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Abstract

Let G be a connected nilpotent Lie group with a continuous local ac-
tion on a real surface M, which might be noncompact or have nonempty
boundary dM. The action need not be smooth. Let ¢ be the local flow on
M induced by the action of some one-parameter subgroup. Assume K is a
compact set of fixed points of ¢ and U is a neighborhood of K containing no
other fixed points.

Theorem: If the Dold fixed-point index of ¢,|U is nonzero for sufficiently
small # > 0, then Fix(G) N K # @.
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1 Introduction

Poincarg [34] published a seminal result on surface dynamics in 1885, extended
to higher dimensions by Hopr [18] in 1925, and generalized to maps in compact
polyhedra and topological manifolds by LerscueTz [23] in 1926. We will use the
following version:

Theorem (PoincArRE-Hopr-LErscHETZ). Every flow on a compact manifold N of
nonzero Euler characteristic y(N) has a fixed point.

In his pioneering 1964 paper E. Lima [24] generalized this result to actions of
connected abelian Lie groups on compact surfaces. This was extended to nilpotent
groups in 1986 by J. PLaNTE [33]:

Theorem (PLanTE [33]). Every action of a connected nilpotent Lie group on a
compact surface of nonzero Euler characteristic has a fixed point.

Our main result is Theorem 1.1, an extension of Plante’s Theorem to local
actions of nilpotent Lie groups on arbitrary surfaces.

Throughout this article G denotes a connected Lie group of positive dimension
having unit element e;. The Lie algebra algebra g of G is identified with the set
of homomorphisms R — G.

A local action (G, M, @) of G on M assigns to each g € G a local homeomor-
phism

a(g): Da(g) ~ Ra(g)
between open subsets of M, satisfying certain conditions (see Section 2). We may
abuse notation by omitting “a’ and writing g for a(g).
Define the fixed-point sets

Fix(g) :={xe€ Dg: g(x) = x},
Fix(G) := ﬂ Fix(g)

geG

The local action is effective if
Fix(g) = Dg = g =eg.

For each X € g, composing the homomorphism X: R — G with the maps
a(g) produces a local action (R, M, X%), called a local flow, defined by

X(0): p - aX(0)(p), (p € D a(X(®).

Define
Fix(X) := ﬂ Fix(a@(X(0))).

teR

The following terms are made precise in Section 3. Assume (G, M, @) is given.
A block for X (or an X-block) is a compact, relatively open set K C Fix(X). An
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open neighborhood U ¢ M of K is isolating for X if its closure U is compact and
FixX)NnU =K.

The index ix(X) is an integer, defined in Section 3 as Dold’s fixed-point index
of @¥|U for any isolating neighborhood U of K and any sufficiently small ¢ > 0.
This index is completely determined by M, X and K. The X-block K is essential
ifig(X) # 0.

Theorem 1.1. Let G be a connected nilpotent Lie group with an effective local
action on a surface M, and let X € g be arbitrary. Then Fix(G) meets every
essential X-block.

This reduces to Plante’s Theorem when M is compact, but even in that case it
gives further information:

Corollary 1.2. Let G, M and X be as in Theorem 1.1,
(i) If T ¢ M is a compact attractor for X and x(I') # 0, then Fix(G)NT" # @.

(ii) If X has v essential blocks, then Fix(G) has v components.

Discussion

Theorem 1.1 is inspired by a remarkable result of C. Bonarti [6]:

Theorem. Assume dim(M) < 4, OM = @, and X, Y are commuting analytic
vector fields on M. If K is an essential block for the local flow generated by X,
thenZ(Y)NK + @.!

When M = @ and X is a C! vector field on M, our definition of the index
of X in K extends Bonatti’s, which runs as follows. If U C M is an isolating
neighborhood of K then ix(X) equals the intersection number of the images in the
tangent bundle of M of X|U and the trivial vector field on U.

Plante’s theorem does not extend to Lie groups that are solvable, or even su-
persoluble,? by Liva [24], PLaNTE [33].

Related work on the dynamics of Lie group actions can be found in the papers
[2, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 25, 26, 28, 32, 36, 35, 39, 40], listed in the
References.

1“The demonstration of this result involves a beautiful and quite difficult local study of the
set of zeros of X, as an analytic Y-invariant set. Of course, analyticity is an essential tool in this
study, and the validity of this type of result in the smooth case remains an open and apparently
hard question.” —P. Molino [27]

2Supersoluble: All eigenvalues in the adjoint representation are real. This implies solvable.



Open questions: Are there smooth commuting vector fields on the compact 3-
ball that point inward at the boundary and have no common fixed points?

Does every compact surface support a smooth fixed-point free action by a
solvable Lie group?

Is there an example of a connected nilpotent Lie group acting without fixed-
point on a compact 4-manifold of nonzero characteristic?

Does Bonatti’s Theorem generalize to three or more vector fields, or to mani-
folds of dimenison five or greater?

Terminology

The empty set is denoted by @. The sets of integers, natural numbers and positive
natural numbers are respectively Z, N := {0,1,2,...} and N,. The set of real
numbers is R.

The closure of a set S in a topological space X is S, and its frontier is Fr(S) :=
SNX\S.

Maps are continuous unless the contrary is indicated. The domain of f is
PDf and its range is Rf = f(Df). We may write f - x for f(x), with the tacit
assumption that x € Df.

Every ordered pair (C, C’) of oriented circles (Jordan curves) in an oriented
surface M has an intersection number C#C’ € Z. It depends only on the homol-
ogy classes [C],[C’'] € H{(M) represented by C and C’, and is denoted also by
[CT#[C].

A connected oriented surface M has finite genus g(M) := k € N, if k is the
largest integer such that M contains k& mutually disjoint circles. An equivalent
condition is that M contains k, but not k£ + 1, mutually disjoint sets, each of which
is the union of two oriented circles having positive intersection number. If no
such k exists we set g(M) = oco. The genus of nonorientable connected surface
is defined as the genus of its orientable double covering space. The genus of a
disconnected disconnected surface is the sum of the genera of its components.

M has genus 0 iff the intersection pairing H;(M) X Hi(M) — R is trivial. A
compact surface has genus 0 iff it embeds in the unit sphere 8% or the projective
plane P2

2 Local actions

If f: A — Bdenotes a map, its domain is Df := A and its range is Rf := f(A).
Let g, f denote maps. Regardless of their domains and ranges, the composition
g o f is defined as the map g o f : x — g(f(x)) whose domain, perhaps empty, is
[ 1(Dy).
The associative law holds for these compositions: The maps (h o g) o f and
h o (g o f) have the same domain

D:={xeDf: f(x) e Dg, glh(x)) e Df},



and

xeD = (hog)(f(x) = h((go f)x)).

A local homeomorphism f on a topological space Q is a homeomorphism
between open subsets of Q. The set of these homeomorphisms is denoted by

LH(Q).

Definition 2.1. A local action of G on a manifold M is a triple (G, M, @), where
a: G — LH(M) is a function having the following properties:

e The set Q) :={(g,p) € GX M: p € Da(g)} is an open neighborhood of
{eg} X M.

e The evaluation map

Q(a) > M, (g p)—a@-p
1S continuous.
e a(eg) is the identity map of M.

e The maps a(fg) o a(h) and a(f) o a(gh) agree on the intersection of their
domains.

o a(g) =al®)

Notation of @ may be omitted.
The orbit of p is the set

G-p:={g-p: g€G, pe Dgl.

A set S C M is invariant if it contains the orbits of all its elements.

If Q(a) = G X M the local action is a global action. When G is simply
connected and M is compact, every local action extends to a unique global action.

A local action is often specified by a Lie algebra homomorphism 6: ¢ —
v (M). The trajectories of the local flow X“ are the integral curves of 6(X). See
Palais [31, Th. II.11], Varadarajan [41, Th. 2.16.6].)

The proof of the next result is left to the reader:

Proposition 2.2. If H C G is a normal subgroup, Fix(H) is invariant under G.

Local flows

Definition 2.3. A local flow on a space mcalX is a local action (R, S, ¢), some-
times referred to simply as ¢. If (¢, p) € R X M we may denote ¢(7)(p by ¢,(p) or

tp.



If (G, M, @) denotes a local action, each one-parameter subgroup X € g deter-
mines a local flow X* on M defined by

t-p:=aX(®)-p, (teR, peDa(X()).

In the rest of this section @ denotes a local flow on a surface M.
For each p € M there is a unique maximal open interval J, C R, containing 0,
on which the trajectory of p,

a’: J, - M, t al),

is defined. The orbit of p is a”(J,), usually denoted by O(p). The restrictions of
the trajectory of p to the subintervals on which # > 0 (respectively, ¢ < 0) are the
forward and backward semitrajectories of p. Their images are the forward and
backward semiorbits O,(p) and O_(p).

A set is invariant if it contains the orbits of its members.

If p =1t p for some ¢t > O then p and its orbit are periodic. If p is not a fixed
point it is cyclic and its orbit is a cycle. The period of a cyclic point is the smallest
t > 0 such that &/(p) = p.

An orbit arc A ¢ M is an arc of the form a”(J) for some (nondegenerate)
interval J C R.

If x # y € O,(x) we write x < y. In this case there is a smallest s > 0 such that
s - x =y, and we define orbit arcs

[xy] :={r-x: t €0, s]},
(xy] :={t-x: t€(0,s]},

and so forth.
Definition 2.4. A flowbox with domain S € M and chart / is a homeomorphism
h=,h): S~IxXxJCRXR
such that
e [ and J are intervals,
e /1, is constant on each orbit arc in S,
e the map h,: S — J converts the action of « on orbit into translation:

Ifs>0andt-peS forallt€|0,s], and g = a,(p), then hi(q) = hi(p) +r.

WHITNEY [42] proved that every nonfixed point lies in the interior of a flowbox.

An open arc T C M is a transversal if there is a flowbox h: S < R? such that
T c S and h|T is injective.



Minimal sets of local flows

A point p is recurrent if there is a sequence {t;} in R such that
limz;-p=p, || > oo
[—00

A recurrent point that is not periodic is exceptional.
A minimal set is a nonempty, compact invariant set m satisfying the following
equivalent conditions:

e No proper subset of m is compact and invariant.
e Every orbit in m is dense in m.

e Every point of m is exceptionally recurrent.

Periodic orbits (including fixed points) are minimal sets; all others are exceptional
minimal sets.
The proof of the following result is left to the reader:

Lemma 2.5. Let m C M be a minimal set for the local flow a on M.
(a) m is connected.

(b) Let n: M — M be a finite-sheeted covering space of M. Let & be the local
flow on M such that 7o &, = a, on. There is a minimal set for @& such that
m(m) = m. |

The next two results are adapted from results of Lima [24] and PrantE [33].

Theorem 2.6. If H\(M) has finite rank, every exceptional minimal set has a neigh-
borhood not meeting any cycle.

Question: Can the assumption of finite rank be dropped?

Proof. We assume M is orientable, otherwise passing to an oriented finite-sheeted
covering space. We also assume M = @, because exceptional minimal sets
cannot meet OM.

If B ¢ M is an oriented topological circle, its homology class is denoted by
[B] € H{(M).

Let {C;} be an infinite sequence of cycles in M and {p;} a sequence such that

pj€Cj, limp;=peM. (1)
]*)DO
As m is exceptional,
Cinm=g, (jeN,). (2)

We will prove p ¢ m.



Each C; is a 1-manifold having a natural orientation, specified by a generator
w; € Hi(C;j) = Z. Let [C|] € H (M) denote the image of w; under the homology
homomorphism of the inclusion C; < M. Let H C H;(M) be the free abelian
subgroup generated by the homology classes w;. Since H;(M) has finite rank
there exists n > 1 such that

H is generated by {[C1],...,[C,]}. 3)

By (2) there are arbitrarily small precompact flowbox neighborhood S of p
satisfying:
ScM\(CiU---UC)). 4)

Let T C S be a transversal through p. Then T is a cross-section for the local flow
(WHITNEY [42]): There exists ¢ > 0 and a homeomorphism

F: (-6,0)xT =S, F(s,y)=s5"y. 5)

As O, (p) is _compact, p is recurrent but not periodic, and 7 is a transversal, it
follows that O,(p) N T is a Cantor set. It follows that there are points x,y,q € V
such that:

@) x,y,q€0.(p)NT,
(b) x<y<gq,
(©) (xg) NT = {y}.
Therefore Equation (4) implies:
[xy]n(C;U---UC, =@. (6)

Let L c T be the compact arc such that L = {x,y}. Then g € L\ JL, and
the forward semitrajectory of x meets L first at x, next at y, and next at g. The
compact arcs [xy] and L meet only at their common boundary {x, y}, therefore the
set

Y:=[xy]UL (7)

is a circle containing q.
Note that C; N [xy] = @ because C; is a periodic orbit, [xy] lies in the nonpe-
riodic orbit O(p), and distinct orbits are disjoint. Therefore

CinX=C;NL, (jeNy), (8)
hence from Equation (6):
CiNX=0, (i=1,...,n). 9)

Assume per contra: p € m. Choose r > O such thatg = r- p. Setg; :=r- p;.
By Equation (1):



q;€Cj, }g{}o q;=q- (10)
Therefore there exists a smallest k£ > n such that

CiNL#o. (11)

Equation (5) shows there are orientations for the surface M such that the oriented
curves C and L have local intersection number +1 at each intersection point.
Consequently Equation (11) implies:

[Cil #[X] > 0. (12)

Equation (6) shows there are integers a; such that

m

[Cid = ) alCil
i=1
Therefore
[Cel#[X] = Za[[Ci]#[Z],
i=1
= 0 by Equation (9).

This contradicts Equation (12). 1
Theorem 2.7.

(@) If M contains r > 1 exceptional minimal sets, (M) > r.

(b) Every exceptional minimal set has a neighborhood containing no other mini-
mal set.

Proof. (a) By Liva [24, Lemma 4], g(M) > 2r — 1 > 1.3 Assertion (a) follows
because distinct minimal sets are contained in disjoint surfaces of genus > 1, and
the genus function is additive on unions of disjoint surfaces.*

(b) An exceptional minimal set m has a neighborhood containing no fixed
point. By (a) m has a neighborhood meeting no other minimal set, and by Theo-
rem 2.6 m has a neighborhood meeting no cycle. The intersection of these neigh-
borhoods proves the conclusion. 1

3This also follows from SEBERT & TULLEY [37]: Every recurrent point for a local flow in an
arbitrary subset of R? is periodic. These authors credit this elegant result to an obscure 1936 work
by H. Bour & W. FEncHEL [5].

“PLaANTE [33, Lemma 2.3] proved for compact M that the number of exceptional minimal sets
is bounded by the rank of H,(M).



3 The fixed-point index

The late A. Dovp [8, 9] defined an integer-valued fixed-point index I(f) for a large
class of maps f having compact fixed-point sets. We use this to define an index
for blocks of fixed points in local flows.

Dold’s index is defined for data f, V, S such that

e V is an open set in a topological space S,
e f: V — Sis continuous and Fix(f) is compact,

e Vs a Euclidean neighborhood retract (ENR):

Some open set in a Euclidean space retracts onto a homeomorph of V.
We will use the following properties of I(f):

(D1) I(f) = I(f|Vy) if Vy C V is an open neighborhood of Fix(f).

0 if Fix(f) = @,

1 if f is constant.

(D2) 1(f) ={

(D3) I(f) = 2; I(fIV;) if V is the union of finitely many disjoint open sets V;.

(D4) I(fy) = I(fy) if there is a homotopy f;: V — &, (0 < t < 1) such that
U, Fix(f;) is compact.

These correspond to (5.5.11), (5.5.12), (5.5.13) and (5.5.15) in Chapter VII
of Dold’s book [9].

(D5) Assume S is a manifold, f is C', Fix(f) is a singleton p € M\ oM,
and Det f’(p) # 0. Then I(f) = (—1)”, where v is the number of distinct
eigenvalues A of f’(p) such that 4 > 1. (See [9, VIL.5.17, Ex. 3]).)

(D6) Suppose S is compact, V = 8, and f is homotopic to the identity. Then
I(f) = x(S). (See [9, VIL.6.22].)

Now let ¢ := {¢,;},cr be a local flow on S.

A compact set K C Fix(p) is a block for ¢, or a ¢-block, if it has an open,
precompact ENR neighborhood U ¢ & such that U N Fix(¢) = K. Such a U is
isolating for ¢, and for (¢, K).

Proposition 3.1. If U is isolating for ¢, there exists T := T(U) > 0 such that for
allt € (0, 71]:

(a) Fix(¢;) N U is compact,

(b) I(|U) = I(g-|U).

>The class of ENRs includes metrizable topological manifolds and their triangulable subsets.
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Proof. If (a) fails there exist sequences {#;} in (0, o) and {p;} in U such that
e — 0, pe€Fix(e,), pc— qeFrl).

Joint continuity of (¢, x) — ¢,(x) implies ¢ € Fix(¢) N Fr(U), a contradiction
because U is isolating for ¢. Assertion (b) is a consequence of (a) and (D4). ]

Proposition 3.2. If U, and U, are isolating for (¢, K), there exists o > 0 such
that for all t € (0, 0]:

(e |Uy) = | U2) = I(¢s|Uy N U).
Proof. Evidently U; N U, is isolating for (¢, K). Set
o = min{r(U,), 7(Us), 7(U; N U,)} > 0.

where 7(-) is defined as in Proposition 3.1. The conclusion follows from Proposi-
tion 3.1 and (D1). 1

Definition 3.3. Let K C Fix(¢) be a ¢-block. By Propositions 3.1, 3.2 there is a
unique integer u(¢, K, U) having the following property:

If U is isolating for (¢, K) and 0 < t < 7(U), then I(¢,|U) = u(¢, K, U). (13)
The index of ¢ in U, and at K, is defined as
I(Q09 U) = IK(QD) = /J(qb’ K9 U)
We call K essential for ¢ provided ix(¢) # 0. This implies K # @, by (D2).

Now let (G, M, @) be a local action of the Lie group G on a surface M. Every
X € g generates a local flow X* on M, often denoted simply by X. A block K of
fixed points for X is called an X-block. Using Equation 13, define the index of X
at K, and in U, as
ix(X) =iX,U) :=i(X", U).

Ifig(X) # 0, K is essential for X.
Proposition 3.4. Let U C M be isolating for X.
(@) The set
N(X, U,q) :={Y € g: Uisisolating for Y and i(Y,U) = i(X, U)}
is an open neighborhood of X in g.
(b) If U is a compact invariant manifold then

Y eR(X, U, = i(Y,U) = x(U).

Proof. (a) Compactness of Fr(U) implies that the set
U:={Yeqg: Fix(Y)NFr(U)=0

is an open neighborhood of X, and U is isolating for every ¥ € U. If Y € U is
sufficiently close to X and 0 < s < 1, then ¥, := (1 — 5)X + sY also lies in U, and
therefore i(Y, U) = i(X, U) by (D4).

(b) Follows from (D6). ]
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4 Dynamics of nilpotent local action

In this section and the next G denotes a connected, nilpotent nontrivial Lie group,
M a surface, and (G, M, @) an effective local action. Connectedness of G implies
Fix(G) = Fix(g).

The following result is trivial but useful:
Proposition 4.1. If p € M and v, w C g, are linear subspaces such that u+w = g,
then p € Fix(g). 1

The isotropy group of p € M is the closed Lie subgroup G, C G generated by
lgeG: g-p=ph
If § ¢ M set Gs := () ,es Gp. The stabilizer of p is the Lie algebra of G, equal to
the algebra
gp ={Xeg: X,=0},
and the stabilizer of § is g5 := (1) ,c5 9, Which is the Lie algebra of of G.
Lemma 4.2. Ifdim (g) > 2, every element of g lies in an ideal of codimension one.

Proof. If dim (g) = 2 the conclusion is trivial because g is abelian. Assume induc-
tively: dim (g) = d > 3 and the lemma holds for Lie algebras of lower dimension.
Let Y € g be arbitrary. Fix a 1-dimensional central ideal i and a surjective Lie
algebra homomorphism

n. g — g/i.
By the inductive assumption 7(Y) belongs to a codimension-one ideal f C g/j,
whence Y belongs the codimension-one ideal 7~ (f) C g. 1

The set C(g) of codimension-one ideals has a natural structure as a projective
variety in the real projective space P*~!, d = dim (g), and is given the correspond-
ing metrizable topology.

Proposition 4.3 (PLanTE [33]).

(@) Every component of C(g) has positive dimension.
(b) Every codimension-one subalgebra is an ideal.

(¢) Assume dim (G - p) = 1. Then g, is an ideal of codimension one, and
gx:gp, (XEGP)
Moreover:
(d) There is a one-dimensional subgroup R C G such that G - p = R - p.

Proof. (a), (b) and (c) are proved in PLANTE [33, Lemmas 2.5, 2.6]. The isotropy
subgroup G, of p is normal (Proposition 4.3), hence the action of G on the orbit
of p factors through the canonical surjection 7: G — G/G,,. As the latter group
is connected and one-dimensional, it equals m(R) with R C G a connected one-
dimensional subgroup meeting G, only at eg. This implies (d).® 1

%While the results in [33] cited in this proof refer to a global action on a compact surface, their
proofs apply unchanged to local actions on arbitrary surfaces.
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Minimal sets for nilpotent local actions

A minimal set m C M for the local surface action (G, M, @) is a nonempty, com-
pact, invariant set containing no smaller such set. Equivalently: m is compact and
the orbit of each of its points is dense in m. Compact orbits are minimal sets; all
other minimal sets are exceptional. A simple topological condition equivalent to
exceptionality is: m is not a point, a circle, or a component of M.

Proposition 4.4. Let m C M be a one-dimensional minimal set.

(@) There is a connected one-dimensional Lie subgroup R C G such that m is a
minimal set for the induced local action of R on M.

(b) Every p € m has the same isotropy group G, = Gy, a codimension-one
closed normal subgroup.

Proof. (a) The action of G on m factors through the canonical surjection: G —
G/Gmn. As the latter group is connected and one-dimensional, it equals m(R) with
R c G a connected one-dimensional subgroup. Every orbit of G in m is also an
orbit of R, implying the conclusion.

(b) Follows from Proposition 4.3(c). ]

Theorem 4.5. Let My C M be a compact surface.
(i) If My contains r > 1 exceptional minimal sets, g(My) > r.

(ii) Every exceptional minimal set has a neighborhood My C M containing no
other minimal set.

Proof. For local flows this is the same as Theorem 2.7, wherefore the general case
follows from Proposition 4.4(b). |

Proposition 4.6. If My Cc M is a compact surface containing no fixed point, the
union of the circle orbits in My is compact.”

Proof. Let ' C M, denote the union in question. Evidently T is a compact in-
variant subset of M,. We need to show that all orbits in the compact invariant
set Fr(I') ¢ M, are circles. As these orbits are compact, it suffices to show that
their closures. which are connected, compact, one-dimensional invariant sets, are
circles.

Each component of the compact invariant set TN@M is a circle orbit contained
in 0M,. Therefore it suffices to prove:

peFr)\oM = pel.

The orbit closure G - p, a compact invariant subset of Fr(I') C M), contains a min-
imal set m but no fixed point, hence 0 < dim (m) < dim Fr(I') < 1. Consequently
dim (m) = 1, whence m is a circle orbit by Theorem 4.5(ii). This proves:

7Cf. PrantE [33, Lemma 2.4].
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there is a circle orbit C C G - D, (14)

Fixing C, we note that Proposition 4.4(a) implies C is a cycle for the local flow X“
induced by a 1-parameter subgroup X € g. Therefore C lies in the orbit closure of
p under X°.

Fix an open neighborhood N c M, of C, either an annulus or a Mdbius band.
Consider the dynamics of X in N. Apply the Poincaré-Bendixson Theorem (see
HartMaN [14],% also CiesieLsk1 [7], MARKLEY [25]): There is a relatively open
neighborhood N € M\, homeomorphic to an annulus or a Mdbius band, such that
for every x € N one of the following holds:

(@) xis cyclic for X¢,

(b) x is not cyclic for X, and one of the semitrajectories of x under X* spirals
towards its limit set, a cycle in N.

Moreover:
(¢) If (b) holds, it holds for all points in a neighborhood of x.

Choose a point x € (G - p) N A. Since T is invariant under G, every neighborhood
of x meets a cycle for X“. Therefore (c) shows that (a) holds for x, hence it holds
for p. |

Proposition 4.7. Let My C M be a compact connected surface with empty bound-
ary, containing no fixed point. There is a compact invariant surface P C My such
that:

(i) Each component of P is either an annulus or a Mobius band.
(ii) My \ P contains at most finitely many minimal sets.

Proof. Let A C M, be the union of those circle orbits C C M, that are nonisolated
in M,, meaning every neighborhood of C in M, contains another circle orbit. A
is compact by Proposition 4.6. An argument based on Poincaré maps shows that
each circle orbit C C A lies in a compact invariant surface P(C) C M, satisfying
(i1), whose boundary components are circle orbits.

Compactness of A implies the existence of m > 1 nonisolated circle orbits
C; C M, such that

ACP(Cy)U---UPCp).

Set P := | J; P(C;). Induction on m shows that P is a compact invariant surface
satisfying (i). Because M|, is compact and every nonisolated circle orbit in M, lies
in P, only finitely many circle orbits lie in M\ P. Since M, contains no fixed
points, and the number of exceptional minimal sets on M, is finite by Theorem
4.5(1), P satisfies (ii). ]

8Hartman’s careful proof is stated for differential equations, but uses only local flows.
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5 Proof of Theorem 1.1

Recall the hypotheses: M is a surface, G is a nontrivial, connected nilpotent Lie
group with Lie algebra g, (G, M, @) is an effective local action, and K C M is
an essential block of fixed points for the induced local flow of a one-parameter
subgroup X € g. The theorem states that Fix(G) N K # @.

If dim G = 1 the conclusion is trivial.

Induction hypothesis: dim (G) > 1 and the conclusion holds for groups of lower
dimension.

Every neighborhood of K in M contains an isolating neighborhood U for
(X, K) with U a compact surface. Essentiality of K implies i(X,U) # 0. To
complete the induction we will prove:

Fix(G)NU # @. (15)
Lemma 5.1. If U contains only finitely many minimal sets, Equation (15) holds.

Proof. Since dim(g) > 1 and g is covered by codimension-one ideals (Lemma
4.2), Proposition 3.4 implies there is an infinite sequence {Y;} in g converging to
X , and a sequence {);} of pairwise distinct, codimension-one ideals such that:

Y;eb; Uisisolating forY; i(Y;,U)#0.

As the set K; := Fix(h;)NU is compact, nonempty by the induction hypothesis, and
invariant by Proposition 2.2, there is a minimal set L; C K; C U. The hypothesis
of the Lemma implies there exist indices i, j such that h; # b; and L; = L; .
Equation (15) now follows from Proposition 4.1. 1

By Proposition 4.7 there is a nonempty, compact, invariant surface P ¢ U
such that:

x(P) =0 and U \ P contains only finitely many minimal sets. (16)

If Fix(G) N P # @ for all choices of U and P, Equation (15) holds by compactness
of K. Henceforth we assume:

Fix(G)NnP = 2. (17)
Lemma 5.2. There exists Z € g such that:
(a) U is isolating for Z,
) i(Z,U) =i(X,U) #0,

(¢) Fix(Z2)noP = .
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Proof. Each of the finitely many components C; of 9P is a circle orbit because it
contains no fixed point (Equation (17)). Proposition 4.3 shows that its stabilizer is
an ideal b; C g. Therefore (c) holds for all Z in the dense open set g\ | b;, while
(a) and (b) hold for Z in the nonempty open set N(X, U, g)) defined in Proposition
3.4). Thus the Lemma is satisfied by all Z in the nonempty set (X, U,g)\ U b;. 1

Fix Z as in Lemma 5.2, so that
i(Z,U) # 0. (18)
Both U\ P and P\ 0P are isolating for Z because Fix(Z) N 0P = @, hence
i(Z,U) =i(Z, U\P) + i(Z, P\ OP) (19)

by (D3) in Section 3.
Now i(Z, P\ 0P) = x(P) = 0 because Fix(Z) N 0P = @ (Proposition 3.4(b)).
Consequently (18) and (19) imply
i(Z,U\P) #0. (20)

Equation (16) shows that U \ P contains only finitely many minimal sets. There-
fore by Equation (20) and Lemma 5.1,

Fix(G)N(U\P) # 2.

As this implies (15), the proof of Theorem 1.1 is complete. 1
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