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RESEARCH Open Access

Roundup causes embryonic development
failure and alters metabolic pathways and
gut microbiota functionality in non-target
species
Antonio Suppa1,2, Jouni Kvist3, Xiaojing Li1, Vignesh Dhandapani1, Hanan Almulla1, Antoine Y. Tian4,
Stephen Kissane1, Jiarui Zhou1, Alessio Perotti3, Hayley Mangelson5, Kyle Langford5, Valeria Rossi2,
James B. Brown6,7,8† and Luisa Orsini1,7*†

Abstract

Background: Research around the weedkiller Roundup is among the most contentious of the twenty-first century.
Scientists have provided inconclusive evidence that the weedkiller causes cancer and other life-threatening
diseases, while industry-paid research reports that the weedkiller has no adverse effect on humans or animals.
Much of the controversial evidence on Roundup is rooted in the approach used to determine safe use of
chemicals, defined by outdated toxicity tests. We apply a system biology approach to the biomedical and
ecological model species Daphnia to quantify the impact of glyphosate and of its commercial formula, Roundup,
on fitness, genome-wide transcription and gut microbiota, taking full advantage of clonal reproduction in Daphnia.
We then apply machine learning-based statistical analysis to identify and prioritize correlations between genome-
wide transcriptional and microbiota changes.

Results: We demonstrate that chronic exposure to ecologically relevant concentrations of glyphosate and Roundup
at the approved regulatory threshold for drinking water in the US induce embryonic developmental failure, induce
significant DNA damage (genotoxicity), and interfere with signaling. Furthermore, chronic exposure to the
weedkiller alters the gut microbiota functionality and composition interfering with carbon and fat metabolism, as
well as homeostasis. Using the “Reactome,” we identify conserved pathways across the Tree of Life, which are
potential targets for Roundup in other species, including liver metabolism, inflammation pathways, and collagen
degradation, responsible for the repair of wounds and tissue remodeling.
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Conclusions: Our results show that chronic exposure to concentrations of Roundup and glyphosate at the
approved regulatory threshold for drinking water causes embryonic development failure and alteration of key
metabolic functions via direct effect on the host molecular processes and indirect effect on the gut microbiota. The
ecological model species Daphnia occupies a central position in the food web of aquatic ecosystems, being the
preferred food of small vertebrates and invertebrates as well as a grazer of algae and bacteria. The impact of the
weedkiller on this keystone species has cascading effects on aquatic food webs, affecting their ability to deliver
critical ecosystem services.

Background
The weedkiller Roundup (Bayer), first developed by
Monsanto in the 1970s, is to date the most used non-
selective herbicide by volume (6 billion kg are applied
worldwide) [1]. The research around Roundup is highly
contentious: some scientists have claimed that it causes
pathologies ranging from cancer (e.g. [2]) to celiac dis-
ease [3] and autism [4], while industry-paid research re-
ports that the herbicide has no untoward effects. Much
of the controversial evidence on Roundup is rooted in
outdated toxicity tests, called LC50 [5], from which safe
use of chemicals in the environment is extrapolated.
These outdated tests are the current state-of-the-art in
regulatory science [6]. To allow risk managers to make
informed decisions, new methodologies that include eco-
logically relevant concentrations of chemicals and their
mixtures, analysis of the long-term impact of chemicals
on multiple species and models to predict adverse effects
are needed (e.g. [7]). The adverse effect of Roundup docu-
mented to date is based on unrealistic concentrations of
the compound; it has been largely correlative and missing,
by design, potential pathological effects that may arise
from long-term exposures to sublethal doses [1].
Roundup and its active ingredient glyphosate are ex-

pected to be innocuous to animals because they target
an enzyme only found in plants and microorganisms
(EPSPS [8]). However, animals rely on a specialized gut
microbiota for growth, immunity, and pathogen defense
[9]. Growing evidence shows that the weedkiller has a
proven indirect adverse effect on vertebrates and inver-
tebrates via the gut microbiota (e.g. [10–15]).
In the past, Roundup was not considered a problem

for ground and surface waters [16]. It was later discov-
ered that agricultural and urban run-off are responsible
for the weedkiller leaching into surface water. Dissolved
glyphosate (or its metabolite AMPA) sorbs to the sedi-
ment of water bodies [17], extending its half-life to 130
days and becoming persistent in water reservoirs world-
wide [17, 18]. Because of its enhanced persistence in the
environment, glyphosate is found in sewage and storm-
water overflows [19], in outlets from wastewater treat-
ment plants [18], and in drinking water [20]. Reports of
glyphosate, Roundup, and their metabolite AMPA in
surface and drinking water vary greatly with the

geographic area and are generally more severe in the
USA (e.g. [21]). Concentration of these compounds in
the environment varies depending on whether the parent
products alone or the parent products and the metabol-
ite AMPA are concurrently quantified [17]. An under-
standing of the functional pathways modulated by
ecologically relevant doses of the weedkiller, both at or-
ganismal level and on the gut microbial community, is
needed to resolve the ongoing debate on Roundup.
Here, we apply a system biology approach and quantify

the fitness burden, the genotoxic effect, the transcrip-
tional and gut microbiota changes of ecologically rele-
vant concentrations of Roundup and glyphosate on the
biomedical and ecological model species Daphnia. We
then apply machine learning-based statistical analysis to
identify and prioritize correlations between genome-
wide transcriptional and microbiota changes. As the bio-
medical model species Drosophila, Daphnia shares a
large proportion of its genes with other species, includ-
ing vertebrates [22]. Using the functional analysis of pro-
tein domains, we identify conserved pathways across the
Tree of Life modulated by Roundup and glyphosate,
identifying pathways conserved across species that are
altered by Roundup. Daphnia is common to standing
freshwater habitats worldwide, where it is central to the
aquatic foodweb functionality [23, 24]. Understanding
the impact of the widely used weedkiller on this species
informs us on its cascading effect on aquatic foodwebs
and on the disruption of critical services delivered by
freshwater ecosystems.

Results
Like Drosophila, Daphnia enjoys many technical advan-
tages over vertebrate models: they are easy and inexpen-
sive to culture in the laboratory, have a short life cycle,
and produce large numbers of externally laid embryos.
In addition, Daphnia has a parthenogenetic life cycle, in
which sexual and asexual reproduction alternate. Sexual
recombination results in early-stage embryos that arrest
their development and enter dormancy [25]. Revived
dormant embryos are genetically distinct and can be
propagated indefinitely in the laboratory via clonal
reproduction, allowing the rearing of populations of iso-
genic individuals (clones) from a single genotype [26,
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27]. Capitalizing on these properties, we performed mul-
tiomics and fitness analyses on replicated clones of dis-
tinct Daphnia genotypes (Fig. 1). We used three
genotypes hatched from dormant Daphnia embryos re-
vived from Lake Ring, Denmark: LRV3.5_15, LRV13.5_1
and LRV13_2 [26, 28, 29]. We also used a laboratory ref-
erence strain, P-IT, provided by the Institute of Ecosys-
tem study, CNR Verbania, Italy.

Fitness burden of Roundup and glyphosate
We quantified the fitness burden resulting from the
chronic exposure to ecologically relevant concentra-
tions of Roundup and glyphosate, corresponding to the
drinking water Maximum Contaminant Level (MCL)
set by the U.S. Environmental Protection Agency of 1
mg/L for long-term exposures [30] (Dryad entry doi:
10.5061/dryad.mcvdncjws). We found that these pertur-
bations affected all fitness-linked life history traits
(Table 1; Gly, Rou; Figure S1), except for mortality (Fig-
ure S2). The severity of the effect varied by genotype,
suggesting that the genetic background affects fitness
response (Table 1; G). Both compounds significantly re-
duced fecundity, increased developmental failure (mea-
sured as the number of aborted eggs and juveniles dead
at birth), delayed maturation, and decreased size at ma-
turity (Table 1; Figure S1). Exposures to both glypho-
sate and Roundup resulted in significant genotoxicity
caused by DNA damage quantified with the comet
assay [31], the severity of which was genotype-
dependent (Table 1, G; Figure S3).

Host transcriptome response to Roundup and glyphosate
We quantified the genome-wide transcriptional response
of Daphnia to glyphosate and its commercial formula
Roundup in replicated clones of the same four genotypes
used in the fitness and genotoxic analysis both for con-
trol and exposed biological replicates (Fig. 1) (NCBI Bio-
project PRJNA606209). Gene-level differential analysis
between control (non-exposed) animals and animals ex-
posed to glyphosate and Roundup did not identify any
significant differentially expressed gene. These findings
were supported by a genome-wide transcription profile
analysis showing that individual treatment effects were
obscured by genotype effects (Fig. 2; Figure S4).
To uncover the molecular machinery that underpins

the severe fitness burden observed in the fitness traits
and the genotoxic response, we performed a weighted
gene co-expression network analysis, which enabled us
to identify networks of genes that were modulated syn-
chronously, even when their component genes were
below the DE statistical thresholds [32]. These gene net-
works were then interrogated to identify enriched func-
tional pathways. We discovered that approximately two
thirds of the Daphnia magna genes, enriched for embry-
onic development (SCW, DPP), growth, morphogenesis
(BMP), and basic metabolism (GABA, triacylglycerol,
pyruvate), drive transcriptional early response and are
shared among genetic backgrounds and treatments
(Table S1; Module 14). This early stress response is
followed by a condition-specific transcriptional response,
resulting in a single module associated with glyphosate

Fig. 1 Experimental design. Daphnia magna isoclonal lines were obtained from four distinct genotypes; three of these genotypes were revived
from dormant embryos LRV3.5_15, LRV13.5_1, and LRV13.2, whereas P-IT is a reference laboratory genotype. For each genotype, germ-free and
wild-type clonal populations were obtained. Germ-free clonal populations were obtained by exposing wild-type clonal replicates of the four
genotypes to a cocktail of antibiotics (20 mg/L of tetracycline, streptomycin, and ampicillin). Both wild-type and germ-free lines were exposed in
triplicated to glyphosate, Roundup, and control conditions (non-stress) after at least two generations in standard laboratory conditions to reduce
interference from maternal effect. For each biological replicate, genotype, and treatment, genotoxicity via the comet assay, gut microbiota
composition, fitness, and whole-genome transcriptional profiles were measured.
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(Module 8) and four modules associated with Roundup
(Modules 20, 23, 26, and 34; Table S2). Glyphosate-
specific Module 8 was enriched (P < 0.05) for key meta-
bolic pathways [cellular (heme); fatty acids (Butanoate);
alanine, aspartate and glutamate metabolism], signaling
pathways, cellular activities (e.g., ECM receptor), and
Huntington disease pathway (Table S2). Genes enriched
in these pathways include membrane transporters, tran-
scription regulation, and protein-binding genes (Table
S3). The functional domains of these genes searched
across databases (Panther, Pfam Gene3D, etc.) include

vitellogenin, hemolymph juvenile hormone (JHBP), pro-
tein transporters (Nonaspanin; immunoglobulin-like
fold), redox mechanisms (e.g., aldehyde dehydrogenase),
and hemostasis (von Willebrand factor, cytochrome b5,
protoporphyrinogen oxidase) (Table S1). To identify
conserved domains across the Tree of Life and potential
targets of glyphosate and Roundup in other species, we
used the “Reactome” [33]. Conserved gene domains,
which may be of potential concern as targets for glypho-
sate in other species, include three main categories: liver
metabolism (lipids and glucose), inflammation pathways

Table 1 Analysis of variance. ANOVAs per individual fitness-linked life history traits (size and age at maturity, fecundity, and failed
development) calculated for glyphosate and Roundup chronic exposures testing for the effect of genotype, treatment, and their
interaction term. The genotoxic response to glyphosate and Roundup is also shown. Significant P values are shown in bold.
Supporting figures are Figures S1 and S3

Fig. 2 Genome-wide differential expression analysis. Heat maps of the genome-wide differentially expressed transcript (DEseq Padj < 0.01)
among the four genotypes, measured with Pearson correlation: LRV3.5_15, LRV13.5_1, LRV13.2, and P-IT. The data are obtained from three
biological replicates per genotype. Similarity increases from cream to dark red, as indicated by the color bar. The abbreviations for the
environmental perturbations are as follows: Rou—Roundup; Gly—glyphosate; Co—control
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(leukocytes), and collagen degradation, responsible for
the repair of wounds and tissue remodeling (Table S1;
Reactome).
Four co-expression gene modules, containing between

31 and 33 genes each (Modules 20, 23, 26, 34), were as-
sociated with Roundup (Table S2). Pathways enriched in
these modules include RNA transport (Module 20) and
fatty acid metabolism (Module 34) (Table S3). A domain
analysis of these modules identified regulation of basic
cellular function and trafficking: cellular DNA-binding,
cell proliferation, membrane transport, methyl transfer-
ase, DNA repair (Endonuclease), sugar metabolism, and
Proteolysis. The “Reactome” analysis revealed that very
few pathways linked to Roundup were conserved be-
tween Daphnia and other species. The conserved do-
mains across the Tree of Life regulated fundamental
protein functions and membrane transport as well as
cholesterol and sugar metabolism (Table S1; Reactome).

Gut microbiota changes in response to glyphosate and
Roundup
We quantified the impact of Roundup and glyphosate
on the dynamics and composition of the gut microbiota.
Replicated clones of the same four D. magna genotypes
used in the fitness and transcriptome analysis were used
(Fig. 1).
Firstly, we performed experiments to characterize the

microbiota, establish its origin and its overall dynamics
from gut colonization (48 h after birth) to last instar
(144 h after birth) in response to different xenobionts;
we then quantified the impact of Roundup and glypho-
sate on established gut communities. The reference
microbiome, as well as the experiments investigating the
dynamics and origin of the Daphnia gut microbiota, is
in Additional file 1.

Having established that the D. magna gut microbiota
stabilizes at the last instar (> day 4) and is strongly gen-
etically determined (Additional file 1), we quantified the
impact of glyphosate and Roundup on established gut
communities (day 5). Having observed that establish-
ment success of gut communities may be more severely
affected when glyphosate and Roundup co-occur with
antimicrobial agents (Additional file 1), we quantified
the effect of both compounds on clonal replicates
treated with antibiotics (germ-free) as well as on non-
treated replicates (wild-type) (Fig. 1).
Firstly, we confirmed that the composition of the gut

microbiota is strongly genetically influenced by quanti-
fying sOTUs exhibiting differential abundances between
pairs of genotypes; they ranged between 262 (P-IT/
LRV13.2) and 75 (P-IT/LRV3.5_15) (Fig. 3). Significant
differences between pairs of genotypes were explained
by different gut community composition (βετα diver-
sity), as shown by the Jaccard and the Bray-Curtis simi-
larity index analysis (Table S4). Secondly, we quantified
the impact of glyphosate and Roundup on established
communities. We observed that both glyphosate and
Roundup significantly changed the relative abundance
and composition of the established gut microbiota in a
genotype-specific manner, as significant “genotype” and
“genotype × treatment” terms indicate in the PERM
ANOVA analysis (Table 2; G; G × T). This response
was driven by significant changes in the relative abun-
dance of six Families (Moraxellaceae, Burkholderiaceae,
Beijerinckiaceae, Rhizobiaceae, Nocardiaceae, Flavobac-
teriaceae) and seven genera (Acinetobacter, Acidovorax,
Limnohabitans, Legionella, Galbitalea, Rhodococcus,
Flavobacterium) (Fig. 4), which are all non-core taxa
(Table S5). Glyphosate and Roundup affected gut
microbiota dynamics in established gut communities in
a genotype-specific manner (Table 2, G × T), leading to

Fig. 3 Differential sOTU abundance. Number of up- and downregulated sOTUs between treatments and pairwise genotypes. Differential analysis
was done with DESeq2 using Padj < 0.05
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different gut microbiota composition among genotypes
(Fig. 5; Table 2, G). Prior treatment with antibiotics sig-
nificantly affected gut recolonization in a genotype-
specific manner as the significant “genotype × antibiotic
treatment” and the three-way interaction terms in the
PERMANOVA analysis shows (Table 2, G × A; G × T
× A). A hierarchical clustering of sOTUs including all
treatments and samples confirmed that the sample
variance was firstly explained by the antibiotic treat-
ment (33% of the variance), except for genotype LRV
13_2, for which the antibiotic treatment did not work
as well as in other genotypes likely due to experimen-
tal error (Figure S5A), and then by the genotype
(Figure S5B).
The bacterial families of established gut communities

affected by glyphosate and Roundup (Fig. 5) do not over-
lap with the bacteria families perturbed during gut
colonization (Fig. A4C in Additional file 1).

Table 2 PERMANOVA. Permutational Multivariate Analysis of
Variance using Bray-Curtis [34] distance sOTU matrices testing
for the effect of genotype (G), treatment (Roundup and
glyphosate) (T), antibiotic treatment (A), and their interaction
terms. Significant terms are in bold

Df R2 P

Genotype (G) 3 0.19 1E−04

Treatment (T) 2 0.05 0.07

Antibiotic (A) 1 0.14 1E−04

G × T 6 0.13 0.03

G × A 3 0.07 0.03

T × A 2 0.03 0.26

G × T × A 2 0.07 0.006

Fig. 4 Enriched sOTUs. Enriched sOTU families within genotypes, across biological replicates, and conditions relative to the overall sOTU
distribution. The relative abundance of each taxon is expressed by the size of the circle, whereas colors ranging from blue to red indicate
significance levels. Co—control; Co+A—control with antibiotic treatment; Gly—glyphosate; Gly+A—glyphosate with antibiotic treatment;
Rou—Roundup; Rou+A—Roundup with antibiotic treatment
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Correlations between transcriptome and microbiome
changes
The host transcriptome analysis identified non-significant
signatures at individual gene level, whereas it clearly iden-
tified gene networks and pathways impacted by Roundup
and glyphosate. Traditional statistical methods, which are
asymptotic in nature, are not suitable to identify correla-
tive changes between the multidimentional transcriptome
and microbiome datasets. Therefore, we applied machine
learning-based statistical analysis to identify correlations
between genome-wide transcriptional changes and micro-
biota compositional changes induced by glyphosate and
Roundup chronic exposures, using the Random Forest
classifier and the Random Forest regression [35]. We then
performed a functional analysis of the transcriptional co-
expression networks significantly correlated to changes in
microbiota composition to identify enriched pathways
conserved across the Tree of Life.
Glyphosate-induced host transcriptional changes were

enriched for a neuroactive ligand receptor, the Fanconi
anemia (FA) pathway, and DNA repair [36], both signifi-
cantly associated with gut community alteration (Table S6).
The three glyphosate-enriched pathways significantly corre-
lated with 9 bacteria sOTUs including Dietziaceae, Nocar-
diaceae, Microbacteriaceae, Actinobacteria, Streptococcaceae,

Caulobacteraceae, Sphingomonadaceae, Burkholderiaceae,
and Moraxellaceae (Table S6). Of these, four sOTU families
(39%) are core taxa and four are part of the same phylum
(Actinobacteria).
Roundup-induced host transcriptional changes enriched

for lipid metabolism and signaling pathways were signifi-
cantly correlated with microbiota shifts. The Roundup-
enriched pathways conserved across the Tree of Life were
as follows: the cannabinoid, the Wtn, the Hedgehog (Hh),
the Forkhead box protein O (FoxO), and the transforming
growth factor (TGF-beta) pathways (Table S6). These
pathways were significantly correlated with the gut
bacteria phylum Actinobacteria and 6 sOTU families:
Micrococcaceae, Flavobacteriaceae, Staphylococcaceae,
Saccharimonadales, Rhizobiaceae, Sphingomonadaceae,
Burkholderiaceae and Betaproteobacteriaceae (Table S6).
Of these sOTUs, 15% belongs to core taxa (Table S6).
Roundup-linked pathways are functionally associated
with changes in Actinobacteria. Shifts in non-core
taxa induced by glyphosate and Roundup resulted in
significant alterations of key functional pathways
(Table S7). Both glyphosate and Roundup over-
whelmingly enriched carbon metabolism, and then
lipid metabolism, signal transduction, and detoxifica-
tion pathways (Table S7).

Fig. 5 Microbiota composition after exposure to glyphosate and Roundup. Microbiota composition of established gut communities after
exposure to Roundup and glyphosate. The top eight bacteria families are shown for the four genotypes across biological replicates. The bacterial
composition of the borehole water (BW, non-sterile medium across 3 replicates), in which the exposures were conducted, is also shown. Listed
treatments are as in Fig. 4. Barplot composition is missing for some antibiotic treatments because the genotypes, including all biological
replicates, did not survive. The PERMANOVA statistics in Table 2 support this plot
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Discussion
We found that that chronic exposure to glyphosate and
its commercial formula, Roundup, corresponding to the
US drinking water Maximum Contaminant Level (MCL)
[30] have severe adverse effects on the non-target
aquatic invertebrate Daphnia, inducing embryonic de-
velopmental failure and genotoxic effect. The fitness
burden imposed by exposure to sublethal concentrations
of Roundup and glyphosate has been shown in other
non-target species (e.g., medaka fry [37]; zebrafish [38]).
The observed effects range from low hatching success to
embryo mortalities and developmental abnormalities.
Evidence of genotoxicity has been shown in other spe-
cies, including human cell lines [39] (tadpoles [40], cai-
mans [41], fish [42, 43], lizards [44], shrimps [45], and
invertebrates [46]), even though genotoxicity on human
cell lines is controversial [47].
We observed that the molecular machinery underpin-

ning the phenotype induced by glyphosate and Roundup
exposures was not explained by individual gene regula-
tion. Similar lack of individual gene signature has been
previously observed in Daphnia exposed to sublethal en-
vironmental perturbations [32], whereas lethal concen-
trations of xenobionts have been shown to induce
significant differential modulation of individual genes
[48–51]. To gain an understanding of the molecular ma-
chinery underpinning the fitness burden and genotoxic
effect imposed by Roundup and glyphosate, we investi-
gated pathways enriched by exposure to glyphosate and
Roundup. This analysis revealed functional pathways
regulating metabolism, immunity, oxidative stress, cell
division, and hormone regulation to be significantly af-
fected. Our findings are consistent with previous studies
associating inflammation, cell proliferation, apoptosis,
and immunity to glyphosate exposures in non-target
species (e.g., brown trout [52]; rats [53]). Genes under-
pinning stress response, collagen homologues, lipid me-
tabolism, and vitellogenin which were enriched in our
experimental animals within these pathways have been
previously linked to glyphosate in other invertebrates
(e.g., springtail [54]). Disruption of lipid and sugar me-
tabolism by the herbicide Roundup has also been shown
in vertebrates (e.g., rats) for which kidney and liver tis-
sue damage, as well as gene expression consistent with
fibrosis and necrosis, were observed [53]. One of the
gene networks significantly associated with glyphosate
exposure was histone modification, a known methylation
mechanism, suggesting that epigenetic mechanisms play
a role in Daphnia response to glyphosate.
We found that early exposure to the xenobiotic agents

has a strong impact on the dynamics, establishment, and
function of the microbiome, which has been observed in
other species (e.g., mice) [55]. Our results also indicate
that glyphosate and Roundup had a significant impact

on low-abundant gut bacteria taxa, which were severely
affected in the established communities, whereas core
bacterial taxa were not significantly affected. This pat-
tern is explained by core microbes maintained through
low competition and synergistic interactions, as well as
intraspecies strain variability, which makes them less
susceptible than non-core taxa [56]. However, low-
abundant taxa are main drivers of community compos-
ition and, hence, important to the function of the micro-
biota [57]. Indeed, shifts in these non-core taxa caused
by glyphosate and Roundup exposure contributed to sig-
nificant alterations of key functional pathways. Specific-
ally, carbon and lipid metabolism, signal transduction,
and detoxification pathways were overwhelmingly
enriched following exposure to Roundup and glyphosate.
Previous studies in bacteria support that glyphosate af-
fects both carbon and fat metabolic pathways [58]. In
our experiment, Flavobacteria and Rhizobiaceae, whose
relative abundance changed significantly in presence of
glyphosate and Roundup, are bacteria found commonly
in activated sludge or soil enriched with glyphosate;
these bacteria are able to use glyphosate or other or-
ganophosphate compounds as the sole source of car-
bon after cleaving the C–P bond [58–60]. The
significant shifts in these bacteria observed in the ex-
perimental exposures indicate that the weedkiller sig-
nificantly alters the gut microbiota within a single
generation at doses well below the accepted toxicity
regulatory thresholds.
We found that functional host pathways enriched by

exposure to glyphosate and Roundup were associated
with significant alterations of the gut microbiota both in
composition and function. The glyphosate-induced host
transcriptional changes enriched for a neuroactive
ligand-receptor, the Fanconi anemia (FA) pathway, and
DNA repair [36] were significantly associated with 9
bacteria families of the genus Actinobacteria. The
Roundup-induced host transcriptional changes including
the cannabinoid, the Wtn, the Hedgehog (Hh), the Fork-
head box protein O (FoxO), and the transforming
growth factor (TGF-beta) pathways were also signifi-
cantly associated with changes in Actinobacteria. This
family of bacteria is abundant in a wide range of aquatic
and terrestrial environments and also forms an import-
ant component of higher organism microbiota, including
plants [61]. Actinobacteria also play a key role in human
gut homeostasis [62]. The perturbation (dysbiosis) of gut
microbiota linked to Actinobacteria has been associated
not only with intestinal disorders but also with numer-
ous extra-intestinal diseases such as metabolic and
neurological disorders [63]. This bacterial group is so
important that probiotic supplements containing Actino-
bacteria are used to improve gut microbiota health in
the prevention of degenerative diseases, such as obesity,
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diabetes, cancer, cardiovascular diseases, liver disease,
and inflammatory bowel disease [64]
The functional pathways which dynamics correlates

with gut bacteria alteration were conserved across spe-
cies, showing orthology across the Tree of Life. The neu-
roactive ligand receptor pathway was orthologous with a
number of endocrine and disease pathways, including
hormone dysfunctions [65] and metabolic disorders [66].
The Fanconi anemia (FA) pathway has been implicated
in the sensitivity of cancer cells to DNA crosslinking
agents [36]. Also orthologous to other species pathways
were as follows: (i) the Wtn pathway, which regulates
cell fate, migration, and organogenesis during embryo-
genesis (e.g. [67]); (ii) the Hh pathway, which regulates
differentiation, proliferation, and stem cell population.
The Hh pathway was first discovered for regulating cu-
ticle formation in Drosophila [68]. The core components
of the Hh pathway initially identified in Drosophila are
conserved in vertebrates, where the pathway has main-
tained the same mechanisms of action [69]. This path-
way has been associated with many types of cancer,
including skin, leukemia, lung, brain, and gastrointestinal
cancers [69]; (iii) FoxO pathway, which regulates a
variety of cellular processes including apoptosis, prolifer-
ation, cell cycle progression, DNA damage, and tumori-
genesis. It also responds to several cellular stresses such
as UV irradiation and oxidative stress [70], and (iv) TGF
factor, which regulates cell developmental programs and
behavior, such as proliferation, differentiation, morpho-
genesis, tissue homeostasis, and regeneration [71]. Con-
servation of function and identical biological outcomes
have been shown only for the Hh pathway. For the other
pathways, ad hoc experiments are needed to assess con-
servation of function. However, our results supported by
multiple lines of evidence and previous findings suggest
that these same pathways may be perturbed in other or-
ganisms exposed to glyphosate and Roundup.

Conclusions
Overall, our results show that chronic exposure to con-
centrations of Roundup and glyphosate well below the
approved regulatory threshold causes embryonic devel-
opmental failure and alteration of metabolic pathways
via direct effect on the host and indirect effect on the
gut microbiota in the keystone grazer Daphnia. As
Daphnia is central to the food web of aquatic ecosys-
tems and an indicator of ecosystem health, the weed-
killer can potentially impose a fitness burden on
freshwater aquatic foodwebs, affecting their ability to de-
liver critical ecosystem services (e.g., clean water, nutri-
ent cycling). The conservation of many of the perturbed
pathways identified in Daphnia across the Tree of Life
calls for a thorough assessment of chronic exposure to

the weedkiller at sublethal concentrations in non-target
species, including humans.

Methods
The impact of glyphosate and of its commercial formula
Roundup (Bayer) were quantified on D. magna by meas-
uring changes in fitness-linked life history traits,
genome-wide transcription, and the microbiota. Four ge-
notypes were used: LRV3.5_15, LRV13.5_1 and LRV13_2
were previously isolated from a shallow lake in Denmark
[26, 28, 29]; P-IT is a laboratory reference strain pro-
vided by the Institute of Ecosystem study, CNR Verba-
nia, Italy. Host response was measured in multiple
fitness-linked life history traits and at genome-wide tran-
scriptional level. Gut microbiome response was quanti-
fied within established gut communities (day 5) in a split
design in which replicated clones of the same genotypes
were either directly exposed to the treatments (wild-
type) or exposed after antibiotic exposure to create
germ-free lines (20 mg/L of tetracycline, streptomycin,
and ampicillin) (Fig. 1). The concentration of antibiotics
that removed the highest amount of gut bacteria without
killing the host was determined experimentally (Add-
itional file 1; Fig. A3). The genotypes were acclimated
and synchronized for two generations in common gar-
den conditions (16:8 light: dark regime, 20 ± 1 °C and
fed 0.8 mg carbon/L of C. vulgaris daily) before they
were exposed to glyphosate and Roundup. This practice
is adopted to reduce interference from maternal and
grandmaternal effects. After two generations in these
conditions, clonal replicates aged 24–48 h from the sec-
ond or following broods were randomly assigned to the
experimental exposures in which host phenotype, tran-
scriptome, and microbiome were assayed. Experimental
animals were exposed to 1 mg/L of glyphosate and
Roundup, corresponding to the drinking water Max-
imum Contaminant Level (MCL) set by the US Environ-
mental Protection Agency [30]. Experimental conditions
were as follows: 20 °C; 16:8 light:dark regime; the bio-
logical replicates of the 4 genotypes were kept in individ-
ual jars, fed daily with 0.8 mg carbon/L of C. vulgaris;
the medium was renewed every second day; glyphosate
and Roundup were refreshed at every medium change to
maintain the xenobiont concentration constant through-
out the experiment. Fitness-linked life history traits were
measured in the time spanning an individual life cycle
(until release of the second brood); transcriptome data
were collected in the last instar to prevent developmen-
tal genes to overshadow the transcriptional response to
the xenobionts.

Fitness burden of Roundup and glyphosate
Size at maturity (distance between the head and the base
of the tail spine), age at maturity (first time eggs were
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observed in the brood chamber), fecundity (total number
of offspring released summing first and second brood),
failed development of juveniles from first and second
brood, and mortality were measured in the time span-
ning an individual life cycle (until release of the second
brood) in control conditions (borehole water) and after
chronic exposure to glyphosate (1 mg/L) and Roundup
(Bayer) (1 mg/L). For size at maturity, all animals were
measured after releasing their first brood into the brood
pouch using ImageJ software (https://imagej.nih.gov/ij/
index.html). Failed development was quantified as the
percentage of dead or aborted embryos per genotype in
the time spanning an individual life cycle as follows:
(AE+DO)/(AE+DO+LO), where AE is aborted eggs, DO
is dead offspring, and LO is live offspring (LO) [72].
Mortality rates per genotype were calculated with a sur-
vival model via the psm function in the rms R package
V.3.3 [73]. A separate model was fitted to each treat-
ment, in which the day of mortality and the mortality
event were combined as the dependent variables (e.g.,
censoring). All mortality curves were plotted using the
survplot function in the rms package in R v.3.3.3 [73].
The genotoxic effect of glyphosate and Roundup was

measured using the comet assay [31]. The assay uses a
microgel electrophoresis technique, in which a small
number of cells are suspended in a thin agarose gel on a
microscope slide, lysed, electrophoresed, and stained
with a fluorescent DNA-binding dye. Cells with in-
creased DNA damage display increased migration of
chromosomal DNA from the nucleus toward the anode,
which resembles the shape of a comet. We applied the
comet assay to the hemolymph extracted from pools of
ten non-exposed juveniles, used as reference, and on
juvenile pools exposed for 72 h (corresponding to the
last instar) to either glyphosate or Roundup, following
standard protocols [31]. DNA damage was quantified
on a minimum of 50 cells as the percentage of tail
intensity (TI%). TI is the ratio between the total in-
tensity of the tail and the total intensity of the comet
(head and tail together) and is directly proportional
to DNA damage [31].
We quantified the effects of genotype, treatment, and

their interaction on the suite of life history traits using a
univariate analysis of variance per trait (ANOVA). A
two-way ANOVA was used to quantify the following
terms: (1) genotype; significant differences among geno-
types are indicative of genetic response; (2) treatment; a
significant difference between control and treatment
measures plastic response to a treatment; and (3) inter-
action term genotype by treatment. Before the analysis,
the continuous dependent variables (fecundity, size and
age of maturity, genotoxicity) were log transformed to
meet the requirements of data normalization. In these
analyses, linear mixed-effects models (LMMs) were used

including clonal replicates as a random effect in R [74].
Because the standard deviation associated with the ran-
dom effect was not significant in any of the models, we
report results obtained using linear models with the aov
function in R [75].
We visualized the main effect of treatment (glyphosate

and Roundup) on fitness-linked life history traits (size at
maturity, age at maturity, fecundity, and failed develop-
ment) through univariate reaction norms, which describe
the phenotypic expression of each genotype across treat-
ments. We visualized the genotoxic effect of glyphosate
and Roundup as the proportion of tail intensity per
genotype.

Host transcriptome response to Roundup and glyphosate
Total RNA was extracted from 20 last instar clones of
each genotype across experimental conditions. Homo-
geneity of the transcriptional data is achieved by collect-
ing whole animal tissue from pools of individuals at the
same developmental stage. We used animals in the last
instar, before they reached sexual maturity. The syn-
chrony among the individuals, biological replicates, and
genotypes is confirmed by a visual inspection of the
Daphnia transparent body under a stereomicroscope,
which allows to check for the presence of ovaries indica-
tive of incipient sexual maturity.
The RNA advance kit (Beckman Coulter) was applied

to flash-frozen tissue following the manufacturer’s in-
structions. Extracted RNA was quantified using a
Nanodrop-8000 Spectrophotometer (Thermo Fisher
ND-8000-GL) and integrity assessed on the Agilent
Tapestation 2200 (Agilent G2964AA) with High Sensi-
tivity RNA Screen Tapes (Agilent 5067- 5579). Total
RNA (1 μg) was poly(A) selected using the NEBNext®
Poly(A) mRNA Magnetic Isolation Module (New Eng-
land Biolabs E7490L) and then converted in mRNA li-
braries using a NEBNext Ultra Directional RNA Library
Prep Kit (New England Biolabs E7420L) and NEBnext
Multiplex Oligos for Illumina Dual Index Primers (New
England Biolabs E7600S), following the manufacturer
guidelines. Sample handling was performed with the
Biomek FxP work station (Beckman Coulter A31842).
Constructed libraries were assessed for quality using the
Tapestation 2200 (Agilent G2964AA) with High Sensi-
tivity D1000 DNA Screen Tape (Agilent 5067-5584).
Multiplexed libraries (100-bp paired end) were se-
quenced on a HiSeq4000 by EnviSion, BioSequencing,
and BioComputing (University of Birmingham Enter-
prise) to obtain 5M reads per samples and biological
replicate. Sequenced reads quality was assessed using
fastqc (v0.11.5) followed by multiqc (v1.5) (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Tran-
scripts were mapped onto the D. magna reference tran-
scriptome [32, 76] and residual contaminant sequences,
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which may consist of residual gut bacteria and algae
used as feedstock, were removed following blast searches
in the NCBI database. The reads were then trimmed
using Trimmomatic 0.36 [77] with the following param-
eters: (1) Illumina adapter cutoff with two seed mis-
matches, (2) palindrome clip threshold of 30 and a
simple clip threshold of 10, (3) Phred quality score > 30;
(4) minimum trimmed reads length of 50 bp. A read
count matrix was created using Salmon [78]. Differential
expression at gene and transcript level were quantified
with DESeq2 1.20.0 in R [79]. Significantly differentially
expressed genes, e.g., | logFC | > 2 were searched.
To gain insights into the regulatory patterns of

uncharacterized genes, we performed a weighted gene
co-expression network analysis with MODA 1.2.0 using
the normalized expression data for all genes as described
in [32]. We used MODA to identify gene clusters associ-
ated with either glyphosate or Roundup. The R package
to run MODA can be found at https://www.bioconduc-
tor.org/packages/release/bioc/html/MODA.html; the R
scripts used for our analyses are available on figshare:
https://doi.org/10.6084/m9.figshare.13108049.v1. For
each module, we performed a functional analysis of
genes and pathways. We used gffread from GFF utilities
to translate nucleotides into amino acid sequences. We
then used InterProscan [80] for the functional analysis
of protein sequences by classifying them into families
and predicting their function based on domain informa-
tion. To classify proteins, InterProscan uses predictive
models provided by several databases including Pfam,
PANTHER, CDD, GO, and KEGG. Further, we identi-
fied the pathways in which the proteins were enriched
using two complementary approaches: (1) Panther [81]
for the functional classification of genes from organisms
across the Tree of Life, based on more than 900 ge-
nomes. For this analysis, Daphnia pulex ortholog genes
were used as background. Significant enriched pathways
and gene ontologies (GO) were selected after Bonferroni
correction; (2) in-house scripts for the identification of
KEGG pathways. We used OrthoDB to identify D. pulex
orthologs from D. magna genes. We identified non-
unique mappings for each D. magna gene on the KEGG
pathways of D. pulex. We then used these data to weight
the confusion matrix for Fisher’s exact test and chi-
square test and corrected P values for enrichment ana-
lysis. Significant pathways were identified with FDR cor-
rection (Benjamini-Hochberg method, P < 0.05).

Gut microbiota changes in response to glyphosate and
Roundup
Our first task was to create a reference gut metagenome.
Following this task, we determined the size and compos-
ition of the gut microbiota from gut colonization (48 h
after birth) to last instar (144 h after birth). We then

established whether the gut microbiota was genetically
determined. The reference gut microbiota, the gut
colonization dynamics and the origin of the gut micro-
biome are described in Additional file 1. These data in-
formed the core experiment of this study, in which we
analyzed the impact of glyphosate and Roundup on the
established gut communities.
After the dynamics and genetic origin of the gut

microbiome were established, we performed the core ex-
periment of this study, in which the impact of glyphosate
and Roundup on established gut communities was quan-
tified on the same four genotypes used to measure
fitness-linked life history traits and transcriptional pro-
files. In a split design, replicated clones were either
treated with antibiotics and exposed to the treatments
(germ-free) or directly exposed to the treatments (wild-
type) (Fig. 1). At the last instar, up to 20 individuals per
biological replicate per genotype and treatment were dis-
sected to separate the guts from the animals. Dissected
guts were flash frozen in liquid nitrogen and stored at –
80 °C.
Bacterial DNA for all experiments was extracted from

flash frozen guts, using the PowerSoil DNA Isolation Kit
MoBio (Thermo Fisher Scientific). Paired end 250 bp
amplicon libraries for the V1 region of the 16S rRNA
gene [82] were obtained using a 2-step PCR protocol
with 96 × 96 dual tag barcoding to facilitate multiplexing
and to reduce cross-talk between samples in down-
stream analyses [83]. PCR1 and PCR2 were conducted
using Q5 HS High-Fidelity Master Mix (New England
Biolabs) with the following cycling: (1) initial denatur-
ation for 10 s at 98 °C, followed by 25 PCR cycles con-
sisting of 30 s at 98 °C and 30 s at 64 °C or 66 °C
followed by an extension step of 30 s at 72 °C. QCs were
performed at both PCR steps. Excess primer dimers and
dinucleotides from PCR1 were removed using Thermo-
stable alkaline phosphatase (Promega) and Exonuclease I
(New England Biolabs). PCR2 amplicons were purified
using High Prep PCR magnetic beads (Auto Q Biosci-
ences) and quantitated using a 200 PRO plate reader
(TECAN) using qubit dsDNA HS solution (Invitrogen).
A standard curve was created by running standards of
known concentration on each plate against which sam-
ple concentration was determined. PCR2 amplicons were
mixed in equimolar quantities (at a final concentration
of 12 pmol) using a biomek FXp liquid handling robot
(Beckman Coulter). Pool’s molarity was confirmed using
a HS D1000 tapestation Screen Tape (Agilent) prior to
PE 250 bp sequencing on an Illumina MiSeq platform to
obtain 100,000 reads per sample and biological replica.
The Illumina reads were filtered with cutadapt [84]. The
primer sequences and the adapters were filtered and
reads shorter than < 50 bp were removed. Read pairs
with a minimum overlap of 50 bp were merged using
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PEAR v. 0.9.10 [85] and trimmed with FASTX-Toolkit v.
0.0.13 [86] to remove low-quality bases at both ends.
The filtered and trimmed reads were analyzed with
QIIME2 [87] to identify unique sub-operational taxo-
nomic units (sOTUs), using the deblur/denoise-16S op-
tion and the reference sequences from the SILVA
database (SSU release 132, with 99% sOTUs of full-
length sequences [88]).
We measured differential sOTU abundances using

DESeq2 v 1.22.1 in R [79]. We estimated the difference
among microbiota communities with PERMANOVA
using the package Vegan v 2.5-4 in R [34]. The diversity
estimates for the microbiome were calculated using
“Tools for microbiome analysis” in R v1.5.23 [89]. The
sOTU composition in different experimental conditions
was visualized using “Tools for microbiome analysis”
[89] and phyloseq v1.26.0 [90]. Low coverage (< 500
reads) and low abundance samples (< 10 reads), as well
as rare sOTUs (observed in < 2 samples), were excluded
from the downstream analysis. Moreover, biological rep-
licates showing less than 0.4 Pearson’s correlation within
genotype were excluded from the analyses (ca. 111
sOTUs per sample; data not shown).
To characterize the core gut microbial community in

D. magna, where “core” is defined as a taxonomic unit
with abundance larger than 1% within treatment, we
used the taxonomic classifier SILVA 132 with 99%
sOTUs similarity [91]. Taxonomic assignment for each
taxon was completed in QIIME2 [92] at different taxo-
nomic levels, from genus to phylum. The differences be-
tween mean values of relative abundances of each taxa
at various taxonomic levels were tested by two-way
ANOVA and Tukey HSD in R [75]. We calculated Alpha
(Shannon, Evenness, observed sOTUs number, and
Phylogenetic Distance) and Beta (Jaccard, Bray-Curtis,
unweighted UniFrac, and weighted UniFrac) diversity
between treatments and genotypes after correcting for
uneven depths of sequencing using QIIME2 [92]. All
samples were randomly resampled to achieve
normalization to the samples with the smallest number
of reads (13,439) prior to calculating diversity indices.
Significant differences among genotypes and treatments
in both indices were calculated using the Kruskal-Wallis
and the PERMANOVA test. Further, differences be-
tween treatments and genotypes (13.2/13.5-1/3.5-15/P-
IT) were quantified using Adonis, Anosim, and MRPP
using the Vegan package in R [93]. We predicted the
function of gut microbial communities in D. magna in
presence and absence of treatments (glyphosate and
Roundup) with the Tax4Fun package in R [94], using
the randomly resampled reads used for the estimates of
Alpha and Beta diversity. We assessed function similarity
between treatments using the Jaccard and Bray-Curtis
indexes. Statistically significant differences in functional

composition were quantified with Adonis, Anosim,
and MRPP. Furthermore, we applied two-way
ANOVA and Turkey test to identify significant KEGG
Orthology (KO) between pairs of genotypes within
treatment and between treatments and control. Sig-
nificantly different KO terms were mapped to KEGG
pathways and enriched pathways were identified by
Fisher’s exact test.

Correlations between transcriptome and microbiome
changes
We applied machine learning-based statistical analysis to
identify correlations between genome-wide transcrip-
tional changes and microbiota composition induced by
glyphosate and Roundup chronic exposures. The work-
flow and scripts for these analyses can be found at:
https://doi.org/10.6084/m9.figshare.13108049.v1. Before
the analysis, invariant genes and genes with high propor-
tion of missing counts across treatments were removed.
To reduce data sparsity, sOTUs were retained at the
genus level when they were present in at least 60% of
samples across treatments.
We applied Random Forest models (ensemble of deci-

sion trees), the Random Forest classifier, and the Ran-
dom Forest regression [35]. These models provide
reliable predictions even when handling noisy and sparse
data [95]. Furthermore, they capture information linked
to the interactions among different dataset features [96].
In the Random Forest Regression models, sOTUs were

the dependent variables and genes were the independent
variables. We regressed the two variables separately for
Roundup and glyphosate in a highly replicated manner
(each model was run 80 times). Each tree generated by
the ensemble model was fitted to minimize mean-
squared error (MSE), using cross-validation hyperpara-
meter tuning method (https://scikit-learn.org/stable/
modules/grid_search.html) with 100 random combina-
tions of parameters. The features with the lowest average
MSE across trees were selected if they contributed at
least 20% to the total model features. This threshold en-
sures that at least one gene of major effect contributes
to the model. The gene modules identified in this ana-
lysis were used in a functional analysis to identify the
pathways in which the proteins were enriched using two
complementary approaches as above: (1) Panther [81]
for the functional classification of genes from organisms
across the Tree of Life, based on more than 900 ge-
nomes. For this analysis, D. pulex orthologous genes
were used as background. Significant enriched pathways
and gene ontologies (GO) were selected after Bonferroni
correction; (2) in-house scripts for the identification of
KEGG pathways. We used OrthoDB to identify D. pulex
orthologs from D. magna genes. We identified non-
unique mappings for each D. magna gene on the KEGG
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pathways of D. pulex. We then use these data to weight
the confusion matrix for Fisher’s exact test and chi-
square test and correct P values for enrichment analysis.
Significant pathways were identified with FDR correction
(Benjamini-Hochberg method, P < 0.05).
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