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A Theory of Dynamic Selective Vigilance and Preference Reversal, Based
on the Example of New Coke
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Samuel J. Leven
For a New Social Science, 4681 Leitner Drive West, Coral Springs, FL 33067

Abstract

A neural network theory of preference reversal is
presented. This theory includes a model of why
New Coke was preferred to Old Coke on taste tests
but was unpopular in the market. The model uses
competing drive loci representing "excitement” and
"security." Context influences which drive wins the
competition, hence, which stimulus attributes are
attended to. Our network’s design, outlined in
stages, is based on Grossberg’s gated dipole theory.
Three sets of dipoles, representing attributes,
categories, and drives, are connected by modifiable
associative synapses. The network also includes
competition among categories and enhancement of
attention by mismatch of expectation.

Introduction: Modeling of Irrational Decisions

How rational are we? Tversky and Kahneman
(1974, 1981) established that many human decisions
do not maximize a measurable utility function.
Moreover, deviations from rationality show patterns;
for example, decisions among losses are more risk-
taking than decisions among gains. Since decision
irrationalities are repeatable, they lend themselves
to quantitative modeling. Yet models of these
effects lag behind models of other cognitive effects,
such as pattern classification. Tversky and Kahne-
man modeled their own data using a non-connectio-
nist theory whereby subjects maximize a nonlinear
function of expected gains and losses. However,
these authors did not explain how this function
arose in the underlying system.

Differential reaction to gains and losses shows
that the projected affective value of decisions
depends on expectations generated by the current
environment. Many neural networks compare
current and ongoing values of stimulus or reinforce-
ment variables (Grossberg, 1972; Sutton & Barto,
1981). We use Grossberg’s gated dipole theory, to
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be described below, because it accounts best for
stimulus duration effects in conditioning (see Gross-
berg & Levine, 1987). Grossberg and Gutowski
(1987) constructed a gated dipole model for Tversky
and Kahneman’s data, including the data on gains
versus losses. These authors captured the essence
of decision under risk despite basing choices on
maximizing a single function (affective value). Our
model is in the spirit of Grossberg and Gutowski’s
but adds effects not present in their model: dynami-
cally competing attractions to novel and to familiar
stimuli, and competition between drive loci.

Much of Tversky and Kahneman’s data involves
imagined monetary gains and losses, so their results
can be applied to economics. Leven (1987) argues
that optimization theory, which dominates economic
modeling, is not predictive and must be replaced by
theories that include affective factors. Leven and
Elsberry (1990) simulate "negotiations" between two
neural networks that contain both rational and
affective modules. We carry this work further by
studying a famous economic example: the failure of
New Coke in the market after it had defeated Old
Coke in double-blind taste tests. The work of
Tversky, Kahneman, and Grossberg readily suggests
a qualitative model of the Coke data. Network
instantiation of this model, however, led to a com-
plex combination of three sets of gated dipoles
representing attributes, categories, and drives;
competition among categories and among drives;
and associative learning of inter-dipole connections.
We first describe the Coke data in detail, then
develop our network in stages.

The Coke Data

When the Coca-Cola Company introduced New
Coke, it was certain of the flavor’s acceptance.
Tens of thousands of subjects had undergone highly
controlled taste tests. The new flavor had outscored
all its competition, including victory over Old Coke
by a margin of 2 to 1. Further tests hinted that less
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than ten percent of Old Coke drinkers would object
to the new flavor combined with the old name. As
most Amcricans know, the actual buying situation
had very different results. New Coke was so unpop-
ular that the company had to return Old Coke to
the market (Oliver, 1986).

Coca-Cola had asked people, "If New Coke were
introduced, would you like it?* But the influence of
dynamic emotional states means that mental pro-
jections of the future are often inaccurate (Holbr-
ook ef al., 1985). In the test situation, people based
preferences on the direct appeal of taste. In the
market, indirect emotional factors, such as memo-
rics associated with expected taste, were more
important than taste itself. Moreover, buying was
different from tests because the Coca-Cola Compa-
ny was so confident in its rescarch that Old Coke
was unavailable . The public’s reaction against
buying New Coke was a frustrative rebound. The
Coke label created expectation of a particular taste,
and of the secure feeling it evoked, which led to
frustratioa when this feeling was absent.

Results of Pierce (1987) support frustration
theory. Picrce compared responses to advertise-
ments of old and new versions of Coke by people
who had beecn habitual Coke drinkers and by
habitual drinkers of other drinks (such as Pepsi).
By a small but significant margin, habitual Coke
drinkers were more hostile to products they per-
ceived as New Coke than were non-Coke drinkers.

Fmstranvcreboundsane.nmﬂeofwmparmg
current with expected or ongomg reinforcement.
Just as cessation of a negative reinforcer (eg.
clectric shock) is positively reinforcing (provides
relief), cessation of a positive reinforcer, or its
absence when it is expected, is negatively reinforcing
(provides frustration). We will now review how
gated dipole networks model both effects.

Background: Gated Dipole Networks

How can a responsc associated with offser of
negative reinforccment become itself positively
reinforcing? To answer this question, Grossberg
(1972) introduced the network shown in Fig. 1. The
synapses w; and w, have a chemical transmitter that
is depleted with activity, Thcnnputhouldbc
shock, for example. The input I is noaspecific
arousal to both channcls y;-xy-X; and y,-x,-X .
Whllcshockuon,lcﬁchameiaamx,mdl
right channel activity x,, leading to nct positive
activity of the left channel output node x,. For a
short time after shock ccases, both channels receive
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cqual inputs I but the right channel is less depleted
of transmitter than the left channel. Hence, x, now
exceeds x,, leading to net positive activity of the
right channel output node x;, The active output
node excites or inhibits xs, thus enhancing or sup-
pressing some motor response. The network is
called a gated dipole because it has two opposite
("ncgative" and "positive”) channels that “gate"
signals based on amounts of transmitter. If the two
chanacls in Fig. 1 arc reversed in sign so the chan-
nel receiving input is positive, the network explains
frustratiom whea positive reinforcement cither
ccases or is absent when expected.

Y1 Y2

J |
Fig. 1. Schematic gated dipole. "+" denotes excita-
tiom, "-" inhibition. Other symbols are explained in

text. (From Levine, 1991, with permissioa of Law-
rence Erlbaum Associates.)

Transmitter depletion is not yet verified in many
actual synapses; the qualitative effect we model may
be based instcad om conformatiom changes at
membrane receptors (Changeux, 1981). However,
a network principle that models a range of cognitive
data can be uscful before its biological basis is
known, and its later verification is likely even if in a
different form than first proposed.

Network Modeling of Coke Data: Combining
Sensory and Motivational Dipoles

We build our network for modeling the Coke
data in several stages. The network has submodules



for our metwork architecture cam best be shown by
partially, thea modifying thoss motworks to fit
further details of the data.

Gated dipoles instantiate the idea of opponeat
processing, which applies to vision as well as moti-
vation. For example, there are pairs of opponeat
colors (.8 greea and red), and cach color is tran-
siently perceived after removal of the other. Grossb-
erg (1980) introduced dipoles whose channels
consist of "om" and "off” nodes eacoding presence or
absence of specific stimuli, thea joined channel pairs
for various stimuli into a dipole field . Leven and
Levine (1987) discussed how a dipole ficld could
embody competing attractions to previously rein-
forced stimuli (here, Old Coke) and to novel stimuli
(here, New Coke). If drive is high, or reward
signals strong, previously reinforced stimuli are
favored. If drive is low, novel stimuli are favored.
Leven and Levine’s first approximatioa to a model
of the Coke data treated testing as a low-motivatioa
state and buying as a high-motivation state, hence
explaining preference reversal betweean the two
contexts. They noted am analogy to some moakey
data on novelty preference.

Pribram (1961) compared normal rhesus moa-
keys and those with frontal lobe lesions in a sceae
with several objects. Successive objects are added
to the scene, unobserved by the monkey. Each time
a novel object is introduced, a reward (pcanut) is
placed under the novel object. When the monkey
has lifted this object a fixed number of times, the
next object is added. Pribram measured the num-
ber of errors (liftings of a familiar object) before
the moakey first selects the novel object. Froatally
lesioned animals are more attracted to novelty thaa
normals so make fewer errors. Fig. 2 shows the
dipole ficld used to model Pribram’s data, which
was simulated in Levine and Prucitt (1989). The

is approached.

The network of Fig. 2 incorporates two compet-
ing rules. The om channel corresponding to the
novel cuc is less than the oa channel for
the

i
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because humans with froatal damage tead to be less
goal-directed tham mormal humans (Fuster, 1989);
heace, their day-to-day life is closer to a "play” than
to a "scrious” situation.

Yet the network of Fig. 2 is inadequate to model
the Coke data for at least two reasons. First, in the
market, there was not a choice betweea New Coke
and Old Coke as in tests. Hence, relative value
attached by buyers to the two drinks must be



inferred indirectly from relative preference for New
Coke and for noa-Coke drinks (¢.g., Pepsi). Sec-
ond, consumers’ angry rcactioa to the change im
Coke was not based oa taste alome. As onc Coca-
Cola exccutive said later, "We were spitting oa the
American flag and didn’t know it." Hence, a realis-
tic model of the Coke data incorporates two com-
peting drives: one for taste, the other for a range of
feelings which we label "Security”; these will be
added below.

The network of Fig. 2 contains a node that
represents a reward signal. We can model frust-
rative rebound if we replace the reward node by an
entire gated dipole representing a specific drive.
Drive representations have been used in Paviovian
conditioning models (e.g., Grossberg & Levine,
1987). They are based on the theory that condi-
tioning involves learning an association not between
a conditioned stimulus (CS) and a specific response
or another stimulus, but between a CS and a posi-
tive or negative emotional value. They are analogs
of brain loci (mainly in the hypothalamus) for
hunger, thirst, sex, curiosity, efc.

In summary, sensory represeatation dipoles
model differences between novel events, whose
representations arc less depleted of transmitter, and
old events, whose representations are more deplet-
ed. Motivational (drive) representation dipoles mo-
del emotional value attached to changes in received
positive or negative reinforcement, such as occur
with relief or frustration. Hence, the next stage in
our Coke model is to joim sensory and motivational
dipoles (Fig. 3).

Combined sensory and motivational dipoles may
also account for conditioning phenomena such as
unblocking (Kamim, 1969). Blocking has been
simulated in neural networks (Grossberg & Levine,
1987; Sutton & Barto, 1981). If a bell, say, is paired
with shock and an animal learns a fear respoase to
the bell, then a bell-light combination is paircd with
the same shock, no fear is learned to the light. The
light is unblocked when the shock level paired with
the bell-light compound is unequal to the level
paired with bell alone. Since unblocking involves
associating a novel stimulus (light) and a changed
affective value, it may be modeled by the network of
Fig. 3.

Network Modeling of Coke Data:

Categorizations and Multiple Attributes

New Coke elicited strong reactions because of
how it was different from Old Coke, but also
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of how it was like Old Coke! The public

to a new taste combined with an old
. Pierce’s (1987) data show that the reaction
stronger when larger positive affect was at-
to the old taste. Hence, our modeling
becomes how to build a network to re-
to stimuli that coatain both a novel element
a familiar, significant clement. For example,
Robert Dawes (personal communication) has
discussed a network model of secing the Mona Lisa
with a mustache added. We find that picture gro-
tesque because the mustache mismatches expecta-
tions produced by the rest of the picture.
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Fig. 3. Combination of scnsory and motivational
dipoles. Dipole output for a sensory stimulus can
be conditioned to positive or megative reinforce-
ment, as shown by modifiable connections at top.

To deal with expectation, we refine our model so
that New and Old Coke are no longer single stimuli
but vectors of attributes, each attribute represent-
ed by its own gated dipole (Fig. 4). We use the
minimal set of attributes neceded: Coke Label;
Familiarity; Taste; Pepsi Label. The latter is intro-
duced to model the switch from New Coke to
competing cola drinks (lumped together as "Pepsi"
for simplicity), or else to avoidance of all soft
drinks, whea Old Coke was unavailable.

How docs this explain the data of Pierce (1987)
on habitual Coke drinkers versus habitual Pepsi
drinkers? If a network is to represent general
cognitive principles, it should also, if possible,
account for individual differences. Major behavioral



differences can arise from differences in one or a
few network parameter values. In Fig, 4, let weights
(in both directions) betweea the oa side of the
Coke Label attribute dipole and the positive side of
the motivational dipole be higher in one copy of the
network than in another. Thea the first network
models a (generic) habitual Coke drinkers, whercas
the second models a habitual Pepsi drinker. Analo-
gously, let corresponding weights to and from the
Pepsi Label attribute dipole be higher in the second
network. Because of feedback from drive to senso-
ry loci in the network of Fig. 4, the expected posi-
tive affective value from sceing the Coke label is
greater in the habitual Coke drinker. Hence,
frustrative rebound from mismatching expectations
generated by that label is also greater in habitual

Coke drinkers.
—l—_ N‘r g ;
z [
Coke Taste . T
Labe) Dipole = =
Dipole + .
i I'; o
— i l.| Iz g

MOTIVATIONAL

47~ ATTRIBUTES DIPOLE

Fig. 4. Extension of network of Fig. 3 to include
dipoles for each stimulus attribute, with inputs J; te
each. Circles represent sensory dipoles, not shown
in full here. Each sensory dipole has modifiable
reciprocal connections with positive and negative
motivational channel outputs, z, and z;.

At this point, we must revise our account of the
difference between testing and buying. To a first
approximation, we have treated testing as a "low
attraction to novelty. Yet when we look at attrib-
utes, what is actually different between the two
contexts is not the amount of motivation but rather
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important, and the socially leamed attractivencss
of the product much less so. Hence, the Taste
attribute (Fig. 4) plays a larger role in categoriza-
tions and decisions during testing than does the
Familiarity attribute. The Familiarity attribute, by
contrast, plays a larger role during buying,

Now we need a theory of context-based atten-
tional switches between attributes. Such a theory
includes multiple sensory dipoles and multiple moti-
vational dipoles (Fig. 5). Here, two dipoles are
labeled "Excitemesnt,” ie., desire for sensory or
acsthetic pleasure, and "Security,” ie., desire for a
scase of belonging, affiliation, or rootedness in one’s
society or relationships (cf. McClelland, 1961). We
posit competition betweea the positive sides of the
Excitement and Security dipoles in Fig. 5, and
assume that the “winner” of the competition changes
with context (For a history of relevant network
models, sce Levine, 1991, pp. 133-134). If feedback
dipole and the Taste attribute dipole, and betweea
the Security motivational dipole and the Familiarity
attribute dipole, are much stronger than cross-
sensory attributes arc atteaded to,

The network we simulate for a future article
makes two additions to that of Fig. 5, which are
omitted from our figures for space reasons. One
addition is category nodes. If habitual Coke drink-
ers attach positive affect to the Coke category as
well as the Coke Label attribute, this enhances
expectatioa of positive valuc from drinking any
Coke product, thus increasing frustratioa when New
Coke mismatches that expectation. Our current
network includes modifiable feedback between
category nodes and attribute nodes, in the manner
of ART networks (Carpenter & Grossberg, 1987).
tional dipoles. Heace, the affective value of a
category can differ from values of the category’s
excmplars (e.g., oac can love humanity and hate
people, or vice versa). In ART, the input vector is
compared with stored category prototypes, and
classified with any prototype that it mismatches to
less than a prescribed amount (vigilance ). Our
model posits that vigilance is dynamically feature-
sclective.  If, for example, the current attentional
bias favors the Familiarity attribute over the Taste
attribute, the nctwork is selectively sensitive to mis-
match with the Coke prototype in the Familiarity
dimension. The amygdala might be a brain locus
for such a bias mechanism (Pribram, 1991).



Our second addition is modulation by mismatch
signals of perceived time durations of inputs, which
was introduced by Ricart (1992). Ricart identified
the modulatory node with the midbrain locus
ceruleus, which produces norepinephrine and
focuses attention om significant or novel stimuli.
This node nonspecifically sharpens perception of
both stimuli and reinforcements after mismatch
generated by the attribute-category subsystem.

| 4 L
L?b: Taste Excitement
Bhaghs Dipole Dipole
Pepsl Familiarity \ |
Dipale Dipale Security
MOTNATM
A’ITRIH.ITES

Fig. §. Extension of network of Fig. 4 to include
competing motivational dipoles (shown as circles).
Darker lines indicate stronger connections.
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