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ABSTRACT
This study examined diets of two predatory 
fish species, the native Sacramento 
Pikeminnow (Ptychocheilus grandis) and the 
introduced Striped Bass (Morone saxatilis), in 
the Sacramento River, California, USA. Both 
species have been implicated in native species 
declines through predation, eliciting our 
investigation of their diets in the Sacramento 
River. Sampling occurred between March 
and November 2017, and was conducted via 
hook and line on a 35-km reach near Chico, 
California. Habitat types sampled include 
engineered structures (water diversions and 
beam bridges), rip-rapped channel edges, 
and natural riverbank. Stomach contents 
were collected via gastric lavage and later 
processed using visual, gravimetric, and 
genetic techniques. Diets of Sacramento 
Pikeminnow and Striped Bass were highly 

similar as determined through index of 
relative importance and PERMANOVA 
modeling. Water temperature was the only 
variable that significantly affected diet 
composition. Results reflect similar dietary 
niches for both species in the Sacramento 
River.

KEY WORDS
Sacramento Pikeminnow, predation, Striped 
Bass, introduced species, California, fisheries, 
water diversion, Chinook Salmon

INTRODUCTION
Because predation is a challenge with which 
nearly all organisms must contend, it is often 
considered in the management of vulnerable 
populations of fishes (Zimmerman and Ward 
1999; Link 2002). In the Sacramento River, 
California, this challenge may be amplified 
for populations of juvenile Chinook Salmon 
by climate change, a complex water diversion 
system, hatchery domestication effects, lack 
of juvenile rearing habitat, and non-native 
predatory fish species (Brown and Moyle 
1981; NOAA Fisheries 2018). Factors such as 
climate change and habitat loss have served 
to limit the natural production potential of 
Chinook Salmon (Oncorhynchus tshawytscha) 
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in the Sacramento River, while domestication 
of hatchery-reared fish and watershed 
engineering increase the vulnerability of 
juvenile Chinook Salmon to predation by 
both native and non-native predators (NOAA 
Fisheries 2018).

Of the four Chinook Salmon runs native 
to the Sacramento River, winter-run are 
listed as endangered, spring-run are listed 
as threatened, and both Central Valley fall-
run and late fall-run have been identified 
as California species of special concern 
(Moyle et al. 2015; NOAA Fisheries 2018). 
In addition, Green Sturgeon (Acipenser 
medirostris) and Steelhead (Oncorhynchus 
mykiss), both species native to the Sacramento 
River, are also listed as threatened under 
the federal Endangered Species Act. Prior 
studies have investigated the potential for 
population-scale effects of predation by non-
native species on prey populations, including 
listed Chinook Salmon, through population 
modeling (Lindley and Mohr 2003), 
bioenergetic modeling (Loboschefsky et al. 
2012), and telemetry survival studies (Cavallo 
et al. 2013) within the Sacramento River and 
adjacent watersheds. While these studies 
identify predation as a tangible “top-down” 
control of prey populations, population-
scale effects are often difficult to quantify 
in the highly dynamic and heterogeneous 
Sacramento River system. 

The middle Sacramento River contains 
two abundant piscivorous fish species: 
Sacramento Pikeminnow (Ptychocheilus 
grandis) and Striped Bass (Morone saxatilis). In 
the Sacramento River and other California 
watersheds, both predators consume 
vulnerable native species, including juvenile 
Chinook Salmon and Steelhead (Stevens 
1966; Thomas 1967; Brown and Moyle 1981; 
Brown and Moyle 1997; Nakamoto and 
Harvey 2003; Sabal et al. 2016). Sacramento 
Pikeminnow are native to the Sacramento 
River drainage; Striped Bass were introduced 
in 1879 as a recreational and commercial 
species (Moyle 2002). Both Sacramento 

Pikeminnow and Striped Bass are common 
in the Sacramento River, despite overall 
population declines throughout the watershed 
(Stevens et al. 1985; Kohlhorst 1999; Moyle 
2002; Brown and Moyle 2005).

Sacramento Pikeminnow and Striped Bass 
have both been considered as potential 
contributors via predation to native species 
decline in the highly modified Sacramento 
River system (CDFG 1999; Moyle 2002; 
Lindley and Mohr 2003; Bonham 2011). 
Pikeminnow species (Ptychocheilus spp.) have 
been shown to consume large amounts of 
outmigrating salmonids from a range of US 
West Coast watersheds under hydraulically 
favorable conditions, and, in response, 
predator control measures have been 
implemented with mixed results (Brown 
and Moyle 1981; Brown and Moyle 1997; 
Tucker et al. 1998; Friesen and Ward 1999; 
Zimmerman and Ward 1999; Moyle 2002; 
Nakamoto and Harvey 2003). Likewise, 
Striped Bass have also been shown to 
consume salmonids (Stevens 1966; Tucker 
et al. 1998), which modeling suggests may 
have population-scale effects (Lindley and 
Mohr 2003; Sabal et al. 2016). Within the 
Sacramento River drainage, the effects of 
dams and diversions on predation have been 
a point of concern (Brown and Moyle 1981; 
Tucker et al. 1998; Sabal et al. 2016). Altered 
water dynamics near these structures may 
serve as ambush habitat, making conditions 
favorable to opportunistic predators such as 
Striped Bass and Sacramento Pikeminnow. 
In addition, juvenile Chinook Salmon show 
a preference for low-water-velocity areas 
(Hillman et al. 1987), and may be more 
susceptible to predation when exposed to 
disorienting flows caused by engineered 
structures (Brown and Moyle 1981; Tucker et 
al. 1998; Deng et al. 2010; Sabal et al. 2016).

Striped Bass long avoided management as a 
predatory species because of their value as 
a game fish; that changed, however, in the 
1990s, when the California Department of 
Fish and Game (now California Department 
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of Fish and Wildlife; CDFW) ceased stocking 
Striped Bass so as not to facilitate predation 
on listed salmonids (CDFG 1999; Moyle 
2002). Several studies investigated diets of 
Striped Bass in the Sacramento−San Joaquin 
Delta (Delta); however, there is little recent 
literature on Striped Bass diets in the middle 
reaches of the Sacramento River below 
Shasta Dam (Brown and Moyle 1981; Tucker 
et al. 1998; Moyle 2002; Nobriga and Feyrer 
2007). Likewise, although Nobriga and Feyrer 
(2007) compared the diets of Sacramento 
Pikeminnow and Striped Bass concurrently 
in the Delta, diets for these two species have 
not been compared in the middle Sacramento 
River since Tucker et al. (1998) investigated 
predation around the Red Bluff Diversion 
Dam (RBDD) in the mid-1990s. The middle 
Sacramento River is colder and is generally 
a single channel, as opposed to the Delta’s 
warmer network of channels or open water. 
It contains a different assemblage of prey 
species (Moyle 2002), some of which are only 
seasonally available, potentially affecting 
predator diets. We investigated the diets of 
these two species over a year, using visual 
and genetic techniques to identify prey 
species. Using these methods, we describe 
Sacramento Pikeminnow and Striped Bass 
diets by quantifying: (1) relative importance 
of prey, (2) overlap of predator diets, and (3) 
effects of engineered structures on predator 
diet.  

MATERIALS AND METHODS
Study Organisms 
Sacramento Pikeminnow are native to the 
Sacramento River and are an abundant 
piscivorous fish within the freshwater 
portions of the system. They become 
piscivorous at 10 to 20 cm total length, 
sexually mature at 3 to 4 years of age, and 
may exhibit either resident or migratory 
life-history strategies within the fresh and 
brackish portions of the system (Moyle 2002; 
Nobriga et al. 2006).  

Piscivory in Striped Bass generally begins at 
around 15 cm total length (Texas Instruments 
1974) as determined by gape limitation; 
however, piscivory has been shown to have 
a strong seasonal association in the Delta 
(Nobriga and Feyrer 2007). Males become 
sexually mature at 2 years of age; females 
generally do not mature before 4 years of age 
(Moyle 2002). Immature individuals may be 
found throughout the system, while mature 
individuals exhibit an anadromous life-
history strategy, spending much of the year 
in the San Francisco Estuary (Sacramento−
San Joaquin Delta, Suisun Bay and Marsh, 
San Pablo Bay, San Francisco Bay) and the 
Pacific Ocean (Thomas 1967; Moyle 2002). 
Mature Striped Bass generally enter the 
Sacramento River system in spring to spawn, 
before returning to downstream habitats 
(Moyle 2002); however, resident contingents 
of mature adults exist in their native US East 
Coast rivers (Morris et al. 2003), and recent 
studies on California Striped Bass indicate 
there may be both resident and migratory 
contingents within the Sacramento River 
watershed, as well (Le Doux−Bloom 2012; 
Sabal et al. 2019).

Study Reach 
Fish were collected on the Sacramento River, 
between Ord Bend boat ramp (river kilometer 
296) and Glenn−Colusa Irrigation District 
diversion facility (GCID; river kilometer 
331; Figure 1). We chose this logistically 
manageable reach because of the presence 
of both Striped Bass and Sacramento 
Pikeminnow, seasonal populations of 
migratory salmonids, engineered structures, 
and its diversity of habitat.

We implemented a balanced sampling 
design, breaking the total sampling reach 
into four sections of similar length, each of 
which contained three fixed sampling sites 
of different habitat types. Habitat types 
included engineered, rip-rap, and natural 
locations. Engineered sites were adjacent to 
engineered structures such as water diversion 
facilities or beam bridges. Rip-rap sites had 

https://doi.org/10.15447/sfews.2020v18iss1art4
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at least one adjacent bank that had been 
armored with large rock. Natural sites were 
not near either armored bank or engineered 
structures. Since the limiting habitat type 
in our study reach was engineered habitat, 
the number of rip-rap and natural sites 
corresponded to the number of engineered 
sites available. We identified possible rip-rap 
and natural sites, and randomly selected a 
subset of four of each site type. 

Sample Collection 
We used hook and line sampling methods 
to collect data from wild Sacramento 
Pikeminnow and Striped Bass. We selected 
hook and line sampling because of its low 
material cost and low risk of listed species 
bycatch. We generally sampled twice weekly, 
with one morning shift (starting 45 minutes 
before sunrise) and one evening shift 
(starting 5 hours before sunset) to control 
for diurnal feeding effects (Fraser et al. 
1993). We sampled each site for 1.25 hours 

per sampling period, with all three habitat 
types within a section sampled for a total of 
3.75 hours. Individual sections were sampled 
biweekly, and alternated between morning 
and evening. Before sampling a section, we 
randomly generated the order in which we 
visited sites.

Hook and line sampling began in March 
2017 and continued through the end of 
November 2017. High water and unsafe 
conditions prevented sampling in January 
and February, as well as part of March and 
April, and limited crew availability was 
responsible for lack of sampling in December. 
We sampled from a 4.9-m jet boat at anchor. 
Four rods were fished in randomized order, 
each of which was assigned a unique bait 
(large sardine piece, small sardine piece, 
chicken liver, and nightcrawlers) that would 
not contaminate subsequent diet sample 
analysis. We selected bait types to attract 
target species from a range of sizes. When 
we caught fish, we removed them from 
the water, measured them for length (fork 
length; cm) and weight (kg, ± 50 g), and 
placed them into an aerated holding tank. 
We then pumped fish stomachs using non-
lethal gastric lavage, a method in which 
pulses of pressurized water are directed into 
the esophagus, causing the fish to evacuate 
its stomach contents (Foster 1977). To retain 
sample integrity after returning from the 
field, stomach content samples were collected 
in a fine mesh bait net (flushed with river 
water between samples), transferred to sterile 
Whirl-pak® bags, labeled, stored on ice, and 
frozen at -20 °C immediately. 

We measured water temperature at each 
site via the transducer from the onboard 
fish-finder/GPS unit (Garmin® Striker 4), 
and measured water clarity with a 
20.3-cm-diameter white and black Secchi 
disk. Upon two occasions, when crew failed 
to record water clarity, it was estimated 
as the mean of measures taken during the 
previous and following sampling days. 

Ord Bend

GCID

Section 1

Section 2

Section 3

Section 4

4 km

riprap
natural
manmade

Figure 1  Location of hook and line sampling sites by site 
type and section. Map courtesy of Dr. Paolo Segre, Stanford 
University.
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Laboratory Analysis 
Stomach contents were processed to 
determine weight (g, ± 0.001g), frequency 
of occurrence, and number of prey within 
each sample. Stomach content samples 
were removed from the freezer and allowed 
to fully thaw at room temperature. Using 
instruments sterilized in 20% bleach 
solution, we placed samples onto new 
polystyrene weigh boats, sorted them, and 
segregated prey by taxonomic category. 
Prey categories included fish, crayfish, other 
macroinvertebrates (primarily terrestrial 
and aquatic insects), and unknown soft 
matrix (i.e., visually unidentifiable yet 
clearly organic stomach content material; 
what remains after less-digested prey is 
removed). We used diagnostic parts—such 
as spinal columns for fish, and head parts 
for macroinvertebrates—to enumerate 
individuals. 

Next, we weighed the prey group to the 
nearest thousandth of a gram using an 
Ohaus® STX223 Scout portable balance, after 
blotting prey dry with new paper towels. 
For individual fish that could be clearly 
identified as such, we removed a sample of 
tissue (≤ 0.25g) and transferred it to a new 
1.5-mL micro-centrifuge tube, labeled it, and 
stored it on ice. When individuals could not 
be clearly differentiated, we homogenized the 
soft-matrix material with dissecting tools, 
and took at least one representative grab 
sample (≤ 0.25g). Once a processing session 
was completed, resulting pre-category sub-
samples were immediately returned to storage 
at -20 °C for later genetic analysis. 

Genetic Analysis 
Traditionally, diets of predatory fish have 
been analyzed by visual prey identification 
(Stevens 1966; Tucker et al. 1998; Sabal 
et al. 2016). While this methodology is 
logistically and economically viable, it best 
describes only what prey a predator was 
feeding on immediately before capture. Prey 
items rapidly deteriorate in the stomach 
of predators to a point at which they 

cannot be easily identified—a process that 
accelerates with increasing water temperature 
(Vondracek 1987). Genetic methods, although 
more costly and labor-intensive than simple 
visual identification, allowed for a more 
holistic representation of predator diets 
(Valdez−Moreno et al. 2012).

We chose quantitative PCR (qPCR) as the 
primary analysis technique because of its 
higher throughput than traditional PCR, 
as well as its ability to quantify sample 
DNA, allowing for discrimination of true 
versus contaminant DNA (Rees et al. 2014). 
Although still a relatively novel method for 
identifying prey from stomach contents, 
qPCR has proven successful for this 
application in a number of studies (Durbin 
et al. 2011; Hunter et al. 2012; Taguchi et al. 
2014; Michel et al. 2018). 

We determined a reference list of potential 
prey species through the lead author’s 
previous CDFW seining and snorkel survey 
experience, and verified them using Moyle 
(2002). We referenced previously-designed 
prey species primers from current literature 
(Jordan et al. 2010; Baerwald et al. 2012; 
Brandl et al. 2015), and designed additional 
primers using Genbank sequence data 
and the National Center for Biotechnology 
Information (NCBI) Primer-BLAST tool 
(Benson et al. 2012; Ye et al. 2012). We 
tested primer sets for validity against 
known voucher tissue via PCR and qPCR, 
and optimized them to determine correct 
annealing temperatures. Testing and optimizing 
was done for all primer sets except for River 
Lamprey (Lampetra ayresii) and Western Brook 
Lamprey (Lampetra richardsoni), as the result 
of an inability to procure tissue; however, 
this did not meaningfully affect results, 
because these species were not detected. 
Although Striped Bass and Sacramento 
Pikeminnow primers were validated, 
we excluded these species as potential 
prey because we were concerned about 
contamination from predator tissue. 

https://doi.org/10.15447/sfews.2020v18iss1art4
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PCR primer sets produced single bands on an 
agarose gel and consistent melt curves for 
species-specific products in qPCR in at least 
duplicate for each prey species considered. 
Voucher tissue was supplied by the UC Davis 
Genomic Variation Laboratory, the CDFW 
Upper Sacramento Watershed Fisheries 
Project, and the field component from this 
study. Voucher tissue was either frozen, 
dried, or stored in ethanol when collected, 
and DNA was extracted using Qiagen® 
DNeasy DNA extraction kits. Table 1 contains 
the prey reference list and associated primers. 

The qPCR assays were run using an 
Eppendorf® EP realplex thermal cycler, in 
96-well format. We mixed reagents using 
3 uL of undiluted sample DNA, 3 uL of DNase 
free water, 5 mM of primer pair, and 7.5 uL 
of Thermo Scientific™ 2X Luminaris Color 
HiGreen qPCR Master Mix per well. All 
qPCR runs had at least two negative controls 
of DNase free water. We ran Brandl et al. 
(2015) and Baerwald et al. (2012) primers 
with a qPCR program of 10 minutes at 95 °C, 
followed by 40 cycles of 15 seconds at 95 °C, 
and 1 minute at 60 °C. Primers designed for 
this study and the Jordan et al. (2010) universal 
fish primer set followed similar programs; 
however, we changed the annealing step to 45 
seconds at 68 °C and 62 °C, respectively. We 
adjusted the annealing temperatures to maximize 
the efficiency of primers that had been designed 
to different specifications.

Once primers had been validated, sample 
DNA was extracted from tissue using Qiagen® 
Powerfecal DNA extraction kits. Powerfecal kits 
are optimized for extracting DNA from low-
quality samples high in PCR inhibitors, as is the 
case with stomach contents. We extracted and 
tested all sample DNA for DNA concentration and 
quality using a Thermo Scientific™ NanoDrop One 
Microvolume UV-Vis Spectrophotometer.

Initially, we tested all samples labeled as soft 
matrix against the Jordan et al. (2010) universal 
fish primer set, to determine if samples contained 
any fish tissue. We excluded from further 

analysis samples that did not amplify with 
the universal fish primer. Soft-matrix samples 
that did amplify against the universal fish 
primer set were then tested against a limited 
assay of species, which included Chinook 
Salmon, Steelhead, White Sturgeon (Acipenser 
transmontanus), Green Sturgeon, and Pacific 
Lamprey (Entosphenus tridentatus). Soft-matrix 
samples that tested positively for one or more 
species were conservatively counted as one 
individual from each positive amplification.

We tested individual fish from stomach samples 
against targeted species primers until we 
reached a positive result. We tested all prey fish, 
regardless of level of digestion, to confirm visual 
identifications. Notes on prey morphology taken 
during sample processing were used to inform 
primer set selection, targeting the most likely prey 
items. Occasionally, a single individual sample 
would amplify for multiple species (potentially as 
a result of inter- or intra-sample contamination), 
in which case we selected the species with 
the lowest cycle threshold value. Samples that 
amplified at lower cycle thresholds were assumed 
to contain more prey DNA. We ran a subsample 
of amplified qPCR products on agarose gels to 
validate results. Examples of positive, negative, 
and control amplification curves and melt profiles 
can be seen in Appendix A, Figure A1.

Data Analysis 
Predator size and spatial–temporal distribution 
were analyzed using Kruskal–Wallis rank 
sum test and Dunn’s post hoc test of multiple 
comparisons. We chose these non-parametric 
tests because of the non-normality of the data. 
We analyzed predator distribution using site-
specific catch per unit effort (CPUE) data as an 
index of abundance, with CPUE defined as the 
number of fish captured per hour. Although there 
are inherent issues with using CPUE as a metric 
for abundance, the consistency of our sampling 
efforts does increase the validity of its use 
(Haggarty and King 2006). We tested temporal 
distribution by season, with March through May 
classified as spring, June through August as 
summer, and September through November as 
fall. 
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Table 1 Prey reference list including mitochondrial reference gene, primer sequences, gene segment length, and accession 
number

Common Name
(Latin name) Gene Primers (5’ to 3’)

Segment 
length Accession number

American Shada

(Alosa sapidissima)
CYTB

FOR – TGCACGCAAACGGGGCATCA
REV – CCTCGGCCAATGTGGGCGTAAA

58bp GU556214.1

Chinook Salmond

(Oncorhynchus tshawytscha)
CYTB

FOR – CCTAAAAATCGCTAATGACGCACTA
REV – GGAGTGAGCCAAAGTTTCATCAG

80bp KF013235

Delta Smeltc

(Hypomesus transpacificus)
CYTB

FOR – AATGGCCAACCTTCGGAAA
REV – GARATATTRGAGGGTGCAGG

90bp HQ667171

Green Sturgeond

(Acipenser medirostris)
COI

FOR – AGGGAAAAAATGGTTAGGTCTACAGA
REV – CCCCACTGGCGGGAAA

61bp KF558288

Hardheada

(Mylopharodon conocephalus)
CYTB

FOR – TGCCGGCGCAACCATCCTACA
REV – CGGCCGGGTTGTTTGATCCGGT

62bp EU747218.1

Longfin Smeltd

(Spirinchus thaleichthys)
CYTB

FOR – CTCTGCCGGGACGTCAAT
REV – CCCGTTAGCGTGCATATTCC

53bp KF013249

Mississippi Silversidec

(Menidia audens)
CYTB

FOR – CCGTTTGCATGCATATTTCG
REV – CCTTTTCGTCTGTTGCACACA

73bp JN008748

Pacific Lampreya

(Entosphenus tridentatus)
COI

FOR – TTGAAGCAGGGGCTGGCACAGG
REV – GGAGGCCCCTGTGTGGGCTAA

74bp KX389877.1

Prickly Sculpina, e

(Cottus asper)
CYTB

FOR – ATTGCCCTCACAGCCCTCGCAC
REV – TCACCAGCGGGTTAGCAGGGG

82bp KX353550.1

Riffle Sculpina, e

(Cottus gulosus)
COI

FOR – GGCGCCCTTTTGGGGGACGA
REV – GGGGCGCCGATCATTAAGGGGA

137bp JN025103.1

River Lampreya, f

(Lampetra ayresi)
CYTB

FOR – CTGACTAATGTCCCACCCACCAACT
REV – GCAGGAGAAGGAAGGTCAACTAGCA

93bp KR422617.1

Sacramento Suckera

(Catostomus occidentalis)
COI

FOR – AATCTTGCCCACGCCGGAGCC
REV – TTGAGAGATGGCTGGGGGCTTCA

132bp JN024942.1

Sacramento Tule Percha

(Hysterocarpus traskii)
COI

FOR – GGGCAGAACTAAGCCAACCAGGCG
REV – ACAAAGGCGTGGGCCGTTACAA

79bp JN026852.1

Steelhead/Rainbow Troutd

(Oncorhynchus mykiss)
COI

FOR – AACATAAAACCTCCAGCCATCTCT
REV – AGCACGGCTCAAACGAAAA

59bp KF558313

Threadfin Shadd

(Dorosoma petenense)
CYTB

FOR – AAGTCCTCGGCCGATGTG
REV – CATGCAAACGGAGCATCCT

39bp KF013218

Western Brook Lampreya, f

(Lampetra richardsoni)
CYTB

FOR – TCGGACGAGGAATCTACTACGGCT
REV – TGCCCTCATGGGAGAACGTAACCGA

118bp KY499461.1

White Sturgeond

(Acipenser transmontanus)
CYTB

FOR – CCCCGTTTGCATGAATGTTT
REV – CGCCCACATCTGCCGAGAT

62bp KF013247

Universal Fish Primerb 12S
FOR – GCTTAAAACCCAAAGGACTTG
REV – CTACACCTCGACCTGACGTT 

148bp —

a. Benson et al. (2012).
b. Jordan et al. (2010).
c. Baerwald et al. (2012).
d. Brandl et al. (2015).
e. Primers amplified both Riffle and Prickly Sculpin DNA. 
f. Primers were not validated against known voucher tissue and experienced partial cross-amplification; strongest signal was selected for analysis.

https://doi.org/10.15447/sfews.2020v18iss1art4
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We used cumulative prey curves, as outlined by 
Ferry and Cailliet (1996), to determine sample size 
adequacy by species, habitat type, and season. 
With this technique, the number of new prey 
items is plotted against the number of stomachs 
analyzed, in random order. If the plot reaches an 
asymptote, then a sufficiently large sample size 
has been obtained to describe the diet of a species 
under the conditions studied (Ferry and Cailliet 
1996). We used the R package ‘vegan,’ function 
‘specaccum,’ to construct cumulative prey curves 
(Oksanen et al. 2013; Hernandez 2016; R Core 
Team 2018).

We used gravimetric values and prey 
enumerations, as determined through lab and 
genetic analysis, to calculate the index of relative 
importance (IRI) of each prey taxon by predator 
species. We used visual and genetic identifications 
interchangeably; however, we did not include soft-
matrix samples in IRI calculations since we could 
not determine prey weight for these samples. 
IRI is a compound value used to determine the 
importance of any given prey taxon in a predator 
species diet (Pinkas et al. 1971; Hyslop 1980) and 
is calculated as follows:

 IRI = (%N + %W )  *  %FO (1)

where %N is total prey percent by number, %W 
is total prey percent by weight, and %FO is 
total prey percent frequency of occurrence 
for a given predator group. Volumetric 
measurements may be used in place of %W 
(Hyslop 1980); however, given the small 
size of prey, we chose to use gravimetric 
measurements because the instruments 
available were more precise. We used wet 
weight of prey because Glenn and Ward (1968) 
showed that prey wet and dry weights are 
highly correlated.

Once we calculated IRI for each prey taxon, 
we then converted it to %IRI to increase study 
comparability (Cortés 1997). %IRI is calculated as 
follows:

  (2)

We chose permutational multivariate analysis of 
variance (PERMANOVA) to analyze diets because 
of its robustness in analyzing ecological data, as 
well as its ability to handle heavily zero-weighted 
data sets (Lek et al. 2011; Anderson and Walsh 
2013; Oksanen et al. 2013). While PERMANOVA is 
robust in analyzing data sets with heterogeneous 
multivariate spread, it becomes more sensitive 
to heterogeneity when groups are unbalanced 
(Anderson and Walsh 2013). Since our sample 
sizes of Sacramento Pikeminnow and Striped 
Bass containing identifiable stomach contents 
were unbalanced (n = 30 vs. n = 47, respectively), 
we first tested for homogenous multivariate 
spread between species groups (R package 
EcoSimR::betadisper; Gotelli et al. 2015; R Core 
Team 2018). 

We used PERMANOVA to analyze the effect 
of species, habitat type, and water temperature 
on diet composition, measured as frequency 
of occurrence. We tested a suite of other 
environmental and demographic variables during 
model construction; however, their effects on diet 
were insignificant, so we excluded them from 
our final model. We then subset our data (n = 20 
Sacramento Pikeminnow, n = 36 Striped Bass) by 
excluding the macroinvertebrate and crayfish 
prey groups. Using this subset data, we again 
ran our model to test whether invertebrates were 
confounding potential differences in piscivory. 
We ran the PERMANOVA analysis using marginal 
testing and 10,000 permutations, which we 
determined as sufficient to stabilize p-values. 
Results from all statistical tests were considered 
significant at α = 0.05.

RESULTS
Size and Distribution
Over the course of the sampling period, 155 
target species were captured, of which 68 were 
Sacramento Pikeminnow and 87 were Striped 
Bass. Of these individuals, approximately 
46% of Sacramento Pikeminnow (n = 31) and 
57% percent of Striped Bass (n = 50) contained 
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stomach contents (Table 2). We were unable to 
identify prey from several of the individuals 
that contained stomach contents, which reduced 
the sample size of Sacramento Pikeminnow and 
Striped Bass included in dietary analysis to n = 30 
and n = 47, respectively. 

Sacramento Pikeminnow were evenly distributed 
across all habitat types (Kruskal−Wallis, 
chi-squared = 5.48, df = 2, p = 0.06), as were 
Striped Bass (Kruskal−Wallis, chi-squared = 1.85, 
df = 2, p = 0.40). Given the closeness of the test 
of Sacramento Pikeminnow distribution to our 
significance threshold of alpha = 0.05, we ran 
Dunn’s post hoc test of multiple comparisons to 
test what was driving this result. Dunn’s test 
showed that CPUE of Sacramento Pikeminnow 
increased by 2.1 fish per hour at engineered sites 
when compared to natural sites (p = 0.02). 

When temporal distribution was considered, 
Kruskal−Wallis tests showed no difference in 
CPUE by season for Sacramento Pikeminnow 
(chi-squared = 0.37, df = 2, p = 0.83), although 
a difference was seen for Striped Bass 
(chi-squared = 17.13, df = 2, p < 0.001). Dunn’s 
post hoc test showed this result was driven by 
significantly higher CPUE of Striped Bass during 
summer than in fall (difference = 2.62 fish hr-1, 
p = 0.004) or spring (difference = 4.02 fish hr-1, 
p < 0.001).

The average fork length (FL) and weight of 
Sacramento Pikeminnow included in dietary 
analysis were 35.2 cm and 0.45 kg (Table 2), 
and Striped Bass was 31.8 cm and 0.40 kg, 

respectively. There was not a significant 
difference in FL or weight between empty 
and non-empty individuals for either 
Sacramento Pikeminnow (Kruskal−Wallis, FL: 
chi-squared = 0.001, df = 1, p-value = 0.98; weight: 
chi-squared = 0.001, df = 1, p = 0.98) or Striped 
Bass (Kruskal−Wallis, FL: chi-squared = 0.13, 
df = 1, p = 0.72; weight: chi-squared = 0.17, df = 1, 
p = 0.68). Kruskal−Wallis tests showed that, for 
individuals containing identifiable stomach 
contents, Striped Bass FL was less than for 
Sacramento Pikeminnow (chi-squared = 5.27, 
df = 1, p = 0.02), while weights were not different 
(chi-squared = 0.42, df = 1, p = 0.52). Dunn’s post 
hoc test confirmed that Striped Bass FL was less, 
however, only by approximately 2.3 cm (p = 0.01). 

Diet Composition
Of the individuals that contained stomach 
contents, piscivory was observed in 71% of 
Sacramento Pikeminnow and in 84% of Striped 
Bass. We were unable to identify a minimum 
size of piscivory for either species, because the 
smallest Sacramento Pikeminnow (27 cm) and 
Striped Bass (22.5 cm) that contained stomach 
contents were both found with fish parts in their 
stomachs.

Multivariate spread was not different between 
Sacramento Pikeminnow and Striped Bass 
(p = 0.13), therefore meeting PERMANOVA 
model assumptions. Likewise, sample sizes were 
determined to be adequate to describe diets by 
species and habitat type, given that cumulative 
prey curves for both predator species (Figure 2) 
and all habitat types reached an asymptote (Ferry 

Table 2 Demographics of Sacramento Pikeminnow and Striped Bass that contained identifiable stomach contents. Empty rate 
refers to the percentage of individuals captured that did not contain any stomach contents, identifiable or otherwise. 

Variable Sacramento Pikeminnow Striped Bass

Number of individuals 30 47

Fork length range (cm) 27.0 − 57.0 22.5 – 47.0

Fork length mean ± SD (cm) 35.2 ± 7.4 31.8 ± 6.9

Weight range (kg) 0.20 – 1.60 0.14 - 1.00

Weight mean ± SD (kg) 0.45 ± 0.35 0.40 ± 0.24

Empty rate 54% 43%

Observed onset of piscivory (cm) 27.0 22.5

https://doi.org/10.15447/sfews.2020v18iss1art4
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and Cailliet 1996; Oksanen et al. 2013). Although 
cumulative prey curves reached an asymptote for 
summer and fall, they did not for fish captured 
during the spring, precluding season as a 
predictor variable in our PERMANOVA model.

The two most important prey items for both 
predator species, as enumerated by %IRI, were 
macroinvertebrates (excluding crayfish) and 
Chinook Salmon (Sacramento Pikeminnow: 
77% and 15%, respectively; Striped Bass: 78% 
and 17%, respectively; Table 3). PERMANOVA 
modeling confirmed the similarity of diets 
indicated by %IRI. Prey frequency of occurrence 
showed no relationship with species or habitat 
type; however, it was significantly influenced by 
water temperature, although it only explained 
~4% of the variation in diet composition (F = 3.22; 
df = 1, 72; p = 0.01; Table 4). This result did not 
change when the macroinvertebrate and crayfish 
prey groups were excluded from the PERMANOVA 
analysis. The lack of association between diet 
and habitat type must be qualified by the fact 
that much of the stomach contents recovered 
were highly degraded, and prey may have been 
consumed in areas other than where predators 
were captured. 

DISCUSSION
Predation by native and non-native predators 
in the Sacramento River system is often cited 
as a major factor that contributes to native 
species decline (NOAA Fisheries 2019), but 
without sufficient information on in-river 
species interactions. By examining diets of the 
two important predatory fish species within the 
Sacramento River, this study aimed to approach 
the issue of native species loss through better 
understanding of predator diets. Although 
our study is only a snapshot of diets during a 
high-water year, it nonetheless demonstrates 
similarity of diets between Striped Bass and 

Figure 2 Species accumulation curves for Sacramento 
Pikeminnow and Striped Bass. Error bars represent the 
possible number of new prey species added for the addition 
of a single randomly selected predator stomach. Species plots 
offset for visual distinction.

Table 3 %IRI values for Sacramento Pikeminnow and Striped 
Bass captured via hook and line sampling near Chico, CA

Prey species
Sacramento 
Pikeminnow Striped Bass

American Shad 0.08 0.64

Chinook 14.57 17.03

Crayfish 2.56 0.17

Green Sturgeon 0 0.08

Hardhead 0.48 2.75

Macroinvertebrate spp. 76.9 78.09

Pacific Lamprey 0.9 0.11

Sculpin spp. 4.51 1.03

Tule Perch 0 0.1

Table 4 PERMANOVA model testing effects of species 
(Sacramento Pikeminnow and Striped Bass), habitat type, 
and water temperature on diets of predators captured via 
hook and line sampling near Chico, CA. Analysis run using 
frequency of occurrence as prey metric. 

Model: Prey Frequency of Occurrence ~ Species + Habitat Type 
+ Water Temperature

Source df
Sum of 
squares R2 F P

Species 1 0.09 0.003 0.27 0.88

Habitat type 2 0.43 0.02 0.66 0.72

Water temp. 1 1.04 0.04 3.22   0.02*

Residual 72 23.17 0.93

Total 80 24.91 1.00

Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
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Sacramento Pikeminnow in the Sacramento River 
(Tables 3 and 4; Figure 2).

Predator Diets
%IRI and PERMANOVA modeling indicate 
no difference in diets between Sacramento 
Pikeminnow and Striped Bass. While there are 
obvious life-history differences between these 
two species, on a per capita basis, neither appears 
to have a higher impact on any particular prey—
including Chinook Salmon—than the other. 
Our observed proportion of Chinook Salmon 
in predator diets was lower than was seen by 
Thomas (1967) within the Sacramento river, 
and, overall, diets were substantially different 
than those observed within the Delta (Stevens 
1966; Nobriga and Feyrer 2007). Because there 
are currently no estimates of adult Sacramento 
Pikeminnow or Striped Bass abundance in the 
Sacramento River, the total effect of predation 
on native species cannot be quantified from 
diet composition alone. Future studies should 
focus on building accurate population estimates 
for both Sacramento Pikeminnow and Striped 
Bass, to clarify their role as predators and to 
quantify potential effects on prey species in the 
Sacramento River system.

Given the similarity of diets of Sacramento 
Pikeminnow and Striped Bass, the compensatory 
effects of predator control should be considered. If 
either Sacramento Pikeminnow or Striped Bass is 
resource-limited at times in the Sacramento River, 
then their high dietary overlap suggests that 
control of one species would increase resources 
for the other. This could potentially increase 
the population of the species that has not been 
subject to control, undermining any net benefit 
on predation. 

Predation in the Sacramento River is likely 
higher near some engineered structures because 
of the favorable hydraulics that attract prey and 
predators alike (Brown and Moyle 1981). However, 
we did not observe an association between diet 
and habitat type in our study. This can likely 
be attributed to two factors. First, although 
engineered structures such as bridge pilings do 
create low-water-velocity pockets, which may act 

as predator ambush habitat, there is no shortage 
of natural structures in this section of the 
Sacramento River that act similarly (Whiteway 
et al. 2010). The study reach contains many 
submerged trees, or snags, which impede flow and 
are often targeted by recreational anglers in much 
the same way anglers target bridge pilings, for 
their ability to hold Striped Bass. Second, the two 
water diversion facilities selected as engineered 
sampling locations—GCID and a smaller private 
pumping station—did not appear to substantially 
influence surface flows. This is in contrast to 
other Sacramento River diversion facilities, such 
as the now defunct Red Bluff Diversion Dam, 
which used to span the entire channel, altering 
hydraulics and increasing predation on juvenile 
salmonids by Sacramento Pikeminnow (Brown 
and Moyle 1981). 

PERMANOVA modeling showed that water 
temperature was the only variable we measured 
that significantly affected predator diets. Because 
of the association between water temperature 
and seasonality, this may indicate a temporal 
association of predator diets, which would support 
the conclusion that both Sacramento Pikeminnow 
and Striped Bass are opportunistically feeding 
on seasonally available prey populations. Had we 
been able to capture more predators in the spring, 
we would have been able to directly test the 
association of diets with season. 

Predator Distribution
Based on the results of our CPUE analysis, there 
were likely more Sacramento Pikeminnow present 
at engineered sites and more Striped Bass present 
overall during summer months. Although diet did 
not differ between site types, it is important to 
note that the increased abundance of Sacramento 
Pikeminnow at engineered sites may increase 
their overall predatory effect in these locations. 
Likewise, the greater abundance of Striped Bass 
present during the summer months may scale 
their predatory effect on prey present within the 
Sacramento River during that time. 
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CONCLUSIONS
Our study demonstrated high similarity of diets 
between the two predator species. Although 
Sacramento Pikeminnow and Striped Bass do 
consume juveniles of native fishes such as 
Chinook Salmon and Green Sturgeon, these fishes 
did not make up the majority of either species’ 
diet during the study period. Our results, coupled 
with previous diet studies, support the notion 
that Sacramento Pikeminnow and Striped Bass 
exhibit prey-switching behavior, both spatially 
and temporally. This likely occurs in the presence 
of high densities of certain prey, such as during 
in-river releases of hatchery Chinook Salmon. 
Unfortunately, high water and turbidity did 
not allow us to sample effectively when out-
migrating hatchery Chinook Salmon populations 
were highest. Further study should be directed 
at describing per capita predation by Sacramento 
Pikeminnow and Striped Bass on Chinook Salmon 
outmigrants in the Sacramento River when spring 
flows and turbidity are low. 
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