates graph convolution structure. However, all existing works focus on temporal point pro-

cesses without spatial modeling. For datasets with spatial information, they discretize the space

and treat them as discrete “markers”. Okawa et al. (2019) extends Du et al. (2016) for spatiotem-

40

poral event prediction but they only predict the density instead of the next location and time of the

event. Zhu et al. (2019) parameterizes the spatial kernel with a neural network embedding with-

out consider the temporal sequence. Recently, Chen et al. (2020) propose neural spatiotemporal

point process (NSTPP) which combines continuous-time neural networks with continuous-time

normalizing flows to parameterize spatiotemporal point processes. However, this approach is quite

computationally expensive, which requires evaluating the ODE solver for multiple time steps.

4.4 Nonparametric Inference for Point Process.

Fitting traditional TPP models such as Hawkes process to data points may have bad perfor-

mance if the model is misspecified. To address this issue, non-parametric inference for TPP has

been extensively studied in the statistical literature. Early works usually rely on Bayesian methods

Møller et al. (1998); Kottas and Sansó (2007); Cunningham et al. (2008). Rathbun and Cressie

(1994) modeled the intensity function as a piecewise-constant log Gaussian. Adams et al. (2009)

proposed a Markov Chain Monte Carlo (MCMC) inference scheme for the Poisson process with

Gaussian priors. These Bayesian models are scalable but assume a continuous intensity change

over time.

Recently, Neural Point Processes that combine TPP with neural networks has received consid-

erable attention (Yan et al., 2018; Upadhyay et al., 2018; Huang et al., 2019; Omi and Aihara, 2019;

Shang and Sun, 2019; Zhang et al., 2020a). The neural network enables the estimation of intensity

after each event and significantly improves model flexibility. Under this framework, models focus

more on approximating a discrete set of intensities before and after each event. The continuous in-

tensity comes from interpolating the intensity points. For example, (Du et al., 2016) uses an RNN

41

to generate intensities after each event. (Mei and Eisner, 2016) proposes a novel RNN architecture

that generates intensities at both ends of each inter-event interval. Other works consider alterna-

tive training schema: Xiao et al. (2017) used Wasserstein distance, Guo et al. (2018) introduced

noise-contrastive estimation, and Li et al. (2018a) leveraged reinforcement learning. While these

NPP models are more expressive than the traditional models, they still assume simple (continuous,

usually monotonous) inter-event intensity changes.

4.5 Integration Methods.

Integration method is largely ignored in NPP literature, but is central to a model’s ability to

capture the complex dynamics of a system. Existing works either used an intensity function with

an elementary integral (Du et al., 2016) or used Monte Carlo integration (Mei and Eisner, 2016).

However, we can see from Figure 1.2 that the choice of integration method has a non-trivial effect

on the model performance.

Integration is generally more complicated than differentiation, which can be mechanically

solved using the chain rule. Most integration rules, e.g., integration by parts and change of vari-

ables, transform an antiderivative to another that is not necessarily easier. Elementary antideriva-

tive only exists for a small set of functions, but not even for simple composite functions such

as exp(x2) (Dunham, 2018). The Risch algorithm can determine such elementary antiderivative

(Risch, 1969, 1970) but has never been fully implemented due to its complexity. The most com-

monly used integration methods are still numerical: Newton-Cotes Methods, Romberg Integration,

Quadrature, and Monte Carlo integration (Davis and Rabinowitz, 2007).

Multiple recent works claimed for launching a new integration approach, Automatic Integra-

42

tion (AutoInt). Liu (2020) proposes integrating the Taylor polynomial using the derivatives from

Automatic Differentiation (AutoDiff). It requires partitioning of the integral limits and choosing

the order of Taylor approximation. Though it makes use of the efficient AutoDiff, the integration

procedure involves a trade-off between runtime and accuracy and is numerical in nature. Li et al.

(2019) and Lindell et al. (2021) proposed dual network approach which we will discuss in detail

in Section 3. The method guarantees a closed-form integral and is efficient.

4.6 Monotonic Constraints.

We use AutoInt for NPP, but to enforce the intensity’s nonnegativity, we have to constrain its

integral to be monotonically increasing. Monotonicity in neural networks has been widely studied

(Archer and Wang, 1993; Doumpos and Zopounidis, 2009; Sharma and Wehrheim, 2020). There

are two groups of existing approaches: network architecture design and constraints in loss.

Network architecture design usually means constraining all signs of the linear layers’ weights

to be positive and having a monotonic activation function. Examples include applying an element-

wise exponential transformation to all linear layers’ weights (Sill, 1998) or learning weights us-

ing a projected stochastic gradient descent (Chorowski and Zurada, 2014). The non-monotonic

heuristics are usually approximated by randomly sampling gradients from the input domain and

penalizing negative samples using hinge loss (Liu et al., 2020).

43

Chapter 5

Conclusion

We propose two new paradigms for learning continuous-time dynamics behind irregularly sam-

pled spatiotemporal events. Our first model, Deep Spatiotemporal Point Process (DeepSTPP), in-

tegrates a principled spatiotemporal point process with deep neural networks. We derive a tractable

inference procedure by modeling the space-time intensity function as a composition of kernel func-

tions and a latent stochastic process. We infer the latent process with neural networks following the

variational inference procedure. Using synthetic data from the spatiotemporal Hawkes process and

self-correcting process, we show that our model can learn the spatiotemporal intensity accurately

and efficiently. We demonstrate superior forecasting performance on many real-world benchmark

spatiotemporal event datasets. Our second model, Automatic Integration for Neural point process

(AIN), uses a dual network approach. AIN can efficiently compute the exact likelihood of any

sophisticated intensity. We validate our approach using many synthetic data with complex inten-

sity functions, and a real-world earthquake dataset. Experiment results demonstrate that AIN can

efficiently and accurately recover the underlying intensity function.

44

Challenges remain. While our models address improving the expressive power of kernel in-

tensity estimation and learning a broader class of intensity function, they involve some simplified

conditions. DeepSTPP assumes the influence is always centered at the event location. AIN cannot

handle a process that has both self-correcting events (whose intensity is in product form) and self-

exciting events, as integrating the product of neural networks is intractable. An interesting future

direction is to extend this work to multivariate spatiotemporal processes, such that different dimen-

sions assume different conditions. We hope our work’s novelty will inspire new advancements in

the field of the neural point process.

45

Appendix A

Model Details

A.1 Spatiotemporal Point Process Derivation

Conditional Density.

The intensity function and probability density function of STPP is related:

f(s, t|Ht) =
λ∗(s, t)

1− F ∗(s, t)

= λ∗(s, t) exp

(
−
∫
S

∫ t

tn

λ∗(s, τ)dτds

)
= λ∗(s, t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)

The last equation uses the relation that λ∗(s, t) = λ∗(t)f(s|t), according Daley and Vere-Jones

(2007) Chapter 2.3 (4). Here λ∗(t) is the time intensity and f ∗(s|t) := f(s|t,Ht) is the spatial

PDF that the next event will be at location s given time t. According to Daley and Vere-Jones

46

(2007) Chapter 15.4, we can also view STPP as a type of TPP with continuous (spatial) marks,

Likelihood.

Given a STPP, the log-likelihood of observing a sequenceHt = {(s1, t1), (s2, t2), ...(sn, tn)}tn≤t

is given by:

L(Htn) = log

[
n∏

i=1

f(si, ti|Hti−1
)(1− F ∗(s, t))

]

=
n∑

i=1

[
log λ∗(si, ti)−

∫
S

∫ ti

ti−1

λ∗(τ)dτds

]
+ log(1− F ∗(s, t))

=
n∑

i=1

log λ∗(si, ti)−
∫
S

∫ tn

0

λ∗(s, τ)dτ −
∫
S

∫ T

tn

λ∗(s, τ)dτ

=
n∑

i=1

log λ∗(si, ti)−
∫
S

∫ T

0

λ∗(s, τ)dτ

=
n∑

i=1

log λ∗(ti) +
n∑

i=1

log f ∗(si|ti)−
∫ T

0

λ∗(τ)dτ

Inference.

With a trained STPP and a sequence of history events, we can predict the next event timing and

location using their expectations, which evaluate to

E[tn+1|Htn] =

∫ ∞

tn

t

∫
S
f(s, t|Htn)dsdt =

∫ ∞

tn

t exp

(
−
∫ t

tn

λ∗(τ)dτ

)∫
S
λ∗(s, t)dsdt,

=

∫ ∞

tn

t exp

(
−
∫ t

tn

λ∗(τ)dτ

)
λ∗(t)dt (A.1)

47

The predicted location for the next event is:

E[sn+1|Htn] =

∫ ∞

tn

s

∫
S
λ∗(s, t) exp

(
−
∫ t

tn

λ∗(s, τ)dτ

)
dsdt

=

∫ ∞

tn

exp

(
−
∫ t

tn

λ∗(τ)dτ

)∫
S
sλ∗(s, t)dsdt (A.2)

Computational Complexity.

It is worth noting that both learning and inference require conditional intensity. If the con-

ditional intensity has no analytic formula, then we need to compute numerical integration over

S. Then, evaluating the likelihood or either expectation requires at least triple integral. Note that

E[ti|Hti−1
] and E[si|Hti−1

] actually are sextuple integrals, but we can memorize all λ∗(s, t) from

t = ti−1 to t ≫ ti−1 to avoid re-compute the intensities. However, memorization leads to high

space complexity. As a result, we generally want to avoid an intractable conditional intensity in

the model.

A.2 Deep Spatiotemporal Point process (DeepSTPP)

Derivation

PDF Derivation

The model design of DeepSTPP enjoys a closed form formula for the PDF. First recall that

f ∗(t) = λ∗(t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)

48

Also notice that f ∗(s, t) = f ∗(s|t)f ∗(t), λ∗(s, t) = f ∗(s|t)λ∗(t) and λ∗(t) =
f ∗(t)

1− F ∗(t)
.

Therefore

f ∗(s, t) = f ∗(s | t)f ∗(t)

= f ∗(s | t)λ∗(t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)
= λ∗(s, t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)

For DeepSTPP, the spatiotemporal intensity is

λ∗(s, t) =
∑
i

wi exp(−βi(t− ti))ks (s− si)

The temporal intensity simply removes the ks (which integrates to one). The bandwidth doesn’t

matter.

λ∗(t) =
∑
i

wi exp(−βi(t− ti))

Integrate λ∗(τ) yields

∫
λ∗(τ)dτ = −

∑
i

wi

βi

exp(−βi(τ − ti)) + C

Note that deriving the exp would multiply the coefficient −βi. The definite integral is

∫ t

tn

λ∗(τ)dτ = −
∑
i

wi

βi

[exp(−βi(t− ti))− exp(−βi(tn − ti))]

49

Then replacing the integral in the original formula yields

f ∗(s, t) = λ∗(s, t) exp

(
−
∫ t

tn

λ∗(τ)dτ

)
= λ∗(s, t) exp

(∑
i

wi

βi

[exp(−βi(t− ti))− exp(−βi(tn − ti))]

)

The temporal kernel function kt(t, ti) = exp(−βi(t− ti)), we reach the closed form formula.

Inference

The expectation of the next event time is

E∗[ti] =

∫ ∞

ti−1

tf ∗(t)dt =

∫ ∞

tn

tλ∗(t) exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
dt

where the inner integral has a closed form. It requires 1D numerical integration.

Given the predicted time t̄i, the expectation of the space can be efficiently approximated by

E∗[si] ≈ E∗[si|t̄i] =
∑
i′<i

α−1wi′kt(t̄i, ti′)si′

where α =
∑

i′<i wi′kt(t̄i, ti′) is a normalize coefficient.

A.3 Spatiotemporal Hawkes Process Derivation

Spatiotemporal Hawkes process (STHP).

Spatiotemporal Hawkes (or self-exciting) process is one of the most well-known STPPs. It

assumes every past event has an additive, positive, decaying, and spatially local influence over

50

future events. Such a pattern resembles neuronal firing and earthquakes.

Spatiotemporal Hawkes is characterized by the following intensity function (Reinhart, 2018):

λ∗(s, t) := µg0(s) +
∑
i:ti<t

g1(t, ti)g2(s, si) : µ > 0 (A.3)

where g0(s) is the probability density of a distribution over S, g1 is the triggering kernel and is

often implemented as the exponential decay function, g1(∆t) := α exp(−β∆t) : α, β > 0, and

g2(s, si) is the density of an unimodal distribution over S centered at si.

Maximum Likelihood.

For spatiotemporal Hawkes process, we pre-specified the model kernels g0(s) and g2(s, sj) to

be Gaussian:

g0(s) :=
1

2π
|Σg0|−

1
2 exp

(
−1

2
(s− sµ)Σ

−1
g0 (s− sµ)

T

)
(A.4)

g2(s, sj) :=
1

2π
|Σg2|−

1
2 exp

(
−1

2
(s− sj)Σ

−1
g2 (s− sj)

T

)
(A.5)

51

Specifically for the STHP, the second term in the STPP likelihood evaluates to

∫ T

0

λ∗(τ)dτ = µT + α

∫ T

0

∫ τ

0

e−β(τ−u)dN(u)dτ

(0 ≤ u ≤ τ, 0 ≤ τ ≤ T)→ (u ≤ τ ≤ T, 0 ≤ u ≤ T)

= µT + α

∫ T

0

∫ T

u

e−β(τ−u)dτdN(u)

= µT − α

β

∫ T

0

[
e−β(T−u) − 1

]
dN(u)

= µT − α

β

N∑
i=0

[
e−β(T−ti) − 1

]

Finally, the STHP log-likelihood is

L =
n∑

i=1

log λ∗(si, ti)− µT +
α

β

N∑
i=0

[
e−β(T−ti) − 1

]

This model has 11 scalar parameters: 2 for sµ, 3 for Σg0, 3 for Σg2, α, β, and µ. We directly

estimate sµ as the mean of {si}n0 , and then estimate the other 9 parameters by minimizing the

negative log-likelihood using the BFGS algorithm. T in the likelihood function is treated as tn.

52

Inference

Based on the general formulas in Appendix A.1, and also note that for an STHP,

∫ t

ti−1

λ∗(τ)dτ =

∫ t

0

λ∗(τ)dτ −
∫ ti−1

0

λ∗(τ)dτ

=

{
µt− α

β

i−1∑
j=0

[
e−β(t−tj) − 1

]}
−

{
µti−1 −

α

β

i−1∑
j=0

[
e−β(ti−1−tj) − 1

]}

= µ(t− ti−1)−
α

β

i−1∑
j=0

[
e−β(t−ti−1+ti−1−tj) − e−β(ti−1−tj)

]
= µ(t− ti−1)−

α

β

(
e−β(t−ti−1) − 1

) i−1∑
j=0

[
e−β(ti−1−tj)

]
and

∫
S
sµg2(s, sµ)ds = µsµ∫

S
s

n∑
i=0

g1(t, ti)g2(s, si)ds =
n∑

i=0

g1(t, ti)

∫
S
sg2(s, si)ds =

n∑
i=0

g1(t, ti)si∫
S
sλ∗(s, t)ds = µsµ +

n∑
i=0

g1(t, ti)si,

we have

E[ti|Hti−1
] =

∫ ∞

ti−1

t

(
µ+ α

i−1∑
j=0

e−β(t−tj)

)

exp

(
α

β

(
e−β(t−ti−1) − 1

) i−1∑
j=0

[
e−β(ti−1−tj)

]
− µ(t− ti−1)

)
dt and

53

E[si|Hti−1
] =

∫ ∞

ti−1

(
µsµ + α

i−1∑
j=0

e−β(t−tj)sj

)

exp

(
α

β

(
e−β(t−ti−1) − 1

) i−1∑
j=0

[
e−β(ti−1−tj)

]
− µ(t− ti−1)

)
dt

Both require only 1D numerical integration.

Spatiotemporal Self-Correcting process (STSCP).

A lesser-known example is self-correcting spatiotemporal point process Isham and Westcott

(1979). It assumes that the background intensity increases with a varying speed at different loca-

tions, and the arrival of each event reduces the intensity nearby. The next event is likely to be in a

high-intensity region with no recent events.

Spatiotemporal self-correcting process is capable of modeling some regular event sequences,

such as an alternating home-to-work travel sequence. It has the following intensity function:

λ∗(s, t) = µ exp
(
g0(s)βt−

∑
i:ti<t

αg2(s, si)
)
: α, β, µ > 0 (A.6)

Here g0(s) is the density of a distribution over S, and g2(s, si) is the density of an unimodal

distribution over S centered at si.

54

Appendix B

Simulation Details

In this appendix, we discuss a general algorithm for simulating any STPP, and a specialized

algorithm for simulating an STHP. Both are based on an algorithm for simulating any TPP.

B.1 TPP Simulation

The most widely used technique to simulate a temporal point process is Ogata’s modified thin-

ning algorithm, as shown in Algorithm 1 Daley and Vere-Jones (2007) It is a rejection technique; it

samples points from a stationary Poisson process whose intensity is always higher than the ground

truth intensity, and then randomly discards some samples to get back to the ground truth intensity.

The algorithm requires picking the forms of M∗(t) and L∗(t) such that

sup(λ∗(t+∆t),∆t ∈ [0, L(t)]) ≤M∗(t).

55

In other words, M∗(t) is an upper bound of the actual intensity in [t, t + L(t)]. It is noteworthy

that if M∗(t) is chosen to be too high, most sampled points would be rejected and would lead to

an inefficient simulation.

When simulating a process with decreasing inter-event intensity, such as the Hawkes process,

M∗(t) and L∗(t) can be simply chosen to be λ∗(t) and ∞. When simulating a process with in-

creasing inter-event intensity, such as the self-correcting process, L∗(t) is often empirically chosen

to be 2/λ∗(t), since the next event is very likely to arrive before twice the mean interval length at

the beginning of the interval. M∗(t) is therefore λ∗(t+ L∗(t)).

Algorithm 1 Ogata Modified Thinning Algorithm for Simulating a TPP

1: Input: Interval [0, T], model parameters
2: t← 0,H ← ∅
3: while true do
4: Compute m←M(t|H) , l← L(t|H)
5: Draw ∆t ∼ Exp(m) (exponential distribution with mean 1/m)
6: if t+∆t > T then
7: return H
8: end if
9: if ∆t > l then

10: t← t+ l
11: else
12: t← t+∆t
13: Compute λ = λ∗(t)
14: Draw u ∼ Unif(0, 1)
15: if λ/m > u then
16: H = H ∪ t
17: end if
18: end if
19: end while

56

B.2 STPP Simulation

It has been mentioned in Chapter 2 that an STPP can be seen as attaching the locations sampled

from f ∗(s|t) to the events generated by a TPP. Simulating an STPP is basically adding one step to

Algorithm 1: sample a new location from f ∗(s|t) after retaining a new event at t.

As for a spatiotemporal self-correcting process, neither f ∗(s, t) nor λ∗(t) has a closed form,

so the process’s spatial domain has to be discretized for simulation. λ∗(t) can be approximated

by
∑

s∈S λ
∗(s, t)/|S|, where S is the set of discretized coordinates. L∗(t) and M∗(t) are chosen

to be 2/λ∗(t) and λ∗(t + L∗(t)). Since f ∗(s|t) is proportional to λ∗(s, t), sampling a location

from f ∗(s|t) is implemented as sampling from a multinomial distribution whose probability mass

function is the normalized λ∗(s, t).

B.3 STHP Simulation

To simulate a spatiotemporal Hawkes process with Gaussian kernel, we mainly followed an

efficient procedure proposed by Zhuang (2004), that makes use of the clustering structure of the

Hawkes process and thus does not require repeated calculations of λ∗(s, t).

57

Algorithm 2 Simulating spatiotemporal Hawkes process with Gaussian kernel

1: Generate the background events G(0) with the intensity λ∗(s, t) = µg0(s), i.e., simulate a ho-
mogenous Poisson process Pois(µ) and sample each event’s location from a bivariate Gaussian
distribution N (sµ,Σ)

2: ℓ = 0, S = G(ℓ)

3: while Gℓ ̸= ∅ do
4: for i ∈ Gℓ do
5: Simulate event i’s offsprings O(ℓ)

i with the intensity λ∗(s, t) = g1(t, ti)g2(s, si), i.e., sim-
ulate a non-homogenous stationary Poisson process Pois(g1(t, ti)) by Algorithm 1 and
sample each event’s location from a bivariate Gaussian distribution N (si,Σ)

6: G(ℓ+1) =
⋃

i O
(ℓ)
i , S = S ∪G(ℓ+1), ℓ = ℓ+ 1

7: end for
8: end while
9: return S

B.4 Parameter Settings

For the synthetic dataset, we pre-specified both the STSCP’s and the STHP’s kernels g0(s) and

g2(s, sj) to be Gaussian:

g0(s) :=
1

2π
|Σg0|−

1
2 exp

(
−1

2
(s− [0, 0])Σ−1

g0 (s− [0, 0])T
)

g2(s, sj) :=
1

2π
|Σg2|−

1
2 exp

(
−1

2
(s− sj)Σ

−1
g2 (s− sj)

T

)

The STSCP is defined on S = [0, 1]× [0, 1], while the STHP is defined on S = R2. The STSCP’s

kernel functions are normalized according to their cumulative probability on S. Table B.1 shows

the simulation parameters. The STSCP’s spatial domain is discretized as an 101× 101 grid during

the simulation.

58

Table B.1: Parameter settings for the synthetic dataset

α β µ Σg0 Σg2

ST-Hawkes DS1 .5 1 .2 [.2 0; 0 .2] [0.5 0; 0 0.5]
DS2 .5 .6 .15 [5 0; 0 5] [.1 0; 0 .1]
DS3 .3 2 1 [1 0; 0 1] [.1 0; 0 .1]

ST-Self Correcting DS1 .2 .2 1 [1 0; 0 1] [0.85 0; 0 0.85]
DS2 .3 .2 1 [.4 0; 0 .4] [.3 0; 0 .3]
DS3 .4 .2 1 [.25 0; 0 .25] [.2 0; 0 .2]

59

Appendix C

Experiment Details

In this section, we include experiment configurations and some additional experiment results.

C.1 Model Setup Details

For a better understanding of DeepSTPP, we list out the detailed hyperparameter settings in

Table C.1. We use the same set of hyperparameters across all datasets.

60

Table C.1: Hyperparameter settings for training DeepSTPP on all datasets.

Name Value Description

Optimizer Adam Optimizer of the Transformer-VAE is set to Adam
Learning rate - 0.01(Synthetic) / 0.015(Real World)
Momentum 0.9 -

Epoch 200 Train the VAE for 200 epochs for 1 step prediction
Batch size 128 -

Encoder: nlayers 3 Encoder is composed of a stack of 3 identical Transformer layers
Encoder: nheads 2 Number of attention heads in each Transformer layer

Encoder: dmodel 128 3-tuple history is embedded to 128-dimension before fed into encoder
Encoder: dhidden 128 Dimension of the feed-forward network model in each Transformer layer

Positional Encoding Sinusoidal Default encoding scheme in Vaswani et al. (2017)
Decoder: dhidden 128 Decoders for wi, βi, andγi are all MLPs with 2 hidden layers whose dim = 128

dz 128 Dimension of the latent variable z as shown in Figure 2.1
J 50 Number of representative points as described in Section 2.1.3; 100 during
β 1e-3 Scale factor multiplied to the log-likelihood in VAE loss

61

Appendix D

Numerical Integration for Point Process

D.1 Taylor Integration

In this section, we briefly introduce the algorithm proposed by Liu (2020) and our implemen-

tation of it. Let β1, . . . , β5 be real scalar hyperparameters with β1 ̸= 0. They can be viewed as the

coefficients of the Taylor remainders. In practice, we set β1 = 1 and β2 = β3 = β4 = β5 = 0. We

tried different sets of β, but we found that their influence is trivial in most case. If the real numbers

A1, ..., A5 are given by

62



A5 :=
(b−c)6−(a−c)6

6β5
1

A4 :=
(b−c)5−(a−c)5

5β4
1

− 4β2A5

β1
,

A3 :=
(b−c)4−(a−c)4

4β3
1

− 3β2A4

β1
− 3

(
β3

β1
+

β2
2

β2
1

)
A5,

A2 :=
(b−c)3−(a−c)3

3β2
1

− 2β2A3

β1
−
(

2β3

β1
+

β2
2

β2
1

)
A4+

−2
(

β4

β1
+ β2β3

β2
1

)
A5,

A1 :=
(b−c)2−(a−c)2

2β1
− β2A2

β1
− β3A3

β1
− β4A4

β1
− β5A5

β1
,

and y1(c), ..., y5(c) are given by evaluation of function and its derivatives

f(c)︸︷︷︸
y0

+ β1f
′(c)︸ ︷︷ ︸

y1

ε+

{
β2f

′(c) +
1

2!
β2
1f

(2)(c)

}
︸ ︷︷ ︸

y2

ε2 +
{
β3f

′(c) + β1β2f
(2)(c)︸ ︷︷ ︸

y3

+
1

3!
β3
1f

(3)(c)

}
︸ ︷︷ ︸

y3

ε3

+

{
β4f

′(c) +

(
β1β3 +

1

2
β2
2

)
f (2)(c) +

1

2
β2
1β2f

(3)(c)
1

4!
β4
1f

(4)(c)

}
︸ ︷︷ ︸

y4

ε4

+

{
β5f

′(c) + (β1β4 + β2β3) f
(2)(c)

1

2

(
β2
1β3 + β1β

2
2

)
f (3)(c) +

1

6
β3
1β2f

(4)(c) +
1

5!
β5
1f

(5)(c)

}
︸ ︷︷ ︸

y5

ε5

The function
∫ b

a
f(x) can be approximated by

∑
k

∫ b

a
yk(x)Ak. We calculated the n-th deriva-

tive using PyTorch AutoDiff. When using the Taylor Integration for learning point process, we

equally split the time interval to subintervals of width 0.1 (which means at most 500 subintervals

on the synthetic dataset) and evaluate the integral over each subinterval.

63

D.2 Clenshaw-Curtis Quadrature

In this section, we briefly introduce the Clenshaw-Curtis algorithm, which integrates a function

f(x) by first approximating it using a linear combination of Chebyshev polynomials Tn(x), which

follows the recurrence relationship

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x)

or generally,

Tn(x) = cos
(
n cos−1 x

)
The roots of the Chebyshev polynomials are Chebyshev nodes, where

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n

We can use affine transformation to map the integrant from x ∈ [a, b] to x ∈ [−1, 1] and evaluate

(b − a)
∑∫ 1

−1
Tn(x) as an estimator of

∫ b

a
f(x). Consider the average of function evaluated at

nodes, y = ¯f(xk). The Chebyshev coefficients are

c0 =
1

K

∑
f(xk), cn|n̸=0 =

2

K

∑
Tn(xk)f(xk),

64

where xk are the Chebyshev nodes. The integral of a Chebyshev polynomial is

∫
Tn(x)dx =

∫
Tn(cos θ)d cos θ

= −
∫

cos(nθ) sin θdθ

= −1

2

∫
(sin((n+ 1)θ)− sin((n− 1)θ))dθ

=
1

2

(
cos((n+ 1)θ)

n+ 1
− cos((n− 1)θ)

n− 1

)
+ const.

=
1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
+ const.

Finally, we sum of the integral of each Chebyshev polynomial to obtain an estimate of
∫ b

a
f(x).

In our implementation, we use a default number of 1000 Chebyshev nodes when integrating the

influence function.

65

References

Adams, R. P., Murray, I., and MacKay, D. J. (2009). Tractable nonparametric bayesian infer-
ence in poisson processes with gaussian process intensities. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 9–16.

Archer, N. P. and Wang, S. (1993). Application of the back propagation neural network algo-
rithm with monotonicity constraints for two-group classification problems. Decision Sciences,
24(1):60–75.

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). Recurrent neural networks for
multivariate time series with missing values. Scientific reports, 8(1):1–12.

Chen, R. T., Amos, B., and Nickel, M. (2020). Neural spatio-temporal point processes. arXiv
preprint arXiv:2011.04583.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differen-
tial equations. In Advances in neural information processing systems, pages 6571–6583.

Chen, Y. (2016). Thinning algorithms for simulating point processes. Florida State University,
Tallahassee, FL.

Chorowski, J. and Zurada, J. M. (2014). Learning understandable neural networks with nonnega-
tive weight constraints. IEEE transactions on neural networks and learning systems, 26(1):62–
69.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, abs/1412.3555.

Cunningham, J. P., Shenoy, K. V., and Sahani, M. (2008). Fast gaussian process methods for point
process intensity estimation. In Proceedings of the 25th international conference on Machine
learning, pages 192–199.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point processes: volume
II: general theory and structure. Springer Science & Business Media.

Davis, P. J. and Rabinowitz, P. (2007). Methods of numerical integration. Courier Corporation.

De Brouwer, E., Simm, J., Arany, A., and Moreau, Y. (2019). Gru-ode-bayes: Continuous model-

66

ing of sporadically-observed time series. In Advances in Neural Information Processing Systems,
pages 7379–7390.

Doumpos, M. and Zopounidis, C. (2009). Monotonic support vector machines for credit risk rating.
New Mathematics and Natural Computation, 5(03):557–570.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
marked temporal point processes: Embedding event history to vector. In KDD, pages 1555–
1564.

Dunham, W. (2018). The calculus gallery. Princeton University Press.

Dupont, E., Doucet, A., and Teh, Y. W. (2019). Augmented neural odes. In Advances in Neural
Information Processing Systems, pages 3140–3150.

Fang, S., Zhang, Q., Meng, G., Xiang, S., and Pan, C. (2019). Gstnet: Global spatial-temporal
network for traffic flow prediction. In IJCAI, pages 2286–2293.

Finlay, C., Jacobsen, J.-H., Nurbekyan, L., and Oberman, A. M. (2020). How to train your neural
ode. arXiv preprint arXiv:2002.02798.

Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., and Liu, Y. (2019). Spatiotemporal multi-
graph convolution network for ride-hailing demand forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3656–3663.

Gholami, A., Keutzer, K., and Biros, G. (2019). Anode: Unconditionally accurate memory-
efficient gradients for neural odes. arXiv preprint arXiv:1902.10298.

Guo, R., Li, J., and Liu, H. (2018). Initiator: Noise-contrastive estimation for marked temporal
point process. In IJCAI, pages 2191–2197.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Huang, H., Wang, H., and Mak, B. (2019). Recurrent poisson process unit for speech recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6538–6545.

Isham, V. and Westcott, M. (1979). A self-correcting point process. Stochastic processes and their
applications, 8(3):335–347.

Jia, J. and Benson, A. R. (2019). Neural jump stochastic differential equations. In NeurIPS, pages
9847–9858.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. (2020). Neural controlled differential equations for

67

irregular time series. NeurIPS.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kottas, A. and Sansó, B. (2007). Bayesian mixture modeling for spatial poisson process intensi-
ties, with applications to extreme value analysis. Journal of Statistical Planning and Inference,
137(10):3151–3163.

Li, H., Li, Y., and Li, S. (2019). Dual neural network method for solving multiple definite integrals.
Neural computation, 31(1):208–232.

Li, S., Xiao, S., Zhu, S., Du, N., Xie, Y., and Song, L. (2018a). Learning temporal point processes
via reinforcement learning. arXiv preprint arXiv:1811.05016.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2018b). Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In ICLR.

Liang, W., Zhang, W., and Wang, X. (2019). Deep sequential multi-task modeling for next check-
in time and location prediction. In International Conference on Database Systems for Advanced
Applications, pages 353–357. Springer.

Lindell, D. B., Martel, J. N., and Wetzstein, G. (2021). Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14556–14565.

Liu, K. (2020). Automatic integration. arXiv e-prints, pages arXiv–2006.

Liu, X., Han, X., Zhang, N., and Liu, Q. (2020). Certified monotonic neural networks. arXiv
preprint arXiv:2011.10219.

Mei, H. and Eisner, J. (2016). The neural hawkes process: A neurally self-modulating multivariate
point process. arXiv preprint arXiv:1612.09328.

Mei, H. and Eisner, J. (2017). The neural hawkes process: A neurally self-modulating multivariate
point process. In NeurIPS.

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., and Tita, G. E. (2011). Self-
exciting point process modeling of crime. Journal of the American Statistical Association,
106(493):100–108.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log gaussian cox processes.
Scandinavian journal of statistics, 25(3):451–482.

Moller, J. and Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point
processes. CRC Press.

68

Mozer, M. C., Kazakov, D., and Lindsey, R. V. (2017a). Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110.

Mozer, M. C., Kazakov, D., and Lindsey, R. V. (2017b). Discrete event, continuous time rnns.
arXiv:1710.04110.

Norcliffe, A., Bodnar, C., Day, B., Moss, J., and Lio, P. (2021). Neural ode processes. ICLR.

Ogata, Y. (1981). On lewis’ simulation method for point processes. IEEE transactions on infor-
mation theory, 27(1):23–31.

Okawa, M., Iwata, T., Kurashima, T., Tanaka, Y., Toda, H., and Ueda, N. (2019). Deep mixture
point processes: Spatio-temporal event prediction with rich contextual information. In KDD,
pages 373–383.

Omi, T. and Aihara, K. (2019). Fully neural network based model for general temporal point
processes. In Advances in Neural Information Processing Systems, pages 2122–2132.

Parascandolo, G., Huttunen, H., and Virtanen, T. (2016). Taming the waves: sine as activation
function in deep neural networks.

Rathbun, S. L. and Cressie, N. (1994). Asymptotic properties of estimators for the parameters of
spatial inhomogeneous poisson point processes. Advances in Applied Probability, 26(1):122–
154.

Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J. (2011). Comparison of correlation analysis
techniques for irregularly sampled time series. Nonlinear Processes in Geophysics, 18(3):389–
404.

Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applica-
tions. Statistical Science, 33(3):299–318.

Risch, R. H. (1969). The problem of integration in finite terms. Transactions of the American
Mathematical Society, 139:167–189.

Risch, R. H. (1970). The solution of the problem of integration in finite terms. Bulletin of the
American Mathematical Society, 76(3):605–608.

Safikhani, A., Kamga, C., Mudigonda, S., Faghih, S. S., and Moghimi, B. (2018). Spatio-temporal
modeling of yellow taxi demands in new york city using generalized star models. International
Journal of Forecasting.

Shang, J. and Sun, M. (2019). Geometric hawkes processes with graph convolutional recurrent
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4878–4885.

Sharma, A. and Wehrheim, H. (2020). Testing monotonicity of machine learning models. arXiv

69

preprint arXiv:2002.12278.

Shchur, O., Türkmen, A. C., Januschowski, T., and Günnemann, S. (2021). Neural temporal point
processes: A review. arXiv preprint arXiv:2104.03528.

Shukla, S. N. and Marlin, B. (2018). Interpolation-prediction networks for irregularly sampled
time series. In ICLR.

Sill, J. (1998). Monotonic networks.

Upadhyay, U., De, A., and Gomez-Rodriguez, M. (2018). Deep reinforcement learning of marked
temporal point processes. arXiv preprint arXiv:1805.09360.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008.

Veen, A. and Schoenberg, F. P. (2008). Estimation of space–time branching process models
in seismology using an em–type algorithm. Journal of the American Statistical Association,
103(482):614–624.

Xiao, S., Farajtabar, M., Ye, X., Yan, J., Song, L., and Zha, H. (2017). Wasserstein learning of
deep generative point process models. In NeurIPS, pages 3247–3257.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015). Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting. In NeurIPS,
pages 802–810.

Yan, J., Liu, X., Shi, L., Li, C., and Zha, H. (2018). Improving maximum likelihood estimation of
temporal point process via discriminative and adversarial learning. In IJCAI, pages 2948–2954.

Yang, G., Cai, Y., and Reddy, C. K. (2018). Recurrent spatio-temporal point process for check-in
time prediction. In CIKM, pages 2203–2211. ACM.

Yao, H., Tang, X., Wei, H., Zheng, G., and Li, Z. (2019). Revisiting spatial-temporal similarity:
A deep learning framework for traffic prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5668–5675.

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020a). Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183–11193. PMLR.

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020b). Self-attentive hawkes processes. In
International Conference on Machine Learning (ICML).

Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.-T., and Ramakrishnan, N. (2015). Multi-task learning
for spatio-temporal event forecasting. In KDD, pages 1503–1512.

70

Zhu, S., Li, S., Peng, Z., and Xie, Y. (2019). Imitation learning of neural spatio-temporal point
processes. arXiv preprint arXiv:1906.05467.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. (2020). Transformer hawkes process. International
Conference on Machine Learning (ICML).

71

	Thesis Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Background
	Temporal Point Process
	Spatiotemporal Point Process.
	Neural Point Process
	Maximum likelihood Estimation
	Predictive distribution

	Deep Spatiotemporal Point Process
	Methodology
	Neural latent process.
	Non-parametric model.
	Parameter learning.

	Experiments
	Baselines
	Datasets
	Synthetic Experiment Results
	Real-World Experiment Results
	Ablation study

	Automatic Integration for Point Process
	Methodology
	Limitations of Existing NPPs
	Influence-Driven Point Process
	Automatic Integration (AutoInt)
	Imposing the Non-negativity Constraint
	Loss Function

	Experiments
	Experimental Setup
	Baselines
	Experimental Results

	Related Works
	Spatiotemporal Dynamics Learning.
	Continuous Time Sequence Models.
	Deep Point Process.
	Nonparametric Inference for Point Process.
	Integration Methods.
	Monotonic Constraints.

	Conclusion
	Model Details
	Spatiotemporal Point Process Derivation
	Deep Spatiotemporal Point process (DeepSTPP) Derivation
	Spatiotemporal Hawkes Process Derivation

	Simulation Details
	TPP Simulation
	STPP Simulation
	STHP Simulation
	Parameter Settings

	Experiment Details
	Model Setup Details

	Numerical Integration for Point Process
	Taylor Integration
	Clenshaw-Curtis Quadrature

	References

