UC Riverside
UC Riverside Previously Published Works

Title

MiddleNet: A Unified, High-Performance NFV and Middlebox Framework with eBPF and
DPDK

Permalink

|https://escholarship.orgc/item/3sh228fd

Journal

IEEE Transactions on Network and Service Management, PP(99)

ISSN
1932-4537

Authors
Qi, Shixiong
Zeng, Ziteng

Monis, Leslie

Publication Date
2023

DOI
10.1109/tnsm.2023.3256891

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-

NonCommercial-ShareAlike License, available at |https://creativecommons.org/licenses/bv—nc-l

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/3sh2z8f0
https://escholarship.org/uc/item/3sh2z8f0#author
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

MiddleNet: A Unified, High-Performance NFV and
Middlebox Framework with eBPF and DPDK

Shixiong Qi, Ziteng Zeng, Leslie Monis, and K. K. Ramakrishnan, Fellow, IEEE,
Dept. of Computer Science and Engineering, University of California, Riverside

Abstract—Traditional network resident functions (e.g., fire-
walls, network address translation) and middleboxes (caches, load
balancers) have moved from purpose-built appliances to software-
based components. However, L2/.3 network functions (NFs) are
being implemented on Network Function Virtualization (NFV)
platforms that extensively exploit kernel-bypass technology. They
often use DPDK for zero-copy delivery and high performance.
On the other hand, L4/L.7 middleboxes, which have a greater
emphasis on functionality, take advantage of a full-fledged kernel-
based system.

L2/L.3 NFs and L4/L7 middleboxes continue to be handled
by distinct platforms on different nodes. This paper proposes
MiddleNet that develops a unified network resident function
framework that supports L2/LL3 NFs and L4/L7 middleboxes.
MiddleNet supports function chains that are essential in both
NFV and middlebox environments. MiddleNet uses the Data
Plane Development Kit (DPDK) library for zero-copy packet
delivery without interrupt-based processing, to enable the ‘bump-
in-the-wire’ L2/L3 processing performance required of NFV.
To support L4/L7 middlebox functionality, MiddleNet utilizes a
consolidated, kernel-based protocol stack for processing, avoiding
a dedicated protocol stack for each function. MiddleNet fully
exploits the event-driven capabilities of the extended Berkeley
Packet Filter (eBPF) and seamlessly integrates it with shared
memory for high-performance communication in L4/L.7 middle-
box function chains. The overheads for MiddleNet in L4/L7
are strictly load-proportional, without needing the dedicated
CPU cores of DPDK-based approaches. MiddleNet supports
flow-dependent packet processing by leveraging Single Root
I/O Virtualization (SR-IOV) to dynamically select the packet
processing needed (Layers 2 - 7). Our experimental results show
that MiddleNet achieves high performance in such a unified
environment.

Index Terms—Middleboxes, NFV, DPDK, eBPF, service func-
tion chains.

I. INTRODUCTION

Networks have increasingly become software-based, using
virtualization to exploit common off-the-shelf (COTS) hard-
ware to provide a wide array of network-resident functions,
thus avoiding having to deploy functions in purpose-built hard-
ware appliances. This has broadened the networking capabili-
ties provided by both the network and cloud platforms, offload-
ing the burden from end-hosts that may have limited power
and compute capability (e.g., cell phones or IoT devices). With
software-based network-resident functions, network services
can be more agile. They can be deployed more dynamically
on end-systems that house multiple services.'

But there continues to be a dichotomy in how various
network-resident services are supported on software-based

U This paper is an extended version of our previously published IEEE
NetSoft 2022 [1] paper, with significant additions.

platforms. Layer 2 and Layer 3 (L2/L3) functions that seek
to be transparent and act as a bump-in-the-wire are currently
being supported with Network Function Virtualization (NFV)
technologies. These focus on performance and are built with
network functions (NFs) running in userspace supported by
kernel-bypass technology such as Data Plane Development Kit
(DPDK [2]). Primarily providing switching (demultiplexing
and forwarding), they typically do not provide a full network
protocol stack, and are exemplified by approaches such as
OpenNetVM [3] and OpenvSwitch (OVS) [4].

On the other hand, middleboxes operating at Layer 4
through Layer 7 (L4/L7) require the full network protocol
stack’s processing (e.g., for application layer functionality
such as HTTP proxies), in addition to more complex stateful
functionality in userspace, including storage and other I/O
operations (e.g., caching). Thus, flexibility and functionality
are prominent concerns, with performance being a second
(albeit important) consideration. A robust and proven kernel-
based protocol stack is often desirable [5], as specialized
userspace protocol stack implementations often do not support
all possible corner cases.

These distinct requirements for NFV and middlebox designs
typically result in the need for different systems. However,
networks require both types of functionality to be supported
concurrently for different flows, and in many cases, even for
the same flow. This calls for supporting them in a unified
framework so that they can be deployed on COTS end-systems
dynamically and flexibly.

Both NFV and middleboxes often have to build complex
packet processing pipelines using function chaining. This
helps ease development through the use of microservices,
which can be independently scaled as needed to improve
resource utilization. But the excessive overhead (e.g., in-
terrupts, data copies, context switches, protocol processing,
serialization/deserialization) incurred within the data plane of
current service function chains can be a deterrent. Even worse,
the data plane overhead in current function chaining solutions
increases with the function chain size, which significantly
reduces their data transfer performance (see $1I-C).

Using shared memory communication can help us achieve a
more streamlined, efficient data plane design. Shared memory
communication supports zero-copy packet delivery between
network-resident functions, by having a shareable backend
buffer to store packet data, avoiding unnecessary data plane
overheads within a function chain.

Another dichotomy is in how the key building block for
shared memory communication is designed. This relates to
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how packets are moved between the NIC and the shared
memory buffer, and how packet descriptors are passed be-
tween functions in a function chain. The first option is to
exploit the event-driven networking subsystem provided by
the extended Berkeley Packet Filter (eBPF [6]). eBPF offers
extensive toolkits (e.g., AF_XDP [7], SKMSG [8]) in support of
zero-copy packet delivery. Importantly, eBPF incurs negligible
overhead in the absence of events (such as packet arrivals to a
given function or even to the platform), making it an excellent
fit for supporting a rich set of diverse, efficient network-
resident functions. An eBPF program does have size restric-
tions and must run to completion, requiring careful design [9].
A second alternative approach is to build the shared memory
communication framework around polling-based DPDK, as
has been used in many high-performance virtualized software-
based networking environments, e.g., OpenNetVM [3]. They
provide zero-copy delivery into the userspace. Using poll-
mode drivers (PMD) [10] and RTE RING [11], they avoid the
deleterious effects of interrupt-based processing of network
I/O (e.g., receive-livelocks) under overload [12], making it
possible to support complex function chaining at line rate.
Nevertheless, dedicated polling continuously consumes signif-
icant CPU resources, and thus is not load-proportional. While
this may be reasonable in an NFV-only dedicated system, it
is challenging for systems that host many services, including
middlebox functions.

In this work, we develop MiddleNet, a unified, high-
performance NFV and middlebox framework. We take a some-
what unconventional approach by examining an event-driven
eBPF design, and separately a polling-based DPDK design for
supporting NFV and middlebox function chains with shared
memory, and evaluating each design approach. We then arrive
at the design of MiddleNet as the most suitable framework
for a unified platform supporting both NFV and middlebox
functionality. MiddleNet uses Single Root I/O Virtualization
(SR-IOV [13]) to enable their co-existence.

MiddleNet makes the following contributions:

(1) We qualitatively discuss the usability of different data plane
models for supporting NFV and middlebox capabilities. We
carefully audit their data plane overheads and quantitatively
assess the performance of each approach. We also look at how
current data plane models support function chaining (§II).
(2) We then design the shared memory communication for
MiddleNet both the NFV and middlebox (§III) functionality.
We (qualitatively and quantitatively) examine the suitabil-
ity of eBPF and DPDK in supporting different aspects of
shared memory communication, including NIC-shared mem-
ory packet exchange and zero-copy I/O (i.e., packet descriptor
delivery) within the function chain (§IV and §V). This helps
us understand the strengths and limitations of each option
(DPDK’s PMD, polling/interrupt-based AF_XDP in eBPF,
DPDK’s RTE RING, eBPF’s SKMSG), and the root causes.
MiddleNet chooses to leverage the strengths of polling-based
DPDK for L2/L3 NFV, and takes advantage of event-driven
eBPF for L4/L7 middleboxes, to strike the balance between
performance and resource efficiency.

(3) For achieving a unified NFV/middlebox framework, we
evaluate different alternatives: a hardware-based approach (via

SR-IOV [13]) and a software-based approach (via virtual
device interfaces, e.g., virtio/vhost [14]). We assess the per-
formance with SR-IOV and recommend its use for the unified
design because of its minimum data plane overhead (§VI).

(4) MiddleNet supports function-chain-level isolation to ad-
dress security concerns with shared memory communication.
We create a private memory pool for each function chain to
prevent unauthorized access from untrusted functions outside
the chain. MiddleNet further enhances traffic isolation by
applying packet descriptor filtering between functions (§VII).

II. BACKGROUND AND MOTIVATION

We examine a number of virtualization frameworks and
the networking support that can be provided for supporting
network resident functions. We audit the data plane overheads
for these different combinations of virtualization frameworks
and networking approaches, and discuss their applicability
for achieving a high-performance, lightweight, and unified
NFV/middlebox framework.

A. Basic elements in supporting network resident functions
We identify four key elements for building NFV and middle-
ware environments, including virtualization frameworks, the
virtual switch (vSwitch), the protocol stack, and the virtual
device interface. Virtualization helps to multiplex compute
resources, and can greatly improve resource efficiency, and
reduce costs, while also providing isolation for building L2/1.3
NFs and L4/L7 middleboxes. A vSwitch is typically used to
provide L2 forwarding/L3 routing. The network protocol stack,
often implemented in the OS kernel, provides protocol layer
processing (e.g., TCP/IP). It is necessary for L4/L7 middle-
boxes, but is less important for L2/L.3 NFs. Virtual device
interfaces are used to connect the virtualized function and its
protocol stack (for L4/L7 middleboxes only) to the vSwitch,
thus building a complete NF and middlebox environment.
There are several alternatives for each of these elements, which
we describe below.
Virtualization frameworks: Widely-adopted virtualization
frameworks include virtual machines (VMs) and containers.
VMs often depends on hardware-level virtualization supported
by the Virtual Machine Monitor (VMM) or the hypervisor
in the host that multiplexes the physical resources across
multiple VMs. Each VM has its own OS layer (i.e., guest
0OS). Unlike a VM, a container is built utilizing OS-level
virtualization. Containers share a host’s OS to access the
underlying physical resources, instead of depending on the
hypervisor. The host’s OS utilizes Linux namespaces and
cgroups to provide isolation between containers and restrict
their access to system resources. Sharing the host’s OS makes
containers more lightweight. They can be provisioned more
quickly compared to VMs [15].
Virtual switch (vSwitch): vSwitches can be broadly classified
into kernel-based approaches (e.g., in-kernel Open vSwitch
and Linux bridge) and userspace approaches that bypass the
kernel (e.g., OVS-DPDK [16], and OVS-AF_XDP [17]). The
kernel-based vSwitch runs within the host’s OS kernel, using
an in-kernel NIC driver to exchange packets with the physical
NIC. The userspace vSwitch runs in the userspace of the host,
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Distinct data plane models for NFV and Middlebox, with different vSwitch options, virtual device interfaces, and virtualization frameworks: (a)

kernel-based vSwitch + virtio-user/vhost-net & TUN/TAP + VM; (b) kernel-based vSwitch + virtio-user/vhost-net & TUN/TAP + container; (c) kernel-based
vSwitch + virtio-net/vhost-net & TUN/TAP + VM; (d) kernel-based vSwitch + veth + container; (e) userspace vSwitch + virtio-user/vhost-user + VM; (f)
userspace vSwitch + virtio-user/vhost-user + Container; (g) userspace vSwitch + virtio-net/vhost-user + VM, (h) userspace vSwitch + virtio-user/vhost-net &
TUN/TAP + veth + container. We assess (f) as the best solution for L2/L.3 NFs and (d) as the best solution for L4/L7 middleboxes (§II-C).

using a userspace NIC driver to exchange packets with the
physical NIC.

The userspace vSwitch relies on kernel-bypass to exchange
packets with the NIC. We consider two distinct, but widely
adopted, kernel-bypass architectures: DPDK [2] and AF_
XDP [7]. They both support zero-copy packet I/O between
the NIC and userspace. However, they are fundamentally
different in the way they are driven to execute. DPDK’s kernel-
bypass depends only on polling while the kernel-bypass in
AF_XDP can be either event-driven (i.e., triggered by each
arriving packet) or polling. DPDK implements a Poll Mode
Driver (PMD), polling the NIC for received packets and packet
transmission completions. This facilitates high-performance
packet I/O between the NIC and the userspace functions.
However, this leads to high CPU usage even if there is no
incoming packet. An additional, specialized kernel driver (e.g.,
UIO driver or VFIO driver) is required to block interrupt
signals from the NIC, which helps the userspace PMD to work
properly through active polling. However, this requires the NIC
to be dedicated to DPDK. The exclusivity of DPDK leads to
compatibility problems between DPDK and the kernel stack;
e.g., the kernel stack now cannot access the NIC once DPDK
has bound its kernel driver to the NIC. One solution is to
use Single Root I/O Virtualization (SR-IOV [13]) to create

multiple virtual Ethernet interfaces (these are called Virtual
Functions, or VFs), and to dedicate DPDK’s kernel driver to
one of the VFs without disturbing the kernel stack (see §VI).

AF_XDP [7], is another kernel-bypass alternative to DPDK.
The event-driven mode of AF_XDP makes it strict load-
proportional. Event-driven AF_XDP executes only when a
new packet arrives, thus it consumes no CPU cycle when
there is no packet. This fundamentally makes event-driven
AF_XDP more resource-efficient under light load compared to
DPDK. The polling mode AF_XDP acts in a similar manner as
DPDK. However, the polling mode of AF_XDP still introduces
interrupt overhead due to the execution of the XDP program at
the NIC driver, which results in lower performance compared
to DPDK. We evaluate both polling-based and event-driven
AF_XDP in §IV-D. In addition, AF_XDP (either polling or
event-driven mode) does not require a specialized kernel driver
to enable kernel-bypass, and thus it can work seamlessly
with the kernel stack to support protocol processing for an
L4/L7 middlebox. DPDK, on the other hand, requires SR-
IOV support to share the physical NIC with the kernel stack.
Compared to a purely kernel-based solution (i.e., using the
kernel stack for both L2/L.3 NFs and L4/L7 middleboxes), AF_
XDP achieves comparatively higher performance with zero-
copy packet I/O between the NIC and userspace functions.
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Network protocol stack: The protocol stack can be kernel-
based or could be in userspace, using kernel-bypass for passing
packets. The kernel-based network protocol stack (e.g., Linux
kernel protocol stack) provides a full-function, robust, and
proven solution for protocol processing, often with better
usability than userspace protocol stack solutions such as Mi-
croboxes [18] and mTCP [19], which provide limited support
(e.g., only TCP), thus limiting their usage. We primarily focus
on the kernel-based protocol stack in this work.

Virtual device interfaces: Typical virtual device interfaces in-
clude TUN/TAP, veth pairs, and virtio/vhost devices. TUN/TAP
operates as a data pipe (TUN for sending over L3 Tunnels,
TAP for receiving L2 frames) that connects the kernel stack
with userspace applications. TUN/TAP can work with vir-
tio/vhost virtual device interfaces to connect VMs or contain-
ers to the kernel-based vSwitch (Fig. 1 (a) - (c¢)). The vir-
tio/vhost interfaces execute as virtual NICs (vNICs) for VMs
and containers. The virtio interface is in the VM/container,
while the vhost interface is in the host as the backend of
the virtio device. It is important to note that each has a
userspace variant (virtio-user, vhost-user) as well as a kernel-
based variant (virtio-net, vhost-net). The virtio variants and
vhost variants can be freely combined, e.g., virtio-user can
work with vhost-net (Fig. 1 (a), (b)); virtio-net can work with
vhost-user (Fig. 1 (g)), etc. because they all follow the vhost
protocol [14], having a consistent messaging APIs to work
with different variants. Veth pairs are often used in container
networking [20], working as data pipes between the container’s
network namespace and the host’s network namespace. Unlike
virtio/vhost, the veth pair works only in the kernel. It does not
have a userspace variant, so it does not work directly with the
userspace vSwitch (see Fig. 1 (h)).

B. Usability analysis of data plane models

Fig. 1 shows different variants for data plane connectivity
for L2/L.3 NFs and L4/L7 middleboxes by combining different
options for virtualization, vSwitch, and virtual device inter-
faces. L2/LL3 NFs do not require protocol layer processing,
since they only offer an L2/L.3 switch’s forwarding capability,
as in a vSwitch. L4/L7 middleboxes additionally require
protocol stack processing. We first qualitatively evaluate the
usability of different data plane models for L2/L.3 NFs and
L4/L7 middleboxes in Fig. 1, depending on whether the data
plane model has a protocol stack or not.

The data plane models in Fig. 1 (a), (b), (e), (f) do not
involve protocol layer processing and are suitable for L2/L.3
NFs. The data plane models in Fig. 1 (c), (d), (g), (h), are all
equipped with the kernel protocol stack and are suitable for
L4/L'7 middleboxes. Although data plane models for an L4/L7
middlebox (Fig. 1 (c), (d), (g), (h)) can also be used for an
L2/L.3 NF. The protocol processing however adds unnecessary
overhead, as it is not required. In addition, we can extend the
L2/L.3 NF data plane models to support L4/L7 middleboxes
by adding a userspace protocol stack; however, this approach
is not favored by us for two reasons: (1) we want to use a
full-function kernel protocol stack, and (2) having a separate
userspace protocol stack in each middlebox function again
adds to the memory footprint.

The use of the virtio-user interface helps an L2/L.3 NF data
plane to bypass protocol layer processing, acting as the vNIC
driver in a VM/container’s userspace, directly interacting with
the userspace function. Depending on the vSwitch being used,
the virtio-user device cooperates with different backend vhost
devices to create a direct data pipe between the userspace
function and the vSwitch (either kernel-based or in userspace)
to exchange raw packets: the vhost-net device is used to
connect with the kernel-based vSwitch through the TUN/TAP
(Fig. 1 (a), (b)); the vhost-user device is used to connect with
the userspace vSwitch (Fig. 1 (e), (f)).

When using containers to virtualize L4/L7 middleboxes
(Fig. 1 (d), (h)), the key element to enable the network pro-
tocol stack is the veth pair. The container-side veth connects
to the protocol stack in the container’s network namespace
(implemented in the host’s kernel), for necessary protocol
processing.”? The host-side veth connects to host’s network
namespace, so it can seamlessly work with the kernel-based
vSwitch (d). However, if we have to work with a userspace
vSwitch (h), the packet needs to be injected from the userspace
to the container’s network namespace for protocol processing.
To achieve this goal, the userspace vSwitch is connected to
the kernel via the virtio-user/vhost-net and TUN/TAP device
interfaces. The TUN/TAP interface is configured with a point-
to-point link to the veth pair, which helps avoid duplicate
L2/L3 processing in host’s network namespace.

When using VMs to virtualize L4/L7 middlebox functions,
the virtio-net device interface is used to utilize the protocol
stack in VM’s kernel. The virtio-net device operates as the
in-kernel vNIC driver, interacting with the userspace function
through VM’s kernel stack. Just like the virtio-user device
interface, the virtio-net interface can work with either a kernel-
based vSwitch (Fig. 1 (c)) or a userspace vSwitch (Fig. 1 (g))
by cooperating with specific backend vhost device interface.

C. Auditing Overheads of data plane models

The data plane models in Fig. 1, with their selection
of elements (i.e., vSwitch, virtualization framework, virtual
device interfaces) in constructing the data plane, may result in
different data plane performance. Through a careful auditing
of the overhead, we seek to identify the optimal data plane
model for L2/LL3 NFs and L4/L7 middleboxes. For this, we
focus on the data plane overhead with a function chain.

For both L2/LL3 NFs and L4/L7 middleboxes, function
chains are mediated by the vSwitch to route packets between
functions to be processed in the order they are configured
in the chain. Additional protocol processing is required for
the L4/L7 middlebox case. We only show the auditing results
when using DPDK as the kernel-bypass architecture for the
userspace vSwitch in this auditing.

2Note: there is no L2/L3 processing in the container’s network names-
pace. The reason is the container actually shares the same kernel with the
host. As the L2/L3 processing is performed by the kernel-based vSwitch in
the host’s network namespace, packets enter into the protocol layer stack
after being passed to the container’s network namespace. Thus, no duplicate
L2/L3 processing is performed inside the container. Each veth pair is assigned
a unique IP address, which is used for L2/L3 forwarding across different
containers’ network namespaces. Applications with a container namespace
share the same IP address and are differentiated by L4 port numbers.
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Fig. 2. A generalized data pipeline for an NFV/Middlebox chain. Note: we
only show the client-to-server datapath; protocol processing is only available
for L4/L7 middlebox.

We use the abstract function chain setup of two functions
(Fig. 2) to represent the data pipeline for all cases. We assume
functions in the same chain are placed on the same node so that
there is no cross-node data transfer. The client sends packets
to the backend server through an intermediate node (node-2 in
Fig. 2) that implements the function chain. (®) A packet first
arrives at the physical NIC and is then passed to the vSwitch.
(@) The vSwitch routes the packet to the first function in the
chain (Fn-1). (®) After the first function completes processing
the packet, the packet is sent back to the vSwitch. (®) The
vSwitch routes the packet to the next function in the chain (Fn-
2). (®) The second function processes the packet and returns
it to the vSwitch. (®) The vSwitch then routes the packet out
through the NIC to the backend server.

Table I shows the overhead auditing for the L2/L3 scenarios
(Fig. 1 (a), (b), (e), (f)). Table II shows the overhead auditing
for the L4/L7 scenarios (Fig. 1 (¢), (d), (g), (h)). We do not
include the switching/routing overhead (i.e., cycles spent on
forwarding/routing table lookup), as it is a necessary operation
to exchange packets between functions (either L2/L.3 or L4/L7)
and cannot be avoided. We have several key takeaways below
drawn from our auditing of the packet flow.

Takeaway#1: Using the userspace vSwitch in conjunction
with virtio-user/vhost-user ((e) and (f)) saves a significant
amount of overhead, and is preferred for L2/L3 NFss.

The userspace vSwitch does not show a significant overhead
difference compared to the kernel-based vSwitch when moving
the packet between the vSwitch and the NIC (® and ®,
see “Outside the chain” column in Table I). Compared to

the userspace vSwitch (using DPDK for kernel-bypass), the
kernel-based vSwitch incurs one additional interrupt when
receiving packets from the NIC.

The advantage of the userspace vSwitch is the abil-
ity to work with userspace virtual device interfaces, i.e.,
virtio-user/vhost-user. Working in conjunction with virtio-
user/vhost-user, the userspace vSwitch does not incur an
interrupt or context switch when passing packets within the
function chain (@ to ®). On the other hand, the kernel-
based vSwitch has to exchange the packet with the function in
userspace through virtio-user/vhost-net & TUN/TAP ((a) and
(b)), which incurs an interrupt and a context switch each time
the packet crosses the kernel-userspace boundary (@ to ®), a
less desirable option. However, none of them avoid the data
copies incurred when transmitting the packet within the chain
(details below in Takeaway#3).

Takeaway#2: Using the kernel-based vSwitch in conjunction
with veth and container (d) incurs the least overhead for L4/L7
middleboxes.

Just as with the L2/L3 NF use case, the use of different
vSwitches in L4/L7 middlebox case to exchange packets
between the NIC and middlebox (® and ®) does not have a
significant difference. However, as L4/L.7 middleboxes require
kernel protocol processing, the kernel-based vSwitch has an
advantage, as it can work seamlessly with the protocol stack
in the host’s kernel. Since containers share the host’s kernel,
it is ideal to follow the data plane model (d) and connect the
kernel-based vSwitch with the container via the veth pair. As
shown in Table II, each time when the packet is exchanged
between the middlebox and the vSwitch (@ to ®), (d) it saves
1 data copy and 1 context switch compared to (c), which also
adopts the kernel-based vSwitch. As (c) uses virtio-net/vhost-
net & TUN/TAP to connect VM and host’s kernel, there is 1
data copy and 1 context switch involved.

The use of a userspace vSwitch along with the virtio-

TABLE I
OVERHEAD AUDITING OF L4/L7 MIDDLEBOX DATA PLANE MODELS

Outside the chain Within the chain
TABLE 1 Data pipeline No. (NIC-vSwitch) (Fn-vSwitch-Fn) total
[©) ©® @] @] ® |
OVERHEAD AUDITING OF L2/L3 NF DATA PLANE MODELS Kermelbased | (© 0 0 5 5 5 5 3
Outside the chain Within the chain # of copies vSwitch (d) 0 0 1 1 1 1 4
Data pipeline No. (NIC-vSwitch) (Fn-vSwitch-Fn) total P userspace (2) 0 0 2 2 212 8
[ ©® @ @] ® vSwitch (h) 0 0 21222 3
kernel-based | (a) 0 0 1 1 1 1 4 kernel-based | (c) 1 0 2 21212 9
S vSwitch (b) 0 0 1 1 1 1 4 . vSwitch () T 0 2 1222 9
# of copies TeTSpace © 0 0 1 1 1 1 T # of interrupts TSerSpace © 0 0 5 ) 3 3
vSwitch [63) 0 0 1 T 1 T 4 vSwitch (h) 0 0 3333 12
kernel-based (a) 1 0 1 1 1 1 5 kernel-based | (c) 0 0 2 2 2 2 8
. vSwitch (b) 1 0 1 1 1 1 5 . vSwitch (d) 0 0 1 1 1 1 4
# of interrupts userspace (e) 0 0 0 0071 O 0 # of context switch userspace [3) 0 0 1 1 1 1 4
vSwitch [63) 0 0 0 0 0 0 0 vSwitch (h) 0 0 2 2 2 2 8
kernel-based | (a) 0 0 T [ 111 4 kernel-based | (c) 0 0 Ljrjrjry 4
# of context vSwitth [ (®) |0 0 T 1T [T [ 1] 4 # of protocol vSwitch | (@) [ 0 0 L N B
switch userspace (e) 0 0 O] 0[O0 0 L g tasks userspace () 0 0 ! 1 ! 1 4
vSwitch 6] 0 0 0 0 0 0 0 vSwitch (h) 0 0 1 1 1 1 4
kernel-based | (c) 0 0 1 1 1 1 4
(a) kernel-based vSwitch + virtio-user/vhost-net & TUN/TAP + VM, # of serialization or vSwitch (@ 0 0 TT [T 1 4
(b) kernel-based vSwitch + virtio-user/vhost-net & TUN/TAP + container; deserialization (L7) “;gi;ﬂi;e EE; 8 8 i i } i j
(e) userspace vSwitch + virtio-user/vhost-user + VM;
. C . . . kernel-based | (c) 0 1 2 1 2 1 7
(f) userspace vSwitch + virtio-user/vhost-user + container; # of L2/L3 vSwitch @ 0 T T o0 T 1T 10 3
Note: Context switches may happen when two userspace processes (e.g., the processing tasks usgfsPa;e (E) 8 } ? (‘) ? (1) ;
NF and the vSwitch) are placed on the same CPU core. However, in NFV vowite )
scenario, NFs and the vSwitch are typically dedicated with a separate CPU (c) kernel-based vSwitch + virtio-net/vhost-net & TUN/TAP + VM,

core, owing to the need of high performance. We assume NFs and the vSwitch
assigned with dedicated CPU core in the overhead auditing. virtio-user
uses DPDK’s PMD to send/receive packets. There is no interrupt involved.

(d) kernel-based vSwitch + verh + container;
(g) userspace vSwitch + virtio-net/vhost-user + VM;
(h) userspace vSwitch + virtio-user/vhost-net & TUN/TAP + veth + container
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user/vhost-net interface (h) is also less preferable than (d).
(h) with the userspace vSwitch differs from (d) (which uses
the kernel-based vSwitch) because packets have to be looped
back from the vSwitch in userspace to the kernel for protocol
processing. This incurs one more data copy, interrupt, and
context switch compared to (d), as seen in Table II, resulting
in poorer performance.

Using the userspace vSwitch and the vhost-user interface to
work with a VM (g) is slightly better, as both the userspace
vSwitch and the vhost-user interface work in the userspace,
thus eliminating one context switch compared to using the
virtio-net/vhost-net & TUN/TAP in (c). However, (g) still
incurs an additional data copy because of the kernel-userspace
boundary crossing within the VM. Moreover, as the packet has
to traverse the entire VM’s kernel stack in (c) and (g), there is
unnecessary, duplicate L2/L.3 processing involved in the VM’s
kernel in addition to the L2/L3 processing performed by the
vSwitch in the host. This duplicate processing is avoided in
(d) with the use of containers, which reuses the OS kernel
from the host and avoids duplicate processing.

Takeaway#3: Heavyweight service function chain for L2/L3
NFs and L4/L7 middleboxes.

As shown in Table I and II, the major source of data

plane overhead comes within the function chain (@ to ®).
Even with the best combination we identified for L2/L3
NFs (f) and L4/L7 middleboxes (d), there are excessive data
copies within a service function chain with existing solutions.
With the best L2/L3 solution (f), one data copy is incurred
each time a packet is passed from the vSwitch to the NF
(®, @), and vice versa (®, ®). This also holds true for
the best L4/L7 solution (d). The situation is worse for the
L4/L7 case, as there are many additional overheads, including
interrupts, context switches, protocol processing tasks, and
serialization/deserialization tasks, that are incurred for the
communication within the chain (® to ®).
Discussion: Containers share the host’s kernel protocol stack,
resulting in a smaller memory footprint than having a dedi-
cated kernel stack in each VM. This becomes important with
scale, as the number of NFs/middleboxes grows. The smaller
footprint contributes to faster startup of containerized func-
tions [15]. Containers also avoid duplicate L2/L3 processing
for L4/L7 middleboxes (see Takeaway#2). For L2/L.3 NFs,
there is no significant difference in the data plane cost between
VMs and containers (compare (e¢) and (f) in Table I). While
we choose to work with containers, the design of MiddleNet
is also generally applicable to a VM-based environment.

Data plane models (f) “userspace vSwitch + virtio-
user/vhost-user + container” and (d) “kernel-based vSwitch
+ veth + container” are the best solution for L2/L.3 NFs and
L4/L7 middleboxes, respectively, as they introduce the mini-
mal amount of overhead and are most lightweight against other
alternatives. However, even the optimal data plane models are
too heavyweight to construct the function chain for L2/L.3 NFs
and L4/L7 middleboxes. In fact, the overhead in the current
service function chain design builds as the size of the function
chain increases, which can result in significant performance
loss. Unnecessary packet processing overhead is introduced
in the data transfer between vSwitch and functions, as well

as expensive protocol processing (for L4/L7 only). All these
factors make it difficult for us to achieve a high-performance
NFV/middlebox framework.

IT1I. SHARED MEMORY COMMUNICATION IN MIDDLENET

Shared memory communication can alleviate the data move-
ment overheads of the data plane within a function chain by
keeping the data in a userspace memory pool to be shared by
different functions in the chain. Fig. 3 shows a generalized data
pipeline using shared memory communication in MiddleNet.
It is a chain, with two functions (either L2/.3 NFs or L4/L7
middlebox functions), both on the same host. Steps @ and
® move the packets between the NIC and shared memory,
while @ to ® pass packet descriptors between functions to
achieve zero-copy packet delivery within the function chain.
An intermediate component (running in userspace) is used
to provide forwarding/routing support within the function
chain, which is similar to the vSwtich in Fig. 1. We call
this intermediate component the “NF manager” in the L2/L.3
scenario, or “message broker” in the L4/L7 scenario. The NF
manager/message broker is responsible for moving packets
between the NIC and the shared memory in steps @ and ®.

Three key elements enable shared memory communication
for a function chain: (1) NIC-shared memory packet ex-
change. An incoming packet is moved into the userspace
shared memory prior to processing by the function chain
(either L2/L.3 NF chain or L4/L7 middlebox chain); (2) Zero-
copy /O within the function chain. Instead of moving the
data from one function to another, shared memory communi-
cation achieves zero-copy I/O within the function chain, by
passing a pointer, which is the packet descriptor, to the data
in shared memory. This substantially reduces overhead; (3)
Shared memory support. A memory pool is initialized and
mapped to each function in the chain before it can be accessed.
There are multiple alternatives, with significant differences,
for the “NIC-shared memory packet exchange” and ‘“zero-
copy I/O within the function chain” operations, which we now
describe qualitatively.

1) NIC-shared memory packet exchange: There are two
distinct options: one approach bypasses the kernel, the other is
a kernel-based approach. The kernel-bypass approach DMA'’s
the packet to shared memory without involving the kernel
stack. Exploiting kernel-bypass avoids heavyweight kernel
processing and is better suited for building L2/L3 NFs as a
‘bump-in-the-wire’. As discussed in §II-A, the kernel-bypass
approach can be further classified into a polling-based kernel-
bypass (i.e., with DPDK’s PMD) and event-driven kernel-

manager essage Dro.
0 /L3 NF manager / L4/L7 Message brok

NIC

—_— - —.————
NIC-shared memory zero-copy I/O within shared memory

packet exchange the function chain  access with descriptor
Fig. 3. A generalized shared memory communication data pipeline for a
function chain in MiddleNet. Note: we only show the client-to-server datapath
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bypass (i.e., using AF_XDP). The NF manager (Fig. 3) works
with these kernel-bypass alternatives to move packets between
the NIC and shared memory (details in §1V-B and §IV-C).

The kernel-based approach, on the other hand, uses the
kernel stack to pass packets between the NIC and the message
broker in the userspace. The message broker exchanges pack-
ets with the kernel stack via the Linux socket interface. It then
moves packets to shared memory for zero-copy processing
within the function chain. This inevitably introduces overheads
(e.g., copy, context switch, etc) when a packet crosses the
kernel-userspace boundary. It also incurs the overhead of
kernel protocol layer processing, which is only useful for
L4/L7 middleboxes. The kernel-based approach is ideal for
LA4/L7 middleboxes, as it provides necessary processing using
a full-function kernel protocol stack.

2) Zero-copy I/O for function chaining: Zero-copy 1/O for
function chaining can also be broadly implemented using
either: (1) polling-based zero-copy 1/O, e.g., DPDK’s RTE
RING [11]; or (2) event-driven zero-copy 1/O, e.g., eBPF’s
SKMSG [8]. It’s important to understand the difference between
these two options and their impact on performance.

eBPF’s SKMSG is a socket-related eBPF program type,
“BPF_PROG_TYPE_SK_MSG” [8]. SKMSG is attached to the
socket of the function during its creation. It processes packets
sent/received on the attached socket to/from the kernel. The
execution of SKMSG is triggered by the arrival of a packet,
which is strictly event-driven and is thus load-proportional.
Working in conjunction with the eBPF socket map (BPF_
MAP_TYPE_SOCKMAP [21]), which provides necessary rout-
ing information, SKMSG can deliver packet descriptors be-
tween functions. The other option, DPDK’s RTE RING, is
implemented as a circular FIFO queue, used for buffering
packet descriptors. Dedicated for each function is a Receive
(RX) and Transmit (TX) ring pair to pass packet descriptors
using polling.® A function polls its own RX ring (using
rte_ring_dequeue ()) to receive packet descriptors and
enqueue packet descriptors to its TX ring (using rte_ring_
enqueue () ) for transmission. A centralized routing compo-
nent on the other side polls the TX ring of each function
and moves queued packet descriptors to the RX ring of the
destination function, based on its internal routing table.

3) Shared memory support: MiddleNet uses DPDK’s multi-
process support [22] to construct shared memory between
functions within a service chain. We utilize a shared memory
manager (running as a DPDK primary process*) to manage
shared memory pools. During the initialization stage of Mid-
dleNet, the shared memory manager in MiddleNet creates a
private memory pool, with a unique “shared data file prefix”
specified to isolate with other shared memory pools on the
same node. The “shared data file prefix” is used by DPDK’s
EAL to create hugepage files (i.e., actual file system objects
for DPDK’s memory pools) in the Linux file system. A DPDK
process is allowed to access a hugepage file, only if the same
file prefix was specified during its creation. Additional details

3Note: Polling the RTE ring does not require the simultaneous use of
DPDK’s PMD. It can be simply implemented as a while loop.

4The DPDK primary process has privileges, enabling it to initialize
memory pools in huge pages.

are in Appendix-A, including shared memory support for VM-
based functions. We leverage this feature to build a security
domain for MiddleNet that enhances the security of using
shared memory for communication between NFs (see §VII).

Each key element described is independent of the other, e.g.,
using DPDK’s multi-process doesn’t require DPDK’s PMD.
So using DPDK’s multi-process support to manage memory
sharing between different functions incurs no polling overhead.
Overhead Auditing & Discussion: We perform overhead
auditing of the function chain using shared memory commu-
nication. We consider two distinct approaches for both the
L2/LL3 NFs and L4/L7 middleboxes use cases: the polling-
based approach (using DPDK’s PMD and RTE RING), and the
event-driven approach (using eBPF’s AF_XDP and SKMSG).

To conserve space, we have summarized the main takeaways
here. A detailed overhead auditing of function chains using
shared memory can be found in Appendix-B. The overhead
auditing clearly shows the advantage of using shared memory
communication, to reduce the overhead in almost every dimen-
sion (e.g., data copy, interrupt, context switch, etc). Thus, we
factor it into our NFV/middlebox framework, MiddleNet. It
is clear that L2/L.3 MiddleNet should consider kernel-bypass
NIC-shared memory packet exchange to facilitate high per-
formance. L4/L7 MiddleNet adopts kernel-based NIC-shared
memory packet exchange to provide the needed protocol
processing. We understand the trade-off between a polling-
based solution and an event-driven solution by implementing
the alternatives, and evaluating their performance, to help us
decide which to use for MiddleNet.

IV. DESIGN OF MIDDLENET: L2/L3 NFV
We discuss the eBPF-based and DPDK-based alternatives
for L2/L.3 NFV support, given the performance requirement of
operating at line rate and being capable of supporting service
function chains. Since they operate at L2/L3, there is less
emphasis on having a full-function protocol stack.

A. Overview

NIC-userspace kernel-bypass: MiddleNet takes full advan-
tage of zero-copy packet delivery and kernel-bypass to move
packets between the NIC and the userspace shared memory,
so as to minimize overheads, reduce resource consumption,
and achieve full line-rate L2/L3 packet processing (§II-1).
We consider two kernel-bypass alternatives: polling-based
DPDK’s PMD and event-driven AF_XDP (§1I-A).
Zero-copy 1/O for function chaining: We evaluate two
alternatives for L2/L3 MiddleNet, the polling-based approach
and the event-driven approach. The polling-based alternative
adopts DPDK’s PMD for NIC-to-userspace delivery using
kernel-bypass and DPDK’s RTE RING for function chain-
ing. The event-driven alternative adopts AF_XDP for NIC-
to-userspace kernel-bypass and SKMSG for function chains.
This helps us evaluate the trade-off between performance
and resource efficiency when using a polling-based design
or an event-driven design to achieve a ‘bump-in-the-wire’
L2/L3 NFV environment. Both of them use DPDK’s multi-
process support to manage the shared memory of L2/L3
MiddleNet (§I1I-3). We implement these two alternatives based
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Fig. 4. Packet processing flow for DPDK-based L2/L.3 NFV: RX and TX

on OpenNetVM’s design [3], that is similar in principle to the
design described in Fig. 3, §IIL.

B. The DPDK-based L2/L3 NFV design

The DPDK-based approach can be ‘expensive’ in having
dedicated CPU cores for polling. In addition to the NF
manager that dedicates one CPU core for the PMD, for each
NF of the L2/L3 function chain, one CPU core is used up for
each function to poll its RTE RING. This can be wasteful
if incoming traffic is low. Somewhat more complex NFV
support, such as NFVnice [23], can be used to mitigate these
overheads by sharing a CPU core across multiple NFs.

Fig. 4 depicts the packet flow of DPDK-based L.2/L.3 NFs.

In the RX path, PMD provides a packet descriptor for the
NIC (@) to deliver the packet into the shared memory via
DMA (®@). The NF manager examines the packet, and moves
the packet descriptor into the RX ring of the target NF
(®), based on the routing table. The target NF obtains the
packet descriptor by polling its RX ring and uses it to access
the packet in shared memory (®). After the NF’s packet
processing is complete (®), the NF writes the descriptor to its
TX ring (®). On the other side, the NF manager continuously
polls the NF’s TX ring and sets up the packet transmission
based on the descriptor in the ring (@). The PMD then
completes the processing once the packet is transmitted, to
clean up the transmit descriptor (®). Both TX and RX rings
are polled by the PMD for RX and TX from/to the NIC, and
NFs use polling to RX or TX packet descriptors.
Service function chains: The NF manager utilizes destination
information in the packet descriptor to support routing within
an NF chain for the DPDK-based approach. The routing table
in the NF manager is used to resolve that NF’s ID, thus
avoiding the need for each NF to maintain a private routing
table. After the NF manager gets a packet descriptor from
the TX ring of an NF, it parses the packet descriptor to look
at the destination NF information. It then pushes a packet
descriptor to the RX ring of the next NF to transfer ownership
of the shared memory frame (as pointed to by the descriptor).
Ownership for write is based on the NF currently owning a
descriptor to that frame in shared memory, thus ensuring a
single writer and obviating the need for locks. Using the NF
manager for ‘centralized’ routing mitigates contention when
multiple NFs may forward to a downstream NF.

\@l Y \:Ql QY \@l QY ® . 'O
6) : : ® SkmSgNF manager L
v Y 1t User | v @ " @] AF XDPsocket |©@ 7 ©
NF manager space -
User Fill RX T. Comp
spacg @ Kerne NOR ::.@ o,_-j 5 2
, 3 _.',,\ Kernel space i o space L :
2 NIC : NIC I XDP program |
v T L/

Fig. 5. Packet processing flow for eBPF-based L2/L.3 NFV: RX and TX

C. The eBPF-based L2/L3 NFV design

The NF manager in the eBPF-based L.2/1.3 MiddleNet opens
a dedicated AF_XDP socket (i.e., XSK [7]) that serves as an
interface to interact with the kernel to handle RX and TX
for AF_XDP-based packet delivery. Each XSK is assigned a
set of RX and TX rings to pass packet descriptors containing
pointers to packets in shared memory. All XSKs share a set of
‘Completion’ and ‘Fill’ rings, owned by the kernel and used
to transfer ownership of the shared memory frame between
the kernel and userspace NFs. AF_XDP depends on interrupts
triggered by the event execution of the XDP program attached
to the NIC driver (Fig. 5). This interrupt notifies the packet
processing component in userspace. However, these interrupts
have to be managed with care to avoid poor overload behavior
when subjected to high packet rates [12].

Fig. 5 depicts the zero-copy packet flow based on AF_XDP.
An XDP program works in the kernel space with the NIC
driver to handle packet reception (and transmission). The NIC
is provided a descriptor (@) pointing to an empty frame in
shared memory. Upon reception, the packet is DMA’ed into
shared memory (@), and a receive interrupt triggers an XDP_
REDIRECT which moves the packet descriptor to the RX ring
of the NF manager (®) before invoking it. In the interrupt
service routine, the kernel notifies the NF manager about
updates in its RX ring, which the NF manager then accesses
via its XSK (@). The interrupt service routine is completed
once the NF manager fetches the packet descriptor from the
RX ring. The NF manager invokes the corresponding NF (®)
and waits for NFs to complete processing.

After the NF completes packet processing, the NF manager
is invoked to transmit the packet out of the node (@). The
descriptor is populated in the TX ring (®). The system
call by the NF manager (typically sendmsg () ) notifies the
kernel about the TX event (). The kernel then transmits the

User space
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. \ oo V¥ eemeeeet cog
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Fig. 6. Function chaining in MiddleNet: eBPF-based approach
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packet based on the descriptor given in the TX ring (@). If
the packet is successfully transmitted, the kernel pushes the
descriptor back to the ‘Completion’ ring (@) to inform the NF
manager that the frame can now be reused for the subsequent
transmission. The NF manager fetches the packet descriptor
from the ‘Completion’ ring (®) and moves it to the ‘Fill’ ring
for incoming packets (@).

We implement the NF manager with three threads to manage

the different rings without locks. We use one thread to handle
the read of the RX ring (®) and another one to handle
the transmit to the TX ring (®). We use a third thread to
coordinate between the ‘Completion’ ring and the ‘Fill’ ring.
This thread watches for the kernel to move packet descriptors
into the ‘Completion’ ring (®) upon transmitting completions.
The third thread then moves the packet descriptor from the
‘Completion’ ring to the ‘Fill’ ring (@).
Service function chains: The eBPF-based L2/L3 approach
uses SKMSG to support NF chains. To support flexible routing
between functions, we utilize eBPF’s socket map. The in-
kernel socket map maintains a map between the ID of the
target NF and the socket interface information. As shown in
Fig. 6, the NF creates a packet descriptor to be sent (D). The
SKMSG performs a lookup in the socket map to determine the
destination socket (®). It then redirects the packet descriptor
to the next NF (®). That NF uses the descriptor to access data
in shared memory (®) and passes the packet descriptor to the
next NF through SKMSG after processing.

D. Performance evaluation

Experiment setup: We compare the performance of DPDK
(i.e., polling-based, hereafter referred to as D-MiddleNet) and
eBPF (hereafter referred to as E-MiddleNet) approaches to
support L2/L.3 NFVs with a ‘packet-centric’ evaluation by
comparing the Maximum Loss Free Rate (MLFR), the end-
to-end latency, and CPU utilization at this MLFR for different
packet sizes. We use the data plane model (f) in §II-A as
the primary baseline to compare with. For this, we choose
two implementations of Open vSwitch as the kernel-bypass
vSwitch in (f): OVS-DPDK [16] and OVS-AF_XDP [17]. We
set up our experiments on NSF Cloudlab [24] with three nodes:
the Ist node is configured with a Pktgen [25] load generator
for L2/L3 NFV use case; the 2nd node is configured with
MiddleNet alternatives (D-MiddleNet, E-MiddleNet) and OVS

2
(b) packet size (Bytes)
Fig. 7. Comparison between different L2/L3 alternatives: (a) Maximum loss free rate (MLFR) under different packet sizes, (b) CPU usage under MLFR under
different packet sizes, (c) end-to-end latency under MLFR under different packet sizes. Note: D-MN refers to D-MiddleNet; E-MN-i refers to E-MiddleNet with
interrupt-driven AF_XDP socket; E-MN-p refers to E-MiddleNet with polling-based AF_XDP socket; OVS-A-i refers to OVS-AF_XDP with interrupt-driven
AF_XDP socket; OVS-A-p refers to OVS-AF_XDP with polling-based AF_XDP socket.

(c) packet size (Bytes)

alternatives (OVS-DPDK, OVS-AF_XDP). The 3rd node is
configured to return the packets directly back to the 1st node,
to measure latency. Each node has a 40-core CPU, 192GB
memory, and a 10Gbps NIC. We use Ubuntu 20.04 with kernel
version 5.15. We use DPDK v21.11 [2] and libbpf [26] v0.6.0
for eBPF-related experiments.

To achieve the best possible performance for OVS-DPDK
and OVS-AF_XDP baselines, we enable the “Multiple Poll-
Mode Driver Threads” [27] feature in OVS. Each PMD thread
runs on a dedicated CPU core and continually polls the
physical NIC or the vhost-user (Fig. 1 (f)) to process incoming
packets. OVS-AF_XDP uses polling to retrieve packets from
the NIC by default. For this polling-based OVS-AF_XDP
option (OVS-AF_XDP-p, Fig. 1 (f)), and OVS-DPDK, we
create three PMD threads to achieve the highest performance.
We additionally configure the AF_XDP socket in OVS-AF_
XDP to run in the interrupt mode (i.e., OVS-AF_XDP-i) [28].°
This helps to move packets between NIC and userspace OVS
in an event-driven manner. But, to achieve the optimal packet
exchange performance between OVS-AF_XDP-i and NFs, we
use polling to avoid interrupt overheads for packet exchanges
between OVS and the NFs. Only a data copy overhead is
incurred between OVS and the NFs when using polling on both
sides. For this, we create two PMD threads to poll packets for
getting packets to and from NFs (via vhost-user). For NFs in
both the OVS-DPDK and OVS-AF_XDP setups, each virtio-
user is dedicated with a CPU core to poll packets from OVS.
We also configure the AF_XDP socket in E-MiddleNet to
operate in polling mode (E-MiddleNet-p) and compare with
the interrupt-based AF_XDP socket (E-MiddleNet-i).

We set up two NFs in a chain on the 2nd node: an L3 routing
function followed by an L2 forwarding function. For the L3
routing function, MiddleNet updates the IP address of received
packets, and the L2 forwarding function of a subsequent NF
in the chain updates the MAC address of received packets
and forwards it to the 3rd node. We collect the average value
measured across 5 repetitions. Each run is for 60 seconds.
Discussion: Fig. 7(a) shows the MLFR for different alterna-
tives. D-MiddleNet achieves almost the line rate for different
packet sizes. The exception is for packet sizes of 64Bytes,

5To enable the interrupt mode for AF_XDP, a user needs to specify the
device type of the physical NIC as “afxdp-nonpmd” when attaching it to OVS.
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achieving 12.6M packets/sec (84% of line rate) because of
our limit on the number of CPU cores for the NF Man-
ager and the PMD. Even with the limited CPU cores, D-
MiddleNet outperforms both E-MiddleNet-i and E-MiddleNet-
p. For a packet size of 64Bytes, E-MiddleNet-i is limited to
a forwarding rate of 3.2 Mpps (only 25% of D-MiddleNet)
while E-MiddleNet-p is limited to a forwarding rate of 6.3
Mpps (50% of D-MiddleNet). Moreover, if the NFs have
more complex processing or if the load were to be higher
(e.g., if there is bidirectional traffic), then we observe receive-
livelock [12]. The performance of E-MiddleNet-i is limited
by its overheads, including a number of interrupts and con-
text switches (Appendix-B). As we observe in Fig. 7(b), E-
MiddleNet-i’s NF manager and the NFs themselves spent most
of the CPU time in the kernel (53% for the NF manager, 67%
for NFs) to handle interrupts generated by AF_XDP socket
or SKMSG, thus leaving fewer resources to perform the NF
packet forwarding tasks. E-MiddleNet-p reduces interrupts by
operating the AF_XDP socket in polling mode, which helps it
achieve better throughput compared to E-MiddleNet-i. But, the
performance of E-MiddleNet-p is still worse than D-MiddleNet
as the execution of XDP program in the NIC driver is triggered
by interrupts, in addition to the SKMSG overhead, all of which
negatively impact the packet forwarding performance. Al-
though devoting more resources to E-MiddleNet’s NF manager
and the NFs may alleviate this overload, it only postpones the
problem when the traffic load continues to increase. Moreover,
using more resources to mitigate overload defeats the original
intention of using eBPF-based event-driven processing since
the goal of using it is for resource efficiency. Focusing on
the end-to-end packet latency, D-MiddleNet achieves a 2.6
improvement compared to E-MiddleNet-i, and is 1.8x better
compared to E-MiddleNet-p (Fig. 7(c)).

Note that as the packet size increases, the CPU usage of both
E-MiddleNet-i and E-MiddleNet-p is even lower compared to
the other options. For example, at a packet size of 1024Bytes,
the CPU usage of E-MiddleNet-i and E-MiddleNet-p are 63%
and 58% of D-MiddleNet, respectively. Since E-MiddleNet-
i and E-MiddleNet-p use event-driven shared memory com-
munication, as the packet size increases and the packet rate
decreases (bounded by the line rate of the NIC used in
this experiment). The overhead for E-MiddleNet-i and E-
MiddleNet-p, which is strictly proportional to the packet rate,
diminishes. Thus the CPU overhead reduces for larger packet
sizes for E-MiddleNet-i and E-MiddleNet-p, which makes the
event-driven design attractive for larger packet sizes for L2/L.3
NFs. However, the event-driven approach still suffers from
poor performance and relatively high CPU usage in handling
L2/L3 traffic with smaller packet sizes. On the other hand,
D-MiddleNet maintains good performance across a range of
packet sizes. Further, D-MiddleNet can utilize the scheduling
principles in NFVnice [23] to reduce the CPU consumption
by multiplexing a CPU core across multiple NFs.

Both D-MiddleNet and E-MiddleNet outperform OVS-
DPDK and OVS-AF_XDP in terms of MLFR for receiving
packets and latency. Looking at the CPU usage of OVS-
DPDK, even though OVS-DPDK dedicates enough CPU re-
sources (3 CPU cores for the OVS switch, one CPU core

per NF) to achieve the best performance, the forwarding rate
for it is worse than E-MiddleNet. This shows the negative
impact of excessive data copies within the chain (§II-C).
Even though E-MiddleNet also incurs interrupts and context
switches in the data pipeline, as shown in Fig. 3, its ex-
ploitation of shared memory communication fundamentally
improves the data plane performance of function chains, as
discussed in Appendix-B. OVS-AF_XDP on the other hand
performs poorly. Running OVS-AF_XDP in polling mode
(OVS-AF_XDP-p) improves throughput and reduces latency
compared to running OVS-AF_XDP in interrupt mode. This
is because OVS-AF_XDP-i suffers the overhead of interrupts
and context switches for moving packets between the NIC
and userspace, just like E-MiddleNet-i. But the improvement
of OVS-AF_XDP-p is limited, particularly because of the data
copy overhead within the chain.

D-MiddleNet does constantly consume considerable CPU
(one CPU core per NF, 2 CPU cores for the NF manager).
While this is a concern, its superior performance makes it
more attractive for L2/L.3 NFs, since they have to act like a
‘bump-in-the-wire’. E-MiddleNet is less attractive because of
its poor overload behavior.

V. DESIGN OF MIDDLENET: L4/L7 MIDDLEBOX
We discuss the corresponding eBPF-based and DPDK-
based designs to support L4/L7 middleboxes. Since an L4/L7
middlebox relies heavily on protocol processing, we discuss
optimizations, leveraging the kernel protocol stack processing,
focusing on resource efficiency.

A. Overview

Protocol processing support: Unlike L2/1.3 NFs, packets pass
through the kernel for the required protocol layer processing
for L4/L7 middleboxes. L4/L7 MiddleNet uses a message
broker (Fig. 8) to leverage the protocol processing in the kernel
stack. Incoming packets processed by the kernel network
protocol stack are delivered through a socket to a message
broker in userspace. This comes at a cost, but MiddleNet
benefits significantly from a fully functional in-kernel protocol
stack for L4/L7 middleboxes. For a more detailed discussion
of kernel protocol processing costs, refer to Appendix-B.
Zero-copy 1/0 for function chaining & shared memory
support: We follow a similar methodology as in §IV to
evaluate what is the most suited zero-copy I/O capability
for function chains in L4/L7 MiddleNet. For the eBPF-
based L4/L7 middlebox design, packets are forwarded between
middlebox functions (hereafter referred to as MFs) using
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Fig. 8. Packet processing flow for eBPF-based L4/L7 middleboxes
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eBPF’s SKMSG capability. For DPDK-based L4/L7 middlebox
functionality, the message broker delivers descriptor entries to
the ring of the target MF, with the payload in shared memory,
after protocol processing by the message broker.

B. The eBPF-based L4/L7 middlebox design

Fig. 8 depicts the packet flow for the eBPF-based L4/L7
MiddleNet. For inbound traffic, after the payload is moved
into shared memory by the message broker (@), a packet
descriptor is sent to the target MF via SKMSG (®). The MF
then uses the descriptor to access the data in shared memory
(®). For outbound traffic, once the MF has finished processing
the packet (@), it uses SKMSG to inform the message broker
(®), which then fetches the packet in shared memory (®) and
transmits it on the network via the kernel protocol stack.
Function chain support: The eBPF-based L4/L.7 MiddleNet
utilizes the eBPF’s SKMSG and socket map for delivering
packet descriptors within the function chain (similar to what
we described for L2/L3 NFV with eBPF), as shown in Fig. 6.
Although the eBPF-based L4/LL7 approach still executes in
a purely interrupt-driven manner, since the kernel protocol
stack is involved, it often uses a flow-controlled transport
protocol. This potentially avoids overloading the receiver, and
therefore, receive-livelocks are less of a concern. Interrupt-
based processing does not use up a CPU like polling, so it is
more resource-efficient and benefits the L4/L7 use case. We
further mitigate the impact of interrupts with batching.
Adaptive batching of SKMSG Processing: Since bursty traffic
can cause a large number of SKMSG transfers, we consider
an adaptive batching mechanism to reduce the overhead of
frequent SKMSG transfers. For each interrupt generated by
SKMSG, instead of reading only one packet descriptor present
in the socket buffer, we read multiple (up to a limit) packet
descriptors available in the socket buffer. Thus, we can reduce
the total number of interrupts, even for frequent SKMSG
transfers, and mitigate overload behavior.

C. The DPDK-based L4/L7 middlebox design

To leverage the kernel protocol stack, we restructure the
NF manager of the L2/L3 use case (Fig. 4) into a message
broker in the DPDK-based L4/L7 MiddleNet. The message
broker writes the received payload to shared memory (@),
then, consulting the routing table, pushes the packet descriptor
to the RX ring of the target MF (@). The MF keeps polling
its RX ring for arriving packets. The MF uses the received
packet descriptor to access the packet in shared memory and
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processes it (®). Once the processing is complete (@), the MF
pushes the packet descriptor to its TX ring. On the other side,
the message broker polls the TX ring of MFs for the packet
descriptor (®), then accesses the shared memory and sends
the packet out through the kernel protocol stack (®).
Function chain support: The function chain support in
the DPDK-based L4/L7 MiddleNet is the same as in the
DPDK-based L2/L.3 NFV use case (§IV-B). Here, the message
broker performs the (same) tasks to transfer packet descriptors
between MFs.

D. Performance Evaluation of L4/L7 middleboxes
Experiment Setup: We now study the performance differ-
ences between the eBPF-based L4/L7 MiddleNet (Fig. 8,
hereafter referred to as E-MiddleNet) and the DPDK-based
L4/L7 MiddleNet implementation (Fig. 9, hereafter referred
to as D-MiddleNet). As a third alternative, we use an NGINX
proxy to study the impact of the loosely-coupled function
chain (thus supporting a microservices paradigm) design in
MiddleNet. The NGINX proxy acts as a non-virtualized proxy
to perform functions via internal function calls, which avoids
introducing context switches or interrupts to achieve good
data plane performance with a static, monolithic function
implementation. We also use the data plane model in Fig. 1 (d)
(hereafter referred to as K-vSwitch), as an additional alternative
to compare with. We choose the Linux bridge as the implemen-
tation of the kernel-based vSwitch in Fig. 1 (d). While the in-
kernel OVS bridge could be another option, the Linux bridge
offers all the functionality of a vSwitch for our evaluation
purposes and is natively supported in Linux. In addition,
the performance difference between Linux bridge and the in-
kernel OVS bridge is not considered to be significant [29],
[30]. It has also been noted that the in-kernel OVS bridge has
difficulties being maintained as a separate project in addition
to Linux kernel [17]. We reuse most of the testbed setup
described in §IV-D.

We consider a typical HTTP workload (Apache Bench-
mark [31]) and examine application-level metrics, including
request rate, response latency, and CPU usage, where the
middlebox acts as a reverse proxy for web servers. The 1st
node is configured to generate HTTP workloads. The 2nd
node is configured with the MiddleNet system. On the 3rd
node, we configure two NGINX [32] instances as web servers.
We enable adaptive batching for E-MiddleNet to minimize the
overhead incurred by frequent SKMSG interrupts within the
chain at high concurrency. We use a chain with two MFs.
The first is a reverse proxy function that performs round-robin
load balancing between the two web server backends on the
3rd node. The second function is a URL rewrite function that
helps perform redirection for static websites.

We also compare the scalability of D-MiddleNet and E-
MiddleNet, when the number of MFs in a linear chain in-
creases. To evaluate the impact of CPU-intensive tasks on
the network performance of MF chains, we let MFs per-
form prime number generation (based on the sieve-of-Atkin
algorithm [33]) when a request is received. Each MF is
assigned one dedicated CPU core to perform tasks, including
RX/TX of requests and the prime number generation. We
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Fig. 10. RPS (a), latency (b) and CPU usage (c) comparison between different L4/L.7 middlebox approaches. Note: The CPU usage of the data plane model
(d), in Fig. 1, exceeds 10 CPU cores at concurrency level 32 and consumes 30 CPU cores at concurrency level 512.

set the concurrency level (i.e., the number of clients sending
HTTP requests concurrently) of Apache Benchmark to 512 to
generate sufficient load.

Evaluation: Fig. 10 compares the RPS, response latency, and
CPU usage of the different alternatives. K-vSwitch has the
lowest performance and highest CPU usage compared to the
others. At a concurrency level of 512, the RPS of K-vSwitch
is only ~42% of the others, while its latency is ~2.3x higher.
The CPU usage of K-vSwitch is even higher than D-MiddleNet
for concurrency levels greater than 16. This demonstrates the
heavyweight nature of the service function chain as discussed
in §II-C and demonstrates the benefit of having a zero-copy
function chain of the MiddleNet alternatives.

The use of SKMSG in E-MiddleNet leads to slightly worse
latency and throughput than D-MiddleNet. When the con-
currency is between 1 and 32, there is a throughput differ-
ence between D-MiddleNet and E-MiddleNet, ranging from
1.09x to 1.3x. At the lowest concurrency level of 1, E-
MiddleNet consumes 37% of the CPU, which is a 10x
reduction compared to D-MiddleNet (404%, i.e., 4 CPU cores).
Since D-MiddleNet uses polling to deliver packet descriptors,
it continuously consumes CPU resources even when the traffic
load is low, resulting in wasted CPU resources. Although D-
MiddleNet achieves 1.3x better RPS and latency compared to
the E-MiddleNet at a concurrency of 1, E-MiddleNet’s resource
efficiency more than makes up for its lower throughput (which
is likely not the goal when using a concurrency of 1, in
any case) compared to D-MiddleNet’s constant usage of CPU.
Thus, it is more desirable to use the lightweight E-MiddleNet
approach for these light loads.

When the concurrency level increases and the load is higher,
the adaptive batching of the E-MiddleNet approach amortizes
the interrupt and context switch overheads. The performance
gap between E-MiddleNet and the others reduces to be within
1.05x for concurrency levels higher than 64. With adaptive
batching, SKMSG can pass a set of packet descriptors, incurring
only one context switch and interrupt, saving substantial CPU
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Fig. 11. RPS (a), latency (b) and total CPU usage (c) comparison with
increasing number of CPU-intensive MFs in the chain.

cycles, reducing latency, and improving throughput.

Compared to a monolithic NGINX as a middlebox, the E-
MiddleNet approach exhibits slightly worse throughput and
latency performance (1.04x less RPS due to 1.04x higher
response delay) because of the overhead of function chaining,
SKMSG, and virtualization. NGINX’s internal function calls
have slightly lower overhead (25% less on average) than
SKMSG, which has additional context switches and interrupts.
However, running a set of middleboxes as microservices
improves flexibility and resiliency, allowing us to scale better,
according to traffic load, especially with heterogeneous func-
tions. Moreover, it allows functions to be shared between dif-
ferent middlebox chains to improve resource utilization. With
orchestration engines, e.g., Kubernetes, intelligent scaling and
placement policies can be applied with MiddleNet to improve
resource efficiency further while still maintaining performance
very close to a monolithic middlebox design.

Fig. 11 evaluates the scalability of D-MiddleNet and E-
MiddleNet with CPU-intensive MFs. Both D-MiddleNet and
E-MiddleNet show good scalability as the number of MFs
increases. Surprisingly, E-MiddleNet performs even better than
D-MiddleNet with CPU-intensive MFs, with a 10% improve-
ment in RPS and a 10% reduction in latency. This is because
with the prime number generation being CPU-intensive, it can
quickly saturate the assigned CPU core and contend for CPU
with the polling-based RX tasks of D-MiddleNet’s MF. But
for E-MiddleNet, the RX of requests is triggered by interrupts,
which is strictly load-proportional and avoids CPU contention.
Since the prime number generation is performed within E-
MiddleNet’s MFs, it is able to fully utilize the assigned CPU
core, improving its performance. To improve D-MiddleNet’s
performance, more CPU resources need to be assigned to the
MFs, meaning that we are using resources inefficiently. In
addition, for the combined CPU usage of the message broker
and MFs, D-MiddleNet always needs one more CPU core
than E-MiddleNet (Fig. 11(c)). The extra CPU usage of D-
MiddleNet is due to the RX polling in the message broker to
receive requests from the MF. Since prime number generation
is time-consuming, it results in a lower request rate. This
means that the CPU devoted to handling RX of requests is
used inefficiently. This reiterates the fact that D-MiddleNet
uses resources inefficiently for this case, when dealing with
CPU-intensive functions.

Throughout these experiments, E-MiddleNet has significant
resource savings at different concurrency levels compared to
D-MiddleNet, while having comparable throughput. Further,
E-MiddleNet can even achieve better performance than D-
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MiddleNet when it executes CPU-intensive functions even
when it uses resources more frugally. It also achieves close to
the same performance as a highly optimized, monolithic ap-
plication like NGINX. The resource efficiency benefits of the
event-driven capability of eBPF, in conjunction with SKMSG
to support shared memory processing, is a highly desirable
way of building L4/L7 middlebox functionality in software.

VI. A UNIFIED DESIGN BASED ON SR-IOV

Based on the understanding from studying the alternative
approaches and their performance characteristics, we now
develop the overall architecture of MiddleNet that supports
the co-existence of network resident NFV and middlebox
capabilities in a unified framework running on a single system.

SR-IOV [13] allows multiple Virtual Functions (VFs) on a
shared NIC, as depicted in Fig. 12. A VF acts as a distinct
logical interface on the PCle that offers direct access to the
physical NIC resources that are shared across multiple VFs. It
still achieves close to the single physical NIC’s performance.
By dividing the hardware resources available on the physical
NIC into multiple VFs, we can dedicate a VF for each L2/L3
MiddleNet and L4/L.7 MiddleNet without having anyone take
up the entire physical NIC. The aggregate NIC performance
will still be at the line rate. MiddleNet uses the Flow Bifur-
cation mechanism [34] for splitting traffic within the physical
NIC in a flow or state-dependent manner. Since each VF is
associated with different IP and MAC addresses, MiddleNet
dynamically selects the packet processing layer (based on the
VF it is attached to) from L2 to L7, providing a rich set of
network-resident capabilities.

A. Flow and State-dependent packet processing using SR-10V
MiddleNet attaches flow rules to the packet classifier in the
physical NIC to support flow (and possibly state) dependent
packet processing. Once a packet is received, the packet
classifier parses and processes it based on its IP 5-tuple
(i.e., source/destination IPs, source/destination ports, protocol),
which helps differentiate between packet flows.
(1) For a packet that needs to be handled by L2/L.3 NFs, the
classifier hands it to the VF bound to DPDK. The VF DMA’s
the raw packet to the shared memory in userspace. On the
other side, the NF manager obtains the packet descriptor via
the PMD and processes the packet in shared memory.
(2) For a packet that needs to be handled by L4/L7 middlebox
functions (MFs), the packet classifier hands the packet to
the kernel TCP/IP stack through the corresponding VF. Since
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Fig. 12. The overall architecture of MiddleNet: A Combination of DPDK
and eBPF via SR-IOV.
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TABLE III
OVERHEAD AUDITING OF UNIFIED DESIGNS

. . virtio-user/vhost-net
NIC switch in SR-IOV & TUN/TAP
# of interrupts 2 2
# of copies 1 2
# of context switch 1 2

L4/L7 MFs require transport layer processing, MiddleNet
utilizes the full-featured kernel protocol stack.

Because SR-IOV allows multiplexing of physical NIC re-
sources, the split between the DPDK path and Linux kernel
protocol stack path can be easily handled. L2/L3 NFs and
L4/L7 MFs can co-exist on the same node in MiddleNet.

Using SR-IOV in a simple design, however, would result in
these two frameworks co-existing as two distinct and separate
functions providing services for distinct flows. There are two
options for bridging the L2/L.3 MiddleNet and L4/L7 Mid-
dleNet: (1) A hardware-based approach that utilizes the NIC
switch feature offered by SR-IOV [35] to connect different
VFs within the NIC;® (2) A software-based approach that uses
virtio-user/vhost-net & TUN/TAP device interfaces to connect
L2/L3 MiddleNet to the kernel stack (see Fig. 1 (b)), which
is then connected to L4/L7 MiddleNet.

Table III compares the overhead generated by different
alternatives. We only audit the datapath overhead between the
NF manager in L2/L3 and the message broker in L4/L7, as
they are the entry point of L2/L.3 and L4/L7 MiddleNet. The
hardware-based approach seamlessly works with the kernel-
bypass in L2/L.3 MiddleNet and moves the packet from the
L2/L.3 MiddleNet to the NIC via DMA. The NIC switch
forwards the packet to the VF attached to the kernel stack
without incurring any CPU overhead. All the overhead in the
hardware-based approach is caused by passing the packet from
the kernel stack to the message broker, however, is still less
than software-based approach. The software-based approach
inevitably introduces extra overhead and may compromise the
performance gain achieved by L2/L.3 kernel bypass. Based on
the overhead auditing, we decide to use the NIC switch to
have packets pass through the kernel protocol stack in or out
of the L4/L7 layer to the L2/L.3 NF, for both L2/L.3 NFs and
L4/L7 MFs to operate on the same flow.

B. Performance evaluation of unified design

We investigate the performance of a unified L2/L3 NFV
and L4/L7 middlebox and examine the interaction between the
two, using SR-IOV to split the traffic. To mitigate interference
between the load generators for L2/L3 (Pktgen [25]) and
L4/L7 (Apache Benchmark [31]), we deploy Pktgen on the 1st
node and Apache Benchmark on the 3rd node. We configure
two NGINX servers on the 3rd node as the L4/L7 traffic sink.
We configure two VFs on the 2nd node with SR-IOV and

%A SR-IOV enabled NIC must include the internal hardware bridge to
support forwarding and packet classification between VFs on the same NIC.

"DPDK’s Kernel NIC Interface (KNI [36]) is another software-based
approach that provides equivalent functionality as virtio-user/vhost-net &
TUN/TAP. However, KNI lacks several important features compared to
virtio-user/vhost-net & TUN/TAP, such as multi-queue support, checksum
offloading, efc. This makes the performance of KNI not as comparable as
virtio-user/vhost-net & TUN/TAP [37].
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bind L2/L.3 MiddleNet (DPDK) and L4/L.7 MiddleNet (eBPF)
to separate VFs. We use the same NFs (L3 routing and L2
forwarding) and MFs (reverse proxy and URL rewrite) on the
2nd node as described in §IV-D and §V-D. We modify the NFs
and MFs to perform hairpin routing: L2/L.3 NFs return traffic
to the 1st node, and LL4/L7 MFs return traffic to the 3rd node.
Thus, we eliminate the interference that occurs between the
two traffic generators. For L2/L3 traffic, we keep the sending
rate at the MLFR. For L4/L7 traffic, we use a concurrency of
256 with the Apache Benchmark.

We study whether there is interference by checking the
aggregate throughput as well as the throughput for the L2/L.3
traffic processed by NFV and the L4/L7 processed by the
middlebox, as shown in Fig. 13(a). The aggregate throughput
of L2/LL3 NFs and L4/L7 MFs remains close to 10Gbps, with
negligible performance loss across various packet sizes. We
also study the impact of adding L4/L7 flows when L2/L3
traffic (128Bytes packets) goes through MiddleNet at line rate
(10 Gbps link). As shown in Fig. 13(b), at the 25th second, the
Apache Benchmark starts to generate L4/L7 traffic (0.22Gbps),
and the throughput of L2/L.3 NFs correspondingly drops to
9.78Gbps. Thus, our unified design in MiddleNet for the co-
existence of DPDK-based L2/L3 NFs and eBPF-based MFs
provides both flexibility and performance.

VII. ISOLATION AND SECURITY DOMAINS IN MIDDLENET
The use of shared memory raises concerns as it may weaken
the isolation/security boundary between the functions that
share the same memory region. Our trust model assumes that
only functions in MiddleNet trust each other. Functions in
MiddleNet (NFs or MFs), which run as DPDK secondary
processes, share the same private memory pool by using
the same “shared data file prefix” (specified by the shared
memory manager (§IV-A)) during their startup. We ‘admission
control’ functions by validating the creation of a MiddleNet
function that is authenticated and uses the correct file prefix.
We additionally apply inter-function packet descriptor filtering
to prevent unauthorized access to the data in shared memory,
through the virtual address in the packet descriptor. In accor-
dance with the way packet descriptors are passed, these are
different for L2/L.3 (with DPDK’s RTE ring) MiddleNet versus
L4/L7 (with eBPF’s SKMSG) MiddleNet.
Descriptor filtering for 1.2/1.3 NFs: We leverage the NF
manager in L2/L.3 MiddleNet to perform packet descriptor

filtering. Once the NF manager polls a new packet descriptor
from an NF’s TX ring, it queries its internal filtering map and
checks whether the packet descriptor is authorized to be sent
to the target NF based on matched rules. Unauthorized packet
descriptors are dropped by the NF manager.

Descriptor filtering in L4/L7: Since the L4/L7 MiddleNet
uses SKMSG to pass packet descriptors between functions
(§V-B), it is natural to exploit eBPF’s extensibility to filter
packet descriptors. We add an additional eBPF map to the
SKMSG program to store filtering rules. Each time a packet
descriptor arrives, the SKMSG program parses the destination
of the packet descriptor and uses it as the key to lookup
the filtering rule. The packet descriptor is passed to the
destination if allowed; otherwise, the descriptor is recognized
as unauthorized and discarded.

VIII. RELATED WORK

NFV platforms use different implementation approaches and
primarily operate at L2/L3. OpenNetVM [3], based on DPDK,
uses the microservice paradigm with a flexible composition of
functions and uses shared memory to achieve full line-rate per-
formance. However, OpenNetVM lacks full-fledged protocol
stack support, focusing on supporting L.2/L.3 NFs. Compared
to OpenNetVM, MiddleNet supports processing across the en-
tire protocol stack, including application support. Other NFV
platforms take different approaches. Both ClickOS [38] and
NetMap [39] use traditional kernel style processing and map-
ping of kernel-user space memory, using interrupts for notifica-
tions. The interrupt-based notification schemes of ClickOS and
NetMap can be vulnerable to poor overload behavior because
of receive-livelocks [12]. In contrast, the L2/L.3 processing
in MiddleNet uses polling, thus avoiding receive-livelocks.
E2 [40] integrates all the NFs as one monolith to help improve
performance but gives up some flexibility to build complex NF
chains through the composition of independently developed
NFs. NFV designs have increasingly adopted the microservice
paradigm for flexible composition of functions while still
striving to achieve full line-rate performance. Supporting this,
MiddleNet’s disaggregated design offers the flexibility to build
complex L2/L3 NF chains.

Network-resident middleboxes’ functionality depends on
having full kernel protocol processing, typically terminating a
transport layer connection and requiring a full-fledged protocol
stack. Efforts have been made to pursue a high-performance
middlebox framework with protocol processing support [5],
[18], [41]. However, each of these proposals has its difficulties.
mOS [41] focuses on developing a monolithic middlebox,
lacking the flexibility of a disaggregated design like Mid-
dleNet. Microboxes [18] leverages DPDK and OpenNetVM’s
shared memory design to improve packet processing perfor-
mance and achieve flexible middlebox chaining. However, it
does not provide a full-fledged protocol stack (it only supports
TCP). The CPU consumption of DPDK-based designs is a
further deterrent in the L4/L7 use case, significantly when
the chain’s complexity increases. Establishing communica-
tion channels for a chain of middleboxes using the kernel
network stack incurs considerable overhead. Every transfer
between distinct middleboxes typically involves full protocol
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stack traversals, which adds considerable overhead. It typ-
ically involves two data copies, context switches, protocol
stack processing, multiple interrupts, and one serialization and
deserialization operation. MiddleNet is designed to reduce
these overheads by leveraging shared memory processing, in
the meanwhile, adopting eBPF-based event-driven processing
to minimize CPU consumption. StackMap [5] also leverages
the feature-rich kernel protocol stack to perform protocol
processing while bypassing the kernel to improve packet I/O
performance. However, it is more focused on end-system sup-
port than middlebox function chaining. StackMap’s capability
may be complementary to the design of MiddleNet.

There has not been a significant effort to design a unified
environment where L2/L.3 NFV and L4/L7 middlebox environ-
ments co-exist. MiddleNet is designed to address this issue.
eBPF-based NFV/Middlebox: [42]-[44] explore the use of
eBPF to implement NFV/Middlebox functions. These eBPF-
based functions reside in the kernel, running as a set of eBPF
programs attached at various eBPF hooks, e.g., eXpress Data
Path (XDP), and Traffic Control (TC). This avoids expensive
context switches, as packet processing always remains within
the kernel. In addition, since the packet payload is retained in
the kernel buffers. Only the packet metadata,® which contains
packet descriptor, is passed between different eBPF-based
functions, thus achieving zero-copy packet delivery in the
kernel. Compared to MiddleNet, [42]—[44] focus on the affinity
in the kernel. In contrast, L2/L.3 MiddleNet relies on DPDK,
which uses SR-IOV to achieve a unified design. [42]-[44] can
seamlessly work with the kernel protocol stack for protocol
processing. However, the eBPF-based functions in [42]-[44]
are triggered using kernel interrupts, thus potentially suffer-
ing from poor overload behavior [12]. Thus, their approach
can perform poorly compared to L2/L3 MiddleNet, which
leverages DPDK to achieve line-rate performance. Addition-
ally, the eBPF-based functions can only be used to support
L2/L3/L4 use cases within the kernel. Since L7 middleboxes
not only require protocol processing, but have application code
that typically run in userspace, approaches as in [42]-[44]
result in expensive packet transfers between the kernel per-
forming packet processing and the L7 userspace application.
The shared memory design in L4/L7 MiddleNet avoids this
overhead, thus achieving better data plane performance for a
unified L4/L7 environment.

IX. CONCLUSION

We presented MiddleNet, a unified environment supporting
L2/L3 NFV functionality and L4/L7 middleboxes. In Mid-
dleNet, we chose the high-performance packet processing of
DPDK for L2/L.3 NFs and the resource efficiency of eBPF for
L4/L7 middlebox functions. MiddleNet leverages shared mem-
ory processing for both use cases to support high-performance
function chains. Experimental results demonstrated the perfor-
mance benefits of using DPDK for L2/L.3 NFV. MiddleNet
can achieve full line rate for almost all packet sizes given
adequate CPU resources provided to MiddleNet’s NF manager.

8The packet metadata is represented as a “xdp_md” data structure when
using the XDP hook, and is in the form of a “sk_buff” data structure when
using TC hook.

Its throughput outperforms an eBPF-based design that depends
on interrupts by 4 x for small packets and has a 2x reduction
in latency. For the L4/L7 use case, the performance of our
eBPF-based design in MiddleNet is close to the DPDK-
based approach, getting to within 1.05x at higher loads (large
concurrency levels). In addition, the eBPF-based approach
has significant resource savings, with an average of 3.2x
reduction in CPU usage compared to a DPDK-based L4/L7
design. Using SR-IOV on the NIC, MiddleNet creates a unified
environment with negligible impact on performance, running
the DPDK-based L2/L.3 NF chains and eBPF-based L4/L7
middlebox chains on the same node. This can bring substantial
deployment flexibility.
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APPENDIX A
DETAILS OF DPDK’S SHARED MEMORY SUPPORT

After the DPDK primary process (i.e., shared memory
manager) initializes the memory pools, it writes the memory
pool information (e.g., base virtual address, the allocated
huge pages) into a configuration file through DPDK’s EAL
(Environment Abstraction Layer [45]). The DPDK secondary
processes (i.e., functions, L2/L.3 NF manager, L4/L7 message
broker) read the configuration file during startup and use
DPDK’s EAL to map the same memory regions allocated
by the DPDK primary process. This ensures all the DPDK
secondary processes share the same memory pools, thereby
facilitating shared memory communication between functions.

When VMs are used, they rely on the emulated PCI to
access physical memory in the host. This requires multiple
address translations (i.e., Guest Virtual Address to Guest Phys-
ical Address and then to Host Virtual Address). This adds a
burden while sharing memory across different VMs, since they
have different virtual address mappings to the host. It requires
the hypervisor (as it knows the virtual address mappings
of different VMs) to remap the base virtual address in the
packet descriptor, which adds additional processing latency. In
contrast, a container shares the same virtual memory address,
which means that its virtual address can be interpreted by other
containers without an additional translation. This facilitates
memory sharing between different functions implemented in
containers and makes it straightforward to build shared mem-
ory for function chains using existing tools such as DPDK’s
multi-process support.

APPENDIX B
OVERHEAD AUDITING OF FUNCTION CHAINS USING
SHARED MEMORY

To quantitatively understand the benefit of shared memory
communication and the difference between alternatives, we
now perform an auditing of the overheads for the function
chain in Fig. 3.
(1) L2/L3 NF use case: For the L2/L3 NF use case, we
study two alternatives: first is («v) NIC-shared memory packet
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exchange with polling-based kernel-bypass (using DPDK’s
PMD) + polling-based zero-copy I/O for function chaining
(using DPDK’s RTE RING); second is (3) NIC-shared mem-
ory packet exchange with event-driven kernel-bypass (using
eBPF’s AF_XDP) + event-driven zero-copy 1/O for function
chaining (using eBPF’s SKMSG). We skip the kernel-based
NIC-shared memory packet exchange in this auditing, as it is
apparently unsuitable for L2/L.3 NFs.

Table IV shows the overhead auditing of L2/L.3 NF scenario
for both ((«) and (B)). Compared to the optimal L2/L.3
data plane model (f) discussed in §II-C, the polling-based
shared memory communication approach («) avoids any data
copy, interrupt, and context switch, throughout the entire data
pipeline (from @ to ® of Fig. 3). The event-driven alternative
(B) eliminates all the data copies as well. However, the use
of AF_XDP and SKMSG introduces additional interrupts and
context switches. In particular, every packet transfer within
the chain incurs one interrupt and context switch, which is a
non-negligible overhead, especially if the chain grows in scale.
(2) L4/L7 middlebox use case: For the L4/L7 middlebox use
case, we study two alternatives: () kernel-based NIC-shared
memory packet exchange + polling-based zero-copy I/O for
function chaining (using DPDK’s RTE RING); (§) kernel-
based NIC-shared memory packet exchange + event-driven
zero-copy /O for function chaining (using eBPF’s SKMSG).
We skip the kernel-bypass NIC-shared memory packet ex-
change in this auditing, as L4/L7 middleboxes depend on the
kernel stack for protocol processing.

Table V shows the overhead auditing of L4/L7 middlebox
options ((y) and (§)). Compared to the optimal L4/L.7 data
plane model (d) in §II-C, the polling-based () and event-
driven (4) shared memory communication approaches avoid
any data copy within the function chain (@ to ® in Fig. 3),
because of the zero-copy I/0. However, moving a packet from
the NIC to shared memory (@ in Table V) incurs two data
copies, and vice versa (® in Table V). One data copy comes
from the packet exchange between the NIC and the message
broker (Fig. 3), where the kernel stack needs to copy the
packet from the kernel to the message broker in userspace,
after protocol processing. The message broker then moves
the packet into shared memory, which introduces the second
copy. With the middlebox chain of two functions, using shared
memory communication ((y) or (J§)) shows no significant
benefit compared to optimal L4/L7 data plane model (d)
because of the data copy incurred when moving packets
between the NIC and shared memory. They all introduce 4

16

data copies throughout the entire data pipeline (from @ to ®
in Fig. 3 and Fig. 2). The shared memory communication for
the L4/L7 middlebox scenario ((7y), (0)) shows its advantages
of saving on data copies (due to the zero-copy I/O) compared
to the L4/L7 data plane model (d) only when the size of the
chain grows. In comparison, the data copy overhead in (d) will
increase as the chain increases.

Another essential asset of shared memory communication is
that it completely eliminates protocol processing, serialization,
and deserialization overheads within the chain. These tasks are
performed before the packet is moved to shared memory by
the message broker, and vice versa (D and ® in Table V). No
matter the size of the chain, the total # of protocol processing
tasks or serialization/deserialization tasks incurred when using
shared memory communication is always fwo. On the other
hand, these overheads in the data plane model (d) increase as
the chain scales, indicating poor scalability.

The event-driven approach (J), which uses SKMSG to imple-
ment the zero-copy I/O, incurs one interrupt and one context
switch for each transmission within the function chain (@ to
® in Fig. 3). This inevitably has a higher latency compared to
using DPDK’s RTE RING. With DPDK’s RTE RING, differ-
ent functions exchange packet descriptors entirely in userspace
and avoid expensive context switches. For the I/O latency
going from one function to the next, eBPF’s SKMSG needs
~20 microseconds to send each packet descriptor. On the other
hand, DPDK’s RTE RING only needs ~0.5 microseconds.
This penalty with SKMSG’s kernel interrupts and context
switching overheads makes the low-latency DPDK’s RTE
RING ideal for building high-performance function chains,
desirable for latency-sensitive workloads. However, DPDK’s
RTE RING comes at the cost of constant polling and thus
resource consumption. From a resource efficiency standpoint,
SKMSG ’s event-driven nature makes it more efficient, because
it does not consume CPU cycles when there is no traffic. This
is similar to AF_XDP, as they both belong to the eBPF system
of Linux. The latency of SKMSG is less of a concern if there
are other dominant latencies masking it. This is often true for
L4/L.7 middleboxes, where application-level latency and kernel
protocol processing latency dominate the total request delay. It
requires further optimization on the use of SKMSG, e.g., having
packet descriptors directly routed between functions without
being mediated by the message broker (details in §V-B), which

TABLE V
OVERHEAD AUDITING OF L4/L7 MIDDLEBOX CHAIN USING SHARED

MEMORY COMMUNICATION
[ NIC-shared memory

z
=1
=

L in the chain
TABLE 1V ‘ Data pipeline No. ‘ D ‘ ® } ) ‘ ©) ‘ @ ‘ @—‘ total ‘
OVERHEAD AUDITING OF L2/L.3 NF CHAIN USING SHARED MEMORY -
# of copies ‘ [@0) pollm.g ‘ 2 ‘ 2 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 4 ‘
COMMUNICATION [@ eventdriven | 2 | 2 [0]0 00 4 |
- NIC-shared memory [ Within the chain | 6
Data pipeline No. ‘ Y total i [ _(polling [ 2 ] 1 [0JO0JOTJOT 3 |
‘ P [ @ ] ® (@]9 ]@]9 ] ‘ # of interrupts | () event-driven | 2 | 1 [T 1] 7]
# of coies [ (@poling [ 0 [ 0 [OJOJTO[O[] 0 | - [ (poling | T [ 1 JOJOJOJO] 2 |
‘ TP [@evenedriven | 0| 0 [0 [0 [0 ][0] 0 | # of context switch 5 lenvdiven | T | T [ T [ T[T 1] 6 |
; [ (@polling | 0 | 0 [0OJOTOTOT] 0 ] # of protocol [ (ppoling [ T | 1 [0OJOTJOTJO] 2 ]
‘ # of interrupts [ (B event-driven | 2 | I [T T 11 7| ‘ processing tasks | (8) event-driven | ] 1 [0JoJoJo[ 2 |
- (@polling | 0 | 0 [0]O0]OJO] 0 | # of serialization | () polling | 1 | 1 [0JO0 ][00 2 |
‘ # of context switch } @ evenedriven | 1| 1 [T [T [T [T ] 6 | | ordeserilization (L7) @ eventdiven | T | T [0 [ 0] 0] 0] 2 |

() polling-based kernel-bypass (using DPDK’s PMD) + polling-based
zero-copy 1/O for function chaining (using DPDK’s RTE RING);

(B) event-driven kernel-bypass (using eBPF’s AF_XDP) + event-driven
zero-copy 1/0 for function chaining (using eBPF’s SKMSG).

() kernel-based NIC-shared memory packet exchange + polling-based
zero-copy 1/O for function chaining (using DPDK’s RTE RING);

(9) kernel-based NIC-shared memory packet exchange + event-driven
zero-copy 1/0 for function chaining (using eBPF’s SKMSG).



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

can considerably reduce the amount of interrupt and context
switch generated by SKMSG.
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