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Quantum computation of frequency-
domain molecular response properties
using a three-qubit iToffoli gate

Check for updates

Shi-NingSun1,8, BrianMarinelli 2,3,8, JinMingKoh 4, YosepKim 5,6, LongB.Nguyen2,3, LarryChen 2,3,
John Mark Kreikebaum 2,7, David I. Santiago 2,3, Irfan Siddiqi2,3,7 & Austin J. Minnich1

The quantum computation of molecular response properties on near-term quantum hardware is a
topic of substantial interest. Computing these properties directly in the frequency domain is desirable,
but the circuits require large depth if the typical hardware gate set consisting of single- and two-qubit
gates is used. While high-fidelity multipartite gates have been reported recently, their integration into
quantum simulation and the demonstration of improved accuracy of the observable properties
remains to be shown. Here, we report the application of a high-fidelity multipartite gate, the iToffoli
gate, to the computation of frequency-domain response properties of diatomicmolecules. The iToffoli
gate enables a ~50% reduction in circuit depth and ~40% reduction in circuit execution time
compared to the traditional gate set. We show that the molecular properties obtained with the iToffoli
gate exhibit comparable or better agreementwith theory than those obtainedwith the nativeCZgates.
Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in
quantum simulation, with diverse potential applications to near-term quantum computation.

A primary goal of emerging quantum computing technologies is to enable
the simulation of quantum many-body systems that are challenging for
classical computers1–3. Early experimental demonstrations of quantum
simulation algorithms have focused on computing ground- and excited-
state energies of small molecules or few-site spin and fermionic models4–8.
More recently, the scale of quantum simulation experiments has increased
in terms of numbers of qubits, diversity of gate sets, and complexity of
algorithms, as manifested in the simulation of models based on real mole-
cules and materials9,10, various phases of matter such as thermal11,
topological12,13, and many-body localized states14,15, as well as holographic
quantum simulation using quantum tensor networks16,17. As quantum
advantages in random sampling have been established on quantum
hardware18,19, focus has turned to the experimental demonstration of
quantum advantages in problems of physical significance20.

For applications in chemistry and physics, the calculation of the
response properties of molecules and materials is of substantial interest21.
Investigating response properties in the electronic structure theory frame-
work involves calculating quantities such as the one-particle Green’s
function22 and density-density response functions23, which provide insight

into interpreting experimental spectroscopic measurements24. Response
properties of molecules and materials can be determined either in the time
domain or in the frequency domain. Due to the natural ability of quantum
computers to simulate time evolution1,2, near-term algorithms to compute
time-domain response properties have been carried out on quantum
hardware25–27. However, computing the frequency-domain response from
the time-domain response using the typical gate set requires a time duration
that exceeds the circuit depth limitations of near-term quantum computers.

An alternative approach to determine these response properties is by
computing them directly in the frequency domain. Frequency-domain
algorithms generally involve obtaining the ground- and excited-state
energies, as well as the transition amplitudes between the ground state and
the excited states. Although there are establishedmethods to obtain ground-
and excited-state energies onquantumcomputers28–30, calculating transition
amplitudes is less straightforward. Various schemes including variational
quantum simulation31–33, quantum subspace expansion34, and quantum
linear algebra35 to determine frequency-domain response properties have
beenproposed.While variational quantummethods to compute frequency-
domain response properties have been demonstrated36, the accuracy of
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variational methods generally depends on the quality of the ansatz. More-
over, quantum subspace expansion is susceptible to numerical instabilities
frombasis linear dependence, and quantum linear algebra is out of reach for
near-term quantum hardware. Recently, a non-variational scheme amen-
able to near-term hardware implementation has been proposed37,38. This
scheme constructs the electron-added and electron-removed states simul-
taneously by exploiting the probabilistic nature of the linear combination of
unitaries (LCU) algorithm39. Recently developed high-fidelity multipartite
gates40–44 which would facilitate the execution of these algorithms have been
reported. Implementation of frequency-domain response property calcu-
lations on quantum hardware with such gates would allow for a demon-
stration of their effectiveness on a representative problem of scientific
relevance within the constraints of qubit number and circuit depth. How-
ever, they have yet to be integrated into quantum simulation circuits or
demonstrated to yield improved accuracy of observable properties.

In this work, we experimentally demonstrate the application of a high-
fidelity three-qubit iToffoli gate40 on a superconducting quantum processor
to the calculation of frequency-domain response properties of diatomic
molecules usingLCUcircuits. Theuseof the iToffoli gate leads to substantial
reductions in the circuit depth by ~50% and in the circuit execution time by
~40%. The transition amplitudes between the ground state and the
N-electron or (N ± 1)-electron states of NaH and KH molecules are com-
puted on the quantum hardware and used to construct spectral functions
and density-density response functions. We apply error mitigation tech-
niques including randomized compiling (RC)45,46 during circuit construc-
tion, and McWeeny purification47 during post-processing, both of which
result in marked improvement of the experimental observables. The
molecular response properties obtained from the reduced-depth circuits
with iToffoli decomposition show comparable or better agreement with
theory compared to those from circuits with CZ decomposition, despite
incomplete Pauli twirling in the RC procedure applied to the iToffoli gate.
Our results advance the general application ofmulti-qubit gates to quantum
chemistry and related quantum simulation protocols on near-term quan-
tum hardware.

Results
Quantum algorithm for transition amplitudes of diatomic
molecules
We consider the highest occupied molecular orbital-lowest unoccupied
molecular orbital (HOMO-LUMO)models of the diatomicmoleculesNaH
andKHas shown in Fig. 1A (see “Methods” for parameters of themolecular

models). Such molecular models with reduced active space have been used
in benchmarking quantum chemistry methods on quantum computers48.
The HOMO-LUMO model generates two spatial orbitals or equivalently
four spin orbitals, which correspond to four qubits after the Jordan-Wigner
transformation49. To reduce quantum resources, we exploit the number
symmetry in each spin sector to reduce the number of qubits from four to
two using a qubit-tapering technique50 (details given in Supplementary
Note 1).

The observables we aim to determine are the spectral function and
density-density response function. Suppose that themolecularHamiltonian
with reduced active spacehas ground state ∣Ψ0

�
with energyE0, and (N ± 1)-

electron eigenstates ∣ΨN ± 1
λ

�
with energies EN ± 1

λ . Let âypσ and âpσ be the
creation and annihilation operators on orbital p with spin σ, respectively.
The one-particle Green’s function has the expression22:

GpqðωÞ ¼ P

λσ

hΨ0jâpσ jΨNþ1
λ

ihΨNþ1
λ

jâyqσ jΨ0i
ωþE0�ENþ1

λ
þiη

þ P

λσ

hΨ0jâyqσ jΨN�1
λ ihΨN�1

λ jâpσ jΨ0i
ω�E0þEN�1

λ þiη

ð1Þ

where ω is the frequency and η is a small broadening factor. The spectral
function A(ω) is related to the Green’s function
by AðωÞ ¼ �π�1ImTrGðωÞ.

For the density-density response function, we consider the charge-
neutral N-electron excited states ∣ΨN

λ

�
with energies EN

λ and the number
operator n̂pσ on the orbital p with spin σ. The density-density response
function has the expression23:

RpqðωÞ ¼
X

λ

P
σσ 0 hΨ0jn̂pσ jΨN

λ ihΨN
λ jn̂qσ 0 jΨ0i

ωþ E0 � EN
λ þ iη

: ð2Þ

The operators âypσ ; âpσ and n̂pσ are not unitary, but they can be written
as linear combinations of unitary operators as

âypσ ¼ ð�Xpσ � i�YpσÞ=2; ð3Þ

âpσ ¼ ð�Xpσ þ i�YpσÞ=2; ð4Þ

n̂pσ ¼ ðI � ZpσÞ=2; ð5Þ

Fig. 1 | Schematic of the diatomicmolecules and diagrams of the LCU circuits for
computing transition amplitudes.A Schematic of the diatomicmoleculesNaHand
KH. The active space consists of only the HOMO and the LUMO. B The circuits to
calculate diagonal transition amplitudes, where a0 is the ancilla qubit and s0 and s1
are the systemqubits. For the spectral functions, the target unitaries are ~Xpσ and i~Ypσ ,

while for the response function, the target unitaries are I and ~Zpσ . C The circuit to
calculate off-diagonal transition amplitudes in the response functions, where a0 and
a1 are the ancilla qubits, and s0 and s1 are the systemqubits. The double-controlled-~Z
gates are decomposed with either iToffoli gates or CZ gates. In both B, C quantum
state tomography (QST) is performed on the system qubits.
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where I is the identity operator, Zpσ is the Pauli Z operator on orbital pwith
spin σ, and �Xpσ and �Ypσ are the Jordan-Wigner transformed Pauli X and Y
operators on orbital p with spin σ with a string of Z operators included to
account for the anticommutation relation49. The Pauli strings �Xpσ ; �Ypσ and
Zpσ undergo the same transformation and qubit tapering process as the
Hamiltonian (details given in Supplementary Note 1). Except for the
identity operator which does not change under the transformation, we label
the transformed �Xpσ ; �Ypσ ;Zpσ as ~Xpσ ; ~Ypσ and ~Zpσ .

The LCU circuits to calculate diagonal and off-diagonal transition
amplitudes are given in Fig. 1B, C, respectively. Each circuit has two
system qubits s0 and s1, and one ancilla qubit a0 or two ancilla qubits a0
anda1. TheunitaryU0 prepares the ground state ∣Ψ0

�
on the systemqubits

from the all-zero initial state. The operators ~Xpσ and ~Ypσ are only present
in the diagonal circuit in Fig. 1B since the calculation of the spectral
functiononly requires diagonal transition amplitudes. The operators I and
~Zpσ are present in both the diagonal circuit in Fig. 1B and the off-diagonal
circuit in Fig. 1C, since the density-density response function requires
both the diagonal and the off-diagonal transition amplitudes. The
remaining two double-controlled identity gates that would complete the
LCU circuit, which correspond to the first double-controlled gate (con-
trolled on ∣0i of both a0 and a1) and the third double-controlled gate
(controlled on ∣0i of a0 and ∣1i of a1) in Fig. 3 of ref. 37, are not shown
because they are equivalent to identity gates on thewhole circuit.We note
that the original algorithm37,38 proposed performing quantum phase
estimation on the systemqubits. Due to quantum resource constraints, we
need to encodeourphysical state onto a two-qubit subset of the fourqubits
available on the quantum device. Therefore, in contrast to the original
algorithm, we apply quantum state tomography51 to the system qubits
while measuring the ancilla qubits in the Z basis.

In the diagonal circuits, we obtain the (unnormalized) system-qubit
states 1

2 ð~Xpσ ± i~Ypσ Þ∣Ψ0

�
or 1

2 ðI ± ~Zpσ Þ∣Ψ0

�
with probabilities p±, where the

probabilities are specified by the ancilla measurement outcome as pþ ¼
pa0¼0 and p� ¼ pa0¼1; in the off-diagonal circuits, we obtain the

(unnormalized) system-qubit states 14 ½ðI � ~ZpσÞ± eiπ=4ðI � ~Zqσ 0 Þ�∣Ψ0

�
with

probabilities p±, where pþ ¼ pða0;a1Þ¼ð1;0Þ and p� ¼ pða0 ;a1Þ¼ð1;1Þ. We take
the overlap of the tomographed system-qubit states with the exact eigen-
states, which are then post-processed according to Eq. (18) in ref. 37 or Eq.
(25) in ref. 38 to yield the transition amplitudes (see Supplementary Note 2
for a detailed derivation). The transition amplitudes are then used to con-
struct the spectral function anddensity-density response function according
to Eqs. (1) and (2).

In the following sections, for simplicity, we will denote the
diagonal circuit that applies the operator âðyÞpσ or n̂pσ to the initial
ground state as the pσ-circuit, and the off-diagonal circuit that applies
the operators n̂pσ and n̂qσ 0 to the initial ground state as the
ðpσ; qσ 0Þ-circuit.

iToffoli vs CZ decompositions in LCU circuits
The transformed and tapered operators are two-qubit Pauli strings with
multiplicative factors of ±1 or ± i. To apply the single- or double-controlled
gates, we follow the standard multi-qubit Pauli gate decomposition52 (see
Supplementary Note 4 for details) with the base gate as CZ or CCZ and use
CNOT gate equivalents, which consist of native CZ gates dressed by
Hadamard gates, to extend the weights of the Pauli strings. The multi-
plicative factor−1 or ± i can be applied as a single-qubit phase gate on the
ancilla in the diagonal circuits, or as the native CZ, CS, or CS† on the two
ancillae in the off-diagonal circuits. Additionally, X gates are wrapped
around the ancilla qubits controlled on ∣0i. Figure 2A shows how a double-
controlled gate with ancilla a0 controlled on ∣1i, ancilla a1 controlled on ∣0i,
and the target operator −ZZ is applied on the device.

Wedecompose theCCZgate eitherwith the three-qubit iToffoli gate as
shown in Fig. 2B or with the native CZ gates. The iToffoli decomposition
starts with a double-controlled iZ component, followed by a long-range CS†

gate to cancel the phase factor i. The SWAP gates in the long-range CS† part
of the circuit are further simplified in the transpilation stage or decomposed
into three CZ gates and additional single-qubit gates according to a recent
work on the same quantum device53. For the CZ decomposition of CCZ, we
use the topology-aware quantum circuit synthesis package BQskit54 to
obtain the optimal decomposition as eight CZs under linear qubit con-
nectivity, as opposed to the six-CZ decomposition that requires all-to-all
qubit connectivity55.

The spectral function only requires the four diagonal circuits 0↑, 0↓, 1↑,
1↓. The density-density response function requires four diagonal circuits 0↑,
0↓, 1↑, 1↓ and six off-diagonal circuits (0↑, 0↓), (0↑, 1↑), (0↑, 1↓), (0↓, 1↑),
(0↓, 1↓), (1↑, 1↓). We use the same transpilation procedure to optimize the
circuits constructed from the iToffoli decomposition and the CZ decom-
position (details given in “Methods” section).

The diagonal circuits after transpilation are relatively shallow circuits
with maximum circuit depth (excluding virtual Z gates) of 19, maximum
two-qubit gate count of 7 and no iToffoli gates. In the off-diagonal circuits,
the circuit depths range from 24 to 29 for iToffoli decomposition and from
54 to 59 for CZ decomposition. As for the two- andmulti-qubit gate counts,
each iToffoli-decomposed circuit contains two iToffoli gates and 9 to 12
native two-qubit gates, while eachCZ-decomposed circuit contains 19 to 21
native two-qubit gates. The iToffoli decomposition thus results in ~50%
reduction in the circuit depth and the number of two-qubit gates compared
to the CZ decomposition.

We also compare the durations of the circuits that result from the
iToffoli decomposition and the CZ decomposition. The duration of each
CZ gate is 201 ns53, while the duration of each iToffoli gate is 413 ns40.
Combined with other gate execution times, the durations of the iToffoli-
(CZ-) decomposed circuits are 2.9–3.6 μs (4.9–5.5 μs), corresponding to a
reduction in circuit execution time of approximately 40% from using
iToffoli gates. This reduction in duration is expected to have a more
pronounced effect on deeper circuits with execution times comparable to
qubit coherence times,which areon the order of 30–50 μs53 (a complete set
of gate durations and qubit coherence times are given in Supplementary
Note 3).

Fig. 2 | Decomposition of the double-controlled composite gates in the LCU
circuits. A Example of the decomposition of a double-controlled−ZZ gate, which is
controlled on ∣1i of a0 and ∣0i of a1, into CCZ (blue) along with other single- and
two-qubit gates. TheX gates (green) are used to adjust the control states; the CZ gate
on a0 and a1 (purple) is used to adjust the overallmultiplicative factor, which is−1 in
this case; the CNOT gate equivalents (orange) are used to extend the weights of the
Pauli string as in ref. 52. B Decomposition of the CCZ gates with the iToffoli gate,
which is a CC-iX gate with both control qubits controlled on ∣0i. The decomposition
includes the equivalent of a CC-iZgate (light blue) and the equivalent of a long-range
CS† gate (yellow). The SWAP gates are simplified in the transpilation stage or further
decomposed with CZ gates according to ref. 53.
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Spectral function and response function on quantum hardware
The spectral functions of NaH and KH are shown in Fig. 3. The density
matrices are obtained from quantum state tomography and post-processed
withMcWeenypurification. RC is not employed in constructing the circuits
for obtaining these results. A broadening factor of η = 0.75 eV is used to
generate both the exact and experimental spectra. As the peak frequencies
are determined classically, we use the peak heights in the spectral functions
as the primarymetric for comparison56. The experimental spectral functions
show good agreement with the exact ones with a maximum peak height
deviation of 10.6%, indicating the high fidelity of circuit execution on the
quantum device.

We next turn to the density-density response function, which is more
challenging to compute than the spectral function because it requires deeper
off-diagonal circuits containing three-qubit iToffoli gates. We begin by
considering a specific off-diagonal circuit needed for the density-density
response function, the (0↑, 0↓)-circuit. To understand the influence of the
iToffoli gate on the accuracy of the executed circuit, we compute the fidelity
of the whole qubit register obtained by quantum state tomography versus
circuit depth. The same quantity was computed for a circuit using only CZ

gates to decompose the double-controlled gates. The resulting circuit fide-
lities are shown in Fig. 4. Although the iToffoli decomposition shows a
steeper decrease infidelity compared to theCZdecomposition, thefidelity at
the end of the circuit is higher due to lower circuit depth. The noisy
simulation in the inset of Fig. 4 shows a similar trend. The iToffoli gate
reported in ref. 40 does not consider spectator errors on neighboring qubits,
which are canceled out in the gate calibration in this work (details given in
SupplementaryNote 3). The cycle benchmarkingfidelity of the iToffoli gate
accounting for the spectator qubit is 96.6%, lower than the single-qubit gate
fidelities which are above 99.5%, and the two-qubit gate fidelities which are
between 98.0% and 98.7%, which may explain the steeper decay in fidelity
with circuit depth in the iToffoli circuit compared to the CZ circuit.

Next, we examine the fidelity of the final state in each iToffoli-
decomposed circuit used in the calculation of response functions. Figure 5
shows the system-qubit state fidelities on each response function circuit for
NaH, where McWeeny purification is applied to the system-qubit density
matrix after restricting the full densitymatrix to each ancilla bitstring sector.
Comparing the values in Fig. 5A with those in Fig. 5B, we can see that RC
itself only results in a moderate improvement in the fidelities, with the
average diagonal fidelities changing from 84.6% to 85.5% and average off-
diagonal fidelities changing from 45.2% to 54.8%. However, the results
between Fig. 5B, D show that RC combined with purification yields an
average diagonal fidelity of 99.9% and an average off-diagonal fidelity of
96.0%, even though purification without RC only leads to a limited
improvement in the average diagonal fidelity from 85.6% to 95.7%, and in
the average off-diagonal fidelity from 45.2% to 67.4% in Fig. 5A, C.

We now show the imaginary parts of the density-density response
functions χ00 and χ01 of NaH in Fig. 6. Here χ00 is obtained from two
diagonal circuits 0↑, 0↓ and one off-diagonal circuit (0↑, 0↓), while χ01 is
obtained from four off-diagonal circuits (0↑, 1↑), (0↑, 1↓), (0↓, 1↑), (0↓, 1↓).
All experimental results are post-processed with purification after con-
straining the ancilla qubits to eachbitstring subspace.Abroadening factor of
η = 1.5 eV is used to produce the response functions.

Fig. 3 | Spectral function of diatomicmolecules. Spectral function ofANaH,BKH.
The circuits to obtain the spectral function are shallow three-qubit circuits that do
not require the iToffoli gates. A broadening factor of η = 0.75 eV is used to generate
both the exact and the experimental spectra. The experimental spectral functions are
in quantitative agreement with the exact ones, with a maximum peak height
deviation of 10.6%.

Fig. 4 | Fidelity vs circuit depth of the (0↑, 0↓)-circuit for NaH. Fidelity for the
iToffoli decomposition (blue), which has a circuit depth of 24, and the CZ decom-
position (yellow), which has a circuit depth of 54. The locations of the iToffoli gates
are marked by red crosses. The CZ decomposition results in lower overall fidelity
compared to iToffoli decomposition due to higher circuit depth. The inset is the
corresponding data from noisy simulation and shows a similar trend. All results in
this figure are raw experimental or simulated data without any error mitigation.

Fig. 5 | System-qubit state fidelities in the response function calculation of NaH.
A, B Fidelities between the raw experimental and exact system-qubit density
matrices without (A) andwith RC (B). The diagonal elements correspond to system-
qubit densitymatrices in the diagonal circuits after taking the ancilla state a0 = 1, and
the off-diagonal elements correspond to the system-qubit densitymatrices in the off-
diagonal circuits after taking the ancilla states either as (a0, a1) = (1, 0) (upper
diagonal) or as (a0, a1) = (1, 1) (lower diagonal).C,D Fidelities between the purified
experimental and exact system-qubit density matrices without (C) and with RC (D).
The layout of the tiles is the same as in panels (A,B).Without RC, purification raises
the average off-diagonal fidelity from 45.2% to 67.4%, but with both RC and pur-
ification, the average off-diagonal fidelity increases to 96.0%.
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Overall, the iToffoli decomposition yields better results compared to
the CZ decomposition in the absence of RC, while both decompositions
yield comparable results when RC is applied. Examining the spectral
functions in Fig. 6A, C, we observe that the peak at 24.0 eV is not present in
χ00 and displays the wrong sign in χ01 under the CZ decomposition.
Although the iToffoli decomposition also produces the peak at 24.0 eVwith
the wrong sign in χ01, it exhibits a peak with a deviation of 6.1% from the
exact peak in χ00. The same trend occurs for the peak at 1.4 eV. Both
decompositions result in similar deviations of the peak height at 1.4 eV in
χ01, where the deviation is 45.3% for the CZ decomposition and 52.5% for
the iToffoli decomposition. However, in χ00, the iToffoli decomposition
yields a 26.6% deviation from the exact peak in χ00, whereas the CZ
decomposition produces a peak more than twice the exact value.

The results for circuits constructedwith RC are shown in Fig. 6B, D. In
χ00, deviations from the exact peak height at 24.0 eV and 1.4 eV are 34.8%
and 4.7% for the CZ decomposition, and 11.8% and 24.0% for the iToffoli
decomposition. In χ01, deviations from the exact peak at 24.0 eV and 1.4 eV
are 5.7% and 28.2% for the CZ decomposition, but are 39.2% and 32.2% for
the iToffoli decomposition. Since the iToffoli gate is non-Clifford, our
implementation of RC results in incomplete Pauli twirling compared to
applying RC to the CZ-decomposed circuits (see Supplementary Note 4).
The incompleteness of RC on the iToffoli-decomposed circuitsmay explain
why the two decompositions have comparable peak height deviations when
RC is applied, despite the initial advantage for the iToffoli decomposition
without RC due to its lower circuit depth.

Discussion
We have carried out an LCU-based algorithm to compute the spectral
functions and density-density response functions of diatomic molecules
from the transition amplitudes determined on a superconducting quantum
processor. Using a native high-fidelity iToffoli gate40 has enabled the
required circuit depth to be reduced by ~50% and the circuit execution time
to be reducedby~40%.These resulting circuits produced abetter agreement
with the exact results compared to the circuits constructed only from single-

and two-qubit gates when RC is not employed in circuit construction.
WealsodevelopedaRCprotocol for thenon-Clifford iToffoli gate, andhave
shown that in the absence of complete Pauli twirling on the iToffoli gate, the
circuits constructed from iToffoli gates gave comparable results as the cir-
cuits constructed only from single- and two-qubit gates when RC is applied
in circuit construction.Ourwork also indicates that to obtainmore accurate
observables of the simulated physical systems, quantum hardware needs to
improve in terms of two- and three-qubit gate fidelities.

The quality of the computed observables was substantially improved
by the use of several error mitigation techniques. Specifically, our results
highlight the significance of combining RC45,46 with McWeeny
purification47 for quantum simulation. McWeeny purification has been
widely used in quantum chemistry57 and started to be exploited in
quantumcomputing for constraining the purity of the output state9,58. Our
results have shown that RC or McWeeny purification individually only
improve the experimental results to a limited extent, as observed in the
change of the average off-diagonalfidelities from45.8% to54.2%with only
RC, and to 67.4% with only purification in Fig. 5. However, the combi-
nation of RC and purification results in a substantial improvement in the
quality of the results, with the system-qubit state fidelities being 96.0% on
average. The large improvement when combining RC and McWeeny
purification is explained by the fact that RC tailors coherent errors into
stochastic Pauli errors46. If the rates of various stochastic Pauli errors are
similar, the errors are largely depolarizing and are corrected byMcWeeny
purification, yielding the high fidelities in Fig. 5D (see Supplementary
Note 4 for further discussion). Moreover, previous works applied pur-
ification to the whole qubit register, but we have shown here that the
purification scheme can be applied when there is a purity constraint on a
subset of qubits. Additionally, our work is the first to apply RC to the non-
Clifford iToffoli gate. As more native non-Clifford two-qubit and multi-
qubit gates become available, our findingsmay guide future application of
RC to non-Clifford gates. Other error mitigation techniques such as zero
noise extrapolation and probabilistic error cancellation59 may also be
generalized to non-Clifford gates with appropriate modifications60.

Fig. 6 | Density-density response function of NaH.
A Im χ00 without RC. B Im χ00 with RC. C Im χ01
without RC. D Im χ01 with RC. All experimental
results are post-processed with McWeeny purifica-
tion on the system-qubit states after constraining to
the ancilla bitstring subspace. A broadening factor of
η = 1.5 eV is used to generate the spectra. Without
RC, the iToffoli decomposition yields qualitatively
better results compared to the CZ decomposition.
After RC is applied, the two decompositions yield
comparable results.
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Our work is also among the first to demonstrate the practical use of a
native multi-qubit gate in quantum simulation. The particular algorithm in
thiswork is amenable to larger-scale implementation if quantumprocessors
with higher qubit count and lower two- and three-qubit gate errors are
available. Due to the nature of the LCU algorithm, the number of system
qubits increases but thenumber of ancilla qubits stays constantwhile scaling
up to larger system sizes. In particular, the circuit depths remain constant if
long-range gates are available. Therefore, the compilation advantages of the
iToffoli gates, as well as the fidelities of the circuits are not expected to
change as the system size increases. Additionally, LCU as a general algo-
rithmic framework is not limited to determining transition amplitudes in
frequency-domain responseproperties but has broader applications in areas
such as solving linear systems61, simulating non-Hermitian dynamics62, and
preparing quantum Gibbs states63. Besides the LCU algorithm, quantum
algorithms such as Shor’s algorithm64 and Grover’s search algorithm65 can
benefit from native three-qubit gates with a reduction in circuit depths and
gate counts. Quantum algorithm design and implementation thus far have
been mostly restricted to single- and two-qubit gates due to their ease of
implementation and demonstrated high fidelities. Meanwhile, early
implementations of three-qubit gates66–68 were generally slower and more
prone to leakage and decoherence compared to the iToffoli gate employed
here due to populating higher levels outside the qubit computational space.
However,more recent implementations of three-qubit gates40–44 have begun
to address these challengesyieldingfidelities approaching thoseof two-qubit
gates. Further, they have been carried out on quantum devices with tens of
qubits, suggesting their utility for larger-scale quantum devices. As such
nativemulti-qubit gates becomemore prevalent, ourwork paves theway for
using them as native gate components in future quantum algorithm design
and implementation.

Methods
Molecular models
The molecular models studied in this work are HOMO-LUMO models of
NaH at a bond distance of 3.7Å and KH at a bond distance of 3.9Å in the
STO-3G basis. The bond distances are chosen to ensure sufficient popula-
tion in the excited states to facilitate comparisons of the spectral peaks.
Molecular integrals are determined from the quantum chemistry software
package PySCF69. Since our work focuses on comparing the transition
amplitudes, the ground- and excited-state energies are determined classi-
cally, as has beenperformed inother quantumsimulationdemonstrations70.
OpenFermion71, a software library for designing and analyzing quantum
algorithms, is used to map the second-quantized Hamiltonians to qubit
operators.

Quantum circuit construction
The ground-state preparation gate on the system qubits is determined
classically by constructing a unitary thatmaps the all-zero initial states to the
ground state and then decomposes into three CZ gates and single-qubit
gates using the KAK decomposition72. The LCU circuits are then con-
structed by applying the gates shown in Fig. 1B, C, where the SWAP gates
are decomposed according to the scheme in ref. 53, and the circuits are
transpiled by the functionsMergeInteractions,MergeSingleQubitGates, and
DropEmptyMoments in the quantum simulation software library Cirq73.
The transition amplitudes are combined with the classically determined
ground- and excited-state energies to calculate the spectral functions and
response functions (see Supplementary Note 2).

Quantum device
The quantum device used in this work is a superconducting quantum
processor with eight transmon qubits46,74. The algorithm is performed on a
four-qubit subset of the device with linear connectivity. Single-qubit gates
are performed with resonant microwave pulses. Multiplexed dispersive
readout allows for simultaneous state discrimination on all four qubits. CZ
gates between all nearest neighbors are performed according to the method
in ref. 75. The samemethod allows for a nativeCS gate on aparticular pair of

qubits according to the requirements of the algorithm. While single-qubit
gates are applied simultaneously, microwave crosstalk requires that all two-
and three-qubit gates are applied in separate cycles from each other, as well
as from any single-qubit gates. TrueQ76, a software framework for gate-level
optimization, is used for circuitmanipulations in the implementationofRC,
aswell as gate benchmarking. Internal software is used tomap the circuits to
hardware pulses for implementing the circuits with the native gate set.

Data availability
All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supplementary Materials. Additional data are available at
https://doi.org/10.5061/dryad.7d7wm3817.

Code availability
The code used for this study is available from the corresponding author
upon reasonable request.
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