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ARTICLE OPEN

Extensive bidirectional genetic overlap between bipolar
disorder and cardiovascular disease phenotypes
Linn Rødevand 1✉, Shahram Bahrami1, Oleksandr Frei1,2, Yunhan Chu1, Alexey Shadrin 1, Kevin S. O’Connell 1,
Olav B. Smeland 1, Torbjørn Elvsåshagen 1,3, Guy F. L. Hindley1,4, Srdjan Djurovic 5,6, Anders M. Dale 7,8,9,10, Trine V. Lagerberg1,
Nils Eiel Steen 1 and Ole A. Andreassen 1✉

© The Author(s) 2021

Patients with bipolar disorder (BIP) have a high risk of cardiovascular disease (CVD), despite considerable individual variation. The
mechanisms underlying comorbid CVD in BIP remain largely unknown. We investigated polygenic overlap between BIP and CVD
phenotypes, including CVD risk factors and coronary artery disease (CAD). We analyzed large genome-wide association studies of
BIP (n= 51,710) and CVD phenotypes (n= 159,208–795,640), using bivariate causal mixture model (MiXeR), which estimates the
total amount of shared genetic variants, and conjunctional false discovery rate (FDR), which identifies specific overlapping loci.
MiXeR revealed polygenic overlap between BIP and body mass index (BMI) (82%), diastolic and systolic blood pressure (20–22%)
and CAD (11%) despite insignificant genetic correlations. Using conjunctional FDR < 0.05, we identified 129 shared loci between BIP
and CVD phenotypes, mainly BMI (n= 69), systolic (n= 53), and diastolic (n= 53) blood pressure, of which 22 are novel BIP loci.
There was a pattern of mixed effect directions of the shared loci between BIP and CVD phenotypes. Functional analyses indicated
that the shared loci are linked to brain-expressed genes and involved in neurodevelopment, lipid metabolism, chromatin assembly/
disassembly and intracellular processes. Altogether, the study revealed extensive polygenic overlap between BIP and comorbid
CVD, implicating shared molecular genetic mechanisms. The mixed effect directions of the shared loci suggest variation in genetic
susceptibility to CVD across BIP subgroups, which may underlie the heterogeneity of CVD comorbidity in BIP patients. The findings
suggest more focus on targeted lifestyle interventions and personalized pharmacological treatment to reduce CVD comorbidity
in BIP.

Translational Psychiatry          (2021) 11:407 ; https://doi.org/10.1038/s41398-021-01527-z

INTRODUCTION
People with bipolar disorder (BIP) have on average twice as high
risk of cardiovascular disease (CVD) compared to the general
population, contributing to a reduction in life expectancy [1–3].
CVD comorbidity and mortality have remained high during the
past decades, indicating that most patients with BIP have not
benefited from recent advances in medicine [4–7]. The etiology of
the CVD comorbidity remains largely unknown, but it is likely to be
associated with medication side-effects and lifestyle factors, such
as poor diet, physical inactivity, and smoking [1, 8]. A genetic
susceptibility to CVD may also play a role, similar to what has been
indicated in schizophrenia [9, 10], including overlapping genetic
loci [11, 12]. This is supported by the considerable genetic overlap
between schizophrenia and BIP [13]. However, there is a large
individual variation in CVD comorbidity [2–4], which suggests
increased genetic risk for CVD in subgroups of BIP.
BIP is a complex disorder with heritability estimates of 70–80%

[14]. The polygenic nature of BIP is becoming increasingly

apparent as recent genome-wide association studies (GWASs)
have identified 64 risk loci for BIP [15]. GWASs have also
discovered many genetic loci associated with CVD risk factors,
including body mass index (BMI) [16, 17], type 2 diabetes (T2D)
[18], total cholesterol (TC) [19], low-density lipoprotein (LDL)
cholesterol [19], high-density lipoprotein (HDL) cholesterol [19],
systolic blood pressure (SBP) [20], diastolic blood pressure (DBP)
[20], along with coronary artery disease (CAD) [21].
Few studies have investigated the genetic relationship between

BIP and CVD risk factors and CAD [22–24]. A recent study
suggested an inverse genetic relationship between BIP and CVD
risk factors (BMI, TC, LDL, HDL) [23], indicating that BIP may be
related to reduced genetic risk of CVD. However, the results varied
depending on using polygenic risk scores (PRS) or linkage
disequilibrium score regression (LDSR) [23]; the latter did not
provide significant results. Importantly, a significant genetic
correlation estimated with LDSR requires consistent effect
directions of the shared variants between the phenotypes [25].
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Thus, genetic correlation fails to capture polygenic overlap in the
presence of a mixture of effect directions across shared variants
[26]. The bivariate causal mixture model (MiXeR), which estimates
the total number of shared genetic variants [27], can identify
polygenic overlap (i.e., shared genetic architecture among
common variants), beyond genetic correlations. Further, the
conditional/conjunctional false discovery rate (cond/conjFDR)
methodology can identify the specific overlapping loci [28]. These
methods have the advantage of identifying shared variants
regardless of their effect directions [27, 28]. In addition, the
cond/conjFDR tools increase the power for genetic discovery due
to joint analysis of two GWAS, leading to the identification of loci
that do not reach significance threshold in traditional GWAS
analyses [28], as illustrated with several complex human traits
[12, 24, 29].
We recently discovered 69 shared loci between BIP and BMI, of

which 52% possessed concordant effect directions, while genetic
correlation was insignificant [24]. These results demonstrate
polygenic overlap between BIP and BMI and the mixed effect
directions may suggest subgroups of BIP with higher susceptibility
for weight gain. Further, the findings highlight the importance of
analysis of genetic correlation with analytical methods that allow
for identification of shared genetic variants irrespective of their
effect directions [26].
In the present study, we investigated the polygenic overlap

between BIP, CVD risk factors, and CAD beyond genetic
correlations with the MiXeR method [27], and applied the cond/
conjFDR approach to identify specific shared loci [28]. We expect
to unravel more of the shared genetic architecture between BIP,
CVD risk factors, and CAD, and enhance the discovery of specific
overlapping genetic loci to inform the underlying molecular
mechanisms.

METHODS
Participant samples
We obtained GWAS results in the form of summary statistics (p-values and
z-scores). BIP data were retrieved from Psychiatric Genomics Consortium
(PGC) and consisted of 20,352 cases and 31,358 controls from 32 samples
[30]. Among the cases, 14,879 individuals were diagnosed with BIP type I,
3421 with BIP type II, 977 with schizoaffective disorder, bipolar type), and
the remaining BIP not otherwise specified [30]. Further, we used data from
large GWASs on CVD phenotypes, including BMI, TC, HDL, LDL, SBP, DBP,
and T2D and CAD (n= 159,208–795,640) [17–21]. We repeated the
previously published analysis of genetic overlap between BIP and BMI
[24] using cond/conjFDR. While MiXeR corrects for overlapping samples
[27], cond/conjFDR does not [28]. Thus, we screened for overlapping
samples between the BIP GWAS and the CVD GWASs by checking the
substudies included in the GWASs, and found no overlapping samples.
However, we did not have access to individual genotype data and were
thus prevented from determining whether any individuals participated in
both the BIP GWAS and any of the CVD GWASs. For further information
about the GWASs, see Supplementary Methods and original publications
[17–21, 30]. The local ethics committees approved all GWASs used in the
current study, and all participants provided informed consent. Regional
Committees for Medical Research Ethics - South-East Norway has evaluated
the current protocol and found that no additional institutional review
board approval was necessary because no individual data were used.

Statistical analysis
We constructed conditional quantile–quantile (Q–Q) plots to visualize the
putative overlap in SNPs associations, i.e., cross-trait enrichment. Enrich-
ment exists when the proportion of SNPs associated with a phenotype
(e.g., BIP) increases as a function of the strength of the association with a
secondary phenotype (e.g., BMI) [28]. In the conditional Q–Q plots, this
cross-trait enrichment is visualized as successive leftward shifts from the
null line [12, 28]. Details about this method are available in Supplementary
Methods.
Next, we used the statistical tool MiXeR to estimate the total number of

shared and unique trait-influencing variants (i.e., variants with pure genetic
effects not induced by LD) using GWAS summary data [27]. This method

evaluates polygenic overlap independent of genetic correlation between
phenotypes. The MiXeR results are illustrated with Venn diagrams of
shared and unique variants. Estimates of uncertainty are provided,
including standard error in parenthesis in the Venn diagrams. We
evaluated the model fit, i.e., the ability of the MiXeR model to predict
the actual GWAS data, based on modelled vs. actual conditional Q–Q plots,
negative log-likelihood plots, and Akaike information criterion (AIC). The
more closely the model-based Q–Q plots follow the actual Q–Q plots, the
better the MiXeR predicts the data, indicating more precise estimates. The
negative log-likelihood plots visualize the performance of the best model
versus models with minimum and maximum polygenic overlap. More
specifically, the best model with polygenic overlap estimated with MiXeR
was compared with two models—a model with least possible overlap and
a model with maximum possible overlap. The lowest point on the negative
log-likelihood curve indicates better model fit. Support for the MiXeR
model is a clearly defined minimum on the negative log-likelihood curve,
as quantified by AIC criteria. A positive AIC value yields support for the
MiXeR model of polygenic overlap and suggests that the GWAS data has
enough power to distinguish the estimated polygenic overlap using MiXeR
from the constrained models with minimal and maximum polygenic
overlap [27]. For details about MiXeR, see Supplementary Methods and Frei
et al. [27].
The condFDR approach was used to increase discovery of specific

genetic variants associated with BIP and CVD phenotypes [28]. The
condFDR method builds on Bayesian statistics and increases the power to
identify loci associated with a primary phenotype (e.g., BIP) by leveraging
associations with a secondary phenotype (e.g., BMI). Thus, this method re-
ranks the test-statistics of a primary phenotype (e.g., BIP) based on a
conditional variable, i.e., the strength of the association with a secondary
phenotype (e.g., BMI) [28]. Inverting the roles of primary and secondary
phenotypes yields the inverse condFDR value [28]. ConjFDR is an extension
of condFDR and can detect loci jointly associated with two phenotypes
(e.g., both BIP and BMI) [28]. ConjFDR is defined as the maximum of the
two condFDR values, providing a conservative estimate of the FDR for a
SNP association with both phenotypes [12, 28]. P-values are corrected for
inflation using a genomic inflation control procedure [12, 28]. Consistent
with previous publications [12, 24, 31, 32], we used the thresholds
condFDR<0.01 and conjFDR<0.05. For further information, see Supple-
mentary Methods and method review [28].

Genomic loci definition
To define the independent genomic loci, we applied FUMA, an online tool
for functional mapping of genetic variants (http://fuma.ctglab.nl/) [33].
Independent significant SNPs were defined as SNPs with condFDR<0.01 or
conjFDR<0.05 and independent from each other at LD r2 < 0.6. Lead SNPs
were identified by retaining those independent significant SNPs that were
independent from each other at r2 < 0.1. To define distinct genomic loci,
we merged any physically overlapping lead SNPs (LD blocks <250 kb apart)
selecting a SNP with the lowest p-value as a lead SNP of the merged locus.
The borders of the genomic loci were defined by identifying all SNPs
(candidate SNPs) in LD (r2≧ 0.6) with one of the independent significant
SNPs in the locus [33] (see Supplementary Methods).

Effect directions and genetic correlations
We evaluated the directional effects of the shared lead SNPs between BIP
and CVD phenotypes by comparing their z-scores and odds ratios from the
original publications [16, 18–21, 30]. Genetic correlations were estimated
using LDSR and corrected for multiple testing (0.05/8) [34].

Functional annotation
We used FUMA [33] to functionally annotate candidate SNPs in the
genomic loci with a condFDR/conjFDR value <0.10 and an LD r2≧ 0.6 with
one of the independent significant SNPs. SNPs were annotated using three
different tools, including Combined Annotation Dependent Depletion
(CADD) [35], a method that predicts the deleteriousness of SNPs on protein
structure/function; RegulomeDB [36], which predicts regulatory functions;
and chromatin states that indicate the transcription/regulation effects at
the SNP locus [37, 38]. We also identified previously reported GWAS
associations in the GWAS catalog [39] overlapping with the identified loci.
We proceeded with further functional analyses provided that we identified
at least one shared locus at conjFDR<0.05. Thus, the prerequisite for
performing functional analysis was the presence of ≥ one locus jointly
associated with BIP and a given CVD phenotype. The functional analyses
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included gene-mapping, gene-set enrichment analysis, pathway analysis,
and spatio-temporal analysis of gene expression. In particular, FUMA was
used to map lead and candidate SNPs to genes based on either of three
properties of the SNPs: (1) their physical position (i.e., proximity to a gene),
(2) expression quantitative trait locus (eQTL) functionality, and (3)
chromatin interaction [33]. Next, we investigated whether genes mapped
to all SNPs in shared loci were overrepresented in gene-sets using FUMA
[33] and in pathways using ConsensusPathDB [40]. We also performed
gene-set analysis of genes nearest to the lead SNPs in the shared loci at
conjFDR<0.05. Finally, we run spatio-temporal analysis of genes mapped to
SNPs in the shared loci between BIP and CVD phenotypes to investigate
patterns of expression across brain tissues and through developmental
periods [41–44]. For details, see Supplementary Methods.

RESULTS
Genetic overlap between BIP and CVD phenotypes
In the conditional Q–Q plots, we observed enrichment in BIP SNPs
as a function of the significance of associations with CVD
phenotypes (Supplementary Fig. 1), indicating polygenic overlap.
The reverse conditional Q–Q plots also demonstrated enrichment
in CVD phenotypes given associations with BIP (Supplementary
Fig. 2).
After observing cross-trait enrichment, we applied MiXeR which

discovered different polygenicity of BIP (8.1k), BMI (11k), SBP
(4.4k), DBP (3.9k), and CAD (1.4k).
Parameter estimates of the MiXeR model and corresponding

standard error are provided in Table 1 and Fig. 1. MiXeR revealed
polygenic overlap between BIP and BMI, sharing 6.6k of 12.5k
variants, as illustrated by the Venn diagram (Fig. 1A). The shared
variants constitute 81.5 and 60% of variants influencing BIP and
BMI, respectively. MiXeR also revealed polygenic overlap between
BIP and SBP, sharing 1.8k of 10.7k variants (Fig. 1B), representing
22.2% and 40.9% of variants influencing BIP and SBP, respectively.
Similarly, MiXeR identified polygenic overlap with DBP, sharing
1.6k of 10.4 K variants (Fig. 1C), constituting 19.8% and 41.0% of
the genetic variants underlying BIP and DBP, respectively. In
addition, BIP shared 0.9k of 8.6k variants with CAD (Fig. 1D),
representing 11.1% and 64.3% of the genetic basis of BIP and CAD,
respectively. Model fit was considered adequate as indicated by
model-based Q–Q plots following the actual Q–Q plots (Supple-
mentary Figures 3–6), although some caution in interpreting the
MiXeR model for BIP and CAD is needed as the predicted Q–Q
plots followed the observed Q–Q plots less closely at smaller p-
values. The log-likelihood plots illustrated adequate model fit
(Supplementary Figures 3–6) and AIC demonstrated sufficiently
powered model (Supplementary MiXeR Table). The MiXeR model
was not used for the other CVD phenotypes due to inadequate
model fit (Supplementary Figures 7a–d).

Loci shared between BIP and CVD phenotypes
At condFDR<0.01, we identified multiple loci associated with
BIP conditional on their association with each CVD phenotype

(Supplementary Tables 1–8), and vice versa (Supplementary
Tables 9–16 and Supplementary Results). At conjFDR<0.05, we
discovered several loci jointly associated with BIP and CVD
phenotypes, including 69 loci shared with BMI as previously
reported [24], and 53 loci with SBP, 53 loci with DBP, 15 with TC,
13 loci with LDL, 10 loci with HDL, 4 loci with T2D and 10 loci
with CAD (Fig. 2A–H; Supplementary Tables 17–24). We
observed small SNP p-values for both phenotypes, which
indicate true associations with both BIP and CVD phenotypes.
Several loci were jointly associated with BIP and more than one
CVD phenotype, resulting in 129 distinct loci associated with
both BIP and CVD phenotypes at conjFDR<0.05. Twenty-two of
the shared loci are novel BIP loci (Supplementary Table 25). See
Supplementary Methods for all the studies reviewed to
determine the number of novel BIP loci.
We evaluated the directionality of allelic effects of the shared

lead SNPs between the phenotypes by investigating their z-
scores. There was a pattern of mixed effect directions of the
shared SNPs between BIP and CVD risk factors (Table 2). We
discovered the same effect direction of 52.2% of SNPs shared
with BMI (as previously reported [24]), 49.1% SNPs shared with
SBP, 47.2% SNPs shared with DBP, 26.7% SNPs shared with TC,
46.2% SNPs shared with LDL, 40% SNPs shared with HDL, 25%
SNPs shared with T2D, and 70% SNPs shared with CAD (Table 2;
Supplementary Tables 17–24). The genetic correlations were
insignificant (rg=−0.06–0.04) (Table 2).

Functional annotation
Functional annotation of all SNPs having a conjFDR value <0.1
in the loci shared between BIP and CVD phenotypes demon-
strated that these were mostly intronic and intergenic
(Supplementary Tables 26–33). Gene-mapping of shared loci
between BIP and CVD phenotypes largely implicated brain-
expressed genes (Supplementary Tables 34–41; Supplementary
Results). The initial gene-set analyses of the mapped genes
indicated that associations from gene clusters, especially the
histone gene cluster, drive many of the significant biological
and cellular processes (Supplementary Tables 42–49). Since
several genes in these gene sets are localized in a single cluster,
a single association in this cluster can drive the apparent
enrichment of the entire gene set. Thus, this method is
vulnerable to bias from clusters of genes. Therefore, we also
performed gene-set analyses of the genes nearest to the lead
SNPs in the shared loci between BIP and each CVD phenotype
(Supplementary Tables 50–54), and compared the results with
the initial analyses. Below, results from both gene-set
approaches are presented (i.e., focusing on mapped vs. nearest
genes).
Gene-set analyses of mapped genes: First, gene-set analyses

revealed several significantly associated biological and cellular
processes with the genes mapped to the shared loci between
BIP and BMI, including “chromatin organization”, “chromatin
assembly/disassembly”, and “DNA packaging complex” (Sup-
plementary Table 42). The genes mapped to the shared loci
between BIP and SBP were most significantly associated with
“neurogenesis”, “neuronal differentiation”, and “mitochondrion”
(Supplementary Table 43). Gene-set analyses also identified
several significantly associated processes with the genes
mapped to the shared loci between BIP and DBP, including
“chromatin assembly”, “nucleosome organization”, and “DNA
backpacking complex” (Supplementary Table 44). The genes
mapped to the shared loci between BIP and lipids (TC, HDL, and
LDL) were significantly associated with “chromatin assembly/
disassembly”, “hyaluronan metabolic process”, and “lipid
biosynthetic process” (Supplementary Tables 45–47). The genes
mapped to loci shared between BIP and T2D and CAD were
most significantly associated with “unsaturated fatty acid
biosynthesis” (Supplementary Tables 48–49).

Table 1. The results of MiXeR analysis for BIP and CVD phenotypes.

Trait 1 Trait 2 Shared
variants (s.
e.)

Unique
variants trait
1 (s.e.)

Unique
variants trait
2 (s.e.)

BIP BMI 6.6 (0.5) 1.5 (0.4) 4.4 (0.5)

BIP SBP 1.8 (0.3) 6.3 (0.3) 2.6 (0.3)

BIP DBP 1.6 (0.3) 6.5 (0.4) 2.3 (0.3)

BIP CAD 0.9 (0.3) 7.2 (0.4) 0.5 (0.3)

Number of shared and unique trait-influencing variants (in thousands),
followed by standard error, estimated by MiXeR.
BIP bipolar disorder, BMI body mass index, SBP systolic blood pressure, DBP
diastolic blood pressure, CAD coronary heart disease, s.e. standard error.
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The genes nearest to lead SNPs in the shared loci with BMI were
significantly associated with “regulation of neurotransmitter
levels” and “synapse” (Supplementary Table 50). The genes
nearest to lead SNPs in the shared loci between BIP and SBP
were most significantly associated with “transmembrane trans-
port”, “regulation of transport”, “plasma membrane region”,
“voltage-gated calcium channel complex”, and “synaptic mem-
brane” (Supplementary Tables 51). Gene-set analysis of the genes
nearest to lead SNPs in the shared loci between BIP and DBP
implicated several biological processes, most significantly “posi-
tive regulation of gene expression” and “maintenance of protein
localization” (Supplementary Table 52). The genes nearest to lead
SNPs in the shared loci between BIP and lipids (TC and LDL) were
associated with “chylomicron”, “triglyceride-rich lipoprotein parti-
cle” and “protein-lipid complex” (Supplementary Tables 53–54).
Finally, there were no significant results from gene-set analysis of
genes nearest to lead SNPs in the shared loci between BIP and
HDL, T2D and CAD, possibly related to fewer shared loci. In
summary, the two approaches to gene-set analysis provided
mixed results. Still, they both implicated gene-sets partly
associated with neurodevelopment, neurotransmission, lipids,
metabolic processes, and regulation of gene expression.
We identified several pathways overrepresented among the

genes mapped to loci shared between BIP and CVD phenotypes.
We found neural cell adhesion molecule (NCAM) signaling for
neurite out-growth pathway to be significantly overrepresented
among the genes mapped to the shared loci between BIP and BMI
(Supplementary Table 55). Other pathways (e.g., Organelle

biogenesis and maintenance, Oxytocin signaling pathway, and
Cushing syndrome) were also overrepresented among these
genes, but they did not reach significance after correcting for
multiple testing (see q-values in Supplementary Table 55). We also
identified several pathways overrepresented among the genes
mapped to loci shared between BIP and SBP/DBP, including
signaling by plasma membrane FGR1 fusions, beta-agonist/beta-
blocker pathway, sympathetic nerve pathway, cortisol synthesis
and secretion, and several hormonal and metabolic pathways
(Supplementary Tables 56–57). We found omega-3 fatty acid
metabolism pathway and other pathways to be overrepresented
among the genes mapped to the shared loci between BIP and
lipids, T2D and CAD (Supplementary Tables 58–62).
Spatio-temporal analysis indicated that mapped genes for BIP

and CVD phenotypes were expressed in different brain tissues,
with increased levels of expression mostly before early adulthood
(Supplementary Figure 8a-h). The mapped genes associated with
BIP and SBP also exhibited relative upregulation during early
adulthood (Supplementary Figure 8b).

DISCUSSION
In the present study, we demonstrated extensive polygenic overlap
between BIP and CVD phenotypes. We revealed 129 shared loci, of
which 22 were novel BIP loci. The shared loci possessed mixed effect
directions in BIP and CVD risk factors and CAD, consistent with
insignificant genetic correlations. The results provide new insights
into the shared genetic architecture of BIP and CVD morbidity,

Fig. 1 Venn diagrams of shared and unique polygenic variants. Venn diagrams of shared and unique trait-influencing variants, showing
polygenic overlap (gray) between bipolar disorder (BIP) (blue) and (A) body mass index (BMI) (orange), (B) systolic blood pressure (SBP)
(orange), (C) diastolic blood pressure (DBP) (orange), and (D) coronary artery disease (CAD) (orange). The numbers in the Venn diagram
indicate the estimated quantity of shared and unique trait-influencing variants (in thousands), explaining 90% of SNP heritability in each
phenotype, followed by standard error. The size of the circles reflects the degree of polygenicity. The figure is based on MiXeR results.
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implicating novel molecular genetic mechanisms, and may suggest
variation in CVD risk across subgroups of patients with BIP.
The present study goes beyond standard methods to assess

genetic overlap as the MiXeR can estimate polygenic overlap
with mixed effect directions, and the conjFDR method can
detect shared genetic variants between phenotypes regardless
of the overall genetic correlation [26–28]. Using MiXeR we
discovered that ~82% of the genetic variants influencing BIP
also influence BMI. In addition, ~20% of variants influencing BIP
appear to influence SBP/DBP, yet a larger proportion (~40%) of
genetic variants underlying SBP/DBP affect BIP. MiXeR
also suggested polygenic overlap between BIP and CAD,
although the degree of overlap is uncertain, suggesting that a

larger CAD GWAS is needed to obtain more reliable MiXeR
estimates. The differences in overlap partly reflect variation in
polygenicity of these phenotypes, with BIP and BMI being more
polygenic than SBP/DBP and CAD, as illustrated in the Venn
diagrams.
Further, conjFDR revealed several shared loci between BIP

and CVD phenotypes. More specifically, we identified a total of
227 overlapping loci between BIP and CVD phenotypes at
conjFDR<0.05, of which 129 were distinct (Table 2). Most of the
loci were shared with BMI [24] and SBP/DBP, while a smaller
number of loci were shared with lipids, CAD, and T2D based on
conjFDR. While the GWAS sample sizes do not influence the
nature of the joint association between BIP and the CVD

Fig. 2 Common genetic variants jointly associated with bipolar disorder and cardiovascular disease phenotypes at conjFDR<0.05.
Common genetic variants associated with both BIP and (A) BMI, (B) SBP, (C) DBP, (D) TC, (E) LDL, (F) HDL, (G) T2D, and (H) CAD at conjFDR<0.05.
Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y-axis and chromosomal positions along the x-axis. SNPs
with conjunction FDR<0.05 (i.e., −log10 FDR>1.3) are shown with enlarged data points. A black circle around the enlarged data points
indicates the most significant SNP in each LD block. Further details are provided in Supplementary Tables. BIP bipolar disorder, CVD
cardiovascular disease, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, TC total cholesterol, LDL low-density
lipoprotein cholesterol, HDL high-density lipoprotein cholesterol, T2D type 2 diabetes, CAD coronary artery disease, conjFDR conjunctional
FDR. The results of BIP & BMI at conjFDR<0.01 are previously presented in Bahrami et al. [24].
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Fig. 2 (Continued).

Table 2. Shared loci between bipolar disorder and cardiovascular disease phenotypes.

Associated phenotype Shared loci (n) conjFDR Concordant effect (%) Genetic correlation

CVD phenotypes

BMIa 69 52.2% −0.06 (p= 0.010)

SBP 53 49.1% 0.02 (p= 0.396)

DBP 53 47.2% 0.04 (p= 0.155)

TC 15 26.7% 0.02 (p= 0.463)

LDL 13 46.2% 0.03 (p= 0.346)

HDL 10 40.0% −0.02 (p= 0.471)

T2D 4 25.0% −0.04 (p= 0.422)

CAD 10 70.0% −0.02 (p= 0.539)

Number of shared loci at conjFDR<0.05, concordant effect directions in percentage, and genetic correlation estimated by LD score regression.
BIP bipolar disorder, CVD cardiovascular disease, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, TC total cholesterol, HDL high-
density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, T2D type 2 diabetes mellitus, CAD coronary heart disease, conjFDR conjunctional FDR.
aThe results for BMI & BIP are retrieved from Bahrami et al. [24].
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phenotypes, they are likely to influence the magnitude of
genetic overlap across the CVD phenotypes [28]. Accordingly,
while the finding of most shared loci with BMI and SBP/DBP
suggests greater overlap, this finding may also be related to the
larger GWAS samples used for BMI [17] and SBP/DBP [20] than
for the other CVD phenotypes [18, 19, 21]. In addition, the
highly polygenic nature of BMI likely contributed to the finding
of more shared loci with BMI. Interestingly, there was a general
pattern of bidirectional effects of the shared loci. Genetic
variants with mixed effect directions “cancel each other out”,
resulting in insignificant genetic correlations between BIP and
CVD risk factors, as well as CAD. Thus, while our results suggest
shared molecular mechanisms implicating pleiotropy, there is
no clear pattern of increased or decreased genetic liability to
CVD in BIP.
The mixed effect directions among the loci shared between

BIP and CVD phenotypes underscore the complexity of the
genetic relationship. While there was a general trend of
opposite effect direction (~52%), there was a majority of
concordant effect directions in CAD. However, due to the small
number of SNPs involved, these individual loci explain a little
proportion of the overall risk. Thus, the findings indicate that
common genetic variants do not explain the higher CVD risk in
BIP. It is possible that genetic factors not captured by currently
GWASs, such as rare variants, may contribute. However, it is
likely that environmental risk factors play a central role in
comorbid CVD in BIP. In particular, medication, poor nutrition,
physical inactivity, and smoking are important contributors to
CVD in BIP [8, 45]. The mixed effect directions of the shared loci
comply with previous findings of bidirectional effects among
overlapping loci between SCZ and multiple CVD risk factors [12].
Similar to the current study, other studies also indicate genetic
overlap between BIP and CVD in spite of non-significant genetic
correlations [23, 46]. Further, the bidirectional effects of the shared
variants between BIP and BMI are in line with the large clinical
variation in weight changes during mood episodes of BIP. Some
patients experience weight loss while others gain weight during a
depressive episode, and most patients lose weight during a manic
episode [47]. Similarly, studies suggest variation in lipid levels and
SBP/DBP related to affective episodes, with higher levels of
dyslipidemia and SBP/DBP in depressive than in manic episodes
[48–50].
Further, the mixed effect directions of shared variants may

reflect variation in genetic liability to CVD across BIP subgroups.
BIP is a heterogeneous disorder involving different subtypes,
illness courses, and severity [51] that may be differentially
related to CVD comorbidity. Notably, while the average level of
CVD risk is higher in BIP compared to the general population,
the CVD comorbidity seems to be restricted to BIP subgroups,
illustrated by overweight (~50–75%), dyslipidemia (~25–40%),
T2D (~5–20%), and hypertension (~35–60%) [2–4], which
suggest subsets of patients with different susceptibility to
CVD. For instance, patients with more depressive symptoms
may represent such a subgroup, as increased depressive
symptoms rather than mania are associated with higher rates
of obesity, dyslipidemia, and T2D [48–50, 52–55]. Moreover,
recent findings indicate a genetic susceptibility to weight gain
in major depression [24]. Since BIP type 2 is genetically more
related to major depression [30], this subtype of BIP may also
involve increased genetic risk of weight gain. BIP type 1, on the
other hand, is more genetically correlated with SCZ [30] and
may thus have reduced genetic risk of weight gain [24]. Larger
and well-characterized GWAS samples are needed to identify
subgroups with varied genetic susceptibility to weight gain and
other CVD phenotypes in BIP. The identification of potential
subgroups with different genetic liability to CVD can increase
the understanding of CVD comorbidity in BIP and help improve
risk prediction and prevention.

Functional annotation indicated that the shared variants
between BIP and CVD are mostly intronic and intergenic, which
is in line with other GWAS findings [24, 31]. The results indicate
the shared SNPs influence gene expression via regulatory
effects [56]. Further functional analyses indicated that the
shared variants between BIP and CVD phenotypes are involved
in several biological processes and pathways associated with
neurodevelopment, lipid metabolism, intracellular processes,
and chromatin assembly/disassembly (i.e., formation or destruc-
tion of chromatin structures, which play an important role in
regulating transcription and gene expression [57]). Further, the
shared loci were largely linked to genes expressed in the brain.
Spatio-temporal analysis indicated that brain-related genes
were mainly expressed prior to early adulthood, which is
consistent with the typical BIP onset in late adolescence and
early adulthood [58]. However, due to a relatively low number
of identified expressed genes, there may be reduced statistical
power with risk of false-negative findings. This limits our ability
to draw inferences about expression in particular develop-
mental periods and brain regions. In line with current findings,
brain dysfunction is implicated in the pathophysiology of BIP
[59] and more recently linked to the shared variants between
BIP and BMI [22, 24]. Moreover, lipid biology may be involved in
the pathophysiology of BIP, as proposed for SCZ [12], consistent
with evidence of white-matter abnormalities and myelin
dysfunction in both disorders [60, 61]. Furthermore, functional
analyses of the shared loci between BIP and SBP implicated
genes involved in stress-related pathways, including cortisol
synthesis and secretion. Similarly, recent findings indicate
overlapping genetic variants between BIP and CVD risk factors
associated with hypothalamic–pituitary–adrenal (HPA) axis
regulation [22, 24]. Shared genetic variants associated with
the HPA axis appear plausible given evidence of HPA axis
dysregulation in BIP [62], obesity, and hypertension [63].
However, the results from functional analyses should be
considered with caution given the limitations of Consensus-
PathDB and FUMA, including vulnerability to bias from clusters
of genes in the genome. This bias was evident in the results
from gene-set analyses of the shared loci between BIP and CVD
phenotypes, indicating that some of the most significant
biological processes are driven by associations from the histone
gene cluster and other clusters.
Altogether, the current findings are in line with the hypothesis

that brain-related mechanisms play a role in CVD comorbidity in
BIP. It is possible that shared genetic variants, interacting with
environmental risk factors, affect brain function that influences
behavior (e.g., lifestyle choices) and mental processes (e.g.,
affective symptoms) and, thereby, the development of BIP and
comorbid CVD. It is also possible that shared variants between BIP
and CVD morbidity affect metabolic mechanisms [22, 24],
influencing CVD risk and brain function, contributing to the
development of BIP. In addition, separate pathways underlying BIP
and CVD are likely given the bidirectional effects of the shared
loci. However, the proposed pathways are preliminary and require
further experimental investigation due to limitations of current
methods used to functionally annotate SNPs [33] and the
complexity of the pathophysiology of BIP and CVD.
The current results of mixed effect directions of shared loci

between BIP and CVD phenotypes have important clinical
implications. The results indicate that the genetic susceptibility
for CVD may vary across BIP subgroups, calling for more diverse
and targeted clinical interventions. Future investigations of
subgroups with different genetic liability to CVD can form the
basis for improved prediction tools, which can pave the way for
early risk identification and prevention of CVD in BIP. Improved
prevention should involve better tailored pharmacological treat-
ment according to individuals’ genetic risk and personalized
lifestyle interventions with focus on the barriers for maintaining a
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healthy lifestyle, such as motivational and other affective
symptoms, adverse effects of medication, and socioeconomic
issues [64, 65].
In conclusion, the current study revealed polygenic overlap

between BIP and CVD phenotypes and identified 129 shared loci
with mixed effect directions. Future experimental studies of the
identified shared loci may provide new insights into molecular
mechanisms, which can ultimately facilitate the development of
drugs with less cardiometabolic adverse effects by identifying
potential therapeutic targets. The current results underline the
importance of environmental factors in development of CVD
comorbidity in BIP and may indicate variation in genetic
susceptibility to CVD across BIP subgroups. Future studies with
larger GWAS samples should focus on identifying patients at
higher genetic risk of comorbid CVD. This can form the basis for
risk stratification and more targeted interventions for better
prevention of CVD in BIP.
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