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ABSTRACT OF THE DISSERTATION

Statistical Methods in the Social Sciences

By

Kino Zhao

Doctor of Philosophy in Logic & Philosophy of Science

University of California, Irvine, 2021

Professor Simon Huttegger, Chair

This dissertation is composed of projects on three aspects of gathering and learning from

data in the social sciences: drawing representative samples, taking valid measurement, and

making warranted inductive inferences.

Chapter one studies the challenge of drawing representative human samples. It is well

documented that most samples used by studies in psychology-related �elds are composed of

Euro-American undergraduate students. Most writers agree that this is a serious problem

for the generalizability of study results, but little improvement has occurred. By tracing the

history of sampling, I identify the scienti�c and statistical rationale of sampling as a method

of induction. I explain how the design-based approach, where to sample representatively is

to sample randomly, became dominant. I show that this approach faces too many practical

challenges within the social sciences to be useful as a guiding framework. In its place, I

argue that the model-based approach, initially disfavoured for its theoretical shortcomings,

is a better framework for the social sciences, because it allows the systematic integration

of multiple imperfect samples. Instead of relying on one general framework to provide `in-

principle' justi�cations to all cases, the model-based approach allows context and background

knowledge to inform practice.
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Chapter two discusses measurement validity in the social sciences. Through an examination

of the historical evolution of measurement and validity theories and the relationship between

them, I argue that we should reject the view that measurement should be about an attribute

that exists in the world in some robust sense, and that a pronouncement of measurement

validity is a vindication of such an existence. First, I argue that this view, while attractive,

has numerous theoretical di�culties and practical limitations. Next, I show that a rejection

of this view, exempli�ed by the modern argument-based approach validity, presents a better

perspetive in analyzing complex measurement problems in non-laboratory contexts. I con-

clude by pointing out that, based on the argument advanced in this paper, we should be

more skeptical of ontological claims made on the basis of valid testing alone.

Chapter three studies the problem of induction in the context of statistical learning theory.

I examine a claim in the literature that the Vapnik-Chervonenkis (VC) theorem, which

speci�es conditions under which a problem is machine-learnable, o�ers a response to the

problem of induction. I prove that the problem of when this learnability condition applies

in general is uncomputable. Hence this solution strategy fails. If statistical learning theory

is trustworthy at all, the justi�cation of this trust must be in parallel with other inductive

methodologies and, consequently, subject to the same challenges.

I conclude this dissertation by arguing that a naturalistic, practice-�rst approach to philoso-

phy of social science must pay attention not only to how a scienti�c method works in theory,

but also to how it has been changed to accommodate resource-limited contexts.
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Introduction

�Is there currently a crisis of con�dence in psychological science re�ecting an unprecedented

level of doubt among practitioners about the reliability of research �ndings in the �eld? It

would certainly appear that there is.� This sentiment, expressed in Pashler andWagenmakers

(2012), marks the beginning of the meta-scienti�c worry that is now known as the replication

crisis. From the apparent inability of the social psychology community to identify fraudulent

research (Stroebe et al., 2012) to reports of negative replication results denied publication

(Yong, 2012), discussions on Questionable Research Practices (Simmons et al., 2011; John

et al., 2012; but also Fiedler and Schwarz, 2016) and statistical misuse (Simmons et al.,

2011; McShane and Böckenholt, 2014) soon led to what Shrout and Rodgers (2018) called a

�disciplinary panic�. Scholars disagree not only on the solutions of the problem, but also on

its nature, extent, or even existence, with some calling for radical intervention while others

see it as a normal developmental phase of a young science (see, e.g., Pashler and Harris,

2012).

Laying at the heart of the mess is a series of previously underemphasized disagreements

over how methods in the social sciences are supposed to work. If concluding signi�cance at

p < 0.05 is arbitrary, is there a nonarbitrary case of signi�cance? What if every participant

in the study shows the same e�ect? Does it matter why they agree or who they are? What,

exactly, are we supposed to conclude when a replication study fails to reproduce? What are

we supposed to conclude when a replication succeeds?
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These questions are not foreign to philosophers of science. Since the very beginning, philoso-

phers of science have tackled problems such as how to gather evidence, what evidence to

gather, and how they support inference. Much of this discussion centers physics as the pro-

totypical science, glossing over any di�erences between physics and the social sciences as

signs of the immaturity of the latter.

Instead of force�tting the social sciences into a philosophical frame molded from physics,

pronouncing every misalignment as a sign of de�ciency or �complexity� of the social world,

this dissertation centers the social sciences. The chapters tackle three topics central to

social-scienti�c methodology: sample representation, measurement validity, and inductive

inference.

While these topics have been heavily debated in the context of the replication crisis in social

psychology, my emphasis is not on the crisis itself. As mentioned before, the �unprecedented

level of doubt�, whether or not it counts as a crisis, stems from the mismatch between expec-

tations and reality, and yet there is remarkably little agreement over what these expectations

ought to be. My main goal in this dissertation is to clarify these expectations in light of

recent challenges they have faced.

The dissertation contains the following chapters. Chapter 1 studies the challenge of drawing

representative human samples. It is well documented that most samples used by studies

in psychology-related �elds are composed of Euro-American undergraduate students. Most

writers agree that this is a serious problem for the generalizability of study results, but little

improvement has occurred. By tracing the history of sampling, I identify the scienti�c and

statistical rationale of sampling as a method of induction. I explain how the design-based

approach, where to sample representatively is to sample randomly, became dominant. I

show that this approach faces too many practical challenges within the social sciences to

be useful as a guiding framework. In its place, I argue that the model-based approach,

initially disfavoured for its theoretical shortcomings, is a better framework for the social
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sciences, because it allows the systematic integration of multiple imperfect samples. Instead

of relying on one general framework to provide `in-principle' justi�cations to all cases, the

model-based approach allows context and background knowledge to inform practice.

Chapter 2 discusses measurement validity in the social sciences. Through an examination of

the historical evolution of measurement and validity theories and the relationship between

them, I argue that we should reject the view that measurement should be about an attribute

that exists in the world in some robust sense, and that a pronouncement of measurement

validity is a vindication of such an existence. First, I argue that this view, while attractive,

has numerous theoretical di�culties and practical limitations. Next, I show that a rejection

of this view, embodied by the modern argument-based approach validity, presents a better

perspetive in analyzing complex measurement problems in non-laboratory contexts. I con-

clude by pointing out that, based on the argument advanced in this paper, we should be

more skeptical of ontological claims made on the basis of valid testing alone.

Chapter 3 studies the problem of induction in the context of statistical learning theory.

I examine a claim in the literature that the Vapnik-Chervonenkis (VC) theorem, which

speci�es conditions under which a problem is machine-learnable, o�ers a response to the

problem of induction. I prove that the problem of when this learnability condition applies

in general is uncomputable. Hence this solution strategy fails. If statistical learning theory

is trustworthy at all, the justi�cation of this trust must be in parallel with other inductive

methodologies and, consequently, subject to the same challenges.
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Chapter 1

Sample Representation in the Social

Sciences

1.1 Introduction

In 1936, the magazine Literary Digest set out to predict the US presidential election between

Alfred Landon and Franklin D. Roosevelt. They surveyed more than 10 million people, of

which 2.4 million responded, and concluded that Landon was going to win with 57% of the

votes against Roosevelt's 43%. Instead, Roosevelt won with 62% against Landon's 38%.

This infamous incident is repeatedly cited to highlight the importance of selecting a sample

that is representative. The Literary Digest employed a sampling procedure that favoured

wealthy citizens over poor ones and did not correct for the vast majority of people who did

not respond, resulting in a biased sample1.

1The popular story told in statistics texbooks is that the Literary Digest used its own subscriber list,
automobile registration and telephone books to choose its sample, and hence was biased towards wealthy
Republicans (e.g., Likert, 1948; Schea�er et al., 1971). This story is disputed by Bryson (1976), favouring
instead the explanation from nonresponse bias.
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The problem of sample nonrepresentation remains prevalent in the social sciences. For exam-

ple, Sears (1986) analyzed the sample composition of research papers published during the

year 1980 in three mainstream social psychology journals, Journal of Personality and Social

Psychology (JPSP), Personality and Social Psychology Bulletin (PSPB), and the Journal of

Experimental Social Psychology (JESP), and found the percentage of studies using American

undergraduate students as samples to be 70% for JPSP and 81% for both PSPB and JESP.

Their subsequent analysis of these journals for the year 1985 revealed no signi�cant change.

Arnett (2008) analyzed six prestigious psychology journals in di�erent areas for the years

2003-2007 and found that most of the samples are taken from the United States (68%), with

the remaining largely composed of people from other English-speaking countries (14%) and

Europe (13%). A closer look at JPSP in 2007 reveals that 67% of American studies had

samples consisted of undergraduate psychology students. More recently, Pollet and Saxton

(2018) report that 79% of samples in the journals Evolution & Human Behavior and Evo-

lutionary Psychology in the years 2015-2016 are from North America or Europe; moreover,

70% of the samples were either online samples or student samples. An analysis of three 2017

issues of Psychological Science by Rad et al. (2018) shows similar patterns.

The prototypical psychology sample, consisting of Euro-American undergraduate students,

has been coined as WEIRD (Western, Educated, Industrialized, Rich, and Democratic) by

Henrich et al. (2010b). Echoing researchers before them (e.g. Peterson, 2001, Wintre et al.,

2001), they argue that we have considerable evidence to believe that the WEIRD subjects

are very di�erent from other people whom these subjects are often taken to represent.

While most agree that a WEIRD sample is not representative, articulating the exact desider-

ata of a representative sample proves di�cult. In fact, some advocate abandoning the concept

�representation� altogether, preferring the more concrete concept of random selection. In this

paper, I argue that one major obstacle faced by the improvement of sample quality in the

social sciences is the unrealistic expectation of a randomness-based conception of sample rep-
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resentation, called the design-based approach. Instead, I argue that a model-based approach

to sampling o�ers a more realistic framework for e�ective assessment and improvement of

imperfect samples.

This paper is organized as follows. Section 2 presents a brief history of how, through the

seminal work of Jerzy Neyman (1934), random sampling superseded purposive sampling and

became the preferred method among survey samplers. Representative samples, according to

this framework, are ones generated through random selection. Section 3 points to di�culties

with random sampling in practice and how, at least in the context of social science, falling

short of the ideal standards result in systematic selection bias. Section 4 revisits the method

of purposive sampling, re-emerging under the names of �model-based� or �prediction-based�

approach through the works of Royall and Herson (1973). Based on this alternative approach,

I argue for the old purposive sampling idea where a representative sample is one balanced on

all relevant features. Section 5 discusses consequences of adopting a model-based perspective

of sample representation in the social sciences and make practical proposals for improvement.

Section 6 concludes.

1.2 Design-based Representation

The Norwegian statistician Anders N. Kiær is often credited as the �rst to bring sample-

based research � that is, investigative methods which utilize only part of the population �

to the attention of the western statistics community (Rao and Fuller, 2017; Smith, 1976;

Kruskal and Mosteller, 1980). Around the turn of the 20th century, Kiær delivered a series

of speeches at the annual meetings of the International Statistical Institute, advocating for

the use of samples as e�ective proxies for studying populations.
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The major source of skepticism Kiær faced was a lack of justi�cation for sample-based infer-

ence, called the �representative method� at the time, which is inferentially ampliative. Kiær

believed that we could identify a set of �rational selection procedures�, produce �miniature

populations�, and draw accurate conclusions without full enumeration. He justi�ed this ap-

proach empirically: he demonstrated that the sample-based survey results could be accurate

but did not provide a theory for why the process worked (Seng, 1951). Other statisticians

followed suit. Although few had comprehensive theories regarding why the representative

method worked, many were able to demonstrate, empirically, that it did. Sampling was

widely used in European government survey e�orts by the 1920s.

With the increased use of the representative method in survey work, a new point of con-

tention emerged between random and purposive selections. For our immediate purpose, the

di�erence between them concerns whether the selection of a sample needs to be sensitive to

the sample's composition. In random selection, the inclusion of each member into the sample

is governed by probability alone, which is supposed to be identical across all members of the

population. In purposive selection, the sampler aims to pick a �xed number of subjects with

di�erent characteristics so that the sample has the same proportions of those characteristics

as the population.

We can see that these two sampling approaches correspond to Kiær's two conceptions of

what a good sample should be. On the one hand, a representative sample should be drawn

through �rational procedures�, such as a random procedure that leaves no space for personal

bias. On the other hand, a representative sample should be a �miniature population� in

the sense of matching certain aspects of the population. The most natural way to achieve

this goal is to deliberately select samples to be like the population in desired ways through

purposive sampling. Although Kiær had both senses of representation in mind, they do not

always coincide. That is, a sample drawn through a rational procedure may fail to be a
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miniature population. Consequently, samplers prefer one sense often had to let go of the

other.

Although random and purposive sampling methods di�er practically, they were not seen as

direct competitors. Part of the reason may be that the dominant justi�cation for the use

of samples was still empirical � sampling with either method had been tried and true. In

a 1926 Report for the International Statistical Institute, the English statistician Sir Authur

Bowley distinguished the two sampling approaches and recommended them equally. All of

these were changed by Jerzy Neyman's 1934 landmark paper.

Neyman's paper made two important contributions to the �eld of survey sampling. First, he

provided a theoretical foundation for random sampling using his recently invented estimation

method of con�dence intervals. Second, he exposed an important �aw in purposive sampling.

Although not everyone was convinced by Neyman's theory of con�dence intervals2, most were

convinced enough to adopt random sampling as the superior method. Neyman's framework

remained unchallenged within statistics until at least the 1960s. It is still very much the

dominant paradigm among the social sciences today.

Neyman's de�nition of random sampling is elegantly summarized, in his own words, as follows

(1934, p.585-586, emphasis original)

Thus, if we are interested in a collective character X of a population π and use

methods of sampling and of estimation, allowing us to ascribe to every possible

sample, Σ, a con�dence interval X1(Σ), X2(Σ) such that the frequency of errors

in the statements

X1(Σ) ≤ X ≤ X2(Σ)

2In particular, Bowley and Fisher remained skeptical, see Brewer et al. (2013).
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does not exceed the limit 1 − ε prescribed in advance, whatever the unknown

properties of the population, I should call the method of sampling representative

and the method of estimation consistent.

There are two important claims of generality here. One of them is emphasized by Ney-

man, namely that the inference should hold regardless of the population distribution on the

characteristic in question. This means that the success of the inference does not depend on

assumptions made about the population. This generality resides in the heart of the sup-

posed superiority of random sampling over purposive sampling. As will be discussed further

in section 4, Neyman's primary criticism of purposive sampling is the fact that one would

need to make a number of assumptions, many of which are either rarely true or rarely known

to be true.

The other claim of generality is not highlighted or discussed much, which is the claim that

the method of sampling should allow us to �ascribe to every possible sample� this desired

property. In other words, it is the sampling design, rather than the sample itself, that

justi�es the inference. In fact, the justi�cation of the inference should not refer to the

speci�c characteristics of the sample at all. If an inference holds, it needs to hold for �every

possible sample� drawn with the same method.

By putting the burden of justifying sample-based inference on the sampling method alone,

to the explicit exclusion of referencing properties of the speci�c samples, Neyman's approach

to sampling clearly follows the �rational procedures� line of Kiær's advocacy. Here, random-

ization is considered as the core of �rational� design, and it is in virtue of the power of design

that the ampliative inference is justi�ed.

Neyman's �design-based� approach to sampling remained unchallenged for decades. Later

theorists developed more sophisticated schemes of sampling that allowed for uneven proba-
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bility of inclusion across the population, but the basic idea remained. Randomization is the

foundation of the representative method.

1.3 The Scienti�c Reality

According to the design-based framework, the inferential power of a sample comes from the

sampling design, where the gold standard is random or probabilistic selection3. Theoretically,

random sampling is often taken to contain two kinds of virtues. Smith (1983, p.394) explains,

The arguments for randomization are twofold. The �rst, and most important for

science, is that randomization eliminates personal choice and hence eliminates

the possibility of subjective selection bias. The second is that the randomization

distribution provides a basis for statistical inference.

I have explained that the statistical foundation of sampling is commonly considered to have

begun with Neyman's 1934 paper4, and yet sampling has been used widely before then. This

is because random sampling, as a form of rational procedure, has a lot of intuitive appeal.

A central aspect of random sampling is the idea that the selection of elements is governed

by probability, rather than scientists' intentions or other selection forces capable of causally

in�uence the conclusions drawn from the sample. For example, suppose a group of surveyers

is trying to estimate the average income of a country, then allowing the size of a person's

3I shall use the terms �random� and �probabilistic� interchangeably. Practically speaking, random se-
lection implies that every element of the population has an equal chance of being included in the sample,
whereas probabilistic selection allows that chance to di�er from element to element. However, probabilistic
sampling is almost always accompanied by a correction procedure where elements with greater chance of
selection are weighed less in analysis. Theoretically, the two methods are the same.

4It seems that other statisticians, such as Bowley, have attempted to provide mathematical foundations
for sampling before Neyman. However, Neyman does not discuss these alternative approaches in detail in
his 1934 paper, and his paper is widely considered as the statistical landmark (see, e.g., Rao and Fuller, 2017
and Srivastava, 2016). It seems reasonable to conclude that whatever mathematical foundations of survey
sampling existed before Neyman, whether or not they are adequate, have had limited historical in�uence.
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house to in�uence the probability of that person being included in the sample is going to

result in biased estimations. To guard against a tendency to preferentially sample people

with big hourses or small ones, one needs to make sure that the size of someone's house

cannot inform the probability of them being selected into the sample. The best way to

achieve this goal regarding not only house size but all other forms of in�uence is to make the

selection procedure maximally uninformative. Random selection is, at its core, a maximally

uninformative selection procedure.

This intuitive appeal of random selection relies on the premise that maximal noninformation

is su�cient in removing undesired interference to study results. As the phrase suggests itself,

maximal noninformation precludes outside factors from systematically a�ecting (�informing�)

a sample's composition. However, this does not mean that the undesired biases would not

occur.

To better appreciate this worry, consider again the problem of sample nonrepresentation

discussed in section 1. In their in�uential attack on WEIRD samples, Henrich et al. (2010b)

speci�cally argued that the worry with WEIRD samples is not simply that most of the

world's population is not WEIRD, but that the behaviours of WEIRD samples may di�er

substantively from the rest of the population. They speci�cally sited results from Segall

et al. (1966)5 on how people from some cultures are not subject to the Müller-Lyer illusion

and from Henrich et al. (2010a) on how people from di�erent cultures respond to the Dicta-

torship and Ultimatum Games di�erently as reasons to be skeptical of the generalizability of

results obtained from WEIRD samples. The point of contention from their critics is also that

many behaviours are not subject to cultural in�uence. For example, Gächter (2010) argues

that whether the use of student samples is problematic depends on the research question. In

5A reviewer has pointed out that the validity and interpretation of Segall's results have been disputed.
Indeed, it is a persistent di�culty to determine whether an observed di�erence is due to a di�erence in
sample composition, methodological variation, or a number of other factors deemed irrelevant. One goal of
the framework advocated in this paper is to help better systematize the variations in sample composition so
as to facilitate better hypothesis testing regarding the source of a variation.
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particular, since economic behaviours are taken to be universal, �any subject pool is in prin-

ciple informative about whether theoretical predictions or assumptions contain behavioral

validity� (p.2).

It is clear that the problem with biased samples is not so much that members of the sample

�look� very di�erent from members of the population. Instead, the worry is that these

apparent di�erences translate to unappreciated behavioural di�erences and so the results

obtained from the sample are not generalizable to the population. Similarly, the worry

with �subjective selection bias� is not so much that a bias results in members of a sample

more likely to have certain characteristics, but rather that these characteristics interfere with

drawing accurate conclusions from the sample.

This form of systematic bias often occurs as a result of �personal choice� in the sense of

preferential sampling, which may happen consciously or unconsciously. A researcher may

consciously choose to sample wealthier citizens as a way to in�ate the national average

income estimation. Alternatively, the researcher may unconsciously choose to sample only

those who are dressed nicely, leading to the same e�ect. From the perspective of drawing

conclusions from a sample, both forms of personal choice result in undesired systematic bias.

Random selection eliminates both sources of in�uence.

However, the same bias may also occur as a matter of chance. Even if the sampling procedure

is truly random, it is still possible that a particular sample happens to consist of members

who are wealthier than the national average. To see why this is the case, consider how, even

though a fair coin has a 50% chance of landing head, it is not the case that, for every 10 coins

I �ip, exactly 5 of them will land heads. If the coin is truly fair, the Law of Large Numbers

guarantees that, as the number of �ips goes to in�nity, the proportion of heads converges to

the true proportion � 50%. However, the Law of Large Numbers does not guarantee that the

true proportion will be reached at any �nite stage. In fact, it does not even guarantee that
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my estimation always improves with more �ips6. Similarly, random selection only guarantees

that, if the population is repeatedly sampled for in�nitely many times, then the average of

the sample means approximates the population mean. It does not guarantee that any single

sample will have the same mean as the population.

The procedure standardly used to address the problem of chance bias is post-strati�cation.

In strati�ed sampling, a population is divided into multiple mutually exclusive, collectively

exhaustive �strata�. Samples of di�erent sizes are drawn, randomly or otherwise, from these

strata. The resulting samples are weighed by the size of their strata relative to the population

and combined to form the �nal sample. In post-strati�cation, the process is reversed. After a

sample is drawn, it is partitioned into groups, often along some salient characteristics deemed

important by the researchers. The associated strata are reversely constructed, their relative

ratio computed from auxiliary full population data, and the groups weighed accordingly.

Consider the National Comorbidity Survey (NCS) as an example, which was launched in

the US as �the �rst psychiatric epidemiologic survey to administer a broadbased research

diagnostic interview to a nationally representative sample of the United States� (Kessler,

1994). The NCS uses a strati�ed, multistage area probability sample, which is common for

survey e�orts of its scale. The core sample contained 47.5% males. However, according to

the National Health Interview Survey (NHIS) of 1989, a full enumeration of the population

rather than a sampled survey, 49.1% of Americans were male. The NCS therefore post-

strati�ed their sample by giving more weight to results obtained from the sampled males

than that of the females.

6In certain special cases and with strong additional assumptions, a method may guarantee uniform
convergence, where the estimation is always improved with increased sample size. When that happens, one
can obtain an ε-δ bound on how far �o�� we can be for a given con�dence threshold. However, this option is
only open for �elds where it is easy to repeatedly, truly-randomly gather large samples, which is unrealistic
for the social sciences.
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It is worth noting that the NCS, despite adopting a method as close to random sampling

as is feasible, still feels the need to adjust data to compensate for sample imbalance. This

shows the limitations of random selection as a guard against chance bias.

More signi�cantly, the method of post-strati�cation does not really �t in the design-based

framework. Recall that the design-based conception of sample representation relies exclu-

sively on the power of the selection process to justify sample-to-population inference. The

idea is supposed to be that, as long as researchers adopt adequate sampling procedures, they

should not feel the need to also analyze sample composition.

Besides, the design-based framework does not provide guidance for how sample composition

should be analyzed. To see this, we can compare the NCS with similar sampling e�orts

from other countries. The NCS of America post-strati�ed against sex, age, marital status,

race, education, region, and urbanicity (Mickelson et al., 1997, p.1095); the German National

Health (GNH) survey post-strati�ed against sex, age (with a di�erent range), marital status

(in �ner categories), and employment status (Jacobi et al., 2002); the Australia National

Mental Health Survey (ANMHS), however, decided to not post-stratify at all (Henderson

et al., 2000).

In addition to the inconsistencies across similar survey e�orts, those that do post-stratify

provide very little reasoning as to why they decide on the characteristics that they do. Post-

strati�cation as a method depends on the existence of full enumeration demographics data

like the NHIS, which is often called �auxiliary data� or �organic data� in this context. The

existence of such data limits whether and how a sample survey can a�ord to post-stratify.

That said, post-strati�cation also re�ects conscious choices on the part of the research team.

For example, the NCS chose to post-stratify against the NHIS rather than the US Census

because �[the NHIS] includes a much wider array of sociodemographic variables for the

purposes of poststrati�cation� (Mickelson et al., 1997, p.1095). This is certainly not because

the US Census did not gather a lot of data. In 1989, the Census Bureau gathered information
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as diverse as age di�erences between bride and groom, prevalence of AIDS, immigrative

status, and average weekly expenditure (US Census Bureau, 1989). Instead, the US Census

gathered the wrong sorts of data, at least from the perspective of the NCS.

It is clear that researchers make judgments about which characteristic imbalance is worth

correcting in a randomly selected sample, and yet these judgments are rarely explicitly stated

or argued for. Indeed, there is no theoretical space within the design-based framework for

such corrections, so it only makes sense that corrections like these, when they do occur, are

guided more by intuition than by arguments.

The discussion concerning post-strati�cation has highlighted two important observations.

First, even the best random selection e�orts result in sample imbalances deemed worthy

of correction by researchers. The elimination of �subjective selection bias� guaranteed by

random selection is clearly insu�cient. Second, while post-strati�cation is frequently used

to correct for chance bias, the practice is not principled. This is because post-sampling

corrections of this form do not �t into the design-based understanding of how sampling is

supposed to work.

Worse still, large-scale survey e�orst like the NCS are relatively uncommon; most research

teams within the social sciences do not have nearly as much resources to employ anything

like an area probability sample over a nation. This is compounded by the fact that many

research projects within psychology, anthropology, and economics target the entire humanity

as the intended population. If random sampling over a country is di�cult, random sampling

over the entire human race is practically impossible. This is especially true when the study

procedures are very involved, such as in experiments, longitudinal studies, or when data are

collected qualitatively.

Another major obstacle for samplers in the social sciences is the problem of nonresponse.

When the sampled units are humans, there is always a chance that someone sampled will
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decline to participate. When that happens, the actual sample will di�er from the theoretical

sample envisionsed by design. Since nonresponse makes a probabilistically selected sample

e�ectively nonprobabilistic, it is a serious problem. Indeed, many believe that failure to

address nonresponse is the true culprit behind the epic failure of the Literary Digest poll.

The coping strategy developed in the 1950s, which continues to be the preferred strategy

today, is two-phase sampling. In the �rst phase, the preferred measurement procedure is

used for everyone theoretically selected in a sample. If some members of the sample do not

respond, then a second phase is carried out where a di�erent measurement procedure is used

to reach nonrespondents. The idea is that the alternative measurement, while less ideal in

other ways, may change the minds of nonrespondents. For example, the alternative method

may be a more resource-intensive in-person interview as opposed to a paper-based question-

naire, or it may be a shortened version of the questionnaire which takes less time for subjects

to complete. If the second phase elicits near-full response and the alternative measurement

methods are considered empirically equivalent, then the problem of nonresponse is fully

corrected. If signi�cant nonresponse remains at the second phase, researchers would often

assume homogeneity among nonrespondents and post-stratify as if second phase nonresponse

is undersampling. Unsurprisingly, nonresponse remains a serious challenge today.

When the sampling procedure cannot plausibly be construed as random, the design-based

framework ceases to provide guidance. Statistical foundations for the design-based approach,

such as Central Limit Theorems, rely on the conceptualizaion of sampled elements as random

variables. From this perspective, all non-random selection procedures are equally bad.

What this also means is that, if a study cannot obtain random selection, researchers lose any

sense of how they might still improve their sample. The essence of probabilistic sampling is

that every member of the population has a non-zero probability of being selected. Even if this

probability varies from member to member, post-sampling correction methods such as post-

strati�cation can adjust the weights such that the results are �as if� selection is truly random.
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However, if some members of the population have probability 0 of being selected, then there

is nothing one can do to make the data look as if those members could have contributed. One

cannot modify nonprobabilistic samples post hoc to make them probabilistic. I believe this is

the main reason that, despite wide recognition of the problem of sample nonrepresentation,

the proportion of studies employing undergraduate-only samples has not changed over the

decades.

In the absence of principled ways of improvements, convenience becomes a major driving

factor. Convenience sampling refers to the practice where members of the sample are chosen

because of ease of access and recruitment. The most common form of convenience sampling is

using undergraduate students at the same institution where the researchers are based. Other

forms include Amazon Mechanical Turk or community members recruited using posters or

email advertisements.

Unsurprisingly, convenience sampling is the most common form of sampling within the social

sciences. An analysis of sample composition in 5 journals in developmental science shows

that 78-88% of all studies published in years 2007-2011 that use American samples use

convenience sampling (Bornstein et al., 2013). Given the prevelance of undergraduate and

online samples within the social sciences, the same is likely true of other �elds as well.

In addition to being nonprobabilistic, convenience sampling often perpetuate a speci�c kind

of systematic bias. Consider, again, the use of WEIRD samples, where E stands for educated

and R for rich. It should not be surprising that people who are rich and educated are more

likely to have the leisure to participate in odd psychological studies. This is especially

true when the study o�ers very little compensation, as is the case in most resource-limited

academic contexts.

The prevalence of convenience sampling highlights an important feature of sample design

that is often overlooked in abstract discussions � sampling involves not only a decision about
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design, but also a series of actions associated with actually contacting and recruiting sub-

jects. Without an explicit intention to guard against this tendency, subjects who are more

�accessible� are likely going to dominate conveniently gathered samples. This is especially

problematic because subjects who are less accessible are usually such because of other forms

of marginalization. For example, one limitation identi�ed by the ANMHS is the noninclu-

sion of indigenous people who live in remote locations (Andrews et al., 2001). For another

example, the persistent underrepresentation of African Americans in samples used in clini-

cal psychology studies (Graham, 1992) is likely to be a major contributor to the persistent

clinical malpractice disproportionatelly experienced by this population (Hall, 1997).

To summarize, the design-based framework of sample representation, where random sampling

is considered the gold standard, faces two major problems in practice. First, while faithful

execution of random sampling can eliminate intentional selection bias, it cannot eliminate

chance bias. The scienti�c importance of chance bias can be witnessed by the wide use of

post-strati�cation as a correction mechanism. However, the design-based framework provides

no guidance for such corrections, which is why they are often carried out inconsistently and

with little justi�cation. Second, random selection is extremely di�cult to achieve in resource-

limited contexts. When random selection is out of the question, the design-based framework

is again silent on how a sample may still be improved. Consequently, researchers rely on

convenience as the dictating principle. Convenience sampling often introduces systematic

bias of a particular kind that are likely to compound existing social gaps.

1.4 Balanced sampling

To brie�y return to the history of sampling, recall that sample representation was used

in two distinct senses by Kiær and his immediate followers: as samples obtained through

�rational selection procedures� and as samples that are �miniature populations�. Since these
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senses do not always coincide, di�ering priorities have led survey samplers to two di�erent

paths: random sampling and purposive selection. Neyman's 1934 seminal paper convinced

the statistical community that random sampling rests on a solid statistical foundation, while

purposive selection relies on contentious and unrealistic assumptions.

In purposive sampling, one has a variable of interest, X, and a number of control variables.

For ease of illustration, assume there is only one control variable, Y . In the early form of

purposive sampling targeted by Neyman, X and Y are assumed to be linearly correlated.

Assume the characteristic Y is well known and easily measured, one can purposively select

members such that the sample distribution on Y matches that of the population7. This

sample is considered representative with respect to X.

Neyman's criticism of purposive sampling consists of two aspects. First, he pointed out that

the then-recent Italian sample survey, which used purposive selection, was vastly inaccurate

� this form of empirical argument has always carried a lot of weight with surveyers. Second,

Neyman pointed out that the assumption of linear dependence between X and Y is often

unrealistic. Random sampling, Neyman explains, is assumption-free.

As statisticians delved deeper into the foundation of sample-based estimation, they gradually

reazlied that random sampling, or at least inferences based on it, are not as straightforward as

Neyman had believed. For example, Godambe (1955) developed a uni�ed account of a class

of estimators commonly used around that time and showed that there does not exist a best

linear unbiased estimator in this general class, contrary to what Neyman had claimed. Later,

he showed how the likelihood function from the full sample data, theoretically understood to

include a set of labels together with associated variables of interest, provides no information

7Neyman's original analysis was based on strati�ed versions of random and purposive sampling. In his
rendition of purposive selection, each stratum was sampled such that the mean of Y in the stratum sample
equaled the mean of Y in the overall stratum. Allowing the means of Y to di�er among strata, Neyman's
description of strati�ed purposive sampling is equivalent to sampling from the entire population in a way
that the sample distribution of Y matches the population distribution of Y .
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on the non-sampled values and hence on the population total or mean (Godambe, 1966; see

also Rao and Fuller, 2017).

Against the backdrop of theoretical and practical challenges to random sampling, a new

approach was developed by, primarily, the statistician Richard Royall (Royall 1968, 1970,

1992; Royall and Herson, 1973). Royall's basic observation is that sample-based inference can

be conceptualized as a prediction problem, where results obtained from sampled individuals

are used to predict what results we would obtain from the unsampled part of the population.

According to the design-based framework, the inferential power of the sample comes from

the idea that, while these individuals were in fact sampled, the sample could very easily have

contained those other individuals instead � those ones we are trying to estimate. In other

words, the members in the sample are interchangeable with members outside of the sample

in some sense8. From a prediction perspective, however, the relationship between sampled

and unsampled individuals need not be nearly as strong. If I am using a person's wealth to

predict their life expectancy, I do not need to assume that the tax return data, say, I have

obtained from one person could have been from another person instead. What I do need to

assume is that the person whose data I have is su�ciently similar in relevant ways to the

person whom I'm trying to predict.

If the two tax returns are considered two instantiations of the same random variable, as in

the case of design-based random sampling, then the assumption that they should be similar

is in some sense warranted. However, if we know what it means for two people to be similar

in this context, then we can check whether they indeed are similar in an ad hoc way. For

example, if we think a person's country of residence a�ects their life expectancy, then we

8Exchangeability is a Bayesian perspective on how random sampling works. The design-based framework
is, by and large, developed and used under the frequentist paradigm, where random selection is de�ned as
i.i.d. (independent and identically distributed) sampling, which grounds the application of the Law of Large
Numbers. Exchangeability is presented here because it o�ers are more intuitive description of the inferential
process.
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would want to make sure that the sampled person resides in the same, or a relevantly similar,

country as the unsampled one.

This way of understanding sample-based prediction leads to the form of purposive sampling

targetted by Neyman � if we believe that matching distribution of Y between sample and

nonsample ensures that the individuals from these two groups are similar, then we should

sample to match distribution of Y . If Y is indeed the only characteristic correlated to X,

then the resulting sample would be a �miniature population� in Kiær's sense � it mirrors the

population in a way relevant to the study target, X.

A major contribution by Royall is to develop a more general account of this style of inference

where a sample that does not already match the population on the entire distribution of Y

can be used in similar ways with extra assumptions. For example, in ratio estimation, the

ratio between X and Y is considered constant along di�erent values of Y . Suppose a person's

wealth and their life expectancy are positively linearly correlated and that the sample we

have consists mostly of people wealthier than the national average. In this case, we can

compute the slope of the trendline relating X and Y from our sample of wealthy subjects

and extrapolate this information for poorer ones. If we know the national average wealth,

we can estimate the national average life expectancy accordingly. All of this is done without

referencing the sample gathering process.

As is evident from the above example, this approach, called the model-based or prediction-

based approach, relies on a number of auxiliary information. We need to �rst identify

one or some control variable(s) Y , with the assumption that they relate to X strongly

enough to serve their intended function. We also need certain kinds of population-level data

concerning Y . If we cannot match Y across the entire distribution � which is almost always

true in practice � we will need to make assumptions concerning the nature of the relationship

between X and Y . In the case of ratio estimation, the model requires a linear dependence
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between X and Y that passes through the origin. With increased computational power,

more complicated dependence relationships can be accommodated.

With as many assumptions as needed in even the simpliest cases, the problem identi�ed by

Neyman is a serious one. Just as we may be wrong about the relationship between X and Y

being linear, we may also be wrong about any other assumed nature of this relationship, or

that they are related at all. This problem is one of model misspeci�cation, which is always a

challenge in model-based inference. Indeed, model misspeci�cation, especially the kind that

is di�cult to detect but can signi�cantly bias the resulting estimation, has been the major

challenge to the model-based approach (Hansen et al., 1983)9.

Royall and Herson (1973) showed that sample balance can protect against model misspec-

i�cation. Their de�nition of sample balance is as follows. Suppose Y1 . . . Yn are all the

variables upon which X is dependent. Then a balanced sample is one where the mean of

each Yi (1 ≤ i ≤ n) of the sample equals that of the population. If a sample is balanced in

this way, then many model-based estimators retain their optimality and unbiasedness under

many instances of model misspeci�cation10.

Model misspeci�cation remains a threat as long as sample balancing is practically di�cult.

In the social sciences, researchers often choose to studyX precisely because they do not know

how it relates to other variables. Questions of model misspeci�cation and sample balance

are intrinsically part of the unknown. In other words, if researchers knew that the model

was adequate or that the sample was balanced, they would not have conducted the study in

the �rst place.

9A design-model hybrid approach, called model-assisted sampling was developed not long after the
development of the model-based approach. The hybrid approach aims to use properties of random selection
to help guard against model misspeci�cation (Cassel et al., 1976; see also Brewer, 1999). I will not discuss
the hybrid approach for two reasons. First, the importance of purposive balancing, which is my main
thesis, is equally emphasized in both the model-based and hybrid approaches. Second, the guarding power
of the hybrid approach against model misspeci�cation only appears in large samples with relatively good
randomization, which is not part of my target.

10These estimators are approximately unbiased if the sample is approximately balanced.

22



The immediate consequence of this observation is that, like random sampling, the model-

based approach does not o�er an easy route to sample representation in the context of

resource-limited social sciences. This should not come as surprise, however, as a change in

perspective is not supposed to magically solve an intrinsically di�cult problem. The bene�t

of the model-based approach is that it provides a framework capable of guiding sample

improvement in systematic ways.

Recall that one important shortcoming of the design-based framework discussed in the previ-

ous section is that, once a research team cannot obtain probabilistic sampling, it is di�cult

to see any other ways of improvement. In the absence of such principled guidance, con-

venience becomes the dominant consideration, leading to systematic bias. The bene�t of

the model-based framework is that one can explicitly state all the assumptions necessary to

support the inference in question and discuss the evidence we have of them.

Return to the example of a person's wealth and life expectancy. In order to propose that our

ratio estimator based on a biased sample of wealthy individuals is adequate in estimating the

national average life expectancy, we need to make the following assumptions. First, variation

in wealth accounts for most of the variation in life expectancy. Second, the relationship

between wealth and life expectancy is positively linear, with the regression line passing

through the origin. Third, our sample of wealthy individuals, albeit biased, contains enough

data points to accurately estimate the slope of the regression line. Fourth, our information

regarding the national average personal wealth is accurate.

Once explicitly laid out, skeptical researchers can challenge these assumptions methodically.

For example, some may argue that wealth has only limited in�uence on life expectancy, or

that the in�uence is moderated by the nature of the person's job. Others may argue that

the contribution of wealth to life expectancy has a diminishing marginal return, where the

increase in wealth produces less impact for wealthier individuals than for poorer ones. On
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the one hand, each of these challenges cast doubt on our claim that the ratio estimator is

adequate. On the other hand, each of these doubts can be addressed with auxiliary evidence.

The same thought process can be used for preemptive improvements of samples, too. For

example, I may believe that, in addition to wealth, the number of children a person has

also predicts their life expectancy. If such information is not di�cult to obtain, I may

decide to have my sample of wealthy individuals balanced on the number of children they

have even if I do not have perfect evidence concerning the nature and extent of the e�ect

of children, with the knowledge that this additional act of balance is always bene�cial.

Furthermore, I can even perform a kind of cost-bene�t analysis between convenience and

theoretical improvements. Suppose, for example, that I have reasons to believe that the

relative importance between job type and number of children to a person's life expectancy

is comparable, and yet information regarding job type is much more di�cult to obtain. I

may choose to balance my sample against the number of children but not job type. This

will make my inference less than perfect, but still better than using wealth alone.

This style of thinking is already present in the use of post-strati�cation, if only implicitly.

Recall that post-strati�cation is a method aimed at balancing an already-drawn sample along

some selected characteristics. The method is widely used in the design-based setting, but

receives no theoretical guidance from the framework. Consequently, the choice of which

characteristics to post-stratify against tends to be inconsistent across similar survey e�orts.

From the model-based perspective, however, post-strati�cation makes perfect sense. Indeed,

ratio estimation from a biased sample can be seen as a form of post-strati�cation (Smith,

1991).

From the model-based perspective, researchers should post-stratify against characterstics

they believe to be statistically relevant to the target variable. Limited by the availability

of auxiliary data, researchers may choose to post-stratify against only variables they believe

to contribute signi�cantly or feel that they have strong enough evidence for believing so.
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Di�erences in such subjective thresholds can lead to inconsistencies in post-strati�cation

decisions across similar survey e�orts, as observed.

To summarize, model-based inference in sampling relies on assumptions concerning the re-

lationship between control and target variables. To guard against possible inaccuracies in

these assumptions, a sample should be balanced, either through purposive design or post-

strati�cation. An ideally balanced sample � one that is representative in the �miniature

population� sense � guards against many forms of model misspeci�cations, whereas an ap-

proximately balanced sample approximately guards against model misspeci�cations. The

adequacy of the model-based framework is attested by its ability to account for both the

intuitive justi�cation and the practical inconsistencies observed with post-strati�cation.

In extremely resource-limited cases, even an approximate balance may not be feasible. Sup-

pose I am using a sample to study how much people, in general, are willing to share their

newly acquired wealth with a stranger. I may have some suspicions, evidentially justi�ed

or not, that certain characteristics could a�ect the extend of giving in a systematic way.

For example, perhaps those who have gone through �nancial hardships themselves are more

likely to empathize and share with strangers. Note that these suspicions appear a lot like

independent variables in an experiment � indeed, one could systematically study altruistic

behavioural di�erences between the rich and the poor. However, even when between-group

di�erences are not of theoretical interest, cross-group balance is still important from the

perspective of sample representation.

Nevertheless, I may not have a good understanding of how levels of wealth a�ect altruistic

behaviour or a feasible way of balancing my sample across levels of wealth distribution.

Moreover, it is highly likely that, even if wealth plays a role, its relationship with altruism

accounts for only a small proportion of the total variation, and I may not have any idea at

all what other variables are worth controlling for.
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Situations like these are common in the social sciences. While balancing the sample against

one more variable takes us closer to the ideal of full representation, controlling variables

that only account for a minority of the total target variance is not su�cient to eliminate

systematic bias. However, the bene�t of the model-based framework is not about meeting

the same standard with less content, but rather documenting and systematizing available

and unavailabe information in a way that makes assessment possible.

Suppose I am able to secure participants at the top and bottom levels of the wealth hierarchy.

This act of balancing accounts for wealth if wealth is linearly related to altruism, but not if

they are quadratically related. If later research �nds the relationship to be quadratic, then

others can reasonably question the accuracy of my results. Similarly, if later research �nds

that age, a variable I have not controlled for, is also statistically related to altruism, then

that would similarly constitute a weakness of my initial estimation.

More importantly, reasoning like above allows for better synthesis of similarly aimed re-

search. Suppose I conduct a study on altruism with a sample controlling for wealth only,

and another research team conducts a similar study controlling for age only, and that our

results are very similar. The model-based framework allows us to infer that, if someone

had drawn a sample balanced on both wealth and age, they would have also gotten similar

results. While multiple nonprobabilistic samples cannot be combined to form a probabilis-

tic sample, multiple samples balanced in di�erent ways can be combined to form a sample

that is balanced on all of those ways. The model-based framework, therefore, allows for a

systematic integration of resource-limited studies.
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1.5 Sample representation in the social sciences

In an attempt to address the problem of questionable research practices in psychology, Simons

et al. (2017) proposed that research papers should be required to include �Constraints on

Generality� (COG) statements in their methods sections. They describe their vision as

follows (p. 1124),

A COG statement speci�es your intended target population and the basis for

believing that your sample is representative of it; it justi�es why the subjects,

materials, and procedures described in the method section are representative of

broader populations.

Focusing on the sampling aspect alone, the proposal provides little guidance asside from

justifying why the sample is representative. In this paper, I have discussed two senses of

sample representation: the design-based approach where a representative sample is one drawn

randomly and the model-based approach where a representative sample is balanced on all

features relevant to the research target. I have further argued that the ideal versions of both

senses of representation is infeasible for most research groups. Demanding a research team

to explain why their sample, gathered with severe resource limitations, is representative is

unlikely to lead to tangible improvements. We need proposals that are more feasible for

small-scale research e�orts.

Despite the dominence of the design-based framework in the social sciences, the idea that a

representative sample is one that is balanced on relevant features is not foreign. Studies that

use samples often report participants' demographics, which is how the literature was able to

detect the lack of sample representation in the �rst place. However, few, if any, document

reasons for why they choose to report the type of demographics that they do. As in the

case of post-strati�cation, it seems reasonable to suppose that researchers are making these
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decisions based on the intuition that a more balanced sample is a better sample. If we take

a model-based perspective, we can begin to unpack these implicit assumptions and question

their adequacy.

Because of the dominance of the design-base framework, most metascienti�c studies on

sample representation focus on sampling method rather than sample composition11. Never-

theless, a few studies have examined the practice of demographics reporting. In an analysis

of all studies published in four pediatric psychology journals in 1997, Sifers et al. (2002)

reported that �participants' ages, genders, and ethnicity were reported at moderate to high

rates, whereas socioeconomic status was reported less often�. Of the 260 papers they ana-

lyzed, gender was reported in 86.2% of the papers, whereas SES was reported in 46.5%. A

similar review of studies published in Psychological Science in 2014 found that, while gender

is reported in 75% of the studies, education levels is reported in only 52%, race/ethnicity is

reported in 20%, and SES in only 8% (Rad et al., 2018).

Reporting sample demographics, even without explicit e�orts at balancing or post-strati�cation,

allows later researchers to better assess the overall coverage of the literature. That said, ask-

ing researchers to report �as many demographics as possible� is also infeasible. A lengthy

demographics questionnaire attached to all studies is likely to cause cognitive fatigue in

participants, harming study validity. There are also privacy concerns over potential reiden-

ti�cation through aggregated demographics data.

In other words, the control over sample demographics, be it actual balancing or mere report-

ing, requires deliberate planning. This is especially true in studies with small samples that

are all gathered from the same location and through the same method, both of which in-

11Although the acronym �WEIRD� refers to a set of demographic features, the metascienti�c data Henrich
et al. (2010b) relied on primarily concerned where samples were drawn, e.g., from undergraduate psychology
classes at the researchers' universities, supplemented by secondary data on the demographics of students of
such universities.
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strinsically limit the diversity of the sample. Consequently, researchers need to be deliberate

in choosing which control variables to report.

According to the model-based framework, an estimation is unbiased just in case all of the sta-

tistically relevant variables have been controlled for. This means what variables are worth

controlling will change depending on what the research target is12. Instead of asking re-

searchers to always report as many control variables as possible, it is more e�ective to report

only a few that are considered statistically relevant to the target and explicitly justify them

as such.

Furthermore, to assess the balance of a sample, researchers need auxiliary data concern-

ing population-level composition. Balance is important for any study aimed at sample-

to-population generalization, even when demographics is not part of the research interest.

Consequently, researchers of human subjects in any discipline should pay attention to how

individual characteristics systematically a�ect behaviour, as well as how such characteristics

are measured in full enumeration survey e�orts. Sociologists are beginning to notice the

mismatch between the changing societal understanding of sex and gender and the tradi-

tional ways of measuring them (Westbrook and Saperstein, 2015; Hart et al., 2019). Similar

forms of close scrutiny of the methodology and assumptions underlying demographic surveys

should become a bigger part of all areas of the social sciences, not just demography.

12Interpreted from this perspective, the preferential reporting of gender as a control variable brings up a
series of questions concerning the presumed roles (and the presumed univocality of such roles) gender plays
in shaping behaviour. Similar observations can also be made about the overreporting of some demographic
variables and the underreporting of others. Indeed, since design-based principles cannot guide reporting or
poststrati�cation, culturally entrenched ideologies often substitute for this role. The philosophical implica-
tions of this dynamic are beyond the scope of the current paper but will be the subject of future work.
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1.6 Conclusion

The social sciences face a persistent problem of sample nonrepresentation with no trend

for improvement. I believe this is due to a lack of feasible proposals for resource-limited

contexts. By tracing the history of sampling, I showed how the design-based framework for

sampling where random selection is the gold standard, although good on paper, provides little

practical guidance when the gold standard cannot be achieved. In contrast, the model-based

framework provides a systematization of all assumptions, allowing them to be challenged

and defended methodically. It also o�ers guidance on how small-scale studies with imperfect

samples can be integrated for greater understanding.

Accordingly, I have made two practical proposals for the improvement of sample representa-

tion in the social sciences. First, instead of inconsistently reporting a more-or-less identical

set of sample demographics, researchers should deliberately select a few that they believe to

be statistically relevant to their research target and explicitly justify them as such. Second,

there should be greater communication between scientists studying human behaviour and

demographers designing full enumeration survey e�orts.
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Chapter 2

Measuring the Non-Existent: Validity

Before Measurement

According to the latest edition of the Standards for Educational and Psychological Testing

(2014), published collaboratively by major psychology and education associations and repre-

senting the �the gold standard in guidance on testing in the United States and in many other

countries� (American Psychological Association website), validity is �the most fundamental

consideration in developing tests and evaluating tests� (Standards, p.11). Yet the need for

a theory of validity distinct from any theory of measurement should strike a naive reader as

odd: what is a theory of how to measure if not also a theory of how to measure well?

Motivated by this question, the present paper explores the changing conception of validity,

its relationship with theories of measurement, and what this dynamic means for ontology.

To give a brief preview, validity played no role throughout the development of the Rep-

resentational Theory of Measurement and meant little more than generic endorsement of

test quality in early psychometric theories. The �rst major shift came with Cronbach and

Meehl's (1955) in�uental paper on construct validity, published as a kind of philosophical
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supplement to the 1954 Technical recommendations for psychological tests and diagnostic

techniques, the precurser of the Standards. The construct validity program attempted to

provide a metaphysical foundation for theories of measurement � at least as metaphysical

as is allowed by the logical empiricist framework, from which this foundation derives. Later

I will show how both the perceived need of a metaphysical foundation of measurement and

the robust theorizing that followed were responses to a set of epistemic problems ubiquitous

to all forms of measurement. The construct validity program eventually failed, partly due

to the decreased popularity of logical empiricism, but also partly due to practical di�culties

associated with the broadened use of tests. Its replacement, sometimes called the argument-

based approach to validation, insists that validity is not about measurement at all, but what

we do with measurement results, a position still disputed today.

Along this historical narrative, I will argue that validity theory's shift away from measure-

ment represents a radical reconceptualization of the metaphysics of measurement, one that

allows us to know what it means to measure well before we know what it means to measure.

While this picture may sound counterintuitive, it stands in better coherence with other con-

temporary philosophical theories of measurement, particularly Hasok Chang's re-analysis of

operationalism and Theodore Porter's theory of quanti�cation as technology.

Insofar as the validity-before-measurement picture is possible, a natural question will arise

concerning its scope of application. One temptation, which I will resist, is to draw a line

between the social and the physical sciences: the physical sciences do not need validity

theory; the social sciences do. However, rejecting this crude dichotomy is not part of my

main thesis. Instead, my emphasis will be on what the validity-before-measurement picture

tells us about the nature of measurement-based evidence. In particular, I will argue that the

possibility of having validity theories without measurement theories shows that having valid

measurement is insu�cient in supporting a kind of ontological claim about the world that is

sometimes made on grounds of valid measurement alone.

32



The paper is organized as follows. In section one, I review pre-1955 measurement theories,

which were early forms of the Representation Theory of Measurement (RTM) and Classical

Test Theory (CTT). I explain how both theories conceptualize measurement as a sharing

of structure between an attribute under measure and the number series. To measure is to

use numbers to represent intensity of the attribute, which is legitimate in virtue of shared

structural properties. Measurability is thus understood as binary � to measure is to measure

well; to measure poorly is to fail to measure at all. Validity is thus little more than an

endorsement of the success of a measurement according to a measurement theory. I end this

section by highlighting how the inadequacy of this simple picture of measurement in dealing

with what Chang (2004) calls �the problem of nomic measurement� leads to an increased

recognition of a need for more sophisticated metaphysical theorizing about measurement,

which the construct validity program aimed to supply.

In section two, I discuss how validity theory struggles to balance theoretical concerns with

practical limitations. The construct validity program sees validation as a process of using

measurement to con�rm a �strong theory� of some construct, which many areas in the social

sciences do not have. In essence, the tension between �strong� and �weak� programs of

construct validity re�ects the same problem validity theory has always faced: we would like

a valid test to both accurately re�ect the structure of the world and be useful for some

practical purpose, but attempts to meet both goals simultaneously have led to inconsistency.

The construct validity program tried to prioritize the epistemic goal, but the pragmatic loss

proved too high a price. Instead, advocates of the contemporary argument-based approach

to validation choose to prioritize the pragmatic goal, thus marking a complete separation

between measurement theory and validity theory.

In section three, I explore historical and sociological studies of measurement as a social

activity. That is, there are important cases where the nature of a construct is �xed by

pragmatic measurement choices, which are in turn guided by social, rather than epistemic,
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concerns. I argue that these circumstances call for measurement theories not built on the

assumption that measurement happens only after the identi�cation of a construct with an

objective nature. Instead, we need to conceive of measurement as creative of the construct.

The argument-based approach to validation provides important guidance by allowing validity

theory to come before measurement theory.

In section four, I consider philosophical and methodological consequences of the observations

made throughout this paper. Because it is possible for a test to be valid without measuring

something that has test-independent ontology, the existence of valid tests alone should not

count as evidence towards the test-independent ontology of whatever is under measure. I

conclude with remarks on the relevance of my thesis to contemporary scienti�c debates

around intelligence and predictive machine learning.

2.1 To Measure is to Measure Well

The �eld technically known as (Mathematical) Measurement Theory did not start as a theory

of measurement, but as a theory of numbers. In 1887, the physicist Herman von Helmholtz

published a paper titled Zählen und Messen (1887/1930), where he set out on a Kantian

endeavor to found arithmetic in experience. He developed an axiom system of the positive

integers based on the act of counting, and observed that discrete objects were not the only

things �countable� in this sense. Attributes of objects, like length and weight, can also be

counted, in the sense that they obey the axioms of counting. These attributes are deemed

measurable and called magnitudes.

Although Helmholtz's theory of numbers did not gain much popularity1, the idea that mag-

nitudes and numbers obey the same set of axioms, which is what allows numbers to repre-

1Dedekind and Cantor opposed to Helmholtz's Kantian leaning, and Frege disliked his empiricism. See
Darrigol (2003).
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sent magnitudes, was taken up by mathematicians interested in structural similarity. With

Hölder's axiomatization of isomorphism (1901/1996-7), an equivalence relation of structures,

Helmholtz's theory of countability-as-isomorphism came to be seen as a theory of the mea-

surability of attributes. According to the resulting Representational Theory of Measurement

(RTM), an attribute is measurable just in case it is representable by numbers, and it is

representable just in case it shares important structural properties with numbers. But which

structural properties are important?

Norman Campbell, a physicist sometimes credited as the pioneer of modern measurement

theory, argued that additivity was the de�ning feature of measurability, since additivity

underlied the recursive de�nition of numbers (Campbell, 1938). This was a problem for

psychologists: few, if any, psychological sensations admit a physical additive (or concatena-

tive) procedure. In 1932, the British Association for the Advancement of Science (BAAS)

appointed a committee to discuss the measurability of sensations. The committee remained

undecided in its 1939-40 Final Report, with Cambell being its most outspoken and prominent

voice against the measurability of sensations.

The most famous response to the Final Report was the psychologist S. S. Stevens' 1946

seminal treatment of scales. In a nutshell, Stevens argued that Campbell's insistence on ad-

ditivity was dogmatic and unjusti�ed. While additivity is an important property of numbers,

there is no reason to prioritize it over other properties, such as orderliness. Attributes shar-

ing other properties of numbers should also be deemed representable, so long as we clearly

note the limitations of such representations.

Stevens' insight was quickly adopted and extended by mathematical psychologists to form the

mature RTM. Despite its mathematical complexity, the basic ideas remained the same: an

attribute is measurable just in case it shares certain properties with numbers, and to measure

the attribute is to represent those properties with numbers. In other words, measurability

is binary � to measure is to measure well, because to measure poorly is to fail to measure at
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all. Insofar as validity is about the success of measurement, validity theory was just a part

of measurement theory.

In addition to RTM, the �rst half of the 20th century also bore witness to another founda-

tional idea: mental testing. In 1904, Charles Spearman published a paper titled �General

Intelligence,� Objectively Determined and Measured, in which he reported a number of small

scale studies on how children's judgments of pitch, brightness, and weight correlated with

their school performance, and developed the method of factor analysis to �objectively mea-

sure� intelligence. He took great care in reviewing prior literature and reporting study proce-

dures, but spent no time worrying whether what he had achieved was indeed a measurement

of �general intelligence�.

Despite this omission, Spearman's work on intelligence gave rise to both of psychometrics'

major paradigms: Classical Test Theory and Item Response Theory. Although psychomet-

rics has had little interaction with RTM2, the underlying rationale can be put in similar

terms: the dominant view at the time, which Spearman adopted and perpetuated, was that

intelligence is an attribute which everyone possesses to some comparable degree. In other

words, intelligence admits a total order. Since numbers also admit a total order, using

numbers to represent intelligence is legitimate.

It is di�cult to assess how much people challenged the assumption that intelligence is an

objectively-existing, linearly-rankable attribute people possess. In 1923, E. G. Boring, exper-

imental psychologist and Stevens' long-term collaborator, published an article defending the

view that �measurable intelligence is simply what the tests of intelligence test�, suggesting

the presence of at least some skepticism. Similar to Spearman, Boring's main argument was

2The lack of interaction between RTM theorists and psychometricians has been called �the revolution
that never happened� (Cli�, 1992), an observation concurred by others who have studied this period of
history (Michell, 1999; Borsboom, 2005). My contention is that RTM, with its straightforward metaphysics
and lack of a validity theory, no longer meets the need of contemporary testers. In fact, Item Response
Theory, the dominant theory in modern psychometrics, is also largely ignored by �eld testers (Borsboom,
2006), for I believe to be the same reason.

36



that since people's relative rankings in score tend to remain stable across multiple mental

tests, the aggregated ranking of test scores is objectively sound. However, it was not clear

why the soundness of test score rankings should imply that intelligence is also rankable in a

similar way and that the two rankings should correspond � both assumptions are necessary

for the claim that test scores measure intelligence. It appears that Boring was at least some-

what conscious of this omission, since he provided something like a pragmatic argument for

the fruitfulness of simply asserting that intelligence shares an underlying structure with test

scores until further scienti�c observation tells us otherwise.

The problem Boring ran into was what Hasok Chang (2004) calls the problem of nomic mea-

surement : measuring any unobservable quantity relies on knowing the precise mathematical

relationship between the quantity in question and some observable indicator, which we can

never know because the quantity under measure is unobservable. In this case, test scores

measure intelligence only under the assumption that intelligence is totally orderable like test

scores, which we can never test.

Like many others who ran into the same problem when struggling with measurement, psy-

chometricians turned to operationalism for remedy. Classical Test Theory (CTT) was very

operationalist in spirit. According to CTT, every person's test score is composed of two

parts: the true score, representing the actual magnitude of the attribute under study, and

a random measurement error. Each test, therefore, de�nes its own true score, much in the

same way how each type of ruler de�nes its own length. Naturally, CTT runs into the same

problems as operationalism3 � how do we ever know if two tests test the same thing?

Concerns like these gave rise to a weak form of validity theory, criterion oriented validity.

In its essence, a test is valid by this theory just in case we have reason to believe that we

have crossed Chang's �nomic gap�, i.e. that we have successfully established the relationship

3See Borsboom (2005) for a more detailed discussion on the parallel between operationalism and the
limitations of CTT.
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between the quantity under measure and the indicators. Of course, since it is actually

impossible to cross the real nomic gap, criterion oriented validity was a rather weak concept.

Its use was limited to cases when the quantity under measure was in fact observable, such

as when we have �some other objective measure of that which the test is used to measure�

(Bingham, 1937), or when we decide which quantity was plausibly under measure after the

tests had already been done, such as when Guilford (1946) claims that �a test is valid for

anything with which it correlates�.

Before moving on to discuss, in the next section, how this discontentment led to the construct

validity program, I will brie�y point out the role operationalism played in the development

of RTM. Since Campbell saw concatenation procedures as the foundation for measurability,

the topic of operation in measurement was around since the beginning of RTM. Stevens

also embraced a substantive form of operationalism (Hardcastle, 1995), which was primarily

motivated by his emphasis on the practical need for agreement among researchers. No matter

how much disagreement there is about the unobservable nature of an attribute under study,

everyone must agree on the observable, operationalized results. What scientists need to do

is to �gure out what, exactly, these agreed-upon results imply, which his theory of scales

provides a framework for.

I believe Stevens' operationalism provided the most consistent answer to the problem of

nomic measurement: although we can never know what the real relationship is that holds

between the (unobservable) quantity under measure and the (observable) indicators, we are

free to make stipulations. As long as subsequent scienti�c theorizing respects the stipulative

nature of this relationship, it is epistemically secure. It is my opinion that this is Stevens'

most important insight: �[s]cales are possible in the �rst place only because there is a certain

isomorphism between what we can do with the aspects of objects and the properties of the

numeral series� (Stevens, 1946, emphasis added). In other words, it is what we do with

the measurement that gives it meaning. Unfortunately, this lesson is often overlooked by
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practitioners, much to the dismay of Stevens (1968) and subsequent measurement theorists

(e.g., Suppés and Zinnes, 1963; see also Borsboom, 2005).

To brie�y summarize: despite their peculiar lack of interaction, mathematical measurement

theory (stemming from psychophysics) and psychometrics (stemming from intelligence re-

search) share the same basic picture of measurement. According to this picture, an attribute

under measure has some structural properties which it shares with the number system. To

take measurement is to use numbers to represent the shared properties of the attribute. The

problem of nomic measurement arises when researchers cannot be sure that the attribute

does in fact possess these properties. Some form of operationalism was invoked to address

this problem. Validity played little role in this narrative, partly because the challenge was

not seen as one about measurement itself so much as it was about measurability, and mea-

surability was understood as straightforwardly binary.

2.2 Validity: the Epistemic and the Pragmatic

Operationalism was not the only possible response to the problem of nomic measurement.

Another is to invoke a form of robustness reasoning or, as Chang (2004) calls it, overdeter-

mination. The idea is to conduct a number of studies on the same quantity under the same

set of (unjusti�ed) assumptions and using the corroboration amongst the results to justify

those assumptions. It is clear that Spearman (1904) uses something like this: none of the

children's test scores is, by itself, obviously an accurate measure of intelligence, but the fact

that multiple such scores correlate with each other suggests that they all are.

However, as Chang has also argued, the method of overdetermination only works under the

principle of single value � the belief that �a real physical property can have no more than

one de�nite value in a given situation� (p.90, 2004). We can drop the word �physical� here,
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because the connection between this principle and the �realness� of the property is just as

strong in discussions of mental properties.

More importantly, Chang (2001) points out that the principle of single value is not an

empirically testable hypothesis. Instead, it is an ontological principle which a scienti�c

community must accept for communication to be intelligible. It is what we use to make

sense of empirical evidence, and therefore it cannot itself be supported or refuted by empirical

evidence. If this principle can be justi�ed at all, it must be justi�ed theoretically.

The construct validity program, therefore, can be seen as an attempt at providing just this

sort of justi�cation. In response to the increased use of tests and the widespread confusion

over how tests are supposed to work, the American Psychological Association, American Ed-

ucational Research Association, and National Council on Measurements Used in Education

jointly published a booklet titled Technical Recommendations for Psychological Tests and

Diagnostic Techniques in 1954. It reviewed literature on a number of issues important to

test users and provided guides to practice.

One such issue was validity. Around this time, the most commonly used conception of validity

was criterion oriented validity as reviewed in section one. Another kind was content validity,

which was simply looking at the wording of test items and deciding whether it sounds like it

would measure the attribute it purports to measure. Both kinds are theoretically weak and

practically arbitrary.

In the following year, two of the Technical Recommendations ' authors published a treatise

(Cronbach and Meehl, 1955) on the third kind of validity, construct validity, which was

mentioned in the Technical Recommendations but not really discussed, apparently because

some of the other authors were skeptical of this new idea. The paper provided a systematic

treatment of what may be called a metaphysics of measurement, addressing questions such
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as what ontology must be assumed for measurement to be possible and what epistemology

is supportable on this ontology.

The belief that measurement needed a metaphysics is itself signi�cant. Recall the straight-

forward picture of section one: an attribute has some properties which we can determine

through scienti�c studies; the number system has some properties which we understand from

mathematics. Measurement is possible just in case there is appropriate overlap between the

two sets of properties. Metaphysics was hardly relevant.

But metaphysics was everywhere relevant once we realized that empirical evidence alone

cannot support key assumptions like the principle of single value: how do we know that,

when two tests do not correlate, it is because one test has low validity rather than that they

measure di�erent things? Or, conversely, why do we think tests that highly correlate with

each other measure one attribute rather than a number of closely connected attributes? If

these questions have answers at all, they would not come to us through simple empirical

observation. Robust theorization is required.

Robust theorization is what the construct validity program aims to provide. According to

this picture, the nature of an unobservable quantity under measure comes in the form of

a robust theory. Following logical empiricism, this theory takes the form of a �nomological

net� (Cronbach and Meehl, 1955) which speci�es how this quantity causally relates to other

established quantities and, ultimately, traces to empirical observations. In typical logical

empiricist fashion, the quantity is real in the sense that its legitimacy must ultimately be

traceable to experience, but it is also instrumental in the sense that it is not discovered in

the world, but constructed as a way to make sense of the world.

Also in typical logical empiricist fashion, the theory of constructs appears to have presented

a brilliant solution to seemingly-unresolvable problems. Assumptions like the principle of

single value and the (unobservable) isomorphism between the construct and its indicators
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are not swept under the rug like they were in early psychometrics. Instead, they are provided

a natural space in a comprehensive ontology, with the promise that they can be supported

like any other scienti�c claim: through a combination of empirical evidence, inference to the

best explanation, and inferential holism.

To be clear, the belief that measurement should be about �real� attributes that share prop-

erties with the number series did not change with the advent of construct validity. In

Loevinger's words, �[t]he basic concept is that of the construct validity of the test, the de-

gree to which it measures some trait which really exists in some sense� (1957). Instead, the

real insight of the new theory is the recognition that the validity of a test � that the test

has done what it is created to do � is not directly observable, but must be inferred through

circumstantial evidence.

Central to this insight is a more principled view of the relationship between a test's epistemic

content and its use. By epistemic content, I mean what the test supposedly tells us about the

attribute being measured. In the language of RTM and early psychometrics, a (successful)

test of an attibute uses numbers to represent facts about that attribute. For example, calling

one length �2 meters� and another �1 meter� is to express the fact that concatenating two

rods of the second length would yield a length equivalent to the �rst. The test says something

about the world that may be true or false. On the other hand, test results can also be used

for some practical purpose. For example, knowing the distance between two cities can help

me judge how much fuel I need in my car.

Prior to the construct validity program, researchers di�ered radically in how they under-

stood the relationship between the epistemic content of a test and its use. Guilford (1946)

distinguished �factorial� and �practical� validities, where factorial validity was the extent to

which a test tracks the underlying factor or construct, and practical validity was how useful

a test was to testers. We have seen how Boring argued that we could operationally de�ne

intelligence as �what the tests test�, thus citing the usefulness of these tests as evidence for
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the legitimacy of their empirical content. Flipping Boring's logic on its head, Anastasi (1950)

argued that, because we would not want to operationally de�ne intelligence in this way, va-

lidity should always be about the usefulness of tests and never their empirical content, lest it

�mislead us into the belief that anything external to the tested behavior has been identi�ed�

(p.75).

After the construct validity program, the idea that the usefulness of a test can serve as

evidence for its empirical content without invoking a naive form of operationalism was widely

accepted. Since a construct is de�ned through a complex �nomological net� that ultimately,

but not immediately, depends on experience, the pragmatic success of its tests naturally

constitute a majority, but not the entirety, of the evidential support for the epistemic success

of the theory. Validity is about the truth (or empirical adequacy) of a theory of a construct.

Measurement theory is important insofar as it tells us how we should interpret measurement

results for the sake of validation, but it no longer subsumes validity theory.

The measurement theory that best �ts the construct validity program is Item Response

Theory (IRT; also called latent variable theory). Like CTT, IRT is traceable to Spearman's

1904 papers on intelligence, but is less operationalist and more mathematically sophisticated

than CTT. The basic idea of IRT is that a small number of latent variables are causally

responsible for a person's performance on a large number of tests. An IRT model can be

seen as a speci�c articulation of the broader theory under study, with validity being a measure

of how well it is supported by evidence.

It is perhaps unfair to say that the construct validity program �failed�, but rather that it fell

short on almost all of its promises and was abandoned. Testers soon realized that the kind of

robust �nomological net� of constructs that lay at the heart of construct validation is almost

never feasible in practice. When law schools test their recruits for �academic promise� or

companies test their customers for �service satisfaction�, they are unlikely to have anything

close to a well-founded theory of a construct in mind.
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It does not look as if they need one, either. Testers can agree that one test is better than

another at predicting law school GPA or future sales without agreeing on why. It may be

that one test most accurately captures the construct of �customer satisfaction�, or some other

construct that is a common cause for both test scores and sales, or any other underlying

causal structure for which there is no evidence. What they do have evidence for is how well

a test does its pragmatic job. And, for most practical purposes, this is enough.

The fact that strong theories of constructs are often neither easy to acquire nor practi-

cally necessary led to a division between the strong and the weak programs of construct

validity (Cronbach, 1988; Kane, 2001). The strong program is what Cronbach and Meehl

(1955) intended � validity theory is the con�rmation of a robust �nomological net� of a con-

struct based on extensive evidence and argumentation. When no such theory is available,

researchers meet the demand for test validation by gathering �an unordered array of corre-

lations with miscellaneous other tests and demographic variables. Some of these facts bear

on construct validity, but a coordinated argument is missing� (Cronbach, 1980). This is the

weak program.

In simple terms, the story can be summarized as follows. Our original goal is to assess an

attribute (e.g., customer satisfaction) in order to perform a task (e.g., predicting sales). A

test can help with this task by accurately measuring the attribute. Assessing the accuracy

of a test in tracking the attribute has been the main motivation behind validity theory up

until this point. However, the strong versus weak program debate highlights the fact that

it is much more di�cult to judge whether a test has succeeded in measuring the attribute

than whether it has succeeded in helping us perform the task. Since our original goal is to

perform the task rather than to assess the attribute, chasing success in measurement seems

to be an unnecessary intermediary. By 1988, even Cronbach has conceded: �Still, the weak

program has some merit�.
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This realization motivated the reconceptualization of validity not as a judgment on the

quality of the relationship between a test and an attribute, but as the extent to which a test

can help with a particular task. In an often-cited chapter of the third edition of Educational

Measurement, Messick (1989, p.13, emphases original) opens with the following de�nition:

Validity is an integrated evaluative judgment of the degree to which empirical

evidence and theoretical rationales support the adequacy and appropriateness of

inferences and actions based on test scores or other modes of assessment.

Although speci�c aspects of Messick's subsequent analysis of validity were disputed by other

theorists, the basic idea that validity is about the �adequacy and appropriateness� of �in-

ferences and actions� remained. The 2014 edition of The Standards, for example, declares

that, in validation, �[i]t is the interpretations of test scores for proposed uses that are evalu-

ated, not the test itself� (p.11). In other words, whether a test is valid no longer depends on

whether it stands in the right kind of relationship with an attribute in the world, but on what

testers plan to do with the test results. Validity theory is no longer about measurement.

The view that validity is an evaluation not of how tests measure but of how tests are used

underlies the argument-based approach to validation (Shaw and Crisp, 2011; Kane, 2013a).

As I have shown, this view arises not because of its theoretical superiority, but from practical

necessity. Indeed, the attitude that, when theory and practice come into con�ict, it is theory

that should yield seems widespread among testers. For example, Shepard (1997) considers a

case where pre-med students prioritize science classes over humanities as a way to increase

MCAT scores, thus making the MCAT no longer an adequate test for identifying students

who are more likely to succeed in medical school. The validity of a test appears to have

changed over time. Shepard goes on to argue that this example should not be taken as a

case against pragmatically de�ned validity, but as a call for reexamination of the relevance
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of the construct tested by the MCAT. In other words, when the test-assisted inference comes

into con�ict with the theory of construct, it is the latter that we need to modify.

More recently, Borsboom and collaborators have raised another theoretical challenge, namely

that validity should be about the truth of ontological claims: �The attribute to which the

psychologist refers must exist in reality; otherwise, the test cannot possibly be valid for

measuring that attribute� (Borsboom et al., 2004, p.1063). To use Loevinger's words again, a

test is valid just in case it �measures some trait which really exists in some sense�. Part of their

reason is that Item Response Theory, the dominant theory of measurement in psychometrics,

calls for a realist ontology in which an actually existing attribute is causally responsible for

observed test scores (Borsboom et al., 2003). In other words, if validity is going to be an

evaluation of measurement theory at all, it must take a stance on the reality of the target of

measurement.

Philosophers have raised similar concerns. For example, Alexandrova and Haybron (2016)

point out that, while the very idea of construct validity relies on a theory of construct,

contemporary practices of validation tend to be theory avoidant. In Cronbach's (1980)

words, �a coordinated argument is missing.� On the other hand, Stone (2019) advocates for

a distinction between construct legitimacy and construct validity, where legitimacy concerns

the realist ontology and validity concerns the success of measurement.

However, while these challenges all have important theoretical upshots, the motivation for the

argument-based approach has never been theoretical. �In many testing situations (including

most high-stakes contexts), talk of Truth seems hollow�, Kane (2013b) explains. �I am more

pragmatic (with a small �p�). I am concerned about what can reasonably be claimed on the

basis of test scores in the current context.�
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Neither comprehensive nor theoretically elegant, Kane's response nevertheless lies at the

heart of the issue. It is not that strong theories or realist ontologies are undesirable; they

are simply too much trouble for their worth.

To summarize, in this section, I reviewed how validity theory struggled to balance two goals

of testing: the epistemic goal of accurately describing a construct that exists in the world

and the pragmatic goal of using the test to accomplish some practical task. The construct

validity program treats the epistemic goal as primary. However, despite its many theoreti-

cal advantages, prioritizing the epistemic goal proved both unfeasible and unnecessary. In

response, the contemporary argument-based approach to validation treats validity as the

evaluation of an inference or action that is made on the basis of a test. Since the existence

of a construct is no longer central to the new paradigm of validation, validity theory and

measurement theory become independent �elds of study.

2.3 Theory Avoidance: Bug or Feature?

In section one, I reviewed how measurement theory started as a theory about the relationship

between a test (the instrument of measurement) and an attribute or construct4 (the target

of measurement). In section two, I reviewed how validity theories needed to balance the

epistemic goal of making sure a test accurately captures the construct and the pragmatic

goal of allowing test users to perform a task. The construct validity program attempted to

achieve such a balance by adopting a logical empiricist framework in which a construct is

de�ned by its causal connections. Unfortunately, its heavy reliance on strong theories makes

construct validation unfeasible in many practical contexts. In its place, the argument-based

approach to validation holds that a test is valid in a context just in case its results can be

4As explained in section two, the term �construct� was created primarily to emphasize the role of a �nomo-
logical net� in reference to a logical empiricist ontology. This particular association of the term is dropped
in contemporary discussions of validity. Therefore, I will use �construct� and �attribute� interchangeably to
mean the aspect of the world supposedly measured by a test.
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used to support a speci�c inference or action. The argument-based approach is sometimes

criticized for its disconnection with measurement theory. In this section, I argue that the

new validity theory's detachment from the theory of constructs, far from being a weakness,

makes it better situated at accommodating new understandings of measurement.

In his analysis of the history of quanti�cation, Porter (1996) argues that, while people

tend to see quanti�cation as faithful documentation of objective facts, the real story is the

exact opposite: quanti�cation is invoked to cope with a reality that is neither objective nor

`documentable'. Many forms of social statistics, Porter explains, were created in response to

social pressures of expanding societies across greater geographical distances. For example,

to identify discrepancies in standards of living across regions for the purpose of focused

development, one must be able to measure �standard of living� of regions in a way that

makes them comparable.

Because numbers underly the most obvious way of cross-comparison, phenomena more easily

describable with numbers were prefered. The weight of a heap of grain was valued over its

quality, which had to be judged `subjectively' by a skilled inspector. Insurance companies

used to personally interview potential clients to judge how much they should charge for a

life insurance. Now they use numbers such as age, number of hospital visits, and annual

income to make the same judgement, allowing information to be more easily summarized

and compared.

In other words, what information gets included in a measurement is a decision dictated by

practical, rather than epistemic, concerns. The square footage of a house tracks the quality

of the house, which tracks the quality of life of a family. But this does not mean that home

size is an epistemically privileged indicator for standard of living. That is, the decision to

measure standard of living by home size is not motivated by the belief that home size shares

more structural features with standard of living than other indicators and therefore is better

situated at revealing the true nature of this construct.
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This is not to say, of course, that the indicator of choice does not in fact share su�cient

structural features with the construct to count as successful measurement in the represen-

tational sense. But this view becomes very di�cult to hold once we consider the fact that

questions about the structural features of the construct never come into play in decisions

of whether or how to measure it. When economists use numbers to analyze and �measure�

wealth inequality, the possibility that wealth inequality might not admit a total order is

never at the center of debate.

Central to historians' analysis of measurement practice is the observation that the nature

of a construct often follows, rather than dictates, the decision over how to measure it. For

example, one major victory of 19th century feminist movement for property rights was

to have housework count as work and, in doing so, reconceptualized women's role in the

labour market (Siegel, 1994). Espeland and Stevens (1998) have argued that capitalist

standardization, or the idea that everything can be priced along the same axis, is at least

partially responsible for extreme global wealth inequality. Many of forestry's basic conceptual

frameworks were developed based on the need to classify forests into `useful' and `not useful'

parts for the purpose of calculating lumber yields (Lowood, 1990; Scott, 1996).

These observations make it di�cult to accept, as measurement theorists have, that mea-

surability is dictated by the objective nature of the construct � that some constructs are

measureable in virtue of possessing certain properties while other constructs are not � and

that is all measurability is about. Instead, everything is measureable as long as there is

a practical need to measure it. The question then becomes: what are we doing when we

measure something, if not using numbers to describe its objective nature?

A radical answer, provided by Comaro� and Comaro� (2006), is that we are inventing

facts. In their paper, Comaro� and Comaro� document the political and social dynamics

surrounding the development of crime statistics in South Africa. On the one hand, crimes

happen in the world, and so there are facts of the matter whether certain measures of

49



crimes are accurate or inaccurate. In this sense, crime statistics are factual. On the other

hand, decisions that crucially de�ne what crime statistics will end up looking like � decisions

concerning how to classify crimes, who to ask, how to ask, how to count multiple aggressions

in the same scenario, etc. � are made not on the basis of how a theory of crime understands

the construct of crime rate, but for political, social, and practical reasons. In this sense,

crime statistics are invented.

This dynamic can be di�cult to discern. No matter how little epistemic consideration un-

derlied its foundation, a system of measurement tends to develop a facade of objectivity

which makes future users unable to challenge its authority. In a sociological study of the

creation of human rights indicators for the United Nations, Merry (2016) argues that, al-

though indicators are often presented as democratically revisable, the fact that the creation

of indicators changes the very language by which we use to talk about the world means that,

in practice, they are immune to outside scrutiny. Consequently, contentious decisions made

by experts who were present at the start can have consequences long exceeding the amount

of theorization undertaken at the time. In Merry's words (2016, p.21):

For example, in order to measure violence against women, throwing acid in the

face of one's wife in Bangladesh must be equilibrated to shooting a domestic

partner in the United States. This intellectual, interpretive work is shaped by the

politics of expertise and participation that determine how quantitative knowledge

is developed and by whom.

To use a familiar philosophical metaphor, nature starts without joints. Joints are carved

into nature through pragmatically motivated measurement e�orts, which then gives o� the

appearance that measurement has always �carved nature at its joints�.

This idea of measurement practice de�ning a construct shares important features with Hasok

Chang's theory of epistemic iteration. In his analysis of the history of thermometry, Chang
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(2004) explains how the concept of temperature was shaped by practically motivated mea-

surement choices in an iterative process: �rst, a pre-theoretic understanding of coldness and

warmth serves as a starting point for building thermoscopes. Next, development in theories

of thermometry changes how we understand temperature. On the one hand, the measure-

ment target has shifted over time and so ealier measurement results should no longer be

seen as valid. On the other hand, many of the key insights in new conceptualizations of the

target stem from observations of past, now-outdated measurement attempts. The paradoxi-

cal observation is that, while new theories of temperature made old theories of measuring it

invalid, the former is also founded upon the latter.

There are important disanalogies, too. Part of Merry's thesis is precisely that measurement

developments often lack the iterative feature Chang describes, leading to an in�exible and,

therefore, undemocratic process. Chang's analysis of temperature also highlights the im-

portance of a pre-theoretic but widely agreed upon conception of temperature, a condition

disputed by Comaro� and Comaro� in the case of crime statistics.

What this means is that there are important nuances to be studied in these measurement

instances. Since they share the feature where the practice measurement shapes the theory of

the construct, any measurement theory starting with the assumption that measurement is

simply a correspondence relationship between a construct and an indicator will be inadequate

as a framework of analysis.

This is why the argument-based approach to validation, though not a theory of measurement,

provides a better starting point for measurement cases described in this section. In particular,

a test can be valid in the sense that users are as justi�ed in using its results to make inferences

as they are any other valid tests, without having independent reasons to believe that this test

has succeeded in capturing the objective nature of a construct that existed before anyone tried

to measure it. According to this theory of validity, on the one hand, validity is pragmatic,

because the kind of reasons one would give to judge validity are based on what a test can
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help us do. On the other hand, validity is not `merely' pragmatic, because testers did not

choose to ignore the epistemic content of a test that is there. The epistemic content of a

test is not `there' in any robust sense. Validity theorists are not choosing to ignore it if they

cannot choose to not ignore it, because it does not exist yet. Instead, the epistemic content

of a test is created through a process that starts after some tests are pronounced valid.

It remains true that the argument-based approach to validation is a theory of validity, not

a theory of measurement, and therefore does not provide us with a story about how an

indicator is supposed to relate to the construct. Just as how Item Response Theory (a

measurement theory) �ts well with the construct validity program (a validity theory), we

can develop new measurement theories that �t well with the argument-based approach to

validation. It is beyond the scope of the present paper to develop such a theory, except to

note that the �rst step in doing so is to give up on the doctrine that valid measurement must

be about attributes that exist independently of how they are measured.

2.4 Measuring the Non-Existent

So far I have argued that valid measurement does not have to be about attributes that objec-

tively exist before they are measured. It is worth noting that my reasons, like those of many

validity theorists, are primarily pragmatic. It is not that there is anything philosophically

undesirable with the classical, clean picture, where we pick out an attribute in the world,

axiomatize its structure, and see whether an isomorphism exists between it and the number

series. This picture is simply unrealistic in many (but perhaps not all) cases where we need

to take measurement. When it comes to deciding what to measure, `measurability' gives way

to pragmatic concerns.
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It is also worth noting that, although theories of validity di�er in how they understand the

meaning of validity, the actual evidence presented to support a validity claim is largely the

same. A test on X is valid if it correlates with either other tests on X or tests on constructs

thought to be causally related to X. The SAT is valid if it correlates with college GPA.

According to criterion oriented validity, this is because college GPA is an accurate measure

of what the SAT tries to measure. According to the construct validity program, this is

because predicting college GPA is an important part of a theory of a construct for which the

SAT measures. According to the argument-based approach to validation, this is because the

SAT is designed to help with college admissions, and correlating with college GPA suggests

that the SAT is up for the task. That the correlation is evidence for validity is always true;

the interpretation of why that is changes.

What this means is that we should be careful with what we conclude from the pronouncement

of validity. Tests are declared valid, used broadly, and incorporated into our understanding

of the world based on a variety of measurement and validity theories. Since these theories

disagree over what the necessary preconditions are for a test to be valid, a pronouncement of

validity should not be seen as evidence for these preconditions. Put in another way, inference

to the best explanation is not a good inference unless there is widespread agreement over

what the best explanation is.

The thesis that we can legitimately consider a test to be valid without committing to the ex-

istence of a test-independent construct has important consequences in contemporary debates

around the ethics and epistemology of measurement-driven science. While it is beyond the

scope of this paper to provide full analyses of such cases, I will brie�y sketch the relevance

of my thesis in two examples: intelligence research and predictive machine learning.

As reviewed in section one, a large part of the �eld now called psychometrics was born out of

intelligence research and has a troubling history with racism and colonialism. Nevertheless,

it may be argued that the construct of intelligence is itself value neutral and that, once we
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purge the troubling part of the theory, the rest will prove scienti�cally useful. Based on my

argument in this paper, there are at least two complications with this view. First, since what

intelligence is depends on how it is measured, which in turn depends on why it is measured,

purging the pragmatic context around intelligence may simply destroy the construct alto-

gether. Second, the correlation-based validity claims typically made in intelligence testing is

insu�cient at supporting many ontological claims associated with intelligence as a construct,

and so there may not be a construct to save to begin with.

As in the case of crime statistics discussed in section three, many of the behavioural obser-

vations underlying judgments of intelligence are real. Some people learn mathematics slower

than others. In this sense, many intelligence-related claims correspond to facts. However,

the idea that intelligence is a construct goes beyond these claims. It includes claims such

as `reading speed and mental arithmetic are two behavioural manifestations of the same

physiological cause'. These claims depend crucially on (1) what kinds of tests are used,

and (2) the assumption that the validity of these tests is evidence for the test-independent

(e.g. physiological) existence of a single construct. As I have argued in this paper, (1) lacks

epistemic foundation and (2) is unjusti�ed.

Moving to the second case, although predictive machine learning is not typically seen as a

measurement-driven �eld, I believe a similar dynamic, and hence similar dangers, also apply.

Predictive machine learning refers to the practice of using data to train algorithms to help

with future decision making. Much research has been done on the danger of algorithmic bias,

which is when algorithms lead to biased, and often discriminatory, decisions. Algorithmic

bias can occur for a number of reasons: bias in the training data set, bias in the algorithm

itself, sample misrepresentation, etc. However, researchers are increasingly recognizing that

algorithmic bias may not be preventable: it is often not a sign that something has `gone

wrong', but a re�ection of the intrinsic weakness of a style of reasoning. For example,
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Johnson (2020) argues that, since machines `learn' by associating proxy attributes to target

classi�cations, stereotype reasoning is an inherent part of learning.

The success or failure of machine learning is often couched in terms of success or failure in

picking out `real patterns' in the population from data. The idea is that successful predictions

occur when the relationship between predictor variables and outcome variables is causal or

material, rather than merely statistical or correlational. In a sense, data are measures of

the world. The fact that data are useful in making predictions is a testament of validity.

The claim that successful predictions by data-trained algorithms must mean that the data

have captured `real patterns' is a claim about validity implying ontology. I have argued that

this claim is unjusti�ed. Consequently, we must rethink the connection between predictive

success and ontological reality.

In conclusion, I have argued that there are many reasons to accept the framework where valid-

ity theories can be independent from, and prior to, measurement theories: measurement the-

ories are unable to solve philosophical problems about measurement anyway; measurement-

based validity theories are pragmatically too limited; and there are important real world

measurement cases that cannot be adequately addressed by existing, measurement-based

validity approaches. Instead of seeing this as a shortcoming of present-day validity theory,

however, I have argued that the measurement-independent aspect of the argument-based

approach to validation opens up a new and much-needed space for testers to reexamine the

nature of valid measurement and the relationship between measurement and ontology.
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Chapter 3

A Statistical Learning Approach to a

Problem of Induction

Hume's problem of induction can be analyzed in a number of di�erent ways. At the strongest,

it denies the existence of any well justi�ed assumptionless inference rule that is ampliative.

At the weakest, it challenges our ability to consistently apply, in practice, any such rule

that might exist. This paper examines an answer to the latter problem in the context of

statistical learning theory and argues for its inadequacy.

The particular problem of induction discussed in this paper concerns what Norton (2014)

calls a formal theory of induction, where �valid inductive inferences are distinguished by their

conformity to universal templates� (p.673). In particular, I focus on the template that is

often called enumerative induction. An inductive argument of this type takes observations

made from a small and �nite sample of cases to be indicative of features in a large and

potentially in�nite population. The two hundred observed swans are white, so all swans are

white. Hume argues that the only reason we think a rule like this works is because we have

observed it to work in the past, resulting in a circular justi�cation.
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Nevertheless, this kind of inductive reasoning is vital to the advancement of a scienti�c

understanding of nature. Most, if not all, of our knowledge about the world is acquired

through the examination of only a limited part of the world. The scienti�c enterprise relies

on the assumption that at least some of such inductive processes generate knowledge. With

this assumption in place, a weak problem of induction asks whether we can reliably and

justi�ably di�erentiate the processes that do generate knowledge from the ones that do not.

This paper discusses this weak problem of induction in the context of statistical learning

theory.

Statistical learning theory is a form of supervised machine learning that has not received as

much philosophical attention as it deserves. In a pioneering treatment of it, Harman and

Kulkarni (2012) argue that one of the central results in statistical learning theory � the result

on Vapnik-Chervonenkis (VC) dimensions � can be seen as providing a new kind of answer

to a problem of induction by providing a principled way of deciding if a certain procedure

of enumerative induction is reliable. The current paper aims to investigate the plausibility

of their view further by connecting results about VC dimension in statistical learning with

results about NIP models in the branch of logic called model theory. In particular, I argue

that even if Harman and Kulkarni succeed in answering the problem of induction with the

VC theorem, the problem of induction only resurfaces at a deeper level.

The paper is organized as follows: section 1 explains the relevant part of statistical learning

theory, the VC theorem, and the philosophical lessons it bears. Section 2 introduces the

formal connection between this theorem and model theory and proves the central theorem

of this paper. Section 3 concludes with philosophical re�ections about the results.
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3.1 Statistical learning theory

The kind of problems that is relevant for our discussion of VC dimensions is often referred

to as classi�cation problems that are irreducibly stochastic. In a classi�cation problem, each

individual is designated by its k-many features such that it occupies somewhere along a

k-dimensional feature space, χ. The goal is to use this information to classify potentially

in�nitely many such individuals into �nitely many classes. To give an example, consider

making diagnoses of people according to their test results from the k tests they have taken.

The algorithm we are looking for needs to condense the k-dimensional information matrix

into a single diagnosis: sick or not. The algorithm can be seen as a function f : χ→ {0, 1},

where 1 means sick and 0 means not. For reasons of simplicity, I will follow the common

practice and only consider cases of binary classi�cation1.

By �irreducibly stochastic�, I mean that the target function f cannot be solved analytically.

This might be because the underlying process is itself stochastic � it is possible for two

people with exact same measures on all tests to nevertheless di�er in health condition � or

because the measurements we take have ineliminable random errors. This means that even

the best possible f will make some error, and so the fact that a hypothesis makes errors in

its predictions does not in itself count against that hypothesis. Instead, a more reasonable

goal to strive towards is to have a known, preferably tight, bound on the error rate of our

chosen hypothesis.

What makes this form of statistical learning �supervised learning� is the fact that the error

bound of a hypothesis is estimated using data points whose true classes are known. Through-

out this paper, I will use D to denote such a dataset. D can have any cardinality, but the

interesting cases are all such that D is of �nite size. Recall that the feature (or attribute)

1Results for binary classi�cation problems generalize straightforwardly to �nite classi�cation problems.
They also generalize, with some caveats, to approximation problems with less-than-perfect precision, such
as when two numbers that agree up to the �fth decimal place are considered practically identical.
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space χ denotes the space of all possible individuals that D could have sampled, so that

D ⊂ χ. I understand a hypothesis to be a function h : χ→ {0, 1}. A set of hypotheses H is

a set composed of individual hypotheses. Usually, the hypotheses are grouped together be-

cause they share some common features, such as all being linear functions with real numbers

as parameters. This observation will become more relevant later.

One obvious way of choosing a good hypothesis from H is to choose the one that performs

the best on D. I will follow Harman and Kulkarni (2012) and call this method enumerative

induction, for it bears some key similarities with Hume's description of the observation of

swans. This method is inductive because it has the ampliative feature of assuming that the

chosen hypothesis will keep performing well on individuals outside of D. The question we

are interested in is: how do we know if this generalization is true? What justi�es the claim

that the hypothesis performs well on D will perform well outside of D too? The answer

that will be examined in this section and throughout the rest of the paper is that we know

this claim to be true when we are in a situation where H has �nite VC dimension, and the

VC-theorem justi�es this claim.

To de�ne the error rate of a hypothesis, recall the �ideal function� f mentioned in the

introduction. Recall also that f classi�es individuals from χ into {0, 1}, and f is imperfect.

Nevertheless, since the process from χ to the classes is irreducibly stochastic, f is as good

as we can hope for. Therefore, f will serve as our standard for the purpose of calculating

the error rate of a hypothesis. Note that the hypotheses we are assessing are all from H, our

hypothesis set, but f need not be in H.
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Suppose D is of size N , and x1, . . . , xN ∈ D. For each h ∈ H and i ∈ [1, N ], consider the

random variable Xi : χN → {0, 1} de�ned by

Xi

(
h(x1, . . . , xN)

)
=


1 if h(xi) 6= f(xi),

0 otherwise.

(3.1)

Intuitively, Xi = 1 if the hypothesis we are evaluating, h, gives a di�erent (and hence

wrong) verdict on xi than the target function f , and 0 otherwise. Assume X1, . . . , XN are

independent, which is to say that making a mistake on one data point does not make it more

or less likely for h to make a mistake on another one. This is typical if D is obtained through

random sampling. Further assume X1, . . . , XN are identically distributed, which means that

the expectations of all of these variables are identical, or EXi = EXj for all Xi and Xj.

This allows the error �rate� of h across multiple data points to be meaningfully computed.

Let X = 1
N

(
∑N

i=1Xi), which is the measured mean error, and µ = EX, which is the expected

mean error. I will follow Abu-Mostafa et al. (2012) in calling the former the in-data error,

or Ein, and the latter out-data error, or Eout. To �esh out the relationship between these

two values more clearly, we de�ne

Ein(h) = X =
1

N

N∑
i=1

Jh(xi) 6= f(xi)K (3.2)

Eout(h) = µ = PN(h(x) 6= f(x)) (3.3)

Intuitively, the in-data error is the evidence we have about the performance of h, and the

out-data error is the expectation that h will hold up to its performance. The ampli�cation
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comes in when we claim that Eout is not very di�erent from Ein. I will call the di�erence

between Ein and Eout the generalization error.

For any single hypothesis, and for any error tolerance ε > 0, Hoe�ding (1963, p.16) proved

a result called the Hoe�ding inequality2, which states that, under the assumption that the

error rate for each data point is independent and identically distributed, we have (in the

notations introduced above)

PN(|Ein(h)− Eout(h)| ≥ ε) ≤ 2e−2ε
2N (3.4)

This inequation says that the probability of having a large generalization error in the as-

sessment of a single hypothesis is bounded by 2e−2Nε
2
, which is a function of the size of the

dataset, N , and the error tolerance ε.

Once we establish a bound in the case of a single hypothesis, we can get a similar bound for

�nitely many such hypotheses. The reason we cannot simply apply the Hoe�ding inequality

to our preferred hypothesis is that the bound is generated with respect to a random dataset.

That is, we need to decide on which hypothesis to evaluate before we generate the data. If

this condition is violated, then the Hoe�ding inequality is no longer valid. In the context of

supervised statistical learning, the dataset is needed for us to decide which hypothesis we

�prefer�. Consequently, we cannot use the same dataset to bound the generalization error

of this preferred hypothesis. To get around this problem, we need to make sure that all

hypotheses in the set have low enough generalization errors, so any one hypothesis we pick

out will, too.

Since we assume that the error rate of one hypothesis is independent of another, the proba-

bility of any of the �nitely many hypotheses we are considering having a large generalization

error is just going to be the union of the probability of each one of them does. In symbolic

2see also Lin and Bai 2010, p. 70, and Pons 2013, p. 205
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form, suppose there are 1 ≤ M < ∞ many hypotheses in H, then we have (Abu-Mostafa

et al., 2012)

P(max
h∈H
|Ein(h)− Eout(h)| ≥ ε) = P(∃h ∈ H|Ein(h)− Eout(h)| ≥ ε) ≤ 2Me−2ε

2N (3.5)

While this bound may seem �loose�, it serves our purpose when we have a reasonably small

M or a reasonably large N .

This simple calculation becomes tricky, however, when H contains in�nitely many hypothe-

ses. If we replace M with in�nity, then the upper bound stops being a bound, because

2Me−2ε
2N grows to in�nity as M does. This is where the VC dimension of H comes to play.

To understand the role of VC dimensions, consider a �verdict tuple� (h(x1), · · · , h(xN)) for a

hypothesis h on a sample D of size N . For a binary problem where the available classes are

0 and 1, the verdict tuple will have N entries of 0s and 1s, one for each of the N elements in

D. If some hypotheses agree with each other on the classi�cation of every data point, then

their verdict tuples would be identical. Further de�ne

H(x1, · · · ,xN) = {(h(x1), · · · , h(xN)) | h ∈ H} (3.6)

which is the set of all verdicts given by H on dataset D. Since two or more hypotheses

may agree on all verdicts, the cardinality of the set of verdicts may be much smaller than

the cadinality of H. Furthermore, how many di�erent verdict tuples H generates may also

change with di�erent datasets, since hypotheses that agree on one set of N elements may

not agree on another set of N elements. De�ne

mH(N) = max
x1,··· ,xN∈χ

|H(x1, · · · ,xN)| (3.7)

as the max number of di�erent verdicts H can generate from any dataset of cardinality N .
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If all possible classi�cations of D have been represented in H(x1, · · · ,xN), then we have

mH(N) = 2N . When this happens, we say that the hypothesis set H shatters the dataset

D. De�ne the VC dimension of H to be the maximum N such that mH(N) = 2N . In other

words, it is the maximum number N such that there exists a dataset D of size N that is

shattered by H. If mH(N) = 2N holds for all N , then we say the VC dimension is in�nite.

Let's call a hypothesis set H VC-learnable if it has �nite VC dimension.

Very roughly, the VC dimension of a hypothesis set tracks the maximum number of hypothe-

ses that are still distinguishable from each other with respect to their verdicts on data. This

means that, if we consider any more hypotheses, some of them will always agree with some

others on all of the classi�cations they give to all possible data points, and so if one has low

generalization error, the others will, too. The VC generalization bound is given as follows

(Abu-Mostafa et al., 2012, p.53)

PNJ
(
Eout(h)− Ein(h)

)
≤
√

8

N
ln

4mH(2N)

δ
K ≥ 1− δ (3.8)

where δ is the uncertainty tolerance. If H has an in�nite VC dimension, then no such upper

bound can be found. Notice that, holding everything else equal, increasing N brings the

right-hand side down, which means that increasing data size allows us to make a better

estimate of Eout with the same uncertainty tolerance. This means that, when H is either

�nite or has �nite VC dimension, we can justi�ably claim enumerative induction to be a

reliable process that can pick out a good hypothesis from H.

What makes this theorem especially powerful is not just that it shows how the error rates

converge in the limit, but also that the convergence is uniform. What is practically useful

for statisticians is not so much that, if we have in�nite data, we can �gure out the true error

rate of our hypothesis, but that, as soon as we know how many data points we have and the
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VC dimension of H, we know precisely how con�dent we should be of our estimation of the

error rate.

In what sense does this theorem answer a problem of induction? According to the analysis in

Harman and Kulkarni (2012), this theorem de�nes precise conditions (i.e., ones where H has

�nite VC dimension) under which a particular inductive method (i.e., supervised learning

in classi�cation problems) is reliable. To the extent that we are concerned with the �easy�

problem � the practical problem � of induction, the VC theorem does seem to provide a kind

of answer we are looking for. In the next section, I challenge the applicability of this answer.

In particular, I show that we can never know in general if we are in a situation where the

above answer is applicable.

3.2 Finiteness of VC dimensions is uncomputable

A preliminary observation about the �nite-VC requirement is that we do not have a good

grasp of what it tells us about these hypotheses. What is the intuitive or scienti�c di�erence

between these two sets of hypotheses such that one has �nite VC dimension and the other

does not? There is no straightforward answer to this question. It seems to be a brute fact

that some hypothesis sets behave nicely and others do not. To put this point more concretely,

we know that polynomial functions with arbitrarily high degrees have �nite VC dimension,

whereas the set of formulas with the sine function has in�nite VC dimension. What is

the di�erence between them? If we have a problem that can be reasonably formulated as

polynomials or with a sine function, do we have good principled reasons why we should

formulate it in one way rather than another?

Surprisingly, model theory in logic might help shed light on this question. It turns out that

the concept of NIP � the Not-Independent Property � theories corresponds to the class
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of hypothesis sets with �nite VC dimensions. A theorem provably equivalent to the VC

theorem was independently proven by the model theorist Shelah about these NIP theories

and the corresponding NIP models in a way that makes results about VC-learnable sets

and results about NIP models intertranslatable. This connection was �rst recognized by

Laskowski (1992).

In the previous section we discussed how the idea of �distinguishable hypotheses� is impor-

tant for the VC theorem. If a hypothesis set has �nite VC dimension, we can think of it

as having �nitely many distinguishable hypotheses, even if it in fact has in�nitely many.

Intuitively speaking, if our dataset is �large enough� that not every combination of verdicts

is representable with our hypotheses, then we can talk about which hypothesis is truly better

than its competitors, as opposed to accidentally matching the speci�c data points. Having

�nite VC dimension ensures that there exist �nite datasets that are �large enough�.

The corresponding concept in model theory relies on the same idea of distinguishability.

Intuitively, if a formula is NIP , then there exists a natural number n such that no set larger

than that number can be de�ned using this formula. A model is NIP just in case all of

its formulas are (a formal de�nition is presented in Appendix A; for more details on related

concepts, see Simon, 2015).

We can then treat each hypothesis set as a formula de�ned on some domain. Laskowski

(1992) shows that a hypothesis set is VC-learnable just in case the corresponding formula is

NIP . What makes this correspondence especially useful is that model theorists have devoted

a lot of e�orts into determining which model is NIP . Once we know of a model that it's

NIP , we also know that any hypothesis sets formulated using the language and domain of

this model are VC-learnable.

For example, there is a group of models called o-minimal, which roughly means that all the

de�nable subsets of the domain are �nite unions of simple topological shapes like intervals
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and boxes. It su�ces for our purposes to note that all o-minimal models are NIP (van den

Dries, 1998, p. 90). As it happens, the real numbers with just addition and multiplication

are o-minimal (van den Dries, 1998, p. 37). This means that any hypothesis set consisted of

addition, multiplication, and the real numbers are going to have �nite VC dimension. Sim-

ilarly, the real numbers with addition, multiplication, and exponentiation is also o-minimal

(Wilkie, 1996). This means that all sets of polynomials are VC-learnable, which is a fact

already noted by the machine learning community.

As alluded to already, the real numbers with the sine function added are not NIP . This

is roughly because, with the sine function, we can de�ne copies of the integers using the

set {x ∈ R : sin(x) = 0}, which allows us to de�ne all of second-order arithmetic, and

second-order arithmetic allows coding of arbitrary �nite sets. As expected, this is re�ected in

statistical learning theory by the fact that the set of sine functions has in�nite VC dimension,

and so is not VC-learnable.

Another important observation from model theoretic investigations on NIP theory is that

there seems to be no easy test for when an expansion of the real numbers is NIP . Although

the relationship between the NIP property and properties like o-minimal and stable (a set

of structures that are not o-minimal but are NIP ) is well-researched and understood, there

is no uniform way of telling where exactly a model lies (see, e.g., Miller, 20053).

The statistical learning community echoes this di�culty with the observation that �it is not

possible to obtain the analytic estimates of the VC dimension in most cases� (Shao et al.,

2000; also see Vapnik et al., 1994). Recall that the VC dimension decides how big a dataset

is �big enough�. If the view is that enumerative induction as a method �nds its justi�ed

reliability in cases where VC dimension is �nite, then our inability to analytically solve the

VC dimension of a given hypothesis set seems deeply handicapping.

3Technically, Miller is interested in dichotomy theorems which establish either that an expansion of the
reals is o-minimal or that it de�nes second-order arithmetic. As mentioned before, the former su�ces for
being NIP , and the latter su�ces for being not NIP .
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To make matters worse, it turns out that even knowing when we do have �nite VC dimension

is not a straightforward task, as witnessed by the following theorem, whose proof is given in

Appendix A

Theorem 1. The set {ϕ(x, y) : ϕ(x, y) is NIP}, where ϕ(x, y) is formulated in the lan-

guage of arithmetic with addition and multiplication, is not decidable. In particular, this set

computes ∅(2), the second Turing jump of the empty set.

What this theorem tells us is that, in general, there is no e�ective procedure we can follow

that can tell us, for any 2-place formula ϕ(x, y), if it's NIP . With Laskowski's result, this

means that we cannot compute, in general, if a given hypothesis set is VC-learnable either.

It is worth noting that this result is about computability in general � that is, without

reference to the details of the hypotheses involved. There is no e�ective procedure that

decides the VC-learnability of any arbitrary set of hypotheses. It is often possible, however,

to show the VC-learnability of a particular set of hypotheses on a case-to-case basis. Once we

�x an H, we can usually tell if it has �nite VC dimension, such as in the cases of polynomials

or the sine function. However, this kind of answer is exactly the kind that the discussion of

the VC theorem is trying to help avoid. The practical problem of induction can be crudely

put as this: there exist inductive methods that sometimes work, sometimes don't, and we

would like to know the precise conditions under which something works. The answer from

the VC theorem is supposed to be: the method of supervised learning from data works just

in case the hypothesis set has a �nite VC dimension. However, we now �nd ourselves in a

situation where the condition of having a �nite VC dimension sometimes holds, sometimes

doesn't, and we do not have a good grasp of the precise circumstances under which it holds.

In fact, the above theorem says that we can never have such a grasp.

The speci�c way in which the set of all NIP formulas is uncomputable is signi�cant also. For

some time now, philosophers who study knowledge and learning from a formal perspective
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have placed a lot of emphasis on learning in the limit. Kelly (1996, p.52), for example, argues

that the concept of knowledge (as opposed to, say, mere belief) implies that the method of

generating such beliefs is stable in the limit. He then argues that the best way to formalize

the notion of �stability in the limit� is to understand it as computable in the limit. Relatedly,

a venerable tradition of formal learning theory following Gold (1967) has explored extensively

the conditions under which a noncomputable sequence may or may not be approximated by

a computable sequence making only �nitely many mistakes (cf. Osherson et al., 1986; Jain

et al., 1999). From this perspective, it seems we might still be able to claim knowledge of what

is or isn't knowable if we can compute the set of NIP formulas in the limit. Unfortunately,

this latter task cannot be accomplished. This is because that, in order for a sequence to be

approximable in the limit by another sequence, it cannot be harder than the �rst Turing

jump of the sequence used to approximate it (Soare, 1987, p.57; see also Kelly, 1996, p.280).

This means that something that is at least as hard as the second Turing jump cannot be

approximated by a computable sequence.

To recapitulate the dialectic so far: an easy problem of induction asks us to identify and

then justify the conditions under which a given ampliative method is reliable. The VC

theorem gives one answer: supervised statistical learning from data is reliable just in case

the hypothesis set has �nite VC dimension. However, it turns out that we cannot, in general,

decide if a hypothesis set is VC-learnable.

3.3 Conclusion

A reasonable conclusion to draw from the discussions we've had so far, I think, is that the

VC theorem still does not give us the kind of robust reliability we need to answer a question

with some scope of philosophical generality. As is typical of answers people give to problems

of induction, as soon as a rule is formulated, a question arises concerning its applicability.
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Similarly, what started out as a concern over the robustness of the method of enumerative

induction turns into a concern over the robustness of the identi�able (VC-learnable) condition

under which enumerative induction is justi�ed to be reliable.

A related question concerns the distinction, if there is one, between the cases where H has

in�nite VC dimension and cases where it has a VC dimension so large that it's impractical

for us to make use of it. There is a sense in which the case of an in�nite VC dimension fails

in principle, whereas the case of a very large VC dimension only fails in practice. However,

while there exist ways of empirically estimating the VC dimension of a hypothesis set (see,

e.g., Vapnik et al., 1994 and Shao et al., 2000), it is often impossible to analytically solve

the VC dimension of a set even if we do know that it's VC-learnable. Together with the

result that we cannot test if a case is VC-learnable in principle, it seems to suggest that any

information we might gain from the distinction between failing in principle and failing in

practice will not be very informative, since we often cannot tell which case we are in.

Perhaps the way out is to accept a �piecemeal� solution after all. It seems that when the

VC dimension is small, we can often know both that it is �nite, and that it is small. And of

course how small is �small enough� depends on what the size of a typical dataset is for this

particular problem. But again this seems to bring us back to the start of our journey: we

can justify the reliability of our preferred inductive method in some cases, but not in other

cases, and we cannot o�er a uni�ed account on why the good cases are di�erent from the

bad ones. Whether this should be seen as a call for further development or a termination of

this kind of solution strategy, I leave as a topic for future discussions.
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Concluding Remarks

Throughout this dissertation, I have adopted a perhaps unusually strong pragmatic attitude.

In each of the three cases examined in the chapters, there exist one or more internally

consistent and epistemically sound proposals that prescribe how a piece of methodology is

supposed to work. In each case, I raised strictly-pragmatic challenges � there is nothing

wrong with the theory; it is simply too practically di�cult to get it to work. I have o�ered

some speculation as to how we may respond in ways that both respect practical limitations

and keep as much epistemic grounding as possible. I hope that my speculation represents

only the beginning of this conversation.

The social sciences are intimately connected to every aspect of our lives. As a result, peo-

ple's perceptions of them vary wildly from triviality to intractable complexity. While these

perceptions may have their merits, it is more productive to start with the assumption that

the social sciences sit in between these extremes � they are di�cult but ultimately fruitful

endeavors. An important part of this assumption is to clarify the logic of social-scienti�c

methodologies not in terms of how they compare with methodologies in physics, but in terms

of how they are meant to contribute to our understanding of the social world in a substantive

way. This is what I have tried to do in this dissertation.

Another aspect of this assumption is to re�ect upon distinctions we draw between social

and physical sciences. Throughout this dissertation, I have used the phrase �the social
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sciences� to loosely refer to sciences that primarily study how people get along socially, such

as psychology, sociology, and education. There are, of course, important methodological

di�erences amongst these sciences and important similarities that some of them share with

some physical sciences. Indeed, the demarcation between social and physical science is itself

a contentious topic in the philosophy of social science. However, I take this question to be

only secondary � we need to �rst clarify what the social sciences are before we can decide

whether they di�er from other sciences in robust and consistent ways. For this reason, I

have remained noncomittal to the demarcation question throughout my discussions.

Whether or not a systematic social versus physical science distinction can be meaningfully

drawn, a philosophy of science centered on the social sciences is nevertheless well positioned

to contribute to broader philosophical conversations in nuanced ways. For example, although

my endorsement of the model-based approach to sampling was motivated by the impossibility

of drawing truly random samples of people, the resulting conception of sample representa-

tion o�ers a novel perspective to cases where random sampling is routine. My discussions

of measurement validity and data-driven inductive inferences are similarly generalizable to

studies of plants, inanimate objects, or particles.

Finally, a philosophy of science centered on the social sciences presents an illuminating

perspective on the relationship between science as a knowledge generating endeavor and

science as a human activity embedded in a society. With the growing literature on how

science a�ects, and is a�ected by, its surrounding sociopolitical context, philosophers of

science have called for more attention on the interaction between the epistemic and the

non-epistemic aspects of science. It is di�cult not to see this discourse as an attack on

truth, realism, and many other concepts that have traditionally founded their objectivity

(and subsequent legitimacy) on a perceived independence from human involvement. Since

human involvement lays at the center of the social sciences, any successful philosophy of
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social science has to contend with this tension in a substantive way, rather than dismissing

it as an unfortunate but largely harmless obstacle.

In this dissertation, I have adopted pragmatism as the main approach. That is, I anchor

epistemic evaluations of theories to their practical goals and implementations as a way to

introduce a kind of pragmatic-epistemic interaction that is neither a strict dichotomy nor

�anything goes�. Admittedly, this is not the only possible approach and might just as well

not be the best one for resolving problems discussed above. Nevertheless, my hope is that

my endeavors in this dissertation will spark more nuanced and sophisticated experimentation

in the future.
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Appendix A

Appendix

This appendix presents the proof of Theorem 1 in Chapter Three. I will follow the de�ni-

tion of NIP formulas given by Simon (2015) as follows (with notations changed to match

preceding text)

Let ϕ(x; y) be a partitioned formula. We say that a set A of |x|-tuples is shattered

by ϕ(x; y) if we can �nd a family (bI : I ⊆ A) of |y|-tuples such that

M |= ϕ(a; bI)⇐⇒ a ∈ I, for all a ∈ A

A formula ϕ(x; y) is NIP if no in�nite set of |x|-tuples is shattered by it.

Following notations from Soare (1987), let We to be the domain of the e-th partial recursive

function and Fin = {e : We < ω}.
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Lemma Given e, de�ne the following formula in the language of arithmetic

θe(x, y) =∃l > x ∃ enumeration c1, . . . c2l , �rst 2l elements of We

∧ ∃|σ| = l with y = cσ ∧ σ(x) = 1

Then e ∈ Fin i� θe is NIP .

Proof. (⇒) Suppose e ∈ Fin. The claim is: there is �nite number N such that |We| ≤ 2N ,

and for all n, if a set A with cardinality n is shattered by θe, then n ≤ N .

In particular, we show that the claim holds for N being the size of We. For the sake of

contradiction, suppose there is A, with size n, shattered by θe, and n > N .

Let A = {a1, . . . , an}, {bI : I ⊂ {a1, . . . , an}}, such that θe(ai, bI) i� ai ∈ I.

Without loss of generality, let an ≥ n− 1, and I = {an}. Then an ∈ I, and θe(an, bI). This

means that ∃l > an ≥ n − 1 with the �rst 2l many elements of We enumerated. Recall

that the reductio hypothesis states n > N . This means that |We| ≥ 2l > 2n−1 ≥ 2N . This

contradicts the original assumption that |We| ≤ 2N .

(⇐) To show the contrapositive of this direction, suppose e /∈ Fin, |We| = ω. The claim is:

θe is IP . Namely, ∀N ∃n ≥ N , with some set A of cardinality n that is shattered by θe.

Take an arbitrary n ≥ N . Let A = {0, . . . , n − 1}. Let bσ's be the �rst 2n elements of We,

as σ ranges over �nite strings of length n. Since σ is a string, we say a ∈ σ ⇔ σ(a) = 1.

We need to show that θe(a, bσ)⇔ σ(a) = 1.

The left to right direction is trivial, since it is part of θe(a, bσ) to state that σ(a) = 1.
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To show the right to left direction, note that since |We| = ω, there de�nitely exists an initial

segment of 2n many elements ofWe, and n > a for all a ∈ A. This satis�es the �rst conjunct.

To satisfy the second conjunct of θe, recall that we de�ned our enumeration to be such that

|σ| = n with σ being identi�ed with every number ≤ 2n. This means that an enumeration

of c1 . . . c2n includes all cσ with |σ| = n. De�ne bσ = cσ, and we are guaranteed that bσ is in

the enumeration, and |σ| = n. Finally, the last conjunct of θe is satis�ed by supposition.

Theorem. The set {ϕ(x, y) : ϕ(x, y) is NIP}, where ϕ(x, y) is formulated in the language of

arithmetic with addition and multiplication, is not decidable. In particular, this set computes

∅(2), the second Turing jump of the empty set.

Proof. Suppose not, then for any formula ϕ(x, y), we can decide if it's NIP . This means

that, for any e, we can decide if θe(x, y) as de�ned in the lemma above is NIP . By lemma,

θe(x, y) is NIP just in case e ∈ Fin. If we could decide the former, we would be able to

decide the set Fin. But by Soare (1987, p.66, Theorem 3.2), Fin is Σ2-complete, and so

computes ∅(2), the second Turing jump of the empty set, and hence is not computable.
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